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ASYMPTOTICS OF THE THREE-DIMENSIONAL VLASOV

EQUATION IN THE LARGE MAGNETIC FIELD LIMIT

by Francis Filbet & L. Miguel Rodrigues

Abstract. —We study the asymptotic behavior of solutions to the Vlasov equation in the pres-
ence of a strong external magnetic field. In particular we provide a mathematically rigorous
derivation of the guiding-center approximation in the general three-dimensional setting under
the action of large inhomogeneous magnetic fields. First order corrections are computed and
justified as well, including electric cross field, magnetic gradient and magnetic curvature drifts.
We also treat long time behaviors on two specific examples, the two-dimensional case in carte-
sian coordinates and a toroidal axi-symmetric geometry, the former for expository purposes.
Algebraic manipulations that underlie concrete computations make the most of the linearity
of the stiffest part of the system of characteristics instead of relying on any particular varia-
tional structure. At last, we analyze a smoothed Vlasov-Poisson system, thus showing how our
arguments may be extended to deal with the nonlinearity arising from self-consistent fields.

Résumé (Étude asymptotique de l’équation de Vlasov en dimension 3 pour un champ magnétique
externe intense)

Nous étudions le comportement asymptotique des solutions de l’équation de Vlasov en pré-
sence d’un fort champ magnétique externe. En particulier, nous justifions rigoureusement l’ob-
tention de l’approximation centre-guide dans un cadre général en dimension 3 pour un champ
magnétique inhomogène. Les corrections d’ordre 1 sont également décrites et justifiées, y com-
pris le terme E ×B, les gradients du champ magnétique et les effets de courbure. En outre,
nous traitons le comportement en temps long pour deux exemples spécifiques, le cas bidimen-
sionnel en coordonnées cartésiennes (pour ses vertus pédagogiques) et une géométrie toroïdale
axi-symétrique. Notre approche est essentiellement basée sur des manipulations algébriques,
plutôt que sur une structure variationnelle particulière.
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1. Introduction

Since fusion configurations involve very hot plasmas, they typically require a careful
design to maintain fast moving particles inside the core of the device on sufficiently
long times. In the magnetic confinement approach [1, 8, 14, 21, 33, 34], in particular in
tokamak plasmas, a strong external field is applied to confine the plasma by enforcing
the oscillatory nature of the fast motions.

Various models are in use to describe such phenomena. In the kinetic modeling,
the unknowns are the number densities of particles, f ≡ f(t,x,v) depending on time
t > 0, position x ∈ Ω ⊂ R3 and velocity v ∈ R3. Such kinetic models provide an
appropriate description of turbulent transport in a fairly general context, but in fu-
sion configurations their numerical simulations require to solve a stiff six-dimensional
problem, leading to a huge computational cost. To bypass this obstacle, it is classical
— see for instance [18] — to use reduced asymptotic models that describe only the
slowest part of the plasma dynamics hence effectively reducing both the stiffness of
the problem and the number of variables (since fastest variables are omitted). Over
the years, due to its rich and fundamental nature, the physically-based derivation of
such models has grown as a — still very active — field of its own, often referred to as
gyrokinetics. Besides the already mentioned general monographs [1, 8, 14, 21, 33, 34],
the reader may consult [25, 7, 11, 38, 10] and references therein as more specialized
entering gates to the field.

Despite considerable efforts in recent years, concerning mathematically rigorous
derivations from collisionless(1) kinetic equations, the state of art is such that one must
choose between linear models that neglect couplings due to self-consistent fields or
nonlinear ones set in a deceptively simple geometry. See for instance the introductions
and bibliographies of [20, 31, 23] for relatively recent panoramas on the question. For
instance, for the kind of problem considered here, on the nonlinear side of the literature
the most significant mathematical result — which requires a careful analysis — is
restricted to a two-dimensional setting with a constant magnetic field and interactions
described through the Poisson equation, and yet validates only half(2) of the slow
dynamics; see [36], building on [19] and recently revisited in [32].

We consider here a plasma confined by a strong unsteady inhomogeneous magnetic
field without any a priori geometric constraint but, in order to allow for such a gener-
ality, in most of the present paper(3) we do neglect effects of self-consistent fields. The
plasma is thus entirely modeled with a scalar linear kinetic equation, where the un-
known is one of the number densities of particles. The approach that we follow focuses

(1)See for instance [22, 24] and references therein for an introduction to the corresponding colli-
sional issues.

(2)The nontrivial half, however. This is possible there only because a very specific geometric
cancellation uncouples part of the slow dynamics from the remaining one, which is expected to be
slaved to it. See however the recent [6] for a more complete model, derived under more stringent
assumptions.

(3)See however Section 6 where we analyze a smoothed Vlasov-Poisson system.
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The Vlasov equation with strong magnetic field 1011

on the characteristic equations associated with the kinetic conservation law. By itself
the study of those equations may follow the classical roadmap of the averaging of
ordinary differential equations, as expounded in [3, 37]. Yet, here, beyond the body
of work already required to follow this road in usual ODE problems, a careful track
of the dependence of averaging estimates on initial data, living here in an unbounded
phase space, is necessary so as to derive asymptotics for the solutions of the original
partial differential equations problem.

To be more specific, the Lorentz force term in our original nondimensionalized
kinetic equation is scaled by a large parameter, 1/ε, where ε stands for the typical
cyclotron period, i.e., the typical rotation period of particles about a magnetic field
line (or Larmor rotation). The dynamical time scales we focus on are in any case
much larger than the cyclotron period and we establish asymptotic descriptions in
the limit ε → 0. As is classical in the field, we distinguish between short-time scales
that are O(1) with respect to ε, and long time scales that are ∼ 1/ε in the limit ε→ 0.
Correspondingly, slow dynamics refer to dynamics where typical time derivatives are
at most of order O(1) on short-time scales, and at most of order O(ε) on long-time
scales so that on long time scales two kinds of fast dynamics may co-exist, principal
ones at typical speed of order 1/ε and subprincipal ones at typical speed of order 1;
see for instance [9] for a description of those various oscillations in a specific class of
axi-symmetric geometries, without electric field and with a magnetic field nowhere
toroidal and whose angle to the toroidal direction is also independent of the poloidal
angle. With this terminology in hands, our results may be roughly stated as the
identification and mathematical proofs of

(1) a second-order — that is, up to O(ε2) — description of the slow dynamics on
short time scales but in arbitrary geometry;

(2) a first-order description of the slow dynamics on long time scales but in an
axi-symmetric geometry with a magnetic field everywhere poloidal and an electric
field everywhere orthogonal to the magnetic field.
The geometry of the latter is very specific and the proof of such a description is mostly
carried out here to illustrate that the short-time second-order description contains all
the ingredients to analyze long-time dynamics at first-order. Note that in any case, on
long-time scales some restrictions are indeed necessary to ensure that sub-principally
fast dynamics do not prevent long-time confinement and are of oscillatory type so
that the issue of the identification of a long-time slow dynamics becomes meaningful.
In Section 6 we also prove a second-order description of the dynamics driven by a
smoothed Vlasov-Poisson system, hence allowing for both nonlinear self-consistent
effects and arbitrary geometry, but we restrict there to initial data that are well-
prepared in the sense that their initial dependence on fast angles is weak.

A key feature of our analysis that underpins a treatment of essentially arbitrary
fields is that we make no explicit use of any geometric structure, neither Hamiltonian
(see for instance the pioneer work of R.G. Littlejohn [28, 29, 30] and later [2, 15]) nor
Lagrangian (see [35]). The main role of these structures in the averaging process is to
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1012 F. Filbet & L. M. Rodrigues

ease the identification of terms that are asymptotically irrelevant as time-derivatives
of small terms. Instead, in the present contribution this explicit identification hinges
heavily on the linearity of principal oscillations. As an upset, besides generality, we
gain the freedom to use change of variables that are also arbitrary and to focus on
slow variables instead of carrying geometric constraints all along.

A key motivation for our methodology is that in the design of well-adapted nu-
merical schemes, that capture the slow part of the dynamics even with discretization
meshes too rough to compute stiff scales, one might correspondingly aim at large
classes of schemes of arbitrary order; see for instance [39, 26, 12, 13]. Likewise our
choice of studying first characteristics instead of using directly partial differential
equations techniques and our will to prove error estimates echoes the particle-in-
cell methodology and its numerical analysis. Alternative PDE-based methods include
most notably two-scale convergence analysis [16, 17] and filtering techniques hinging
on ergodic von Neumann’s theorem [5, 4]. Two main advantages of going through
characteristics are that the limiting partial differential equation is by construction a
conservation law for a density distribution and that increasing the order of description
may be carried out merely by continuing the argument used to identify the leading
order. We benefit from the latter to prove for the first time a second-order description
in full generality.

2. Definitions and main results

We consider the kinetic PDE

(2.1) ∂tf
ε + divx(fε v) + divv

(
fε
(v ∧B(t,x)

ε
+E(t,x)

))
= 0

and its characteristic flow encoded by the following ODEs

(2.2)


dx

d t
= v,

dv

d t
=
v ∧B(t,x)

ε
+E(t,x),

where ∧ denotes the standard vector product on R3, B stands for the external mag-
netic field, E for the external electric field.

As a preliminary we begin by recalling the classical link between (2.1) and (2.2)
and making explicit how it can be used to analyze the slow part of the dynamics
hidden in the stiff (2.1).

2.1. From ODEs to PDEs. — Throughout the present contribution we shall use the
following notational conventions. We denote Ψ∗(µ) the push-forward of µ by Ψ, which
can be defined for instance when µ is a distribution and Ψ is a smooth proper map by,
for any test-function ϕ, ∫

B

ϕd Ψ∗(µ) =

∫
Ψ−1(B)

ϕ ◦Ψ dµ.
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The Vlasov equation with strong magnetic field 1013

When considering flows associated with ODEs, Φ(t, s,y) denotes the value at time t
of the solution starting from y at time s and the associated map is y 7→ Φ(t, s,y).
In particular the solution to (2.1) starting from f0 at time 0 is given at time t by
Φ(t, 0, ·)∗ (f0) where Φ is the flow associated with (2.2).

For general purpose we shall state an abstract proposition, almost tautological,
converting estimates on characteristics into estimates on densities. First, to enlighten
the meaning of the following statement, identifying measures with their densities, we
recall that the “value” at a of A∗(µ) the push-forward of µ by A is essentially the
average of µ on the level set A −1({a}). Indeed for any function f at any regular
value a of A

A∗ (f)(a) =

∫
A−1({a})

f(y)
dσa(y)√

det(d A (y)(d A (y))∗)
,

where σa denotes the surface measure on A −1({a}), d denotes the differential operator
and ∗ the adjoint operator. For instance if y = (y1, y2) ∈ R2, then with A (y) = ‖y‖ =√
y2

1 + y2
2 ,

A∗ (f)(r) =

∫ 2π

0

f(r e(θ)) r d θ,

where e(θ) = (cos(θ), sin(θ)), whereas with A (y) = 1
2‖y‖2,

A∗(f)(e) =

∫ 2π

0

f(
√

2 e e(θ)) d θ.

It turns out that the correct way to “average” the stiff equation (2.1) is precisely to
push f by a map A defining a complete(4) set of slow variables.

Proposition 2.1. — Let Φ and Φslow be flows associated with respective ODEs
dy

d t
= X (t,y) and da

d t
= Xslow(t,a)

and assume that there exist time-dependent slow maps A (t, ·) and weights M (t, ·)
such that for a.e. t > 0,

‖A (t,Φ(t, 0, ·))− Φslow(t, 0,A (0, ·))‖ 6M (t, ·).
Then if f solves

∂tf + divy(X f) = 0,

with initial data a measure f0 and F (t, ·) = A (t, ·)∗ f(t, ·) is the push-forward of f by
the slow map A then for a.e. t > 0

‖F (t, ·)−G(t, ·)‖Ẇ−1,1 6
∫

M (t, ·) d |f0|,

where G solves
∂tG+ diva(XasG) = 0,

with initial data F0 := A (0, ·)∗ f0.

(4)So that an uncoupled system is obtained in closed form (at the required order).
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1014 F. Filbet & L. M. Rodrigues

In the former we have denoted Ẇ−1,1 the dual of Ẇ 1,∞. Incidentally we observe
that the distance on Ẇ−1,1 coincides with the 1-Wasserstein distance from optimal
transportation. Explicitly

‖µ‖Ẇ−1,1 = sup
‖∇ϕ‖L∞61

∫
ϕdµ.

Here and throughout Lp denotes the classical Lebesgue space of index p, W s,p and
Ẇ s,p their corresponding Sobolev spaces at regularity s, respectively in inhomoge-
neous and homogeneous versions. Associated (semi-)norms are denoted ‖·‖Lp , ‖·‖W s,p

and ‖ · ‖Ẇ s,p .

Proof. — This stems readily from

F (t, ·) = A (t,Φ(t, 0, ·))∗ (f0), G(t, ·) = Φslow(t, 0,A (0, ·))∗ (f0),

and
‖ϕ ◦A (t,Φ(t, 0, ·))− ϕ ◦ Φslow(t, 0,A (0, ·))‖ 6 ‖∇ϕ‖L∞ M (t, ·). �

Note that in the foregoing statement, for readability’s sake, we have deliberately left
domains in time, original variables and slow variables, unspecified. However this may
be straightened by classical ODE considerations, notably when fields are continuous,
and locally Lipschitz in respectively y and a and either the support of f0 is compact
or involved vector-fields grow at most linearly.

2.2. Slow variables and first-order asymptotics. — Getting back to our concrete
system we begin our identification of a slow dynamics.

First, as is classical, we split the magnetic field B as

B(t,x) = B(t,x) e (t,x),

with B(t,x) = ‖B(t,x)‖. Accordingly we define, for any x ∈ R3 and any time t, the
linear operator J(t,x) as

(2.3) J(t,x)a = a ∧ e (t,x).

The direction of the magnetic field plays a very special role and it is expedient
to introduce for velocities an associated decomposition into parallel and orthogonal
components {

v (t,x,v) = 〈v, e (t,x)〉,
v⊥(t,x,v) = v − v (t,x,v) e (t,x)

and similarly for the electric field E,{
E (t,x) = 〈E(t,x), e (t,x)〉,
E⊥(t,x) = E(t,x)− E (t,x,v) e (t,x),

where here above 〈· , ·〉 denotes the canonical Euclidean scalar product, and below ‖·‖
denotes the associated Euclidean norm.

From system (2.2) it is clear that at least one component out of the six-dimensional
(x,v) must obey a dynamics forcing oscillations of amplitude of typical size 1 and
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The Vlasov equation with strong magnetic field 1015

typical frequency 1/ε. However at typical size 1 a five-dimensional slow dynamics
survives. This is already suggested by the fact that one may derive from (2.2) for the
slow variables (x, v , w⊥),

(2.4)



dx

d t
= v,

d v

d t
= E (t,x) + 〈v⊥, ∂t e (t,x) + dx e (t,x)v〉,

dw⊥
d t

=
〈
E⊥(t,x)− v (∂t e (t,x) + dx e (t,x)v) ,v⊥

〉
,

where w⊥ = 1
2‖v⊥‖2 and we have used the shorthand v (t) for v (t,x(t),v(t)) and

similarly for v⊥.
Our goal is to identify such a slow dynamics, uncoupled from fast oscillations.

Roughly speaking, since v⊥ is expected to weakly converge to zero when ε goes to
zero, at leading order the only issue is to identify the asymptotic behavior of quadratic
terms in v⊥ in (2.4). It turns out that those are responsible for the apparition of terms
w divx e in the asymptotic model, set on a reduced phase space, where slow variables
Z = (y, v, w) live. Introducing the limiting vector field

(2.5) V0(t,Z) =

 v e (t,y)

E (t,y) + w divx e (t,y)

−v w divx e (t,y)


we may state our first significant result.

Theorem 2.2. — Let E ∈ W 1,∞ and B be such that 1/B ∈ W 1,∞ and e ∈ W 2,∞.
There exists a constant C depending polynomially on ‖E‖W 1,∞ , ‖B−1‖W 1,∞ and
‖ e ‖W 2,∞ such that if fε solves (2.1) with initial data a nonnegative density(5) f0,
then F ε defined by

F ε(t,x, v , w⊥) =

∫
St,x

fε(t,x, v e (t,x) +
√

2w⊥ ê) dσt,x(ê),

with St,x = {e (t,x)}⊥ ∩ S2 and σt,x its canonical line-measure, satisfies for a.e.
t > 0

‖F ε(t, ·)−G(t, ·)‖Ẇ−1,1 6 C ε eC t
4

∫
R3×R3

eC t ‖v‖
3 ‖v‖ (1 + ‖v‖2) f0(x,v) dx dv,

where G solves

(2.6) ∂tG+ divZ (V0G) = 0,

with V0 given by (2.5) and the initial datum G0 is

G0(Z) =

∫
S0,y

f0(y, v e (0,y) +
√

2w ê) dσ0,y(ê).

(5)Results would equally well hold with measures of arbitrary sign, but we stick to densities to
provide nicer integral formulations for push-forwards when available, and to nonnegative densities
to remove absolute values in error bounds.
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1016 F. Filbet & L. M. Rodrigues

Theorem 2.2 is proved in Section 4.4; a nonlinear counterpart for a system of
Vlasov-Poisson type is both stated and proved in Section 6.1.

The underlying vector field V0 of the asymptotic model being divergence-free, many
conservation laws already come as consequences of the asymptotic model. Yet as we
state below a few more may be obtained if one assumes classical extra structure on
electromagnetic fields.

Proposition 2.3. — Assume that E = −∇xφ where the couple (φ,B) does not depend
on time and suppose that the confining magnetic field satisfies the Gauss’ law

divxB = 0.

Then solutions to the asymptotic model (2.6) satisfy
– the conservation of energy

∂t

((v2

2
+ w + φ

)
G
)

+ divZ

((v2

2
+ w + φ

)
V0G

)
= 0;

– the conservation of the classical adiabatic invariant µ⊥ = w/B

∂t

(w
B
G
)

+ divZ

(w
B

V0G
)

= 0.

