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L1-PENALIZATION IN FUNCTIONAL LINEAR

REGRESSION WITH SUBGAUSSIAN DESIGN

by Vladimir Koltchinskii & Stanislav Minsker

Abstract. — We study functional regression with random subgaussian design and real-valued
response. The focus is on the problems in which the regression function can be well approxi-
mated by a functional linear model with the slope function being “sparse” in the sense that it
can be represented as a sum of a small number of well separated “spikes”. This can be viewed
as an extension of now classical sparse estimation problems to the case of infinite dictionaries.
We study an estimator of the regression function based on penalized empirical risk minimiza-
tion with quadratic loss and the complexity penalty defined in terms of L1-norm (a continuous
version of LASSO). The main goal is to introduce several important parameters characterizing
sparsity in this class of problems and to prove sharp oracle inequalities showing how the L2-error
of the continuous LASSO estimator depends on the underlying sparsity of the problem.

Résumé (Pénalisation L1 en régression fonctionnelle linéaire avec design sous-gaussien)
Nous étudions la régression fonctionnelle linéaire avec design sous-gaussien et la réponse à

valeurs réelles. Nous nous concentrons sur les problèmes où la fonction de régression est bien
approchée par un modèle fonctionnel linéaire dont la pente est « sparse » dans le sens où elle
peut être représentée comme une somme d’un petit nombre de « pics » séparés. Nous pouvons
considérer ce problème comme une extension du problème classique d’estimation « sparse » au
cas d’un dictionnaire infini. Nous étudions un estimateur de la fonction de régression basé sur
la minimisation du risque empirique pénalisé avec une perte quadratique et avec une pénalité
de complexité définie en termes de la norme L1 (une version continue du LASSO). L’objectif
principal est d’introduire certains paramètres importants qui caractérisent la « sparsité » dans
cette classe de problèmes et de prouver des inégalités d’oracle « sparses » montrant comment
l’erreur L2 de la version continue du LASSO dépend de la sparsité sous-jacent du problème.
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1. Introduction

Let (X,Y ) be a random couple defined on a probability space (Ω,Σ,P), where
X = {X(t) : t ∈ T} is a stochastic process with parameter set T and Y is a real
valued response variable. In what follows, it will be assumed that the process X is
subgaussian. Denote

dX(s, t) :=
√

Var (X(s)−X(t)), s, t ∈ T.(1.1)

It will be also assumed that the space T is totally bounded with respect to pseudo-
metric dX and, moreover, it satisfies Talagrand’s generic chaining conditions ensuring
that there exists a version of the process X(t), t ∈ T that is a.s. uniformly bounded
and dX -uniformly continuous. In what follows, we assume that X(t), t ∈ T is such
a version. Let µ be a finite measure on the Borel σ-algebra BT of the pseudometric
space (T, dX).

Consider the following regression model

Y = f∗(X) + ξ,

where f∗(X) = E(Y |X) is the regression function and ξ is a random noise with Eξ = 0

and variance Var(ξ) = σ2
ξ independent of the design variable X. We will be interested

in estimating the regression function f∗(X) under an underlying assumption that
f∗(X) can be well approximated by a functional linear model (“oracle model”)

fλ,a(X) = a+

∫
T

X(t)λ(t)µ(dt),

where λ ∈ L1(µ) is the “slope” function and a ∈ R is the intercept of the model. More
precisely, we will focus on the problems in which the oracle models are “sparse”
in the sense that the slope function λ is supported in a relatively small subset
supp(λ) := {t ∈ T : λ(t) 6= 0} of parameter space T such that the set of random
variables {X(t) : t ∈ supp(λ)} can be well approximated by a linear space of a small
dimension. Often, λ will be a sum of several “spikes” with disjoint and well separated
supports. Such models might be useful in a variety of applications, in particular, in
image processing where, in many cases, only sparsely located regions of the image
are correlated with the response variable. In what follows, Π denotes the marginal
distribution of X in the space Cbu(T; dX) of all uniformly bounded and uniformly
continuous functions on (T; dX), and P denotes the joint distribution of (X,Y ) in
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L1-penalization in functional linear regression 271

Cbu(T; dX) × R. Let (X1, Y1), . . . , (Xn, Yn) be a sample consisting of n i.i.d. copies
of (X,Y ) defined on (Ω,Σ,P). The regression function f∗ is to be estimated based
on the data (X1, Y1), . . . , (Xn, Yn). Our estimation method can be seen as a direct
extension of (a version of) LASSO to the infinite-dimensional case. Namely, let D be
a convex subset of the space L1(µ) such that 0 ∈ D. Consider the following penalized
empirical risk minimization problem:

(λ̂ε, âε) := argmin
λ∈D, a∈R

[
1

n

n∑
j=1

(Yj − fλ,a(Xj))
2

+ ε‖λ‖1
]
,(1.2)

where
‖λ‖1 := ‖λ‖L1(µ) =

∫
T

|λ(t)|µ(dt)

and ε > 0 is the regularization parameter. The function fλ̂ε,âε will be used as an
estimator of the regression function f∗.

When the parameter set T is finite, (1.2) defines a standard LASSO-estimator of
the vector of parameters of linear regression model (see [40]). This estimator is among
the most popular in high-dimensional statistics and it has been intensively studied
in the recent years (e.g., see [9], [16], [25], [6], [26], [4], [27]; see also the book by
Bühlmann and van de Geer [8] for further references).

We will be more interested in the case of uncountable infinite parameter sets T
(functional linear models). In such problems, standard characteristics of finite dictio-
naries used in the theory of sparse recovery (restricted isometry constants, restricted
eigenvalues, etc) are not directly applicable. Our goal will be to develop proper para-
meters characterizing sparsity in the case of functional models and to prove oracle
inequalities for the L2(Π)-error ‖fλ̂ε,âε − f∗‖

2
L2(Π) of continuous LASSO-estimator in

terms of these sparsity parameters. We concentrate on the case of subgaussian random
design (that, of course, includes an important example of Gaussian design processes)
since, in this case, we can rely on a number of probabilistic tools from the theory of
subgaussian and empirical processes. In particular, we extensively use in the proofs
recent generic chaining bounds for empirical processes due to Mendelson [33], [32].

It should be emphasized that there is vast literature on functional regression (see,
e.g., [35], [36] and references therein). A commonly used general idea in this literature
is to estimate the eigenfunctions of the covariance operator and to project the un-
known slope function onto the linear span of the “principal components” correspond-
ing to the largest eigenvalues (see [34], [10] and references therein). Under smoothness
assumptions on the slope function, a natural approach to its estimation is to use a
regularization penalty (see [14] for construction of estimators based on smoothing
splines and [42] for a more general reproducing kernel Hilbert space approach).

The problem studied in our paper is much closer to the theory of sparse estimation
in high-dimensional statistics and can be viewed as an extension of this theory to the
case of functional models and uncountable dictionaries. Our approach is similar in
spirit to [24], [26] where such characteristics as “alignment coefficient” (used below
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272 V. Koltchinskii & S. Minsker

for functional models) were introduced and studied in the case of finite dictionaries,
and [28] which extended some of these results to the case of infinite dictionaries. For
a review of some modern methods in functional data processing and their connections
to various notions of sparsity, we refer the reader to [21]. A recent paper by James,
Wang and Zhu [22] is similar to the present work in terms of motivation and approach,
however, the theoretical analysis in [22] is performed under the assumptions on the
design distribution that might not hold if X has smooth trajectories.

It is important to note that in practice we never observe the whole trajectory
of X but rather its densely sampled version. In this case, the natural choice for µ
is a uniform measure on the sampling grid, whence (1.2) becomes the usual LASSO
once again. However, there is often no reasons to assume that Gram matrix of the
design satisfies RIP [13] or restricted eigenvalue type conditions [6, 23] in this case.
Although LASSO might not perform well as a variable selection procedure in such a
framework, we will provide examples showing that prediction power of an estimator
can still benefit from the fact that the underlying model is (approximately) sparse. In
particular, oracle inequalities with error rates depending on sparsity can be derived
from the general results of our paper. Other interesting approaches to theoretical
analysis of LASSO with highly correlated design were proposed in [17], [19]. For
instance, in [17] (see, in particular, Corollary 4.2) the authors show that in the case
of highly correlated design, it is often possible to choose the regularization parameter
to be small ε� n−1/2 and achieve reasonable error rates.

It should be also mentioned that in a number of very important applications one has
to deal with sparse recovery in infinite dictionaries with random designs that are not
subgaussian, or with deterministic designs. For instance, in [12], the authors develop a
theory of super-resolution. In this case, the dictionary consists of complex exponentials
ei〈t,·〉, t ∈ T ⊂ Rd, the design is deterministic and the estimation method is based
on minimizing the total variation norm of a signed measure Λ on T subject to data
dependent constraints. Although the results of our paper do not apply immediately
to such problems, it is possible to extend our approach in this direction.

We will introduce several assumptions and definitions used throughout the paper.

Definition 1.1. — A closed linear subspace L ⊂ L2(P) will be called a subgaussian
space if there exists a constant Γ > 0 such that for all η ∈ L

Eesη 6 eΓs2σ2
η , s ∈ R,

where σ2
η := Var(η).

It is well known that Eη = 0, η ∈ L and that ψ2-and L2-norms are equivalent
on L (more precisely, they are within a constant ∼ Γ). Also, if L is a closed linear
subspace of L2(P) such that {η : η ∈ L } are jointly normal centered random variables,
then L is a subgaussian space with Γ = 1. Another example is the closed linear span
of independent centered subgaussian random variables {ηj} such that

Eesηj 6 eΓσ2
ηj
s2
, s ∈ R, j > 1
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for some Γ > 0 :

L :=
{∑

j>1 cjηj :
∑
j>1 σ

2
ηjc

2
j < +∞

}
.

For instance, one can consider a sequence {ηj} of i.i.d. Rademacher random variables
(that is, ηj takes valued +1 and −1 with probability 1/2). In the case of a single
random variable η, its linear span is a subgaussian space if and only if η is subgaussian.

In what follows, a subgaussian space L and constant Γ will be fixed. All the
constants depending only on Γ will be called absolute.

Assumption 1.1. — Suppose that

X(t)− EX(t) ∈ L for all t ∈ T.(1.3)

Denote by LX the closed (in L2 and, as a consequence, also in the ψ2-norm) linear
span of {X(t)− EX(t) : t ∈ T}.

This assumption easily implies that the stochastic process Z(t) := X(t) − EX(t),
t ∈ T, is subgaussian, meaning the for all t, s ∈ T, Z(t)−Z(s) is a subgaussian random
variable with parameter Γd2

X(t, s).
Next, we recall the notion of Talagrand’s generic chaining complexity (see [39] for

a comprehensive introduction). Given a pseudo-metric space (T, dX), let {∆n} be a
nested sequence of partitions such that Card ∆0 = 1 and Card ∆n 6 22n . For s ∈ T,
let ∆n(s) be the unique subset of ∆n containing s. The generic chaining complexity
γ2(T; dX) is defined as

γ2(T; dX) := inf
{∆n}

sup
s∈T

∑
n>0

2
n
2 D(∆n(s)),

where D(A) stands for the diameter of a set A. Let

γ2(δ) := γ2(T; dX ; δ) = inf
{∆n}

sup
t∈T

∑
n>0

2n/2 (D(∆n(t)) ∧ δ) .

If dY is another metric on T such that dY (t, s) 6 dX(t, s) for all t, s ∈ T, and
supt,s∈T dY (t, s) 6 δ, then clearly

γ2(T; dY ) 6 γ2(δ).(1.4)

This bound will be often used below. Our main complexity assumptions on the design
distribution are the following:

Assumption 1.2. — Pseudometric space (T, dX) is such that γ2(T; dX) < ∞ and,
moreover,

γ2(T; dX ; δ) −→ 0 as δ −→ 0.

Under these assumptions, the process Z = X − EX has a version that is uni-
formly bounded and dX -uniformly continuous a.s. Moreover,

∥∥‖X − EX‖∞
∥∥
ψ2
< ∞

(in particular, all the moments of ‖X − EX‖∞ are finite). It what follows, we will
denote

S(T) := S(T, dX) = inf
t∈T

√
Var(X(t)) + Lγ2(T; dX).
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274 V. Koltchinskii & S. Minsker

Note that Theorem A.2 implies that there exists a numerical constant L > 0 such
that

E sup
t∈T
|X(t)− EX(t)| 6 S(T).(1.5)

We will also need the following assumptions on the regression function f∗ and the
noise ξ :

Assumption 1.3. — Suppose that f∗(X)− Ef∗(X) ∈ L and ξ ∈ L .

Since Ef∗(X) = EY , this assumption also implies that Y − EY ∈ L . Note that
if {X(t), t ∈ T} ∪ {Y } is a family of centered Gaussian random variables and L is
its closed linear span, then L is a subgaussian space and f∗(X) is the orthogonal
projection of Y onto the subspace LX . Thus, f∗(X) ∈ LX ⊂ L .

Acknowledgements. — We want to thank the anonymous Referees for carefully read-
ing the paper and for providing constructive feedback that helped us to improve the
quality of results and presentation.

The authors are very thankful to Mikhail Lifshits and Mauro Maggioni for insightful
discussions and their valuable input.

2. Approximation error bounds, alignment coefficient and Sobolev norms

Recall that P is the joint distribution of (X,Y ) and let Pn be the empirical dis-
tribution based on the sample (X1, Y1), . . . , (Xn, Yn). The integrals with respect to P
and Pn are denoted by

Pg := Eg(X,Y ), Png :=
1

n

n∑
i=1

g(Xi, Yi).

In what follows, it will be convenient to denote `(y, u) := (y − u)2, y, u ∈ R and

(`•f)(x, y) := `(y, f(x)) = (y − f(x))2.

We also use the notation `′(y, u) for the derivative of quadratic loss `(y, u) with respect
to u : `′(y, u) = 2(u− y). Throughout the paper, 〈· , ·〉 denotes the bilinear form

〈f, g〉 :=

∫
T

f(t)g(t)µ(dt).

Let
Fn(λ, a) := Pn(`•fλ,a) + ε‖λ‖1, F (λ, a) := P (`•fλ,a) + ε‖λ‖1.

Denote also

Y n := n−1
n∑
j=1

Yj , Xn(t) := n−1
n∑
j=1

Xj(t), t ∈ T.

Note that
â(λ) := argmin

a∈R
Fn(λ, a) = Y n − 〈λ,Xn〉,

a(λ) := argmin
a∈R

F (λ, a) = EY − 〈λ,EX〉.
(2.1)
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L1-penalization in functional linear regression 275

The following penalized empirical risk minimization problem

(λ̂ε, âε) := argmin
λ∈D,a∈R

Fn(λ; a)(2.2)

is exactly problem (1.2) written in a more concise form. Note that (2.2) is the empirical
version of

(λε, aε) := argmin
λ∈D,a∈R

F (λ, a).(2.3)

Due to convexity of the loss, both (2.3) and (2.2) are convex optimization problems.
It will be shown (Theorem A.1 in the appendix) that, under certain assumptions,
they admit (not necessarily unique) solutions λε, λ̂ε.

Assumption 2.1. — It is assumed throughout the paper that the solutions (λε, aε) of
(2.3) and (λ̂ε, âε) of (2.2) exist.

It might be also possible to study the problem under an assumption that (λε, aε)

and (λ̂ε, âε) are approximate solutions of the corresponding optimization problems,
but we are not pursuing this to avoid further technicalities.

The goal of this section is to determine the parameters responsible for the size of
the L2(Π) risk of fλε,aε , where (λε, aε) is the (distribution-dependent) solution of the
problem (2.3), and to find upper bounds on these parameters in terms of classical
Sobolev type norms. Later on, it will be shown that the same parameters affect the
error rate of empirical solution fλ̂ε,âε .

Recall that D ⊂ L1(µ) is a convex subset that contains zero. It immediately follows
from (2.3) that we can take aε = a(λε) and also that

(2.4) ‖fλε,aε − f∗‖2L2(Π) 6 q(ε) := inf
λ∈D,a∈R

[
‖fλ,a − f∗‖2L2(Π) + ε‖λ‖1

]
.

Clearly, q is a non-decreasing concave function (concavity follows from the fact that it
is an infimum of linear functions). Therefore, q(ε)/ε is a non-increasing function. Note
also that q(ε) 6 ‖f∗ − Πf∗‖2L2(Π) (take λ = 0, a = EY = Ef∗(X) in the expression
under the infimum) and

q(ε) 6 ε‖λ∗‖1
provided that f∗ = fλ∗,a∗ , where λ∗ ∈ D, a∗ ∈ R (take λ = λ∗, a = a∗). The infimum
in the definition of q(ε) is attained at (λε, aε) (a solution of problem (2.3) that is
assumed to exist). Then, in addition to the bound ‖fλε,aε − f∗‖2L2(Π) 6 q(ε), (2.3)
also implies

‖λε‖1 6
q(ε)

ε
.

We will be interested, however, in other bounds on ‖fλε,aε −f∗‖2L2(Π), in which the
“regularization error” is proportional to ε2 rather than to ε (as it is the case in the
bounds for q(ε)). To this end, we have to introduce some new characteristics of the
oracles λ ∈ D.
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276 V. Koltchinskii & S. Minsker

Let k(s, t) := Cov(X(s), X(t)), s, t ∈ T be the covariance function of the stochas-
tic process X. Clearly, under Assumption 1.2,

∫∫
k2(s, t)µ(ds)µ(dt) < ∞ and the

covariance operator K : L2(T, µ) 7→ L2(T, µ) defined by

(Kv)(s) :=

∫
T

k(s, t)v(t)µ(dt).

is Hilbert–Schmidt. For u ∈ L2(T), define

‖u‖K := sup
〈Kv,v〉61

〈u, v〉 .(2.5)

Remark 2.1. — In the case when T is finite, operator K is represented by the Gram
matrix of a finite dictionary and standard “restricted isometry” and “restricted eigen-
value” type constants are defined in terms of K and are involved in oracle inequalities
for LASSO and other related estimators.

Note that 〈Kv, v〉 = Var(fv(X)), where fv(X) :=
∫
T v(t)X(t)µ(dt). The set

H(K) := {u ∈ L2(T) : ‖u‖K <∞}

is a reproducing kernel Hilbert space of the covariance kernel k.
We will need the following description of the subdifferential of the convex func-

tion ‖·‖1:

∂‖λ‖1 = {w : T 7→ [−1, 1] : µ− a.s. w(t) = sign(λ(t)) whenever λ(t) 6= 0} .(2.6)

It follows from the general description of the subdifferential of a norm ‖·‖ in a Banach
space X:

∂‖x‖ =

{
{x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖} , x 6= 0,

{x∗ ∈ X∗ : ‖x∗‖ 6 1} , x = 0,

where X∗ is the dual space. For details on our specific example, see [20, §4.5.1].
Note that, in standard examples (such as T ⊂ Rd), the “canonical” version of the

subgradient of ‖λ‖1, w(t) = sign(λ(t)), t ∈ T, lacks smoothness and RKHS-norms are
often large or infinite for such a choice of w. It will be seen below that existence of
smoother versions of the subgradient is important in such cases. Given a measurable
w : T 7→ [−1, 1], let Tw = {t ∈ T : |w(t)| > 1/2}. For smooth w, Tw will play a role
of support of λ. Given b ∈ [0,∞], define the cone C(b)

w by

C(b)
w :=

{
u ∈ L1(µ) :

∫
TrTw

|u|dµ 6 b 〈w, u〉
}
.(2.7)

Note that, for w ∈ ∂‖λ‖1, we have |w(t)| 6 1, t ∈ T. Therefore, u ∈ C(b)
w implies that∫

TrTw

|u|dµ 6 b
∫
Tw

|u|dµ.

Roughly, this means that, for functions u ∈ C(b)
w , Tw is a “dominant set”. Let

a(b)(w) := sup
{
〈w, u〉 : u ∈ C(b)

w , ‖fu‖L2(Π) = 1
}
.(2.8)
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Such quantities were introduced in the framework of sparse recovery in [24], [26] and
its size is closely related to the RIP and restricted eigenvalue-type conditions. In some
sense, a(b)(w) characterizes the way in which the vector (function) w is “aligned” with
eigenspaces of the covariance operator of the process X and, following [24], it will be
called the alignment coefficient. Clearly, we always have the bound a(b)(w) 6 ‖w‖K ,
however, it can be improved in several important cases, see Section 4.4. Note that
a(b)(w) is a nondecreasing function of b. For b = ∞, we have C(∞)

w = L1(µ). In this
case, a(∞)(w) = ‖w‖K , so the alignment coefficient coincides with the RKHS-norm
associated to the covariance function k. For b = 0, we have

C(0)
w = {u ∈ L1(µ) : u = 0 a.s. on T r Tw},

so the cone C(0)
w coincides with the subspace of functions supported in Tw. In this

case, a(0)(w) is the RKHS-norm associated with restriction of the kernel k to Tw.
In what follows, it will be convenient to take b = 16 and denote a(w) = a(16)(w)

(although in the statement of Theorem 2.1 below a smaller value b = 2 could be used).
We will be interested in those oracles λ for which there exists a subgradient

w ∈ ∂‖λ‖1 such that a(w) is not too large and Tw is a “small” subset of T. Such
functions provide a natural analogue of sparse vectors in finite-dimensional problems.

