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VARIATION OF HODGE STRUCTURE AND

ENUMERATING TILINGS OF SURFACES BY

TRIANGLES AND SQUARES

by Vincent Koziarz & Duc-Manh Nguyen

Abstract . — Let S be a connected closed oriented surface of genus g. Given a triangulation
(resp. quadrangulation) of S, define the index of each of its vertices to be the number of
edges originating from this vertex minus 6 (resp. minus 4). Call the set of integers recording
the non-zero indices the profile of the triangulation (resp. quadrangulation). If κ is a profile
for triangulations (resp. quadrangulations) of S, for any m ∈ Z>0, denote by T (κ,m) (resp.
Q(κ,m)) the set of (equivalence classes of) triangulations (resp. quadrangulations) with profile κ
which contain at most m triangles (resp. squares). In this paper, we will show that if κ is a
profile for triangulations (resp. for quadrangulations) of S such that none of the indices in κ is
divisible by 6 (resp. by 4), then T (κ,m) ∼ c3(κ)m2g+|κ|−2 (resp. Q(κ,m) ∼ c4(κ)m2g+|κ|−2),
where c3(κ) ∈ Q · (

√
3π)2g+|κ|−2 and c4(κ) ∈ Q · π2g+|κ|−2. The key ingredient of the proof

is a result of J.Kollár [24] on the link between the curvature of the Hodge metric on vector
subbundles of a variation of Hodge structure over algebraic varieties, and Chern classes of
their extensions. By the same method, we also obtain the rationality (up to some power of π)
of the Masur-Veech volume of arithmetic affine submanifolds of translation surfaces that are
transverse to the kernel foliation.
Résumé (Variation de structure de Hodge et énumération de pavages de surfaces par des triangles
et des carrés)

Soit S une surface connexe fermée orientée de genre g. Étant donnée une triangulation
(resp. quadrangulation) de S, on définit l’indice d’un sommet comme étant le nombre d’arêtes
partant de ce sommet moins 6 (resp. moins 4). On appelle profil de la triangulation (resp.
quadrangulation) l’ensemble des indices non nuls. Si κ est le profil de triangulations (resp.
quadrangulations) de S, pour tout m ∈ Z>0, on note T (κ,m) (resp. Q(κ,m)) l’ensemble des
(classes d’équivalence de) triangulations (resp. quadrangulations) de profil κ qui contiennent
au plus m triangles (resp. carrés). Dans cet article, nous montrons que si κ est un profil de
triangulations (resp. quadrangulations) de S tel qu’aucun des indices de κ n’est divisible par 6
(resp. par 4), alors T (κ,m) ∼ c3(κ)m2g+|κ|−2 (resp. Q(κ,m) ∼ c4(κ)m2g+|κ|−2), où c3(κ) ∈
Q · (
√
3π)2g+|κ|−2 et c4(κ) ∈ Q · π2g+|κ|−2. La preuve repose sur un résultat de J.Kollár [24]

qui fait le lien entre la courbure de la métrique de Hogde sur les sous-fibrés vectoriels d’une
variation de structure de Hodge sur une variété algébrique, et les classes de Chern de leurs
extensions. Par la même méthode, nous obtenons également la rationalité (à une puissance
de π près) du volume de Masur-Veech des sous-variétés affines arithmétiques de surfaces de
translation transverses au feuilletage noyau.

Mathematical subject classification (2020). — 30F30, 32G15, 52C20.
Keywords. — Tilings of surfaces, differentials on Riemann surfaces, moduli spaces of flat surfaces,
Masur-Veech volume, variation of Hodge structure.
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1. Introduction

1.1. Triangulations and quadrangulations of surfaces. — Let S be a connected
closed oriented surface of genus g > 0. A triangulation (resp. quadrangulation) of S
is an embedded graph Γ on S such that each component of the complement of Γ

is homeomorphic to a disc and bounded by 3 edges (resp. 4 edges). A component
of S r Γ is called a face of the triangulation (resp. quadrangulation). Note that an
edge of Γ can appear twice in the boundary of the same face. Two triangulations
(resp. quadrangulations) of S are said to be equivalent if there is a homeomorphism
of S which restricts to an isomorphism between the corresponding embedded graphs.

The valency ev of a vertex v of Γ is the number of directed edges originating from v.
Note that a loop at v counts twice in ev. If Γ is a triangulation, define the index of v
to be κ(v) := ev − 6. If Γ is a quadrangulation then the index of v is κ(v) := ev − 4.
The vertices with nonzero index are said to be singular. By computing the Euler
characteristic of S, one readily finds

(1.1)
∑

v singular
κ(v) =

{
12(g − 1), if Γ is a triangulation,
8(g − 1), if Γ is a quadrangulation.

We will call the sequence of numbers
(
κ(v), v singular vertex

)
the profile of Γ. Let

κ = (κ1, . . . , κn) be a sequence of integers. We say that κ is an admissible profile for
triangulations of S if
• κi > −6 and κi 6= 0, for all i = 1, . . . , n,
• κ1 + · · ·+ κn = 12(g − 1).

Similarly, we will say that κ is an admissible profile for quadrangulations of S if
• κi > −4 and κi 6= 0, for all i = 1, . . . , n,
• κ1 + · · ·+ κn = 8(g − 1).
Given an admissible profile κ for triangulations of S, for any m ∈ Z>0, we denote

by T (κ,m) the set of equivalence classes of triangulations of S with profile κ and
number of faces at most m. In the same manner, if κ is an admissible profile for
quadrangulations of S, we denote by Q(κ,m) the set of equivalence classes of quad-
rangulations of S with profile κ and number of faces at most m. In this article, we
will show:
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VHS and enumerating tilings 833

Theorem 1.1
(i) Let κ = (κ1, . . . , κn) be an admissible profile for triangulations of S. If

(κ1, . . . , κn) satisfies κi 6∈ 6 · Z for all i = 1, . . . , n, then we have

(1.2) lim
m→∞

#T (κ,m)

m2g+n−2
= c3(κ),

where c3(κ) is a constant in Q · (
√

3π)2g+n−2.
(ii) Let κ = (κ1, . . . , κn) be an admissible profile for quadrangulations of S. If

(κ1, . . . , κn) satisfies κi 6∈ 4 · Z for all i = 1, . . . , n, then we have

(1.3) lim
m→∞

#Q(κ,m)

m2g+n−2
= c4(κ),

where c4(κ) is a constant in Q · π2g+n−2.

Remark 1.2
– In [36], Thurston studied triangulations of the sphere where the valency of every

vertex is at most 6. He relates the asymptotics of the number of such triangulations
with the volume of the moduli space of pointed genus zero curves with respect to
some complex hyperbolic metric. Those volumes have been computed by different
methods in [28] and [26]. The problem of enumerating tilings of surfaces by triangles
and squares has also been addressed in [14, 12, 13].

– The existence of the limits in (1.2) and (1.3) is a consequence of the main theorem
of [31]. In [12], Engel shows that the limits in (1.2) and (1.3), if finite, must belong
to the ring K[π], where K is either Q or Q(

√
3) (K = Q for quadrangulations).

The main content of Theorem 1.1 is that these constants belong to Qπ2g+n−2 or to
Q(
√

3π)2g+n−2 in the case κ satisfies the hypothesis of (i) and (ii).

1.2. Enumerating square-tiled surfaces in affine invariant submanifolds

Translation surfaces are pairs (X,ω) where X is a compact Riemann surface and ω
a non-zero holomorphic 1-form on X. The 1-form ω defines a flat metric with conical
singularities at its zeros. A square-tiled surface is a pair (X,ω) where ω is the pull-
back of the 1-form dz on the standard torus T = C/(Z ⊕ Zı) via a ramified cover
f : X → T, which is branched over a unique point.

The space of translation surfaces of genus g > 2 is naturally stratified by the
orders of the zeros of ω. Given an n-tuple of positive integers k = (k1, . . . , kn)

such that k1 + · · ·+ kn = 2g − 2, denote by ΩMg(k) the set of translation surfaces
(X,ω) such that ω has exactly n zeros with orders given by (k1, . . . , kn). It is
well-known that ΩMg(k) is a complex orbifold of dimension 2g + n − 1. For any
(X,ω) ∈ ΩMg(k), a neighborhood of (X,ω) can be identified with an open subset of
H1(X, {zeros of ω};C) by local charts called period mappings.