Proof. — For the asymptotic model (2.6), the balance law for the kinetic energy is

∂t

((v2

2
+ w

)
G
)

+ divZ

((v2

2
+ w

)
V0G

)
= GvE ,

which is a conservation law only if E ≡ 0. Then if E derives from a potential,
E = −∇φ, the corresponding balance law for the total energy of the asymptotic
model is

∂t

((v2

2
+ w + φ

)
G
)

+ divZ

((v2

2
+ w + φ

)
V0G

)
= G∂tφ,

which reduces to the claimed conservation law when ∂tφ ≡ 0.
Note moreover that from

divxB(t,x)

(B(t,x))2
=

divx e (t,x)

B(t,x)
− e (t,x) · ∇x (1/B) (t,x)

follows for the asymptotic model the balance law

∂t

(w
B
G
)

+ divZ

(w
B

V0G
)

= −G w

B2
(∂tB + v divxB),

which is indeed a conservation law when ∂tB ≡ 0 and B is divergence-free. �

2.3. Second-order asymptotics. — Though already instructive, equation (2.6) fails
to capture parts of the slow dynamics that are too slow, for instance it does not
describe the evolution of w/B (when divxB ≡ 0). One way to correct this is to
derive a higher-order description of the slow dynamics.

It is at this next order that are found macroscopic velocities, including those classi-
cally known as the E×B drift, the curvature drift, the grad-B drift and the magnetic
rotational drift, that with notation below read respectively UE×B(t,y), v2Ucurv(t,y),
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The Vlasov equation with strong magnetic field 1017

eU∇B×B(t,y), and wUcurl e (t,y). Those have simple expressions in terms of vectors
fields depending only on time t and space y variables, and defined themselves as

(2.7)



UE×B :=
J E

B
=
E ∧B
B2

,

Ucurv := −J
B

(dx e e ) = − 1

B2
(dx e e ) ∧B,

U∇B×B := J∇x (1/B) = − 1

B3
∇xB ∧B,

Ucurl e :=
1

B
〈curlx e , e 〉 e ,

where J is given in (2.3). Since the direction of the magnetic field e is allowed to
depend on time, another drift is present, given by vU∂t(t,y) where

(2.8) U∂t := −J
B
∂t e = − 1

B2
∂t e ∧B.

Since it appears repeatedly it is convenient to introduce a piece of notation for a
special combination of U∂t and Ucurv,

(2.9) Σ(t,y, v) = U∂t(t,y) + vUcurv(t,y).

With the above definitions we may write the full drift vector field Udrift(t,Z) in
the concise form

(2.10) Udrift(t,Z) = (UE×B + vΣ) (t,y, v) + w (Ucurl e +U∇B×B) (t,y).

where Z = (y, v, w) stands for our set of slow variables in the asymptotic model.
For the sake of comparison with the existing literature we observe the equivalent
reformulations that may be derived from (dx e )∗ e = 0, a consequence of e being
unitary valued, 

dxe e = curlx e ∧ e ,

Ucurv = − 1

B
(curlx e ∧ e ) ∧ e

and observing that

(curlx e ∧ e ) ∧ e = − curlx e +〈curlx e , e 〉 e ,

we get that

(2.11) Ucurl e +Ucurv =
curlx e

B
=

divx J

B
.

The vector-field involved in our higher-order description of the complete slow dy-
namics is then given by

(2.12) V ε = V0 + εV1,

where the first order contribution V1(t,Z) is

V1(t,Z) =

 Udrift(t,Z)〈
Σ(t,y, v),E(t,y)

〉
+ w divx Σ(t,y, v)

−w
[〈
Ucurv(t,y),E(t,y)

〉
+ divx (UE×B + vΣ) (t,y, v)

]
 .(2.13)
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1018 F. Filbet & L. M. Rodrigues

The foregoing vector-field describes the dynamics of variables that are ε-corrections
of (x, v , w⊥) but that are slower than those. The corrected spatial position

(2.14) xεgc(t,x,v) := x+ ε
J(t,x)v

B(t,x)
= x+ ε

v ∧B(t,x)

(B(t,x))2

is well-known as the guiding center position, whereas the corrected parallel velocity
is given as
(2.15) vεgc(t,x,v) := v +ε 〈v⊥, Σ(t,x, v )〉+ ε

2B(t,x)

〈
J(t,x)v⊥,<(dx e (t,x))v⊥

〉
and the corrected version of the part of the kinetic energy in the plane perpendicular
to the magnetic field direction is

(2.16)


wεgc(t,x,v) := w⊥ − ε

〈
v⊥, UE×B(t,x) + v Σ(t,x, v )

〉
− ε v

2B(t,x)

〈
J(t,x)v⊥,<(dx e (t,x))v⊥

〉
,

where w⊥ = 1
2‖v⊥‖2, whereas < denotes the symmetric part

(2.17) <(A) =
1

2
(A+A∗),

with A∗ denoting the adjoint of A. Therefore, our global sets of slower components
are derived at time t from (x,v) by

Zεgc(t,x,v) = (xεgc, v
ε
gc, w

ε
gc)(t,x,v).

We can now state our main theorem.

Theorem 2.4. — Let E ∈ W 2,∞ and B be such that 1/B ∈ W 2,∞ and e ∈ W 3,∞.
There exists a constant C depending polynomially on ‖E‖W 2,∞ , ‖B−1‖W 2,∞ and
‖ e ‖W 3,∞ such that if fε solves (2.1) with initial data a nonnegative density f0,
then F ε defined by

F ε(t, ·) = Zεgc(t, ·)∗ (fε(t, ·))
satisfies for a.e. t > 0

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1

6 C ε2 eC t
4 (1+ε t)

∫
R6

eC t ‖v‖
3 (1+ε ‖v‖) (1 + ‖v‖4) f0(x,v) dx dv,

where Gε solves
(2.18) ∂tG

ε + divZ (V εGε) = 0,

with V ε given in (2.12) and the initial data Gε0 is
Gε0 = Zεgc(0, ·)∗ (f0).

The proof of this asymptotic result is given in Section 4.6. A nonlinear counterpart
for a system of Vlasov-Poisson type is also stated and proved in Section 6.2 but
restricts to well-prepared data in a sense detailed there.

A few comments on the structure of the asymptotic model are now in order. To be-
gin with we observe that V ε(t, ·) is still divergence-free. This follows from Lemma 2.5
below and the fact that divx divx(J/B) = 0 by the skew-symmetry of values of J .
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Lemma 2.5. — Consider Ucurl e , Ucurv and U∇B×B defined in (2.7). Then we have

divx (J/B) = Ucurl e +Ucurv +U∇B×B,

where J is given in (2.3) and B = ‖B‖.

Proof. — Straightforward by chain rule and (2.11) sinceUcurl e +Ucurv = divx (J) /B

and U∇B×B = J∇x(1/B). �

Then we observe that we also have

Proposition 2.6. — Assume that E = −∇xφ, where φ does not depend on time. Then
solutions to the asymptotic model (2.18) satisfy the conservation of energy

∂t

((v2

2
+ w + φ

)
Gε
)

+ divZ

((v2

2
+ w + φ

)
V εGε

)
= 0;

Proof. — If E derives from a potential, E = −∇φ, then one obtains the following
balance law for the total energy of the second-order asymptotic model

∂t

((v2

2
+ w + φ

)
Gε
)

+ divZ

((v2

2
+ w + φ

)
V εGε

)
= Gε ∂tφ

by using Lemma 2.5 and observing that

−〈divx (J/B) ,E〉+ divxUE×B = Tr ((J/B) dxE) = 0

since J is skew-symmetric and dxE is symmetric. From this stems the claimed con-
servation of energy when ∂tφ ≡ 0. �

2.4. Long-time asymptotics in a toroidal axi-symmetric geometry. — Another way
to unravel the dynamics of slower components is to derive asymptotics that hold on
time scales of typical size 1/ε. Yet this seems doable only if the dynamical geometry
of the first asymptotic model captured by Theorem 2.2 is sufficiently confining to
ensure that the motion at speed of typical size 1 is purely oscillatory and thus may
be uncoupled from a dynamics evolving with macroscopic velocities of typical size ε.

Our claim is that when such conditions are satisfied the proof of Theorem 2.4, and
more specifically the normal form on which it hinges (see System (4.20)), contains
sufficient ingredients to identify this long-time dynamics. To support this claim we
illustrate it with a consideration of one of the simplest non trivial confining geometries.

We fix now a unitary vector ez and for any x ∈ R3 define the coordinate of x
along ez and its distance to the axis R ez

z(x) = 〈ez,x〉, r(x) = ‖ ez ∧x‖.
We assume that for some r0 > 0, where r(x) > r0, B and E are axi-symmetric, B is
stationary and toroidal and E is orthogonal to B, that is,

e (x) =
ez ∧x
r(x)

, B(t,x) = b(r(x), z(x)), E (t,x) = 0,

E⊥(t,x) = Er(t, r(x), z(x)) er(x) + Ez(t, r(x), z(x)) ezand
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1020 F. Filbet & L. M. Rodrigues

for some smooth b, Er, Ez, with b non vanishing and

er(x) = e (x) ∧ ez .

Under the foregoing geometric assumptions, we have both E ≡ 0 and div(e ) ≡ 0

so that the only motion at speed of typical size 1 is the rotation of x around ez at
angular velocity v . Since by axi-symmetric assumption the corresponding angle is
easily factored out one may expect to capture a slow dynamics at typical speed ε in
variables (r, z, v , w⊥). This is the content of the next theorem. See Remark 5.4 for
some hints on the relaxation of the assumptions made here for simplicity.

r(x)

z(x)

e (x)

Figure 2.1. Representation of the torus local frame (er(x), e‖(x), ez(x))

where the magnetic field is along the unit vector field e‖ whereas the
electric field E is orthogonal to the magnetic field B.

The involved asymptotic vector field is εW1 with W1 defined as

W1(t,Z) =



−Ez
b

(t, r, z)− w ∂z (1/b) (r, z)

Er
b

(t, r, z) +
v2

r b(r, z)
+ w ∂r (1/b) (r, z)

v

r

(Ez
b

(t, r, z) + w ∂z (1/b) (r, z)
)

w
[
∂r (Ez/b) (t, r, z)− ∂z (Er/b) (t, r, z)− v2

r
∂z (1/b) (r, z)

]


,

where the new slow variable is Z = (r, z, v, w).

Remark 2.7. — On the two first components of W1 one readily identifies that in the
present geometry along slower variables only survive as spatial drifts, the E ×B and
grad-B drifts. This is due to the fact that here curlx e vanishes identically in the
zone of interest.

Theorem 2.8. — Let B be a stationary, axi-symmetric and toroidal magnetic field
and E be an axi-symmetric electric field orthogonal to B, with (Er, Ez, 1/b) ∈W 2,∞

in the region where r(x) > r0 for some r0. For any r1 > r0, there exist positive
constants ε0 τ0 and C0, (1/ε0, 1/τ0, C0) depending polynomially on 1/r0, 1/(r1 − r0)

and ‖(Er, Ez, 1/b)‖W 2,∞([r0,∞[×R), such that the following holds with

εmax(R0) :=
ε0

1 +R0
and Tmax(R0) :=

τ0
1 +R2

0

.
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Consider fε a solution to (2.1) with initial datum a nonnegative density f0 supported
where

r(x) > r1 and ‖v‖ 6 R0

for some R0 > 0 and define F ε as

F ε(t, r, z, v, e) =

∫ 2π

0

∫ 2π

0

fε(t, r eθr +z ez, v e (r eθr +z ez) +
√

2w eθ, ϕ⊥ ) r dϕ d θ

with
eθr = cos(θ) ex + sin(θ) ey, eθ, ϕ⊥ = cos(ϕ) eθr + sin(ϕ) ez,

where (ex, ey, ez) is a fixed(6) orthonormal basis. Then provided that

0 < ε 6 εmax(R0),

we have for a.e. 0 6 t 6 Tmax(R0)/ε

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 6 C0 ε

∫
R3×R3

eC ε t ‖v‖
4

(1 + ‖v‖3) f0(x,v) dx dv,

where Gε solves

(2.19) ∂tG
ε + εdivZ (W1G

ε) = 0,

with initial datum G0 given by

G0(Z) =

∫ 2π

0

∫ 2π

0

f0(r eθr +z ez, v e (r eθr +z ez) +
√

2w eθ, ϕ⊥ ) r dϕ d θ.

Again note that averaging formulas coincide with push-forwards by the slow map
(x,v) 7→ (r, z, v , w⊥)(t,x,v). Furthermore, we observe that rW1 is divergence-free
and provide the following analogous to Proposition 2.3.

Proposition 2.9. — Suppose that E derives from a stationary axi-symmetric potential

φ(x) = φ(r(x), z(x)), E = −∇xφ.

Then solutions to the asymptotic model (2.19) satisfy
– the conservation of energy;
– the conservation of the classical adiabatic invariant.

Proof. — When E derives from an axi-symmetric potential as above, the correspond-
ing balance law for the total energy of the asymptotic model (2.19) is

∂t

((v2

2
+ w + φ

)
Gε
)

+ ε divZ

((v2

2
+ w + φ

)
W1G

ε
)

= Gε ∂tφ

which is a conservation law if furthermore ∂tφ ≡ 0. Moreover observe that B is
divergence-free in the present configuration and that the asymptotic model (2.19)
comes with the balance law

∂t

(w
b
Gε
)

+ ε divZ

(w
b

W1G
ε
)

= εGε
w

b2
(∂rEz − ∂zEr),

(6)(ex, ey) are somehow arbitrary and the particular choice made here does not change F ε. In
contrast we recall that ez plays a special role as it directs the axis of symmetry.
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which is a conservation law if E is curl-free, hence in particular if E derives from a
potential. �

2.5. Further comments and numerical illustrations. — Though we have chosen
not add this level of (mostly notational) complexity, the introduction of parameter
dependencies in fields B and E would be immaterial to our analysis provided they
satisfy upper bounds on 1/B, E and the needed number of derivatives of (B,E).
See the related Remarks 3.14 and 3.14. In particular in this context one may expand
and simplify further our asymptotic systems if one assumes an expansion of B and E
with respect to ε or an ε-ordering of gradients, or likewise one may perform a second
asymptotic expansion with respect to another small parameter...

We believe that our leading-order slow variables (x, v , w⊥) are both simple and
natural. Yet many other choices have been used in the literature, and for comparison
we provide in Appendix 6.2.2 versions of our main results with another commonly-used
choice, (x, v , w⊥/B). Once a leading-order choice has been made, the higher-order
corrections added to it to reach varying order of slowness are uniquely determined
provided that a normalization is chosen. All through our analysis our implicit choice
is to enforce that corrections have no slow component in the sense that they have zero
mean with respect to the fast angle. See the related Remarks 3.9 and 4.5.

Though we have chosen to focus on the description of the slow dynamics, the
method would equally well provide a detailed description of the oscillations as slaved
to the evolution of the slow variables. We stress that in most of methods relying
on variational principles one needs to provide both descriptions jointly even though
the oscillating part is subordinated to the slow part, as those methods proceed by
performing full changes of variables in the original phase-space preserving the geo-
metric structure under consideration. Note that in principle to be fully justified from
a mathematical point of view this requires a careful tracking of how small ε must be
to guarantee that performed transformations are indeed changes of variables. Here
instead, with the exception of results from Section 2.4 where ε is constrained to en-
sure sufficient confinement on large times and of Section 6 where nonlinear effects are
analyzed, our results are free of smallness constraint on the gradient of force fields
(E,B) and on the initial data.

In Section 6, we have chosen to exemplify how our analysis extends to nonlinear
models on a smoothed Vlasov-Poisson system. On this system, the nonlinear first-
order analysis appears almost as a corollary of Theorem 2.2. However we believe that
the significantly more involved second-order analysis — yielding a nonlinear counter-
part to Theorem 2.4 — illustrates well typical difficulties of related nonlinear analysis,
and provides robust versatile solutions to those. In particular, it shows how the iden-
tification of slow variables yields suitable changes of variables effectively reducing the
derivation of nontrivial uniform estimates — of paramount importance in the nonlin-
ear asymptotic analysis — to standard arguments of PDE analysis. Moreover, since
there we do perform a change of variables to get the latter uniform estimates, we
also show how instead of modifying w⊥, a path that in a change of variables would
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bring polar coordinates singularities, one may adapt our slow-correction strategy and
directly modify v⊥. For more singular models, such arguments providing nontrivial
uniform bounds may already be required to prove nonlinear counterparts to Theo-
rem 2.2.

A feature specific to nonlinear models is that oscillations of particle densities force
oscillations in fields themselves that could be resonant in return with the particle
densities. When this phenomenon do occur at a relevant order, it impacts possible
asymptotic models. For this reason, to provide a result as close as possible to the
linear analysis of Theorem 2.4, we have restricted our nonlinear second-order analysis
to initial data satisfying a form of preparation and a significant part of our analysis
aims at proving that the well-prepared character is propagated by the stiff intricate
dynamics. This leaves fully open the investigation of nonlinear resonances, a question
that we regard as one of the main open questions in the field. However, in contrast
with the upshots of the present contribution, we expect that the outcome of such an
analysis would be extremely sensitive to fine details of the model under consideration.

To conclude the presentation of our results, we provide the reader with some nu-
merical simulations illustrating and hopefully making more concrete respective error
bounds. Since it is simpler to visualize we restrict numerical experiments to single-
particle simulations.

In the present numerical experiments, we choose the electric field equal to zero and
the magnetic field B as

B(t,x) = − 20

‖x‖5

 3x z

3 y z

2 z2 − x2 − y2

 ,

where x = (x, y, z). The initial data is

x(0) = (10, 0, 0), v(0) =
(
0, 6 cos (π/3) , 6 sin (π/3)

)
,

We approximate the solution of the initial system (2.2) using a fourth order Runge-
Kutta scheme with a time step sufficiently small to resolve oscillations and compare it
with the numerical solution obtained with the first order approximation corresponding
to the characteristic curves of (2.5)–(2.6) (given in Proposition 4.6) and with the
second order approximation corresponding to the characteristic curves of (2.5), (2.13)
and (2.18) (given in Proposition 4.9).