Theorem 2.1. — The following inequality holds:

‖fλε,aε − f∗‖
2
L2(Π) 6 inf

λ∈D,w∈∂‖λ‖1
a∈R

[
‖fλ,a − f∗‖2L2(Π) +

1

4
ε2a2(w)

]
.(2.9)

Remark 2.2. — It easily follows from the proof of this theorem that for all λ ∈ D,
w ∈ ∂‖λ‖1, a ∈ R, ∫

TrTw

|λε|dµ 6
4

ε

[
‖fλ,a − f∗‖2L2(Π) +

1

4
ε2a2(w)

]
.

The intuition behind these results is the following: if there exists an oracle (λ,w, a)

with a small approximation error ‖fλ,a − f∗‖2L2(Π) (say, of the order o(ε)) and not
very large alignment coefficient a(w), then the risk ‖fλε,aε − f∗‖

2
L2(Π) is also small

and λε is “almost” concentrated on the set Tw.
As we show below, in some cases ‖·‖K and a(·) can be bounded in terms of Sobolev-

type norms.
Since self-adjoint integral operator K with kernel k is Hilbert–Schmidt, it is com-

pact, and the orthogonal complement to its kernel possesses an orthonormal system
of eigenfunctions {fj}∞j=1 ⊂ L2(T, µ) corresponding to positive eigenvalues νj . It is
well-known that

(2.10) H(K) =
{
w(·) =

∑∞
j=1 wjfj(·) : ‖w‖2K =

∑∞
j=1 w

2
j/νj <∞

}
.

However, one might want to find a more direct characterization of H(K). One way to
proceed is to use the so-called Factorization theorem:
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Theorem 2.2 ([30], Theorem 4 in Section 9). — Assume that there exists a Hilbert
space V and an injective linear operator L : V 7→ `∞(T) such that K = LL∗, where L∗
is the adjoint of L. Then H(K) = L(V), and 〈Lu1, Lu2〉H(K) = 〈u1, u2〉V.

The most obvious choice is V = ker(K)⊥ and L = K1/2, whence ‖w‖K =

‖K−1/2w‖L2(µ) which again gives (2.10). Other choices often lead to more insightful
description. For example, if X is the standard Brownian motion on [0, 1], then
one can check [30] that V = L2[0, 1] with the standard Lebesgue measure and
(Lx)(t) :=

∫ t
0
x(s)ds satisfy the requirements. It immediately implies

Corollary 2.1. — The reproducing kernel Hilbert space associated with the Brownian
motion is defined by

(2.11) H(K) =

{
h ∈ L2[0, 1], h(0) = 0, ‖h‖2K :=

∫ 1

0

(h′(s))
2
ds <∞

}
⊂W2,1[0, 1],

where

W2,1[0, 1] =

{
h ∈ L2[0, 1], h is abs. continuous,

‖h‖2W2,1 :=

∫ 1

0

[
h2(s) + (h′(s))

2
]
ds <∞

}
is the Sobolev space.

In particular, it means that a(w) 6 ‖w‖W2,1 . Suppose now that T ⊂ Rm is a
bounded open subset and, for some C > 0 and β > 0,

(2.12) a2(w) 6 C‖w‖2W2,β .

Let λ ∈ L1(T, µ) be a “sparse” oracle such that supp(λ) :=
⋃d
j=1 Tj , where Tj ,

j = 1, . . . , d, are disjoint sets. Moreover, assume that the distance between Tj and Tk
is positive for all j 6= k. In other words, λ has d components with well separated
supports and it is zero in between. In this case, one can find w ∈ ∂‖λ‖1 such that
w =

∑d
j=1 wj and wj , j = 1, . . . , d, are smooth functions (from the space W2,β to be

specific) with disjoint supports. For any such function w, we have

a2(w) 6 C‖w‖2W2,β 6 C1

d∑
j=1

‖wj‖2W2,β 6 C1d max
16j6d

‖wj‖2W2,β

and the bound of Theorem 2.1 implies that

‖fλε,aε − f∗‖
2
L2(Π) 6

∥∥fλ,a(λ) − f∗
∥∥2

L2(Π)
+
C

4
d max

16j6d
‖wj‖2W2,βε

2.(2.13)

Thus, the size of the error explicitly depends on the number d of components of
“sparse” oracles λ approximating the target.

In Section 4, we will show that bound (2.12) holds for a number of stochastic
processes X and, moreover, there are other ways to take advantage of sparsity in
the cases when the domain T of X can be partitioned in a number of regions Tj ,
j = 1, . . . , N , such that the processes {X(t), t ∈ Tj} are “weakly correlated”.
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3. Basic oracle inequalities

In this section, we present general oracle inequalities for the L2-risk of estima-
tor fλ̂ε,âε . The main goal is to show that if there exists an oracle (λ,w, a), λ ∈ D,
w ∈ ∂‖λ‖1, a ∈ R such that the approximation error ‖fλ,a − f∗‖2L2(Π) is small, the
alignment coefficient a(w) is not large and λ is “sparse” in the sense that the set of
random variables {X(t) : t ∈ Tw} can be well approximated by a linear space L ⊂ LX

of small dimension, then the L2-error ‖fλ̂ε,âε−f∗‖
2
L2(Π) of the estimator fλ̂ε,âε can be

controlled in terms of the dimension of L and the alignment coefficient a(w). To state
the result precisely, we have to introduce one more parameter, an “approximate di-
mension”, providing an optimal choice of approximating space L. Thus, the degree of
“sparsity” of the oracle will be characterized by the alignment coefficient that already
appeared in approximation error bounds of Section 2 and also by “approximate di-
mension” d(w, λ) introduced below.

We start, however, with a “slow-rate” oracle inequality that does not depend on
“sparsity”. The inequalities of this type are well known in the literature on sparse re-
covery, in particular, for LASSO estimator in the case of finite dictionaries, see [4], [31].

Recall that D ⊆ L1(µ) is a convex set and 0 ∈ D. Recall also the definition of q(ε)
(see 2.4) and its properties. Note that

(3.1) σ2
Y = Var(f∗(X)) + σ2

ξ = ‖f∗ −Πf∗‖2L2(Π) + σ2
ξ .

Theorem 3.1. — There exist absolute constants C, c and D such that the following
holds. For any s > 1 with s := s + 3 log(log2 n + 2) + 3 6 c

√
n/log n and for all ε

satisfying

(3.2) ε > D
σY S(T)√

n
,

with probability at least 1− e−s

‖fλ̂ε,âε−f∗‖
2
L2(Π) +

3

4
ε‖λ̂ε‖16 inf

λ∈D,a∈R

[
‖fλ,a−f∗‖2L2(Π) +

3

2
ε‖λ‖1

]
+ C

σ2
Y s

n
.(3.3)

As was mentioned earlier, our main goal is to obtain sharper bounds which would
demonstrate connections between the risk of fλ̂ε,â and the degree of sparsity of an
underlying model. Our next result is a step in this direction. We will need the notion
of Kolmogorov’s d-width of the set of random variables C ⊂ LX defined as follows:

ρd(C) := inf
L⊂LX

dim(L)6d

sup
η∈C
‖PL⊥η‖L2(P).

It characterizes the optimal accuracy of approximation of the set C by d-dimensional
linear subspaces of LX . Given T′ ⊂ T, let

XT′ := {X(t)− EX(t) : t ∈ T′}.

Recall that Tw := {t ∈ T : |w(t)| > 1/2}. Given an oracle λ ∈ D and w ∈ ∂‖λ‖1, let

ρd(w) := ρd (XTw) .
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The following number will play a role of approximate dimension of the set of random
variables XTw :

d(w, λ) := min
{
d > 0 :

dσ2
Y

n
> ‖λ‖1

γ2 (ρd(w))√
n

}
.(3.4)

Theorem 3.2. — There exist absolute constants C, c and D such that the following
holds. For any s > 1 with s := s + 3 log(log2 n + 2) + 3 6 c

√
n/log n and for all ε

satisfying

(3.5) ε > D
σY S(T)

√
s√

n
,

with probability at least 1− e−s

(3.6)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)

6 inf
λ∈D

w∈∂‖λ‖1
a∈R

[
‖fλ,a − f∗‖2L2(Π) + 2ε2a2(w) + C

σ2
Y d(w, λ)

n
+ C
‖λ‖21S2(T)

n

]
+ C

σ2
Y s

n
.

Under an additional assumption that ‖λ‖1 is not too large, it is possible to prove
the following modified version of Theorem 3.2 without the term C‖λ‖21S2(T)/n in the
oracle inequality.

Theorem 3.3. — Assume that conditions of Theorem 3.2 hold. If D is such that

D ⊂
{
λ ∈ L1(µ) : ‖λ‖1 6

cσY
√
n

S(T)

}
for some absolute constant c > 0, then with probability > 1− e−s

(3.7)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)

6 inf
λ∈D

w∈∂‖λ‖1
a∈R

[
‖fλ,a − f∗‖2L2(Π) + 2ε2a2(w) + C

σ2
Y d(w, λ)

n

]
+ C

σ2
Y s

n
.

The proof of this result follows from the proof of Theorem 3.2, see remark 7.1 for
more details.

Remark 3.1. — Note that the oracle inequality of Theorem 3.2 is sharp, meaning that
the constant in front of ‖fλ,a − f∗‖L2(Π) (the leading constant) is 1. It is possible to
derive an oracle inequality with the leading constant larger than 1 which might yield
faster rates when the variance of the noise σ2

ξ is small. Define the following version of
the “approximate dimension” (compare to (3.4)):

dσξ(w, λ) := min
{
d > 0 :

dσ2
ξ

n
> ‖λ‖1

γ2 (ρd(w))√
n

}
.

J.É.P. — M., 2014, tome 1



L1-penalization in functional linear regression 281

Then, under the assumptions of Theorem 3.2, the following inequality holds with
probability > 1− e−s:∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)

6 inf
λ∈D

w∈∂‖λ‖1
a∈R

[
2 ‖fλ,a − f∗‖2L2(Π) + 2ε2a2(w) + C

σ2
ξdσξ(w, λ)

n
+ C
‖λ‖21S2(T)

n

]
+ C

σ2
Y s

n
.

The proof of this result uses arguments similar to the proof of Theorem 3.2, so we
omit the details.

Inequality (3.6) above depends on rather abstract parameters (such as the align-
ment coefficient and the approximate dimension) that have to be further bounded
before one can get a meaningful bound in concrete examples. This will be discussed
in some detail in the following sections.

4. Bounding the alignment coefficient

First, we discuss the bounds on the alignment coefficient in terms of Sobolev-type
norms in some detail. After this, we turn to the problem of bounding the alignment
coefficient in the cases when there exists a weakly correlated partition for the design
process X.

4.1. Sacks-Ylvisaker conditions. — In the univariate case T = [0, 1], it is possible
to determine whether (a certain subspace of) the Sobolev space can be continuously
embedded into H(K) based on the smoothness of the covariance function k(· , ·). Exis-
tence of such an embedding is given by the so-called Sacks-Ylvisaker conditions [38].
This provides a way to bound the RKHS norm ‖·‖K generated by the covariance
function of X (and, thus, also the alignment coefficient) in terms of a Sobolev norm.
Definitions and statements below are taken from [37], Section 3.

Set Ω+ :=
{

(s, t) ∈ (0, 1)2 : s > t
}
and Ω− :=

{
(s, t) ∈ (0, 1)2 : s < t

}
. Let G be

a continuous function on Ω+ ∪ Ω− such that the restrictions G|Ωj are continuously
extendable to the closures cl(Ωj), j ∈ {+,−}. Gj will stand for the extension of G
to [0, 1]2 which is continuous on cl(Ωj) and on [0, 1]2 r cl(Ωj). Set R(k,l)(s, t) =
∂k+l

∂sk∂tl
R(s, t). Then, the covariance kernel k(· , ·) defined on [0, 1]2 satisfies the Sacks-

Ylvisaker conditions of order r ∈ N if the following holds true:
(A) k ∈ Cr,r([0, 1]2), the partial derivatives of G = k(r,r) up to order 2 are contin-

uous on Ω+ ∪ Ω− and are continuously extendable to cl(Ω+) and to cl(Ω−).
(B) min06t61

(
G

(1,0)
− (t, t)−G(1,0)

+ (t, t)
)
> 0.

(C) G(2,0)
+ (t, ·) belongs to the RKHS with reproducing kernel G and

sup
t∈[0,1]

‖G(2,0)
+ (t, ·)‖G <∞.

(D) In the case r > 1, k(0,j)(·, 0) = 0 for 0 6 j 6 r − 1.
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Let W2,r+1
0 be the subspace of W2,r+1 defined by

W2,r+1
0 =

{
f ∈W2,r+1 : f (j)(0) = f (j)(1) = 0 for 0 6 j 6 r

}
.

Theorem 4.1 (Corollary 1 in [37]). — Assume k(· , ·) satisfies the Sacks-Ylvisaker
conditions of order r. Then W2,r+1

0 ⊂ H(K) and the embedding W2,r+1
0 ↪→ H(K) is

continuous.

As a result, we have the bound ‖w‖K 6 C‖w‖W2,r+1 that holds for all w with some
constant C > 0.

It is well-known that the covariance function k1(s, t) = s ∧ t of the Brownian mo-
tion and k2(s, t) = e−|s−t| of the Ornstein-Uhlenbeck process satisfy Sacks-Ylvisaker
conditions of order r = 0.

Corollary 4.1. — Let X(t), t ∈ [0, 1] be the Ornstein-Uhlenbeck process and let H(K)

be the associated reproducing kernel Hilbert space. If w ∈ W2,1[0, 1] is such that
w(0) = w(1) = 0, then w ∈ H(K) and

‖w‖K 6 C‖w‖W2,1[0,1].

This should be compared to the exact description of H(K), the kernel of the
Ornstein-Uhlenbeck process, which is known to be

H(K) =

{
w ∈ L2[0, 1] : ‖w‖2K =

w2(0) + w2(1)

2

+
1

4

∫ 1

0

w2(t)dt+

∫ 1

0

(w′(t))
2
dt <∞

}
.

4.2. Discrete Sobolev norms and the Brownian motion. — In this example, we
look back at the case when the design process is a Brownian motion (it was already
discussed in Section 2). However, this time we make the more realistic assumption
that the design processes are observed only at discrete points.

Assume that {X(t), t ∈ [0, 1]} is a standard Brownian motion released at zero,
that is, X(t) = Z+W (t), where Z is a standard normal random variable independent
of W . Suppose that we observe n iid copies of X, X1, . . . , Xn on a grid T = GN =

{0 6 t1 < · · · < tN 6 1}. Let µ be a counting measure on T. If, for example, the grid
is uniform with mesh size 1/N for some large N , with high probability the adjacent
columns of the design matrix

(
Xi(tj)

)
i6n,j6N

will be almost collinear. To the best of
our knowledge, a direct analysis based on the restricted eigenvalue type conditions [6]
provides unsatisfactory bounds in such cases. On the other hand, results that hold
true without any assumptions on the design (e.g., [27], first statement of Theorem 1)
only guarantee “slow” rates of convergence (of order n−1/2, where n is the size of a
training data set).

The covariance function k(· , ·) of X satisfies k(ti, tj) = 1 + ti ∧ tj . Let K =(
1 + ti ∧ tj

)N
i,j=1

be the associated Gram matrix and let K = LLT be its Cholesky
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factorization. Note that

L =


√

1 + t1 0 . . . 0
√

1 + t1
√
t2 − t1 0

...
...

. . . 0√
1 + t1

√
t2 − t1 . . .

√
tN − tN−1


By the Factorization theorem (or a straightforward argument), for any w ∈ RN ,
‖w‖K =

∥∥L−1w
∥∥

2
. If w = Lv, then a direct computation shows

‖v‖22 = ‖w‖2K =
w2

1

1 + t1
+

N∑
j=2

(wj − wj−1)2

tj − tj−1
.(4.1)

The latter expression can be seen as a discrete analogue of the Sobolev norm. For
example, let the grid GN be uniform, that is, tj = (j − 1)/N , j = 1 . . . N , and let
λ : GN 7→ R be sparse in the following sense: supp(λ) = {ti1 < ti2 < · · · < tis} so that
|supp(λ)| = s and

min
26k6s

|tik − tik−1
| = σ � 1

N
.

It is clear from (4.1) that infw∈∂‖λ‖1 ‖w‖K 6 C
√
s/σ for some absolute constant

C > 0 (e.g., take a vector whose entries linearly interpolate the sign pattern of λ)
while the trivial choice w(tj) = sign(λ(tj)) leads to ‖w‖K > c

√
Ns.

Note also that if wj := w(tj), j = 1, . . . , N , for a smooth function w ∈W2,1([0, 1])

(with a slight abuse of notation, we write w both for the vector in RN and for the
function), then, by Cauchy-Schwarz inequality,

(wj − wj−1)2

tj − tj−1
=

(w(tj)− w(tj−1))2

tj − tj−1
=

( ∫ tj
tj−1

w′(s)ds
)2

tj − tj−1
6
∫ tj

tj−1

|w′(s)|2ds.

It immediately implies that ‖w‖2K 6 |w(0)|2 +
∫ 1

0
|w′(s)|2ds, so the discrete Sobolev

norm needed to control the alignment coefficient is bounded from above by its con-
tinuous counterpart. As a matter of fact, we have that

‖w‖2K 6 inf
w̃

[
|w̃(0)|2 +

∫ 1

0

|w̃′(s)|2ds
]
,

where the infimum is taken over all functions w̃ ∈ W2,1([0, 1]) such that w̃(tj) = wj ,
j = 1, . . . , N .

These observations allow one to characterize the prediction performance of the
LASSO estimator in terms of s and σ, in particular, rates faster than n−1/2 can be
deduced from Theorem 3.2.

4.3. Stationary processes. — In this subsection, we derive Sobolev norm bounds on
the alignment coefficient in the case when X is a stationary process (or a stationary
random field).
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Let T ⊂ Rd be a bounded open set and let µ be the Lebesgue measure. Consider
a stationary random field

{
X(t), t ∈ Rd

}
with continuos covariance function k :

k(t− s) = Cov(X(t), X(s)), t, s ∈ Rd.

By Bochner’s theorem, there exists a finite Borel measure ν such that

k(t) =

∫
Rd
ei〈t,u〉ν(du), t ∈ Rd(4.2)

called the spectral measure of X. In what follows, we assume that ν is absolutely
continuous with spectral density v : Rd 7→ R+.

Proposition 4.1. — Suppose that

(4.3) v(t) >
c

(1 + |t|2)p
, t ∈ Rd

for some p > d/2 and c > 0. For w defined on T, let

Ω(w) :=
{
w̃ : Rd 7→ R : w̃(t) = w(t), t ∈ T

}
.

Then
‖w‖K 6 C inf

w̃∈Ω(w)
‖w̃‖W2,p(Rd).

Note that condition (4.3) could not hold for p 6 d/2 since this would contradict
integrability of the spectral density v.

Proof. — Given u ∈ L1(Rd) ∩ L2(Rd), let û be its Fourier transform. Observe that

Var(fu(X)) =

∫∫
k(t− s)u(t)u(s)dtds =

∫
|û(z)|2v(z)dz.