There is an action of GL+(2,R) on ΩMg(k) defined as follows: let (z1, . . . , zd) be
some local coordinates of ΩMg(k) given by a period mapping, and A a matrix in
GL+(2,R). Then the action of A is given by A : (z1, . . . , zd) 7→ (A(z1), . . . , A(zd)),
where A acts on C via the standard identification C ' R2. The dynamics of this action

J.É.P. — M., 2021, tome 8



834 V. Koziarz & D.-M. Nguyen

of GL+(2,R) has deep connections with various domains such as billiards in rational
polygons, interval exchange transformations, Teichmüller dynamics in moduli space
(see for instance [27, 40]).

The properties of the GL+(2,R) action, in particular the structure of the orbit
closures, are the subject of a fast growing literature in the last few decades. It fol-
lows from the groundbreaking results of Eskin-Mirzakhani [15] and Eskin-Mirzakhani-
Mohammadi [16] that any GL+(2,R)-orbit closure is an immersed suborbifold of
ΩMg(k), which is locally defined by linear equations with real coefficients in local
charts by period mappings. Such suborbifolds are commonly known as invariant affine
submanifolds (or affine submanifolds for short) of ΩMg(k).

An affine submanifold M is said to be arithmetic if it is locally defined by linear
equations with coefficients in Q. It is shown in [39] that M is arithmetic if and only if
it contains a square-tiled surface. Our second main result concerns the enumerating
of square-tiled surfaces in arithmetic affine submanifolds. Before giving the statement
of the second theorem, let us recall some relevant features of affine submanifolds.
Each stratum of translation surfaces carries naturally two local systems H1

rel and H1

whose fibers over (X,ω) are respectively H1(X, {zeros of ω};C) and H1(X,C). Let
p : H1(X, {zeros of ω};C) → H1(X,C) denote the natural projection. Then p gives
rise to a morphism p : H1

rel → H1 of local systems over ΩMg(k). By definition, the
tangent bundle TM of an affine submanifold M is a local subsystem of H1

rel over M.
Moreover, we have a foliation of M, called the kernel foliation, whose tangent space
at every point is identified with ker(p). We will say that M is absolutely rigid if the
restriction of p to TM is injective. Equivalently, M is absolutely rigid if it is transverse
to the kernel foliation of ΩMg(k). Examples of such affine submanifolds include strata
of translation surfaces having a single singularity (minimal strata), double covers of
quadratic differentials which only have zeros of odd order, and closed orbits generated
by square-tiled surfaces (this list is not exhaustive).

Theorem 1.3. — Let M be an arithmetic absolutely rigid affine submanifold of
ΩMg(k) of dimension d. For m ∈ Z>0, let ST(M,m) denote the set of square-tiled
surfaces in M that are formed by at most m unit squares. We then have

(1.4) lim
m→∞

#ST(M,m)

md
= c(M),

where c(M) ∈ Qπd.

The limit on the left hand side of (1.4) is often referred to as the Masur-Veech
volume of M. The rationality of this volume has been known for several classes
of arithmetic absolutely rigid affine submanifolds. If dimM = 2, then M is the
GL+(2,R)-orbit of a square-tiled surface. In this case, it is a well-known fact that
the projection of M in the moduli space of Riemann surfaces is a Teichmüller curve
(see for instance [35]). Up to a universal constant in Q · π2, the Masur-Veech volume
of M is equal to the Euler characteristic of this Teichmüller curve. In the case M is
a minimal stratum (which consists of Abelian differentials with a single zero), the
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rationality of the Masur-Veech volume was proved in the work [17] (see also [32] for
related formulas). In the case M consists of double covers of quadratic differentials
with odd order zeros and simple poles, this rationality was shown in [1] for genus
zero case, and in [7] for the general case (see also [18, 21]). An unexpected arithmetic
absolutely rigid affine submanifold of dimension 4 in genus four was discovered in
[29]. Its Masur-Veech volume was computed in [37]. However, to the authors’ knowl-
edge, for general arithmetic absolutely rigid affine submanifolds, the rationality of the
Masur-Veech volume was not already known.

1.3. Outline and remarks on the proof of the main theorems. — The proofs of
Theorem 1.1 and Theorem 1.3 go as follows: we first relate the asymptotics we are
interested in to the Masur-Veech volumes of some moduli spaces of projectivized
pluridifferentials on Riemann surfaces. The moduli spaces under consideration belong
to a special class of subvarieties, which will be called linear submanifolds, of the
projectivizations of strata of Abelian differentials (cf. Definition 2.1). By construction,
these moduli spaces carry a tautological line bundle, which comes equipped with a
natural Hermitian metric.

Under some appropriate hypothesis, that is, the linear submanifolds are supposed
to be polarized and absolutely rigid (cf. Section 2.5), we then show that up to a
rational constant, the Masur-Veech volume form is pointwise equal to some power of
the curvature form of the natural metric on the tautological line bundle. To show the
rationality of the Masur-Veech volumes (up to multiplication by some power of π),
instead of constructing specific compactifications for the linear submanifolds, we will
make use of the variation of (mixed) Hodge structure over these submanifolds.

To fix ideas, let us denote by M a linear submanifold of a stratum of Abelian differ-
entials, and by PM its projectivization. By definition, there is a variation of Z-mixed
Hodge structure over PM. The tautological line bundle is actually a holomorphic line
subbundle of the vector bundle associated with the Z-local system of this variation
of Hodge structure (VHS). Up to taking some finite cover, and some modification of
an arbitrary compactification of PM with normal crossing boundary, one can show
that the tautological line bundle extends as a line subbundle of the canonical exten-
sion of the VHS. Since the Hermitian metric on the tautological line bundle coincides
with the Hodge metric of the VHS, it follows from a result of J. Kollár [24] that any
power of the curvature of this metric is a representative in the sense of currents of
the corresponding power of the first Chern class of the extended line bundle. Since
the Masur-Veech volume of PM is equal to the integral of the maximal power of this
curvature form multiplied by a rational number, this enables us to conclude.

A few comments on the strategy of the proof are in order. First, the relation
between the Masur-Veech volumes and the asymptotics of the counting problems was
known since the work [17]. Second, that the Masur-Veech volume form is proportional
to the top power of the curvature of the tautological line bundle (on the associated
projectivized moduli spaces) was known to experts in the field. For minimal strata
of Abelian differentials and quadratic differentials with odd order zeros, their ratios

J.É.P. — M., 2021, tome 8



836 V. Koziarz & D.-M. Nguyen

were computed in [32, 7]. However, to the authors’ knowledge, for moduli spaces of
k-differentials (with k ∈ {2, 3, 4, 6}) this ratio has not been explicitly calculated in
the literature. In this paper, we limit ourselves to showing that this ratio is a rational
number in these cases (cf. Proposition 5.2 and Proposition 6.6).

Finally, for Theorem 1.1 an alternative method to show that the integral of the top
power of the curvature form gives a rational number is to use the compactifications
of the corresponding moduli spaces of k-differentials constructed in [5, 8]. Indeed, the
results in [8] imply that the integral under consideration is equal to the integral of
some power of the first Chern class of a line bundle over a compact complex orbifold,
thus must be a rational number. In [7], this method was used to calculate the Masur-
Veech volumes of some moduli spaces of quadratic differentials. The main novelty
of the current paper consists in the use of variation of Hodge structure and Kollár’s
result, which bypasses the involving construction of the compactifications in [5, 8], and
provides a uniform treatment for strata of k-differentials (Theorem 1.1) and absolutely
rigid linear submanifolds (Theorem 1.3). The drawback is that our approach does
not provide an effective way to compute the corresponding Masur-Veech volumes.
Nevertheless, one may expect that in some situations, where the construction of the
finite cover mentioned above can be carried out explicitly, it is possible to obtain
computable formulas for the Masur-Veech volumes by this method.

1.4. Organization. — The paper is organized as follows: in Section 2 we recall ba-
sic properties of strata of Abelian differentials and introduce the notion of linear
submanifolds as well as the variation of mixed Hodge structure over these varieties.
In Section 3, we give the definition of several natural volume forms on linear subman-
ifolds and the relations between them. In Section 4, we prove the rationality of the
volumes of the projectivized linear submanifolds that are polarized and absolutely
rigid (cf. Theorem 4.1). The proofs of Theorem 1.3 and of Theorem 1.1 are given in
Section 5 and Section 6 respectively.

Acknowledgements. — We are grateful to Yohan Brunebarbe for explaining the ingre-
dients of the proof of Theorem 4.1 to us, and for sharing with us his point of view
on the construction of the volume form. We thank the referees for the careful reading
and their useful comments.