On the one hand, Figure 2.2-(A) represents the error

E1(ε) =

∫ 10

0

‖xε(t)− y(t)‖ d t,

where xε is the spatial component of the solution (xε,vε) to (2.2) and y is the
spatial component of (y, v, w) satisfying the differential system with initial data as in
Proposition 4.6 (and corresponding to (2.6)), whereas Figure 2.2-(B) represents the
error

E2(ε) =

∫ 10

0

‖xεgc(t)− yε(t)‖ d t,
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Figure 2.2. Numerical simulation: (A) error between the first order model
and (2.2) (B) error between the second order model and (2.2) (C) parti-
cle trajectory obtained with the first order model and (2.2) (D) particle
trajectory obtained with the second order model and (2.2).

where xεgc is obtained through (2.14) from (xε,vε) solving (2.2) and yε is the spa-
tial component of (yε, vε, wε) satisfying the Cauchy problem as in Proposition 4.9
(and corresponding to (2.18)). These numerical results illustrate the order of accu-
racy stated in Theorems 2.2 (first order) and 2.4 (second order). On the other hand,
we have also claimed that to capture long-times dynamics it is also crucial to include
second-order terms in the asymptotic models. Theorem 2.8 provides some quantitative
support to the claim, in a specific geometry. We now provide in a different config-
uration another, qualitative, illustration of the claim, by plotting in Figures 2.2-(C)
and 2.2-(D) examples of spatial parts of particle trajectories obtained with original,
first and second-order models. Here we take ε = 10−3 and solve on [0, 250]. Roughly
speaking, the solution to the original problem exhibits a superposition of three kinds
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of spatial motions, namely, with decreasing velocity, the cyclotron oscillation about
magnetic field lines, an oscillation along magnetic field lines, and a slower drift, re-
sponsible of a horizontally circular displacement. By construction, both asymptotic
descriptions remove the cyclotron motion. However, whereas the second-order as-
ymptotic model seems able to reproduce the slow part of the complicate multi-scale
behavior, the first-order one only describes oscillations along the magnetic field lines.
Indeed, since the first order model does not include classical drifts U∇B×B, Ucurv

and Ucurl e , it is not adequate to follow accurately the correct trajectory on times
sufficiently long to feel the effects of those.

3. Two-dimensional homogeneous case

As a warm up we begin our analysis by revisiting the two-dimensional homogeneous
case. The goal is to expound the tenets of the method without being slowed down
by computational complexity. For the sake of exposition, for this simple system we
prove first results that are even weaker than what the method may prove but that
correspond to the best that is expected from the general 3-D system without assuming
special symmetry.

.
x

y

B

Figure 3.1. Representation of perpendicular plane to the magnetic field
B = B(x) ez.

Since here the parallel direction is fixed and we follow only perpendicular motions
we drop temporarily ⊥ and indices. Thus, we consider for any (x,v) ∈ R2×R2 and
t > 0,

(3.1) ∂tf
ε + divx (f v) + divv

(
f
(1

ε
B Jv +E

))
= 0.

Characteristics of the underlying PDE are obtained by solving

(3.2)


dxε

d t
= vε,

dvε

d t
=

1

ε
B Jvε +E(t,xε),

with B > 0 and
J (a1, a2) = (a2,−a1),

important properties of J being

J2 = − Id, J∗ = −J .
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For the sake of readability, from now on, when no confusion is possible, that is,
when no asymptotic comparison is under consideration, we shall drop ε exponents on
solutions.

We shall perform a series of transformations so as to extract from system (3.2) a
normal form where some slow variables satisfy a system of ODEs uncoupled from fast
scales up to error terms. It is worth pointing out that under stringent assumptions on
fields one may expect to perform at once an infinite number of transformations and
uncouple at infinite order slow variables from fast variables. We shall not pursue this
line of investigation here but as a consequence one should keep in mind that variables
that we designate as slow are slow only up to a certain order and that depending
on the objective at hand the level of slowness required may vary. As an example,
anticipating a bit the analysis below, note that depending on the aimed conclusion
one may be allowed to work directly with the spatial position x or need to manipulate
the gyrocenter x+ εB−1Jv, or even be compelled to use a version of those corrected
by higher-order powers of ε.

3.1. Uniform bounds. — Both to enforce that terms expected to be irrelevant are
indeed irrelevant and to ensure that solutions persist on a sufficiently long time inter-
val, uniform bounds on the solution are needed. Let us obtain them by introducing a
kinetic energy variable w(v) = 1

2‖v‖2 and noting that system (3.2) yields

dx

d t
= v,

dw

d t
= 〈v,E(t,x)〉,

dv

d t
=
B

ε
Jv +E(t,x).

Remark 3.1. — We warn the reader that though we write the latter system as if w
and v were independent variables this is mostly an algebraic trick here. In particular
one should keep in mind that the system does contain some redundancy that is kept
for the sake of simplicity of algebraic manipulations. In contrast an augmented for-
mulation was in turn crucially used in [13] jointly with suitable numerical schemes so
as to allow the discretization to disconnect the weak convergence of v to zero from
the strong convergence of w to a non trivial limit.

Of course here one could obtain from a Lipschitz assumption on E global-in-time
existence and some bounds growing exponentially in time from a standard Grönwall
lemma. Yet for expository reasons we show how to perform simple better estimates.
Note however that, as we derive below in the long-time analysis, those are still decep-
tively pessimistic.
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Lemma 3.2. — Solutions to (3.2) starting from (x0,v0) are defined globally in time
and satisfy for any t > 0{

‖x(t)‖ 6 ‖x0‖+ t ‖v0‖+ t2 ‖E‖L∞ ,
‖v(t)‖ 6 ‖v0‖+ 2 t ‖E‖L∞ .

Proof. — From the equation on w stems, for any t > 0, as long as the solution exists

max
s∈[0,t]

‖v(s)‖2 6 ‖v0‖2 + 2 max
s∈[0,t]

‖v(s)‖ t ‖E‖L∞ ,

hence by solving the second-order inequality, for any t > 0, as long as the solution
exists

max
s∈[0,t]

‖v(s)‖ 6
√
‖v0‖2 + t2‖E‖2L∞ + t ‖E‖L∞ .

This yields the estimate on v. In turn it implies the estimate on x by a mere inte-
gration, and jointly they prove global well-posedness by ruling out finite-time blow-
up. �

3.2. Elimination of linear terms. — We begin the uncoupling process. The thrust
of the method is that the equation that forces v — or more exactly its argument —
to evolve on fast scales also provides a way to eliminate at leading order v — or more
exactly dependencies on its argument — in slow equations. This general philosophy,
that may be turned into rigorous arguments, explain why slow evolutions may be
uncoupled from fast scales at any prescribed order. Explicitly elimination, at leading
order, of linear terms in v is summarized as

Lemma 3.3. — Consider L ∈W 1,∞ (R+
t ; L1(R2,Rp)

)
, p ∈ N∗ and (x,v) a solution

to (3.2). Then for a.e. t > 0, we have

(3.3) L(t)(v(t)) = −ε d

d t
(L(t) (J v/B)) + εL′(t) (Jv/B) + εL(t)(UE×B(t,x)),

with

UE×B(t,x) =
J E

B
(t,x).

In the former we have used the following notational convention. For any α ∈ N,
Lα(V,W ) denotes the space of α-linear operators from V α to W . In particular,
L1(V,W ) is the set of linear operators from V to W .

Proof. — This follows directly from

v = − ε

B

d

d t
(Jv) +

ε

B
J E(t,x). �

The latter term UE×B identifies the classical E×B velocity drift from gyrokinetic
theory. The foregoing lemma singles out the prominent role played by the UE×B drift
in two-dimensional gyrokinetics.
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3.3. First elimination and partial asymptotics. — By using Lemma 3.3 first with
L(t)(v) = v then with L(t)(v) = 〈E(t,x(t)),v〉, one derives that from system (3.2)
follows for the guiding center variable,

(3.4) d

d t

[
x+ ε

Jv

B

]
= εUE×B(t,x)

and for the corrected kinetic energy w(v) = 1
2‖v‖2,

(3.5) d

d t

[
w(v)− ε

〈
UE×B(t,x),v

〉]
= −ε

〈
∂tUE×B(t,x) + dxUE×B(t,x)(v),v

〉
.

Remark 3.4. — In the present paper the stiffer part of the fast equation is always
linear in v. This leads to a quite simple elimination of terms linear in v. In particular,
since the slow equations on (x, w) are linear in v the first elimination comes almost
for free. However in general each simplification increases the level of nonlinearity in v
of slow equations and subsequent simplifications get more and more algebraically
cumbersome.

A specific feature of System (3.2) is that slow variables evolve with speeds of typical
size O(ε) and not O(1). Therefore on time intervals [0, T εobs], one hopes to validate
approximation of the slow part by the solution of an uncoupled system up to error
terms of size O(ε2T εobs) with T εobs = O(ε−1). We first prove this claim with T εobs of
size 1 then refine the analysis to reach T εobs of size ε−1. Note that when T εobs is of
size ε−1 we aim at an error of size O(ε) and thus we may use directly (x, w) as slow
variables whereas when T εobs is O(1) we aim at precision O(ε2) thus we should use(

x+ εJv/B, w(v) + ε
〈
E(t,x),Jv/B

〉)
,

or a higher-order version of the latter.
Note that without further simplification the aforementioned asymptotics may not

be readily derived since the equation on e still contains v-terms at leading order.
However an aspect even more peculiar to System (3.2) is that at leading order the
equation for x uncouples not only from the argument of v but also from w. At this
stage an asymptotic description of the slow part corresponding to x may be guessed
without any further computation.

Proposition 3.5. — Assume E ∈ L∞
(
R+
t ; W 1,∞(R2)

)
and let (xε,vε) be the solu-

tion to (3.2) starting from (x0,v0). Then the guiding center variable (2.14) satisfies
for a.e. t > 0,∥∥xεgc(t)− yε(t)

∥∥ 6 ε2

B2
‖ dxE‖L∞ e(ε t/B)‖ dx E‖L∞ (t ‖v0‖+ t2 ‖E‖L∞ ),

where yε solves

(3.6)


dyε

d t
= εUE×B(t,yε),

yε(0) = xgc(0).
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Proof. — We consider xεgc given in (2.14), which satisfies

dxεgc

d t
= εUE×B(t,xεgc) + ε

[
UE×B

(
t,xεgc − εJvε/B

)
−UE×B(t,xεgc)

]
.

This implies for a.e. t > 0

‖xεgc(t)−yε(t)‖ 6 ε

B
‖ dxE‖L∞

∫ t

0

‖xεgc(s)−yε(s)‖ d s+
ε2

B2
‖ dxE‖L∞

∫ t

0

‖vε(s)‖ d s.

Thus by the Grönwall lemma, for a.e. t > 0,

‖xεgc(t)− yε(t)‖ 6 ε2

B2
‖dxE‖L∞ e(ε t/B)‖ dx E‖L∞

∫ t

0

‖vε(s)‖ d s.

Then the result follows from Lemma 3.2. �

The foregoing bound is very simple but is not sharp with respect to ε. Indeed
the principal part of the error term of the equation is linear in v thus may also be
eliminated.

Remark 3.6. — The special structure of equation (3.4) is somewhat fortuitous. How-
ever the fact that the error introduced by replacing xε with its ε-correction xεgc may
be cast away at leading order is not mere luck. It is due to our choice in (3.3) of an
antiderivative

εL(t) (Jv/B) ,

that at leading order contains no slow part. Henceforth in similar cases enforcing such
properties will always streamline our particular choices.

The announced further elimination yields the following refinement.

Proposition 3.7. — Assume that E ∈W 2,∞. There exists a constant C > 0, depend-
ing polynomially on ‖E‖W 2,∞ and B−1, such that if (xε,vε) is a solution to (3.2)
starting from (x0,v0), then it satisfies for a.e. t > 0,∥∥xεgc(t)−yε(t)

∥∥ 6 C ε3 e(ε t/B)‖ dx E‖L∞ (1+ t(1+‖v0‖+ t ‖E‖L∞)) (‖v0‖+ t ‖E‖L∞),

where xεgc is as in (2.14) and yε solves (3.6).

Proof. — The term to weed out is linear in v and by applying Lemma 3.3 with

L(t)(v) = −dxUE×B(t,xεgc(t)) (Jv/B)

one obtains
d

d t

[
xεgc + ε3 dxUE×B(t,xεgc)

(
vε/B2

)]
= εUE×B(t,xεgc)− ε3 dxUE×B(t,xεgc) (J UE×B(t,xε)/B)

+ ε3 dx ∂tUE×B(t,xεgc)
(
vε/B2

)
+ ε3 d2

xUE×B(t,xεgc)
(
UE×B(t,xε),vε/B2

)
+ ε

[
UE×B

(
t,xεgc − εJvε/B

)
−UE×B(t,xεgc) + ε dxUE×B(t,xεgc) (Jvε/B)

]
.
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Therefore, for a.e. t > 0, one has

‖xεgc(t)− yε(t)‖ 6 ε

B
‖dxE‖L∞

∫ t

0

‖xεgc(s)− ỹε(s)‖ d s

+
ε3

B3
‖dxE‖L∞ (‖v0‖+ ‖vε(t)‖)

+
ε3

B3
(‖dx ∂tE‖L∞ +B−1‖d2

xE‖L∞‖E‖L∞)

∫ t

0

‖vε(s)‖ d s

+
ε3

2B3
‖d2

xE‖L∞
∫ t

0

‖vε(s)‖2 d s.

At this stage the result follows from Lemma 3.2 and the Grönwall lemma. �

One may go on by correcting xεgc into a “higher-order” approximation

xεho = xεgc + ε3 dxUE×B(t,xεgc)(vε/B2),

then expanding from xεho and eliminating terms involving vε. But the expansion pro-
cess would involve terms quadratic in v whose elimination brings a coupling with wε
as may be seen from Lemma 3.8 below. Proposition 3.7 is therefore expected to be
optimal with respect to ε-scaling on time intervals of length O(1).

3.4. Elimination of quadratic terms. — In order to obtain asymptotics for the full
set of slow variables (x, w) we study now the extraction of slow components from
expressions that are quadratic in v.

Lemma 3.8. — Consider A ∈W 1,∞ (R+
t ; L2(R2,Rp)

)
, p ∈ N∗ and (x,v) a solution

to (3.2). Then, for a.e. t >, we have

A(t)(v(t),v(t)) = w(v) Tr(A(t))− ε dχA

d t
(t) + ε ηA(t),

where w(v) = ‖v‖2/2, whereas Tr denotes the trace operator, for the canonical basis
(ex, ey) of R2

Tr(A(t)) = A(t)(ex, ex) +A(t)(ey, ey)

whereas χA is given by
χA =

1

2
<(A)

(
v, B−1J v

)
and ηA is

ηA =
1

2
<(A)(v,UE×B(t,x)) +

1

2
<(A)′

(
v, B−1J v

)
+

1

2
<(A)

(
E(t,x), B−1J v

)
,

with < denoting the symmetric part defined in (2.17).

Remark 3.9. — Consistently with Remark 3.6, note that χA has itself no slow com-
ponent at leading order since <(A(t)) (·,J(·)) is trace-free. Indeed its trace is

<(A) (a,Ja) + <(A) (Ja,J Ja) = <(A) (a,Ja)−<(A) (Ja,a) = 0,

where a is any unitary vector. In the latter to express the trace we have used that
(a,Ja) form an orthonormal basis for any unitary a.
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Proof. — Note first that one may assume without loss of generality that A is valued
in symmetric bilinear forms. Thus we assume <(A) = A for the sake of notational
concision. By differentiation one derives

2
dχA

d t
(t) = A′(t)

(
v(t), B−1Jv(t)

)
+A(t)

[dv

d t
(t), B−1Jv(t)

]
+A(t)

[
v(t), B−1J

(dv

d t
(t)
)]

= A′(t)
(
v(t), B−1Jv(t)

)
+

1

ε
A(t) (Jv(t),Jv(t))

+A(t)
(
E(t,x(t)), B−1Jv(t)

)
− 1

ε
A(t) (v(t),v(t)) +A(t)

(
v(t),UE×B(t,x(t))

)
and the result follows by multiplying by ε/2 then adding A(t)(v(t),v(t)) and using

w Tr(A) =
1

2

(
A(v,v) +A(Jv,Jv)

)
. �

The last equality of the foregoing proof is essentially the definition of the trace
operator. An elementary but fundamental point is that the right-hand side is invariant
by rotation, thus the definition of Tr(A) does not depend on the vector v chosen to
express it.

3.5. Second elimination and full asymptotics. — For the sake of concision and sym-
metry we introduce

(3.7) wεgc = w(vε)− ε
〈
UE×B(t,xε),vε

〉
,

which corresponds to the corrected kinetic energy, a two-dimensional version of (2.16).
By applying Lemmas 3.3 with

L(t)(v) = −
〈
∂tUE×B(t,x(t)),v

〉
and Lemma 3.8 with

A(t)(v,u) = −
〈
dxUE×B(t,x(t))(v),u

〉
,

equation (3.5) in system (3.4)–(3.5) may be turned into

(3.8) d

d t

[
wεgc +

ε2

B2
χε
]

= −εw(vε) divx(UE×B)(t,xε) +
ε2

B2
ηε,

where

χε(t,x,v) =
〈
∂tE(t,x),v

〉
− 1

4

[〈
dxE(t,x)(v),v

〉
−
〈
dxE(t,x)(Jv),Jv

〉]
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and

ηε(t,x,v) = −
〈
∂tE(t,x),E(t,x)

〉
−
〈
∂2
tE(t,x) + dx ∂tE(t,x)(v),v

〉
+

1

4

〈
dxE(t,x)(JE(t,x)),Jv

〉
− 1

4

〈
dxE(t,x)(v),E(t,x)

〉
− 1

4

〈
dxE(t,x)(E(t,x)),v

〉
+

1

4

〈
dxE(t,x)(Jv),JE(t,x)

〉
− 1

4

〈
dx ∂tE(t,x)(v) + d2

xE(t,x)(v,v),v
〉

+
1

4

〈
dx ∂tE(t,x)(Jv) + d2

xE(t,x)(v,Jv),Jv
〉
.

Now we may complete Proposition 3.7 to obtain leading-order asymptotics for
(xεgc, w

ε
gc).

Proposition 3.10. — Assume E ∈ W 2,∞. There exists a constant C > 0, depending
polynomially on ‖E‖W 2,∞ and B−1 such that the following holds. Let (xε,vε) be the
solution to (3.2) starting from (x0,v0). Then, for a.e. t > 0,
∥∥xεgc(t)− yε(t)

∥∥ 6 C ε3 eC ε t
(

1 + t(1 + ‖v0‖+ t)
)

(‖v0‖+ t),∥∥wεgc(t)− wε(t)
∥∥ 6 C ε2 eC ε t

(
1 + (1 + t)(‖v0‖+ t) + t(‖v0‖+ t)2

)
(‖v0‖+ t),

where (xεgc, w
ε
gc) is as in (2.14) and (3.7) and (yε, wε) solves

(3.9)


dyε

d t
= εUE×B(t,yε),

dwε

d t
= −εwε divx(UE×B)(t,yε),

with initial data yε(0) = xεgc(0) and wε(0) = wεgc(0).

Remark 3.11. — Note that if E derives from a potential, that is, if E is curl-free,
then the equation on wε is trivial since divx(UE×B) = 0. Yet this cancellation does
not improve any convergence rate. Incidentally we point out that in this case dxE is
symmetric so that the cancellation follows at a more abstract level from computations
of Remark 3.9.

