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DUALITY FOR COMPLEXES OF TORI OVER

A GLOBAL FIELD OF POSITIVE CHARACTERISTIC

by Cyril Demarche & David Harari

Abstract. — If K is a number field, arithmetic duality theorems for tori and complexes of
tori over K are crucial to understand local-global principles for linear algebraic groups over K.
When K is a global field of positive characteristic, we prove similar arithmetic duality theorems,
including a Poitou-Tate exact sequence for Galois hypercohomology of complexes of tori. One
of the main ingredients is the Artin-Mazur-Milne duality theorem for fppf cohomology of finite
flat commutative group schemes.

Résumé (Dualité pour les complexes de tores sur un corps global de caractéristique strictement
positive)

Sur un corps de nombres K, les théorèmes de dualité pour les tores et les complexes de
tores sont cruciaux afin de comprendre le principe local-global pour les K-groupes algébriques
linéaires. Nous démontrons de tels théorèmes de dualité arithmétique quand K est un corps
global de caractéristique p, et en particulier nous établissons une suite de Poitou-Tate pour
l’hypercohomologie galoisienne d’un complexe de tores. Un des principaux ingrédients est la
dualité d’Artin-Mazur-Milne pour la cohomologie fppf d’un schéma en groupes fini et plat.
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1. Introduction

Let K be a global field of characteristic p > 0 and let AK denote the ring of adèles
of K. Let G be a reductive group over K, and X be a torsor under G. We are inter-
ested in rational points on X, and more precisely, on various local-global principles
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832 C. Demarche & D. Harari

associated to X: does X satisfy the Hasse principle, i.e., does X(AK) 6= ∅ imply
X(K) 6= ∅? If not, can we explain the failure using the so-called Brauer-Manin
obstruction to the Hasse principle? Assuming that X(K) 6= ∅, can we estimate the
size of X(K) by studying the so-called weak and strong approximation on X (with a
Brauer-Manin obstruction if necessary), i.e., the closure of the set X(K) in the topo-
logical space X(AS

K), where S is a (not necessarily finite) set of places of K and AS
K

is the ring of S-adèles (with no components in S)?
The answer to those questions is known in the case where K is a number field,

see for instance [San81, Cor. 8.7 & 8.13] for the Hasse principle and weak approxima-
tion, and [Dem11a, Th. 3.14] for strong approximation. Note that in the number field
case, similar results are known for certain non principal homogeneous spaces of G
(see [Bor96] or [BD13]).

In the case of a global field of positive characteristic, the answer is known for
semisimple simply connected groups (thanks to works by Harder, Kneser, Chernousov,
Platonov, Prasad), but the general case is essentially open (see [Ros18, Th. 1.9] for
some related results). One strategy to attack the remaining local-global questions is
similar to one that worked for number fields: arithmetic duality theorems for tori, and
abelianization of Galois cohomology (see for instance [Dem11b] and [Dem11a] for the
case of strong approximation over number fields). Indeed, given a reductive group G
over a field L (e.g. L is a global or a local field), one can construct a complex of tori
of length two C := [T1 → T2],(1) together with “abelianization maps” Hi(L,G) →
Hi(L,C) (cohomology sets here are Galois cohomology or hypercohomology sets),
such that the cohomology sets of G can be computed via the abelian cohomology
groups of C and the Galois cohomology of a semisimple simply connected group
associated to G. The latter is well-understood when L is a local or global field.

Motivated by the discussion above, this paper deals with arithmetic duality theo-
rems for complexes of tori over global fields K of positive characteristic; in character-
istic 0, we also get refinements of previously known results.

The aforementioned applications to the arithmetic of reductive groups and homo-
geneous spaces will be given in a future paper.

The main object is a two-term complex C := [T1 → T2] of K-tori T1 and T2, and we
are particularly interested in its Galois hypercohomology groups Hi(K,C). The main
result of the paper can be summarized as follows: we get Poitou-Tate exact sequences
relating global Galois cohomology groups Hi(K,C) and local ones Hi(Kv, C) — for
any place v of K — via the cohomology of the dual object Ĉ of C. To be more
precise, let us introduce some notation: K is the function field of a smooth, projective,
and geometrically integral curve X over a finite field k. Let X(1) denote the set of
closed points in X. If A is a discrete abelian group, then A∗ is the Pontryagin dual of
homomorphisms from A to Q/Z, and A∧ denotes the completion A∧ := lim←−n∈N∗ A/n.

(1)Throughout the paper, the piece of notation := means that the equality is a definition.
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Duality for complexes of tori over a global field of positive characteristic 833

We can now state one of the main results in the paper (see Theorem 5.10):

Theorem. — Let C := [T1 → T2] be a two-term complex of K-tori, and let
Ĉ := [T̂2 → T̂1] be the dual complex, where T̂ is the module of characters of a torus T
(T1 and T̂2 are in degree −1). Then there is an exact sequence

(1)

0 // H−1(K,C)∧ //
[∏′

v∈X(1) H−1(Kv, C)
]
∧

// H2(K, Ĉ)∗

��

H1(K, Ĉ)∗

��

[∏′
v∈X(1) H0(Kv, C)

]
∧

oo H0(K,C)∧oo

H1(K,C) //
⊕

v∈X(1) H1(Kv, C) // H0(K, Ĉ)∗

��

0 H−1(K, Ĉ)∗oo
⊕

v∈X(1) H2(Kv, C)oo H2(K,C)oo

In the case where K is a number field, we also recover a generalization of [Dem11b,
Th. 6.1 & 6.3]. In the function field case, some partial results related to this exact
sequence for one single torus can be deduced from [GA09, §6].

The main ingredient to prove the theorem above is the so-called Artin-Mazur-Milne
duality theorem for the fppf cohomology of finite flat commutative group schemes over
open subsets ofX (see [Mil06, Th. III.8.2] and [DH19, Th. 1.1]). It is worth noting that
although the complexes that appear in the previous theorem consist of smooth group
schemes (hence the result can be stated using only Galois cohomology), it is essential
for the proof to involve finite group schemes (which are not smooth in general) over
Zariski open subsets of X. That is why [DH19, Th. 1.1] is required instead of the
Artin-Verdier duality theorem ([Mil06, Cor. II.3.3]) in étale cohomology. Likewise for
Theorems 4.11 and 4.9.

Also, since it is necessary at some point to work with the fppf topology, the ap-
proach of duality theorems via Ext groups (like [Mil06, Th. II.3.1]) does not seem to
work, the difficulty being the lack of good notion of constructible sheaf for the fppf
topology (see [Mil06, Introduction to Chap. III]).

The structure of the paper is the following: Section 2 extends the construction
and properties given in [DH19] of fppf cohomology with compact support to the case
of bounded complexes of finite flat group schemes. General properties of étale co-
homology of complexes of tori and of their dual complexes are given in Section 3.
Section 4 deals with applications of Artin-Mazur-Milne duality theorem to various
duality statements for the étale cohomology of complexes of tori over open subsets U
of X. In Section 5, one deduces several Poitou-Tate exact sequences for Galois coho-
mology from the results of Section 4.

Acknowledgements. — We thank J.L. Colliot-Thélène and the anonymous referee for
helpful comments.
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2. Compact support hypercohomology

Let K be the function field of a smooth, projective, and geometrically integral
curve X over a finite field k. Let U be a non empty Zariski open subset of X. Denote
by U (1) the set of closed points of U .

Let C = (Cp)p∈Z be a bounded complex of fppf sheaves over U . In this text, we
define the dual of C to be the Hom-complex Ĉ defined by

Ĉ := Hom•(C ,Gm[1]),

following the sign conventions in [Stacks, Tag 0A8H] or in [Bou07, X.5.1]. Note that
there is a functorial morphism of complexes

Tot(C ⊗ Ĉ ) −→ Gm[1]

mapping an element c⊗ϕ∈Cp⊗Hom(Cq, An) to 0 if p 6=q, and to (−1)p(n−1)ϕ(c)∈An
if p = q.

With those conventions, if C is concentrated in degree 0, i.e., C = F with F an
fppf sheaf, then Ĉ is the same as the Cartier dual FD := Hom(F ,Gm) attached in
degree −1, i.e., Ĉ = FD[1] and the above pairing coincides with the obvious pairing
F ⊗FD[1]→ Gm[1] with no extra sign.

Note also that for any bounded complex C , we have a natural isomorphism of
complexes Ĉ [1]

∼−→ Ĉ [−1], given by a sign (−1)n+1 in degree n. And given a morphism
f : A → B of bounded complexes, we have a natural isomorphism of complexes
̂Cone(f)

∼−→ Cone(f̂)[−1] such that the following diagram commutes

(2)
Â[1] //

o
��

̂Cone(f) //

o
��

B̂
f̂
// Â

Â[−1] // Cone(f̂)[−1] // B̂
f̂
// Â.

If N is a commutative group scheme (over U or over K), its Cartier dual is
denoted N D. The Pontryagin dual of a topological abelian group A (consisting
of continuous homomorphism from A to Q/Z) is denoted A∗. Unless explicitly
specified, the topology used for sheaves (resp. complex of sheaves) and cohomology
(resp. hypercohomology) is the fppf topology.

For each closed point v of X, the completion of K at v is denoted by Kv: it is a
local field of characteristic p with finite residue field Fv (observe the slight difference
of notation with [DH19], where Kv stands for the henselization and K̂v for the com-
pletion). Denote by Ov the ring of integers of Kv. For every fppf sheaf F over U with
generic fiber F , recall ([DH19, Prop. 2.1]) the long exact sequence (where the piece of
notation v 6∈ U means that we consider all closed points of X r U).

(3) · · · −→ Hi
c(U,F ) −→ Hi(U,F ) −→

⊕
v 6∈U

Hi(Kv, F ) −→ Hi+1
c (U,F ) −→ · · ·

There is also a long exact sequence

(4) · · · −→ Hi
c(U,F ′) −→ Hi

c(U,F ) −→ Hi
c(U,F ′′) −→ Hi+1

c (U,F ′) −→ · · ·
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associated to every short exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0

of fppf sheaves.
Let us now extend the construction of the groups Hi

c(U, . . . ) and [DH19, Prop. 2.1]
to the case of bounded complexes. Let C := [· · · → Fi → Fi+1 → · · · ] be a bounded
complex of fppf sheaves over U . Let C → I•(C ) be an injective resolution of the
complex C , in the sense of [Stacks, Tag 013K]. Following [DH19, §2], let Z := X rU

and Z ′ :=
∐
v∈Z Spec(Kv)

i−→ U . Denote by Cv and I•(C )v their respective pullbacks
to SpecKv, for v /∈ U .

We now define Γc(U, I•(C )) to be the following object in the category of complexes
of abelian groups:

Γc(U, I•(C )) := Cone (Γ(U, I•(C )) −→ Γ(Z ′, i∗I•(C ))) [−1],

and Hr
c (U,C ) := Hr(Γc(U, I•(C ))). We will also denote by RΓc(U,C ) the com-

plex Γc(U, I•(C )). Similarly, one can define, for any closed point v ∈ X, complexes
Γv(Ov,C ) computing fppf cohomology groups Hr

v (Ov,C ) over Spec Ov with support
in the closed point, as in [DH19, before Lem. 2.6].

As in [DH19], similar definitions could be made when K is a number field (taking
into account the real places), but in this article we will focus on the function field case.
However, we will make remarks regularly throughout the text explaining similarities
and differences appearing in the number field case.

We will need the analogue of [DH19, Prop. 2.1 & 2.12] for bounded complexes C :
by construction, the first two points of loc. cit., Prop. 2.1 (i.e., exact sequence (3)
and (4)) still hold for bounded complexes.

Proposition 2.1. — Let C be a bounded complex of flat affine commutative group
schemes of finite type over U , and let V ⊂ U be a non empty open subset.

(1) There is a canonical commutative diagram of abelian groups:⊕
v/∈V

Hr−1(Kv,C )

��

⊕
v/∈U

Hr−1(Kv,C )
i2oo

��

· · · //
⊕

v∈UrV

Hr−1(Ov,C ) //

i1 66

Hr
c (V,C ) //

��

Hr
c (U,C ) //

��

⊕
v∈UrV

Hr(Ov,C ) // · · ·

Hr(V,C )

��

Hr(U,C )

��

Resoo

66

⊕
v/∈V

Hr(Kv,C )
π // ⊕

v/∈U
Hr(Kv,C ),

where the long row and the columns are exact.
(2) Let V ⊂ U be a non empty open subset. Then there is an exact sequence

· · · −→
⊕

v∈UrV
Hr
v (Ov,C ) −→ Hr(U,C ) −→ Hr(V,C ) −→

⊕
v∈UrV

Hr+1
v (Ov,C ) −→ · · ·
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836 C. Demarche & D. Harari

Proof. — We follow the proofs of [DH19, Prop. 2.1 3 & Prop. 2.12]. Easy dévissages
imply that [DH19, Lem. 2.6] holds with F replaced by a bounded complex of flat
commutative group schemes of finite type and [DH19, Lem. 2.9] holds for bounded
complexes of fppf sheaves. Likewise [DH19, Lem. 2.10] holds for bounded complexes
of étale sheaves or of smooth commutative group schemes. Therefore, one can copy
the proofs of [DH19, Prop. 2.1 (3) & Prop. 2.12] to get the required Proposition. �

Lemma 2.2. — Let C be a bounded complex of flat commutative group schemes of
finite type over U with generic fiber C over K. Let i be an integer. For each v ∈ U (1),
denote by Hi

nr(Kv, C) the image of Hi(Ov,C ) in Hi(Kv, C). Let V ⊂ U be a non
empty Zariski open subset. Then there is an exact sequence

Hi(U,C ) −→
∏
v 6∈UH

i(Kv, C)×
∏
v∈UrVH

i
nr(Kv, C) −→ Hi+1

c (V,C ).

Proof. — There is a commutative diagram such that the second line and the left
column are exact (by (3) and Prop. 2.1 2.):

Hi(U,C ) //

��

∏
v 6∈UH

i(Kv, C)×
∏
v∈UrVH

i
nr(Kv, C)

j
��

Hi(V,C ) //

��

∏
v 6∈UH

i(Kv, C)×
∏
v∈UrVH

i(Kv, C) //

��

Hi+1
c (V,C )

∏
v∈UrVH

i+1
v (Ov,C )

∏
v∈UrVH

i+1
v (Ov,C )

For v ∈ U r V , the localization exact sequence (cf. proof of Proposition 2.1, 2.)