2. Moduli spaces of Abelian differentials and linear subvarieties

2.1. Moduli spaces of Abelian differentials. — The moduli space ΩMg of pairs
(C,ω) where C is a smooth complex curve of genus g and ω is a non trivial Abelian
differential (i.e., a holomorphic 1-form) is the total space of the Hodge bundle over
the moduli space Mg of smooth curves of genus g, with the zero section removed.

The space ΩMg is an orbifold which is naturally stratified by the multiplicities of
zeroes of the corresponding Abelian differentials. For any partition k = (k1, . . . , kn) of
2g−2 by positive integers, the associated stratum is a locally closed subset of ΩMg for
the Zariski topology. The strata are always non-empty but not necessarily connected,
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though each has no more than three connected components [25]. Each stratum is a
complex algebraic variety with a complex orbifold structure that will be denoted by
ΩMg(k). To lighten the notation, throughout this paper, we use ΩMg(k) to denote a
connected component of the corresponding stratum.

If (C,ω) ∈ ΩMg(k), we will use the notation Z(ω) = {x1, . . . , xn}, where the point
xi ∈ C is a zero of ω of order ki. We have a preferred atlas on C −Z(ω) given by the
local primitives of the closed form ω. Two charts in this atlas differ by a translation,
so that this atlas defines on C − Z(ω) a flat metric structure with cone singularities
at Z(ω). Its area is given by A(C,ω) = ı

2

∫
C
ω ∧ ω.

In some situations, it is relevant to consider Abelian differentials (C,ω) together
with some marked points on C that are not zeros of ω. These marked points can be
considered as zeros of order 0 of ω. Let k = (k1, . . . , kn) be a vector of non-negative
integers such that k1 + · · ·+ kn = 2g − 2. We denote by ΩMg(k) the space of triples
(C,ω, Z), where (C,ω) ∈ ΩMg, and Z = {x1, . . . , xn} is a finite subset of C such
that div(ω) = k1x1 + · · · + knxn. Note that we do not fix any preferred numbering
on the points in Z, the only requirement is that xi is a zero of order ki. Since the
elements of ΩMg do not record the location of the marked points, in the case some of
the ki’s are 0, ΩMg(k) is not a subvariety of ΩMg. Nevertheless, it is well-known that
ΩMg(k) still enjoys the same properties as the strata of ΩMg, in particular, ΩMg(k)

is an algebraic variety and has an orbifold structure as a complex analytic space.
In what follows we will call ΩMg(k) a stratum of Abelian differentials indifferently
whether k has some entries equal to 0 or not.

2.2. Period coordinates and linear submanifolds. — Since each stratum is an orb-
ifold, a local chart on an open subset U ⊂ ΩMg(k) will have to be understood as a
chart over a finite (ramified) covering Û of U, where Û can be chosen simply connected,
endowed with a linear action of a finite group ΓU such that U = Û/ΓU. Objects over
ΩMg(k) will be defined locally over Û and endowed with an action of ΓU. Alternately,
one can define ΩMg(k) as a Deligne-Mumford stack, but we will not use this point of
view.

We fix a stratum S = ΩMg(k) and let U = Û/ΓU be a neighborhood of (C,ω),
where Û is as above. Then, for all (C ′, ω′) ∈ Û one can canonically identify the relative
homology group H1(C ′, Z(ω′);Z) and its dual H1(C ′, Z(ω′);Z) with H1(C,Z(ω);Z)

and H1(C,Z(ω);Z) respectively. Integrating the form ω along relative cycles, we ob-
tain a class in H1(C,Z(ω);C) = H1(C,Z(ω);C)∨. A fundamental result of Veech [38]
asserts that the resulting map Û→ H1(C,Z(ω);C) (usually called a period mapping)
is a local biholomorphism. In this way, we define a linear structure on ΩMg(k), mean-
ing that we get an atlas with linear changes of coordinates. A choice of a Z-basis of
H1(C,Z(ω);Z) will provide us with local coordinates around (C,ω) in ΩMg(k) that
will be called period coordinates. Note that changes of period coordinates are given
by matrices with integral coefficients.

There is a natural C∗-action on ΩMg(k) by multiplying the Abelian differential by
a scalar. We will denote by PΩMg(k) = ΩMg(k)/C∗ the projectivization of ΩMg(k).

J.É.P. — M., 2021, tome 8
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If (C,ω) is an element of ΩMg(k), its projectivization in PΩMg(k) will be denoted
by (C, [ω]). By definition, PΩMg(k) is a locally closed subset of PΩMg, and ΩMg(k)

can be interpreted as the total space of the tautological line bundle over PΩMg(k)

with the zero section removed.
For our purpose, we will be particularly interested in the following class of subva-

rieties of ΩMg(k).

Definition 2.1. — A linear submanifold M of ΩMg(k) is a complex algebraic subva-
riety such that the local irreducible components of M are defined by linear equations
in period coordinates. If M is a linear submanifold of ΩMg(k), by a slight abuse of
language, we will call PM := M/C∗ a linear submanifold of PΩMg(k).

Remark 2.2. — By definition, every local branch of M (considered as a complex
analytic space) corresponds to a vector subspace in local charts by period mappings
of ΩMg(k). Recall that ΩMg(k) has a structure of a complex orbifold. It follows
that the normalization of M (where all the local branches are separated) also has a
structure of complex orbifold.

Originally linear submanifolds arose from the study of GL+(2,R)-action on
ΩMg(k). It follows from the works [15, 16, 20] that every GL+(2,R)-orbit closure
in ΩMg(k) is a linear submanifold locally defined by linear equations with real
coefficients. These are commonly known as invariant affine submanifolds. Other
samples of linear subvarieties arise from strata of moduli spaces of pluridifferentials
(cf. Section 1.1). In this case, the subvarieties are locally defined by linear equations
with coefficients in Q(ζ), where ζ is root of unity. In this paper, we are essentially
concerned with these two families of linear submanifolds. Note also that in [30,
Def. 6.4], Möller introduced a notion of linear manifold which is similar to ours, but
somewhat more restrictive.

2.3. Numbered zeros and marked points. — Let Mg,n denote the moduli space of
n-pointed genus g smooth curves. Given a vector k = (k1, . . . , kn) of non-negative in-
tegers such that k1+· · ·+kn = 2g−2, we denote byMg,n(k) the set of (C, x1, . . . , xn) ∈
Mg,n such that k1x1 + · · · + knxn is the zero divisor of a holomorphic 1-form on C.
The locus Mg,n(k) is a subvariety of Mg,n. There is a natural algebraic line bundle
over Mg,n(k) defined as follows: let p : Cg,n →Mg,n be the universal curve over Mg,n,
and σ1, . . . , σn be the sections of p associated with the marked points. Let Di ⊂ Cg,n

be the image of σi. Note that Di is a divisor of Cg,n. Let Li denote the line bun-
dle O(−Di) on Cg,n. Let KCg,n/Mg,n

be the relative canonical line bundle associated
with p, and

K := KCg,n/Mg,n
⊗ L⊗k11 ⊗ · · · ⊗ L⊗knn .

By definition, the restriction of K to the fiber of p over every point in Mg,n(k) is the
trivial line bundle. Hence L := p∗(K|p−1(Mg,n(k))) is a line bundle over Mg,n(k) which
will be called the tautological line bundle. The complement of the zero section in the
total space of L is the set of tuples (C, x1, . . . , xn, ω), where (C, x1, . . . , xn) ∈Mg,n(k),
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and ω is a holomorphic 1-form on C such that div(ω) = k1x1 + · · ·+knxn. We denote
this set by ΩMg,n(k). By construction ΩMg,n(k) is a C∗-bundle over Mg,n(k).

There is a natural map F : ΩMg,n(k) → ΩMg(k) which consists in forgetting
the numbering of the marked points. This is actually a finite morphism of algebraic
varieties, which is also an orbifold covering between the underlying complex analytic
spaces. Given a point x = (C,ω) ∈ ΩMg(k), we will often implicitly endow the set
Z(ω) with a compatible numbering, which means that we actually consider a point in
ΩMg,n(k) that projects to x. That F is an orbifold covering implies that this choice
of numbering can be made consistently in an orbifold local chart.

By a linear submanifold of ΩMg,n(k) we will mean a subvariety having the prop-
erty described in Definition 2.1. By extension, we will also call any algebraic variety
which admits a finite morphism into ΩMg,n(k) whose image has the property of Def-
inition 2.1 a linear submanifold of ΩMg,n(k).