Proof. — We consider (xε,vε) the solution to (3.2) starting from (x0,v0) and
the corresponding (yε, wε), the solution to (3.9) starting from (xεgc(0), wεgc(0)),
where (xεgc, w

ε
gc) is as in (2.14)–(3.7). First, to ease comparisons, we recall that

w(vε) = ‖vε‖2/2 (and ban temporarily the confusing shorthands wε and w for
w(vε)) and write (3.8) as

d

d t

[
wεgc +

ε2

B2
χε
]

= − εwεgc divxUE×B(t,yε) +
ε2

B2
ηε

− ε
(
w(vε)− wεgc

)
divxUE×B(t,yε)

− εw(vε)
(
divxUE×B(t,xε)− divxUE×B(t,xεgc)

)
− εw(vε)

(
divxUE×B(t,xεgc)− divxUE×B(t,yε)

)
.
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Then, from subtracting the latter equation to the one for wε in (3.9) stems for a.e.
t > 0,

|wεgc(t)− wε(t)| 6 C ε
∫ t

0

|wεgc(s)− wε(s)|d s+ C ε2 (|χε(0)|+ |χε(t)|)

+ C ε2

∫ t

0

|ηε(s)|d s+ C ε2

∫ t

0

‖vε(s)‖d s

+ C ε2

∫ t

0

‖vε(s)‖3 d s+ Cε

∫ t

0

‖vε(s)‖2 ‖xεgc(s)− yε(s)‖ d s,

where C depends polynomially on ‖E‖W 2,∞ and B−1. Finally the estimate on wεgc−wε
follows from Lemma 3.2, Proposition 3.5 and the Grönwall lemma. �

3.6. Long-time asymptotics. — As aforementioned, the fact that vector fields ap-
pearing in the leading-order asymptotics seem to be O(ε) suggests that it should also
be possible to validate asymptotics for (xε, w(vε)) on time intervals of length O(ε−1)

with convergence rates O(ε). To carry out such achievement we need to refine bounds
from Lemma 3.2.

Lemma 3.12. — There exists a universal positive constant C such that any solution
to (3.2) starting from (x0,v0) satisfies for any t > 0‖x(t)‖ 6 ‖x0‖+

ε

B
t ‖E‖L∞ + C ε eC (ε/B) t ‖E‖Ẇ1,∞

(
1 + ‖v0‖+

ε

B
‖E‖L∞

)
,

‖v(t)‖ 6 C eC (ε/B) t ‖E‖Ẇ1,∞
(

1 + ‖v0‖+
ε

B
‖E‖L∞

)
.

Proof. — Integrating (3.5) yields for a.e. t > 0

w(v) 6 w(v0) +
ε

B
‖E‖L∞‖v0‖+

w(v)

2
+

ε2

2B2
‖E‖2L∞

+
ε

B
t ‖∂tE‖L∞ +

ε

B
(2‖ dxE‖L∞ + ‖∂tE‖L∞)

∫ t

0

w(s) d s,

which after a few algebraic manipulations and an application of the Grönwall lemma
proves the claim on ‖v‖. The bound on x is obtained similarly by integrating (3.4). �

We now focus on large-time asymptotics for (x, w(v)).

Proposition 3.13. — Assume E ∈ W 2,∞. There exists a constant C > 0, depending
polynomially on ‖E‖W 2,∞ and B−1, such that any solution to (3.2) starting from
(x0,v0) satisfies for a.e. t > 0{

‖xε(t)− yε(t)‖ 6 C ε eC ε t (1 + ε+ ‖v0‖),
‖w(vε(t))− wε(t)‖ 6 C ε eC ε t (1 + ε+ ‖v0‖)3,

where w(v) = 1
2‖v‖2 and (yε, wε) solves (3.9) with initial data yε(0) = x0 and

wε(0) = 1
2‖v0‖2.
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Proof. — The estimate on xε−yε follows from Lemma 3.12 and the Grönwall lemma
after an integration of (3.4). To proceed, we use (3.8) in the form

d

d t

[
w(vε)− ε 〈UE×B(t,xε),vε〉+

ε2

B2
χε
]

= −εw(vε) divxUE×B(t,yε) +
ε2

B2
ηε

− εw(vε)
(
divxUE×B(t,xε)− divxUE×B(t,yε)

)
,

thus, for a.e. t > 0,

|w(vε(t))− wε(t)| 6 Cε
∫ t

0

|w(vε(s))− wε(s)| d s

+ C ε (‖v0‖+ ‖vε(t)‖) + Cε2 (|χε(0)|+ |χε(t)|)

+ C ε2

∫ t

0

|ηε(s)| d s+ Cε

∫ t

0

‖vε(s)‖2 ‖xε(s)− yε(s)‖ d s,

where C depends polynomially on ‖E‖W 2,∞ and B−1. One may conclude again with
Lemma 3.12 and the Grönwall lemma. �

Remark 3.14. — The proof also yields the analysis of dynamics involving fields de-
pending on ε but satisfying bounds uniform with respect to ε. In particular the result
may be extended without change to the case where Eε(t,x) = E(ε t,x), 0 < ε . 1.
This somehow simpler problem is the one classically considered because then the
asymptotic dynamics is essentially independent of ε at leading order since

(yε, wε)(t) = (y, w)(ε t),

with (y, w) independent of ε.

Of course we may also use Lemma 3.12 to refine time dependence in Proposi-
tion 3.10 so as to fill the gap concerning what happens at leading-order for interme-
diate times 1 . t . ε−1. For possible external reference let us store without proof the
corresponding result.

Proposition 3.15. — Assume E ∈ W 2,∞. Then there exists a constant C > 0, de-
pending polynomially on ‖E‖W 2,∞ and B−1, such that the following holds. Let (xε,vε)

be the solution to (3.2) starting from (x0,v0). Then, for a.e. t > 0,{
‖xεgc(t)− yε(t)‖ 6 C ε3 eC ε t

[
1 + t (1 + ε+ ‖v0‖)

]
(1 + ε+ ‖v0‖),

‖wεgc(t)− wε(t)‖ 6 C ε2 eC ε t
[
1 + t (1 + ε+ ‖v0‖)

]
(1 + ε+ ‖v0‖)2,

where (xεgc, w
ε
gc) is as in (2.14) and (3.7) and (yε, wε) solves (3.9) with initial data

yε(0) = xεgc(0) and wε(0) = wεgc(0).

3.7. PDE counterparts. — Now let us translate the foregoing results at the PDE
level.

On the reduced phase-space where Z = (y, w) lives the relevant macroscopic velo-
city is εW1(t,Z) where

(3.10) W1(t,Z) =

(
UE×B(t,y)

−w divxUE×B(t,y)

)
,
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which corresponds to the velocity field of system (3.9) defining the characteristic
curves of the equation

(3.11) ∂tG
ε + ε divZ (W1G

ε) = 0.

With this in hands we may deduce from Propositions 3.13 and 3.15 the following
statement, where we have made explicit push-forwards that were easy to compute.

Theorem 3.16. — Let E ∈W 2,∞. There exists a constant C depending polynomially
on ‖E‖W 2,∞ and B−1 such that the following holds for any solution fε to (3.1) with
initial datum a nonnegative density f0.

(i) Long-time first-order asymptotics. F ε defined by

F ε(t,x, w) =

∫ 2π

0

fε(t,x,
√

2w e(θ)) d θ

satisfies for a.e. t > 0

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 6 C ε eC ε t
∫
R2×R2

(1 + ε+ ‖v‖)3 f0(x,v) dx dv,

where Gε solves (3.11) with initial datum G0 = F ε(0, ·) given by

G0(x, w) =

∫ 2π

0

f0(x,
√

2w e(θ)) d θ.

(ii) Short-time second-order asymptotics. The push-forwards F εgc(t, ·) of fε(t, ·) by
the maps

(x,v) 7−→
(
x+

ε

B
Jv, 1

2‖v‖2 − ε
〈
UE×B(t,x),v

〉)
satisfy for a.e. t > 0

‖F εgc(t, ·)−Gεgc(t, ·)‖Ẇ−1,1 6 C ε2 eC ε t (1 + t)

∫
R2×R2

(1 + ε+ ‖v‖)3 f0(x,v) dx dv,

where Gεgc solves (3.11) with initial datum G0 = F εgc(0, ·), defined as the push-forward
of f0 by the map

(x,v) 7−→
(
x+

ε

B
Jv, 1

2‖v‖2 − ε
〈
UE×B(0,x),v

〉)
.

Proof. — The first result is a direct consequence of the abstract Proposition 2.1 and
the estimates provided in Proposition 3.13 on the characteristic curves. The second one
follows the same lines with the help of Proposition 3.15 instead of Proposition 3.13. �

Due to the special structure of the homogeneous two-dimensional case, with es-
sentially the same proof one may also provide versions focusing only on the spatial
variables and its ε-corrections. This involves the asymptotic equation

(3.12) ∂tr
ε + ε divy (rεUE×B) = 0.

Proposition 3.17. — Let E ∈W 2,∞. There exists a constant C depending polynomi-
ally on ‖E‖W 2,∞ and B−1 such that the following holds for any solution fε to (3.1)
with initial datum a nonnegative density f0.
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(i) Long-time first-order asymptotics. ρε defined by

ρε(t,x) =

∫
R2

fε(t,x,v) dv

satisfies for a.e. t > 0

‖ρε(t, ·)− rε(t, ·)‖Ẇ−1,1 6 C ε eC ε t
∫
R2×R2

(1 + ε+ ‖v‖) f0(x,v) dx dv,

where rε solves (3.12) with initial datum r0 = ρε(0, ·) given by

r0(x) =

∫
R2

f0(x,v) dv.

(ii) Short-time third-order asymptotics. ρεgc defined by

ρεgc(t,y) =

∫
R2

fε
(
t,y − ε

B
Jv,v

)
dv

satisfies for a.e. t > 0

‖ρεgc(t, ·)− rεgc(t, ·)‖Ẇ−1,1 6 C ε3 eC ε t (1 + t)

∫
R2×R2

(1 + ε+ ‖v‖)2 f0(x,v) dx dv,

where rεgc solves (3.12) with initial datum (rεgc)0 = ρεgc(0, ·), given by

(rεgc)0(y) =

∫
R2

f0

(
y − ε

B
Jv,v

)
dv.

4. General three-dimensional case

We come back to the three-dimensional system

(4.1)


dx

d t
= v,

dv

d t
=
v ∧B(t,x)

ε
+E(t,x),

and follow the pattern of the short-time analysis of Section 3. As there we do not
mark ε-dependencies as long as no confusion is possible.

4.1. Slow variables and uniform bounds. — First, Lemma 3.2 stands without
change in its statement or its proof.

Lemma 4.1. — Solutions to (4.1) starting from (x0,v0) are defined globally in time
and satisfy for any t > 0{

‖x(t)‖ 6 ‖x0‖+ t ‖v0‖+ t2 ‖E‖L∞ ,
‖v(t)‖ 6 ‖v0‖+ 2 t ‖E‖L∞ .

Here some geometric preparation is needed to identify some set of slow variables.
At leading order the fast motion is locally a rotation of v around e (t,x) where we
recall that e is defined through

B(t,x) = ‖B(t,x)‖, B(t,x) = B(t,x) e (t,x).
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As aforementioned this naturally suggests first a separation of v between a component
aligned on e (t,x), v (t,x,v) e (t,x), and a perpendicular component v⊥(t,x,v),
and second by mimicking the homogeneous case the introduction of a kinetic energy
variable associated with v⊥(t,x,v), w⊥(t,x,v) = 1

2‖v⊥(t,x,v)‖2.
We recall that the above decomposition is explicitly given as{

v (t,x,v) = 〈v, e (t,x)〉,
v⊥(t,x,v) = v − v (t,x,v) e (t,x),

and that correspondingly we introduce the decomposition of the electric field(7) E =

E e +E⊥,

E (t,x,v) = 〈E(t,x), e (t,x)〉, E⊥(t,x,v) = E(t,x)− E (t,x,v) e (t,x).

Both to ease computations and to emphasize analogies with the two-dimensional case
it is expedient to introduce, for any x ∈ R3, the linear operator J(t,x) defined as

J(t,x)a = a ∧ e (t,x).

Going on with geometric considerations, we note that the following simple relations
are of pervasive use in latter computations:

(4.2)
{
J(t,x) e (t,x) = 0, e (t,x) · J(t,x)a = 0,

J(t,x)2 a = −v⊥(t,x,a), J(t,x)∗ = −J(t,x),

and e (t,x) · ∂t e (t,x) = 0, e (t,x) · dx e (t,x)a = 0.
For the sake of concision, but somewhat inconsistently, from now on we shall use

the shorthand v (t) for v (t,x(t),v(t)) and similarly for v⊥ and w⊥. We shall also
identify functions of (x,v) with functions of (x, v ,v⊥). Then, we may split (4.1) as

(4.3)



dx

d t
= v,

d v

d t
= E (t,x) +

〈
v⊥, ∂t e (t,x) + dx e (t,x)v

〉
,

dw⊥
d t

=
〈
E⊥(t,x)− v (∂t e (t,x) + dx e (t,x)v) ,v⊥

〉
,

and

(4.4) dv⊥
d t

=
B(t,x)

ε
J(t,x)v⊥ + F (t,x,v),

where v = v e +v⊥ and the force field F is

F (t,x,v) = F0(t,x, v ) + F1(t,x,v) + F2(t,x,v),

(7)That is, E (t,x) = v (t,x,E(t,x)), E⊥(t,x) = v⊥(t,x,E(t,x)).
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with F1 depending linearly on v⊥, F2 quadratic in v⊥, explicitly

(4.5)


F0(t,x, v ) = E⊥(t,x)− v (∂t e (t,x) + v dx e (t,x) e (t,x)) ,

F1(t,x,v) = −
〈
∂t e (t,x) + v dx e (t,x) e (t,x),v⊥

〉
e (t,x)

− v dx e (t,x)v⊥,

F2(t,x,v⊥) = −
〈
dx e (t,x)v⊥, v⊥

〉
e (t,x).

Remark 4.2. — As already pointed out in Remark 3.1 along the analysis of the ho-
mogeneous case, it is convenient to work with a formulation containing some redun-
dancy such as (4.3)–(4.4). Indeed, here, to suppress the apparent overdetermination
one could for instance replace (4.4) with an equation for an angle of v⊥ but then one
loses track of an important property of System (4.1): at principal order oscillations
are linear in v⊥. In contrast, as already apparent in the homogeneous case or in the
splitting of F , all our algebraic manipulations will be organized by the degree of
linearity in v⊥.

4.2. Elimination of linear terms. — A direct consequence of Lemma 4.1 and (4.3) is
that (x, v , w⊥) inW 1,∞

loc and v⊥ in L∞loc are uniformly bounded with respect to ε. This
is sufficient to extract converging sequences but not to take limits in the equations
because of the nonlinearity in v⊥.

Instead, to proceed, we begin an uncoupling process similar to the one carried out
in Section 3. Elimination, at leading order, of linear terms in v is summarized as

Lemma 4.3. — For any L ∈W 1,∞(R+
t ; L1(R3,Rp)), p ∈ N∗, solutions (x,v) to (4.1)

satisfy for a.e. t > 0,

L(t)v⊥ = −ε d

d t
[L(t) (Jv⊥/B)] + εL′(t) (Jv⊥/B) + εL(t)U ,

with the macroscopic velocity U given by

(4.6) U(t,x,v) =
J F

B
+ [∂t (J/B) + dx (J/B) v] v⊥.

Proof. — Applying εJ/B to (4.4) and combining with the first line of (4.3) yields

(4.7) v⊥ = −ε d

d t

[ J v⊥
B(x)

]
+ εU(t,x,v).

Then the result follows from the chain rule. �

Note that the macroscopic velocity U is split according to degree in v⊥ as U =

U10 +U11 +U12 where U10 contains terms which do not depend on v⊥,

U10(t,x, v ) =
J(t,x)

B(t,x)
F0(t,x, v )

= UE×B(t,x) + v2Ucurv(t,x) + v U∂t(t,x)

= UE×B(t,x) + v Σ(t,x, v ),
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which corresponds to the classical drifts defined in (2.7)–(2.9), whereas U11 is given by

U11(t,x, v ,v⊥) =
J F1

B
(t,x, v ,v⊥) + [∂t (J/B) + v dx (J/B) e ]v⊥,

and observing that J F2 = 0, we have for U12,

U12(t,x,v⊥) = [dx (J/B) (t,x)v⊥]v⊥.

Let us anticipate that the partial elimination of U12 will give a contribution known
as the grad-B drift and that encodes the influence of the variations of the intensity B
on the spatial trajectory.

With Lemma 4.3, at leading-order in ε one may eliminate from (4.3) terms that
are linear in v⊥. We first treat the first equation in (4.3) by applying Lemma 4.3 with
L(t)v⊥ = v⊥, which reduces to (4.7). This leads to

(4.8) dxgc

d t
= v e (t,x) + εU(t,x,v),

where U is as in (4.6) and we have introduced the so-called guiding center already
defined in (2.14).