Hi(Ov,C ) −→ Hi(Kv, C) −→ Hi+1
v (Ov,C )

yields that the second column is a complex. Since j is injective by definition, the
required exact sequence follows by diagram chasing. �

For a complex C of finite flat group schemes, let us now endow the groupsH∗c (U,C )

with a natural topology, compatible with the one defined in [DH19] in the case where C

is a finite flat group scheme.
Let F be a local field (that is: a field complete for a discrete valuation with finite

residue field) and let C := [Cr
fr−→ Cr+1 → · · · → Cs] be a bounded complex of finite

commutative group schemes over SpecF , with Ci in degree i. We assume that F is of
positive characteristic p (if F is p-adic, then all groups Hr(F,C ) are finite by [Mil06,
Cor. I.2.3]).

Definition 2.3. — A morphism f : G1 → G2 of topological groups is strict if it is
continuous, and the restriction f : G1 → f(G1) is an open map (where the topology
on f(G1) is induced byG2). This is equivalent to saying that f induces an isomorphism
of the topological quotient G1/ ker f with the topological subspace f(G1) ⊂ G2.

Let A := ker(fr), and let C := Cone(A[−r] j−→ C ). Then there is an exact triangle

(5) A[−r] j−−→ C
i−−→ C

p−−→ A[1− r].

J.É.P. — M., 2020, tome 7
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In addition, we have a natural quasi-isomorphism ϕ : C → C ′, where C ′ :=

[Cr+1/ Im(fr)→ Cr+2 → · · · → Cs] has a smaller length than C .
There is an alternative dévissage for the complex C , given by the exact triangle:

(6) C̃
i′−−→ C

p−−→ Cr[−r]
∂−−→ C̃ [1],

where C̃ := [Cr+1
fr+1−→ Cr+2 → · · · → Cs].

Recall that for a finite and commutative F -group scheme N , the fppf groups
Hi(F,N) are finite if i 6= 1 ([Mil06, §III.6]) and they are equipped with a locally
compact topology for i = 1 by [Ces15]. By induction on the length of C , one deduces
that if Ci = 0, then Hi+1(F,C ) is finite. In particular, with the previous notation,
we get that Hi(F,C ) is finite if i 6 r or i > s+ 2.

We now define a natural topology on Hi(F,C ) by induction on the length of C ,
such that any morphism of such complexes induces a strict map between hyperco-
homology groups. Using the dévissages given by (5) and (6), one gets the following
exact sequences

(7) Hi−1(F,C ′) −→ Hi−r(F,A)
f−−→ Hi(F,C )

g−−→ Hi(F,C ′)

−→ Hi+1−r(F,A) −→ · · ·

and

(8) Hi−r−1(F,Cr) −→ Hi(F, C̃ )
f ′−−−→ Hi(F,C )

g′−−−→ Hi−r(F,Cr)

−→ Hi+1(F, C̃ ) −→ · · · ,

where all the groups except Hi(F,C ) are endowed with a natural topology via the
induction hypothesis (observe that C ′r = 0).

– Assume that i = r + 1. Equip Im f ∼= Hi−r(F,A)/ ImHi−1(F,C ′) with the
quotient topology. Then the two rightmost groups in exact sequence (7) are finite,
and we can endow Hr+1(F,C ) with the topology such that Im f is an open subgroup
(see [DH19, beginning of §3]). In other words it is the finest topology such that f is
continuous. Then f and g are strict.

– Assume that i 6= r+1. Then Hi−r(F,Cr) is finite (and discrete), and using exact
sequence (8) one can similarly endow Hi(F,C ) with the finest topology making f ′
continuous. Then both maps f ′ and g′ are strict.
By construction, this topology is functorial in C , i.e., if C1 → C2 is a morphism of
complexes, then the induced map Hi(F,C1)→ Hi(F,C2) is strict. In addition, given
a quasi-isomorphism C1 → C2, the induced morphism on cohomology groups is a
homeomorphism.

Let us now deal with the topology on the groups H∗c (U,C ), where C is a complex
of finite flat commutative group schemes defined over U . Recall that we have an exact
sequence analogous to (3):

(9) Hi−1(U,C ) −→
⊕
v/∈U

Hi−1(Kv,C ) −→ Hi
c(U,C ) −→ Hi(U,C ).

J.É.P. — M., 2020, tome 7
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We endow the groupsHi(U,C ) with the discrete topology, and the groupsHi−1(Kv,C )

with the topology defined above.

Lemma 2.4. — For all i, the map Hi(U,C )→
⊕

v/∈U H
i(Kv,C ) has discrete image.

Proof. — We prove the result by induction on the length of C , using the dévissages
induced by the exact triangles (5) and (6).

– Assume that i = r + 1. Using the exact triangle (6), we get the following com-
mutative diagram of long exact sequences of topological groups (where all maps are
strict):

Hr+1(U, C̃ ) //

��

Hr+1(U,C ) //

��

H1(U,Cr)

��⊕
v/∈U H

r+1(Kv, C̃ ) //
⊕

v/∈U H
r+1(Kv,C ) //

⊕
v/∈U H

1(Kv, Cr).

The groups on the left hand side are finite, and by [Ces17, Lem. 2.7], the image of
the right hand side map is discrete in

⊕
v/∈U H

1(Kv, Cr). Since
⊕

v/∈U H
r+1(Kv,C ) is

Hausdorff, an easy topological argument implies that the image of the central vertical
map is discrete.

– Assume that i 6= r + 1. Using the exact triangle (5), we get the following com-
mutative diagram of long exact sequences of topological groups:

Hi−r(U,A) //

��

Hi(U,C ) //

��

Hi(U,C ′)

��⊕
v/∈U H

i−r(Kv, A) //
⊕

v/∈U H
i(Kv,C ) //

⊕
v/∈U H

i(Kv,C ′).

The groups on the left hand side are finite, and by induction on the length of the com-
plex, the image of the right hand side map is discrete in

⊕
v/∈U H

1(Kv,C ′). A similar
topological argument as before implies that the central vertical map is discrete. �

As a consequence of this Lemma, one can endow Hi
c(U,C ) with the following

topology: we put the quotient topology on the group
⊕

v/∈U H
i(Kv,C )/ ImHi(U,C )

(this topology is Hausdorff), and since Hi(U,C ) is discrete, there is a unique topology
on Hi

c(U,C ) such that the maps in the exact sequence (9) are strict.

Lemma 2.5. — The topological group Hi
c(U,C ) is profinite.

Proof. — We prove this Lemma by induction on the length of the complex C . By
[DH19, Prop. 3.5], the lemma is proved when C is a complex of length one, i.e.,
concentrated in one given degree.

Given a complex C , consider the previous dévissages:
– Assume that i = r + 1. Then the exact sequence (7) implies that the group

Hr+1
c (U,C ) is an extension (the maps being strict) of a (discrete) finite group by

a profinite group (which is a quotient of H1
c (U,A) by a closed subgroup), hence

Hr+1
c (U,C ) is profinite.
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– Assume that i 6= r + 1. Then the exact sequence (8) implies that Hi
c(U,C ) is

an extension of a finite (discrete) group by a profinite group (which is a quotient of
Hi

c(U, C̃ ) by a closed subgroup), hence it is profinite. �

3. Cohomology of tori and short complexes of tori

Let U be a non empty Zariski open subset of X. Recall that for every U -torus T

(in the sense of [SGA3, IX, Déf. 1.3]), there is a finite étale covering (that can be taken
to be connected and Galois) V of U such that TV := T ×U V is split, that is: isomor-
phic to some power Gr

m (r ∈ N) of the multiplicative group ([SGA3, X, Th. 5.16]).
The group of characters T̂ of T is a U -group scheme locally isomorphic to Zr for
the étale topology, namely it is a torsion-free and finite type Gal(V/U)-module.

Given a complex of U -tori C = [T1
ρ−→ T2] with generic fiber C = [T1

ρ−→ T2]

over K, where by convention T1 is in degree −1 and T2 in degree 0, we can apply
the construction of Section 2. Namely we have dual complexes Ĉ = [T̂2 → T̂1] and
Ĉ = [T̂2

ρ̂−→ T̂1] (concentrated in degrees −1 and 0), which are respectively defined
over U and over K. Fix a separable closure K of K. Denote by S the finite set XrU
and by GS = πét

1 (U) the étale fundamental group of U , which is the Galois group
of the maximal field extension KS ⊂ K of K unramified outside S; then each T̂i

(i = 1, 2) can be viewed as a discrete GS-module.
Recall that fppf and étale cohomology coincide for sheaves represented by smooth

group schemes ([Mil80, §III.3]) like a torus T , its group of characters T̂ , or finite flat
group schemes of order prime to p. In particular (by [Mil80, Lem. III.1.16]) we have
for every integer i:

lim−→
U

Hi(U,C ) ∼= Hi(K,C)

(where the limit is over all non empty Zariski open subsets U of X), and likewise for
the complex Ĉ .

For such 2-term complexes, the pairings of Section 2 can be made explicit (see
[Dem11b, §2]; note that the sign conventions are slightly different here), and give
maps

C ⊗L Ĉ −→ Gm[1]; C ⊗L Ĉ −→ Gm[1]

in the bounded derived category Db(U) (resp. Db(SpecK)) of fppf sheaves over U
(resp. over SpecK). In the case T1 = 0 or T2 = 0, we recover (up to shift) the
classical pairings T ⊗ T̂ → Gm and T ⊗ T̂ → Gm associated to one single torus T .
We also have for each positive integer n the n-adic realizations

TZ/n(C ) := H0(C [−1]⊗L Z/n); TZ/n(Ĉ ) := H0(Ĉ [−1]⊗L Z/n)

and likewise for C and Ĉ. The fppf sheaf TZ/n(C ) is representable by a finite group
scheme of multiplicative type over U (in the sense of [SGA3, IX, Déf. 1.1]) with Cartier
dual TZ/n(Ĉ ), and similarly for TZ/n(C) and TZ/n(Ĉ) over K. Besides we have exact
triangles ([Dem11b, Lem. 2.3]), where for every abelian group (or group scheme) A,
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the piece of notation nA stands for the n-torsion subgroup of A:

(10) n(ker ρ)[2] −→ C ⊗L Z/n −→ TZ/n(C )[1] −→ n(ker ρ)[3]

and

(11) TZ/n(Ĉ )[1] −→ Ĉ ⊗L Z/n −→ ̂
n(ker ρ) −→ TZ/n(Ĉ )[2]

in Db(U), and similar triangles for C, Ĉ in Db(SpecK).
Note also that the objects C ⊗L Z/n and Ĉ ⊗L Z/n in the derived category have

canonical representatives as complexes of fppf sheaves given by

C ⊗L Z/n = Tot(C ⊗ [Z
n−−→ Z]) and Ĉ ⊗L Z/n = Tot(Ĉ ⊗ Z/n).

We also have an exact triangle in Db(U):

(12) (ker ρ)[1] −→ C −→ coker ρ −→ (ker ρ)[2],

where coker ρ is a torus andM := ker ρ is a group of multiplicative type, and the dual
exact triangle

(13) (ĉoker ρ)[1] −→ Ĉ −→ k̂er ρ −→ (ĉoker ρ)[2].

For every integer i, there are exact sequences

· · · −→ Hi(U,T1) −→ Hi(U,T2) −→ Hi(U,C ) −→ Hi+1(U,T1) −→ · · ·(14)

· · · −→ Hi(U, T̂2) −→ Hi(U, T̂1) −→ Hi(U, Ĉ ) −→ Hi+1(U, T̂2) −→ · · ·(15)

and we also have similar exact sequences for the compact support fppf cohomology
groups Hi

c(U, . . . ).

Lemma 3.1
(a) Let T be a torus over U . Then H0(U,T ) and H1(U,T ) are of finite type.

If U 6= X, then H1(U,T ) is finite.
(b) Let N be a finite group scheme of multiplicative type over U . Then H1(U,N )

and H2
c (U,N D) are finite.

Proof

(a) Let V be an étale and finite connected Galois covering of U such that TV :=

T ×U V is isomorphic to Gr
m for some non negative integer r. The group T (V ) '

H0(V,Gm)r is of finite type by Dirichlet’s theorem on units. Therefore H0(U,T ) ⊂
H0(V,T ) = T (V ) is also of finite type.

Set G = Gal(V/U). Then the Hochschild-Serre spectral sequence provides an exact
sequence

0 −→ H1(G,T (V )) −→ H1(U,T ) −→ H1(V,TV ).

Since TV
∼= Gr

m, the group H1(V,TV ) ∼= (PicV )r is of finite type (resp. finite if
U 6= X) by finiteness of the ideal class group of a global field. As T (V ) is of finite
type and G is finite, the group H1(G,T (V )) is finite by [Ser68, Chap.VIII, Cor. 2].
Thus H1(U,T ) is of finite type (resp. finite if U 6= X) as well.
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(b) We can assume (by ([Mil06, Lem. III.8.9] and [DH19, Cor. 4.9]) that U 6= X.
Since every finitely generated Galois module is a quotient of a torsion-free and finitely
generated Galois module, the assumption that N is of multiplicative type implies
(by [SGA3, X, Prop. 1.1]) that there is an exact sequence of U -group schemes

0 −→ N −→ T1 −→ T2 −→ 0,

where T1 and T2 are U -tori. Therefore, there is an exact sequence of abelian groups

H0(U,T2) −→ H1(U,N ) −→ H1(U,T1).

By (a), we know that H1(U,T1) is finite. Let n be the order of N ; then the map
H0(U,T2) → H1(U,N ) factorizes through a map H0(U,T2)/n → H1(U,N ). But
H0(U,T2)/n is finite because H0(U,T2) is of finite type by (a). Finally H1(U,N )

is finite. The finiteness of H2
c (U,ND) follows by Artin-Mazur-Milne duality ([DH19,

Th. 1.1]). �

Remark 3.2. — By dévissage, the finiteness of H1(U,N ) holds for a (not necessarily
finite) group of multiplicative type N because such a group is an extension of a
finite group by a torus. Recall also ([Mil06, Lem. III.8.9] and [DH19, Cor. 4.8]) that
for every finite and flat commutative group scheme N over U , the groups Hi(U,N )

and H3−i
c (U,N ) are finite if i 6= 1 or if U = X, and also if p does not divide the

order of N (by [DH19, Prop. 2.1 (4)] and [Mil06, Th. II.3.1]). Besides these groups
are trivial if i > 4 (this is part of [DH19, Th. 1.1]).

For an fppf sheaf (or a bounded complex of fppf sheaves) F on U with generic
fiber F , we set (cf. exact sequence (3))

Di(U,F ) = Ker[Hi(U,F ) −→
⊕
v 6∈U

Hi(Kv, F )] = Im[Hi
c(U,F ) −→ Hi(U,F )].

Lemma 3.3. — We have D2(U,Gm) = 0.