For u supported in T and w̃ ∈ Ω(w), this gives

〈w, u〉L2(T,µ) = 〈w̃, u〉L2(Rd) =
〈̂̃w, û〉

L2(Rd)
=
〈 ̂̃w√

v
, û
√
v
〉

6 C
∥∥∥(1 + |x|2)p/2 ̂̃w∥∥∥

L2(Rd)
Var(fu(X)),

hence ‖w‖K 6 C
∥∥(1 + |x|2)p/2 ̂̃w∥∥

L2(Rd)
. It remains to note that by the properties of

Fourier transform ∥∥∥(1 + |x|2)p/2 ̂̃w∥∥∥
L2(Rd)

6 C‖w̃‖W2,p(Rd). �

We now turn to the case of stationary processes observed at discrete points. Let{
X(t), t ∈ Rd

}
be a (weakly) stationary random field, and let X1, . . . , Xn be i.i.d.

copies of X observed on the grid T = GN =
{
tj = 2πj/N, j ∈ {1, . . . , N}d

}
for some

even N . In this case, functions on T can be identified with vectors in RNd . We also
assume that µ is the counting measure on T.
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Assumption 4.1. — Suppose the following condition on the spectral density v of the
process X holds:

c1

( 1

1 + |t|2
)p
6 v(t) 6 c2

( 1

1 + |t|2
)p

for some p > d

2
,(4.4)

where 0 < c1 6 c2 <∞.

Proposition 4.2. — Given →w = (w1, . . . , wNd)T ∈ ∂‖λ‖1, let

ΩN (
→
w) =

{
w ∈W2,p(Rd) : w(2πj/N) = wj , j ∈ Zd

}
,

where wj are defined arbitrarily for j /∈ {1, . . . , N}d. Under the above-stated assump-
tions,

‖→w‖K 6 C inf
w∈ΩN (

→
w )

‖w‖W2,p(Rd).

The proof is outlined in section 7.5. Implications of this result for the risk of λ̂ε are
presented in Theorem 6.3 below. In particular, we show that rates faster than n−1/2

are often possible.

4.4. Sparse multiple linear models and weakly correlated partitions. — In this
section, we assume that

Y = a+

N∑
j=1

∫
Tj

X(j)(tj)dΛj(tj) + ξ,(4.5)

where a ∈ R, T1, . . . ,TN are measurable spaces equipped with σ-algebras B1, . . . ,BN

and finite measures µ1, . . . , µN , X(1), . . . , X(N) are subgaussian stochastic processes
on T1, . . . ,TN , Λ1, . . . ,ΛN are signed measures on spaces T1, . . . ,TN with bounded
total variations, and ξ is a zero-mean random variable independent of X(1), . . . , X(N).
Suppose Bj = BTj (Borel σ-algebra in the semimetric space (Tj , dX(j))). Without
loss of generality, we can assume that the sets T1, . . . ,TN form a partition of the space
T :=

⋃N
j=1 Tj equipped with a σ-algebra B and a measure µ such that the measures µj

are restrictions of µ on Tj . Similarly, signed measures Λj become restrictions on Tj
of a signed measure Λ∗ on (T,B). We will set X(t) := X(j)(t), t ∈ Tj , j = 1, . . . , N ,
and, finally, we can assume that B = BT is the Borel σ-algebra in the semimetric
space (T, dX).

We are interested in the situation when the processes
{
X(j)(t), t ∈ Tj

}
, j =

1, . . . , N , are weakly correlated (in particular, they can be independent). The num-
ber of predictors N can be very large, but Y might depend only on X(j)(t), t ∈ Tj ,
j ∈ J ⊂ {1, . . . , N}, where Card(J) � N , whence Card(J) naturally represents the
degree of sparsity of the problem. Another interpretation of the model is to assume
that the domain T of the stochastic process X can be partitioned in disjoint sets Tj
so that {X(t) : t ∈ Tj}, j = 1, . . . , N , are “weakly correlated”, but only few of the
elements of partition are correlated with the response variable Y . It is important to
emphasize that the results of the following sections concerning the estimator (1.2) are
adaptive with respect to the partitions, in particular, we do not need to know the
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“weakly correlated” parts in advance, but the estimator adapts to such a structure
(given that it exists).

Let Kj be the covariance operator of X(j) and kj its kernel (the covariance function
of X(j)). Our next goal is to understand how to control the alignment coefficient a(·)
associated with the process X in terms of the RKHS-norms ‖·‖Kj , j = 1, . . . , N .

Without loss of generality, assume that X(j), j = 1, . . . , N , are centered. Given
u ∈ L1(T, µ), it can be represented as u =

∑N
j=1 uj with supp(uj) ⊆ Tj . Given γ > 0,

define

Cγ,J :=
{
u ∈ L1(T, µ) :

∑
j 6∈J ‖fuj‖L2(Π) 6 γ

∑
j∈J ‖fuj‖L2(Π)

}
β

(γ)
2 (J) := inf

{
β > 0 :

∑
j∈J ‖fuj‖2L2(Π) 6 β

2‖fu‖2L2(Π), u ∈ Cγ,J
}
.and

Clearly, if X(j)(t), t ∈ T, j = 1 . . . N are uncorrelated, then β
(γ)
2 (J) = 1 for any

nonempty J ⊆ {1, . . . , N}. More generally, we have the following result:

Proposition 4.3. — For all J ⊂ {1, . . . , N} and all w =
∑
j∈J wj such that

supp(wj) ⊆ Tj and ‖wj‖Kj <∞, we have

a(b)(w) 6 β(γ)
2 (J)

(∑
j∈J
‖wj‖2Kj

)1/2

,(4.6)

where

γ = b max
16j6N

‖kj‖1/2∞ max
j∈J
‖wj‖Kj .

Proof. — Note that since w =
∑
j∈J wj with supp(wj) ⊆ Tj ,

Tw ⊂
⋃
j∈J

Tj and T r Tw ⊃
⋃
j 6∈J

Tj .

For all u ∈ C(b)
w (defined in (2.7)), we have∑

j 6∈J

‖fuj‖L2(Π) 6 max
16j6N

‖kj‖1/2∞
∑
j 6∈J

‖uj‖1

6 max
16j6N

‖kj‖1/2∞
∫

TrTw

|u|dµ 6 b max
16j6N

‖kj‖1/2∞ 〈w, u〉 .

Since

〈w, u〉 =
∑
j∈J
〈wj , uj〉 6

∑
j∈J
‖wj‖Kj

∥∥fuj∥∥L2(Π)
6 max

j∈J
‖wj‖Kj

∑
j∈J

∥∥fuj∥∥L2(Π)
,

we can conclude that∑
j 6∈J

∥∥fuj∥∥L2(Π)
6 b max

16j6N
‖kj‖1/2∞ max

j∈J
‖wj‖Kj

∑
j∈J

∥∥fuj∥∥L2(Π)
.
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We proved that C(b)
w ⊆ Cγ,J for γ := bmax16j6N ‖kj‖1/2∞ maxj∈J ‖wj‖Kj . For all

u ∈ C(b)
w ⊆ Cγ,J , we have

〈w, u〉 =
∑
j∈J
〈wj , uj〉 6

(∑
j∈J
‖wj‖2Kj

)1/2(∑
j∈J
‖fuj‖L2(Π)

)1/2

6 β(γ)
2 (J)

(∑
j∈J
‖wj‖2Kj

)1/2

‖fu‖L2(Π) ,

implying that

a(b)(w) 6 β(γ)
2 (J)

(∑
j∈J
‖wj‖2Kj

)1/2

with γ := bmax16j6N ‖kj‖1/2∞ maxj∈J ‖wj‖Kj . �

Next, we will relate β(γ)
2 (J) to the size of restricted isometry [13] constants asso-

ciated with partition T1, . . . ,TN . Given an integer d > 1, we define the restricted
isometry constant δd as the smallest δ > 0 with the following property: for any
J ⊂ {1, . . . , N} with Card(J) = d, any uj , j ∈ J such that supp(uj) ⊆ Tj and
Var(fuj (X)) = 1, the spectrum of the d × d matrix

(
Cov(fui(X), fuj (X))

)
i,j∈J be-

longs to [1− δ, 1 + δ].

Proposition 4.4. — The following inequality holds for all J ⊂ {1, . . . , N} with
Card(J) 6 d :

β
(γ)
2 (J) 6

1 + δ2d
(1− δ2d)2 − γδ3d

.

In particular, it means that β(γ)
2 can be bounded by a constant as soon as δ3d <

1/(2 + γ).

Proof. — The argument is similar to Lemma 7.2 in [26], the details are included in
Appendix A.6 for the reader’s convenience. �

5. Oracle inequalities and weakly correlated partitions

First, we will state a corollary of Theorem 3.2 concerning the model of weakly
correlated partitions discussed in Section 4. Let ∆ := {T1, . . . ,TN} be a partition of
the parameter space T into N > 1 measurable disjoint sets. Let T be the set of all
such partitions. Let X(j) denote the restriction of stochastic process X to the set Tj
and let Kj be the covariance operator of the process Xj and kj be its covariance
function. Consider an oracle λ ∈ L1(µ) and denote

Jλ := {j = 1, . . . , N : Tj ∩ supp(λ) 6= ∅}.

Also, denote N(λ) := Card(Jλ). Usually, we assume that N is very large and N(λ)

is much smaller than N , so, N(λ) plays the role of “sparsity parameter” in this
framework. Let w =

∑
j∈Jλ wj ∈ ∂‖λ‖1 be a subgradient such that supp(wj) ⊂ Tj ,
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j ∈ Jλ. In what follows, denote Wλ,∆ the set of all such subgradients w. Recall the
definition of the quantity β(γ)

2 (J) (Section 4) and denote

β(w, λ) := β
(γ)
2 (Jλ), γ := 16 max

16j6N
‖kj‖1/2∞ max

j∈Jλ
‖wj‖Kj .

Proposition 4.3 implies that

a(w) 6 β(w, λ)
(∑
j∈Jλ

‖wj‖2Kj
)1/2

.(5.1)

We will also need the following quantities that would play the role of “approximate
dimensions” of the sets of random variables XTwj , j ∈ J (local versions of d(w, λ)):

dj(w, λ) := min
{
m > 0 :

mσ2
Y

n
> ‖λ‖1

γ2 (ρm(wj))√
n

}
.(5.2)

Proposition 5.1. — Under the above notations, the following bound holds:

d(w, λ) 6
∑
j∈Jλ

dj(w, λ).

Proof. — Denote mj := dj(w, λ). Then,

mjσ
2
Y

n
> ‖λ‖1

γ2

(
ρmj (wj)

)
√
n

, j ∈ Jλ

and, for all j ∈ Jλ and δ > 0, there exist Lj ⊂ LX such that dim(Lj) 6 mj and

sup
t∈Twj

‖P⊥Lj (X(t)− EX(t))‖L2(Π) 6 ρmj (wj) + δ.

Denote L := l.s.
(⋃

j∈Jλ Lj
)
. Then,

sup
t∈Tw

‖P⊥L (X(t)− EX(t))‖L2(Π) 6 max
j∈Jλ

sup
t∈Twj

‖P⊥Lj (X(t)− EX(t))‖L2(Π)

6 max
j∈Jλ

ρmj (wj) + δ

and
σ2
Y

∑
j∈Jλ mj

n
> ‖λ‖1

γ2

(
maxj∈Jλ ρmj (wj)

)
√
n

.

Since dim(L) 6
∑
j∈Jλ mj := m, we have

ρm(w) 6 sup
t∈Tw

‖P⊥L (X(t)− EX(t))‖L2(Π) 6 max
j∈Jλ

ρmj (wj) + δ.

It follows that
σ2
Ym

n
> ‖λ‖1

γ2 (ρm(w)− δ)√
n

.

Since δ > 0 is arbitrary, this yields
σ2
Ym

n
> ‖λ‖1

γ2 (ρm(w))√
n

,

and the result follows. �

J.É.P. — M., 2014, tome 1



L1-penalization in functional linear regression 289

As a very simple example, let I1, . . . , IN be disjoint finite subsets of the set N of
natural numbers and let

X(t) = X(j)(t) =
∑
k∈Ij

η
(j)
k φ

(j)
k (t), t ∈ Tj , j = 1, . . . , N,

where φ
(j)
k , k ∈ Ij are bounded measurable functions on Tj , j = 1, . . . , N , and

{η(j)
k : k ∈ Ij , j = 1, . . . , N} are centered jointly normal random variables. Denote

mj := Card(Ij), j = 1, . . . , N . Let λ ∈ D and w ∈ Wλ,∆. Obviously,

dj(w, λ) 6 mj , j ∈ Jλ,

so, we have a simple bound

d(w, λ) 6
∑
j∈Jλ

mj .

The next statement immediately follows from Theorem 3.2, Proposition 5.1 and
bound (5.1).

Corollary 5.1. — Suppose that assumptions and notations of Theorem 3.2 hold.
There exists an absolute constant C > 0 such that with probability at least 1− e−s

(5.3)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6 inf

∆∈T ,λ∈D,
w∈Wλ,∆,a∈R

[
‖fλ,a − f∗‖2L2(Π)

+ 2ε2β2(w, λ)
∑
j∈Jλ‖wj‖

2
Kj + C

σ2
Y

∑
j∈Jλ dj(w, λ)

n
+ C
‖λ‖21S2(T)

n

]
+ C

σ2
Y s

n
.

The term ‖λ‖21S2(T)/n that depends on ‖λ‖21 can be dropped if ‖λ‖1 is not too
large (see Theorem 3.3). In general, this term can be controlled in terms of sparsity
parameter N(λ) and ‖λ‖L2(µ). To this end, note that, by Cauchy-Schwarz inequality,

‖λ‖1 =
∑
j∈Jλ

∫
Tj
|λ|dµ 6

∑
j∈Jλ

(∫
Tj
|λ|2dµ

)1/2

µ1/2(Tj)

6

(∑
j∈Jλ

∫
Tj
|λ|2dµ

)1/2(∑
j∈Jλ

µ(Tj)
)1/2

6 ‖λ‖L2(µ) max
j∈Jλ

µ1/2(Tj)
√
N(λ).

For an arbitrary oracle λ ∈ T, arbitrary partition ∆ ∈ T , arbitrary subgradient
w ∈ Wλ,T and for

ε = D
σY S(T)

√
s√

n
,

we have the following inequality that holds with probability at least 1− e−s :

(5.4)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6
∥∥fλ,a(λ) − f∗

∥∥2

L2(Π)
+ C

[
Q(w, λ,∆)

N(λ)

n
+
σ2
Y s

n

]
,

J.É.P. — M., 2014, tome 1



290 V. Koltchinskii & S. Minsker

where

Q(w, λ,∆) := σ2
Y S(T)2β2(w, λ) max

j∈Jλ
‖wj‖2Kjs+ σ2

Y max
j∈Jλ

dj(w, λ)

+ S2(T)‖λ‖2L2(µ) max
j∈Jλ

µ(Tj).

Thus, if there is an oracle λ ∈ D for which the approximation error
∥∥fλ,a(λ) − f∗

∥∥2

L2(Π)

is small and the quantity Q(w, λ,∆) is of a moderate size, then the error of the es-
timator (λ̂ε, âε) is essentially controlled by the quantity N(λ)/n (up to log factors).
Since N(λ) can be viewed as a degree of sparsity of the oracle λ, this explains the con-
nection of the oracle inequality of Corollary 5.1 and now classical bounds for LASSO
in the case of large finite dictionaries. Once again, it is important to emphasize that
the estimation method (1.2) does not require any knowledge of a “weakly correlated
partition” ∆. The method is adaptive in the sense that, if there exists a partition ∆

such that β(w, λ) and other quantities involved in the definition of Q(w, λ,∆) are not
large, then the size of the error depends on the degree of sparsity N(λ) with respect
to the partition of oracles λ that provide good approximation of the target.

In the simplest example, T := {1, . . . , N} and the partition ∆ :=
{
{1}, . . . , {N}

}
(so, T is partitioned in one point sets). Let µ be the counting measure. Thus, X
is an N -dimensional subgaussian vector and we are in the framework of standard
high-dimensional multiple regression model. For simplicity, assume that X is scaled
in such a way that EX(t) = 0, EX2(t) = 1. The estimator (1.2) becomes a version
of usual LASSO-estimator. Then, it is easy to check that S(T) 6 C

√
logN . Also,

in this case RKHS-spaces H(Kj), j = 1, . . . , N , are one-dimensional and we have
‖wj‖Kj = |w(j)|, j = 1, . . . , N . For an oracle λ ∈ D,

N(λ) = Card(Jλ), Jλ = supp(λ) = {1 6 j 6 N : λj 6= 0}.

In this case, we can set w(j) = sign(λ(j)), j = 1, . . . , N . Also, we obviously have
dj(w, λ) = 1. Finally, in this case the quantity β(γ)

2 (J) coincides with standard “cone
constrained” characteristics frequently used in the literature on sparse recovery (see,
e.g., [26], Section 7.2.2). We will use β(λ) = β(w, λ) = β

(16)
2 (Jλ). Then, Corollary 5.1

takes the following form.

Corollary 5.2. — There exist absolute constants C, c and D such that the following
holds. For any s > 1 with s := s + 3 log(log2 n + 2) + 3 6 c

√
n/log n and for all ε

satisfying

(5.5) ε > D
σY
√
s logN√
n

,

with probability at least 1− e−s

(5.6)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6 inf
λ∈D,a∈R

[
‖fλ,a − f∗‖2L2(Π) + 2β2(λ)N(λ)ε2

+ C
σ2
YN(λ)

n
+ C
‖λ‖21 logN

n

]
+ C

σ2
Y s

n
.
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More generally, assume that T is a finite set with a counting measure µ and consider
an arbitrary partition ∆ = {T1, . . . ,TN} of T. Denote

mj := µ(Tj) = Card(Tj), j = 1, . . . , N

and m := µ(T) = Card(T). As before, X is subgaussian and EX(t) = 0, EX2(t) = 1.
Then, we have S(T) 6 C

√
logm. In this case, covariance operators Kj are acting in

mj-dimensional Euclidean spaces and we have

‖wj‖Kj = ‖K−1/2
j wj‖2, j = 1, . . . , N.

Clearly, we also have dj(w, λ) 6 mj . Thus, the oracle inequality of Corollary 5.1
implies that

(5.7)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6 inf

∆∈T ,λ∈D,
w∈Wλ,∆,a∈R

[
‖fλ,a − f∗‖2L2(Π)

+ 2β2(w, λ)
∑
j∈Jλ‖K

−1/2
j wj‖22ε2 + C

σ2
Y

∑
j∈Jλ mj

n
+ C
‖λ‖21 logm

n

]
+ C

σ2
Y s

n
.

This holds with probability at least 1− e−s for all ε satisfying ε > DσY
√
s logm/

√
n.

6. Stationary and piecewise stationary processes

Suppose T is a bounded subset of Rd with Lebesgue measure µ and let ∆ =

{T1, . . . ,TN} be a measurable partition of T.

Assumption 6.1. — Suppose that each set Tj is contained in a ball of radius r. In
what follows, we assume that r > N−1/d. It is easy to see that there exists a constant
κ > 2 depending only on d such that the ε-covering numbers of T with respect to the
standard Euclidean distance satisfy the condition

(6.1) N(T; ε) 6

(
R

ε

)d∨
N, ε ∈ (0, R),

where R = κN1/dr.

Let X(j), j = 1, . . . , N , be centered stationary subgaussian processes on Rd and let

X(t) :=

N∑
j=1

X(j)(t)ITj (t), t ∈ T.

Thus, we can view the process X as “piecewise stationary”. Let Kj denote the covari-
ance operator and vj denote the spectral density of X(j), j = 1, . . . , N (we assume
that the spectral densities exist).

Assumption 6.2. — Suppose that, for some constant B > 0 and some p > d/2,

(6.2) 1

B

1

(1 + |t|2)p
6 vj(t) 6 B

1

(1 + |t|2)p
, t ∈ Rd, j = 1, . . . , N.
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We use the notations Jλ, N(λ) = Card(Jλ) and β(λ) = β(w, λ) introduced in
Section 5. Let λ ∈ D be an oracle such that, for each j ∈ Jλ we either have that
λ(t) > 0 for all t ∈ Tj , or λ(t) 6 0 for all t ∈ Tj . Thus, λ does not change its sign
inside the elements of the partition. Denote D∆ the set of all such oracles in D.

Finally, denote R(λ) = κ(N(λ))1/dr. Clearly, r 6 R(λ) 6 R (we assume that
N(λ) > 1) and condition (6.1) holds for the covering numbers of the set

⋃
j∈Jλ Tj

with R(λ) in place of R.

Theorem 6.1. — There exist constants C, c and D depending only on B, p, d such that
the following holds. For any s > 1 with s := s+ 3 log(log2 n+ 2) + 3 6 c

√
n/log n, for

all ε satisfying

ε > D
σY
√
s(logN ∨ log r)√

n
,

with probability at least 1− e−s

(6.3)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6 inf
λ∈D∆,a∈R

[
‖fλ,a − f∗‖2L2(Π)

+ C
(
σ2
Y r

d
) 2p−d

2p+d Ld/(2p+d) ‖λ‖
2d/(2p+d)
1 N(λ)(2p−d)/(2p+d)

n2p/(2p+d)
+ C

σ2
YN(λ)

n

+ Crd(1 + r−p)2β2(λ)N(λ)ε2 + C
‖λ‖21(logN ∨ | log r|)

n

]
+ C

σ2
Y s

n
,

where L := logN ∨ log n ∨ | log σY | ∨ | log r|.