Then we consider the second equation in (4.3) and apply Lemma 4.3 with

L(t)v⊥ =
〈
v⊥, ∂t e (t,x(t)) + v (t) dx e (t,x(t)) e (t,x(t))

〉
,

to remove the linear part with respect to v⊥ in the right hand side and to derive an
equation for a first correction of the parallel velocity,

d

d t

[
v +

ε

B

〈
J v⊥, ∂t e +v dx e e

〉]
= E + 〈v⊥, dx e v⊥〉+ ε u1(t,x,v),(4.9)

where u1 = u10 + u11 + u12 + u13 is obtained from

u10 = 〈U10, ∂t e +v dx e e 〉 =
1

B
〈J E⊥, ∂t e +v dx e e 〉

= 〈E, U∂t + v Ucurv〉 = 〈E, Σ〉,
where Ucurv and U∂t are given in (2.7)–(2.8) and u11 is

u11 = 〈U11, ∂t e +v dx e e 〉+
E

B
〈J v⊥,dx e e 〉

+
1

B

〈
Jv⊥, ∂

2
t e +v ∂t(dx e ) e +v dx e ∂t e

〉
+
v

B

〈
Jv⊥,

[
∂t(dx e ) + v d2

x e e +v (dx e )
2]

e
〉
,

whereas the last terms (u12, u13) are

u12 = 〈U12(t,x,v), ∂t e +v dx e e 〉

+
1

B

〈
Jv⊥,

[
∂t(dx e ) + v d2

x e e +v (dx e )
2]
v⊥
〉

+
1

B

〈
v⊥, ∂t e +v dx e e

〉 〈
Jv⊥, dx e e

〉
,

u13 =
1

B

〈
v⊥,dx e v⊥

〉 〈
J v⊥, dx e e

〉
.and
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Finally we conclude the elimination of linear terms by reformulating the third
equation in (4.3). To proceed we apply Lemma 4.3 with

L(t)v⊥ =
〈
v⊥, F0(t,x(t), v (t))

〉
=
〈
v⊥, E(t,x(t))− v (t) ∂t e (t,x(t))− (v (t))2 dx e (t,x(t)) e (t,x(t))

〉
and naturally obtain an equation for a first correction of the kinetic energy in the
perpendicular plan to the magnetic field,

(4.10) d

d t

[
w⊥ +

ε

B
〈J v⊥,F0〉

]
= −v 〈v⊥,dx e (t,x)v⊥〉+ ε d1(t,x,v),

where d1 = d11 + d12 + d13 is obtained from

d11 = 〈U11, F0〉 −
E

B
〈Jv⊥, ∂t e +2v dx e e 〉+

〈
(J/B)v⊥, ∂tE + v dxE e

〉
− v

B

〈
Jv⊥, ∂

2
t e +v ∂t(dx e ) e +v dx e ∂t e

〉
− v2

B

〈
Jv⊥,

[
∂t(dx e ) + v d2

x e e +v (dx e )
2]

e
〉
,

and d12, d13 are given by

d12 = 〈U12, F0〉+
〈
(J/B)v⊥, dxEv⊥

〉
− 1

B

〈
v⊥, ∂t e +v dx e e

〉 〈
Jv⊥, ∂t e +2v dx e e

〉
− v

B

〈
Jv⊥,

[
∂t(dx e ) + v d2

x e e +v (dx e )
2]
v⊥
〉
,

d13 = − 1

B

〈
v⊥,dx e v⊥

〉 〈
Jv⊥, ∂t e +2v dx e e

〉
.and

To summarize, gathering (4.8), (4.9), and (4.10), we have derived from (4.3)–(4.4)
the following system of equations,

(4.11)



dxgc

d t
= v e +εU ,

d

d t

[
v +

ε

B

〈
J v⊥, ∂t e +v dx e e

〉]
= E + 〈v⊥,dx e v⊥〉+ ε u1,

d

d t

[
w⊥ +

ε

B
〈J v⊥,F0〉

]
= −v 〈v⊥,dx e v⊥〉+ ε d1.

Now to derive the leading order of an uncoupled slow dynamics it remains to analyze
the contribution of the quadratic term 〈v⊥,dx e v⊥〉 that appears — at zeroth order
with respect to ε — in the last equations of (4.11).

4.3. Elimination of quadratic terms. — Lemma 4.3 encodes that all terms linear
in v⊥ — the variable whose angle is oscillating at frequency 1/ε — are ε-small in
W−1,∞. This is directly related to the fact that they all have zero mean with respect
to the fast angle. In contrast, as in the homogeneous case, quadratic terms do produce
slow contributions that are asymptotically relevant. The next result identifies what
are those contributions.
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To state it we introduce a notion of trace restricted to the plane orthogonal to e .
For any A ∈ L2(R3,Rp), p ∈ N∗, at any point x and time t

(4.12) Trt,x⊥ A = Tr A−A(e (t,x), e (t,x)).

In particular, for any a ∈ R3 orthogonal to e (t,x), we observe that

‖a‖2 Trt,x⊥ A = A(a,a) +A(J(t,x)a,J(t,x)a).

Since with any linear operator A ∈ L1(R3,R3 ⊗Rp) one may associate a quadratic
operator in L2(R3,Rp) by (a, b) 7→ 〈a,Ab〉 the above definitions may be extended
to such operators by identification. We also recall that < denotes the symmetric part.

Lemma 4.4. — For any A ∈ W 1,∞(R+
t ; L2(R3,Rp)), p ∈ N∗, solutions to (4.1)

satisfy at a.e. t

A(t)(v⊥(t),v⊥(t)) = w⊥(t) Trt,x(t)
⊥ (A(t))− ε dχA

d t
(t) + ε ηA(t),

where 
χA =

1

2B
<(A)(v⊥,Jv⊥),

ηA =
1

2
<(A)(v⊥,U) +

1

2B
<(A)′ (v⊥,Jv⊥) +

1

2B
<(A)(F ,Jv⊥).

Remark 4.5. — Consistently with Remarks 3.6 and 3.9, note that χA has itself no
slow component at leading order since <(A(t)) (·,J(t,x)(·)) is trace-free on the plane
orthogonal to e (t,x).

Proof. — One may assume without loss of generality that A is symmetric. Then by
combining (4.4) and (4.7) and using (4.2) we derive that

ε
d

d t

[
A
(
v⊥,

J v⊥
B

)]
= −A(v⊥,v⊥) +A (Jv⊥,Jv⊥)

+ ε
[
A(v⊥,U) +

1

B
A′ (v⊥,Jv⊥) +

1

B
A (F ,Jv⊥)

]
.

By multiplying the latter by 1/2 and adding A(v⊥,v⊥) on both sides one achieves the
proof. �

4.4. Proof of Theorem 2.2. — We have now sufficient materials to prove Theorem
2.2 on the asymptotic behavior on solutions to (4.3)–(4.4) when ε→ 0.

On the one hand, applying Lemma 4.4 with the quadratic form associated with
dx e (t,x), one may partially eliminate quadratic terms in v⊥ from (4.11). As a result

(4.13) 〈v⊥,dx e v⊥〉 = w⊥ divx(e )− ε

2

d

d t

[〈
v⊥,
<(dx e )J

B
v⊥

〉]
+ ε u2,

where u2 = u21 + u22 + u23 with u21,

u21 =
1

2

[〈
v⊥,<(dx e )U10

〉
+
〈
F0,
<(dx e )J

B
v⊥

〉]
,
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whereas u22 is given by

u22 =
1

2

[〈
v⊥,<(dx e )U11

〉
+
〈
F1,
<(dx e )J

B
v⊥

〉]
+

1

2B

〈
v⊥,<

(
∂t(dx e ) + v d2

x e e
)
Jv⊥

〉
and u23 by

u23 =
1

2

[〈
v⊥,<(dx e )U12

〉
+
〈
F2,
<(dx e )J

B
v⊥

〉]
+

1

2B

〈
v⊥,<

(
d2
x e v⊥

)
Jv⊥

〉
.

Substituting (4.13) in the second equation of (4.11), we get an equation for the cor-
rected parallel velocity vgc, defined in (2.15), that is,

(4.14) d vgc

d t
= E + w⊥ divx e +ε (u1 + u2).

On the other hand, we proceed in the same way with the quadratic term associ-
ated with −v (t) dx e (t,x(t)) to transform the third equation of (4.11) into a new
equation for a correction to the part of the kinetic energy in the perpendicular plan
to the magnetic field direction wgc, already defined in (2.16),

(4.15) dwgc

d t
= −v w⊥ divx e +ε (d1 + d2),

where d2 = d21 + d22 + d23 + d24 with
d21 = −v u21,

d22 = −v u22 −
E

2B

〈
v⊥,< (dx e )J v⊥

〉
,

d23 = −v u23 −
1

2B

〈
v⊥, ∂t e +v dx e e

〉 〈
v⊥,< (dx e )Jv⊥

〉
,

and the quartic term d24 is

d24 = − 1

2B

〈
v⊥,dx e v⊥

〉 〈
v⊥,< (dx e )Jv⊥

〉
.

With (4.14) and (4.15), System (4.3)–(4.4) yields

(4.16)



dxgc

d t
= v e (t,x) + εU(t,x,v),

d vgc

d t
= E (t,x) + w⊥ divx e (t,x) + ε (u1 + u2)(t,x,v),

dwgc

d t
= −v w⊥ divx e (t,x) + ε (d1 + d2)(t,x,v).

At this juncture, the leading-order part of the slow evolution system (4.16) is already
uncoupled from the fast equation (4.4). This allows to derive the following asymptotic
result by mimicking the analysis of Section 3, relying this time on Lemma 4.1 to bound
remainders.

Proposition 4.6. — Under the assumptions of Theorem 2.2, there exists a constant
C > 0, depending polynomially on ‖E‖W 1,∞ , ‖B−1‖W 1,∞ and ‖ e ‖W 2,∞ , such that
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the following holds. Consider (xε,vε) a solution to (4.1) starting from (x0,v0). Then,
for a.e. t > 0

‖xε(t)− y(t)‖+ ‖vε(t)− v(t)‖+ ‖wε⊥(t)− w(t)‖
6 C ε eC t (‖v0‖3+t3) ‖v0‖ (1 + ‖v0‖2),

where (y, v, e) solves 

dy

d t
= v e (t,y),

d v

d t
= E (t,y) + w divx e (t,y),

dw

d t
= −v w divx e (t,y),

with initial data y(0) = x0, v(0) = v 0 and w(0) = 1
2‖v⊥0‖2.

Finally to achieve the proof of Theorem 2.2, we simply apply Proposition 2.1
where the slow map A (t, ·) is given by (x,v) 7→ (x, v (t,x,v), w⊥(t,x,v)) and the
weights M are given by

M (t,x,v) = C ε eC t (‖v‖3+t3) ‖v‖ (1 + ‖v‖2)

with C as in Proposition 4.6.

4.5. Elimination of higher-order terms. — Though the latter result does provide
some insights, in general it fails to capture leading-order dynamics of all slow variables,
since some of them are slower than what can be described with a system of zeroth
order in ε. A simple example is the essentially two-dimensional case where e is
constant and asymptotically at zeroth order only v and the parallel component of y
are moving.

To provide a more comprehensive picture, we need a system containing terms of
order ε. The purpose of Theorem 2.4 is to take into account this correction. Lem-
mas 4.3 and 4.4 already contains the basis to clean ε-terms of (4.16) that are of order
at most 2 with respect to v⊥. Yet, d1, d2 and u2 contain cubic terms and u2 also
exhibits a quartic term. Therefore we need to investigate how to handle those.

We first show how to eliminate cubic terms.

Lemma 4.7. — Let E ∈W 1,∞ and B be such that 1/B ∈W 1,∞ and e ∈W 1,∞. There
exists a constant C depending polynomially on ‖E‖W 1,∞ , ‖B−1‖W 1,∞ and ‖ e ‖W 1,∞

such that for any A ∈W 1,∞ (R+
t ; L3(R3,Rp)

)
, p ∈ N∗, solutions to (4.1) satisfy at

a.e. t > 0,

A(t)(v⊥(t),v⊥(t),v⊥(t)) = −ε dχA

d t
(t) + ε ηA(t),

for some (χA, ηA) such that for a.e. t{
‖χA(t)‖ 6 C ‖A(t)‖ ‖v⊥(t)‖3,
‖ηA(t)‖ 6 C ‖v⊥(t)‖2

[
‖A′(t)‖ ‖v⊥(t)‖+ ‖A(t)‖ (1 + ‖v(t)‖2)

]
.
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Proof. — One may assume without loss of generality that A is symmetric-valued.
Then from (4.4) and (4.7) stem

ε
d

d t

[
A
(J v⊥
B

,v⊥,v⊥

)]
(t) = −A(v⊥,v⊥,v⊥) + 2A(Jv⊥,Jv⊥,v⊥)

+
ε

B
A′ (J v⊥,v⊥,v⊥) + εA (U ,v⊥,v⊥) +

2ε

B
A (J v⊥,F ,v⊥)

and

ε
d

d t

[
B2A

(J v⊥
B

,
J v⊥
B

,
J v⊥
B

)]
(t) = −3A(Jv⊥,Jv⊥,v⊥) +

ε

B
A′ (J v⊥,J v⊥,J v⊥)

+ 3 εA (U ,J v⊥,J v⊥) +
2 ε

B

∂tB + dxB v

B
A (J v⊥,J v⊥,J v⊥) .

Then summing the former with 2/3 of the latter yields the result. �

To complete the uncoupling at order ε remains the task of analyzing the possible
contribution of quartic terms. By using (4.4), (4.7) and the fact that J(t,x)2a = −a
for any a orthogonal to e (t,x), it is possible to achieve this task at the level of
generality considered so far. As a result one would prove that in general the elimination
of quartic terms may indeed leave relevant slow terms. However, for concision’s sake
we choose to specialize the discussion to the specific form required by

d24 =
〈
v⊥,< (dx e )v⊥

〉 〈
v⊥,< (dx e )Jv⊥

〉
and that may be eliminated at leading-order.

Lemma 4.8. — Let E ∈W 1,∞ and B be such that 1/B ∈W 1,∞ and e ∈W 1,∞. There
exists a constant C depending polynomially on ‖E‖W 1,∞ , ‖B−1‖W 1,∞ and ‖ e ‖W 1,∞

such that for any symmetric-valued A ∈W 1,∞ (R+
t ; L2(R3,Rp)

)
, p ∈ N∗, solutions

to (4.1) satisfy at a.e. t

A(t)(v⊥(t),v⊥(t)) × A(t)(v⊥(t),J(t,x(t))v⊥(t)) = −ε dχA,2

d t
(t) + εηA,2(t),

for some (χA,2, ηA,2) such that for a.e. t{
‖χA,2(t)‖ 6 C ‖A(t)‖2 ‖v⊥(t)‖4,
‖ηA,2(t)‖ 6 C ‖A(t)‖ ‖v⊥(t)‖3

(
‖A′(t)‖ ‖v⊥(t)‖+ ‖A(t)‖ (1 + ‖v(t)‖2)

)
.

Proof. — We introduce

Ã(t) : (a, b) 7−→ A(t)(a,J(t,x(t))b)

and recall from Remark 4.5 that Trt,x(t)
⊥ Ã(t) = 0. Thus revisiting the proof of

Lemma 4.4 without symmetrization yields

Ã(v⊥,v⊥) = −ε d

d t

( 1

2B
Ã (v⊥,Jv⊥)

)
+ ε η̃Ã

with
η̃Ã =

1

2
Ã(v⊥,U) +

1

2B
Ã′ (v⊥,Jv⊥) +

1

2B
Ã (F ,Jv⊥) .
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By multiplying with A(v⊥,v⊥), one derives the result with
χA,2 = − 1

4B
(A (v⊥,v⊥))2,

ηA,2 = A (v⊥,v⊥) η̃Ã −
1

4B

∂tB + dxB v

B
(A (v⊥,v⊥))2.

�

4.6. Proof of Theorem 2.4. — To spare some pieces of notation, in the justification
of the foregoing claim we shall use. to denote6 C× with C a local variable depending
only and polynomially on ‖E‖W 2,∞ , ‖B−1‖W 2,∞ and ‖ e ‖W 3,∞ . All along we consider
(x(t),v(t)) a solution to (4.3)–(4.4). We observe that∥∥∥dx

d t

∥∥∥ . ‖v‖, ∣∣∣d v
d t

∣∣∣ . 1 + ‖v⊥‖ ‖v‖

‖F ‖ . 1 + ‖v‖2, ‖U‖ . 1 + ‖v‖2.and

First we apply Lemma 4.3 with the linear application v⊥ 7→ U11(t,x(t), v (t),v⊥)

and Lemma 4.4 with the quadratic function v⊥ 7→ U12(t,x(t), v (t),v⊥). As a result
there exist functions χ1

x, χ2
x, η1

x, η2
x such that

U11 = −ε dχ1
x

d t
+ εη1

x,

U12 = w⊥ Trt,x(t)
⊥ (dx (J/B))− ε dχ2

x

d t
+ εη2

x,

so that, with χx = χ1
x + χ2

x and ηx = η1
x + η2

x

U = U10 + w⊥ Trt,x(t)
⊥ (dx (J/B))− ε dχx

d t
+ εηx,

with

(4.17) ‖χx‖ . ‖v⊥‖ ‖v‖, ‖ηx‖ . ‖v‖ (1 + ‖v‖2).

Before going on, we make Trt,x(t)
⊥ (dx (J/B)) more explicit. First, by differentiating

(J/B) e = 0 we get

0 = dx [(J/B) e ] e = [dx (J/B) e ] e +(J/B) dx e e ,

thus, with Ucurv defined as in (2.7),

[dx (J/B) e ] e = −(J/B) dx e e = Ucurv.

Therefore, recalling definition (4.12) and Lemma 2.5,

Trt,x(t)
⊥ (dx (J/B)) = divx (J/B)−Ucurv = Ucurl e +U∇B×B.

In particular the equation on xgc takes the form
d

d t

[
xgc + ε2χx

]
= v e (t,x) + ε2 ηx + εUdrift(t,x, v , w⊥),

where Udrift is defined in (2.10) and (χx,ηx) satisfies (4.17).
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Likewise we may clean up the second equation of (4.16). After some calculations,
with arguments identical to those used here above, we obtain

u1 = 〈E,Σ 〉 − ε dχ1

d t
+ εη1

+ w⊥
[〈

divx (J/B) , ∂t e +v dx e e
〉

+
〈
(J/B) dx e e , ∂t e

〉]
− w⊥ Tr

(
(J/B)

(
∂t(dx e ) + v d2

x e e +v (dx e )
2
))

− w⊥ Tr
[
(J/B) (dx e e (∂t e )∗)

]
u2 = −ε dχ2

d t
+ ε η2,and

with χ = χ1 + χ2 and η = η1 + η2 satisfying

(4.18) |χ | . ‖v⊥‖ (1 + ‖v‖2), |η | . 1 + ‖v‖4.
In the computations aforementioned we stress that we have made extensive use of
relations J e = 0, (dx J e ) e = −J(dx e ) e , 〈a,J a〉 = 0 for any a ∈ R3, and
(dx e )∗ e = 0. In particular we point out that, by the skew-symmetry of values of
dxJ e and ∂tJ

Tr⊥ [<(dx e ) dx J e ] = Tr [<(dx e ) dx J e ]− 1

2
〈dx e e , [dx J e ] e 〉

=
1

2
〈dx e e ,J dx e e 〉 = 0,

Tr⊥ [<(dx e )∂tJ ] = Tr [<(dx e )∂tJ ]− 1

2
〈dx e e , ∂t(J) e 〉and

=
1

2
〈dx e e ,J∂t e 〉.

To simplify further the expression of u1 we observe that

Tr [(J/B) (dx e e (∂t e )∗)] =
〈
(J/B) dx e e , ∂t e

〉
and, by the skew-symmetry of values of J , that〈

divx (J/B) , ∂t e
〉
− Tr ((J/B)∂t(dx e )) = −divx ((J/B)∂t e ) = divxU∂t

and

〈divx (J/B) ,dx e e 〉−Tr
(

(J)/B
(

d2
x e e + (dx e )

2
))

= −divx ((J/B) dx e e )

= divxUcurv.