Proof. — Let Fv be the residue field of Kv. By [Mil06, Prop. II.1.1 (b)], we have

H2(Ov,Gm) = Br Ov ∼= BrFv = 0

because Fv is finite. The Brauer group BrU of U injects into BrK ([Mil80,
Cor. IV.2.6]). Now every element of D2(U,Gm) ⊂ BrU ⊂ BrK has trivial restriction
to BrKv for all places v of K, hence it is trivial by Brauer-Hasse-Noether Theorem
([NSW08, Th.VIII.1.17]). �

Lemma 3.4. — Let T be a U -torus with generic fiber T .
(a) The group H1(U, T̂ ) is finite; the groups H0(U, T̂ ) and H0

c (U, T̂ ) are of finite
type and torsion-free. The group H1

c (U, T̂ ) is of finite type.
(b) The group H2

c (U,T ) is finite. In particular, if U = X, then H2(X,T ) is finite.
(c) Assume U 6= X. Then H2

c (U, T̂ ) is finite.
(d) Assume i > 4. Then Hi(U, T̂ )=Hi

c(U, T̂ )=0. If U 6=X, then H3(U, T̂ )=0.
(e) If U = X, then H3(U, T̂ ) = H3(X, T̂ ) is finite.
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Proof

(a) Let V be a finite connected Galois étale covering of U such that T ×U V is
split. Let L be the function field of V and set G = Gal(L/K). We have H1(V,Z) = 0

because H1(V,Z) injects into H1(L,Z) by Leray spectral sequence. Therefore, we
have H1(V, T̂ ) = 0, hence the group H1(U, T̂ ) identifies (by the Hochschild-Serre
spectral sequence) to a subgroup of H1(G, T̂ ), which is finite because T̂ is a G-module
of finite type. The assertion about H0(U, T̂ ) (which is a subgroup of H0(K, T̂ )) and
H0

c (U, T̂ ) ⊂ H0(U, T̂ ) is obvious (we even have H0
c (U, T̂ ) = 0 if U 6= X). Also the

exact sequence ⊕
v 6∈U

H0(Kv, T̂ ) −→ H1
c (U, T̂ ) −→ H1(U, T̂ )

shows shat H1
c (U, T̂ ) is of finite type.

(b) By (3), there is an exact sequence⊕
v 6∈U

H1(Kv, T ) −→ H2
c (U,T ) −→ D2(U,T ) −→ 0.

The groupsH1(Kv, T ) are finite ([Mil06, Cor. I.2.3]). Since we haveD2(V,Gm) = 0 by
Lemma 3.3, a restriction-corestriction argument shows that D2(U,T ) is a subgroup
of nH2(U,T ), where n = # Gal(V/U). By the Kummer sequence in the fppf topology

0 −→ nT −→ T
·n−−−→ T −→ 0,

the group nH
2(U,T ) is a quotient of H2(U, nT ), which is finite (even if p divides n,

cf. Remark 3.2). Thus H2
c (U,T ) is finite.

(c) Let n > 0. Using the exact sequence in the fppf topology

(16) 0 −→ T̂
·n−−−→ T̂ −→ T̂ /n −→ 0,

we see that nH2
c (U, T̂ ) is a quotient ofH1

c (U, T̂ /n), which is finite (see Remark 3.2). It
is therefore sufficient to show that H2

c (U, T̂ ) is of finite exponent, and by a restriction-
corestriction argument, we reduce to the case T̂ = Z. As H1(Kv,Z) = 0, we have

H2
c (U,Z) = Ker[H2(U,Z) −→

⊕
v 6∈U

H2(Kv,Z)].

By [Mil06, Lem. II.2.10], this yields

H2
c (U,Z) ∼= Ker[H1(U,Q/Z) −→

⊕
v 6∈U

H1(Kv,Q/Z)],

hence
H2

c (U,Z) ∼= Ker[H1(GS ,Q/Z) −→
⊕
v 6∈U

H1(Kv,Q/Z)].

Therefore, H2
c (U,Z) is a subgroup of H1(Gal(L/K),Q/Z), where L ⊂ KS is the

maximal abelian extension of K that is unramified outside S and totally decomposed
at every v ∈ S = X r U . The group Gal(L/K) is isomorphic to PicU by class field
theory, which implies that it is finite because U 6= X. Hence H2

c (U,Z) is finite, which
proves (c).
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(d) For i > 4, the groups Hi
c(U, T̂ ) and Hi(U, T̂ ) coincide thanks to exact se-

quence (3) because the local field Kv is of strict cohomological dimension 2 ([NSW08,
Cor. 7.2.5]). Assume U 6= X and i > 3. Then, by [Mil06, Prop. II.2.9], we have
Hi(U, T̂ ) = Hi(GS , T̂ ), which is zero: indeed, GS is of strict cohomological dimen-
sion 2 by [NSW08, Th. 8.3.17]. It remains to deal with the case U = X (now we
assume i > 4). By [Mil06, Lem. II.2.10], the groupHi(X,Z) is torsion; by a restriction-
corestriction argument, the same holds for Hi(X, T̂ ). Since Q is uniquely divisible,
this yields

Hi(X, T̂ ) = Hi−1(X, T̂ ⊗Q/Z) = lim−→
n

Hi−1(X, T̂ /n).

For i > 5, the group Hi−1(X, T̂ /n) is zero (cf. Remark 3.2), so we are done. Assu-
me i = 4. We observe that the finite group H3(X, T̂ /n) is dual to H0(X, nT ) by
Artin-Mazur-Milne duality ([DH19, Th. 1.1]), so the dual of the discrete torsion group
H4(X, T̂ ) is the profinite group

lim←−
n

H0(X, nT ) = lim←−
n

n(T (K))

(the equality holds because the X-group scheme nT is finite and X is connected).
But K is a global field, hence T (K)tors is finite: indeed, if L is a finite extension of K
such that T splits over L, then T (K) ⊂ T (L) with T (L) ' (L∗)r for some r, and L∗
contains only finitely many roots of unity. Therefore, T (K) has trivial Tate module,
which yields the result.

(e) Using exact sequence (16), we get a surjection H2(X, T̂ /n) → nH
3(X, T̂ ),

so it is sufficient (by Remark 3.2) to show that H3(X, T̂ ) is of finite expo-
nent. By restriction-corestriction, we can therefore assume that T̂ = Z. By the
same method as in (d), we get that the dual of H3(X,Z) is lim←−nH

1(X,µn).
As H0(X,Gm) = k∗ because X is a proper and geometrically integral curve, we get
an exact sequence of finite groups

0 −→ k∗/k∗
n

−→ H1(X,µn) −→ n PicX −→ 0.

Since PicX is of finite type, we have lim←−n(nPicX) = 0, hence lim←−nH
1(X,µn) is the

inverse limit of the k∗/k∗n , which is k∗ itself because k is finite. Thus H3(X,Z) is the
dual of k∗, which is finite (but not zero). �

Remark 3.5. — Assume U = X. Then the group H2
c (U, T̂ ) = H2(X, T̂ ) is in general

infinite: for example H2(X,Z) ∼= H1(X,Q/Z) is the dual of the étale fundamental
group πét

1 (X) and the latter is an extension of Gal(k/k) = Ẑ; therefore H2(X,Z)

contains a copy of Q/Z.

Proposition 3.6. — Let C = [T1
ρ−→ T2] be a complex of U -tori with generic fiber

C = [T1 → T2].
(a) Let i ∈ {−1, 0}. Then the groups Hi(U, Ĉ ) and Hi

c(U, Ĉ ) are of finite type, and
the restriction map Hi(U, Ĉ ) → Hi(K, Ĉ) is an isomorphism. The restriction map
H1(U, Ĉ )→ H1(K, Ĉ) is injective. If U 6= X, then H1

c (U, Ĉ ) is of finite type.

J.É.P. — M., 2020, tome 7



844 C. Demarche & D. Harari

(b) The groups H−1(U,C ) and H−1
c (U,C ) are of finite type, and so is H0(U,C ).

If U = X, then H1(U,C ) = H1(X,C ) is of finite type.
(c) Assume U 6= X. Then D1(U,C ) and D1(U, Ĉ ) are finite.

Proof

(a) The fact that Hi(U, Ĉ ) and Hi
c(U, Ĉ ) are of finite type for i ∈ {−1, 0} follows

immediately by dévissage (cf. exact sequences (15) and (3)) from Lemma 3.4 (a),
and we even have H−1

c (U, Ĉ ) = 0 if U 6= X. For a U -torus T , the restriction map
H0(U, T̂ ) → H0(K, T̂ ) obviously is an isomorphism. Let V be a connected Galois
covering of U with function field L and group G, such that T splits over V . As seen
before, we have H1(V,Z) = H1(L,Z) = 0, hence H1(V, T̂ ) = H1(L, T̂ ) = 0. By the
Hochschild-Serre spectral sequence we getH1(U, T̂ ) ∼= H1(K, T̂ ) because both groups
identify to H1(G, T̂ ). By [Mil06, Lem. II.2.10], we have

H2(U, T̂ ) ∼= H1(U, T̂ ⊗Q/Z) = lim−→
n>0

H1(U, T̂ /n),

and H1(U, T̂ /n) ↪→ H1(K, T̂/n) because T̂ /n is a finite U -group scheme, which
implies H2(U, T̂ ) ↪→ H2(K, T̂ ).

The commutative diagram with exact lines

0 // Hi(U, T̂1) //

��

Hi(U, T̂2) //

��

Hi(U, Ĉ ) //

��

Hi+1(U, T̂1) //

��

Hi+1(U, T̂2)

��

0 // Hi(K, T̂1) // Hi(K, T̂2) // Hi(K, Ĉ) // Hi+1(K, T̂1) // Hi+1(K, T̂2)

and the five lemma now give that the restriction map Hi(U, Ĉ ) → Hi(K, Ĉ) is an
isomorphism for i ∈ {−1, 0}, and is injective for i = 1. The fact that H1

c (U, Ĉ ) is of
finite type if U 6= X is immediate by dévissage thanks to Lemma 3.4 (c).

(b) The first two assertions follow from Lemma 3.1, using exact sequence (14). For
U = X, every X-torus T satisfies that H1(X,T ) is of finite type (Lemma 3.1) and
H2(X,T ) is finite (Lemma 3.4 (b), whence the result.

(c) By functoriality, the image of D1(U,C ) by the map u : H1(U,C )→ H2(U,T1)

is a subgroup of D2(U,T1). The latter is finite by Lemma 3.4 (b), because it is a
quotient of H2

c (U,T1). As the kernel of u is a quotient of H1(U,T2) (which is finite
by Lemma 3.4 (a), this means that D1(U,C ) is finite.

The group H2
c (U, T̂2) is finite by Lemma 3.4 (c). Hence D2(U, T̂2) is finite. On the

other hand, the kernel of the map H1(U, Ĉ ) → H2(U, T̂2) is a quotient of the group
H1(U, T̂1), which is finite by Lemma 3.4 (a). Thus D1(U, Ĉ ) is finite. �

Remark 3.7. — The same argument as in Proposition 3.6 (a) shows that for v ∈ U ,
the restriction map Hi(Ov, Ĉ ) → Hi(Kv, Ĉ) is an isomorphism for i ∈ {−1, 0}, and
is injective for i = 1.

Recall ([Dem11b, §3]) that for v ∈ X(1), given a complex C of Kv-tori, the groups
H−1(Kv, C) and H0(Kv, C) are equipped with a natural Hausdorff topology (and the
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groups Hi(Kv, C) are endowed with the discrete topology for i > 1, as are all groups
Hr(Kv, Ĉ) for −1 6 r 6 2).

Lemma 3.8. — The image I of the group H0(U,C ) into
⊕

v 6∈U H
0(Kv, C) is a discrete

(hence closed) subgroup, and so is the image of H−1(U,C ) into
⊕

v 6∈U H
−1(Kv, C).

Proof. — We can assume U 6= X. Let us start with the case when C = Gm.
Then O∗U := H0(U,Gm) is a discrete subgroup of

⊕
v 6∈U K

∗
v , because its intersec-

tion with the open subgroup
⊕

v 6∈U O∗v is H0(X,Gm) = k∗, which is finite. Con-
sider now a U -torus T . Let W be a connected Galois finite covering of U (with
function field L ⊃ K) that splits T . Let G := Gal(L/K). By the case T = Gm,
the subgroup H0(W,T ) is discrete in

⊕
w 6∈W H0(Lw, T ), so H0(U,T ) is discrete in⊕

v 6∈U H
0(Kv, T ) because it is the intersection of H0(W,T ) ⊂

⊕
w 6∈W H0(Lw, T )

with
⊕

v 6∈U H
0(Kv, T ) = (

⊕
w 6∈W H0(Lw, T ))G. Thus I is discrete when C = T is

one single torus.
In the general case, exact triangle (12) yields a commutative diagram with exact

lines
H1(U,M ) //

��

H0(U,C )
u //

j
��

H0(U,T )

��⊕
v 6∈U H

1(Kv,M) //
⊕

v 6∈U H
0(Kv, C) //

⊕
v 6∈U H

0(Kv, T ),

where M is a U -group of multiplicative type and T is a U -torus. Since U 6= X,
the right vertical map is injective. As the lemma holds for C = T , the image J
of H0(U,T ) into

⊕
v 6∈U H

0(Kv, T ) is discrete, hence there is an open subgroup H

of
⊕

v 6∈U H
0(Kv, T ) such that J ∩ H = {0}. Let H1 be the inverse image of H in⊕

v 6∈U H
0(Kv, C), it is an open subgroup of

⊕
v 6∈U H

0(Kv, C) such that j−1(H1) is
a subgroup of keru. As H1(U,M ) is finite (Remark 3.2), we also have that keru is
finite and so is j−1(H1). Therefore, I∩H1 = j(j−1(H1)) is finite, which implies that I
is discrete.

The same result for the image of H−1(U,C ) into
⊕

v 6∈U H
−1(Kv, C) follows imme-

diately because H−1(U,C ) is a subgroup of H0(U,T1) (which has just been shown to
be a discrete subgroup of

⊕
v 6∈U H

0(Kv, T1)), and
⊕

v 6∈U H
−1(Kv, C) is a topological

subspace of
⊕

v 6∈U H
0(Kv, T1). �

Remark 3.9. — The analogue of Lemma 3.8 does not hold over a number field as soon
as at least one finite place of K is not in U and K has at least two non archimedean
places: indeed, for the exact sequence

0 −→ H0(U,Gm) −→
⊕
v 6∈U

H0(Kv,Gm) −→ H1
c (U,Gm) −→ H1(U,Gm) −→ 0

to hold (cf. [DH19, beginning of §2]), the groups H0(Kv,Gm) at the archimedean
places must be understood as themodified Tate group Ĥ0(Kv,Gm). The intersection I
of H0(U,Gm) with the compact subgroup

⊕
v 6∈U O∗v ⊂

⊕
v 6∈U H

0(Kv,Gm) (where by
convention O∗v means Ĥ0(Kv,Gm) at the archimedean places) is countable and infinite
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(it is isomorphic to O∗K), hence I is not compact by Baire’s Theorem. Therefore, the
image of H0(U,Gm) in

⊕
v 6∈U H

0(Kv,Gm) is not closed.