2.4. Variation of Hodge structure associated with a stratum. — Let us now fix a
stratum S = ΩMg(k). As we mentioned earlier, each stratum S is an orbifold, as well
as PS. Actually, there exists a manifold PŜ which is an orbifold covering of PS. To see
this, we first recall that the forgetful map F : ΩMg,n(k)→ S is an orbifold covering of
finite degree. This map induces an orbifold covering F̂ : PΩMg,n(k) → PS. Since the
complex line generated by a (non-trivial) Abelian differential is uniquely determined
by its divisor, we can identify PΩMg,n(k) with Mg,n(k). This means that Mg,n(k) is
an orbifold covering of PS.

By definition Mg,n = Tg,n/Γg,n, where Tg,n is the Teichmüller space of smooth
curves of genus g with n marked points, and Γg,n is the corresponding modular group.
Orbifold points of Mg,n(k) correspond to fixed points of finite subgroups of Γg,n. It is
well-known that Γg,n contains torsion free finite index subgroups. The preimage of
Mg,n(k) in some orbifold covering of Mg,n associated with such subgroups is actually
a complex manifold. In conclusion, we see that PS admits an orbifold covering PŜ of
finite degree which is a smooth quasi-projective variety, and over which we have a
universal family of n-pointed genus g smooth curves. Passing to a larger covering, one
can even assume that there exists a finite group Γ acting holomorphically on PŜ such
that PS = PŜ/Γ. Objects over PS are defined over PŜ and endowed with an action
of Γ.

Let L be the pullback to PŜ of the tautological line bundle over PS. Denote by Ŝ the
total space of L with the zero section removed. By construction PŜ = Ŝ/C∗. We will
denote by π : Ŝ→ PŜ the natural projection.

Over PŜ, the relative homology groups H1(C,Z(ω);Z) assemble in a Z-local
system. We denote by H1

rel the dual Z-local system, whose fiber is identified with
H1(C,Z(ω);Z). Note that the integration of the form ω along relative cycles as de-
fined in Section 2.2 can be seen as a holomorphic section τ over Ŝ of the holomorphic
vector bundle π−1H1

rel ⊗Z O
Ŝ
.

Since Ŝ and PŜ are locally identified with S and PS respectively, we will often
identify elements of Ŝ (resp. of PŜ) with elements of S (resp. Ŝ). For any (C, [ω]) in PŜ,
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denoting by Z = Z(ω) the zeroes of ω, the relative cohomology group H1(C,Z;Z) fits
in an exact sequence

0 −→ H0(C,Z) −→ H0(Z,Z) −→ H1(C,Z;Z) −→ H1(C,Z) −→ 0.

Setting H̃0(Z,Z) := H0(Z,Z)/H0(C,Z), this yields

(2.1) 0 −→ H̃0(Z,Z) −→ H1(C,Z;Z) −→ H1(C,Z) −→ 0.

On H0(C,C) and H0(Z,C) we have canonical (positive) polarizations defined over Z.
We endow H̃0(Z,C) with the quotient polarization, which will be denoted by h0.
As for H1(C,C), it is endowed with the Hermitian pseudo-metric h1 of signature
(g, g) defined by

h1(u, v) :=
ı

2

∫
C

u ∧ v =
ı

2

g∑
j=1

u(aj)v(bj)− u(bj)v(aj),

where (a1, . . . , ag, b1, . . . , bg) is any symplectic basis of H1(C,Z). Observe that the
corresponding skew-symmetric form is defined over Z.

Denoting by F the complex vector subspace H0(C,Ω1) of H1(C,C) formed by
cohomology classes of holomorphic 1-forms, the Hodge filtration is the decreasing
filtration F • of H1(C,C) defined by

F 2 = {0} ⊂ F = F 1 ⊂ F 0 = H1(C,C).

If we let (C, [ω]) vary in PŜ, then W := H̃0(Z,Z) and H1(C,Z) assemble in Z-local
systems W and H1 that fit in an exact sequence of Z-local systems

0 −→W −→ H1
rel −→ H1 −→ 0.

Remark that with our assumption on PŜ, W is actually constant. The Hermitian
forms h0 and h1 induce a flat (constant) Hermitian metric h0 on WC and a flat
Hermitian pseudo-metric h1 on H1

C respectively. Correspondingly, the Z-local sys-
temH1 (resp. W) supports a variation of polarized Z-pure Hodge structure of weight 1

(resp. of weight 0 associated with the trivial filtration).
The group H1(C,Z;Z) is endowed with a graded-polarized Z-mixed Hodge struc-

ture, and the exact sequence (2.1) expresses it as an extension of pure polarized
Z-Hodge structures. The weight filtration W• of H1(C,Z;Z) is defined by

W−1 = {0} ⊂W = W0 = H̃0(Z,Z) ⊂W1 = H1(C,Z;Z)

and the Hodge filtration of H1(C,Z;C) is the pullback of the Hodge filtration on
H1(C,C). This defines on H1

rel a variation of graded-polarized Z-mixed Hodge struc-
ture.

2.5. Linear submanifolds revisited. — Let PM ⊂ PS be a linear submanifold
(cf. Definition 2.1). The preimage PM̂ of PM in PŜ is also a linear submanifold of PŜ.
The normalization of PM̂ is then a smooth algebraic variety equipped with an immer-
sive finite generically one-to-one morphism into PŜ. We abusively denote this smooth
variety by PM̂. Define M̂ to be the pullback of the tautological C∗-bundle over PŜ
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to PM̂. By construction, there is a finite generically one-to-one morphism from M̂

to Ŝ. Locally on M̂ (in the Euclidean topology), the local irreducible components of
the image of this map in Ŝ are defined by linear equations in period coordinates.

By definition, given (C, [ω]) ∈ PM̂ ⊂ PŜ, there is a linear subspace V ⊂
H1(C,Z(ω);C) such that a neighborhood of (C, [ω]) in PM̂ can be identified
with an open subset of PV := (V r {0})/C∗ via a period mapping. Define
V1 := p(V ) ⊂ H1(C,C), and V0 := kerp ∩ V . We then have the following exact
sequence

(2.2) 0 −→ V0 −→ V
p−−→ V1 −→ 0.

The trivial bundles with fibers V0, V, V1 over open subsets as above patch together to
form three local systems over PM̂, which will be denoted by V0,V,V1 respectively.
Note that V0,V,V1 are sub-local systems of WC, (H

1
rel)C,H

1
C respectively. We have

the following exact sequence

(2.3) 0 −→ V0 −→ V −→ V1 −→ 0.

By Deligne [10], the Q-local system (H1
Q)|PM̂ is semi-simple and hence:

Proposition 2.3. — The C-local system V1 is semi-simple.

Remark 2.4. — Let pr : M̂→ PM̂ be the natural projection. By definition, pr−1V is
identified with the tangent bundle to M̂.

We still denote by h0 resp. h1 their restriction to V0 resp. V1 . As they are flat,
(deth0 ⊗ |det h1|)∨ defines a flat Hermitian form(1) on the canonical bundle K

M̂
'

pr−1(detV)∨. However, if h1 is degenerate (in restriction to V1), this Hermitian form
vanishes, something we would like to avoid. This leads us to the following:

Definition 2.5. — A polarized linear submanifold PM of PΩMg(k) is a linear sub-
manifold such that V1 is a subvariation of Hodge structure of (H1

C)|PM̂. In particular,
the restriction of h1 to V1 is non degenerate.

Note that this condition is actually automatically satisfied if we assume that no
other local subsystem of (H1

C)|PM̂ is isomorphic to V1. Indeed in that case, V1 inherits
from (H1

C)|PM̂ a structure of complex variation of Hodge structures, see [11, §1.12-13].
Concretely, this means that the following decomposition holds

V1 = (F ∩ V1)⊕ (F ∩ V1).

Remark 2.6. — Definition 2.5 is independent of the choice of M̂.

(1)For any finite dimensional C-vector space W endowed with a non degenerate Hermitian
form h, we define the Hermitian form deth on detW = ΛdimCWW by ((deth)(w1 ∧ · · · ∧ wr))2 :=

det(h(wi, wj))16i,j6r, if (w1, . . . , wr) is any basis of W .
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3. Volume form

3.1. Push forward measure. — Let M be a polarized linear submanifold in S. Con-
sider the exact sequence (2.2). Recall that we are given a positive Hermitian form h0

on V0 and a non-degenerate Hermitian form h1 on V1. We abusively denote by h1 the
(degenerate) Hermitian form induced by h1 on V . The Hermitian forms h0 and h1

define a Hermitian metric det(h0)⊗ |det(h1)| on ΛdCV as follows: let (e1, . . . , ed) be a
C-basis of V , where (e1, . . . , er) is a basis of V0. We define

(deth0⊗ |deth1|(e1 ∧ · · · ∧ ed))2 := det(h0(ei, ej)16i,j6r) · |det(h1(e`, em)r+16`,m6d)|.