We will now consider a stationary subgaussian random field X(t), t ∈ Rd, observed
in a ball T = {t : |t| 6 R} of radius R > 2.

Assumption 6.3. — Suppose that X has a spectral density v(t), t ∈ Rd and, for some
constant B > 0 and some p > d/2,

(6.4) 1

B

1

(1 + |t|2)p
6 v(t) 6 B

1

(1 + |t|2)p
, t ∈ Rd.

Let λ ∈ D be an oracle such that supp(λ) can be covered by a union of N(λ)

disjoint balls B(t1; r), . . . , B(tN(λ); r) of radius r 6 R/2. Moreover, let us assume that
the balls in this covering are well separated in the sense that the distance between any
two distinct balls is at least 2r. In addition to this, assume that λ does not change
sign on each of the sets B(tj ; r) ∩ supp(λ), j = 1, . . . , N(λ). Let Dr denote the set of
all such oracles λ ∈ D.

Then, the following theorem holds.

Theorem 6.2. — There exist constants C, c and D depending only on B, p, d such that
the following holds. For any s > 1 with s := s+ 3 log(log2 n+ 2) + 3 6 c

√
n/log n, for

all ε satisfying

ε > D
σY
√
s logR√
n

,
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with probability at least 1− e−s

(6.5)
∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6 inf
λ∈Dr,a∈R

[
‖fλ,a − f∗‖2L2(Π)

+ C
(
σ2
Y r

d
) 2p−d

2p+d Ld/(2p+d) ‖λ‖
2d/(2p+d)
1 N(λ)(2p−d)/(2p+d)

n2p/(2p+d)

+ C
σ2
YN(λ)

n
+ Crd(1 + r−p)2N(λ)ε2 + C

‖λ‖21 logR

n

]
+ C

σ2
Y s

n
,

where L := log n ∨ | log σY | ∨ logR ∨ | log r|.

Note that in Theorems 6.1 and 6.2 the error rate depends on “sparsity parame-
ter” N(λ) (its meaning is somewhat different in these two cases). Moreover, the error
rate involves a “nonparametric term” O(n−2p/(2p+d)). Thus, p > d/2 plays a role of
smoothness parameter in this problem.

Often, it is natural to assume that the target f∗(X) can be approximated by fΛ(X),
where Λ is a discrete signed measure supported on a “well-separated” subset of T, so
that fΛ(X) =

∑N(Λ)
j=1 λjX(tj), where

min
16i<j6N(Λ)

|ti − tj | > 3δ(Λ) > 0

and δ(Λ) is large enough. Such a discrete oracle Λ can be further approximated by a
linear combination of continuous “spikes” supported in well separated disjoint balls
of radius r > 0. This can be done for an arbitrary r < δ(Λ) and optimizing the
bound of Theorem 6.2 with respect to r would lead to a bound with a faster error
rate. We will implement this in a special (and practically important) case when the
design processes Xj , j = 1, . . . , n are observed on a discrete grid in Rd. Specifically,
assume that T = GN =

{
tj = 2πj/N, j ∈ {1, . . . , N}d

}
and it is equipped with the

counting measure µ, see section 4.3 for more details. Note that in this case we are in
the framework of a standard high-dimensional linear regression with highly correlated
design. Functions λ on T can be identified with vectors in RNd and we will assume
that D := RN

d . Suppose that Assumption 6.3 holds and let λ be an oracle such that
J(λ) = supp(λ) ⊂ {1, . . . , N}d, N(λ) := Card(J(λ)), and

min
i,j∈J(λ),i6=j

|i− j|
N

=: 2δ(λ) >
1

N
,

where |i− j| stands for the usual Euclidean distance in Rd. We are mainly interested
in the oracles λ with “well-separated” non-zero elements, meaning that δ(λ)� 1/N .
In this setting, the following result holds.

Theorem 6.3. — There exist constants C, c and D depending only on B, p, d such that
the following holds. For any s > 1 with s := s+ 3 log(log2 n+ 2) + 3 6 c

√
n/log n, let

ε = D
σY
√
s√

n
.
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Then with probability at least 1− e−s∥∥fλ̂ε,âε − f∗∥∥2

L2(Π)
6 inf
λ∈RNd ,a∈R

[
‖fλ,a − f∗‖2L2(Π) + Cδ(λ)d−2pσ2

Y

N(λ)s

n

+ Cσ
2p/(p+d)
Y

(
sL‖λ‖21

)d/(2p+2d) N(λ)p/(p+d)

n(2p+d)/(2p+2d)
+ C
‖λ‖21
n

]
+ C

σ2
Y s

n
.

where L = log n ∨ logN ∨ | log σY |.

7. Proofs of the main results

7.1. Preliminaries. — Recall that

Fn(λ, a) := Pn(`•fλ,a) + ε‖λ‖1, F (λ, a) := P (`•fλ,a) + ε‖λ‖1.

In the proofs of the main results, we will use necessary conditions for the min-
ima in problems (1.2), (2.3) that will be stated now. Given a convex functional
H : L1(µ)× R 7→ R, define its directional derivative at a point (λ, a) ∈ L1(µ) × R
in the direction u = (u1, u2) ∈ L1(µ)× R as

DH(λ, a)(u) := lim
t↓0

H((λ, a) + tu)−H(λ, a)

t
.

Proposition 7.1. — For any λ1, λ2 ∈ D and a1, a2 ∈ R,

DFn(λ1, a1)(λ2 − λ1, a2 − a1) = Pn(`′•fλ1,a1)(fλ2,a2 − fλ1,a1) + ε 〈w1, λ2 − λ1〉

for some w1 ∈ ∂‖λ1‖1 that depends on λ2. Similarly,

DF (λ1, a1)(λ2 − λ1, a2 − a1) = P (`′•fλ1,a1)(fλ2,a2 − fλ1,a1) + ε 〈w1, λ2 − λ1〉 .

Proof. — The treatment of the terms Pn(`•fλ,a), P (`•fλ,a) is straightforward, so it
only remains to examine the L1-penalty term. Let v := λ2 − λ1. Since the function
(0, 1) 3 s 7→ |λ1(t) + sv(t)| is convex, we have that

(0, 1) 3 s 7−→ |λ1(t) + sv(t)| − |λ1(t)|
s

is nondecreasing. Given a decreasing sequence {sn}n>0 ⊂ (0, 1) such that sn → 0, the
sequence of functions

gn(t) :=
|λ1(t) + snv(t)| − |λ1(t)|

sn
monotonically converges to

g(t) =

{
sign(λ1(t))v(t), λ1(t) 6= 0

sign(v(t))v(t), else.

Moreover, gn(t) are integrable, and the monotone convergence theorem implies that

lim
n→∞

∫
T

gndµ =

∫
T

gdµ =

∫
T

w1udµ,

where |w1(t)| 6 1, t ∈ T and w1(t) = sign(λ1(t)), λ1(t) 6= 0. In particular, w1 ∈
∂‖λ1‖1. �
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When λ1 = λ̂ε (which minimizes Fn), the corresponding directional derivatives
must be nonnegative for any λ2 ∈ D.

7.2. Proof of Theorem 2.1. — Let (λ,w, a) be a triple that minimizes the right-hand
side of (2.9). If the infimum is not attained, one can consider the triple for which the
right-hand side is arbitrarily close to the infimum and follow the argument below.

Since (λε, aε) minimizes F (λ, a) over D× R, the directional derivative

DF (λε, aε)(λ− λε, a− aε)

is nonnegative for any λ ∈ D, a ∈ R. By Proposition 7.1, this is equivalent to the
following: there exists wε ∈ ∂‖λε‖1 such that

P (`′•fλε,aε)(fλε,aε − fλ,a) + ε
〈
wε, λε − λ

〉
6 0.(7.1)

Let w ∈ ∂‖λ‖1. Since

(`′•fλε,aε)(x, y) = 2(fλε,aε(x)− y)

and also Y = f∗(X) + ξ, where E(ξ|X) = 0, we have

P (`′•fλε,aε)(fλε,aε − fλ,a) = 2E(fλε,aε(X)− Y )(fλε,aε(X)− fλ,a(X))

= 2〈fλε,aε − f∗, fλε,aε − fλ,a〉L2(Π).

Thus, (7.1) can be rewritten as

2〈fλε,aε − f∗, fλε,aε − fλ,a〉L2(Π) + ε
〈
wε − w, λε − λ

〉
6 ε

〈
w, λε − λ

〉
.(7.2)

Note that

2〈fλε,aε − f∗, fλε,aε − fλ,a〉L2(Π) = ‖fλε,aε − f∗‖2L2(Π) + ‖fλε,aε − fλ,a‖
2
L2(Π)

− ‖fλ,a − f∗‖
2
L2(Π)

and 〈
wε − w, λε − λ

〉
>

1

2

∫
TrTw

|λε|dµ.

Hence

(7.3) ‖fλε,aε − f∗‖2L2(Π) + ‖fλε,aε − fλ,a‖
2
L2(Π) +

ε

2

∫
TrTw

|λε|dµ

6 ‖fλ,a − f∗‖
2
L2(Π) + ε

〈
w, λε − λ

〉
.

Consider two cases: first, if

‖fλε,aε − f∗‖2L2(Π) +
ε

4

∫
TrTw

|λε|dµ 6 ‖fλ,a − f∗‖
2
L2(Π),

then inequality (2.9) clearly holds. Otherwise, (7.3) implies that∫
TrTw

|λε|dµ =

∫
TrTw

|λε − λ|dµ 6 4
〈
w, λε − λ

〉
.
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Hence, λε − λ ∈ C(4)
w and

ε
〈
w, λε − λ

〉
6 ε
∥∥fλε,aε − fλ,a∥∥L2(Π)

a(w) 6
1

4
ε2a2(w) +

∥∥fλε,aε − fλ,a∥∥2

L2(Π)
,

where we used the definition of a(w) and a simple inequality ab 6 1
4a

2 + b2. Substi-
tuting this bound into (7.3) gives the result.

7.3. Proof of Theorem 3.2. — Throughout the proof, C,C1, c, c1, etc. denote abso-
lute constants whose values may change from line to line.

Step 1. Reduction to empirical processes. — Let (λ,w, a) be a triple that minimizes the
right-hand side of bound (3.6). Clearly, a = a(λ), see (2.1). If the infimum is not
attained, it is easy to modify the argument by considering a triple for which the
right-hand side is arbitrarily close to the infimum. Since 0 ∈ D and, for λ = 0, one
can also take w = 0 and a = EY = Ef∗(X), we have that

(7.4) ‖fλ,a − f∗‖
2
L2(Π) 6 ‖f∗ −Πf∗‖2L2(Π) = Var(f∗(X))

and

(7.5) ‖λ‖21 6
‖f∗ −Πf∗‖2L2(Π)n

CS2(T)
.

We will write in what follows λ̂ = λ̂ε and set â := â(λ̂). Since (λ̂, â) minimizes Fn(λ, a)

over D × R, the directional derivative DFn(λ̂, â)(λ − λ̂, a − â) is nonnegative. Here
and in what follows, we use the “optimal” value a = a(λ), see (2.1). By Proposition
7.1, this is equivalent to the following: there exists ŵ ∈ ∂‖λ̂‖1 such that

(7.6) Pn(`′•fλ̂,â)(fλ̂,â − fλ,a) + ε
〈
ŵ, λ̂− λ

〉
6 0.

Since w ∈ ∂‖λ‖1, (7.6) can be rewritten as

(7.7) P (`′•fλ̂,â)(fλ̂,â − fλ,a) + ε
〈
ŵ − w, λ̂− λ

〉
6 ε
〈
w, λ− λ̂

〉
+ (P − Pn)(`′•fλ̂,â)

(
fλ̂,â − fλ,a

)
.

Denote η(x, y) := y − fλ,a(x). Observe that(
`′•fλ̂,â

)
(x, y) = −2

(
y − fλ̂,â(x)

)
= −2η(x, y) + 2

(
fλ̂,â(x)− fλ,a(x)

)
and, since Y = f∗(X) + ξ, E(ξ|X) = 0,

− P
[
η(fλ̂,â − fλ,a)

]
= −Eη(X,Y )

(
fλ̂,â(X)− fλ,a(X)

)
= −E

(
ξ + f∗(X)− fλ,a(X)

)(
fλ̂,â(X)− fλ,a(X)

)
=
〈
fλ,a − f∗, fλ̂,â − fλ,a

〉
L2(Π)

.

Therefore, we get the following bound:

2
〈
fλ,a − f∗, fλ̂,â − fλ,a

〉
L2(Π)

+ 2
∥∥fλ̂,â − fλ,a∥∥2

L2(Π)
+ ε
〈
ŵ − w, λ̂− λ

〉
6 ε
〈
w, λ− λ̂

〉
+ 2(Pn − P )η(fλ̂,â − fλ,a) + 2(Π−Πn)(fλ̂,â − fλ,a)2.
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Using the fact that

2
〈
fλ,a − f∗, fλ̂,â − fλ,a

〉
L2(Π)

= ‖fλ̂,â − f∗‖
2
L2(Π) − ‖fλ̂,â − fλ,a‖

2
L2(Π)

− ‖fλ,a − f∗‖
2
L2(Π),

it can be rewritten as

(7.8) ‖fλ̂,â − f∗‖
2
L2(Π) + ‖fλ̂,â − fλ,a‖

2
L2(Π) + ε

〈
ŵ − w, λ̂− λ

〉
6 ‖fλ,a − f∗‖

2
L2(Π)

+ ε
〈
w, λ− λ̂

〉
+ 2(Pn − P )η(fλ̂,â − fλ,a) + 2(Π−Πn)

(
fλ̂,â − fλ,a

)2
.

The main part of the proof deals with bounding the empirical processes in the right-
hand side of (7.8). In what follows, L denotes a subspace of the subgaussian space
LX ⊂ L2(P) (the closed linear span of {X(t) − EX(t) : t ∈ T}). Let d := dim(L)

and let PL, PL⊥ be the orthogonal projections onto the subspace L and its orthogonal
complement L⊥ ⊂ LX , and

ρ := ρ(L) := sup
t∈Tw

‖PL⊥(X(t)− EX(t))‖L2(P) .(7.9)

Step 2. Bounds for (Pn − P )
[
η
(
fλ̂,â − fλ,a

)]
. — Let f0

λ(·) := fλ,a(·) − Πfλ,a, which
clearly satisfies Πf0

λ = 0. Observe that the following decomposition holds:

(7.10) fλ̂,â − fλ,a = f0
λ̂
− f0

λ
+ Y n − EY +

〈
λ̂− λ,EX −Xn

〉
+
〈
λ,EX −Xn

〉
.

This implies

(Pn − P )η(fλ̂,â − fλ,a) = (Pn − P )η(f0
λ̂
− f0

λ
) + (Pn − P )η(Y n − EY )

+ (Pn − P )η · (Π−Πn)(f0
λ̂
− f0

λ
) + (Pn − P )η

〈
λ,EX −Xn

〉
.

Denote

Λ(δ,∆, R) :=

{
λ ∈ D :

∥∥f0
λ − f0

λ

∥∥
L2(Π)

6 δ,
∫

TrTw

|λ|dµ 6 ∆, ‖λ‖1 6 R
}
,

αn(δ; ∆;R) := sup
λ∈Λ(δ,∆,R)

∣∣(Pn − P )η(f0
λ − f0

λ
)
∣∣ ,

τn(δ; ∆;R) := sup
λ∈Λ(δ,∆,R)

∣∣(Πn −Π)(f0
λ − f0

λ
)
∣∣ .

Then

(7.11)
∣∣∣(Pn − P )η(fλ̂,â − fλ,a)

∣∣∣ 6 αn(‖f0
λ̂
− f0

λ
‖L2(Π),

∫
TrTw

|λ̂|dµ, ‖λ̂‖1
)

+
∣∣Y n − EY

∣∣ · |(Pn − P )η|+ |(Pn − P )η| · τn
(
‖f0
λ̂
− f0

λ
‖L2(Π),

∫
TrTw

|λ̂|dµ, ‖λ̂‖1
)

+ |(Pn − P )η| ·
∣∣〈λ,EX −Xn

〉∣∣ .
To provide upper bounds on each of the terms in the right-hand side of (7.11) we

need several lemmas.
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Lemma 7.1. — Let {Y (t), t ∈ T} be a centered subgaussian process such that

EY (t)Y (s) = Cov(X(t), X(s)), t, s ∈ T.

There exists a constant C > 0 such that

E sup
λ∈Λ(δ,∆,R)

∣∣〈Y, λ− λ〉∣∣ 6 C[δ√d ∨ (R+ ‖λ‖1)γ2(ρ) ∨∆S(T)
]
.

Proof. — Denote LY the closed linear span of {Y (t), t ∈ T}, the subgaussian space
of the process Y . Clearly, the mapping X(t)− EX(t) 7→ Y (t), t ∈ T can be extended
to an L2(P)-isometry of the spaces LX ,LY ⊂ L2(P). Let L̃ be the image of the
subspace L under this isometry. For all λ ∈ Λ(δ,∆, R) and for u := λ− λ,

〈Y, u〉 = PL̃〈Y, u〉+

∫
Tw

PL̃⊥Y (t)u(t)µ(dt) +

∫
TrTw

PL̃⊥Y (t)u(t)µ(dt).(7.12)

We will use this representation and bound separately the supremum of each term to
control

sup{〈Y, λ− λ〉 : λ ∈ Λ(δ,∆, R)}.
For the first term, let ξ1, . . . , ξd be an orthonormal basis of L̃. Note that for u = λ−λ,
λ ∈ Λ(δ,∆, R), we have E〈Y, u〉2 = ‖f0

u‖2L2(Π) 6 δ
2. Therefore,

E sup
{
|PL̃〈Y, λ− λ〉| : λ ∈ Λ(δ,∆, R)

}
6 E sup

{
PL̃〈Y, u〉 : E〈Y, u〉2 6 δ2

}
6 E sup

{∣∣∣∑d
k=1 αkξk

∣∣∣ :
∑d
k=1 α

2
k 6 δ

2
}

= δE
(∑d

k=1 ξ
2
k

)1/2

6 δ
√
d.

For the second term, observe that for u = λ− λ, λ ∈ Λ(δ,∆, R)∣∣∣∣∫
Tw

PL̃⊥Y (t)u(t)µ(dt)

∣∣∣∣ 6 sup
t∈Tw

|PL̃⊥Y (t)|‖u‖1 6 (R+ ‖λ‖1) sup
t∈Tw

|PL̃⊥Y (t)|.

Denote U(t) := PL̃⊥Y (t), t ∈ T. Clearly, U is a centered subgaussian process such
that

E(U(t)− U(s))2 6 E(Y (t)− Y (s))2, t, s ∈ T
and, as a consequence, ‖U(t)−U(s)‖ψ2

6 c‖Y (t)−Y (s)‖ψ2
with an absolute constant

c > 0. Moreover, since the spaces LY , L̃ are isometric images of the spaces LX , L, we
also have that

sup
t∈Tw

EU2(t) = sup
t∈Tw

E|PL̃⊥Y (t)|2 = sup
t∈Tw

E|PL⊥(X − EX)(t)|2 = ρ2,

which implies that supt∈Tw ‖U(t)‖ψ2 6 cρ. Then, it follows from the upper bound on
sup-norms of subgaussian processes in terms of generic chaining complexities (in par-
ticular, (1.4)) that

E sup
t∈Tw

|PL̃⊥Y (t)| 6 Cγ2(ρ)

and
E sup
λ∈Λ(δ,∆,R)

∣∣∣∣∫
Tw

PL̃⊥Y (t)(λ− λ)(t)µ(dt)

∣∣∣∣ 6 C(R+ ‖λ‖1)γ2(ρ).
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with an absolute constant C > 0. Finally, for the third term, note that for u = λ−λ,
λ ∈ Λ(δ,∆, R)∣∣∣∣ ∫

TrTw

PL̃⊥Y (t)u(t)µ(dt)

∣∣∣∣ 6 sup
t∈T
|PL̃⊥Y (t)|

∫
TrTw

|u|dµ 6 ∆ sup
t∈T
|PL̃⊥Y (t)|,

where we used the fact that λ(t) = 0, u(t) = λ(t) for t ∈ T r Tw. By an argument
similar to the one used for the second term of (7.12), we get

E sup
λ∈Λ(δ,∆,R)

∣∣∣∣∫
TrTw

PL̃⊥Y (t)(λ− λ)(t)µ(dt)

∣∣∣∣ 6 C∆S(T),

which implies the bound of the lemma. �

Lemma 7.2. — There exists a constant C > 0 such that, for all δ > 0,∆ > 0, R > 0,

Eαn(δ,∆, R) 6 C
(
‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)[
δ

√
d

n

∨
(R ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆
S(T)√
n

]
∨
C

[
δ

√
d

n

∨
(R ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆
S(T)√
n

]2

.