Equip the finitely generated group H0(U,C ) with the discrete topology. We give
H0

c (U,C ) the unique topology such that all maps in the exact sequence

(17) H−1(U,C ) −→
⊕
v 6∈U

H−1(Kv, C) −→ H0
c (U,C ) −→ H0(U,C )

are strict (by Lemma 3.8, the left map is strict and the quotient of
⊕

v 6∈U H
−1(Kv, C)

by the image of H−1(U,C ) is a locally compact Hausdorff group). We also give the
finite group (cf. Proposition 3.6 (c) D1(U,C ) the discrete topology, and topologize
H1

c (U,C ) such that all maps in the exact sequence

(18) H0(U,C ) −→
⊕
v 6∈U

H0(Kv, C) −→ H1
c (U,C ) −→ D1(U,C ) −→ 0

are strict.

Definition 3.10. — Define E as the class of those abelian topological groups A that
are an extension

(19) 0 −→ P −→ A
π−−→ F −→ 0

(the maps being continuous) of a finitely generated group F (equipped with the
discrete topology) by a profinite group P (this implies that all maps in this exact
sequence are strict by [DH19, Lem. 3.4]).

It is easy to check that for every group A in E , a closed subgroup of A and the
quotient of A by any closed subgroup of A are still in E . Also a topological extension
of a (discrete) finitely generated group by A stays in E . Finally, every group A in E

is isomorphic to the direct product of a finitely generated group (equipped with dis-
crete topology) by a profinite group: indeed, up to replacing F by F/Ftors and P by
π−1(Ftors) in the extension (19), we can assume that F = Zr for some r > 0. Since F
is free, the morphism π has a section s : F → A, which is automatically continuous
because F is discrete. Setting B = s(F ), we get a topological isomorphism A ∼= P×B.

Definition 3.11. — Let A be an abelian group. For every prime number `, the `-adic
completion of A is

A(`) := lim←−
m∈N

(A/`m).

We also set
A∧ := lim←−

n∈N∗

A/n =
∏
` primeA

(`).

The piece of notation A{`} stands for the `-primary torsion subgroup of A.

For A finitely generated, we have A(`) = A⊗Z Z`; since Z` is a torsion-free (hence
flat) Z-module, the functors A 7→ A(`) and A 7→ A∧ are exact in the category of
finitely generated abelian groups.
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Lemma 3.12. — Let A→ B → E → 0 be an exact sequence of abelian groups.
(a) The induced map B(`) → E(`) is surjective.
(b) If `E is finite, then the induced sequence

A(`) −→ B(`) −→ E(`) −→ 0

is exact. Likewise if A/` is finite.

Proof

(a) Since the functor .⊗Z Z/`m is right exact, the sequence

A/`m −→ B/`m −→ E/`m −→ 0

is exact. Therefore, the projective system (ker[B/`m → E/`m])m>1 has surjective
transition maps, which implies that the map lim←−m(B/`m) → lim←−m(E/`m) remains
surjective.

(b) Assume that `E is finite. Then (by induction on m) we also have that `mE is
finite for every positive integer m thanks to the exact sequence

`E −→ `m+1E
·`−−→ `mE.

Let I ⊂ B be the image of A by the map A → B. By (a), the map A(`) → I(`) is
surjective, so it is sufficient to prove that the sequence

I(`) −→ B(`) −→ E(`)

is exact. By the snake lemma, we have an exact sequence

`mE −→ I/`m −→ B/`m −→ E/`m.

Taking projective limit over m yields the required exact sequence because the kernel
of the map I/`m → B/`m is finite (it is a quotient of `mE). Similarly, if A/` is finite,
then A/`m (hence also I/`m) is finite for every positive m and the same argument
works. �

If we assume further that A is a topological abelian group, its profinite completion
is A∧ := lim←−H(A/H), where H runs over all open subgroups of finite index in A. If A
is profinite, then A = A∧ = A∧. If A is in the class E , then A ↪→ A∧ = A∧.

Proposition 3.13. — Let C = [T1 → T2] be a complex of U -tori with generic fiber
C = [T1 → T2]. Let v ∈ X(1). The topological groups H−1(Kv, C) and H0(Kv, C) are
in E , as are the groups H0

c (U,C ) and H1
c (U,C ). In particular, for i ∈ {−1, 0}, we

have Hi(Kv, C)∧ = Hi(Kv, C)∧ and for i ∈ {0, 1}, we have Hi
c(U,C ) ↪→ Hi

c(U,C )∧.

Proof. — Let T be a U -torus with generic fiber T . Let v be a closed point of X and
let L be a finite Galois extension of Kv such that T splits over L. As L∗ ' Z×O∗L is
in E , so is T (L). Then H0(Kv, T ) is in E as a closed subgroup of T (L) (the subgroup
of Gal(L/Kv)-invariants). The exact sequence

H0(Kv, T1) −→ H0(Kv, T2) −→ H0(Kv, C) −→ H1(Kv, T1)
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and the definition of the topology on H0(Kv, C) now imply that H0(Kv, C) is in E .
The exact sequence (18) and Lemma 3.8 yield that H1

c (U,C ) is in E because D1(U,C )

is finite.
Similarly the group H−1(Kv, C) = ker[H0(Kv, T1)→ H0(Kv, T2)] is a closed sub-

group of H0(Kv, T1), hence is in E . This implies that H0
c (U,C ) is in E thanks to the

exact sequence (17), the group H0(U,C ) being of finite type by Proposition 3.6. �

Lemma 3.14. — Let v ∈ U and let C be a complex of Ov-tori. Then Hi(Ov,C ) = 0

for i > 1.

Proof. — Using the exact sequence (14) with U replaced by Ov, we can assume
that C = T is one single torus. Since T is smooth over Ov, the fppf cohomol-
ogy group Hi(Ov,T ) coincides with the étale group, and it is isomorphic ([Mil06,
Prop. II.1.1 (b)]) to the Galois cohomology group Hi(Fv, T̃ ), where Fv is the residue
field of Ov and T̃ the reduction of T mod. v, which is a torus over the finite field Fv.
Now H1(Fv, T̃ ) = 0 by Lang’s theorem ([Lan56]). For i > 2, the Galois cohomol-
ogy group Hi(Fv, T̃ ) is torsion. Let n > 0. By the Kummer sequence applied to the
torus T̃ over the perfect field Fv, the n-torsion subgroup nH

i(Fv, T̃ ) is a quotient
of Hi(Fv, nT ), which is zero because Fv is of cohomological dimension 1 ([Ser68,
Chap.XIII, Prop. 2]). This proves the lemma. �

Remark 3.15. — Using the definition of fppf compact support cohomology given in
[DH19] (which, in particular, takes care of the set ΩR of real places; see loc. cit.,
Prop. 2.1), most results of this section hold (with the same proof) if we replace K
by a number field with ring of integers OK , X by Spec OK , and U by a non empty
Zariski open subset of X. Also the piece of notation v 6∈ U means that we consider
the closed points of XrU and the real places of K; for v ∈ ΩR and i 6 0, the groups
Hi(Kv, . . . ) must be understood as the modified Tate groups (cf. Remark 3.9). More
precisely:

– Lemma 3.1 (a) holds without the restriction U 6= X; (b) and Remark 3.2 are use-
less because for every finite flat commutative U -group scheme N , all groupsHi(U,N )

and Hi
c(U,N ) are finite (cf. [DH19, Th. 1.1]).

– Lemma 3.4 (a) and (b) are unchanged; (c) holds without the restriction U 6= X.
In (d), the vanishing of Hi

c(U, T̂ ) for i > 4 still holds but the proof uses a different
argument (namely that the dual of this group is the inverse limit of the H4−i(U, nT ),
which is zero even in the case i = 4 because the finitely generated group H0(U,T )

has trivial Tate module). The vanishing of Hi(U, T̂ ) for i > 4 must be replaced by
its finiteness if ΩR 6= ∅. Finally, the vanishing of H3(U, T̂ ) does not hold any more,
even if ΩR = ∅ (if Leopoldt’s conjecture is assumed, then H3(U, T̂ ){`} = 0 for `
invertible on U , but not in general for other primes; [Mil06, Th. II.4.6 (b)] is wrong
for r = 3, the problem in the proof being that the second line of the diagram needs
not remain exact after taking profinite completions); neither does (e) hold as soon as
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there are at least two archimedean places. Also, there is no more counterexample as
in Remark 3.5.

– Proposition 3.6 (a) and (c) hold (without the condition U 6= X), (b) is also true
(and when U = X, the group H1(X,C ) is even finite).

4. Duality theorems in fppf cohomology

In order to state and prove duality results for the cohomology of complexes of fppf
sheaves, we need to extend some constructions from [DH19] to the context of bounded
complexes. Let A and B be two bounded complexes of fppf sheaves over U . Following
[SGA4, XVII, 4.2.9] or [FS02, App.A], one can consider the Godement resolutions
G(A) and G(B) of A and B. As in [God73, II.6.6] or in [FS02, App.A], there is a
natural commutative diagram of complexes

A⊗B

((��

Tot(G(A)⊗G(B)) // G(A⊗B).

Following [DH19, Proof of Lem. 4.1], one gets a functorial morphism of complexes

(20) Tot(Γc(U,G(A))⊗ Γ(U,G(B))) −→ Γc(U,G(A⊗B))

and a functorial pairing

RΓc(U,A)⊗L RΓ(U,B) −→ RΓc(U,A⊗B).

In particular, if C is a bounded complex and Ĉ := Hom•(C,Gm[1]) its dual, using
the morphism Tot(C ⊗ Ĉ)→ Gm[1] from Section 2, we get functorial pairings

Tot(Γc(U,G(C))⊗ Γ(U,G(Ĉ))) −→ Γc(U,G(Gm[1]))

and

(21) RΓc(U,C)⊗L RΓ(U, Ĉ) −→ RΓc(U,Gm[1]).

Following Section 2, given a bounded complex C of finite flat commutative group
schemes over U , there is a natural topology on the abelian groups Hi

c(U,C ). This
topology is profinite via Lemma 2.5, and considering Hj(U, Ĉ ) as discrete torsion
groups, the pairings

Hi
c(U,C )×Hj(U, Ĉ ) −→ Hi+j+1

c (U,Gm)

are continuous by the same argument as [DH19, Lem. 4.4].

Proposition 4.1. — Let C be a bounded complex of finite flat commutative group
schemes over U . For all i ∈ Z, there is a perfect pairing between profinite and discrete
torsion groups

H2−i
c (U,C )×Hi(U, Ĉ ) −→ H3

c (U,Gm) ∼= Q/Z.
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Proof. — The isomorphism H3
c (U,Gm) ∼= Q/Z follows from [Mil06, Prop. II.2.6] and

[DH19, Prop. 2.1 (4)].
We now prove the proposition by induction on the length of the complex C .
– if C is concentrated in a given degree n, then the proposition is a direct conse-

quence of [DH19, Th. 1.1].
– assume that C := [Cr

fr−→ Cr+11 → · · · → Cs], with Ci in degree i, has length
s− r > 1. Let A := ker(fr), and let C := Cone(A[−r] j−→ C ). Then there is an exact
triangle

A[−r] j−−→ C
i−−→ C

p−−→ A[1− r].
We apply the functor •̂ to this exact triangle. Then, using (2), we get that the natural
triangle

Â[1− r] p̂−−→ Ĉ
î−−→ Ĉ

ĵ−−→ Â[−r]
is exact.

Since the pairing between a complex and its dual is functorial, we get from the
previous triangles a commutative diagram of topological groups with exact rows,
where the vertical maps comes from the pairings (21):

(22)
Hi−1

c (U,C ) //

��

Hi−r
c (U,A) //

��

Hi
c(U,C )

��

H3−i(U, Ĉ )∗ // H3+r−i(U,AD)∗ // H2−i(U, Ĉ )∗

// Hi
c(U,C ) //

��

Hi+1−r
c (U,A)

��

// H2−i(U, Ĉ )∗ // H2+r−i(U,AD)∗.

The second line remains exact as the dual of an exact sequence of discrete groups.
Note that we have a quasi-isomorphism ϕ : C → C ′, where C ′ := [Cr+1/ Im(fr)→

Cr+2 → · · · → Cs] has a smaller length than C , hence by induction, we can assume
that the natural maps Hr

c (U,C ′) → H2−r(U, Ĉ ′)∗ are isomorphisms. Since all the
Ci’s are finite flat group schemes, we see that the dual morphism ϕ̂ : Ĉ ′ → Ĉ is a
quasi-isomorphism, hence by functoriality of the pairings, we deduce that the maps
Hr

c (U,C )→ H2−r(U, Ĉ )∗ are isomorphisms too.
Hence in diagram (22), all vertical morphisms, except perhaps the central one, are

isomorphisms. Then the five lemma implies that the central morphism is an isomor-
phism.
By induction on the length of C , the proposition is proved. �

From now on, we denote by C = [T1 → T2] a complex of U -tori with generic
fiber C = [T1 → T2] and dual Ĉ (cf. Section 3). As a consequence of the previous
proposition, we can get the global duality results for the cohomology of the complex
C ⊗L Z/n:
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Proposition 4.2. — Let n be a positive integer (not necessarily prime to p). Let i be
an integer with −2 6 i 6 2.

(1) There is a perfect pairing of finite groups

Hi(U,C ⊗L Z/n)×H1−i
c (U, Ĉ ⊗L Z/n) −→ Q/Z.

If U 6= X, the groups H2(U,C ⊗L Z/n) and H−1
c (U, Ĉ ⊗L Z/n) are zero.

(2) There is a perfect pairing

Hi
c(U,C ⊗L Z/n)×H1−i(U, Ĉ ⊗L Z/n) −→ Q/Z

between the profinite group Hi
c(U,C⊗LZ/n) and the discrete group H1−i(U, Ĉ⊗LZ/n).

These groups are finite if i /∈{0, 1} or if p and n are coprime. The groups

H−2
c (U,C ⊗LZ/n) and H3(U, Ĉ ⊗LZ/n)

are zero if U 6= X.
Moreover, all the groups involved are zero if |i| > 2.

Proof. — Recall that there is a quasi-isomorphism of complexes ψ = C ′ → C ⊗LZ/n,
where C ′ := [nT1

ρ−→ nT2], with nT1 in degree −2, and that the dual morphism
ψ̂ : ̂C ⊗L Z/n→ Ĉ ′ = [T̂2/n

−ρ̂−→ T̂1/n] =
(
Ĉ ⊗L Z/n

)
[−1] (with T̂2/n in degree 0) is

also a quasi-isomorphism.
Since C ′ is a bounded complex of finite flat commutative group schemes, then

Proposition 4.1 implies that the pairings in the statement of the proposition are
perfect pairings of topological groups.