Let (deth0 ⊗ deth1)∨ denote the dual metric on ΛdCV
∗. Let σ ∈ ΛdCV

∗ be an element
of norm 1 with respect to this metric. Then (ı/2)

d
σ ∧ σ is a real volume form on V .

Since M̂ is locally identified with V , and h0, h1 are invariant by the monodromies,
this volume form gives a well-defined volume form dvol on M̂.

When M = S, that is, V = H1(C,Z;C), one can define a volume form on S using
the invariance of the lattice H1(C,Z;Z⊕ıZ). This volume form is commonly known as
the Masur-Veech measure of the stratum S. The Masur-Veech measure is particularly
relevant for Teichmüller dynamics in moduli spaces and billiards in rational polygons.
By construction, dvol differs from the Masur-Veech volume form by a constant. If M
is a proper linear submanifold of S which is locally defined by homogeneous equa-
tions with real coefficients, then by the work of Eskin-Mirzakhani [15], M carries a
distinguished volume form which also differs from dvol by a constant.

The volume form dvol induces a measure µ on PM̂ in the following way: let pr :

M̂ → PM̂ be the projection. Recall that M̂ is identified with the total space of the
tautological bundle L over PM̂ with the zero section removed. On the line bundle L,
we have the Hodge metric ‖.‖ given by ‖ω‖2 := (ı/2)

∫
C
ω ∧ ω, for every (C,ω) ∈ M̂.

Let M̂61 be the set of (C,ω) ⊂ M̂ such that ‖ω‖ 6 1. The measure µ on PM̂ is defined
by the formula µ(B) = vol(pr−1(B) ∩ M̂61), where B is any Borel subset of PM̂.

Let us now give a description of µ in more concrete terms. Let (C,ω) be a point
in M̂, and (C, [ω]) be its projection in PM̂. By some period mapping φ, a neigh-
borhood of (C,ω) in M̂ is identified with an open subset of a linear subspace V ⊂
H1(C,Z(ω);C), which is the fiber of V over (C, [ω]). Note that if v = φ(C,ω) then
‖ω‖2 = h1(v, v) > 0. Thus the image of φ is contained in the cone

C+ := {v ∈ V | h1(v, v) > 0}.

Let P+(V ) := C+/C∗ ⊂ P(V ) and pr : C+ → P+(V ) be the natural projection.
Let also C+

61 := {v ∈ V | 0 < h1(v, v) 6 1}. For any subset A ⊂ P+(V ), let
C61(A) := pr−1(A) ∩ C+

61.
Since the period mapping φ is equivariant with respect to the C∗-actions on M̂

and V , it induces a biholomorphism φ̂ from a neighborhood U of (C, [ω]) in PM̂
onto an open subset Ω of P+(V ). Moreover, φ induces an isomorphism of Hermitian
line bundles L|U ' LP+(V )|Ω, where LP+(V ) is the tautological line bundle over P+(V )

endowed with the Hermitian metric h1 . In this setting, the restriction of the measure µ
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to U is given as follows: for any Borel subset B ⊂ U , we have

µ(B) = vol(C61(φ̂(B))).

From this description, it is not difficult to see that µ is actually induced by a volume
form dµ on PM̂ (see Lemma 3.1 below).

3.2. Alternative definition of dµ. — Let us describe the construction of dµ from
another point of view. We denote by G ⊂ GL(V ) the subgroup consisting in auto-
morphisms that act as the identity on V0 and whose induced automorphism on V1

preserves h1. The group G fits in an exact sequence

0 −→ Hom(V1, V0) −→ G −→ U(V1, h1) −→ 1.

One easily checks that P+(V ) is an orbit for the action of G on P(V ). Since M̂ is
locally modeled on (G,C+), objects on M̂ and PM̂ can be defined as G-invariant
objects on C+ and P+(V ).

A volume form on a complex manifold X can be viewed as a section of the bundle
KX ⊗KX where KX is the canonical bundle of X. A Hermitian metric on the canon-
ical bundle of X induces a metric | . | on volume forms. A complex manifold being
orientable, it always admits a non vanishing global volume form dV . We will say that
the volume form dV/|dV | is the volume form associated with the metric.

Since P+(V ) is an homogeneous manifold for the action of G, its tangent bundle,
and hence its canonical bundle, is naturally a G-equivariant bundle. This is also the
case for the restriction to P+(V ) of the tautological line bundle L over P(V ). Note
also that h1 induces on L a G-invariant Hermitian metric that we still denote by h1.
On P+(V ) we have the Euler exact sequence of bundles

0 −→ Ω1
P+(V ) −→ V ∨ ⊗ L −→ C −→ 0.

(see [22, Th. II.8.13]). It follows that the canonical line bundle KP+(V ) is isomorphic
to det(V )∨⊗L⊗ dimV . Thus (deth0⊗|deth1|)∨⊗h⊗ dimV

1 defines a G-invariant metric
on KP+(V ).

Specifically, let (e1, . . . , er) be an orthonormal basis of V0 with respect to h0, and
(e′r+1, . . . , e

′
d) an orthonormal basis of V1 with respect to h1. For i = r + 1, . . . , d,

let ei be a vector in V that projects to e′i. Then (e1, . . . , ed) is a basis of V , and
e1 ∧ · · · ∧ ed ∈ detV has norm 1 with respect to deth0 ⊗ |deth1|. Let (z1, . . . , zd)

be the coordinates of V in the basis (e1, . . . , ed). Then the associated volume form
on V is

dvol =
( ı

2

)d
dz1 ∧ dz1 ∧ · · · ∧ dzd ∧ dzd.

Let v be a vector in C+(V ). Since h1(v, v) > 0, there is some i ∈ {r + 1, . . . , d} such
that zi(v) 6= 0. We can assume that zd(v) 6= 0. In a neighborhood of [v] in P+(V ),
we have the local coordinates w := (w1, . . . , wd−1) = (z1/zd, . . . , zd−1/zd). Using the
isomorphism provided by the Euler exact sequence, the volume form associated with
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(deth0 ⊗ |deth1|)∨ ⊗ h⊗ dimV
1 on P+(V ) writes

dλ =
( ı

2

)d−1

· 1

hd(w)
dw1 ∧ dw1 ∧ · · · ∧ dwd−1 ∧ dwd−1,

where h(w) := h1

(
w1, . . . , wd−1, 1

)
. Recall that in this setting the measure µ is the

push forward of the volume form dvol on C+
61 by the natural projection pr|C+

61
:

C+
61 → P+(V ).

Lemma 3.1. — The measure µ is defined by a volume form dµ on P+(V ), and we have

dµ =
π

dimV
dλ.

Proof. — Let B be an open neighborhood of [v] in P+(V ). Consider the map

φ : [0; 2π]× R∗+ ×B −→ V

(θ, t, w1, . . . , wd−1) 7−→ teıθ(w1, . . . , wd−1, 1) = (z1, . . . , zd).

We have C(B) := φ([0; 2π]× R∗+ ×B) ⊂ V r {0} is the cone over B. By definition,

φ−1(C(B) ∩ C+
<1) =

{
(θ, t, w) ∈ [0; 2π]× R∗+ ×B | 0 < t < 1/

√
h(w)

}
.

A quick computation gives

φ∗dvol =
( ı

2

)d−1

t2d−1dt ∧ dθ ∧ dw1 ∧ dw1 ∧ · · · ∧ dwd−1 ∧ dwd−1.

It follows that

µ(B) =
( ı

2

)d−1
∫ 2π

0

dθ

∫
B

(∫ 1/
√
h(w)

0

2t2d−1dt

)
dw1dw1 . . . dwd−1dwd−1

=
( ı

2

)d−1

· π
d

∫
B

1

hd(w)
dw1dw1 . . . dwd−1dwd−1,

which implies that µ is induced by the volume form

dµ :=
( ı

2

)d−1

· π

dhd(w)
dw1dw1 . . . dwd−1dwd−1 =

π

d
dλ. �

3.3. Pure case. — We now turn to the case where the term V0 in (2.2) is trivial.

Lemma 3.2. — Assume that M is a polarized absolutely rigid linear submanifold of
some stratum S. Let Θ denote the curvature form of the Hodge metric on L. Let (p, q)

be the signature of the restriction of h1 to V . Then we have the following equality at
every point in PM̂.

dµ =
(−1)p−12π

2dd!
(ıΘ)d−1,

where d = dimM.