As a result
u1 = −ε dχ1

d t
+ ε η1 + 〈Σ, E〉+ w⊥ divx Σ

with (χ1 , η1) as before.
Therefore gathering the expressions for u1 and u2, we derive

d

d t

[
vgc + ε2χ

]
= E + w⊥ divx e +ε [〈Σ, E〉 + w⊥ divx Σ] + ε2 η ,

with (χ , η ) satisfying (4.18).
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Finally we treat the last equation of (4.16) in the same manner. This leads to

d1 = −ε dχ1
⊥

d t
+ εη1

⊥ − v w⊥ divx Σ + w⊥ [〈Ucurl e +U∇B×B, E〉−Tr ((J/B) dxE)] ,

d2 = −ε dχ2
⊥

d t
+ ε η2

⊥,

with χ⊥ = χ1
⊥ + χ2

⊥ and η⊥ = η1
⊥ + η2

⊥ satisfying

(4.19) |χ⊥| . ‖v⊥‖ (1 + ‖v‖3), |η⊥| . 1 + ‖v‖5.

Now to simplify the expression for d1 we observe that from Lemma 2.5 stems

〈Ucurl e +Ucurv +U∇B×B, E〉−Tr ((J/B) dxE) = − divx (J E/B) = − divxUE×B,

so that

d1 = −ε dχ1
⊥

d t
+ εη1

⊥ − w⊥
[
v divx Σ + 〈Ucurv, E〉+ divxUE×B

]
.

The upshot is

d

d t

[
wgc + ε2 χ⊥

]
= −v w⊥ divx e −εw⊥ [divx (UE×B + v Σ) + 〈Ucurv,E〉] + ε2 η⊥,

with (χ⊥, η⊥) satisfying (4.19).
Altogether we have derived

(4.20)



d

d t

[
xgc + ε2χx

]
= v e (t,x) + εUdrift(t,x, v , w⊥) + ε2 ηx,

d

d t

[
vgc + ε2χ

]
= E (t,x) + w⊥ divx e (t,x) + ε2 η

+ ε (〈Σ,E〉+ w⊥ divx Σ) (t,x, v ),

d

d t

[
wgc + ε2χ⊥

]
= −v w⊥ divx e (t,x) + ε2 η⊥

− εw⊥ (divx (UE×B + v Σ) + 〈Ucurv, E〉) (t,x, v ),

with error bounds (4.17)–(4.18)–(4.19). Now we want to write (4.20) in terms of
(xgc, vgc, wgc) plus remainders. As in Section 3.5 corrections — of size ε2 — stemming
from terms of size ε may be considered directly as error terms. Yet here some terms
of size 1 are present and to deal with corrections arising from those we follow a
different path: first linearize them — a process that produces errors of size ε2 that
can be handled directly — then remove the terms of size ε introduced in this way
by using Lemmas 4.3 and 4.4 and the fact that (x, v , w⊥) differs from (xgc, vgc, wgc)

by terms that are either linear in v⊥ or quadratic in v⊥ but trace-free in the plane
orthogonal to e (t,x), as follows from Remark 4.5. Besides aforementioned estimates
this elimination also requires∣∣∣dw⊥

d t

∣∣∣ . ‖v⊥‖ (1 + |v | ‖v‖)
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and results in new functions (χ̂x, χ̂ , χ̂⊥), and (η̂x, η̂ , η̂⊥) such that,

(4.21)



d

d t

[
xgc + ε2 χ̂x

]
= vgc e (t,xgc) + εUdrift(t,xgc, vgc, wgc) + ε2 η̂x,

d

d t

[
vgc + ε2 χ̂

]
= E (t,xgc) + wgc divx e (t,xgc) + ε2 η̂

+ ε (〈Σ,E〉+ wgc divx Σ) (t,xgc, vgc),

d

d t

[
wgc + ε2 χ̂⊥

]
= −vgc wgc divx e (t,xgc) + ε2 η̂⊥

− εwgc (divx (UE×B + vgcΣ) + 〈Ucurv, E〉) (t,xgc, vgc),

with

‖χ̂x‖ . ‖v⊥‖ ‖v‖, |χ̂ | . ‖v⊥‖ (1 + ‖v‖2), |χ̂⊥| . ‖v⊥‖ (1 + ‖v‖3)

‖η̂x‖ . ‖v‖ (1 + ‖v‖2), |η̂ | . 1 + ‖v‖4, |η̂⊥| . 1 + ‖v‖5.and

At this stage arguing as in Section 3.5 we prove the following

Proposition 4.9. — Under the assumptions of Theorem 2.4, there exists a constant
C > 0, depending polynomially on ‖E‖W 2,∞ , ‖B−1‖W 2,∞ and ‖ e ‖W 3,∞ such that
the following holds. Let (xε,vε) be the solution to (4.1) starting from (x0,v0) and
Zεgc = (xεgc, v

ε
gc, w

ε
gc) be deduced from it through (2.14)–(2.16). Then, for a.e. t > 0∥∥Zεgc(t)−Zε(t)

∥∥ 6 C ε2 eC t (‖v0‖3+t3)(1+ε (‖v0‖+t)) ‖v0‖ (1 + ‖v0‖3),

where Zε = (yε, vε, wε) solves

dyε

d t
= vε e (t,yε) + εUdrift(t,y

ε, vε, wε),

d vε

d t
= E (t,yε) + wε divx e (t,yε) + ε (〈Σ,E〉+ wε divx Σ) (t,yε, vε),

dwε

d t
= −vεwε divx e (t,yε)− εwε (divx (UE×B + vεΣ) + 〈Ucurv,E〉) (t,yε, vε),

with Zε(0) = Zεgc(0).

We may then use Proposition 2.1 to derive Theorem 2.4 from Proposition 4.9.

5. A toroidal axi-symmetric geometry: proof of Theorem 2.8

We now want to provide a three-dimensional analogous to Section 3.6, that is, a
description of a long-time slow dynamics. Yet the presence of terms of order 1 in the
(short) time asymptotics prevents this from happening unless those terms generates
a confined purely oscillatory dynamics in some components and one focuses on the
remaining ones.

This requires a special form of geometry of magnetic field lines. We introduce now
an example of such a configuration.
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5.1. Geometric framework. — Let us fix a unitary vector ez ∈ S2 to define an axis
of symmetry. For vectors x /∈ R ez, it is expedient to introduce

z(x) = 〈x, ez), r(x) = ‖ ez ∧x‖, er(x) =
x− z(x) ez

r(x)
.

Note that then by construction er(x) is unitary, orthogonal to ez and

x = r(x) er(x) + z(x) ez .

We now assume that far from the axis R ez the magnetic field is stationary, toroidal,
axi-symmetric and non vanishing, that is (up to a change of ez with − ez), for some
r0 > 0, when r(x) > r0

e (x) =
ez ∧x
r(x)

and B(x) = b(r(x), z(x))

for some function b with 1/b ∈ L∞([r0,+∞[×R). Note that the first equality already
ensures divx(e )(x) = 0 when r(x) > r0 so that the second one is actually equivalent
to the natural condition divxB ≡ 0.

In this context straightforward computations yield when r(x) > r0

dx r(x) = 〈er(x), · 〉, dx er(x) =
e (x)

r(x)
〈e (x), · 〉, dx e (x) = −er(x)

r(x)
〈e (x), · 〉

and for any a ∈ R3,

dx J(x)a =
〈e (x),a〉
r(x)

(ez 〈e (x), · 〉 − e (x) 〈ez, · 〉)

d2
x e (x)(e (x), · ) =

er(x)

(r(x))2
〈er(x), · 〉 − e (x)

(r(x))2
〈e (x), · 〉,and

so that in particular

divx (J/B) (x) = ∂r (1/b) (r(x), z(x)) ez −∂z (1/b) (r(x), z(x)) er(x)

divx Σ(x) =
1

r(x)
∂z (1/b) (r(x), z(x)),and

whereas the drifts F and U are given by

F (t,x,v) = E⊥(t,x) +
v

r(x)
〈er(x),v⊥〉 e (t,x) +

v2

r(x)
er(x)

and

U(t,x,v) = UE×B(t,x) +
v

r(x) b(r(x), z(x))
(v ez −〈ez,v⊥〉 e (x))

+ (∂r (1/b) (r(x), z(x)) 〈er(x),v⊥〉+ ∂z (1/b) (r(x), z(x)) 〈ez,v⊥〉)J(x)v⊥.

We assume moreover that E (t,x) ≡ 0 when r(x) > r0 and that E is axi-
symmetric, hence

E⊥(t,x) = Er(t, r(x), z(x)) er(x) + Ez(t, r(x), z(x)) ez,
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for some Er and Ez. With these notational conventions, we may derive from Sys-
tem (4.20)

(5.1)



d

d t

[
r − ε

b
〈ez,v⊥〉+ ε2〈er,χx〉

]
= ε
(
−Ez
b
− w⊥ ∂z (1/b)

)
+ε2

(
〈er,ηx〉+

v

r
〈e ,χx〉

)
,

d

d t

[
z +

ε

b
〈er,v⊥〉+ ε2〈ez,χx〉

]
= ε
(Er
b

+
v2

r b
+ w⊥ ∂r (1/b)

)
+ ε2〈ez,ηx〉,

d

d t

[
v +

ε v

r b
〈ez,v⊥〉+ ε2χ

]
=
ε v

r

(Ez
b

+ w⊥∂z (1/b)
)

+ ε2η ,

d

d t

[
w⊥ − ε

(
〈UE×B,v⊥〉+

v2

r b
〈ez,v⊥〉

)
+ ε2χ⊥

]
= εw⊥

(
∂r (Ez/b)− ∂z (Er/b)−

v2

r
∂z (1/b)

)
+ ε2η⊥.

5.2. Uniform bounds and asymptotics. — As follows from the proof of the follow-
ing proposition the assumption E (t,x) ≡ 0 is sufficient by itself to improve the
dependence on time of uniform bounds on velocity.

Proposition 5.1. — Under the assumptions of Theorem 2.4, for any r1 > r0, there ex-
ist positive ε0, τ0 and C0, (1/ε0, 1/τ0, C0) depending polynomially on 1/r0, 1/(r1−r0)

and ‖(Er, Ez, 1/b)‖W 2,∞([r0,∞[×R) such that any (x,v) solution to (4.1) starting from
(x0,v0) with

r(x0) > r1, 0 < ε 6
ε0

1 + ‖v0‖
satisfies for a.e. 0 6 t 6 [τ0 (1 + ‖v0‖2)−1]/ε

r(x(t)) > r0 and ‖v(t)‖ 6 C0 (‖v0‖+ ε t).

Proof. — We start with
d

d t

[1

2
v2 + w⊥

]
= v 〈E⊥(t,x),v⊥〉,

then thanks to Lemma 4.3 we derive
d

d t

[1

2
v2 + w⊥ − εv 〈UE×B(t,x),v⊥〉

]
= ε v (〈∂tE⊥(t,x) + dxE⊥(t,x)v,v⊥〉+ 〈E⊥(t,x),U(t,x,v)〉) .

Therefore as long as r(x) > r0

max
s∈[0,t]

‖v(s)‖2 6 ‖v0‖2(1 + C ε) + C ε max
s∈[0,t]

‖v(s)‖2

+ C ε t max
s∈[0,t]

‖v(s)‖ (1 + max
s∈[0,t]

‖v(s)‖2),
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for some C depending on 1/r0 and ‖(Er, Ez, 1/b)‖W 1,∞([r0,∞[×R). Thus as long as
r(x) > r0 provided

0 < ε 6 ε0 and 0 6 t 6
τ0

1 + ‖v0‖
1

ε
,

we derive
‖v(t)‖ 6 C0 (‖v0‖+ ε t),

with ε0 and τ0 sufficiently small and C0 sufficiently large depending on

‖(Er, Ez, 1/b)‖W 1,∞([r0,∞[×R) and 1/r0.

Then using this bound in an integrated version of the first equation of System (5.1)
achieves the proof provided we strengthen the constraint on times to

0 6 t 6
τ0

1 + ‖v0‖2
1

ε
,

with τ0 sufficiently small. �

From the foregoing Proposition and System (5.1) we deduce the following propo-
sition.

Proposition 5.2. — Under the assumption of Theorem 2.8, there exist positive con-
stants ε0, τ0 and C0, (1/ε0, 1/τ0, C0) depending polynomially on 1/r0, 1/(r1−r0) and
‖(Er, Ez, 1/b)‖W 2,∞([r0,∞[×R), such that the following holds with

εmax(‖v0‖) :=
ε0

1 + ‖v0‖
and Tmax(‖v0‖) :=

τ0
1 + ‖v0‖2

.

Let (xε,vε) be a solution to (4.1) starting from (x0,v0) satisfying r(x0) > r1. Then
provided that

0 < ε 6 εmax(‖v0‖),
Zεgc = (r(xε), z(xε), v (xε,vε), w⊥(vε)) satisfies for a.e. 0 6 t 6 Tmax(‖v0‖)/ε∥∥Zεgc(t)−Zε(t)

∥∥ 6 C ε eC ε t ‖v0‖4 (1 + ‖v0‖3),

where Zε = (rε, zε, vε, wε) solves

d rε

d t
= ε
(
−Ez(t, r

ε, zε)

b(rε, zε)
− wε ∂z (1/b) (rε, zε)

)
,

d zε

d t
= ε
(Er(t, rε, zε)

b(rε, zε)
+

(vε)2

r b(rε, zε)
+ wε ∂r (1/b) (rε, zε)

)
,

d vε

d t
= ε

vε

rε

(Ez(t, rε, zε)
b(rε, zε)

+ wε∂z (1/b) (rε, zε)
)
,

dwε

d t
= εwε

(
∂r (Ez/b) (t, rε, zε)− ∂z (Er/b) (t, rε, zε)− (vε)2

rε
∂z (1/b) (rε, zε)

)
,

with Zε(0) = Zεgc(0).

Finally from Proposition 5.2, we derive Theorem 2.8 by means of Proposition 2.1.
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Remark 5.3. — As in Remark 3.14, we stress that the proof also yields the analy-
sis of dynamics involving fields depending on ε but satisfying bounds uniform with
respect to ε. In particular the result may be extended without change to the case
where Eε(t,x) = E(ε t,x), 0 < ε . 1. In this somehow simpler case the asymptotic
dynamics is essentially independent of ε at leading order since

Zε(t) = Z(ε t),

with Z independent of ε.

Remark 5.4. — Though we have chosen not to delve into this here as it would have
lead us too far beyond our scope, one may remove the assumption that E is axi-
symmetric and still obtain a similar result provided one stays away from v = 0. It
would follow from an analysis similar to the one expounded here but using instead
of (4.4) an equation encoding rotation of x around ez at speed v .

6. A self-consistent case

To illustrate that the foregoing analysis may also be carried out in some nonlinear
cases we now consider

(6.1)


∂tf

ε + divx(fε v) + divv

(
fε
(v ∧B(t,x)

ε
+Eε(t,x)

))
= 0,

Eε(t,x) = (K ?x (ρε(t, ·)− ρ(t, ·)))(x), ρε(t,x) =

∫
R3

fε(t,x,v) dv,

where K is a fixed vector-valued kernel and ρ is a fixed background density (rep-
resenting possible other species). To stay focused on robust ubiquitous mechanisms
and reuse as much as possible the estimates of the linear case expounded so far, we
assume that K is as smooth and localized as required by the analysis.

If we were to allow singular kernels, the foregoing system would include some of the
classical Vlasov-Poisson systems. Yet this would lead us to delve into technical details
related to the choice of topologies adapted to to the singularity at hand, a case-by-case
study. Even for the two-dimensional Vlasov-Poisson case with a uniform magnetic
field, the uniform estimates stemming from the divergence-free structure and the
conservation of energy are insufficient to remain at the level of smooth solutions and
lead the consideration of Di Perna-Lions solutions for (6.1) and Delort solutions for the
limiting system [32]. Note that the nature of the singularity depends dramatically on
fine details of the modeling: in particular taking into account screening effects already
tames the Poisson singularity, and even smoothed kernels play a deep intermediate
role in the analysis of mean-field limits and the design and convergence analysis of
particle-in-cell methods.

In the following we denote M the space of finite Radon measures, M+ its subspace
of nonnegative finite Radon measures, BV the space of functions of bounded variation,
that is, of finite Radon measures with gradient(8) a finite Radon measure, and BV+

(8)Thus Sobolev embeddings imply that those measures are actually absolutely continuous, hence
may be identified with densities.
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the space of finite nonnegative Radon measures with gradient a finite Radon measure.
Classical arguments prove the following proposition.

Proposition 6.1. — Assume B∈W 1,∞, K∈W 1,∞ and ρ∈C 0(R+; M+(R3)-weak∗).
Then for any ε > 0, and any f0 ∈ BV+, there exists a unique distribution func-
tion fε ∈ C 0(R+; M+(R6)-weak∗) ∩ L∞loc(R+; BV(R6)) solving (6.1) starting from
fε(0, ·, ·) = f0. Moreover the above fε is obtained by pushing forward f0 by the char-
acteristic flow of (6.1).

6.1. First-order asymptotics. — We want to use Propositions 4.6 and 4.9 in the way
already pointed out in Remark 3.14, that is, with ε-dependent electric fields satisfying
bounds uniform with respect to ε.

In this direction, our first observation is that the solution fε from Proposition 6.1
satisfies for any t > 0, any ε > 0 and any ` > 0,∫

R3

ρε(t,x) dx =

∫
R6

fε(t,x,v) dx dv =

∫
R6

f0(x,v) dx dv,

‖Eε(t, ·)‖W `,∞ 6 ‖K‖W `,∞ (

∫
R6

f0(x,v) dx dv +

∫
R3

ρ(t,dx)),

with Eε as in (6.1). This already ensures a uniform use of Lemma 4.1. Our second
observation on fε is that since

∂tρ
ε + divx(jε) = 0, jε(t,x) =

∫
R3

v fε(t,x,v) dv,

we have for any t > 0, any ε > 0 and any ` > 0,∫
R3

‖jε‖(t,x) dx 6
∫
R6

‖v‖ f0(x,v) dx dv

+ 2 t ‖Eε‖L∞([0,t]×R3)

∫
R6

f0(x,v) dx dv,

‖∂tEε(t, ·)‖W `,∞ 6 ‖K‖W `+1,∞

∫
R3

‖jε‖(t,x) dx+ ‖K‖W `,∞

∫
R3

|∂tρ|(t,dx).

This leads to a nonlinear version of Theorem 2.2. To state it we modify notation
V0 = V E

0 introduced in (2.5) to mark the dependence of the vector-field on the electric
field E.