Proof. — Let F := F (δ,∆, R) := {f0
λ − f0

λ
: λ ∈ Λ(δ,∆, R)}. We use a recent result

by S. Mendelson (see Theorem A.4, statement (i)) which implies that, for all δ,∆, R,

(7.13) Eαn(δ,∆, R) 6 C

[
‖η‖ψ2

γ2(F ;ψ2)√
n

∨ γ2
2(F ;ψ2)

n

]
,

for an absolute constant C > 0. Since
{
f(X) : f ∈ F (δ,∆, R)

}
⊂ L and L is

a subgaussian space, we have that ‖f‖ψ2
6 c1‖f‖L2(Π), f ∈ F (δ,∆, R) for some

constant c1. Therefore,

γ2 (F ; ‖·‖ψ2
) 6 c1γ2 (F ;L2(Π)) .

Let G(t), t ∈ T be a centered Gaussian process with the same covariance as the pro-
cess {X(t), t ∈ T}. Then the stochastic processes u 7→ 〈G, u〉 has the same covariance
as u 7→ 〈X − EX,u〉 = f

(0)
u (X), that is, E 〈G, u1〉 〈G, u2〉 =

〈
f0
u1
, f0
u2

〉
L2(Π)

. By Tala-
grand’s generic chaining theorem for Gaussian processes (Theorem 2.1.1 in [39]), this
implies

γ2 (F , L2(Π)) 6 c2 E sup
{∣∣〈G,λ− λ〉∣∣ : λ ∈ Λ(δ,∆, R)

}
.

Using Lemma 7.1, we get the following bound on γ2 (F , ‖·‖ψ2) :

(7.14) γ2 (F , ‖·‖ψ2
) 6 C

[
δ
√
d ∨ (R+ ‖λ‖1)γ2(ρ) ∨∆S(T)

]
.

Next, note that

η(X,Y ) = Y − fλ,a(X) = f∗(X) + ξ − fλ,a(X).

We also have Ef∗(X) = EY and

Efλ,a(X) = EY − 〈λ,EX〉+ E〈λ,X〉 = EY
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which implies that Eη(X,Y ) = 0. The random variable f∗(X) − fλ,a(X) belongs to
the subgaussian space L , implying that

‖η‖ψ2
= ‖f∗(X)− fλ,a(X) + ξ‖ψ2

6 ‖f∗(X)− fλ,a(X)‖ψ2
+ ‖ξ‖ψ2

(7.15)
6 c‖fλ,a − f∗‖L2(Π) + ‖ξ‖ψ2

with an absolute constant c > 0. In view of (7.13), (7.14) and (7.15) easily imply the
bound of the lemma. �

Our next goal is to derive an upper bound on αn(δ,∆, R) that holds uniformly in
δ ∈ [δ−, δ+], ∆ ∈ [∆−,∆+], R ∈ [R−, R+] for some δ− < δ+,∆− < ∆+, R− < R+ to
be determined later. Let

J1 := [log2 (δ+/δ−)] + 1, J2 := [log2 (∆+/∆−)] + 1, J3 := [log2 (R+/R−)] + 1

and, given s > 0, let

s := s+ log
(
(J1 + 1)(J2 + 1)(J3 + 1)

)
.

Finally, denote

νn(δ,∆, R) := inf
L⊂L

[
δ

√
dim(L)

n

∨
(R ∨ ‖λ‖1)

γ2(ρ(L))√
n

∨
∆
S(T)√
n

]
,(7.16)

where the infimum is taken over all finite dimensional subspaces L ⊂ L and ρ(L) is
defined in (7.9).

Lemma 7.3. — There exists a constant C > 0 with the following property. With prob-
ability at least 1 − e−s, the following inequality holds uniformly for all δ ∈ [δ−, δ+],
∆ ∈ [∆−,∆+], R ∈ [R−, R+]:

αn(δ,∆, R) 6 C
(
‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)[
δ

√
s

n

∨
νn(δ,∆, R)

]∨
Cν2

n(δ,∆, R).

Proof. — First, we use Adamczak’s version of Talagrand’s inequality (A.7) to de-
duce an exponential bound on αn(δ,∆, R) from the bound on Eαn(δ,∆, R) (for fixed
δ,∆, R > 0). To this end, observe that, by the properties of Orlicz norms and sub-
gaussian spaces,∥∥η(f0

λ − f0
λ

)
∥∥
L2(P )

6 ‖η‖L4(P )

∥∥f0
λ − f0

λ

∥∥
L4(Π)

6 c1‖η‖ψ2

∥∥f0
λ − f0

λ

∥∥
L4(Π)

6

6 c2
(
‖fλ,a − f∗‖L2(Π) + ‖ξ‖ψ2

)∥∥f0
λ − f0

λ

∥∥
L2(Π)

,

where we used (7.15) to bound ‖η‖ψ2
. For all λ ∈ Λ(δ,∆, R), this implies

‖η(f0
λ − f0

λ
)‖L2(P ) 6 cδ

(
‖fλ,a − f∗‖L2(Π) + ‖ξ‖ψ2

)
.

Using (A.3), we will also estimate the envelope of the class F (δ,∆, R) as follows:∥∥∥ sup
λ∈Λ(δ,∆,R)

∣∣∣η(X,Y )(f0
λ(X)− f0

λ
(X))

∣∣∣∥∥∥
ψ1

6 c‖η(X,Y )‖ψ2

∥∥∥ sup
λ∈Λ(δ,∆,R)

∣∣f0
λ(X)− f0

λ
(X)

∣∣∥∥∥
ψ2

.
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Recall that L is a subspace of the subgaussian space L with dim(L) = d and

ρ = sup
t∈Tw

‖PL⊥(X(t)− EX(t))‖L2(P) .

Let ζ1, . . . , ζd be an orthonormal basis of L ⊂ L2(P). For u = λ − λ, the following
decomposition holds:

f0
λ(X)− f0

λ
(X) = 〈u,X − EX〉 = PL〈u,X − EX〉

+

∫
Tw

PL⊥(X − EX)(t)u(t)µ(dt) +

∫
TrTw

PL⊥(X − EX)(t)u(t)µ(dt).

We have∥∥∥ sup
λ∈Λ(δ,∆,R)

∣∣∣PL〈λ− λ,X − EX〉
∣∣∣∥∥∥
ψ2

6
∥∥∥sup

{∣∣∑d
k=1 αkζk

∣∣ :
∑d
k=1 α

2
k 6 δ

2
}∥∥∥

ψ2

6 δ
√
d
∥∥∥(1

d

∑d
k=1 ζ

2
k

)1/2∥∥∥
ψ2

6 δ
√
d
∥∥∥1

d

∑d
k=1 ζ

2
k

∥∥∥1/2

ψ1

6 δ
√
dmax16k6d ‖ζ2

k‖
1/2
ψ1
6 δ
√
dmax16k6d ‖ζk‖ψ2 6 Cδ

√
d.

We also easily get∥∥∥∥ sup
λ∈Λ(δ,∆,R)

∫
Tw

PL⊥(X − EX)(t)(λ− λ)(t)µ(dt)

∥∥∥∥
ψ2

6 (R+ ‖λ‖1)

∥∥∥∥ sup
t∈Tw

PL⊥(X − EX)(t)

∥∥∥∥
ψ2

6 C(R+ ‖λ‖1)γ2(ρ)

and∥∥∥∥ sup
λ∈Λ(δ,∆,R)

∫
TrTw

PL⊥(X − EX)(t)(λ− λ)(t)µ(dt)

∥∥∥∥
ψ2

6 ∆

∥∥∥∥sup
t∈T

PL⊥(X − EX)(t)

∥∥∥∥
ψ2

6 C ·∆S(T).

It implies that

(7.17)
∥∥∥ sup
λ∈Λ(δ,∆,R)

|f0
λ(X)− f0

λ
(X)|

∥∥∥
ψ2

6 C
[
δ
√
d+ (R+ ‖λ‖1)γ2(ρ) + ∆S(T)

]
.

Thus,∥∥∥ sup
λ∈Λ(δ,∆,R)

|η(X,Y )(f0
λ(X)− f0

λ
(X))|

∥∥∥
ψ1

6 C
(
‖fλ,a − f∗‖L2(Π) + ‖ξ‖ψ2

) [
δ
√
d+ (R+ ‖λ‖1)γ2(ρ) + ∆S(T)

]
.
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It follows from Adamczak’s bound (A.7) and the second statement of Proposition A.1
that, with probability at least 1− e−s,

αn(δ,∆, R) 6 C

[
Eαn(δ,∆, R) + (‖fλ,a − f∗‖L2(Π) + ‖ξ‖ψ2)δ

√
s

n

+ (‖fλ,a − f∗‖L2(Π) + ‖ξ‖ψ2
)
[
δ
√
d+ (R+ ‖λ‖1)γ2(ρ) + ∆S(T)

]s log n

n

]
.

Combining this with the bound of Lemma 7.2, taking the infimum of the right-
hand side with respect to L ⊂ L and recalling that, according to our assumptions,
s log n/

√
n is bounded by an absolute constant, we derive the following inequality:

(7.18) αn(δ,∆, R) 6 βn(δ,∆, R; s)

:= C(‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2
)

[
δ

√
s

n

∨
νn(δ,∆, R)

]∨
Cν2

n(δ,∆, R)

that holds with probability at least 1− e−s.
We still need to make the last bound uniform in δ ∈ [δ−, δ+], ∆ ∈ [∆−,∆+],

R ∈ [R−, R+]. To this end, define δj1 := δ+2−j1 , ∆j2 := ∆+2−j2 and Rj3 := R+2−j3

for j1 = 0, 1, . . . , J1, j2 = 0, 1, . . . , J2, and j3 = 0, 1, . . . , J3. Using bound (7.18) for
each δj1 ,∆j2 , Rj3 with s replaced by s := s+log((J1 +1)(J2 +1)(J3 +1)) and applying
then the union bound, we get that with probability at least 1−e−s αn(δj1 ,∆j2 , Rj3) 6
βn(δj1 ,∆j2 , Rj3 ; s) for all jk = 0, . . . , Jk, k = 1, 2, 3. By monotonicity of the functions
αn, βn in their variables this easily implies that with the same probability

αn(δ,∆, R) 6 C
(
‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)[
δ

√
s

n

∨
ν(δ,∆, R)

]∨
Cν2

n(δ,∆, R).

for all δ ∈ [δ−, δ+], ∆ ∈ [∆−,∆+], R ∈ [R−, R+] and for a large enough constant
C > 0. �

Bounding the last three terms in the right-hand side of (7.11) is easier. Since
η(X,Y ) is a subgaussian random variable (its mean is equal to zero and its ψ2-norm
is finite) and (7.15) holds, we have the following tail bound:

(7.19) |(Pn − P )η| =
∣∣∣∣n−1

n∑
j=1

η(Xj , Yj)

∣∣∣∣ 6 C(‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2
)

√
s

n

with probability at least 1 − e−s and with some constant C > 0. Moreover, using
the representation Y − EY = f∗(X)− Ef∗(X) + ξ and the assumption that f∗(X)−
Ef∗(X) ∈ L , we get

‖Y − EY ‖ψ2
6 ‖f∗(X)− Ef∗(X)‖ψ2

+ ‖ξ‖ψ2

6 c‖f∗(X)− Ef∗(X)‖L2(Π) + ‖ξ‖ψ2

= c‖f∗ −Πf∗‖L2(Π) + ‖ξ‖ψ2 .
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Since Y − EY is subgaussian, it is easy to deduce that

(7.20) |Y n − EY | =
∣∣∣∣n−1

n∑
j=1

(Yj − EY )

∣∣∣∣ 6 C(‖f∗ −Πf∗‖L2(Π) ∨ ‖ξ‖ψ2)

√
s

n

with probability at least 1− e−s and with some constant C > 0. Therefore,

(7.21)
∣∣Y n − EY

∣∣ · |(Pn − P )η|
6 C

(
‖f∗ −Πf∗‖2L2(Π) ∨ ‖fλ,a − f∗‖

2
L2(Π) ∨ ‖ξ‖

2
ψ2

) s
n

with probability at least 1− 2e−s. Since
〈
λ,Xj − EXj

〉
are i.i.d. subgaussian random

variables, their average
〈
λ,Xn − EX

〉
is also subgaussian. This easily yields the bound

(7.22)
∣∣〈λ,Xn − EX

〉∣∣
6 C‖f0

λ
‖L2(Π)

√
s

n
6 C

(
‖f∗ −Πf∗‖L2(Π) ∨ ‖fλ,a − f∗‖L2(Π)

)√ s

n

that holds with probability at least 1 − e−s and with some C > 0. Therefore, with
probability at least 1− 2e−s

(7.23)
∣∣〈λ,Xn − EX

〉∣∣ |(Pn − P )η|
6 C

(
‖f∗ −Πf∗‖2L2(Π) ∨ ‖fλ,a − f∗‖

2
L2(Π) ∨ ‖ξ‖

2
ψ2

) s
n
.

The proof of the next lemma is a simplified version of the proofs of Lemmas 7.2,
7.3. Together with (7.19) it will be used to control the term

|(Pn − P )η| · τn
(
‖f0
λ − f0

λ
‖L2(Π),

∫
TrTw

|λ̂|dµ, ‖λ̂‖1
)

in the right-hand side of (7.11).

Lemma 7.4. — There exists a constant C > 0 such that the following holds. Under
the notations of Lemma 7.3, with probability at least 1− e−s and with

s := s+ log
(
(J1 + 1)(J2 + 1)(J3 + 1)

)
satisfying the condition s

√
log n 6

√
n,

τn(δ,∆, R) = sup
{∣∣(Πn −Π)(f0

λ − f0
λ

)
∣∣ : λ ∈ Λ(δ,∆, R)

}
6 C

[
δ

√
s

n

∨
νn(δ,∆, R)

]
uniformly for all δ ∈ [δ−, δ+], ∆ ∈ [∆−,∆+], R ∈ [R−, R+].

Step 3. Bounds for (Π−Πn)
(
fλ̂,â−fλ,a

)2. — We will need the following representation
(that is a consequence of (7.10)):

(7.24) (Π−Πn)(fλ̂,â − fλ,a)2

= (Π−Πn)(f0
λ̂
− f0

λ
)2 + 2(Π−Πn)(f0

λ̂
− f0

λ
)(Y n − EY )

+ 2(Π−Πn)(f0
λ̂
− f0

λ
)
〈
λ,EX −Xn

〉
+ 2
[
(Π−Πn)(f0

λ̂
− f0

λ
)
]2

:= (Π−Πn)(f0
λ̂
− f0

λ
)2 + ζn(λ̂).
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Using bounds (7.20), (7.22) and Lemma 7.4, it yields that with probability at least
1− 3e−s for the same δ,∆, R

(7.25) sup
{
|ζn(λ)| : λ ∈ Λ(δ,∆, R)

}
6 C

[
δ

√
s

n

∨
νn(δ,∆, R)

]2

∨
C
(
‖f∗ −Πf∗‖L2(Π) ∨ ‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)√ s

n

[
δ

√
s

n

∨
νn(δ,∆, R)

]
.

Next, we have to estimate

ψn(δ,∆, R) := sup
λ∈Λ(δ,∆,R)

∣∣∣(Πn −Π)(f0
λ − f0

λ
)2
∣∣∣.

Lemma 7.5. — There exists a constant C > 0 such that the following holds. Under
the notations of Lemma 7.3, with probability at least 1− e−s

ψn(δ,∆, R) 6 Cδ

[
δ

√
s

n
∨ νn(δ,∆, R)

]∨
Cν2

n(δ,∆, R)

uniformly for all δ ∈ [δ−, δ+], ∆ ∈ [∆−,∆+], R ∈ [R−, R+].

Proof. — The proof is based on the inequality due to S. Dirksen and W. Bednorz (see
Theorem A.5 in the appendix). To this end, we need to estimate several quantities
appearing in that bound. First, note that, since

{
f(X) : f ∈ F (δ,∆, R)

}
is a subset

of a subgaussian space,

sup
f∈F(δ,∆,R)

‖f‖ψ2
6 c sup

f∈F(δ,∆,R)

‖f‖L2(Π) 6 cδ.

Together with the bound (7.14) on γ2 (F ;ψ2), Theorem A.5 implies that with prob-
ability > 1− e−s,

ψn(δ,∆, R) 6 Cδ

[
δ

√
d

n

∨
(R ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆
S(T)√
n

]
∨
C

[
δ

√
d

n

∨
(R ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆
S(T)√
n

]2∨
Cδ2

[√
s

n
∨ s

n

]
.

It remains to combine the discretization argument as in the proof of Lemma 7.3
with an application of the union bound to get an estimate for ψn(δ,∆, R) that holds
uniformly in δ,∆, R with a high probability. As a result, we get that

ψn(δ,∆, R) 6 Cδ

[
δ

√
s

n
∨ νn(δ,∆, R)

]∨
Cν2

n(δ,∆, R)

with probability at least 1 − e−s for all δ ∈ [δ−, δ+], ∆ ∈ [∆−,∆+], R ∈ [R−, R+]

uniformly, and for a large enough constant C > 0. �
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Step 4. Upper bound on ‖λ̂‖1.

Lemma 7.6. — There exist constants C,D > 0 such that the following holds. For all
s > 1 and ε satisfying the assumptions s log n 6

√
n and ε > D‖ξ‖ψ2S(T)

√
s/n, with

probability at least 1− 5e−s,

‖λ̂‖1 6 C
(
q(ε)

ε
+
σ2
Y s

nε

)
.

Proof. — By the definition of λ̂, for all λ ∈ D, a ∈ R

Pn(`•fλ̂,â) + ε‖λ̂‖1 6 Pn(`•fλ,a) + ε‖λ‖1.(7.26)

We will take a = a(λ) = EY − 〈λ,EX〉 everywhere below. Let ξ(x, y) = y − f∗(x)

(then, ξj = ξ(Xj , Yj)). Since

`•fλ̂,â − `•fλ,a = (fλ̂,â + fλ,a − 2f∗ − 2ξ)(fλ̂,â − fλ,a),

it is easy to conclude that

Pn(`•fλ̂,â)− Pn(`•fλ,a) = ‖fλ̂,â − f∗‖
2
L2(Πn) − ‖fλ,a − f∗‖

2
L2(Πn) − 2Pnξ(fλ̂,â − fλ,a).

Thus, (7.26) implies that

(7.27) ‖fλ̂,â − f∗‖
2
L2(Πn) + ε‖λ̂‖1

6 ‖fλ,a − f∗‖2L2(Π) + (Πn −Π)(fλ,a − f∗)2 + 2Pn

[
ξ(fλ̂,â − fλ,a)

]
+ ε‖λ‖1.

Using Bernstein’s inequality for the random variable with finite ‖·‖ψ1
-norm (see [26],

section A.2) we get that with probability at least 1− e−s, for s 6 n

|(Πn −Π)(fλ,a − f∗)2| 6 C1‖fλ,a − f∗‖2L2(Π)

[√
s

n

∨ s

n

]
6 C1‖fλ,a − f∗‖2L2(Π)

√
s

n
,

(7.28)

where we also used the fact that

‖(fλ,a − f∗)2‖ψ1
= ‖fλ,a − f∗‖2ψ2

6 c‖fλ,a − f∗‖2L2(Π).

Next, we apply representation (7.10) to term fλ̂,â− fλ,a in Pnξ(fλ̂,â− fλ,a) to get the
following bound:

(7.29)
∣∣Pnξ(fλ̂,â − fλ,a)

∣∣ 6 ‖λ̂− λ‖1∥∥∥ 1

n

n∑
j=1

ξj(Xj − EX)
∥∥∥
∞

+
∣∣∣ 1
n

n∑
j=1

ξj

∣∣∣ ∣∣Y n − EY + 〈λ̂,EX −Xn〉
∣∣.