Proof. — Recall that for polarized absolutely rigid submanifolds, the map p : V → V1

in (2.2) is an isomorphism. Thus h1 is a non-degenerate Hermitian form on V , which
means that d = p+ q.

As above, let L denote the restriction of the tautological line bundle on P(V ) to
P+(V ). Over P+(V ), h1 provides us with a Hermitian metric on L. Since locally the
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Hermitian line bundle (L, ‖.‖) over PM̂ (where ‖.‖ is the Hodge metric) is identified
with (LP+(V ), h1), Lemma 3.2 is an immediate consequence of Lemma 3.3 here below.

�

Lemma 3.3. — Let dµ be the measure on P+(V ), which is the push forward of dvol

defined as in Section 3.1. Let Θ be the curvature form of the Hermitian metric h1

on L (note that ıΘ is a real (1, 1)-form on P+(V )). Then we have

dµ =
(−1)p−12π

2p+q(p+ q)!
(ıΘ)p+q−1.

Proof. — We can identify V with Cp+q endowed with the Hermitian form

h1(z, z) =

p∑
i=1

|zi|2 −
q∑
i=1

|zp+i|2,

where z = (z1, . . . , zp+q). In these coordinates, we have

dvol = |det(h1)| =
( ı

2

)p+q
dz1 ∧ dz1 . . . dzp+q ∧ dzp+q.

Observe that U(p, q) ' U(h1) preserves µ and the curvature form Θ (since U(p, q)

preserves the Hermitian metric h1 on L). It follows that dµ/(ıΘ)p+q−1 is a function on
P+(V ) invariant under the action of U(p, q). Since U(p, q) acts transitively on P+(V ),
dµ/(ıΘ)p+q−1 is actually constant. To evaluate this constant, it suffices to compute
the ratio dµ/(ıΘ)p+q−1 at the point [1 : 0 : · · · : 0] ∈ P+(V ).

Consider a neighborhood B of [1 : 0 : · · · : 0] in P+(V ) that can be identified with
a neighborhood of 0 ∈ Cp+q−1 by the mapping

(w1, . . . , wp+q−1) 7−→ [1 : w1 : · · · : wp+q−1].

By the computations in Lemma 3.1, we have

dµ(0) =
( ı

2

)p+q−1

· π

(p+ q)
dw1 ∧ dw1 ∧ · · · ∧ dwp+q−1 ∧ dwp+q−1.

To compute Θ, we will use the following section of L over B

σ : B −→ Cp+q

w = (w1, . . . , wp+q−1) 7−→ (1, w1, . . . , wp+q−1).

Set h(w) := h1(σ(w), σ(w)), we then have

Θ(w) = −∂∂ log(h(w))

= −
∑p−1
i=1 dwi ∧ dwi −

∑p+q−1
i=p dwi ∧ dwi

h(w)
+
∂h(w) ∧ ∂h(w)

h2(w)
.

Thus

Θ(0) = −
p−1∑
i=1

dwi ∧ dwi +

p+q−1∑
i=p

dwi ∧ dwi,

and

Θp+q−1(0) = (p+ q − 1)!(−1)p−1dw1 ∧ dw1 ∧ · · · ∧ dwp+q−1 ∧ dwp+q−1.
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Therefore
dµ

(ıΘ)p+q−1
=

(ı/2)p+q−1 · π/(p+ q)

ıp+q−1(p+ q − 1)!(−1)p−1
=

(−1)p−12π

2p+q(p+ q)!
. �

Remark 3.4. — We remind the reader that our volume form dvol is defined only by
using h1. In fact, if dν̂ is any volume form on V that is proportional to the Lebesgue
measure, then the push forward measure on P+(V ), denoted by dν, is proportional to
Θp+q−1 by the invariance under the action of U(h1) = U(p, q). In the cases where dν̂ is
the Masur-Veech volume form on minimal strata of Abelian differentials H(2g−2), or
on strata of quadratic differentials with only zeros of odd order, the ratio dν/(ıΘ)p+q−1

has been computed in [32] and [7]. See also [33, Lem. 5.1] for a related calculation.

4. Computation of the volume in terms of characteristic classes

Our goal now is to show

Theorem 4.1. — Let M be a polarized absolutely rigid linear submanifold of some
stratum S of translation surfaces. Then the volume of PM with respect to µ satisfies

µ(PM) ∈ QπdimM.

Proof. — Let M̂,PM̂ be as in Section 2.5, and V0,V and V1 be the local systems
on PM̂ defined in Section 2.5. That M is absolutely rigid and polarized means that
V0 = {0}, hence V and V1 are isomorphic, and the restriction of h1 to V1 is non-
degenerate. Let d = dimM = rk(V1), and (p, d−p) be the signature of the restriction
of h1 to the fibers of V1. As a consequence, by Lemma 3.2, we have

µ(PM̂) :=

∫
PM̂

dµ =
(−1)p−12π

2dd!

∫
PM̂

(ıΘ)d−1,

where Θ is the curvature of the Hodge metric ‖.‖ on L. If there is a compact complex
manifold X together with a normal crossing divisor ∂X such that

– PM̂ ' X r ∂X,
– L extends to a holomorphic line bundle L on X, and
– ( ı

2πΘ)d−1 is a representative of cd−1
1 (L) in the sense of currents,

then

µ(PM̂) =
(−1)p−1

2dd!
(2π)dcd−1

1 (L) ∈ Q · πd,

since cd−1
1 (L) ∈ H2(d−1)(X,Z). Unfortunately, the existence of such a compact man-

ifold has not been proved in general. Nevertheless, we have:

Claim 4.2. — There is a compact complex manifold Ŷ together with a normal crossing
divisor ∂Ŷ and a line bundle L̂→ Ŷ such that

– there is a finite covering q̂ : Ŷ r ∂Ŷ → PM̂,
– q̂∗( ı

2πΘ)d−1 is a representative of cd−1
1 (L̂) in the sense of currents.
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Proof of the claim. — Recall that over PM̂, we have a VHS {H1, F}, where F is the
holomorphic subbundle ofH1

C = H1⊗ZC whose fiber over a point (C,ω) isH1,0(C). By
definition, the tautological line bundle L is a subbundle of F . Moreover the Hermitian
metric ‖.‖ on L is precisely the restriction of the Hodge metric of H1 to L.

Let X be a smooth compactification of PM̂ with normal crossing boundary divi-
sor ∂X. It is a well-known fact that the monodromy of H1 about each component of
∂X is quasi-unipotent. Thus there is a finite covering q : Y → X ramified over ∂X
such that the pullback ofH1 to Y := Y r∂Y has unipotent monodromies about ∂Y :=

q−1(∂X) (see [23, Th. 17] and [6, Lem. 3.5]). It follows from the work of Deligne [9] and
Schmid [34] that the pullback of the filtration {H1

C, F} to Y extends canonically to a
filtration {H1

C, F} of holomorphic vector bundles over Y . However, the line bundle L

does not necessarily extends to Y . To fix this issue, we construct a modification of Y
as follows: the pullback of L to Y provides us with a section σ of the projective bundle
PH1

C over Y . The closure Y ′ of σ(Y ) in PH1

C is a modification of Y . Let ∂Y ′ be the
preimage of ∂Y in Y

′. Note that ∂Y ′ is a divisor of Y ′, and Y
′ r ∂Y

′ ' Y . The
variety Y ′ is not necessarily smooth. Let (Ŷ , ∂Ŷ ) denote the desingularization of the
pair (Y

′
, ∂Y

′
). By construction, (the pullback of) the filtration {H1

C, F} on Ŷ is the
canonical extension of the VHS {H1, F} on Ŷ r ∂Ŷ . Moreover, the pullback L̂ of the
tautological line bundle O(−1)PH1

C
to Ŷ is clearly a line subbundle of the pullback

ofH1

C. The restriction of L̂ to Ŷ r∂Ŷ ' Y is isomorphic to (the pullback of) L. We are
now in position to apply [24, Th. 5.1 and Remark 5.19], which asserts that any power
of the curvature form of (L̂|Y , ‖.‖) is a representative of the corresponding polynomial
in c1(L̂) in the sense of currents. This completes the proof of the claim. �

By the claim, let N be the degree of q̂, we have

µ(PM̂) =
1

N
· (−1)p−1

2dd!
(2π)d

∫
Ŷr∂Ŷ

( ı

2π
Θ
)d−1

=
1

N
· (−1)p−1

2dd!
(2π)dcd−1

1 (L̂) ∈ Q ·πd.