Let us now check the finiteness and vanishing results. Using the exact triangle (10),
we get an exact sequence:

Hi+2(U, n ker ρ) −→ Hi(U,C ⊗L Z/n) −→ Hi+1(U, TZ/n(C )).

As the finite U -group schemes TZ/n(C ) and n ker ρ are of multiplicative type,
Lemma 3.1 and Remark 3.2 imply that the groups Hr(U, TZ/n(C )) and Hr(U, nker ρ)

are finite for every integer r. Thus Hi(U,C ⊗L Z/n) is finite.
Similarly, using the exact triangle (10), the group Hi

c(U,C ⊗L Z/n) is finite for
i 6∈ {0, 1} (or if p and n are coprime) by Remark 3.2.

Recall that for a finite and flat group scheme N over U , we have Hr(U,N ) = 0

for r < 0 (obvious), for r > 4, and also for r = 3 if U 6= X: indeed, by loc. cit.,
Hr(U,N ) is dual to H3−r

c (U,N D); the latter is clearly zero if r > 4 and if U 6= X,
we also have H0

c (U,N D) = 0 thanks to the exact sequence

0 −→ H0
c (U,N D) −→ H0(U,N D) −→

⊕
v 6∈U

H0(Kv, N
D),

the last map being injective by the assumption U 6= X. The previous dévissages now
yield the vanishing assertions of the proposition. �
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Proposition 4.3. — Let i be an integer. Let n be a positive integer (not necessarily
prime to p).

(a) The groups nHi(U,C ) and Hi(U,C )/n are finite. The group Hi(U,C ) is tor-
sion if i > 2 (resp. if i > 1 and U 6= X). Besides Hi(U,C ) = 0 in the following cases:
i > 4; i 6 −2; i = 3 and U 6= X.

(b) The groups nHi
c(U, Ĉ ) and Hi

c(U, Ĉ )/n are finite. The group Hi
c(U, Ĉ ) is tor-

sion if i > 2, and it is zero if i > 4 or i 6 −2. Assume further U 6= X; then
Hi

c(U, Ĉ ) = 0 for i = −1.

Proof

(a) Using the exact triangle in Db(U):

C
·n−−−→ C −→ C ⊗L Z/n −→ C [1],

we get an exact sequence of abelian groups

(23) 0 −→ Hi(U,C )/n −→ Hi(U,C ⊗L Z/n) −→ nH
i+1(U, ,C ) −→ 0.

since Hi(U,C ⊗L Z/n) is finite (Proposition 4.2 (1)), the finiteness of the groups
nH

i+1(U,C ) and Hi(U,C )/n follows for all i.
To prove that Hi(U,C ) is torsion if i > 2 (resp. if U 6= X and i = 1), we can

restrict by dévissage (using exact sequence (14)) to the case when C = T is one
single torus. If U 6= X and i = 1, this follows from Lemma 3.1 (a), so assume i > 2.
We can also assume by a restriction-corestriction argument that T = Gm because
the torus T is split by some finite étale covering of U . Now H2(U,Gm) = BrU is
torsion because it injects into BrK; also H3(U,Gm) is torsion (it is even 0 if U 6= X)
and Hi(U,Gm) = 0 for i > 4 by [Mil06, Prop. II.2.1], the group scheme Gm being
smooth (hence étale and fppf cohomology coincide).

For every U -torus T , we have Hi(U,T ) = 0 for negative i (obvious), hence by
dévissage Hi(U,C ) = 0 for i < −1. Let i > 3; as seen before Hi(U,C ) is torsion and
nH

i(U,C ) is a quotient of Hi−1(U,C ⊗L Z/n) by exact sequence (23). The latter
is zero if i > 4, and also if i = 3 when U 6= X by the vanishing assertions in
Proposition 4.2 (1). Thus Hi(U,C ) is zero if i > 4, and also if i = 3 if we assume
further U 6= X.

(b) Similarly, the finiteness statements follow from the exact sequence

(24) 0 −→ Hi
c(U, Ĉ )/n −→ Hi

c(U, Ĉ ⊗L Z/n) −→ nH
i+1
c (U, Ĉ ) −→ 0

combined with Proposition 4.2 (1). Let i > 2. To prove that Hi
c(U, Ĉ ) is torsion we

can assume that Ĉ is the dual of a torus (via exact sequence (15)), then that Ĉ = Z

(by a restriction-corestriction argument). Using the exact sequence⊕
v 6∈U

Hi−1(Kv,Z) −→ Hi
c(U,Z) −→ Hi(U,Z),

it is sufficient to prove that Hi(U,Z) is torsion because the Galois cohomology groups
Hi−1(Kv,Z) are torsion for i− 1 > 0. This holds by [Mil06, Lem. II.2.10].
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Let T be a U -torus. For each integer i, there is an exact sequence

(25)
⊕
v 6∈U

Hi−1(Kv, T̂ ) −→ Hi
c(U, T̂ ) −→ Hi(U, T̂ ) −→

⊕
v 6∈U

Hi(Kv, T̂ ).

Therefore, Hi
c(U, T̂ ) = 0 for i < 0, hence Hi

c(U, Ĉ ) = 0 (by dévissage) for i < −1.
For i > 4, we have Hi

c(U, T̂ ) = 0 by Lemma 3.4 (d), and Hi
c(U, Ĉ ) = 0 by dévissage.

Assume now U 6= X. Then H0
c (U, T̂ ) = 0 by exact sequence (25) applied to i = 0:

indeed, the map H0(U, T̂ )→
⊕

v 6∈U H
0(Kv, T̂ ) is injective (choose a closed point v of

XrU ; then the restriction maps H0(U, T̂ )→ H0(K, T̂ ) and H0(K, T̂ )→ H0(Kv, T̂ )

are injective). Therefore, H−1
c (U, Ĉ ) = 0 by dévissage. �

Proposition 4.4. — Let i be an integer. Let n be a positive integer (not necessarily
prime to p).

(a) The group nH
i(U, Ĉ ) is finite if i 6∈ {1, 2}. The group Hi(U, Ĉ )/n is finite if

i 6= 1. The group Hi(U, Ĉ ) is torsion if i > 1, and it is zero if i > 4 or i 6 −2. If we
assume further U 6= X, then H3(U, Ĉ ) = 0.

(b) The group nH
i
c(U,C ) is finite if i 6= 1. The group Hi

c(U,C )/n is finite if
i 6∈ {0, 1}. The group Hi

c(U,C ) is torsion for i > 2, and it is zero if i > 4 or i 6 −2

(resp. i = −1 if U 6= X).

Proof

(a) The exact sequence

(26) 0 −→ Hi(U, Ĉ )/n −→ Hi(U, Ĉ ⊗L Z/n) −→ nH
i+1(U, Ĉ ) −→ 0

and Proposition 4.2 (2) yield the finiteness of nH
i(U, Ĉ ) for i 6∈ {1, 2} and of

Hi(U, Ĉ )/n for i 6∈ {0, 1}. Besides the abelian group H0(U, Ĉ ) is of finite type by
Proposition 3.6. In particular H0(U, Ĉ )/n is finite.

Let i > 1. To prove that Hi(U, Ĉ ) is torsion, we can assume (by dévissage) that
Ĉ = T̂ , where T is one single torus, then that Ĉ = Z (by restriction-corestriction);
then the result holds by [Mil06, Lem. II.2.10]. For i 6 −2 or i > 4 (resp. i = 3

if U 6= X), the group Hi(U, Ĉ ) is zero by dévissage (using Lemma 3.4 (d) for the
latter).

(b) There is an exact sequence

(27) 0 −→ Hi
c(U,C )/n −→ Hi

c(U,C ⊗L Z/n) −→ nH
i+1
c (U,C ) −→ 0

By Proposition 4.2 (2), the group nH
i
c(U,C ) is finite for i 6∈ {1, 2} and the group

Hi
c(U,C )/n is finite for i 6∈ {0, 1}. To prove that the groups Hi

c(U,C ) are torsion
for i > 2, we can assume as usual that C = T is a torus. Then we apply Proposi-
tion 4.3 (a) and the exact sequence⊕

v 6∈U
Hi−1(Kv, T ) −→ Hi

c(U,T ) −→ Hi(U,T ).

Besides H2
c (U,T ) is finite by Lemma 3.4 (b), so H2

c (U,C ) is also of cofinite type
by dévissage because we already know that H3

c (U,T1) is torsion of cofinite type.
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Obviously we have Hi
c(U,T ) = 0 for every negative i, hence Hi

c(U,C ) = 0 by
dévissage if i 6 −2. Assume i > 4. then Hi

c(U,C ) = Hi(U,C ) (apply the exact
sequence (3) and use the fact that Kv is of strict cohomological dimension 2), so
Hi

c(U,C ) = 0 by Proposition 4.3 (a). If we assume further U 6= X, then H0
c (U,T ) = 0

(same argument as in Proposition 4.3 (b), so H−1
c (U,C ) = 0 by dévissage. �

Remark 4.5. — Using Remark 3.2, it is easy to see that the finiteness assertions
of Proposition 4.4 hold for every i if we assume further that p does not divide n,
but this is no longer true in general if U 6= X. Indeed the group H1(U,Z/p) and
its dual H2

c (U, µp) can be infinite (cf. [Mil06, Lem. III.8.9]). Since H1(U,Z) = 0 and
pH

2
c (U,Gm) is finite, this implies that pH2(U,Z) and H1

c (U,Gm)/p are infinite, which
gives examples of pHi(U, Ĉ ) infinite for i = 1, 2 and of Hi

c(U,C )/p infinite for i = 0, 1.
The complex C = [Gm

·p−→ Gm] is an example with pH
1
c (U,C ) and H1(U, Ĉ )/p

infinite (indeed, C is quasi-isomorphic to µp[1] and Ĉ is quasi-isomorphic to Z/p).

Remark 4.6. — For every integer r and every positive integer n, the groups
Hr(U,C )/n and Hr

c (U, Ĉ )/n are finite by Proposition 4.3 (b), so for each prime
number ` (including ` = p), the `-adic completions

Hr(U,C )(`) := lim←−
m

Hr(U,C )/`m; Hr
c (U, Ĉ )(`) := lim←−

m

Hr
c (U, Ĉ )/`m

are profinite. Exact sequence (27) shows that Hr
c (U,C )/n is a closed subgroup of the

profinite group Hr
c (U,C ⊗L Z/n), hence Hr

c (U,C )/n is profinite and so is the `-adic
completion Hr

c (U,C )(`).

The map C ⊗L Ĉ → Gm[1] induces for every integer r pairings

Hr(U,C )×H2−r
c (U, Ĉ ) −→ H3

c (U,Gm) ∼= Q/Z.(28)

Hr
c (U,C )×H2−r(U, Ĉ ) −→ H3

c (U,Gm) ∼= Q/Z.(29)

We now prove a key lemma.

Lemma 4.7. — Let ` be a prime number (possibly equal to p). Let i be an integer.
(a) The maps

ψ : Hi+1(U,C ){`} −→ (H1−i
c (U, Ĉ )(`))∗

ψ′ : H1−i
c (U, Ĉ ){`} −→ (Hi+1(U,C )(`))∗

induced by the pairing (28) are surjective and have divisible kernel. Besides ψ′ is an
isomorphism if i = −2 and ψ is an isomorphism if we have both i = 1 and U 6= X.

(b) The map
ϕ : Hi+1(U, Ĉ ){`} −→ (H1−i

c (U,C )(`))∗

induced by the pairing (29) is surjective, and has divisible kernel (resp. is an isomor-
phism if we assume both i = 1 and U = X). Assume i 6∈ {−1, 0}. Then the map

ϕ′ : H1−i
c (U,C ){`} −→ (Hi+1(U, Ĉ )(`))∗

is surjective and has divisible kernel (resp. is an isomorphism if i = −2).
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Observe that for U 6= X, the groups involved can be non zero only if −2 6 i 6 1.

Proof

(a) For each positive integer m, there is an exact commutative diagram of finite
abelian groups,

(30)

0 // Hi(U,C )/`m //

��

Hi(U,C ⊗L Z/`m) //

��

`mH
i+1(U,C ) //

ψm
��

0

0 // (`mH
2−i
c (U, Ĉ ))∗ // H1−i

c (U, Ĉ ⊗L Z/`m)∗ // (H1−i
c (U, Ĉ )/`m)∗ // 0.

By Proposition 4.2 (1), the middle vertical map is an isomorphism. Taking direct limit
over m and applying the snake lemma, we get that ψ = lim−→m

ψm is surjective and
Kerψ is a quotient of (T`H

2−i
c (U, Ĉ ))∗. Since each `mH

2−i
c (U, Ĉ ) is finite, the `-adic

Tate module T`H2−i
c (U, Ĉ ) is profinite and torsion-free, which implies that the dual

(T`H
2−i
c (U, Ĉ ))∗ is divisible. For U 6= X and i = 1, the group H1

c (U, Ĉ ) is of finite
type by Proposition 3.6 (a), so its `-adic Tate-module is zero and ψ has trivial kernel.

The argument for ψ′ is similar, using the exact commutative diagram

(31)

0 // H−ic (U, Ĉ )/`m //

��

H−ic (U, Ĉ ⊗L Z/`m) //

��

`mH
1−i
c (U, Ĉ ) //

ψ′m
��

0

0 // (`mH
2+i(U,C ))∗ // H2+i(U,C ⊗L Z/`m)∗ // (H1+i(U,C )/`m)∗ // 0.

Besides, for i = −2, the Tate module of H2+i(U,C) = H0(U,C ) is trivial because
H0(U,C ) is a finitely generated abelian group (Proposition 3.6 (b)), which gives
that ψ′ has trivial kernel.

(b) There is an exact commutative diagram of discrete abelian groups (observe
that the second line is obtained by dualizing an exact sequence of profinite groups):

(32)

0 // Hi(U, Ĉ )/`m //

��

Hi(U, Ĉ ⊗L Z/`m) //

��

`mH
i+1(U, Ĉ ) //

ϕm
��

0

0 // (`mH
2−i
c (U,C ))∗ // H1−i

c (U,C ⊗L Z/`m)∗ // (H1−i
c (U,C )/`m)∗ // 0.

Since the middle vertical is an isomorphism by Proposition 4.2 (2) and `m(H2−i
c (U,C ))

is profinite for each m (hence H2−i
c (U,C ) has profinite `-adic Tate module), the same

argument as in (a) yields that ϕ is surjective with divisible kernel. If U = X and
i = 1, then H2−i

c (U,C ) = H1(X,C ) is of finite type by Proposition 3.6 (b), so it has
trivial `-adic Tate module and ϕ is an isomorphism.