To bound the first term in the right-hand side of (7.29), we use a general multiplier
inequality (see [41], Lemma 2.9.1):

E
∥∥∥∥ 1√

n

n∑
j=1

ξj(Xj − EX)

∥∥∥∥
∞
6 2
√

2‖ξ‖2,1 max
16k6n

E
∥∥∥∥ 1√

k

k∑
j=1

εj(Xj − EX)

∥∥∥∥
∞
,
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where ‖ξ‖2,1 :=
∫∞

0

√
P{ξ > u} du. Note that the process

t 7−→ 1√
k

k∑
j=1

εj(Xj(t)− EX(t))

is subgaussian for every k with respect to the distance dX . Therefore,

E
∥∥∥∥ 1√

k

k∑
j=1

εj(Xj − EX)

∥∥∥∥
∞
6 C1S(T),

which yields

E
∥∥∥∥ 1

n

n∑
j=1

ξj(Xj − EX)

∥∥∥∥
∞
6 C2‖ξ‖ψ2

S(T)√
n
,(7.30)

where we also used the bound ‖ξ‖2,1 6 c‖ξ‖ψ2
.

Adamczak’s inequality (A.7) implies that with probability > 1− e−s∥∥∥∥ 1

n

n∑
j=1

ξj(Xj − EX)

∥∥∥∥
∞

(7.31)

6 C

[
‖ξ‖ψ2

S(T)√
n

+ σξ sup
t∈T

√
Var (X(t))

√
s

n
+ ‖ξ‖ψ2

S(T)
s log n

n

]
6 C ′‖ξ‖ψ2

[
S(T)

√
s

n

∨
S(T)

s log n

n

]
6 C‖ξ‖ψ2

S(T)

√
s

n
,

where we also used the bound

sup
t∈T

√
Var(X(t)) 6 E1/2 sup

t∈T
|X(t)− EX(t)|2 6 CS(T).(7.32)

To estimate the second term in (7.29), we use inequality (7.20) and also the following
tail bounds: with probability at least 1− e−s,

(7.33)
∣∣∣ 1
n

n∑
j=1

ξj

∣∣∣ 6 C‖ξ‖ψ2

√
s

n

and, with the same probability,

(7.34)
∥∥Xn − EX

∥∥
∞ 6 CS(T)

√
s

n
.

Together with (7.20), these bounds imply that, for some C > 0, with probability at
least 1− 3e−s

(7.35)
∣∣∣ 1
n

n∑
j=1

ξj

∣∣∣ ∣∣Y n − EY + 〈λ̂,EX −Xn〉
∣∣

6 C‖ξ‖ψ2

[
S(T)

s

n
‖λ̂‖1 +

(‖f∗ −Πf∗‖L2(Π) ∨ ‖ξ‖ψ2)s

n

]
.
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It follows from bounds (7.27), (7.28), (7.29), (7.31) and (7.35) that with probability
at least 1− 5e−s

ε‖λ̂‖1 6 ‖fλ,a − f∗‖2L2(Π) + C1‖fλ,a − f∗‖2L2(Π)

√
s

n
+ ε‖λ‖1

+ C ′‖ξ‖ψ2
S(T)

√
s

n
‖λ̂− λ‖1 + C‖ξ‖ψ2

S(T)
s

n
‖λ̂‖1

+ C
(‖f∗ −Πf∗‖2L2(Π) ∨ ‖ξ‖

2
ψ2

)s

n
.

If constant D in the assumption on ε is large enough and s 6 n, it implies that with
some C > 0

ε

2
‖λ̂‖1 6 C‖fλ,a − f∗‖2L2(Π) + 2ε‖λ‖1 + C

(‖f∗ −Πf∗‖2L2(Π) ∨ ‖ξ‖
2
ψ2

)s

n
,

and the result immediately follows. �

Step 5. Putting all the bounds together. — We have all the necessary estimates to com-
plete the proof. Let E denote the event on which the bounds of Lemma 7.3, Lemma
7.4, Lemma 7.5 and also bounds (7.19), (7.20), (7.22), (7.28), (7.31), (7.33) and (7.34)
hold. The probability of this event is at least 1 − 10e−s. In what follows, we assume
that event E occurs. Note that in this case the bound of Lemma 7.6 also holds. Denote

δ̂ := ‖f0
λ̂
− f0

λ
‖L2(Π), ∆̂ :=

∫
TrTw

|λ̂|dµ, R̂ := ‖λ̂‖1.

Suppose that

(7.36) δ̂ ∈ [δ−, δ+], ∆̂ ∈ [∆−,∆+], R̂ ∈ [R−, R+].

It follows from bound (7.11), Lemma 7.3 and bounds (7.21) – (7.23) that

(7.37) 1

C
(Pn − P )

[
η
(
fλ̂,â − fλ,a

)]
6 (‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)

[
δ̂

√
s

n

∨
νn(δ̂, ∆̂, R̂)

]
∨
ν2
n(δ̂, ∆̂, R̂)

∨(
‖f∗ −Πf∗‖2L2(Π) ∨ ‖fλ,a − f∗‖

2
L2(Π) ∨ ‖ξ‖

2
ψ2

) s
n∨(

‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)√ s

n

[
δ̂

√
s

n

∨
νn(δ̂, ∆̂, R̂)

]
for some absolute constant C > 0. Similarly, Lemma 7.5 and bound (7.25) imply that

(7.38) 1

C
(Π−Πn)(fλ̂,â − fλ,a)2 6 δ̂

[
δ̂

√
s

n

∨
νn(δ̂, ∆̂, R̂)

]∨
ν2
n(δ̂, ∆̂, R̂)

∨(
‖f∗ −Πf∗‖L2(Π) ∨ ‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2

)√ s

n

[
δ̂

√
s

n

∨
νn(δ̂, ∆̂, R̂)

]
∨[

δ̂

√
s

n

∨
νn(δ̂, ∆̂, R̂)

]2

.

J.É.P. — M., 2014, tome 1



308 V. Koltchinskii & S. Minsker

The last two inequalities will be replaced by simplified upper bounds. To this end, we
use elementary inequalities such as ab 6 (a2/2c) + (cb2/2), for instance:

C(‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2
)δ̂

√
s

n
6

2C2

2
(‖fλ,a − f∗‖

2
L2(Π) ∨ ‖ξ‖

2
ψ2

)
s

n
+

1

8
δ̂2.

Also recall that by (7.4), (3.1) and the assumption that ξ ∈ L ,

‖f∗ −Πf∗‖L2(Π) ∨ ‖fλ,a − f∗‖L2(Π) ∨ ‖ξ‖ψ2
6 σY .

Whenever it is more convenient, we can replace the maximum
∨

by the sum, or
vice versa (with a proper change of constant C), we can drop repetitive terms in
the maximum, etc. With such simple transformations, it is easy to get the following
bound (with some constant C > 0 and under the assumption that s 6 n):

(7.39) (Pn − P )η(fλ̂,â − fλ,a) + (Π−Πn)(fλ̂,â − fλ,a)2

6
1

8
δ̂2 + Cδ̂2

√
s

n
+ CσY νn(δ̂, ∆̂, R̂) + Cν2

n(δ̂, ∆̂, R̂) + C
σ2
Y s

n
.

Note that

νn(δ̂, ∆̂, R̂) = inf
L⊂L

[
δ̂

√
dim(L)

n

∨
(R̂ ∨ ‖λ‖1)

γ2(ρ(L))√
n

∨
∆̂
S(T)√
n

]
6 (R̂ ∨ ‖λ‖1)

S(T)√
n
,

where we used the bounds ∆̂ 6 R̂, γ2(ρ) 6 S(T) and computed the expression in the
right-hand side of the definition of νn for a trivial subspace of zero dimension. Using
Lemma 7.6, we get the following bound:

R̂ ∨ ‖λ‖1 6 c
(
q(ε)

ε

∨ σ2
Y s

nε

)∨
‖λ‖1,

which holds with probability at least 1− e−s. Therefore,

ν2
n(δ̂, ∆̂, R̂) 6 c

(
q(ε)

ε

∨ σ2
Y s

nε

)
S(T)√
n
νn(δ̂, ∆̂, R̂) + ‖λ‖1

S(T)√
n
νn(δ̂, ∆̂, R̂)

6 c

(
q(ε)

ε

∨ σ2
Y s

nε

)
S(T)√
n
νn(δ̂, ∆̂, R̂) +

1

2

‖λ‖21S2(T)

n
+

1

2
ν2
n(δ̂, ∆̂, R̂),

and inequality (7.39) easily yields

(7.40) (Pn − P )η(fλ̂,â − fλ,a) + (Π−Πn)(fλ̂,â − fλ,a)2 6
1

8
δ̂2 + Cδ̂2

√
s

n

+ CσY νn(δ̂, ∆̂, R̂) + C

(
q(ε)

ε

∨ σ2
Y s

nε

)
S(T)√
n
νn(δ̂, ∆̂, R̂)

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.

Remark 7.1. — Note that under an additional assumption that

D ⊂
{
λ ∈ L1(µ) : ‖λ‖1 6

CσY
√
n

S(T)

}
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(in particular,
∥∥λ∥∥

1
6 CσY

√
n/S(T)

)
, we have

ν2
n(δ̂, ∆̂, R̂) 6 c

(q(ε)
ε

∨ σ2
Y s

nε

)S(T)√
n
νn(δ̂, ∆̂, R̂) + ‖λ‖1

S(T)√
n
νn(δ̂, ∆̂, R̂)

6 c
(q(ε)

ε

∨ σ2
Y s

nε

)S(T)√
n
νn(δ̂, ∆̂, R̂) + CσY νn(δ̂, ∆̂, R̂),

so that the term ‖λ‖21S2(T)/n disappears from (7.40). In this case, the remainder of
the proof yields Theorem 3.3.

Under the assumption (3.5) on ε and the inequality s 6 cn (which easily follows
from the the main conditions of the theorem), we have

sσY
nε

S(T)√
n
6 c1

with some constant c1 > 0. Also, condition (3.5) and the inequality

q(ε) 6 ‖f∗ −Πf∗‖2L2(Π) 6 σ
2
Y

imply that q(ε)
ε

S(T)√
n
6 cσY . Hence, with some constant C > 0 and for any subspace

L ⊂ LX with dim(L) = d and ρ(L) = ρ,

(7.41) (Pn − P )η(fλ̂,â − fλ,a) + (Π−Πn)(fλ̂,â − fλ,a)2

6
1

8
δ̂2 + Cδ̂2

√
s

n
+ CσY

[
δ̂

√
d

n

∨
(R̂ ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆̂
S(T)√
n

]
+ C

‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.

We will now substitute (7.41) in the right-hand side of bound (7.8). Recall
that Tw = {t : w(t) > 1/2}. Since, by monotonicity of subdifferentials, we have
(ŵ(t)− w(t))(λ̂(t)− λ(t)) > 0 for all t ∈ T, and w, ŵ take their values in [−1, 1] by
definition, we also have that

(7.42)
〈
ŵ − w, λ̂− λ

〉
>

1

2

∫
TrTw

|λ̂|dµ.

Taking this into account, we get

(7.43) ‖fλ̂,â − f∗‖
2
L2(Π) + ‖fλ̂,â − fλ,a‖

2
L2(Π) +

ε

2

〈
ŵ − w, λ̂− λ

〉
+
ε

4

∫
TrTw

|λ̂|dµ

6 ‖fλ,a − f∗‖
2
L2(Π) + ε

〈
w, λ− λ̂

〉
+

1

8
δ̂2 + Cδ̂2

√
s

n

+ CσY

[
δ̂

√
d

n

∨
(R̂ ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆̂
S(T)√
n

]
+ C

‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.
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Note also that

‖λ̂‖1 6 ‖λ‖1 +
〈
w, λ̂− λ

〉
+
〈
ŵ − w, λ̂− λ

〉
,

which will be used to control R̂∨‖λ‖1 = ‖λ̂‖1 ∨‖λ‖1. Then, bound (7.43) implies the
following (with a different value of C):

(7.44) ‖fλ̂,â − f∗‖
2
L2(Π) + ‖fλ̂,â − fλ,a‖

2
L2(Π) +

ε

2

〈
ŵ − w, λ̂− λ

〉
+
ε

4
∆̂

6 ‖fλ,a − f∗‖
2
L2(Π) + ε

〈
w, λ− λ̂

〉
+

1

4
δ̂2 + Cδ̂2

√
s

n

+ C
σ2
Y d

n
+ CσY ‖λ‖1

γ2(ρ)√
n

+ ∆̂CσY
S(T)√
n

+ CσY
γ2(ρ)√
n

(〈
w, λ̂− λ

〉
∨ 0
)

+ CσY
γ2(ρ)√
n

〈
ŵ − w, λ̂− λ

〉
+ C

‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.

If constant D in the condition on ε is large enough, we have

CσY
γ2(ρ)√
n
6 CσY

S(T)√
n
6 ε/8,

which implies

(7.45) ‖fλ̂,â − f∗‖
2
L2(Π) + ‖fλ̂,â − fλ,a‖

2
L2(Π) +

ε

4

〈
ŵ − w, λ̂− λ

〉
+
ε

8
∆̂

6 ‖fλ,a − f∗‖
2
L2(Π) +

9

8
ε
(〈
w, λ− λ̂

〉
∨ 0
)

+
1

4
δ̂2 + Cδ̂2

√
s

n

+ C
σ2
Y d

n
+ CσY ‖λ‖1

γ2(ρ)√
n

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.

Finally, note that δ̂ = ‖f0
λ̂
− f0

λ
‖L2(Π) 6 ‖fλ̂,â− fλ,a‖L2(Π). Because of this, under the

assumption that C, s and n are such that C
√

s
n 6 1/4, we get from (7.45)

(7.46) ‖fλ̂,â − f∗‖
2
L2(Π) +

1

2
‖fλ̂,â − fλ,a‖

2
L2(Π) +

ε

4

〈
ŵ − w, λ̂− λ

〉
+
ε

8

∫
TrTw

|λ̂|dµ

6 ‖fλ,a − f∗‖
2
L2(Π) +

9

8
ε
(〈
w, λ− λ̂

〉
∨ 0
)

+ C
σ2
Y d

n

+ CσY ‖λ‖1
γ2(ρ)√
n

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.

First, assume that

(7.47) 7

8
ε
(〈
w, λ− λ̂

〉
∨ 0
)
> C

σ2
Y d

n
+ CσY ‖λ‖1

γ2(ρ)√
n

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.
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In this case, bound (7.46) implies that

(7.48) ‖fλ̂,â − f∗‖
2
L2(Π) +

1

2
‖fλ̂,â − fλ,a‖

2
L2(Π) +

ε

8

∫
TrTw

|λ̂|dµ

6 ‖fλ,a − f∗‖
2
L2(Π) + 2ε

〈
w, λ− λ̂

〉
.

If ‖fλ̂,â − f∗‖
2
L2(Π) 6 ‖fλ,a − f∗‖

2
L2(Π), the inequality of the theorem trivially holds.

Otherwise, (7.48) implies that∫
TrTw

|λ̂− λ|dµ 6 16
〈
w, λ− λ̂

〉
,

which means that λ− λ̂ ∈ C(16)
w and〈

w, λ− λ̂
〉
6 a(w)

∥∥f0
λ̂
− f0

λ

∥∥
L2(Π)

6 a(w)‖fλ̂,â − fλ,a‖L2(Π)

by the definition of a(·) = a(16)(·). Therefore, we have

‖fλ̂,â − f∗‖
2
L2(Π) +

1

2
‖fλ̂,â − fλ,a‖

2
L2(Π) +

ε

8

∫
TrTw

|λ̂|dµ

6 ‖fλ,a − f∗‖
2
L2(Π) + 2εa(w)‖fλ̂,â − fλ,a‖L2(Π)

6 ‖fλ,a − f∗‖
2
L2(Π) + 2a2(w)ε2 +

1

2
‖fλ̂,â − fλ,a‖

2
L2(Π),

(7.49)

which again implies the bound of the theorem.
If condition (7.47) does not hold, then bound (7.46) implies that with some constant

C > 0

(7.50) ‖fλ̂,â − f∗‖
2
L2(Π) +

ε

8

∫
TrTw

|λ̂|dµ 6 ‖fλ,a − f∗‖
2
L2(Π) + C

σ2
Y d

n

+ CσY ‖λ‖1
γ2(ρ)√
n

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
,

which gives the bound of the theorem in this case. To complete the proof, it remains
to choose the values of quantities δ−, δ+,∆−,∆+ and R−, R+ and to explain how to
establish the bound of the theorem in the case when conditions (7.36) do not hold.
We will choose the values

δ+ := C1σY
√
n, δ− :=

C1σY√
n
,

R+ = ∆+ =
C1σY

√
n

S(T)
, R− = ∆− =

C1σY
S(T)

√
n
,

where C1 is a large enough constant. Recall that s = s+ log((J1 + 1)(J2 + 1)(J3 + 1))

and, for our choice of δ−, δ+,∆−,∆+, R−, R+ we have J1 = J2 = J3 = blog2 nc + 1.
Therefore, s = s+ 3 log(blog2 nc+ 2). Since q(ε) 6 ‖f∗ − Πf∗‖2L2(Π), it easily follows
from Lemma 7.6 that

‖λ̂‖1 6 C
[
q(ε)

ε
+
σ2
Y s

nε

]
6 2C2

σ2
Y

ε
6 C3

σY
S(T)

√
n 6 R+,

J.É.P. — M., 2014, tome 1



312 V. Koltchinskii & S. Minsker

provided that constant C1 is large enough. It is also easy to see from (7.5) that
‖λ‖1 6 R+. Thus, R̂ ∨ ‖λ‖1 6 R+, and also ∆̂ 6 R̂ 6 R+ = ∆+. In addition,

δ̂ = ‖f0
λ̂
− f0

λ
‖L2(Π) = E1/2

〈
λ̂− λ,X − EX

〉2
6 ‖λ̂− λ‖1 sup

t∈T

√
Var(X(t))

6 C2(R̂ ∨ ‖λ‖1)S(T) 6 C3
σY
S(T)

√
nS(T) 6 δ+,

again, provided that constant C1 is large enough. Here, we also used the bound (7.32)
to estimate supt∈T

√
Var(X(t)).

Thus, conditions δ̂ 6 δ+, ∆̂ 6 ∆+, R̂ 6 R+ hold on the event E. If some of the
conditions δ̂ > δ−, ∆̂ > ∆−, R̂ > R− are violated, we can still use bound (7.44) with
quantities δ̂, ∆̂, R̂ that fall outside the intervals being replaced in its right-hand side
by the corresponding upper bound δ−,∆−, R−. It is easy to check that the inequality
of the theorem still holds in this case with a proper constant C.

It now remains to replace s by s + 3 (so that P(E) > 1 − 10e−s−3 > 1 − e−s) to
get that the bound of the theorem holds with probability at least 1− e−s.

7.4. Proof of Theorem 3.1. — Most of the necessary ingredients have been already
developed in the proof of Theorem 3.2. Let (λ, a) be a couple that minimizes the
right-hand side of bound (3.3). As before, if the infimum is not attained, the proof
can be easily modified. We also have that (plugging (0,Πf∗) in the right-hand side of
(3.3))

‖fλ,a − f∗‖
2
L2(Π) 6 ‖f∗ −Πf∗‖2L2(Π), ‖λ‖1 6

2

3

‖f∗ −Πf∗‖2L2(Π)

ε
.

The following inequality is equivalent to (7.8):

(7.51) ‖fλ̂,â − f∗‖
2
L2(Π) + ‖fλ̂,â − fλ,a‖

2
L2(Π) + ε

〈
ŵ, λ̂− λ

〉
6 ‖fλ,a − f∗‖

2
L2(Π)

+ 2(Pn − P )η(fλ̂,â − fλ,a) + 2(Π−Πn)
(
fλ̂,â − fλ,a

)2
.

Note that

(7.52) ε
〈
ŵ, λ̂− λ

〉
> ε
(
‖λ̂‖1 − ‖λ‖1

)
.