Since PM̂ is a finite cover of PM, the theorem follows. �

Remark 4.3. — Denote by ΩMg,n the pullback of the Hodge bundle ΩMg to Mg,n.
Let PM denote the closure of PM (more precisely, the closure of its pre-image) in
PΩMg,n. This closure is called the incidence variety compactification of PM (cf. [3]).
By construction, the line bundle L is precisely the restriction of the tautological line
bundle O(−1)PΩMg,n

to PM. Thus O(−1)|PM is an obvious extension of L to PM.
There is a surjective birational morphism from the space Ŷ in Claim 4.2 onto PM.
A natural question one may ask is whether L̂ is isomorphic to the pullback of O(−1)

to Ŷ . If this is true, it would simplify the computation of the integral
∫
Ŷ
cd−1
1 (L̂),

which is equal to the self-intersection number of the divisor associated to L̂. It seems
to us that this should be the case, but we do not have a proof of this fact.
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5. Proof of Theorem 1.3

Let M now be an arithmetic affine submanifold of dimension d in some stratum
ΩMg(k). By definition, M is locally defined by linear equations with rational coeffi-
cients in period coordinates. By a result of [2], M is always polarized.

Let (C,ω) be a surface in M. As usual, denote by Z(ω) the zero set of ω. We iden-
tify H1(C,Z(ω);C) with C2g+n−1 using a basis of H1(C,Z(ω);Z). The image of a
neighborhood of (C,ω) in M is an open subset of a linear subspace V ⊂ C2g+n−1

which is defined over Q. It follows that ΛZ
V := V ∩ (Z ⊕ ıZ)2g+n−1 is a lattice in V .

Note that the square-tiled surfaces in M and close to (C,ω) are mapped to points
in ΛZ

V .
There is a unique volume form on V which is proportional to the Lebesgue measure

such that the covolume of ΛZ
V is equal to one. This volume form gives rise to a well-

defined volume form on M, which will be called the Masur-Veech volume form and
denoted by dvol∗. The volume form dvol∗ is important to us because of the following
folkloric lemma (see [17, Prop. 1.6]).

Lemma 5.1. — Let M61 denote the set of (C,ω) ∈ M such that ‖ω‖2 6 1. Then we
have

lim
m→∞

#ST(M,m)

md
= vol∗(M61).

Sketch of proof. — Let M1 denote the set of surfaces in M with area equal to 1. Note
that M1 is an orbifold of real dimension 2d− 1. Since M1 is paracompact, there is a
countable family {Ui}i∈N of compact subsets of M1 such that

– M1 =
⋃
i∈N Ui,

– each Ui is contained in the image of a local chart by some period mapping, and
the boundary of Ui is C1-piecewise,

– int(Ui) ∩ int(Uj) = ∅ if i 6= j.
We can identify Ui with a subset of a linear subspace V ⊂ C2g+n−1 as above. Let
C(Ui) be the infinite cone R∗+ · Ui ⊂ V . Let ST(Ui,m) be the set of square-tiled
surfaces of area at most m whose image is contained in C(Ui). For all s > 0, denote
by Cs(Ui) the set {η ∈ C(Ui) | 0 < h1(η, η) 6 s}. By definition

#ST(Ui,m) = #Cm(Ui) ∩ ΛZ
V .

Let ∆ be a fundamental domain for the action of ΛZ
V in V . We can suppose that ∆

contains 0 in its interior. Set

W (Ui,m) =
⋃

η∈ΛZ
V ∩Cm(Ui)

(∆ + η) ⊂ V.

By definition, vol∗(∆) = 1, thus vol∗(W (Ui,m)) = #ST(Ui,m). We now remark that
(1/
√
m) ·W (Ui,m) approaches C1(Ui) as m→ +∞. Thus

lim
m→+∞

vol∗((1/
√
m) ·W (Ui,m)) = vol∗(C1(Ui)),
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which implies

lim
m→+∞

#ST(Ui,m)

(
√
m)2d

= vol∗(C1(Ui)).

Summing up over the family {Ui | i ∈ N} we get the desired conclusion. �

The Masur-Veech volume form on M is not necessarily equal to the volume form
dvol defined in Section 3.1. However, we have:
Proposition 5.2. — The ratio dvol∗/dvol is a rational constant on M.

Proof. — By construction, dvol∗/dvol is locally constant. Since M is irreducible, it
follows that dvol∗ = αdvol where α is constant on M. It is enough to show that α is
rational in some local chart of M.

Let (C,ω) be an element of M. We fix a basis of H1(X,Z(ω),Z) and identify
H1(X,Z(ω);C) with C2g+n−1 using this basis. Let z = (z1, . . . , z2g+n−1) be the coor-
dinates of C2g+n−1. Up to a renumbering of these coordinates, the Hermitian form h1

is given by

h1(z, z) =
ı

2

g∑
j=1

(zjzg+j − zjzg+j).

A neighborhood of (C,ω) in M is identified with an open subset of a linear subspace
V ⊂ C2g+n−1 defined over Q. For any sequence

I = (i1, . . . , ir), where ij ∈ {1, . . . , 2g + n− 1}, and ij 6= ij′ if j 6= j′,

define

φI : C2g+n−1 −→ CI

(z1, . . . , z2g+n−1) 7−→ (zi1 , . . . , zir ).

Since dimC V = d, there is a sequence I = (i1, . . . , id) such that the projection φI
restricts to an isomorphism from V onto Cd.

Let w = (w1, . . . , wd) be the coordinates of Cd. The inverse of the map
φI|V : V → Cd is an injective linear map ψ : Cd → C2g+n−1, such that ψ(Cd) = V ,
and φI ◦ ψ = idCd . Since V is defined over Q, the matrix of ψ in the canonical
bases of Cd and C2g+n−1 has rational entries. This means that if ψ(w1, . . . , wd) =

(z1, . . . , z2g+n−1) then zj is a linear function of w with rational coefficients. As a
consequence, the pullback of the Hermitian form h1 to Cd is given by

ψ∗h1(w,w) =
ı

2

∑
16i,j6d

γijwiwj ,

where γij ∈ Q, and γij = −γji. By definition, we have

ψ∗dvol =
( ı

2

)d
|det(γij)| dw1 ∧ w1 ∧ · · · ∧ dwd ∧ wd.

Let ΛZ
V be the intersection V ∩ (Z⊕ ıZ)2g+n−1. Since ΛZ

V is a lattice of V , φI(ΛZ
V )

is a lattice of Cd. Remark that φI(ΛZ
V ) is a sublattice of (Z⊕ ıZ)d. Let r be the index

of φI(ΛZ
V ) in (Z⊕ ıZ)d. Observe that the covolume of (Z ⊕ ıZ)d is 1 with respect to

the volume form (ı/2)
d
dw1dw1 . . . dwddwd. Thus the covolume of φI(ΛZ

V ) is r with
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respect to this volume form. Now, by definition, ΛZ
V has covolume 1 with respect to

the Masur-Veech volume form dvol∗. Thus φI(ΛZ
V ) has covolume form 1 with respect

to ψ∗dvol∗. This means that

ψ∗dvol∗ =
1

r

( ı
2

)d
dw1dw1 . . . dwddwd.

Since det(γij) ∈ Q, we have ψ∗dvol∗/ψ∗dvol ∈ Q, and the proposition follows. �

Proof of Theorem 1.3. — Let µ∗ be the push forward of the Masur-Veech volume form
by the projection pr|M61

: M61 → PM. By the arguments of Lemma 3.1, we see
that µ∗ is actually given by a volume form dµ∗ on PM. Since dvol∗/dvol = dµ∗/dµ,
by Lemma 5.1, we get

lim
m→∞

#ST(M,m)

md
= vol∗(M61) := µ∗(PM) = αµ(PM).

where α is a rational constant by Proposition 5.2. By assumption, M is absolutely
rigid. It follows from a result of [2] that M is polarized. Thus Theorem 4.1 allows us
to conclude. �

6. Counting triangulations and quadrangulations

6.1. Flat metrics and k-differentials. — Let us now fix a finite subset Σ =

{s1, . . . , sn} ⊂ S. Consider a triangulation Γ of S with profile κ. We can always
assume that Σ is the set of singular vertices of Γ. There is a diffeomorphism from
each face of Γ onto the equilateral triangle M= (0, 1, eıπ/3) mapping the edges of Γ to
the sides of M. We endow each face of Γ with the Euclidean metric on ∆ via such a
map. This metric extends smoothly across the vertices whose valency is equal to 6.
At each vertex whose valency is not 6 (that is, a singular vertex), we get a conical
singularity with cone angle πe/3, where e is the valency of the vertex.