The argument for ϕ′ is similar, except that we use the exact commutative diagram

(33)

0 // H−ic (U,C )/`m //

��

H−ic (U,C ⊗L Z/`m) //

��

`mH
1−i
c (U,C ) //

ϕ′m
��

0

0 // (`mH
i+2(U, Ĉ ))∗ // Hi+1(U, Ĉ ⊗L Z/`m)∗ // (Hi+1(U, Ĉ )/`m)∗ // 0.
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only for i 6∈ {−1, 0} (for i ∈ {−1, 0} and U 6= X, the diagram would consist of profinite
but possibly infinite groups if ` = p, so direct limits would not necessarily behave
well; in particular, `-adic completions involved would not necessarily be profinite).
The same argument as in (a) shows that ϕ′ is surjective with divisible kernel, and
this kernel is trivial for i = −2 because the finitely generated abelian group H0(U, Ĉ )

(cf. Proposition 3.6 (a)) has trivial `-adic Tate module. �

Remark 4.8. — For abelian groups A, B, assertions like “A{`} → (B(`))∗ is surjective
with divisible kernel” can be rephrased as follows: the pairing A{`} × B(`) → Q/Z

has trivial right kernel and divisible left kernel.

The following theorem extends the function field case of [Mil06, Th. II.4.6]. (which
corresponds to C = T or C = T [1], where T is a torus).

Theorem 4.9
(a) The pairing (28) induces a perfect duality between the discrete torsion group

H3
c (U, Ĉ ) and the finite-type Ẑ-module H−1(U,C )∧, resp. between the discrete torsion

group H2
c (U, Ĉ ) and the finite-type Ẑ-module H0(U,C )∧.

(b) Assume U 6= X. The pairing (28) induces a perfect duality between the discrete
torsion group H1(U,C ) and the finite-type Ẑ-module H1

c (U, Ĉ )∧, resp. between the
discrete torsion group H2(U,C ) and the finite-type Ẑ-module H0

c (U, Ĉ )∧.

Proof
(a) Let ` be a prime number. Then the map ψ′ of Lemma 4.7 (a) is an isomorphism

for i = −2, which yields the first point (recall that H3
c (U, Ĉ ) and H2

c (U, Ĉ ) are torsion
of cofinite type by Proposition 4.3; alsoH−1(U,C ) andH0(U,C ) are finitely generated
by Proposition 3.6).

In the case U = X, the second point is a duality betweenH2(X, Ĉ ) andH0(X,C)∧,
which follows from Lemma 4.7 (b) in the case i = 1. Now assume U 6= X and let T

be a U -torus. By the first point applied to C = T [1], the group H3
c (U, T̂ ) is dual to

H0(U,T )∧. By Lemma 4.7 (a) with i = −1 and C = T [1], the finite group H2
c (U, T̂ )

(cf. Lemma 3.4 (c) is dual to the finite group H1(U, T ) (cf. Lemma 3.1 (a): indeed,
a finite group coincides with its `-adic completion and doesn’t contain a non trivial
divisible subgroup. There is a commutative diagram with exact lines (observe that
the second line is obtained by applying the `-completion functor to an exact sequence
of finitely generated group, then dualizing an exact sequence of profinite groups):

H2
c (U, T̂2){`} //

f1
��

H2
c (U, T̂2){`} //

f2
��

H2
c (U, Ĉ ){`} //

h
��

H3
c (U, T̂2){`} //

g1
��

H3
c (U, T̂1){`}

g2
��

(H1(U,T2)
(`))∗ // (H1(U,T1)

(`))∗ // (H0(U,C )(`))∗ // (H0(U,T2)
(`))∗ // (H0(U,T1)

(`))∗.

Now h is an isomorphism by the five-lemma, whence the result.
(b) Consider diagram (30) for i = 0. By (a), the left vertical map is an isomorphism

and by Proposition 4.2 (1), the middle vertical map is an isomorphism, hence ψm is an
isomorphism from `mH

1(U,C ) to (H1
c (U, Ĉ )/`m)∗. Taking direct limit over m, then
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direct sum over all prime `, yields the duality between the torsion group of cofinite
type (cf. Proposition 4.3) H1(U,C ) and the finite type Ẑ-module (cf. Proposition 3.6)
H1

c (U, Ĉ )∧.
Lemma 4.7 (a) for i = 1 yields that for U 6= X, the map ψ an isomorphism,

which immediately gives the duality between the torsion group of finite type
(cf. Proposition 4.3) H2(U,C ) and the finite type Ẑ-module (cf. Proposition 3.6)
H0

c (U, Ĉ )∧. �

Remark 4.10. — In the case U = X, the first assertion of Theorem 4.9 (b) should be
replaced by a duality between H1(X, Ĉ ) and H1(X,C )∧ (see Theorem 4.11 (b) below
in the case U = X). The second assertion (duality betweenH2(X,C ) andH0(X, Ĉ )∧)
actually still holds, cf. Theorem 4.11 (a).

The following duality theorem has the same flavor as [Mil06, Th II.4.6 (b)] (but
one should be careful that in the number field case, the case r = 3 of the latter does
not hold in general, see also Remark 4.18).

Theorem 4.11
(a) The pairing (29) induces a perfect duality between the discrete torsion group

H3
c (U,C ) and the finite-type Ẑ-module H−1(U, Ĉ )∧, resp. between the discrete torsion

group H2
c (U,C ) and the finite-type Ẑ-module H0(U, Ĉ )∧.

(b) The pairing (29) induces a perfect duality between the discrete torsion group
H1(U, Ĉ ) and the profinite group H1

c (U,C )∧, resp. between the discrete torsion group
H2(U, Ĉ ) and the profinite group H0

c (U,C )∧.

Proof

(a) Let ` be any prime number. The map ϕ′ of Lemma 4.7 (b) is an isomorphism
for i = −2, which yields the first point (Proposition 4.2 (2) yields that H3

c (U,C ) and
H2

c (U,C ) are torsion groups of cofinite type; Proposition 3.6 gives that H−1(U, Ĉ )

and H0(U, Ĉ ) are finitely generated).
There is a commutative diagram with exact lines

H2
c (U,T1){`} //

f1
��

H2
c (U,T2){`} //

f2
��

H2
c (U,C ){`} //

h
��

H3
c (U,T1){`} //

g1
��

H3
c (U,T2){`}

g2
��

(H1(U, T̂1)
(`))∗ // (H1(U, T̂2)

(`))∗ // (H0(U, Ĉ )(`))∗ // (H0(U, T̂1)
(`))∗ // (H0(U, T̂2)

(`))∗.

The maps g1 and g2 are isomorphisms by the first point applied to C = T1,
C = T2. The maps f1 and f2 are isomorphisms by Lemma 4.7 (b) applied to the same
complexes (map ϕ in the case i = −1): indeed, for a U -torus T , the groups H1(U, T̂ )

and H2
c (U,T ) are finite (Lemma 3.4 (a) and (b), hence they coincide with their `-adic

completions and do not contain a non trivial divisible subgroup. Therefore, h is an
isomorphism by the five-lemma, whence the second point.

(b) Consider diagram (32) for i = 0. By (a), the left vertical map is an isomorphism
and the middle vertical map is an isomorphism by Proposition 4.2 (1), hence ϕm is an
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isomorphism from `mH
1(U, Ĉ ) to (H1

c (U,C )/`m)∗. Taking direct limit over m, then
direct sum over all prime `, yields the duality between H1(U, Ĉ ) (which is torsion by
Proposition 4.4, but not necessarily of cofinite type, cf. Remark 4.5) and H1

c (U,C )∧.
Now consider diagram (32) for i = 1. By the previous duality, the left vertical map

induces an isomorphism betweenH1(U, Ĉ )/`m and (`m(H1
c (U,C )∧))∗. SinceH1

c (U,C )

is in the class E (that is: it is the product of a finite type group by a profinite group)
by Proposition 3.13, the `m-torsion of H1

c (U,C ) and of H1
c (U,C )∧ coincide, hence the

left vertical map is actually an isomorphism and the right vertical map ψm is an iso-
morphism as well (the middle vertical map is an isomorphism by Proposition 4.2 (2)).
Taking direct limit and direct sum over all prime `, we get the duality between the
torsion group (cf. Proposition 4.4) H2(U, Ĉ ) and the profinite group H0

c (U,C )∧. �

Proposition 4.12. — The pairing (28) for r = 1 induces a perfect pairing of finite
groups

(34) D1(U,C )×D1(U, Ĉ ) −→ Q/Z.

Proof. — Fix a prime number `. There is a commutative diagram:

(35)

0 // D1(U,C ){`} // H1(U,C ){`} //

ψ
��

⊕
v 6∈U H

1(Kv, C){`}

β
��

0 // (D1(U, Ĉ )(`))∗ // (H1
c (U, Ĉ )(`))∗ // (

⊕
v 6∈U H

0(Kv, Ĉ)(`))∗.

The first line is exact by definition of D1(U,C ). The sequence⊕
v 6∈U

H0(Kv, Ĉ) −→ H1
c (U, Ĉ ) −→ D1(U, Ĉ ) −→ 0

is also exact by definition of D1(U, Ĉ ). Using Lemma 3.12 and the fact that the `-adic
completion functor (`) commutes with finite direct sums, the sequence⊕

v 6∈U
H0(Kv, Ĉ)(`) −→ H1

c (U, Ĉ )(`) −→ D1(U, Ĉ )(`) −→ 0

of profinite groups is exact as well, and its dual sequence (which is the second line of
the diagram) remains exact.

The commutative diagram (35) defines a map

θ : D1(U,C ){`} −→ (D1(U, Ĉ )(`))∗.

We observe that by [Dem11b, Th. 3.1] (which is the local duality theorem), the map β
is an isomorphism, and we also know by Theorem 4.9 that ψ is an isomorphism. By
diagram chasing θ is an isomorphism. Since this holds for every prime ` (including
` = p), the proposition is proved, the finiteness of D1(U,C ) and D1(U, Ĉ ) being
known by Proposition 3.6 (c). �

Remark 4.13. — Of course, the pairing (34) can also be defined via the pairing (29).

Lemma 4.14. — Assume U 6= X. Then D2(U,C ) and D0(U, Ĉ ) are finite.
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Proof. — Using the exact triangle (12) and the fact that coker ρ := T is a torus, we
know that D2(U,T ) is finite and is sufficient to show that H3(U, ker ρ) is finite to get
the finiteness of D2(U,C ). But ker ρ is a group of multiplicative type, so there is an
exact sequence

0 −→ T1 −→ ker ρ −→ F −→ 0,

where F is a finite group of multiplicative type and T1 is a torus. Since H3(U,T1) = 0

by Proposition 4.3 (a) and H3(U,F ) = 0 (cf. Remark 3.2; it is dual to H0
c (U, F̂ ),

which is zero because U 6= X), the group H3(U, ker ρ) is actually zero.
The group D0(U, k̂er ρ) is trivial thanks to the assumption U 6= X. Thus the exact

triangle (13) shows that D0(U, Ĉ ) is finite because so is H1(U, T̂ ) (Lemma 3.4 (a)).
�

Lemma 4.15. — Assume U 6= X. Then the groups D0(U,C ) and D2(U, Ĉ ) are finite.

Proof. — For a U -torus T , we have D0(U,T ) = 0 because U 6= X. For a U -group of
multiplicative type M , we also know (Remark 3.2) that H1(U,M ) is finite, whence
the finiteness of D0(U,C ) via the exact triangle (12).

Exact triangle (13) and the vanishing ofH3(U, T̂ ) for a U -torus T (Lemma 3.4 (d))
imply that D2(U, T̂ ) injects into D2(U, M̂ ), so it only remains to show that the latter
is finite. We show that H2

c (U, M̂ ) is finite. By dévissage it is sufficient to prove this
when M is a finite group of multiplicative type and when M is a torus. The first case
follows from Lemma 3.1 (b) and the second one from Lemma 3.4 (c). �

Proposition 4.16. — The pairing (28) for r = 2 induces a perfect pairing of finite
groups

(36) D2(U,C )×D0(U, Ĉ ) −→ Q/Z.

Proof. — The argument is exactly the same as in the proof of Proposition 4.12, using
now the commutative diagram with exact lines:

(37)

0 // D2(U,C ){`} // H2(U,C ){`} //

��

⊕
v 6∈U H

2(Kv, C){`}

��

0 // (D0(U, Ĉ )(`))∗ // (H0
c (U, Ĉ )(`))∗ // (

⊕
v 6∈U H

−1(Kv, Ĉ)(`))∗.

Indeed the right vertical map is an isomorphism by [Dem11b, Th. 3.1] and the mid-
dle vertical map is an isomorphism as well by Theorem 4.9 (b). It remains to apply
Lemma 4.14. �

Proposition 4.17. — The pairing (29) for r = 0 induces a perfect pairing of finite
groups

(38) D0(U,C )×D2(U, Ĉ ) −→ Q/Z.
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Proof. — Again the argument is the same as in Proposition 4.12, using this time the
commutative diagram with exact lines:

(39)

0 // D2(U, Ĉ){`} // H2(U, Ĉ){`} //

��

⊕
v 6∈U H

2(Kv, Ĉ){`}

��

0 // (D0(U,C )(`))∗ // (H0
c (U,C )(`))∗ // (

⊕
v 6∈U H

−1(Kv, C)(`))∗.

The right vertical map is an isomorphism by [Dem11b, Th. 3.1] (recall that by
Proposition 3.13, the groups H−1(Kv, C)∧ and H−1(Kv, C)∧ coincide), and the mid-
dle vertical map is an isomorphism as well by Theorem 4.11 (b); Lemma 4.15 then
yields the result. �

Remark 4.18. — Again there are analogous results over a number field:

– Proposition 4.2 (1) holds except that for n even, the vanishing statements for
i > 2 do not hold any more if ΩR 6= ∅. In Proposition 4.2 (2), all groups involved are
finite, but the vanishing statements for i 6 −2 are in general false if n is even and
ΩR 6= ∅.

– In Proposition 4.3 and Proposition 4.4, the vanishing statements must be repla-
ced by finiteness statements if ΩR 6= ∅ for the following groups: Hi(U,C ) for i > 4,
Hi

c(U, Ĉ ) for i 6 −2, Hi(U, Ĉ ) for i > 4, Hi
c(U,C ) for i 6 −2. The groups H3(U,C ),

H−1
c (U, Ĉ ), andH−1

c (U,C) are still finite if U 6= X (resp. zero if U 6= X and ΩR = ∅).
Also, the group H1(U,C ) is finite even if U = X and the finiteness assertions in
Proposition 4.4 (a) hold without any condition on i. Finally, the vanishing of H3(U, Ĉ )

does not hold any more (see Remark 3.15 about H3(U, T̂ )) even for ΩR = ∅.
– Lemma 4.7 is unchanged, except that the restriction U 6= X can be removed

in (a) for i = 1.
– Theorem 4.9 is unchanged (which gives a more precise statement than [Dem11b,

Th. 4.3]) except that the assumption U 6= X can be removed in (b). Theorem 4.11 (a)
is still true, as is the first assertion of Theorem 4.11 (b), but not the second assertion
of Theorem 4.11 (b): the pairing H2(U, Ĉ ){`} × H0

c (U,C )(`) has trivial right kernel
and divisible left kernel, but for triviality of the left kernel we need ` invertible on U
and Leopoldt’s conjecture.