To bound the empirical processes on the right-hand side of (7.51), we use inequalities
(7.37) and (7.38) which imply that (see (7.41) above for details) with some constant
C > 0 and for any subspace L ⊂ L with dim(L) = d and ρ(L) = ρ,

(7.53) (Pn − P )η(fλ̂,â − fλ,a) + (Π−Πn)(fλ̂,â − fλ,a)2

6
1

8
δ̂2 + Cδ̂2

√
s

n
+ CσY

[
δ̂

√
d

n

∨
(R̂ ∨ ‖λ‖1)

γ2(ρ)√
n

∨
∆̂
S(T)√
n

]
+ C

‖λ‖21S2(T)

n
+ C

σ2
Y s

n
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holds on the event E (defined in the proof of Theorem 3.2) of probability at least
> 1− 10e−s, where

δ̂ :=
∥∥f0
λ̂
− f0

λ

∥∥
L2(Π)

6
∥∥fλ̂,â − fλ,a∥∥L2(Π)

, ∆̂ :=

∫
TrTw

|λ̂|dµ, R̂ := ‖λ̂‖1

and we assume that bounds (7.36) hold. Using the inequalities γ2(ρ) 6 S(T), ∆̂ 6 R̂
and choosing L to be the trivial subspace of dimension 0, we get

(7.54) (Pn − P )η(fλ̂,â − fλ,a) + (Π−Πn)(fλ̂,â − fλ,a)2

6
1

8
δ̂2 + Cδ̂2

√
s

n
+ CσY (‖λ‖1 ∨ ‖λ̂ε‖1)

S(T)√
n

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
,

Substituting (7.54) and (7.52) back in (7.51), we get that with some C > 0

(7.55) ‖fλ̂,â − f∗‖
2
L2(Π) + ‖fλ̂,â − fλ,a‖

2
L2(Π) + ε‖λ̂ε‖1 6 ‖fλ,a − f∗‖

2
L2(Π)

+ ε‖λ‖1 +
1

4

∥∥fλ̂,â − fλ,a∥∥2

L2(Π)
+ C

∥∥fλ̂,â − fλ,a∥∥2

L2(Π)

√
s

n

+ CσY (‖λ‖1 + ‖λ̂ε‖1)
S(T)√
n

+ C
‖λ‖21S2(T)

n
+ C

σ2
Y s

n
.

If the constant D in condition (3.2) is large enough, we have CσY S(T)/
√
n 6 ε/4

and, since ‖λ‖1 6 2‖f∗ −Πf∗‖2L2(Π)/3ε 6 2σ2
Y /3ε,

C
‖λ‖21S2(T)

n
6 Cε‖λ‖1

2‖f∗ −Πf∗‖2L2(Π)S
2(T)

3ε2n
6
ε

4
‖λ‖1.

Moreover, if C
√
s/n 6 3/4, (7.55) yields

‖fλ̂,â − f∗‖
2
L2(Π) +

3

4
ε‖λ̂ε‖1 6 ‖fλ,a − f∗‖

2
L2(Π) +

3

2
ε‖λ‖1 + C

σ2
Y s

n
.

The case when (7.36) does not hold can be handled exactly as at the end of the proof
of Theorem 3.2.

7.5. Proof of Proposition 4.2. — For simplicity, we consider the case d = 1. Exten-
sion to arbitrary dimension follows the same proof pattern.

Note that by (4.2),

(7.56) Var
(∑N

j=1ujX(tj)
)

=
∑

16j,l6N

k(tj − tl)ujul =

∫
R

∣∣∣∣ N∑
j=1

eitjzuj

∣∣∣∣2v(z)dz.
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Clearly, the function q(z) =
∣∣∑N

j=1 e
itjzuj

∣∣2 is periodic with period 2πN ; let I :=∫ πN
−πN q(z)v(z)dz and 0 6= m ∈ Z. Together with (4.4), this gives

2πmN+πN∫
2πmN−πN

q(z)v(z)dz =

2πmN+πN∫
2πmN−πN

q(z)v(z − 2πmN)
v(z)

v(z − 2πmN)
dz

6 sup
|y−2πmN |6πN

v(y)

v(y − 2πmN)

πN∫
−πN

q(z)v(z)dz 6
C

(|m| − 1/2)2
· I.

Hence
πN∫
−πN

∣∣∣∣ N∑
j=1

eitjzuj

∣∣∣∣2v(z)dz 6
∫
R

∣∣∣∣ N∑
j=1

eitjzuj

∣∣∣∣2v(z)dz

6 C
∑
m∈Z

1

(|m| − 1/2)2︸ ︷︷ ︸
C2

πN∫
−πN

∣∣∣∣ N∑
j=1

eitjzuj

∣∣∣∣2v(z)dz.

Recall that our goal is to bound ‖→w‖K for →w ∈ ∂‖λ‖1 where λ ∈ RN . It will be con-
venient to represent →w = (w(t1), . . . , w(tN ))T as a restriction of a smooth, compactly
supported function w(t), t ∈ R on a grid GN . Clearly, w(t) is not unique, and we will
be interested in the interpolation of “minimal energy”, as explained below.

Note that the map

`2(Z) 3 x 7−→ x̂N ∈ L2([−πN, πN ], dy), x̂N (y) :=
1√

2πN

∑
j∈Z

xje
ijy/N

is an isometry. With the convention uj = 0, j /∈ {1, . . . , N}, this implies〈→
w,
→
u
〉

2
=
∑
j∈Z

w
(2πj

N

)
uj =

〈
ŵN , ûN

〉
L2([−πN,πN ],dy)

=
〈 ŵN√

Nv
, ûN
√
Nv
〉
L2([−πN,πN ],dy)

6
1√
N

( πN∫
−πN

|ŵN (y)|2

v(y)
dy

πN∫
−πN

N |ûN (y)|2 v(y)dy

)1/2

6
c√
N

( πN∫
−πN

(1 + y2)p |ŵN (y)|2 dy
∞∫
−∞

N |ûN (y)|2 v(y)dy

)1/2

,

hence by (7.56)

(7.57) ‖→w‖2K 6
C

N

πN∫
−πN

(1 + y2)p |ŵN (y)|2 dy.
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Next, define wN (y) := 1√
2πN

∫ πN
−πN e

−it·yŵN (t)dt. A simple direct computation gives

wN (y) =
∑
j∈Z

w
(2πj

N

)
sinc(πN(y − j/N)),

where sinc(x) = (sinx)/x. In other words, wN (y) is the spectral approximation of w(y).
Define

w
(p)
N (y) :=

e−iπp/2√
2πN

πN∫
−πN

e−it·y tpŵN (t)dt

(note that for p ∈ N this is just the p’th derivative of wN (y)). By the isometric
property of Fourier transform, this gives

1

N

πN∫
−πN

t2p|ŵN (t)|2dt = C

∫
R
|w(p)
N (t)|2dt,

hence (7.57), together with the triangle inequality, implies

(7.58) ‖→w‖2K 6 C1‖wN‖2W2,p(R) 6 2C1

(
‖w‖2W2,p(R) + ‖w − wN‖2W2,p(R)

)
.

We will need the following important fact (it will be used for m = p):

Theorem 7.1 ([3], Theorem 5.4). — Assume that w ∈W2,p(R) and m 6 p. Then∥∥w(m)
N − w(m)

∥∥
L2(R)

6 C(p,m)N−(p−m) ‖w‖W2,p(R) ,

where C(p,m) is independent of w and N .

Together with (7.58) this implies the claim of the proposition.

7.6. Proofs of Theorems 6.1, 6.2 and 6.3. — Recall that for every λ ∈ D∆, for each
j ∈ Jλ we either have that λ(t) > 0 for all t ∈ Tj (in this case, set σj = +1), or
λ(t) 6 0 for all t ∈ Tj (set σj = −1). Clearly, the function

w :=
∑
j∈Jλ

σjITj

satisfies the conditions |w(t)| 6 1, t ∈ T and w(t) := sign(λ(t)) if λ(t) 6= 0. Therefore,
w ∈ ∂‖λ‖1. In what follows, we will use such w as a version of subgradient of λ ∈ D∆.

We will start by providing upper bounds on RKHS-norms of wj , j ∈ Jλ.

Lemma 7.7. — Suppose that, for each j = 1, . . . , N , the set Tj is contained in a ball
B(tj ; r) with some center tj ∈ Rd and of radius r. Suppose also that

(7.59) vj(t) >
c

(1 + |t|2)p
, t ∈ Rd, j = 1, . . . , N.

Then
‖wj‖Kj 6 Crd/2(1 + r−p), j ∈ Jλ.
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Proof. — Note that for arbitrary functions wj defined on Tj ,

(7.60) ‖wj‖Kj 6 C inf
w̃j∈Ω(wj)

‖w̃j‖W2,p(Rd),

where Ω(wj) is the set of all extensions of wj onto Rd (see Proposition 4.1). To control
the RKHS-norms of wj , consider an arbitrary nonnegative C∞-function φ supported
in the unit ball {t : |t| 6 1} such that

∫
Rd φ(t)dt = 1. Denote φr(t) := r−dφ(t/r) and

let

w̃j(t) := σj

∫
Rd
φr(t− s)IB(tj ,2r)(s)ds = σj(φr ∗ IB(tj ,2r))(t), t ∈ Rd.

It is immediate that for t ∈ Tj , w̃j(t) = wj(t), so, w̃j ∈ Ω(wj). Thus, we have

‖wj‖Kj 6C‖w̃j‖Wp,2(Rd) = C‖φr∗IB(tj ,2r)‖Wp,2(Rd)6C
′∥∥(1+|t|2)p/2φ̂r ̂IB(tj ,2r)

∥∥
L2(Rd)

.

Since, by an easy computation,∥∥∥ ̂IB(tj ,2r)

∥∥∥
L∞
6 µ(B(tj , 2r)) 6 c

′rd

and ∥∥∥(1 + |t|2)p/2φ̂r

∥∥∥
L2(Rd)

6 C1r
−d/2(1 + r−p),

we conclude that ‖wj‖Kj 6 Crd/2(1 + r−p), j ∈ Jλ for some constant C. �

The next lemma provides bounds on S(T, dX) and γ2(δ; dX).

Lemma 7.8. — Let T be a bounded measurable subset of Rd and let X(t), t ∈ Rd be
a centered subgaussian stationary random field with spectral measure ν and spectral
density v. Suppose that bound (6.1) holds for some R > 1. Suppose also that

(7.61) v(t) 6
B

(1 + |t|2)p

for some p > d/2, B > 0. Then, there exists a constant C > 0 depending on d, p,B

such that
S(T; dX) 6 C

√
logN ∨ | log r|

and

γ2(T; dX ; δ) 6 Cδ

√
log

CR(p−d/2)∧1

δ

∨
logN.

Proof. — By the spectral representation of covariance, for all t1, t2 ∈ Rd and for
A > 0,

(7.62) d2
X(t1, t2) = Var(X(t1)−X(t2)) =

∫
Rd

∣∣ei〈t1−t2,s〉 − 1
∣∣2v(s)ds

6 B|t1 − t2|2
∫
|s|6A

|s|2

(1 + |s|2)p
ds+B

∫
|s|>A

1

(1 + |s|2)p
ds.
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If 2p > d + 2, we take A = ∞ and get d2
X(t1, t2) 6 C ′|t1 − t2|2 for some C ′ > 0

that depends on p and d. If 2p = d+ 2, a simple computation of the integrals in the
right-hand side of (7.62) and minimizing the resulting bound with respect to A yields

d2
X(t1, t2) 6 C ′|t1 − t2|2

(
log
( 1

|t1 − t2|

)∨
1
)
.

Finally, if 2p < d+ 2, then a similar argument yields the bound

d2
X(t1, t2) 6 C ′|t1 − t2|2p−d.

Using bound (6.1), it is easy to show that in each of these three cases we have

logN(T; dX ; ε) 6 C
(

log
CR(p−d/2)∧1

ε
∨ logN

)
, ε ∈ (0, CR(p−d/2)∧1).

The bound on γ2(T; dX ; δ) now follows by controlling the generic chaining complexity
in terms of Dudley’s entropy integral. We also have that, under condition (7.61), the
diameter D(T; dX) admits the following estimate:

D2(T; dX) 6 2 sup
t∈T

Var(X(t)) = 2

∫
Rd
v(s)ds 6 C ′′,

where C ′′ is a constant depending on d, p,B. The bound on S(T; dX) now follows
from the bound on γ2(T; dX ; δ) by substituting δ =

√
C ′′. �

We will also need a bound on Kolmogorov’s width of the set of random variablesXT
given in the following lemma.

Lemma 7.9. — Let T be a bounded measurable subset of Rd satisfying condition (6.1)
and let X(t), t ∈ Rd be a centered subgaussian stationary random field with spectral
measure ν and spectral density v. Suppose that

(7.63) v(t) 6
B

(1 + |t|2)p

for some p > d/2, B > 0. Then, there exists a constant C > 0 depending only on d, p
and B such that for all m > CN

(7.64) ρm(XT) 6 C
( R

m1/d

)p−d/2
.

Remark 7.2. — Note that bound (7.64) is sharp (up to a constant). A matching lower
bound can be proved via an argument based on replacing the spectral density v by a
smaller density v that is constant in a cube of a proper size and zero outside of the
cube. For such a smaller density, it is possible to find a grid of points of sufficiently
large cardinality m such that the values of the stationary random field with spectral
density v at the points of the grid are uncorrelated. Bounding the corresponding Kol-
mogorov’s width from below can be now reduced to bounding Kolmogorov numbers
of the embedding of `m1 into `m2 , see Gluskin [18] for the solution of the last problem.
The authors are very thankful to M. Lifshits for pointing out this beautiful argument.
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Proof. — We will construct an approximation of the set of random variables XT =

{X(t) : t ∈ T} by a finite dimensional subspace of subgaussian random variables
L ⊂ LX . Since X is a stationary random field, the following spectral representation
holds

X(t) =

∫
Rd
ei〈t,s〉Z(ds),

where Z is an orthogonal random measure such that

EZ(A)Z(B) = ν(A ∩B), A,B ∈ BRd .

By a standard isometry argument, to approximate the random variable X(t) in the
space L2(P), it is enough to approximate the function e2πi〈t,·〉 in the space L2(Rd, ν).
For δ 6 r, consider a δ-net of the set T that consists of N ′ 6 (R/δ)d points τ1, . . . , τN ′ .
To construct an approximation of the exponential function, we will use Taylor expan-
sion of order l in a δ-neighborhood of each of the points τk. We use the the following
standard bound on the remainder of Taylor expansion:

(7.65)
∣∣ei〈h,s〉 −Ql(h; s)

∣∣ 6 |h|l|s|l
l!

, Ql(h; s) :=

l−1∑
j=0

ij〈h, s〉j

j!
.

For t ∈ B(τk; δ),

ei〈t,s〉 = ei〈τk,s〉ei〈t−τk,s〉 = ei〈τk,s〉Ql(t− τk; s) + ei〈τk,s〉(ei〈t−τk,s〉 −Ql(t− τk; s)).

Denote (for some A > 0 to be chosen later)

ζ
(k)
l (h) := Re

(∫
Rd
ei〈τk,s〉Ql(h; s)I(|s| 6 Aδ−1)Z(ds)

)
.

By spectral isometry (using the fact that X is real valued), we get that for all k =

1, . . . , N ′ and all t ∈ B(τk; δ) (thus, for all t ∈ T)

(7.66) E
∣∣X(t)− ζ(k)

l (t− τk)
∣∣2 6 E

∣∣∣X(t)−
∫
Rd
ei〈τk,s〉Ql(h; s)I(|s| 6 Aδ−1)Z(ds)

∣∣∣2
6

∫
|s|6Aδ−1

∣∣ei〈t,s〉 − ei〈τk,s〉Ql(t− τk; s)
∣∣2v(s)ds+

∫
|s|>Aδ−1

v(s)ds.

Under condition (7.63) and the assumption p > d/2, using (7.65), we get that with
some constant C > 0 depending only on B, d and for all k = 1, . . . , N ′ and l >
(2p− d) ∨ 1∫
|s|6Aδ−1

∣∣ei〈t,s〉 − ei〈τk,s〉Ql(t− τk; s)
∣∣2v(s)ds 6

δ2l

(l!)2

∫
|s|6Aδ−1

|s|2lv(s)ds

6 B
δ2l

(l!)2

∫
|s|6Aδ−1

|s|2l

(1 + |s|2)p
ds 6 C

δ2p−d

A2p−d−2l(2l − 2p+ d)(l!)2
.
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We also have ∫
|s|>Aδ−1

v(s)ds 6 B
∫

|s|>Aδ−1

1

(1 + |s|2)p
ds 6 C

δ2p−d

(2p− d)A2p−d .

We will now set
A := Al := (2l)1/(2l)(l!)1/l.

Then, (7.66) easily implies that with some constant C depending only on p and d

E
∣∣X(t)− ζ(k)

l (t− τk)
∣∣2 6 C( δ

Al

)2p−d
.

Using Stirling’s approximation, it is easy to see that Al > l/e, implying that

(7.67) E
∣∣X(t)− ζ(k)

l (t− τk)
∣∣2 6 C(δ

l

)2p−d
.

Note that Ql(h; ·) is polynomial of degree l− 1 of d variables, hence, the family of
functions {

ei〈τk,·〉Ql(h; ·)I(| · | 6 Aδ−1) : h ∈ Rd
}

belongs to a (complex) linear space of dimension
(
l−1+d
d

)
6 (l + d − 1)d. This im-

mediately implies that the family of random variables {ζ(k)
l (h) : h ∈ Rd} belongs

to a linear subspace of LX whose dimension is at most 2(l + d − 1)d. Therefore,{
ζ

(k)
l (t − τk) : t ∈ B(τk; δ), k = 1, . . . , N ′

}
belongs to a subspace of L of dimension

6 2(l + d− 1)dN ′ 6 2(l + d− 1)d(R/δ)d. Let m > 2(l + d− 1)d and let

δ = 21/d(l + d− 1)
R

m1/d
.

Assuming that m > C1N , where C1 := 2(l + d − 1)dκd, we have δ 6 r. Then
2(l + d− 1)d(R/δ)d = m and it follows from (7.67) that

ρm(XT) 6 C
( l + d− 1

l

)p−d/2 Rp−d/2

mp/d−1/2
,

with some constant C depending on B, d, p. The claim of the lemma follows by sub-
stituting the smallest l > (2p− d) ∨ d. �

We will now provide an upper bound on the “approximate dimension” d(w;λ)

needed to complete the proof of the theorem. To this end, recall that we assume that
for all j = 1, . . . , N the set Tj belongs to a ball of radius r > N−1/d and R = κN1/dr,
R > 2. Also, for an oracle λ, R(λ) = κ(N(λ))1/dr, so, we have r 6 R(λ) 6 R.
In what follows, C,C ′, etc are constants depending on B, d, p. First, let us upper
bound γ2(ρm(w)) = γ2(ρm(XTw)). Using Lemmas 7.8 and 7.9, we get that for all
m > C1N(λ)

γ2(ρm(w)) 6 C
(R(λ))p−d/2

mp/d−1/2

√
log

(
CRp−d/2mp/d−1/2

(R(λ))p−d/2

)∨
logN.(7.68)
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Since R/R(λ) = κN1/dr/κ(N(λ))1/2r 6 N1/d, it is easy to conclude that

γ2(ρm(w)) 6 C
(R(λ))p−d/2

mp/d−1/2

√
logm

∨
C

(R(λ))p−d/2

mp/d−1/2

√
logN.

To provide an upper bound on d(w, λ), we first find the smallest m satisfying the
inequality

σ2
Ym

n
> C

‖λ‖1√
n

(R(λ))p−d/2

mp/d−1/2

√
logm

∨
C
‖λ‖1√
n

(R(λ))p−d/2

mp/d−1/2

√
logN.

This is equivalent to the bound

(7.69) m > C
nd/(2p+d)‖λ‖2d/(2p+d)

1 R(λ)d(2p−d)/(2p+d)

σ
4d/(2p+d)
Y

·
(

(logm)d/(2p+d)∨(logN)d/(2p+d)
)

Note that in the oracle inequality of Theorem 3.2, it is enough to restrict oracles λ to
the ball

‖λ‖1 6 C ′‖f∗ −Πf∗‖L2(Π)n
1/2

for some constant C ′ > 0 (see bound (7.5) in the proof of this theorem). Recall that
also

N−1/d 6 r 6 R(λ) 6 R = κN1/dr.

Therefore, bound (7.69) easily implies that

(7.70) m > C
(n‖λ‖21)d/(2p+d)R(λ)d(2p−d)/(2p+d)

σ
4d/(2p+d)
Y

·
(

logN ∨ log n ∨ | log σY | ∨ | log r|
)d/(2p+d)

.

It easily follows from the definition of d(w, λ) that either we have d(w, λ) 6 C1N(λ),
or d(w, λ) 6 m for any m satisfying (7.70). Therefore, with some constant C > 0

(7.71) d(w;λ) 6 CN(λ)

∨
C

(n‖λ‖21)d/(2p+d)R(λ)d(2p−d)/(2p+d)

σ
4d/(2p+d)
Y

(
logN ∨ log n ∨ | log σY | ∨ | log r|

)d/(2p+d)

.