Theorem 6.2. — Assume B ∈ W 1,∞ is such that 1/B ∈ W 1,∞ and e ∈ W 2,∞,
K ∈ W 2,∞ and ρ ∈ W 1,∞(R+; M+(R3)). For any M > 0, there exists a constant C
depending polynomially on ‖K‖W 2,∞ , ‖B−1‖W 1,∞ , ‖ e ‖W 2,∞ , ‖ρ‖W 1,∞(R+;M+(R3))

and M such that if fε solves (6.1) with initial data f0 ∈ BV+ such that∫
R6

(1 + ‖v‖) f0(x,v) dx dv 6M,

then F ε defined by

F ε(t,x, v , w⊥) =

∫
St,x

fε(t,x, v e (t,x) +
√

2w⊥ ê) dσt,x(ê),
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with St,x ={e (t,x)}⊥∩S2 and σt,x its canonical line-measure, satisfies for any t>0

‖F ε(t, ·)−G(t, ·)‖Ẇ−1,1 6 ε δf0(t),

where

δf0(t) = C exp

(
C eC t

4

∫
R3×R3

eC t ‖v‖
3

f0(x,v) dx dv

)
× eC t4

∫
R3×R3

eC t ‖v‖
3 ‖v‖ (1 + ‖v‖2) f0(x,v) dx dv

and G solves

(6.2)

∂tG+ divZ

(
V E

0 G
)

= 0,

E(t,x) = (K ?x (ρ(t, ·)− ρ(t, ·)))(x), ρ(t,x) =

∫
R×R+

G(t,x, v, w) d v dw,

with initial datum G0

(6.3) G0(Z) =

∫
S0,y

f0(y, v e (0,y) +
√

2w ê) dσ0,y(ê),

where V E
0 is still given by formula (2.5) but E is now a self-consistent electric field.

Proof. — Applying(9) Proposition 4.6 already gives

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 6 C ε eC t
4

∫
R3×R3

eC t ‖v‖
3 ‖v‖ (1 + ‖v‖2) f0(x,v) dx dv,

with Gε solving∂tG
ε + divZ

(
V Eε

0 Gε
)

= 0,

Eε(t,x) = (K ?x (ρε(t, ·)− ρ(t, ·)))(x), ρε(t,x) =

∫
R3

fε(t,x,v) dv,

with initial datum G0 given by (6.3). It is thus sufficient to compare Gε with G the
unique solution to (6.2).

In this direction, we first observe that System (6.2) support direct counterparts
to Proposition 6.1 and Lemma 4.1 so that E satisfies exactly the same bounds as
the ones derived above for Eε. A direct comparison of the respective characteristics
for V Eε

0 and V E
0 show that with a constant C as in Theorem 6.2, for any t > 0

‖G(t, ·)−Gε(t, ·)‖Ẇ−1,1

6 C eC t
4

∫
R3×R3

eC t ‖v‖
3

f0(x,v) dx d v ×
∫ t

0

‖Eε(s, ·)−E(s, ·)‖L∞ d s

so that for any t > 0

‖G(t, ·)− F ε(t, ·)‖Ẇ−1,1 6 ‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1

+ C‖K‖W 1,∞eCt
4

∫
R3×R3

eC t ‖v‖
3

f0(x,v) dx dv ×
∫ t

0

‖G(s, ·)− F ε(s, ·)‖Ẇ−1,1 d s

and the Grönwall lemma achieves the proof. �

(9)Actually we rather inspect the proof to check that bounds on ∂tEε are required only in
consistency errors and not in Lipschitz constants so as to track the effect of the growth in time of
bounds on ∂tEε.
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6.2. Second-order asymptotics. — The analysis of the second-order asymptotics is
significantly more involved. Consequently in the present subsection we will enforce a
few assumptions beyond those of the external field case.

To begin with, we stress that in order to build on Proposition 4.9 we need to bound
∂2
tE

ε = −K ?x divx(∂tj
ε) uniformly with respect to ε. Unlike bounds on ∂tEε, this

leads to restrictions on initial data. To discuss the corresponding consequences let us
from now on consider ε-dependent initial data fε0 and set

jε0(x) =

∫
R3

v fε0 (x,v) dv, jε⊥,0(x) =

∫
R3

v⊥(0,x,v) fε0 (x,v) dv.

To see how the aforementioned restrictions arise, note that from a direct integration
stems

∂tj
ε(t,x) =

(BJ)(t,x)

ε
jε(t,x) + ρε(t,x)Eε(t,x)− divx

(∫
R3

fε(t,x,v)v ⊗ v dv

)
.

Specializing the latter inequality to initial time shows that there is little hope to
bound ∂2

tE
ε uniformly with respect to ε if jε⊥,0/ε is not uniformly bounded. Yet we

also need to be able to propagate this condition on a time interval independent of ε.
To study this particular point, we rewrite the equation on jε, following the strategy
applied so far on characteristics, as

∂t j̃
ε =

(BJ)

ε
j̃ε + ε

J

B

(
−∂t(ρεEε) + divx

(∫
R3

∂tf
ε(·, ·,v)v ⊗ v dv

))
+ ε ∂t (J/B)

(
−ρεEε + divx

(∫
R3

fε(·, ·,v)v ⊗ v dv

))
,

j̃ε = jε − ε ρ
ε

B
JEε + ε

J

B

(
divx

(∫
R3

fε(·, ·,v)v ⊗ v dv

))
.for

This suggests that to carry on the argument one should assume some initial control
on ∂tfε and propagate it over time.

At this stage it should also be clear to the reader that the latter strategy is essen-
tially equivalent to assuming initially and propagating a uniform control on

divv

(
fε
v ∧ e (t,x)

ε

)
=
v ∧ e (t,x)

ε
· ∇vf

ε.

The link between the latter and the bound on j⊥ is even easier to derive from

j⊥(t,x) = −
∫
R3

v (v ∧ e (t,x)) · ∇v f
ε(t,x,v) dv.

6.2.1. Uniform bounds on derivatives. — Since this is a key part of the argument,
before going on with the derivation of second-order asymptotics, we focus on the
propagation of the well-prepared character. Our scheme here is to interpret prepara-
tion of data as a condition on the smallness of the derivative with respect to an angle
encoding fast rotation and benefit from separation of fast and slow dynamics to check
that the slow part cannot destroy this condition on fast-angle dependency.

The resulting precise statement is as follows.
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Proposition 6.3. — Assume B ∈ W 2,∞ is such that 1/B ∈ W 2,∞ and e ∈ W 3,∞,
K ∈ W 3,∞ and ρ ∈ W 1,∞(R+; M+(R3)). For any p0 ∈ (1,∞), R0 > 0, M > 0 and
T > 0, there exist positive constants C and ε0 such that if 0 < ε < ε0 and fε solves
(6.1) with initial data fε0 ∈ BV+ ∩W 1,p0 such that∫

R6

fε0 (x,v) dx dv 6M, supp fε0 ⊂ {(x,v) ; ‖v‖ 6 R0},

then for any 0 6 t 6 T

‖∇x,vf
ε(t, ·, ·)‖Lp0 (R6) +

1

ε
‖(x,v) 7→ (v ∧ e (t,x)) · ∇vf

ε(t,x,v)‖Lp0 (R6)

6 C
(
‖∇x,vf

ε
0 ‖Lp0 (R6) +

1

ε
‖(x,v) 7→ (v ∧ e (t,x)) · ∇vf

ε
0 (x,v)‖Lp0 (R6)

)
.

Proof. — We first recall that from Lemma 4.1 stems a uniform bound R for ‖v‖ on
the support of fε(t, ·, ·), 0 6 t 6 T , ε > 0, and that we have already derived bounds
on Eε, ∂tEε and their spatial derivatives.

To carry out the proof, we shall introduce plane coordinates for v⊥(t,x,v) and
correct them according to the gyrocenter dynamics. This requires a (smooth) con-
sistent choice of frames on the planes {e (t,x)}⊥. Thus we pick(10) ea ∈ W 2,∞ and
eb ∈W 2,∞ such that (ea, eb, e ) form a field of direct orthonormal frames. This being
done, we define u(t,x,v) ∈ R2 through

(6.4) u = σ(t,x)∗ v, σ =
(
ea eb

)
,

where ∗ denotes the adjoint operator. Note that if (x,v) solves (4.1) then the corre-
sponding u solves

(6.5) du

d t
=
bε(t,x,u)

ε
J0 u+ σ∗(t,x)F0(t,x, v ) +A0(t,x, v )u,

where

(6.6) J0 :=

(
0 1

−1 0

)
,

F0 is as in (4.5), and

bε(t,x,u) := B(t,x)− ε 〈ea(t,x),dx eb(t,x)σ(t,x)u〉,(6.7)
A0(t,x, v ) := (∂tσ(t,x) + v dx σ(t,x) e (t,x))

∗
σ(t,x)(6.8)

− v (σ(t,x))∗ dx e (t,x)σ(t,x).

Now to replace the change from w⊥ to wεgc, we would like to identify a gyrokinetic
correction to u so as to ensure that at leading order the norm of its correction satisfies
an equation uncoupled from any angle defining u.

Since we do not need the full algebraic details of the involved computations, in-
stead of writing explicitly the underlying abstract lemma, providing counterparts to

(10)See comments in Remark 6.6.
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Lemmas 4.3 and 4.4, we simply point out that from (6.5) stem

σ∗F0 = −B
ε
J0

( ε
B
J0 σ

∗F0

)
+

d

d t

( ε
B
J0 σ

∗F0

)
− ε d

d t

( 1

B
J0 σ

∗F0

)
and

A0u =
1

2
(A0 − J0A0J0)u− B

ε
J0

( ε

2B
J0A0u

)
+

d

d t

( ε

2B
J0A0u

)
− ε
(bε −B

2εB
J0A0J0u+

1

2B
J0A0 (σ∗F0 +A0u) +

d

d t

( 1

2B
J0A0

)
u
)

and that A0 − J0A0J0 commutes with J0. Incidentally, for the sake of consistency
with Lemma 4.4, we observe that

〈u, (A0 − J0A0J0)u〉 = Tr(A0)
‖u‖2

2
.

The upshot of the previous considerations is the introduction of uεgc(t,x,v) defined as

(6.9) uεgc := u− ε

B
J0 σ

∗F0 −
ε

2B
J0A0 u.

Note that, for some ε0 > 0 independent of fε0 (satisfying the conditions of the
proposition), the function

(t,x,v) 7−→ (t,xεgc(t,x,v), vεgc(t,x,v),uεgc(t,x,v))

defined on {(t,x,v) ∈ [0, T ] ×R6 ; ‖v‖ 6 R} is a bi-Lipschitz map uniformly with
respect to ε ∈ (0, ε0). Thus, for ε ∈ (0, ε0), we may define gε through

fε(t,x,v) = gε(t,xεgc(t,x,v), vεgc(t,x,v), wεgc(t,x,v), θ(t,x,v)).

and we observe that for some uniform constant C0,

‖∇x,vf
ε(t, ·, ·)‖Lp0 +

1

ε
‖(x,v) 7→ (v ∧ e (t,x)) · ∇vf

ε(t,x,v)‖Lp0

6 C0

(
‖∇Y g

ε(t, ·)‖Lp0 +
1

ε
‖Y 7→ (J0u) · ∇ug

ε(t,Y )‖Lp0

)
,

‖∇Y g
ε(0, ·)‖Lp0 +

1

ε
‖Y 7→ (J0u) · ∇ug

ε(0,Y )‖Lp0

6 C0

(
‖∇x,vf

ε
0‖Lp0 +

1

ε
‖(x,v) 7→ (v ∧ e (t,x)) · ∇vf

ε
0 (x,v)‖Lp0

)
,

(under the assumptions of the proposition, including ε ∈ (0, ε0)) where Y = (y, v,u).
The gain from the gyrokinetic corrections is that gε solves an equation of the form

∂tg
ε + (U ε

0 (t,Y ) + εU ε
Y (t,Y )) · ∇Y g

ε +
(1

ε
B(t,y) + bεθ(t,Y )

)
(J0u) · ∇ug

ε = 0,

where again Y = (y, v,u), with
– U ε

Y (t,Y )) · ∇Y and (J0u) · ∇u commuting;
– ∇Y U ε

0 , ∇Y U ε
Y and ∇Y b

ε
θ uniformly bounded in L∞ (on the support of gε).

At this stage, since ∇y,v obviously commutes with (J0u) ·∇u, we only need to pick a
version of ∇u commuting with (J0u) · ∇u so as to complete the proof by direct esti-
mates. With this aim in mind, we point out that (−∆u)1/2 commutes with (J0u) ·∇u

and that ‖∇u(·)‖Lp0 and ‖(−∆u)1/2(·)‖Lp0 are equivalent semi-norms (by standard
Calderón-Zygmund elliptic regularity theory since p0 ∈ (1,∞)). Moreover, to estimate
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harmless corresponding commutators we use the following Kato-Ponce type commu-
tator estimate(11)

‖(−∆u)1/2(f g)− f (−∆u)1/2(g)‖Lp0 6 C0 ‖∇uf‖L∞ ‖g‖Lp0 ,

for some C0 independent of f and g. Therefore differentiating the equation for gε with
∇y,v, (−∆u)1/2 and ε−1(J0u) · ∇u, and applying a Grönwall argument achieves the
proof. �

Remark 6.4. — Note that the foregoing proof is the only place where we perform a
change of variables instead of pushing forward. The main reason is that we are aiming
here at preserving throughout the transport nature of (6.1) — that comes with cheap
tracking of derivatives — instead of its conservative character. This gain is however
inessential and we could have kept our usual point of view up to a few minor changes.

Remark 6.5. — The foregoing proof is also the only place where instead of performing
manipulations on ‖v⊥‖2 we work directly with v⊥. Alternatively, to reduce as much
as possible new technical considerations (and spare the use of tools from harmonic
analysis) one could opt for a framework in which polar coordinates are non-singular
and restrict to initial data such that

supp fε0 ⊂ {(x,v) ; ‖v‖ 6 R0, ‖v⊥(0,x,v)‖ > r0}
with 0 < r0 < R0 fixed. If one is willing to pay this price, then one may define the
angle θ(t,x,v) ∈ R/(2πZ) wherever v is not colinear with e (t,x) through

(6.10) v = v (t,x,v) e (t,x) +
√

2w⊥(t,x,v) (cos(θ) ea(t,x) + sin(θ) eb(t,x))

and define hε through
fε(t,x,v) = hε(t,xεgc(t,x,v), vεgc(t,x,v), wεgc(t,x,v), θ(t,x,v)).

The resulting equation for hε takes the form

∂th
ε + (V Eε

0 (t,Z) + εV ε
Z(t,Z, θ)) · ∇Zh

ε +
(1

ε
B(t,y) + V ε

θ (t,Z, θ)
)
∂θh

ε = 0,

where Z = (y, v, w), with ∇Z,θV ε
Z and ∇Z,θV ε

θ uniformly bounded in L∞ (on the
support of hε). Therefore, under this more stringent assumption, differentiating the
equation for hε with ∇Z and ε−1∂θ and applying a Grönwall argument yield the
sought estimates. A small gain is that one may derive in this way Lp0 -estimates of
derivatives for any p0 ∈ [1,∞]. Yet we feel that the gain in simplicity is not worth the
extra unnatural restriction.

Remark 6.6. — The foregoing proof is the only one where we crucially use that e (t, ·)
is defined on the whole R3, or put in other words, that B(t, ·) is defined and non
vanishing on R3. In other places we could have assumed that such a B were given on
a domain sufficient to contain the support of fε. Indeed, in general, the possibility to
extend e into a frame field (ea, eb, e ) may be constrained by topological obstructions.
No such obstruction arise on contractible domains, such as R3, nor on domains that

(11)See for instance the case s = 1 in [27, Th. 5.1] and recall that ‖(−∆u)1/2(·)‖BMO 6
C0‖∇u(·)‖L∞ (since Riesz transforms map L∞ to BMO continuously).
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are homotopic to the circle S1, such as R3 minus a line, or R3 minus a cylinder
(as considered in Section 5), since the fundamental group of the sphere S2 is trivial.
On more general domains Ω, the existence of such a frame choice may be seen as an
extra constraint on B satisfied when maps e (t, ·) : Ω→ S2 are topologically trivial.
A typical example of obstruction arises from the case where e would be nowhere
tangent to some (topological) sphere but in this case e cannot be defined in all
the interior of the sphere and thus the domain must contain a hole. Note however
that it is sufficient to have a (smooth) consistent choice of a vector-field z nowhere
colinear with e to derive the direct orthonormal frame

(
e ,J2z/‖Jz‖,Jz/‖Jz‖

)
. In

particular, d e e provides such a vector field wherever it does not vanish. Moreover
a large class of confining geometries are precisely designed to ensure the existence of
a smooth level set function(12) x 7→ ψ(x) such that ∇xψ provides on the domain of
interest a vector-field nowhere vanishing and everywhere orthogonal to e . Thus, for
the practical cases that we have in mind this does not appear as a strong constraint.

6.2.2. Asymptotics. — From the conclusions of Proposition 6.3 we derive a nonlinear
counterpart to Theorem 2.4 for well-prepared data.

Theorem 6.7. — Let p0 ∈ (1,∞) and p′0 be its Lebesgue conjugate, 1/p0 + 1/p′0 = 1.
Assume B ∈ W 2,∞ is such that 1/B ∈ W 2,∞ and e ∈ W 3,∞, K ∈ W 3,∞ ∩W 1,p′0

and ρ ∈W 2,∞(R+; M+(R3)). For any R0 > 0, M > 0 and T > 0, there exist positive
constants C and ε0 such that if 0 < ε < ε0 and fε solves (6.1) with initial data
fε0 ∈ BV+ ∩W 1,∞ such that

‖fε0‖L1(R6) + ‖∇x,vf
ε
0‖Lp0 (R6) 6M,

‖(x,v) 7→ (v ∧ e (t,x)) · ∇vf
ε
0 (x,v)‖Lp0 (R6) 6M ε,

supp fε0 ⊂ {(x,v) ; ‖v‖ 6 R0},
then the density F ε defined by

F ε(t, ·) = ZEε, ε
gc (t, ·)∗ (fε(t, ·)),

where ZEε, ε
gc is defined through (2.14)–(2.16) (but with Eε the electric field generated

by fε), satisfies for any 0 6 t 6 T

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 6 C ε2,

where Gε solves

(6.11)


∂tG

ε + divZ

(
V Eε, εGε

)
= 0,

Eε(t,x)=(K?x(ρε(t, ·)−ρ(t, ·)))(x), ρε(t,x)=

∫
R×R+

Gε(t,x, v, w) d v dw,

with initial datum Gε0

(6.12) Gε0 = ZEε, ε
gc (0, ·)∗ (f0),

where V Eε, ε = V Eε
0 + εV Eε

1 is still given by formula (2.12) but Eε is now a self-
consistent electric field.