– Proposition 4.12 is unchanged (this removes the condition ` ∈ O∗U in [Dem11b,
Cor. 4.7]). Lemma 4.14 also holds (in the proof, the groups H3(U,T1) and H0

c (U, F̂ )

might be only finite if ΩR 6= ∅, but this does not affect the result), as does Proposi-
tion 4.16 (the assumption ker ρ finite made in [Dem11b, Lem. 5.13] is not necessary).
The first part of Lemma 4.15 still holds, but not its second part because in gen-
eral the `-primary part of H3(U, T̂ ) is infinite if ` is not invertible on U (and even
for ` ∈ O∗U , the finiteness of H3(U, T̂ ){`} relies on Leopoldt’s conjecture). Similarly
Proposition 4.17 does not hold any more in general, we only get that the pairing (38)
has trivial left kernel and divisible right kernel (see also [Dem11b, §5.4] for a variant).
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5. Poitou-Tate exact sequences

Let C = [T1 → T2] be a complex of K-tori with dual Ĉ = [T̂2 → T̂1]. We can
choose a non empty Zariski open subset U0 of X such that C extends to a complex
C = [T1

ρ−→ T2] of U0-tori with dual Ĉ . For every integer i and every K-group
scheme (or bounded complex of K-group schemes) M (e.g. M = T , M = T̂ ), define

Xi(M) := Ker[Hi(K,M) −→
∏
v∈X(1)H

i(Kv,M)].

Lemma 5.1. — There exists a non empty Zariski open subset U1 ⊂ U0 such that for
every Zariski open subset V ⊂ U1:

(a) For i ∈ {1, 2}, the restriction map rU1,V : Hi(U1,C ) → Hi(V,C ) induces
isomorphisms

Di(U1,C ) ∼= Di(V,C ) ∼= Xi(C).

(b) For r ∈ {0, 1}, the canonical map Hr(V, Ĉ ) → Hr(K, Ĉ ) is injective and
identifies Dr(V, Ĉ ) with Xr(Ĉ).

Proof. — We can deal with the two properties (a) and (b) separately (up to taking
the intersections of the various provided U1).

(a) Let us start with arbitrary non empty Zariski open subsets V ⊂ U ⊂ U0.
Take i ∈ {1, 2}. For all v ∈ U , we have Hi(Ov,C ) = 0 by Lemma 3.14, which
implies that the image of Di(U,C ) by rU,V is contained in Di(V,C ). The induced
map Di(U,C ) → Di(V,C ) is surjective thanks to the compatibility of the covari-
ant map Hi

c(V,C ) → Hi
c(U,C ) with rU,V ([DH19, Prop. 2.1 (3)]). Since all Di(U,C )

are finite by Proposition 3.6 (c) and Lemma 4.14, the decreasing sequence of pos-
itive integers #Di(U,C ) (when U becomes smaller and smaller) must stabilize for
some U = U1. We get an isomorphism from Di(U1,C ) to Di(V,C ) for all V ⊂ U1.
Since Hi(K,C) is the direct limit over V of the Hi(V,C ), we get an injective map
u : Di(U1,C )→ Hi(K,C). As Di(U1,C ) is the same as Di(V,C ) for every V ⊂ U1,
the image of u is contained in Xi(C) (because its restriction to Hi(Kv, C) is zero for
all v 6∈ V and V can be taken arbitrarily small). Conversely, every element of Xi(C)

can be lifted to an a∈Hi(V,C ) for some V , and by definition a∈Di(V,C )=Di(U1,C ),
so the image of u contains Xi(C).

(b) Let V ⊂ U0 be an arbitrary non empty Zariski open subset. Let r ∈ {0, 1}.
The injectivity of Hr(V, Ĉ ) → Hr(K, Ĉ) has been proved in Proposition 3.6 (a).
Identifying now Dr(V, Ĉ ) with a subgroup of Hr(K, Ĉ), we get (again using the maps
Hr(V, Ĉ ) → Hr(U, Ĉ ) for V ⊂ U ⊂ U0) a decreasing sequence of finite subgroups
(when V becomes smaller and smaller), which stabilizes for some U1. Since Dr(U1, Ĉ )

is also Dr(V, Ĉ ) for every V ⊂ U1, we have Dr(U1, Ĉ ) ⊂Xr(Ĉ). On the other hand,
every element of Xr(Ĉ) comes from Hr(V, Ĉ ) for some V ⊂ U1, and it is then
automatically in Dr(V, Ĉ ) = Dr(U1, Ĉ ) because it is everywhere locally trivial. �
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Theorem 5.2. — There are perfect pairing of finite groups

X1(C)×X1(Ĉ) −→ Q/Z.

X2(C)×X0(Ĉ) −→ Q/Z.

Proof. — This follows immediately from Lemma 5.1 and Proposition 4.12 (resp. Pro-
position 4.16) applied to U1. �

Lemma 5.3. — There exists a non empty Zariski open subset U1 of U0 such that for
every non empty Zariski open subset V of U1:

– the restriction map H0(V,C )→ H0(K,C) is injective.
– For all non empty Zariski open subsets W ⊂ V , the canonical map

jW,V : H2
c (W, Ĉ ) −→ H2

c (V, Ĉ )

is surjective and the image of D2(V, Ĉ ) by the restriction map

rV,W : H2(V, Ĉ ) −→ H2(W, Ĉ )

is a subgroup of D2(W, Ĉ ).

Proof. — Let U ⊂ U0 be a non empty Zariski open subset. By the exact triangle (12),
there is a commutative diagram with exact lines

0 // H1(U,M ) //

��

H0(U,C ) //

��

H0(U,T0)

��

0 // H1(K,M) // H0(K,C) // H0(K,T0),

where M is a U -group of multiplicative type with generic fiberM and T0 is a U -torus.
Since the right vertical map is clearly injective, it is sufficient to prove the injectivity
of the left vertical map for U small enough. We can write M as an extension

0 −→ T −→M −→ F −→ 0

of a finite U -group of multiplicative type F by a U -torus T . This yields a commuta-
tive diagram with exact lines

0 // H0(U,F ) //

��

H1(U,T ) //

��

H1(U,M ) //

��

H1(U,F )

0 // H0(K,F ) // H1(K,T ) // H1(K,M) // H1(K,F ).

Since F is finite (hence proper) over U , the left vertical map is an isomorphism and the
right vertical map is injective. It is therefore sufficient to prove that for a U -torus T ,
the restriction map H1(U,T ) → H1(K,T ) is injective for U sufficiently small.
Set NU = ker[H1(U,T ) → H1(K,T )]. For every Zariski open subset V → U , the
restriction map H1(U,T ) → H1(V,T ) induces a homomorphism iU,V : NU→NV .
By Lemma 2.2, this homomorphism is surjective. Lemma 3.1 implies that the
group NV is finite, and the decreasing sequence of positive integers (#NV )V⊂U0

must
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stabilize for some V = U1 ⊂ U0. Then the maps iU1,V for V ⊂ U1 are isomorphisms,
which implies (passing to the limit) that the restriction map NU1 → H1(K,T ) is
injective. By definition of NU1 , this means that NU1 = 0, hence NV = 0 for every
V ⊂ U1. This gives the first point.

For W ⊂ V ⊂ U1, the restriction map H0(V,C ) → H0(W,C ) is injective because
so is its composition with H0(W,C ) → H0(K,C ). As H0(V,C ) and H0(W,C ) are
finitely generated by Proposition 3.6 (b), the induced map H0(V,C )∧ → H0(W,C )∧
is still injective. By Theorem 4.9, the dual map H2

c (W, Ĉ ) → H2
c (V, Ĉ ) is sur-

jective. Now the compatibility of rV,W with jW,V ([DH19, Prop. 2.1 (c)] gives that
rV,W (D2(V, Ĉ )) ⊂ D2(W, Ĉ ). �

Theorem 5.4. — There is a perfect pairing of finite groups

X0(C)×X2(Ĉ) −→ Q/Z.

Proof. — As in the proof of Lemma 5.1, Lemma 5.3 and Lemma 4.15 imply that for
a sufficiently small Zariski open subset U ⊂ U0, we have X0(C ) = D0(U,C ) and
X2(Ĉ ) ∼= D2(U, Ĉ ). Now apply Proposition 4.17. �

For each integer i, denote by
∏′
v∈X(1) Hi(Kv, C) (resp.

∏′
v∈X(1) Hi(Kv, C)∧) the

restricted product of the Hi(Kv, C) (resp. of the Hi(Kv, C)∧) with respect to the
Hi

nr(Kv, C) (resp. to the image of H1(Ov,C ) in Hi(Kv, C)∧). The same notation
stands for Ĉ. The groups

∏′
v∈X(1) Hi(Kv, C) and

∏′
v∈X(1) Hi(Kv, Ĉ) are equipped

with their restricted product topology (associated to the topology previously defined
on theHi(Kv, C) andHi(Kv, Ĉ)). All groupsHi(K,C) (resp. Hi(K, Ĉ)) are equipped
with the discrete topology.

Lemma 5.5. — Let i be an integer. Then the image of Hi(K,C) in
∏′
v∈X(1) Hi(Kv, C)

is discrete for the subspace topology. The same holds if C is replaced by Ĉ.

Proof. — As the local fieldsKv are of strict cohomological dimension 2, the statement
is obvious except for −1 6 i 6 2. Fix a Zariski open subset U ⊂ U0 with U 6= X. All
groups Hi(Kv, Ĉ) are discrete, so the subgroup

E :=
∏
v 6∈U{0} ×

∏
v∈UH

i
nr(Kv, Ĉ)

is open in
∏′
v∈X(1) Hi(Kv, Ĉ). Let I be the image of Hi(K, Ĉ) in

∏′
v∈X(1) Hi(Kv, Ĉ).

Every element of H1(K, Ĉ) comes from H1(V, Ĉ ) for some V ⊂ U , hence by
Lemma 2.2, there is a surjection Di(U, Ĉ ) → I ∩ E. Since all groups Di(U, Ĉ ) are
finite by Proposition 3.6 (c), Lemma 4.14 and Lemma 4.15, this implies that I ∩E is
finite, hence I is discrete.

The same argument shows that the image J of Hi(K,C) in
∏′
v∈X(1) Hi(Kv, C) is

discrete for i > 1. For i ∈ {−1, 0}, this is an immediate consequence of Lemma 3.8
(again combined with Lemma 2.2). �

J.É.P. — M., 2020, tome 7



864 C. Demarche & D. Harari

Lemma 5.6. — Let U ⊂ U0 be a non empty Zariski open subset with U 6= X.
(a) There are exact sequences

H0(U,C ) −→
∏
v 6∈UH

0(Kv, C)×
∏
v∈UH

0
nr(Kv, C) −→ H1(K, Ĉ)∗.

0 −→ H−1(U,C ) −→
∏
v 6∈UH

−1(Kv, C)×
∏
v∈UH

−1
nr (Kv, C) −→ H2(K, Ĉ)∗.

(b) There are exact sequences
H2(U, Ĉ ) −→

∏
v 6∈UH

2(Kv, Ĉ)×
∏
v∈UH

2
nr(Kv, Ĉ) −→ H−1(K,C)∗ −→ 0.

H1(U, Ĉ ) −→
∏
v 6∈UH

1(Kv, Ĉ)×
∏
v∈UH

1
nr(Kv, Ĉ) −→ H0(K,C)∗ −→ D2(U, Ĉ).

Proof

(a) Let V ⊂ U be a non empty Zariski open subset. Let i ∈ {−1, 0}. By Lemma 2.2,
we have an exact sequence

Hi(U,C ) −→
∏
v 6∈UH

i(Kv, C)×
∏
v∈UrVH

i
nr(Kv, C) −→ Hi+1

c (V,C ).

By Proposition 3.13, the map Hi+1
c (V,C ) → Hi+1

c (V,C )∧ is injective, thus by
Theorem 4.11 we get an exact sequence

Hi(U,C ) −→
∏
v 6∈UH

i(Kv, C)×
∏
v∈UrVH

i
nr(Kv, C) −→ H1−i(V, Ĉ )∗,

where H1−i(V, Ĉ ) is a discrete torsion group. Besides, the kernel of the first map is a
subgroup of Di(U,C ), hence it is finite for i = 0 by Lemma 4.15. This kernel is also
obviously zero for i = −1 as soon as V 6= U . This implies that the inverse limit of this
exact sequence (when V runs over all non empty Zariski open subsets of U) remains
exact, which yields the result.

(b) We apply again Lemma 2.2 and observe that for i ∈ {1, 2}:
– We have Hi+1

c (V, Ĉ ) ' (H1−i(V,C )∧)∗ ' H1−i(V,C )∗ by Theorem 4.9,
because the discrete finitely generated (cf. Proposition 3.6 (b)) groupH1−i(V,C )

and its completion have same dual.
– The groups Di(U, Ĉ ) are finite (Lemma 4.15 and Proposition 3.6 (c)).

Now the same method as in (a) gives the exactness of

Hi(U, Ĉ ) −→
∏
v 6∈UH

i(Kv, Ĉ)×
∏
v∈UH

i
nr(Kv, Ĉ) −→ H1−i(K,C)∗.

Besides, by [DH19, Prop. 2.1] there is a commutative diagram with exact lines:

Di+1(U, Ĉ )

∏
v∈UrVH

i
nr(Kv, Ĉ) // Hi+1

c (V, Ĉ ) // Hi+1
c (U, Ĉ )

OO

∏
v 6∈VH

i(Kv, Ĉ)

OO ∏
v 6∈UH

i(Kv, Ĉ).oo

OO

The right column is also exact by definition of Di+1(U, Ĉ ). By diagram chasing, this
yields an exact sequence

(40)
∏
v 6∈UH

i(Kv, Ĉ)×
∏
v∈UrVH

i
nr(Kv, Ĉ)

sV−−−→ Hi+1
c (V, Ĉ ) −→ Di+1(U, Ĉ).
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As seen before, the kernel of sV is the image of Hi(U, Ĉ ), which implies that for
W ⊂ V , the transition map ker sW → ker sV is surjective. The map∏
v 6∈UH

i(Kv, Ĉ)×
∏
v∈UrWH

i
nr(Kv, Ĉ) −→

∏
v 6∈UH

i(Kv, Ĉ)×
∏
v∈UrVH

i
nr(Kv, Ĉ)

is also obviously surjective. Thus taking projective limit over V in (40) gives an exact
sequence∏

v 6∈UH
i(Kv, Ĉ)×

∏
v∈UH

i
nr(Kv, Ĉ) −→ H1−i(K,C)∗ −→ Di+1(U, Ĉ)

(indeed, recall that Hi+1
c (V, Ĉ ) ∼= H1−i(V,C)∗). It remains to observe that for i = 2,

we have D3(U, Ĉ ) ⊂ H3(U, Ĉ ) = 0 (Proposition 4.4). �

Theorem 5.7 (Poitou-Tate I). — In the sequence

(41)

0 // H−1(K,C) //
∏′
v∈X(1) H−1(Kv, C) // H2(K, Ĉ)∗

��

H1(K, Ĉ)∗

��

∏′
v∈X(1) H0(Kv, C)oo H0(K,C)oo

H1(K,C) //
⊕

v∈X(1) H1(Kv, C) // H0(K, Ĉ)∗

��

0 H−1(K, Ĉ)∗oo
⊕

v∈X(1) H2(Kv, C)oo H2(K,C)oo

every sequence of three consecutive terms is exact, except the two ones respectively
finishing with H0(K,C) and H1(K,C), which must be replaced with the following
“completed” exact sequences:∏′

v∈X(1)H
−1(Kv, C)∧ −→ H2(K, Ĉ)∗ −→ H0(K,C).∏′

v∈X(1)H
0(Kv, C)∧ −→ H1(K, Ĉ)∗ −→ H1(K,C).