To complete the proof, it is enough to substitute this bound on d(w;λ) in the oracle
inequality of Theorem 3.2. Bounds (5.1) and Lemma 7.7 should be used to control
the alignment coefficient a(w).

As to the proof of Theorem 6.2, the main difference is in the bounds on
the alignment coefficient a(w). For a given oracle λ ∈ Dr and a covering
B(t1; r), . . . , B(tN(λ); r) of supp(λ), let σj be the sign of λ on B(tj ; r) ∩ supp(λ) and
w̃j := σj(φr ∗IB(tj ;2r)), j = 1, . . . , N(λ) (see the notations of the proof of Lemma 7.7).
It is easy to see that

∑
j∈Jλ w̃j is an extension of a subgradient w ∈ ∂‖λ‖1. Thus, by
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Proposition 4.1,

a2(w) 6 ‖w‖2K 6
∥∥∥∥N(λ)∑
j=1

w̃j

∥∥∥∥2

W2,p

.

Since functions w̃j have disjoint support, we can further bound this using Proposi-
tion A.2 and of Lemma 7.7 as

a2(w) 6 C

[N(λ)∑
j=1

‖w̃j‖2W2,p +
1

r2α

N(λ)∑
j=1

‖w̃j‖2W2,bpc

]
6 C

(
rd + rd−2p

)
N(λ).

Finally, to prove the result of Theorem 6.3, we need to bound the alignment coef-
ficient a(w) as follows. Let φ be an arbitrary nonnegative C∞-function supported in
the unit ball {t : |t| 6 1} such that for all t ∈ Rd, φ(t) 6 φ(0) = 1. Given λ ∈ D and
r 6 δ(λ), let

w̃j = sign(λj)φ
( t− tj

r

)
, j ∈ J(λ).

Clearly, restriction of w =
∑
j∈J(λ) w̃j to the grid GN is an element of ∂‖λ‖1. By

Proposition 4.2, we have

a2(w) 6 ‖w‖2K 6
∥∥∥∥N(λ)∑
j=1

w̃j

∥∥∥∥2

W2,p

.

By Proposition A.2 and a simple computation is spirit of Lemma 7.7

a2(w) 6 C
(
rd + rd−2p

)
N(λ).

It is easy to see that γ2(ρm(w)) and d(w;λ) can be bounded above by their “contin-
uous” counterparts for T = [0, 2π]d, in particular, inequalities (7.68) and (7.71) hold.
To complete the proof, it is enough to substitute bounds on d(w;λ) and a2(w) in the
oracle inequality of Theorem 3.2 and optimize the resulting expression with respect
to r. Choose r∗(λ) as r∗(λ) = min(r̃, δ(λ)) with r̃ defined as

r̃2p−d =
(N(λ)2

n

)d/(2p+2d) σ
2d/(p+d)
Y s(2p+d)/(2p+2d)

(L‖λ‖21)
d/(2p+2d)

,

where L = log n ∨ logN ∨ | log σY |. The claim now follows from simple algebra.

Appendix A. Technical background and remaining proofs

A.1. Existence of solutions of optimization problems. — We provide below suffi-
cient conditions for existence of solutions to the problems (2.3) and (1.2).

Theorem A.1. — Let D be a convex, weakly compact subset of L1(µ). Then
(1) F (λ, a), Fn(λ, a) are weakly lower semicontinuous;
(2) Solutions to problems (2.3) and (1.2), denoted by λε and λ̂ε, exist.
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Proof. — We prove the statement for F (λ), and the result for Fn(λ) follows similarly.
The functional λ 7→ ‖λ‖1 is continuous. Assume ‖λk − λ0‖1 → 0. Using Hölder’s
inequality, we get

P (`•fλk,a(λk))− P (`•fλ0,a(λ0)) = E(Y − fλk,a(λk)(X))2 − E(Y − fλ0,a(λ0)(X))2

= E
[ (

2Y − fλk,a(λk)(X)− fλ0,a(λ0)(X)
) ∫
T

(λ0 − λk)(X − EX)dµ

]

6 E1/2

(∫
T

(λ0 − λk)(X − EX)dµ

)2

E1/2
(
2Y − (fλk,a(λk) + fλ0,a(λ0))(X)

)2
6 ‖λk − λ0‖1E1/2‖X − EX‖2∞

(
2
√

Var(Y ) + ‖λk + λ0‖1E1/2‖X − EX‖2∞
)
−→ 0,

where in the last step we used the fact that∣∣∣∣ ∫
T

λ(t)(X(t)− EX(t))µ(dt)

∣∣∣∣ 6 ‖λ‖1 sup
t∈T
|X(t)− EX(t)|.

Thus, F (λ) is continuous, hence it is lower semi-continuos. In turn, this is equivalent
to the fact that the level sets Lt = {λ : F (λ) 6 t} are closed. Moreover, they are
convex since F is. Mazur’s theorem (see [29], Theorem 2.1) implies that they are also
closed in weak topology, so F is weakly lower semi-continuous.

Now it is easy to show existence of solutions. Given a minimizing sequence
{λk} ⊂ D, we can extract a weakly convergent subsequence

λkl
σ−−→ λ∞.

It remains to note that by weak compactness and lower semi-continuity λ∞ ∈ D and
−∞ < F (λ∞) 6 lim inf l→∞ F (λkl) , which means that λ∞ is the solution. �

When T is finite, then one can clearly take D = L1(T, µ) ⊆ R|T |, and Theorem A.1
is not needed to prove existence of λ̂ε. However, in general the unit ball in L1(T, µ) is
not weakly compact, so one way to proceed is to choose D to be uniformly integrable
(which implies weak compactness, see Theorem 4.7.18 in [7]). A possible choice is

D =

{
λ :

∣∣∣∣ ∫
T

max (|λ(t)| log |λ(t)|, 0) dµ(t)

∣∣∣∣ 6 L} for some L > 0.

A.2. Orlicz norms. — Let ψ : R+ 7→ R+ be a convex nondecreasing function with
ψ(0) = 0.

Definition A.1. — The Orlicz norm of a random variable η on a probability space
(Ω,Σ,P) is defined via

‖η‖ψ := inf {C > 0 : Eψ (|η|/C) 6 1}
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By ‖·‖ψ1
, ‖·‖ψ2

we denote the Orlicz norms for ψ1(x) := ex−1 and ψ2(x) := ex
2−1,

respectively; the following inequalities are elementary:

‖η‖ψ1
6
√

log 2‖η‖ψ2
,(A.1)

‖η2‖ψ1
= ‖η‖2ψ2

,(A.2)
‖ξη‖ψ1

6 ‖ξ‖ψ2
‖η‖ψ2

.(A.3)

It is easy to check from the definition that every subgaussian random variable η
(meaning that Eesη 6 eΓσ2

ηs
2

, s ∈ R) satisfies the following property:

‖η‖2ψ2
6 8Γσ2

η.(A.4)

In what follows, we use the same notations for Orlicz norms on other probability
spaces (for instance, Cbu(T; dX) with its Borel σ-algebra and probability measure Π).

A.3. Bounds for subgaussian processes and Talagrand’s generic chaining complex-
ities

Theorem A.2. — Let {Z(t), t ∈ T} be a centered subgaussian process. Then, for all
u > 0, t0 ∈ T,

(1) P (supt (Z(t)− Z(t0)) > 2u · γ2(T, dZ)) 6 Ce−u
2/4,

(2) E‖Z‖∞ 6 E|Z(t0)|+ Lγ2(T, dZ),

where dZ(t, s) =
√

Var(Z(t)− Z(s)).

Proof. — See Chapter 1.2 in [39]. �

A simple corollary is the following inequality:

P
(
‖Z‖∞ > C

√
t
(
γ2(T, dZ) + inf

t∈T

√
Var(Z(t))

))
6 e−t.(A.5)

We mention another result which is useful in our investigation:

Proposition A.1. — Let Z be a centered subgaussian stochastic process such that

γ2(T, dZ) <∞

and let Z1, . . . , Zn be iid copies of Z. Then for any t0 ∈ T
(1) (log 2)

−1/2 ∥∥‖Z‖∞∥∥ψ1
6
∥∥‖Z‖∞∥∥ψ2

6 ‖Z(t0)‖ψ2
+ Lγ2(T, dZ),

(2)
∥∥maxj=1...n ‖Zj‖∞

∥∥
ψ1
6 C log n

∥∥‖Z‖∞∥∥ψ1
.

Proof. — First statement is a straightforward corollary of Talagrand’s result and
integration-by-parts formula. For the proof of the second claim, see [41], Lemma
2.2.2. �

In the case when Z(t), t ∈ T is a centered Gaussian process, a famous result of
Talagrand (see Theorem 2.1.1 in [39]) states that

1

K
γ2(T; dZ) 6 E sup

t∈T
Z(t) 6 Kγ2(T; dZ)(A.6)
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for some universal constant K. Moreover, the upper bound also holds for the centered
subgaussian process Z.

In practice, a useful way to estimate the generic chaining complexity γ2(T; dZ) and
its “local version” γ2(δ) is to evaluate Dudley’s entropy integral:

Theorem A.3. — The following inequality holds for all δ 6 supt,s∈T dX(t, s):

γ2(δ) 6 (2
√

2− 1)−1

δ∫
0

√
logN(T, dZ , ε/4)dε,

where N(T, dZ , ε) is the minimal number of balls of radius ε required to cover T.

Proof. — This well-known bound can be obtained by repeating the argument of
Proposition 1.2.1 in [39]. �

The following immediate corollary covers two important examples.

Corollary A.1
(1) If Card(T) = N , then

γ2(δ) 6 Cδ
√

logN ;

(2) If the covering numbers grow polynomially, i.e. N(T, dX , ε) 6 C1 (A/ε)
V , then

γ2(δ) 6 C2δ
√
V log(A/δ) .

A.4. Empirical processes. — We state a version of generic chaining bounds for em-
pirical processes due to S. Mendelson, S. Dirksen and W. Bednorz which are used
in our proofs. Let F be a class of functions defined on a measurable space (S,A ).
Suppose F is symmetric, that is, f ∈ F implies −f ∈ F (in applications, we of-
ten deal with the classes that do not satisfy this assumption and then replace F by
F ∪ −F ). Let (X, ξ), (X1, ξ), . . . , (Xn, ξ) be i.i.d. random variables with values in
S × R such that Ef(X) = 0, f ∈ F and ξ is a subgaussian random variable. Let Π

be the marginal distribution of X. It will be used as a measure on (S,A ).

Theorem A.4. — There exists an absolute constant C > 0 such that

E sup
f∈F

∣∣∣∣n−1
n∑
j=1

ξjf(Xj)− Eξf(X)

∣∣∣∣ 6 C[‖ξ‖ψ2

γ2(F ;ψ2)√
n

∨ γ2
2(F ;ψ2)

n

]
.

This inequality follows from Corollary 3.9 in [32]. We will often combine it with
a version of Talagrand’s concentration inequality for unbounded function classes due
to Adamczak [1] (stated in a convenient form for our purposes). Let F be a class
of functions defined on a measurable space (S,A ) and let X,X1, . . . , Xn be i.i.d.
random variables sampled from distribution P on (S,A ). Let F be a measurable
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envelope for F , that is F is a measurable function on S such that |f(x)| 6 F (x),
x ∈ S, f ∈ F . Then, there exists a universal constant K > 0 such that

(A.7) sup
f∈F

∣∣∣∣ 1n
n∑
j=1

f(Xj)− Ef(X)

∣∣∣∣ 6 K[E sup
f∈F

∣∣∣∣ 1n
n∑
j=1

f(Xj)− Ef(X)

∣∣∣∣
+ sup
f∈F

√
Var(f(X))

√
s

n
+
∥∥∥ max

16j6n
|F (Xj)|

∥∥∥
ψ1

s

n

]
with probability > 1− e−s.

Finally, we state a recent sharp bound for the empirical processes due to
S.Dirksen [15] and W.Bednorz [5] (earlier versions of exponential generic chaining
bounds for similar empirical processes are due to Mendelson [33], [32]). Assume that
{f(X), f ∈ F} is a subset of the subgaussian space L .

Theorem A.5. — There exists an absolute constant C > 0 such that

sup
f∈F

∣∣∣∣n−1
n∑
j=1

f2(Xj)− Ef2(X)

∣∣∣∣ 6 C[ sup
f∈F
‖f‖ψ2

γ2(F ;ψ2)√
n

+
γ2

2(F ;ψ2)

n

+ sup
f∈F
‖f‖2ψ2

(√ s

n
∨ s

n

)]
with probability > 1− e−s.

For a proof and discussion of this bound, see Theorem 5.5 in [15]. Note that in (ii),
the generic chaining complexity γ2(F ;ψ2) in the right-hand side is for the class F

itself rather than F 2.

A.5. Sobolev norms. — For any p ∈ R+, define the Sobolev space W2,p(Rd) as

W2,p(Rd) =

{
f ∈ L2(Rd) : ‖f‖2W2,p(Rd) :=

∫
Rd

(1 + |t|2)p|f̂(t)|2dt <∞
}
,

where f̂ is the Fourier transform of f . It is well known that for p ∈ Z+, this coincides
with another definition of Sobolev spaces (in terms of partial derivatives)

Assume that f ∈ W2,p(Rd) for p ∈ Z+ is such that f =
∑k
j=1 fj , where fj ,

j = 1 . . . k have disjoint supports. Clearly, in this case we have ‖f‖2W2,p(Rd) =∑k
j=1 ‖fj‖2W2,p(Rd). When p is not an integer, we will use the following proposition.

Proposition A.2. — Assume that p ∈ R+, α := p − bpc > 0 and f ∈ W2,p(Rd) is
such that f =

∑k
j=1 fj, where fj, j = 1 . . . k, have disjoint supports and

min
16i<j6k

dist(supp(fi), supp(fj)) > r > 0,

where dist is the Euclidean distance. Then

‖f‖2W2,p(Rd) 6 C(d, p)

[ k∑
j=1

‖fj‖2W2,p(Rd) +
1

r2α

k∑
j=1

‖fj‖2W2,bpc(Rd)

]
.
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Proof. — We will need to use equivalence of certain norms defined on Sobolev spaces
W2,p(Rd). Let

′‖f‖2W2,p(Rd) := ‖f‖2W2,bpc + max
|m|=bpc

∫∫
Rd×Rd

(∂mf(x)− ∂mf(y))
2

|x− y|2α+d
dxdy,

where we use the usual multi-index notation. It is known that ‖·‖W2,p and ′‖·‖W2,p

are equivalent (e.g., see [2] p. 219). Let f =
∑k
j=1 fi satisfy the conditions of the

proposition. Making the change of variables x = t + u, y = u in the expression of
′‖·‖W2,p(Rd), we have

′‖f‖2W2,p = ‖f‖2W2,bpc + max
|m|=bpc

∫∫
Rd×Rd

(∂mf(t+ u)− ∂mf(u))
2
du

dt

|t|2α+d

=

k∑
j=1

‖fj‖2W2,bpc + max
|m|=bpc

[ ∫∫
Rd×B(0,r)

(∂mf(t+ u)− ∂mf(u))
2
du

dt

|t|2α+d

+

∫∫
Rd×B(0,r)

(∂mf(t+ u)− ∂mf(u))
2
du

dt

|t|2α+d

]
.

It remains to notice that∫∫
Rd×B(0,r)

(
∂mf(t+ u)−∂mf(u)

)2
du

dt

|t|2α+d

=

k∑
j=1

∫∫
Rd×B(0,r)

(
∂mfj(t+ u)− ∂mfj(u)

)2
du

dt

|t|2α+d

6
k∑
j=1

∫∫
Rd×Rd

(∂mfj(x)− ∂mfj(y))
2

|x− y|2α+d
dxdy

and, since (f(t+ u)− f(u))2 6 2f2(t+ u) + 2f2(u),∫∫
Rd×B(0,r)

(∂mf(t+ u)− ∂mf(u))
2
du

dt

|t|2α+d
6 2‖∂mf‖2L2(Rd)

∫
|t|>r

dt

|t|d+2α

= C1(d, α)
‖∂mf‖2L2(Rd)

r2α
,

where C1(d, α) = 2πd/2(d+ 2α)/αΓ(d/2), and the claim easily follows. �

A.6. Proof of Proposition 4.4. — Let J1, J2 be two disjoint subsets of {1, . . . , N},
and define

r(J1; J2) := sup
u,v

∣∣∣∣∣
〈∑

j∈J1
fuj ,

∑
j∈J2

fvj
〉
L2(Π)√∑

j∈J1
‖fuj‖2L2(Π)

∑
j∈J2
‖fvj‖2L2(Π)

∣∣∣∣∣
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where the supremum is taken over all

u =
∑
j∈J1

uj , v =
∑
j∈J2

vj

such that

supp(uj) ⊆ Tj , supp(vj) ⊆ Tj and
∑
j∈J1

‖fuj‖2L2(Π) 6= 0,
∑
j∈J2

‖fvj‖2L2(Π) 6= 0.

Next, let

ρd := max {r(J1; J2) : J1 ∩ J2 = ∅, Card(J1) + Card(J2) 6 3d} .

In what follows, we set λ(uj) :=
∥∥fuj∥∥L2(Π)

and h(uj) := fuj/‖fuj‖L2(Π).

Lemma A.1. — The following inequality holds: ρd 6 δ3d.

Proof. — See Lemma 2.1 in [11]. �

Set J0 := J , λ(0) := {λ(uj), j ∈ J0}, and let (λ(uπ(1)), . . . , λ(uπN−d)) be the vector
(λ(uj), j ∈ Jc0) sorted in the decreasing order, so that π is some permutation. We
further define J1 := (π(1), . . . , π(d)), J2 := (π(d + 1), . . . , π(2d)), etc., and λ(k) =

(λ(uj), j ∈ Jk). Everywhere below, ‖·‖1, ‖·‖2 denote the usual vector p-norms.
First, we will show that

∑
k>2

‖λ(k)‖2 6 b‖λ(0)‖2 := b
√∑

j∈J0
λ2(uj) .(A.8)

Indeed, for all j ∈ Jk, k > 2 we have |λ(uj)| 6 1
d

∑
i∈Jk−1

|λ(ui)|, implying that
‖λ(k)‖2 6 1√

d
‖λ(k−1)‖1. Summing up, we get

∑
k>2

‖λ(k)‖2 6
1√
d

∑
j /∈J0

|λ(uj)| 6
b√
d

∑
j∈J0

|λ(uj)|,

where the last inequality follows from the definition of the cone Cb,J . Inequality (A.8)
follows since b√

d

∑
j∈J0
|λ(uj)| 6 b

√∑
j∈J0

λ2(uj).
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Let PJ be the L2(Π)-orthogonal projection onto LJ , the linear span of {h(uj), j∈J}.
The following sequence of inequalities establishes the claim of Proposition 4.4:∥∥∥∥ N∑

j=1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

>

∥∥∥∥PJ0∪J1

N∑
j=1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

>

∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

−
∑
k>2

‖PJ0∪J1

∑
j∈Jk

λ(uj)h(uj)‖L2(Π)

>

∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

− ρd
∑
k>2

‖λ(k)‖2 sup
v∈LJ0∪J1

,‖v‖L2(Π)=1

‖v‖2︸ ︷︷ ︸
61/(1−δ2d)

>

∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

− ρd
1− δ2d

∑
k>2

‖λ(k)‖2

>

∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

− δ3db

1− δ2d

√∑
j∈J0∪J1

λ2(uj)

>

∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

− δ3db

(1− δ2d)2

∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

=
(

1− δ3d
b

(1− δ2d)2

)∥∥∥∥ ∑
j∈J0∪J1

λ(uj)h(uj)

∥∥∥∥
L2(Π)

>
(

1− δ3d
b

(1− δ2d)2

)
(1− δ2d)

√∑
j∈J0

λ2(uj),

hence β(b)
2 (J) 6 (1− δ2d)/

[
(1− δ2d)2 − bδ3d

]
.

It remains to show that δ3d < 1/(2 + b) is sufficient for β(b)
2 <∞. Since δ2d 6 δ3d,

it is enough to show that δ3d < 1/(2 + b) implies (1 − δ3d)2 − bδ3d > 0. The latter
is satisfied whenever δ3d < 2+b

2

(
1 −

√
1− 4/(2 + b)2

)
. The elementary inequality√

1− x 6 1 − x/2, x ∈ [0, 1], gives 2+b
2

(
1 −

√
1− 4/(2 + b)2

)
> 1/(2 + b), and the

result follows.
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