(12)Typically with compact level sets.
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Remark 6.8. — The condition encoding the well-prepared character of the initial data
mixes spatial and kinetic variables in an intricate way. Yet an easy way to enforce it
is to take initial data that are radial in velocity (up to a term of order ε).

Proof. — The scheme of the proof is identical to the one of Theorem 6.2 so we only
stress important departures from the latter. We recall that the strategy relies on two
intermediate comparisons with the solution of an equation similar to (6.11) where
V Eε, ε is replaced with V Eε, ε (with as above Eε associated with fε and Eε associated
with Gε).

In the comparison with F ε, the main new ingredient is Proposition 6.3 that pro-
vides uniform bounds on jε⊥(t, ·) in Lp0 hence on ∂tjε(t, ·) in Lp0 ∩W−1,1 and thus
on ∂2

tE
ε(t, ·) in L∞. This allows to derive the first intermediate comparison from

Proposition 4.9.
In the comparison with Gε, the only significantly new constraint is that we need a

comparison of (Eε) with (Eε) at order ε2. This follows from the identity

(6.13)
∫
ϕ(x) ρε(t,x) dx =

∫
ϕ(y)F ε(t,Z) dZ − ε

∫
∇xϕ(x) · J(t,x)

B(t,x)
jε⊥(t,x) dx

− ε2

∫ 1

0

(∫
d2
x ϕ
(
x+ ε s

J(t,x)v

B(t,x)

)(J(t,x)v

B(t,x)
,
J(t,x)v

B(t,x)

)
fε(t,x,v) dx dv

)
(1− s) d s

which, after an integration by parts in the last term, gives

‖ρε(t, ·)− ρε(t, ·)‖Ẇ−1,1+Ẇ−1,p′0
6 ‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 + C0 ε

2

for some harmless C0, since both jε⊥/ε and ∇x,vf
ε are uniformly bounded in Lp0 .

This is sufficient to conclude the proof. �

As hinted at by the computation (6.13), in the well-prepared case considered in
Theorem 6.7 it is also possible to obtain a second-order description for the density of
original first-order slow variables, that is, without the guiding-center correction.

Corollary 6.9. — Let p0 ∈ (1,∞) and m0 > 3(1 − 1/p0). Assume B ∈ W 2,∞ is
such that 1/B ∈ W 2,∞ and e ∈ W 3,∞, K ∈ W 3,∞ and ρ ∈ W 2,∞(R+; M+(R3)).
For any R0 > 0, M > 0 and T > 0, there exist positive constants C and ε0 such that
if 0 < ε < ε0 and fε solves (6.1) with nonnegative initial data fε0 ∈ W 1,1 ∩W 1,∞

such that

‖fε0‖L1(R6) + ‖(x,v) 7→ (1 + ‖x‖m0)∇x,vf
ε
0 (x,v)‖Lp0 (R6) 6M,

‖(x,v) 7→ (1 + ‖x‖m0) (v ∧ e (t,x)) · ∇vf
ε
0 (x,v)‖Lp0 (R6) 6M ε,

supp fε0 ⊂ {(x,v) ; ‖v‖ 6 R0},

then F ε defined by

F ε(t,x, v , w⊥) =

∫
St,x

fε(t,x, v e (t,x) +
√

2w⊥ ê) dσt,x(ê),
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with St,x = {e (t,x)}⊥ ∩ S2 and σt,x its canonical line-measure, satisfies for any
0 6 t 6 T

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 6 C ε2,

where Gε solves

(6.14)


∂tG

ε + divZ

(
V Eε, εGε

)
= 0,

Eε(t,x)=(K?x(ρε(t, ·)−ρ(t, ·)))(x), ρε(t,x)=

∫
R×R+

Gε(t,x, v, w) d v dw,

with initial data Gε0

Gε0(t,x, v , w⊥) =

∫
S0,x

fε0 (x, v e (0,x) +
√

2w⊥ ê) dσ0,x(ê),

where V Eε, ε is as in (2.12) but with the self-consistent Eε.

Remark 6.10. — If one completes e into a frame field (ea, eb, e ) (as in the proof of
Proposition 6.3), then the definitions of F ε and Gε0 may be equivalently written as

F ε(t,x, v , w⊥) =
1

2π

∫ 2π

0

fε
(
t,x, v e (t,x) +

√
2w⊥ eθ(t,x)

)
d θ,

Gε0(x, v , w⊥) =
1

2π

∫ 2π

0

fε0
(
x, v e (0,x) +

√
2w⊥ eθ(0,x)

)
d θ,

with eθ(t,x) = cos(θ) ea(t,x) + sin(θ) eb(t,x).

Remark 6.11. — As is readily derived from a comparison of the proofs of Theo-
rem 6.7 and Corollary 6.9, one may remove spatial weights from the assumptions
of the latter corollary provided the conclusion is weakened into an estimate of
‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1+Ẇ−1,p0 .

Proof. — To resolve the notational mismatch between Theorem 6.7 and Corollary 6.9,
we use here the subscript gc to denote densities introduced in the former theorem.
Thus, to derive Corollary 6.9 from Theorem 6.7 we only need to compare on one
hand F ε with F εgc and on the other hand Gε with Gεgc. The comparison of the latter
is readily derived from a standard stability estimate on (6.11) and a comparison of
their initial data. Now, the comparisons of the Gε0 and (Ggc)ε0 on one side and of F ε
and F εgc on the other side follow essentially from the same argument, which is a
variation on (6.13) and its use in the proof of Theorem 6.7.

As in (6.13), we may perform second-order expansions to compare quantities of
interest. The only significant change in the expansion is that in the terms of order ε
appear not only jε⊥ but also the scalar

σε⊥(t,x) =

∫
R3

〈
J(t,x)v,<(dx e (t,x))J(t,x)2 v

〉
fε(t,x,v) dv

=
1

2

∫
R3

〈
J(t,x)2 v,<(dx e (t,x))J(t,x)2 v

〉
(J(t,x)v) · ∇v f

ε(t,x,v) dv,

that is controlled exactly as jε⊥. The only departure in uses of the algebraic identities
stems from our will to get estimates in W−1,1 and not in W−1,1 +W−1,∞.
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To achieve this goal, we simply observe one one hand that the proof of Proposi-
tion 6.3 also shows propagation of Ẇ 1,p0 regularity with spatial weights (1+‖x‖2)m0/2

and on the other that from m0 > 3(1− 1/p0) stems for any f ,

‖ f ‖L1(R3) 6 C0‖x 7→ (1 + ‖x‖2)m0/2 f ‖Lp0 (R3)

for some constant C0 independent of f . Incidentally this also relaxes the condition
K ∈W 1,p′0 from assumptions of Theorem 6.7. �

Note that though the statement of Corollary 6.9 does not involve guiding-center
coordinates, trying to prove it without essentially following the proof of Theorem 6.7
would be rather cumbersome since the cancellation used to prove Corollary 6.9 and
arising from the well-prepared nature of initial data is only present at the level of
densities.

Appendix. Comparison with the classical adiabatic invariant formulation

In the present Section, for the sake of comparison with part of the physical liter-
ature, we derive counterparts to our three-dimensional results expressed in terms of
slow variables (

x, v (t,x,v),
w⊥(t,x,v)

B(t,x)

)
and corrections thereof. To do so we explicitly introduce the function µ⊥ defined by

µ⊥(t,x,v) =
w⊥(t,x,v)

B(t,x)
=
‖v⊥(t,x,v)‖2

2B(t,x)
.

A.1. Long-time asymptotics in the toroidal axi-symmetric case. — Since this is
slightly less computationally demanding, we provide first a counterpart to Theo-
rem 2.8. Our starting point is System (5.1). From it we derive

d

d t

[
µ⊥ − ε

(
µ⊥ 〈∂r (1/b) ez −∂z (1/b) er,v⊥〉+

1

b
〈UE×B,v⊥〉+

v2

r b2
〈ez,v⊥〉

)
+ ε2χµ

]
= ε

µ⊥
b

(∂rEz − ∂zEr) + ε2 ηµ

− ε
(
〈UE×B,v⊥〉+

v2

r b
〈ez,v⊥〉

)
〈∂r (1/b) er +∂z (1/b) ez,v⊥〉

− εµ⊥ 〈ez,v⊥〉
(
∂2
r (1/b) 〈er,v⊥〉+ ∂2

r z (1/b) 〈ez,v⊥〉
)

+ εµ⊥ 〈er,v⊥〉
(
∂2
r z (1/b) 〈er,v⊥〉+ ∂2

z (1/b) 〈ez,v⊥〉
)

+
ε

b
〈∂z (1/b) er −∂r (1/b) ez,v⊥〉〈E⊥(t,x)− v dx e (t,x)v,v⊥〉,

with χµ = 〈∂r (1/b) er +∂z (1/b) ez,χx〉+ χ⊥/b and

ηµ = w⊥

(
〈∂r (1/b) er +∂z (1/b) ez,ηx〉+

v

r
∂r (1/b) 〈e ,χx〉

)
+
η⊥
b

+ 〈∂r (1/b) er +∂z (1/b) ez,χx〉〈E⊥(t,x)− v dx e (t,x)v,v⊥〉
+ w⊥ 〈er,χx〉

(
∂2
r (1/b) 〈er,v⊥〉+ ∂2

r z (1/b) 〈ez,v⊥〉
)

+ w⊥ 〈ez,χx〉
(
∂2
r z (1/b) 〈er,v⊥〉+ ∂2

z (1/b) 〈ez,v⊥〉
)

+ χ⊥〈∂r (1/b) er +∂z (1/b) ez,v⊥〉.
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Now we note that the extra O(ε)-terms in the right-hand side of the foregoing
system are either third-order with respect to v⊥, or second-order but trace-free in the
plan orthogonal to e (when suitably paired). As a result they may be eliminated,
leaving

d

d t

[
µ⊥ − ε

(
µ⊥ 〈∂r (1/b) ez −∂z (1/b) er,v⊥〉+

1

b
〈UE×B,v⊥〉+

v2

r b2
〈ez,v⊥〉

)
+ ε2χ̂µ

]
= ε

µ⊥
b

(∂rEz − ∂zEr) + ε2 η̂µ

with

(A.1) |χ̂µ| . ‖v⊥‖ (1 + ‖v‖3), |η̂µ| . 1 + ‖v‖5.
Therefore, the involved asymptotic vector field is now εZ1 with Z1 defined as

Z1(t,Z) =



−Ez(t, r, z)
b(r, z)

+
µ

b(r, z)
∂zb(r, z)

Er(t, r, z)

b(r, z)
+

v2

r b(r, z)
− µ

b(r, z)
∂rb(r, z)

v

r

(Ez(t, r, z)
b(r, z)

− µ

b(r, z)
∂zb(r, z)

)
µ

b(r, z)
(∂rEz − ∂zEr) (t, r, z)


,

where the slow variable is now Z = (r, z, v, µ). Note that r bZ1 is divergence-free.

Theorem A.1. — Let B be a stationary, axi-symmetric and toroidal magnetic field
and E be an axi-symmetric electric field orthogonal to B, with (Er, Ez, 1/b) ∈W 2,∞

in the region where r(x) > r0 for some r0. For any r1 > r0, there exist positive
constants ε0, τ0 and C0, (1/ε0, 1/τ0, C0) depending polynomially on 1/r0, 1/(r1− r0)

and ‖(Er, Ez, 1/b)‖W 2,∞([r0,∞[×R), such that the following holds with

εmax(R0) :=
ε0

1 +R0
and Tmax(R0) :=

τ0
1 +R2

0

.

Consider fε a solution to (2.1) with initial datum a nonnegative density f0 supported
where

r(x) > r1 and ‖v‖ 6 R0

for some R0 > 0 and define F ε as

F ε(t, r, z, v, µ)

=

∫ 2π

0

∫ 2π

0

fε(t, r eθr +z ez, v e (r eθr +z ez) +
√

2µ b(r, z) eθ, ϕ⊥ ) r b(r, z) dϕ d θ,

with
eθr = cos(θ) ex + sin(θ) ey, eθ, ϕ⊥ = cos(ϕ) eθr + sin(ϕ) ez,

where (ex, ey, ez) is a fixed orthonormal basis. Then provided that

0 < ε 6 εmax(R0),
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we have for a.e. 0 6 t 6 Tmax(R0)/ε

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1 6 C0 ε

∫
R3×R3

eC ε t ‖v‖
4

(1 + ‖v‖3) f0(x,v) dx dv,

where Gε solves

(A.2) ∂tG
ε + εdivZ (Gε Z1) = 0,

with initial datum G0 given by

G0(Z) =

∫ 2π

0

∫ 2π

0

f0(r eθr +z ez, v e (r eθr +z ez) +
√

2µ b(r, z) eθ, ϕ⊥ ) r b(r, z) dϕ d θ.

Incidentally we observe that of course it is easier to derive the balance law

∂t(µG) + εdivZ (µGε Z1) =
µ

b
G (∂rEz − ∂zEr)

for the asymptotic equation (A.2) than the corresponding result for the original for-
mulation. Yet the energy balance law is in turn less straightforward to derive.

At the level of description considered in this section since going from variables
(r, z, v , w⊥) to (r, z, v , µ⊥) is quite simple we could have deduced Theorem A.1
from Theorem 2.8. To give two hints in this direction, note that if we denote F εe
and F εµ the averaged densities respectively from Theorem 2.8 and Theorem A.1, then
F εµ(t, r, z, v, µ) dr dz dv dµ is the push-forward of F εe (t, r, z, v, w) dr dz dv dw by the
map (r, z, v, w) 7→ (r, z, v, w/b(r, z)). Likewise, with the same convention, it may be
checked thatGεµ(t, r, z, v, µ) dr dz dv dµ is obtained fromGεe(t, r, z, v, w) dr dz dv dw

in the same way, by using that

Z µ
1 (t, r, z, v, µ) =

[W e
1

b
− w

b2
(∂rbW r

1 + ∂zbW z
1 )
]
(t, r, z, v, µ b(r, z))

where superscripts denote components. However we have chosen not to follow this
path and instead to come back to the normal form (5.1) since the strategy under
discussion is more cumbersome when higher-order corrections are taken into account.

A.2. General second-order asymptotics. — We now provide a counterpart to The-
orem 2.4. Our starting point is System (4.20). From it stems

d

d t

[
µ⊥ − ε

µ⊥
B2

dxB Jv⊥ −
ε

B

〈
v⊥, UE×B + v Σ

〉
− εv

2B2

〈
Jv⊥, <(dx e )v⊥

〉
+ ε2χµ

]
= −µ⊥

B
(∂tB + v divxB)− ε µ⊥

B
divx (BUE×B + v BΣ)

− ε µ⊥
〈
Ucurv, E

〉
− ε µ2

⊥ dxB Ucurl e + ε2ηµ

+ εµ⊥ dx ∂t (1/B) J v⊥ + εµ⊥ d2
x (1/B) (v, J v⊥)

− ε

B3
dxB Jv⊥

〈
E⊥(t,x)− v (∂t e (t,x) + dx e (t,x)v) ,v⊥

〉
− ε (∂t (1/B) + dx (1/B)v)

[〈
v⊥, UE×B + v Σ

〉
+
v

2B

〈
Jv⊥, <(dx e )v⊥

〉]
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with

χµ = −µ⊥
B

dxB χx +
χ⊥
B

ηµ = −µ⊥
B

dxB ηx +
η⊥
B

+ w⊥ dx [∂t (1/B)]χx + w⊥ d2
x (1/B) (v, χx)

− χ⊥
B2

(∂tB + dxB v)

− 1

B2
dxB χx

〈
E⊥(t,x)− v (∂t e (t,x) + dx e (t,x)v) ,v⊥

〉
.

The last three lines of the foregoing system may be discarded as being linear or cubic
in v⊥, or quadratic in v⊥ but with zero trace in the plane orthogonal to v⊥. This leads
to

d

d t

[
µ⊥ − ε

µ⊥
B2

dxB Jv⊥ −
ε

B

〈
v⊥, UE×B + v Σ

〉
− εv

2B2

〈
Jv⊥, <(dx e )v⊥

〉
+ ε2χ̂µ

]
= −µ⊥

B
(∂tB + v divxB)− ε µ⊥

B
divx (BUE×B + v BΣ)

− ε µ⊥ 〈Ucurv, E〉 − ε µ2
⊥ dxB Ucurl e + ε2η̂µ

with
|χ̂µ| . ‖v⊥‖ (1 + ‖v‖3), |η̂µ| . 1 + ‖v‖5.

At this stage one may follow the final lines of the proof of Theorem 2.4, by replacing
in the zeroth and first-order terms of the right-hand side (x, v , µ⊥) with ε-corrections
(xgc, vgc, µgc) up to O(ε2)-terms that may be added to ε2η̂µ and ε-terms that may
be removed by the by-now familiar elimination process, resulting in another harmless
modification of χ̂µ and η̂µ.

To state the resulting theorem, we introduce

(A.3) µgc =
w⊥
B
− ε w⊥

B3
dxB J v⊥−

ε

B

〈
v⊥, UE×B + v Σ

〉
− ε v

2B2

〈
J v⊥,<(dx e )v⊥

〉
and

Y ε = Y0 + εY1

with

Y0(t,Z) =


v e (t,y)

E (t,y) + µB(t,y) divx e (t,y)

− µ

B(t,y)
(∂tB + v divxB) (t,y)


and

Y1(t,Z)=


Udrift(t,y, v, µB(t,y))

〈Σ(t,y, v),E(t,y)〉+ µB(t,y) divx Σ(t,y, v)[
− µ
B

divx (BUE×B + vBΣ)− µ〈Ucurv, E〉 − µ2 dxB Ucurl e

]
(t,y, v)


defining vector fields on the reduced phase-space where Z = (y, v, µ) lives.

Theorem A.2. — Let E ∈ W 2,∞ and B be such that 1/B ∈ W 2,∞ and e ∈ W 3,∞.
There exists a constant C depending polynomially on ‖E‖W 2,∞ , ‖B−1‖W 2,∞ and
‖ e ‖W 3,∞ such that if fε solves (2.1) with initial data a nonnegative density f0,
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then F ε defined so that F ε(t, ·) is the push-forward of fε(t, ·) by the map (x,v) 7→
(xgc, vgc, µgc)(t,x,v) satisfies for a.e. t > 0

‖F ε(t, ·)−Gε(t, ·)‖Ẇ−1,1

6 C ε2 eC t
4 (1+ε t)

∫
R6

eC t ‖v‖
3 (1+ε ‖v‖) (1 + ‖v‖4) f0(x,v) dx dv,

where Gε solves

(A.4) ∂tG
ε + divZ (Y εGε) = 0,

with initial data Gε0 = F ε(0, ·).
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