Proof. — Let U ⊂ U0 be a non empty Zariski open subset with U 6= X.
First take i ∈ {1, 2}. By (3), there is an exact sequence

Hi(U,C ) −→
⊕
v 6∈U

Hi(Kv, C) −→ Hi+1
c (U,C )

and for i = 2 the last map is surjective because H3(U,C ) = 0 by Proposition 4.3 (a).
By Theorem 4.9 and Proposition 3.13, we have

Hi+1
c (U,C ) ∼= H1−i(U, Ĉ )∗ ∼= H1−i(K, Ĉ)∗,

whence (by Lemma 3.14) for every non empty Zariski open subset V ⊂ U , a commu-
tative diagram with exact lines

Hi(U,C ) //

��

⊕
v 6∈U H

i(Kv, C) //

j
��

H1−i(K, Ĉ)∗

Hi(V,C ) //
⊕

v 6∈V H
i(Kv, C) // H1−i(K, Ĉ)∗,

where j is obtained by putting 0 at the missing places (and the right horizontal maps
are surjective for i = 2). Therefore, taking direct limit over U in the first line of this
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diagram gives that the last two lines of (41) are exact. The exactness of the first two
lines of (41) comes from Lemma 5.6 after taking again direct limit over U .

It remains to prove the exactness of the following three sequences:∏′
v∈X(1)H

−1(Kv, C)∧ −→ H2(K, Ĉ)∗ −→X0(C) −→ 0.∏′
v∈X(1)H

0(Kv, C)∧ −→ H1(K, Ĉ)∗ −→X1(C) −→ 0.⊕
v∈X(1)

H1(Kv, C) −→ H0(K, Ĉ)∗ −→X2(C) −→ 0.

We observe that for 0 6 i 6 2, the following sequence is exact:

0 −→Xi(Ĉ) −→ Hi(K, Ĉ)
pi−−−→

∏′
v∈X(1)H

i(Kv, Ĉ).

Set Ai := Im pi; we get exact sequences (the maps being strict by Lemma 5.5) of
Hausdorff, totally disconnected groups

0 −→Xi(Ĉ) −→ Hi(K, Ĉ) −→ Ai −→ 0.

0 −→ Ai −→
∏′
v∈X(1)H

i(Kv, Ĉ),

where Ai is equipped with the discrete topology. By [HSS15, Lem. 2.4] (where the
groups are assumed to be locally compact, but the proof shows that it sufficient
to assume that they have a basis of neighborhoods of zero consisting of open sub-
groups; this is the case for all groups considered here), the duals of these exact
sequences are also exact. Recall that for i ∈ {−1, 0}, the group Hi(Kv, C)∧ =

lim←−n>0
(Hi(Kv, C)/n) is also the completion Hi(Kv, C)∧ of Hi(Kv, C) with respect

to the open subgroups of finite index. By [Dem11b, Th. 3.1 & 3.3], the dual of∏′
v∈X(1) Hi(Kv, Ĉ) is

∏′
v∈X(1) H1−i(Kv, C)∧ for 1 6 i 6 2, and the dual of the group∏′

v∈X(1) H0(Kv, Ĉ) =
∏
v∈X(1)H0(Kv, Ĉ) (cf. Remark 3.7) is

⊕
v∈X(1) H1(Kv, C). By

Theorems 5.4 and 5.2, the dual of the finite group Xi(Ĉ) is X2−i(C). This proves
the result. �

Theorem 5.8 (Poitou-Tate II). — In the sequence

(42)

0 // H−1(K, Ĉ) //
∏
v∈X(1)H−1(Kv, Ĉ) // H2(K,C)∗

��

H1(K,C)∗

��

∏
v∈X(1)H0(Kv, Ĉ)oo H0(K, Ĉ)oo

H1(K, Ĉ) //
∏′
v∈X(1) H1(Kv, Ĉ) // H0(K,C)∗

��

0 H−1(K,C)∗oo
∏′
v∈X(1) H2(Kv, Ĉ)oo H2(K, Ĉ)oo

every sequence of three consecutive terms is exact, except the two ones respectively
finishing with H0(K, Ĉ) and H1(K, Ĉ), which must be replaced with the following
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completed exact sequences:∏
v∈X(1)H

−1(Kv, Ĉ)∧ −→ H2(K,C)∗ −→ H0(K, Ĉ).∏
v∈X(1)H

0(Kv, Ĉ)∧ −→ H1(K,C)∗ −→ H1(K, Ĉ).

Proof. — This is very similar to the proof of Theorem 5.7. Let U ⊂ U0 be a non
empty open subset with U 6= X. For i ∈ {−1, 0}, (3) and Proposition 3.6 (a) give an
exact sequence

Hi(K, Ĉ) −→
∏
v 6∈UH

i(Kv, Ĉ) −→ Hi+1
c (U, Ĉ),

such that the kernel of the first map is zero for i = −1, and this kernel is finite
(by Lemma 4.14) for i = 0. Applying Theorem 4.9 and taking projective limit over U ,
we obtain that the first two lines of (42) are exact.

Taking direct limit over U in the exact sequences of Lemma 5.6 (b) yields the
exactness of the last line and of the sequence

H1(K, Ĉ) −→
∏′
v∈X(1)H

1(Kv, Ĉ) −→ H0(K,C)∗ −→X2(Ĉ).

because X2(Ĉ) ∼= lim−→U
D2(U, Ĉ ) (cf. Theorem 5.4).

Finally, dualizing the exact sequence of discrete groups
0 −→Xi(C) −→ Hi(K,C) −→

⊕
v∈X(1)

Hi(Kv, C)

for i ∈ {1, 2} gives the missing pieces of Theorem 5.8, thanks to Theorem 5.2 and
[Dem11b, Th. 3.1 & 3.3]. �

Remark 5.9. — As the groups H1(K, Ĉ) and H2(K, Ĉ) are torsion, it is also possible
to replace the last two lines of (42) by the following exact sequences

(43) 0 −→X1(Ĉ) −→ H1(K, Ĉ) −→
(∏′

v∈X(1)H
1(Kv, Ĉ)

)
tors

−→ (H0(K,C)∧)∗ −→X2(Ĉ) −→ 0.

(44) 0 −→X2(Ĉ) −→ H2(K, Ĉ) −→
(∏′

v∈X(1)H
2(Kv, Ĉ)

)
tors

−→ (H−1(K,C)∧)∗ −→ 0.

Indeed for i ∈ {−1, 0}, the dual of Hi(K,C)∧ = lim←−n>0
(Hi(K,C)/n) (equipped with

the inverse limit topology) is

lim−→
n>0

(Hi(K,C)/n)∗ = lim−→
n>0

nH
i(K,C)∗ = (Hi(K,C)∗)tors,

which gives that (43) and (44) are exact, except that we don’t have the surjectivity
of (H0(K,C)∧)∗ → X2(Ĉ) yet. To see the latter, we first observe that for a K-
torus T , the subgroup of divisible elements in H0(K,T ) is trivial (indeed, we may
assume that T is split and this is so for K∗ because K is a global field); then the
same property holds by dévissage (using (12)) for H0(K,C) because for a group
of multiplicative type M , the group H1(K,M) is of finite exponent via Hilbert 90.
Therefore, the canonical map H0(K,C) → H0(K,C)∧ is injective, whence an injec-
tion X0(C) ↪→ H0(K,C)∧, whose dual (H0(K,C)∧)∗ →X2(Ĉ) (cf. Theorem 5.4) is
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surjective, the group X0(C) being finite and H0(K,C)∧ having a basis of neighbor-
hoods of zero consisting of open subgroups (cf. [HSS15, Lem. 2.4]).

We can now prove the following variant of Theorem 5.7:

Theorem 5.10 (Poitou-Tate, I′). — There is an exact sequence

(45)

0 // H−1(K,C)∧ //
[∏′

v∈X(1) H−1(Kv, C)
]
∧

// H2(K, Ĉ)∗

��

H1(K, Ĉ)∗

��

[∏′
v∈X(1) H0(Kv, C)

]
∧

oo H0(K,C)∧oo

H1(K,C) //
⊕

v∈X(1) H1(Kv, C) // H0(K, Ĉ)∗

��

0 H−1(K, Ĉ)∗oo
⊕

v∈X(1) H2(Kv, C)oo H2(K,C)oo

Proof. — Dualizing (43) and (44) yields the two exact sequences

0 −→X0(C) −→ H0(K,C)∧ −→ [
∏′
v∈X(1)H

0(Kv, C)]∧

−→ H1(K, Ĉ)∗ −→X1(C) −→ 0,

0 −→ H−1(K,C)∧ −→
[∏′

v∈X(1)H
−1(Kv, C)]∧ −→ H2(K, Ĉ)∗ −→X0(C) −→ 0.

The other parts of the sequence follow from Theorem 5.7. �

Remark 5.11. — A subtle point here is that for i ∈ {−1, 0}, there is a canonical injec-
tive map (which is induced by the isomorphism

∏
vH

i(Kv, C)∧ ∼= [
∏
vH

i(Kv, C)]∧):∏′
v∈X(1)H

i(Kv, C)∧ ↪−→
[∏′

v∈X(1)H
i(Kv, C)

]
∧,

but this map is not surjective in general. For instance if i = 0 and C = Gm, we have
H0(Kv, C) ∼= O∗v ×Z; as

⊕
v∈X(1) Ẑ is smaller than [

⊕
v∈X(1) Z]∧, the aforementioned

map is not surjective. Observe that the natural mapHi(K,C)→
∏′
v∈X(1) Hi(Kv, C)∧

does not in general extend to Hi(K,C)∧, it is only defined on the bidual Hi(K,C)∗∗,
which is smaller than Hi(K,C)∧.

Remark 5.12. — Dualizing the exact sequence

0 −→Xi(C) −→ Hi(K,C) −→
⊕

v∈X(1)

Hi(Kv, C)

−→ H1−i(K, Ĉ)∗ −→Xi+1(K,C) −→ 0

for i ∈ {1, 2} also yields an exact Poitou-Tate sequence II′, which is the same as (42)
except that for r ∈ {−1, 0}, the group Hr(K, Ĉ) (resp.

∏
v∈X(1)Hr(Kv, Ĉ)) has to be

replaced by Hr(K, Ĉ)∧ (resp. by
(∏

v∈X(1)Hr(Kv, Ĉ)
)
∧ =

∏
v∈X(1)Hr(Kv, Ĉ)∧).

Remark 5.13. — If we replace the function field K by a number field, some results
of this section still hold and some of them have to be modified. Namely:

– Theorem 5.2 is unchanged (with the same proof), see also [Dem11b, Th. 5.7 &
5.12] (in the latter the assumption ker ρ finite is unnecessary).
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– Lemma 5.3 still holds. Therefore, Theorem 5.4 is also true: indeed, since the
pairing (38) has divisible right kernel and trivial left kernel, taking the direct limit
over U (and using the facts that the sequence of finite groups D0(U,C ) stabilizes
for U sufficiently small) yields a pairing X0(C)×X2(Ĉ) with divisible right kernel
and trivial left kernel. But it is known that X2(Ĉ) is finite (see [Dem11b, Proof
of Th. 5.14]), whence the result (which extends [Dem11b, Th. 5.23]). Actually the
image of H2

c (U, Ĉ ) into H2(K, Ĉ) is finite by dévissage thanks to exact triangle (13):
indeed, H3(K, T̂ ) ∼=

⊕
v∈ΩR

H3(Kv, T̂ ) is finite for a torus T , and H2
c (U, M̂ ) is also

finite for a group of multiplicative type M because we already saw (cf. Remark 3.15
and Lemma 3.4 (c) that this holds when M is a torus or a finite group.

– In Lemma 5.5, one has to restrict to i > 1 for the assertion about C. The result
about Ĉ holds for an arbitrary i (although the group D2(U, Ĉ ) might be infinite, we
just saw that its image in H2(K, Ĉ) is finite, which is sufficient).

– Lemma 5.6 (a) is not valid any more (one has to complete the first two terms
in the exact sequences); the second exact sequence of (b) still holds (same proof), as
does the first one except for the surjectivity of the last map, which must be replaced
by the exact sequence∏

v 6∈UH
2(Kv, Ĉ)×

∏
v∈UH

2
nr(Kv, Ĉ) −→ H−1(K,C)∗ −→ D3(U, Ĉ ) −→ 0

because we lack the vanishing of D3(U, Ĉ ). Also, since D2(U, Ĉ ) is in general infinite,
the proof of the exactness of

H2(U, Ĉ ) −→
∏
v 6∈UH

2(Kv, Ĉ)×
∏
v∈UH

2
nr(Kv, Ĉ) −→ H−1(K,C)∗

is a little bit more complicated (using exact triangle (13) one reduces to the case
when C is quasi-isomorphic to M [1], where M is a group of multiplicative type; then
one proceeds as in Lemma 5.6 (b), the groupD2(U, M̂ ) being finite becauseH2

c (U, M̂ )

is finite).
– By the previous observations, the end of sequence (41) starting withH1(K, Ĉ)∗→

H1(K,C) → · · · remains exact. Theorem 5.8 is valid with one single slight compli-
cation in the proof: we do not know in general that D3(U, Ĉ ) = 0, but the direct
limit over U of the D3(U, Ĉ ) is X3(Ĉ), which is zero. Theorem 5.10 is therefore also
unchanged, which extends [Dem11b, Th. 6.1 & 6.3].

Remark 5.14. — In the case of one single torus T with module of characters T̂ , some
of our results of Section 4 and 5 can be deduced from similar theorems on 1-motives
proved by González-Avilés ([GA09, Th. 6.6]) and González-Avilés/Tan ([GAT09,
Th. 3.11]).
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