Let S′ := S r Σ. The linear holonomy of the flat metric provides us with a homo-
morphism ρ : π1(S′, ∗)→ SO(2). The image of ρ is contained in

U6 := {ek2πı/6 | k = 0, . . . , 5}.

Thus there exists k ∈ {1, 2, 3, 6} such that Im(ρ) = Uk, where Uk is the group of
k-th roots of unity. This means that the flat metric on S is induced by a meromorphic
k-differential ξ. Note that ξ is only determined up to a constant in S1. The set of
zeros and poles of ξ is precisely the set of singularities of the flat metric, that is, Σ.
Moreover, the orders of zeros and poles of ξ are completely determined by the profile
of Γ. Namely, the order of ξ at a singular vertex v is given by k(ev − 6)/6. In particular,
v is a pole of ξ if and only if ev < 6, and v is a zero of ξ if and only if ev > 6.

Similarly, if Γ is a quadrangulation, then by endowing each face of Γ with the
Euclidean metric on the unit square � = (0, 1, 1 + ı, ı), we also get a flat metric on S
with conical singularities at Σ. This metric is defined by a meromorphic k-differential ξ
on S determined up to constant in S1, where k ∈ {1, 2, 4}. The set of zeros and poles
of ξ is equal to Σ, and the order of ξ at a vertex v ∈ Σ is given by k(ev − 4)/4.
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6.2. Canonical covering. — Let ξ be a meromorphic k-differential on a compact
Riemann surface X. In what follows, we will always assume that ξ is not a power of
some k′-differential with k′ < k, and that the poles of ξ have order at most k − 1.
It follows from a classical construction (see for instance [19, 4, 31]) that there is a
cyclic covering $ : X̂ → X of degree k, a holomorphic 1-form ω̂ on X̂, and an
automorphism τ of X̂ of order k such that

(a) $∗ξ = ω̂k,
(b) τ∗ω̂ = ζω̂, where ζ is a primitive k-th root of unity,
(c) X̂/〈τ〉 ' X.
Let Z denote the set of zeros and poles of ξ, and Ẑ = $−1(Z). Then, by con-

struction, Ẑ contains the zero set of ω and all the branched points of $. Moreover,
the genus ĝ of X̂, the cardinality n̂ of Ẑ, and the action of τ on Ẑ are completely
determined by the orders of the zeros and poles of ξ.

Note that for any k-th root of unity λ, the triple (X̂, λω̂, 〈τ〉) also satisfies the con-
ditions above. However, since there exists ` ∈ {0, . . . , k−1} such that τ ` ·(X̂, ω̂, 〈τ〉) =

(X̂, λω̂, 〈τ〉), all these triples are isomorphic. It can also be shown that any two triples
satisfying the conditions (a), (b), (c) above are isomorphic. For this reason, we can
call the triple (X̂, ω̂, 〈τ〉) the canonical covering of (X, ξ).

The following proposition characterizes the set of k-differentials arising from trian-
gulations (resp. quadrangulations) on S.

Proposition 6.1. — Let (X, ξ) and (X̂, ω̂, 〈τ〉) be as above. Then
(i) The k-differential ξ arises from a triangulation of S if and only if up to multi-

plication by some constant in S1, ω̂ satisfies

(6.1)
∫
c

ω̂ ∈ Z⊕ Zeıπ/3, ∀c ∈ H1(X̂, Ẑ,Z).

Moreover, the triangulation is uniquely determined by the triple (X̂, ω̂, 〈τ〉).
(ii) The k-differential ξ arises from a quadrangulation of S if and only if up to

multiplication by some constant in S1, ω̂ satisfies

(6.2)
∫
c

ω̂ ∈ Z⊕ Zı, ∀c ∈ H1(X̂, Ẑ,Z).

Moreover, the quadrangulation is uniquely determined by the triple (X̂, ω̂, 〈τ〉).

Proof. — Let us first suppose that the triple (X̂, ω̂, 〈τ〉) is obtained from a triangula-
tion on S. By construction, we have a triangulation of X̂ by equilateral triangles of unit
side that is the pullback of the triangulation on S. Since any cycle c in H1(X̂, Ẑ;Z)

can be represented by a path composed by some edges of this triangulation, up to
rotation, we have

∫
c
ω̂ ∈ Z⊕ Zeıπ/3.

Assume now that (X̂, ω̂) satisfies (6.1). Fix a point x̂0 ∈ Ẑ, and define a map
ϕ : X̂ → C/(Z⊕ Zeıπ/3) as follows

ϕ(x) =

∫ x

x̂0

ω̂ mod (Z⊕ Zeıπ/3),
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where the integral is taken along any path from x̂0 to x. It is straightforward to
check that ϕ is a ramified covering with all the branched points contained in Ẑ, and
satisfies ϕ(Ẑ) = {0}. The torus C/(Z ⊕ Zeıπ/3) admits a triangulation Γ0 composed
by 2 equilateral triangles with 0 being the unique vertex. The pullback of Γ0 by ϕ
gives a triangulation of X̂. Since τ∗ω̂ = ζω̂, where ζ ∈ U6, it follows that there exists
an automorphism j of the torus C/(Z⊕Zeıπ/3) which fixes 0 and satisfies ϕ◦τ = j◦ϕ.
Note that j preserves the triangulation Γ0. Therefore, τ preserves the triangulation of
(X̂, ω̂), which means that this triangulation descends to a triangulation of X̂/〈τ〉 ' S.
It is clear that each triple (X̂, ω̂, 〈τ〉) provides us with a unique triangulation of S up
to homeomorphisms.

The case where (X̂, ω̂, 〈τ〉) arises from a quadrangulation of S follows from similar
arguments. �

6.3. Moduli space of k-differentials. — Let κ := (κ1, . . . , κn) be an admissible
profile for triangulations (resp. quadrangulations) of S. Fix a positive integer k such
that k|6 and (6/k)| gcd(κ1, . . . , κn) (resp. k|4 and (4/k)| gcd(κ1, . . . , κn)). Let ki =

k · κi/6 if κ is a profile for triangulations, and ki = k · κi/4 if κ is a profile for
quadrangulations. In all cases, set k = (k1, . . . , kn). Note that we have ki ∈ Z>−k,
and k1 + · · ·+ kn = k · (2g − 2).

Let ΩkMg(k) denote the space of pairs (X, ξ) where X is a Riemann surface of
genus g, and ξ is a meromorphic k-differential on X whose zeros and poles have orders
prescribed by k. Since every k-differential is uniquely determined by its canonical
covering, we can identify ΩkMg(k) with the space of triples (X̂, ω̂, 〈τ〉) satisfying the
conditions (a), (b), (c) in Section 6.2. Denote by PΩkMg(k) the projectivization of
ΩkMg(k), that is, PΩkMg(k) = ΩkMg(k)/C∗.

Given (X, ξ) ∈ ΩkMg(k), denote by Z the set of zeros and poles of ξ. Let Ẑ be
the inverse image of Z in X̂. By construction, all the zeros of ω̂ are contained in Ẑ.
However, some of the points in Ẑ may not be zeros of ω̂. We will consider these points
as zeros of order 0 of ω̂, and subsequently Ẑ as the zero set of ω̂. Let k̂ := (k̂1, . . . , k̂n̂)

be the sequence of non-negative integers recording the orders of the zeros in Ẑ. Recall
that ΩMĝ(k̂) is the stratum of Abelian differentials consisting of triples (X̂, ω̂, Ẑ),
where X̂ is a Riemann surfaces of genus ĝ, ω̂ an Abelian differential on X̂, and
Ẑ = {x̂1, . . . , x̂n̂} is a finite subset of X̂ such that div(ω̂) = k̂1x̂1 + · · ·+ k̂n̂x̂n̂.

Proposition 6.2. — The stratum ΩkMg(k) is a finite cover of a polarized linear sub-
manifold of ΩMĝ(k̂). Moreover, if ki 6∈ k · Z, for all i = 1, . . . , n, then this linear
submanifold is absolutely rigid.

Proof. — Let (X̂, ω̂, 〈τ〉) be an element of ΩkMg(k), and Ẑ be the zero set of ω̂. Let
ψ1 : ΩkMg(k) → ΩMĝ(k̂) be the map which sends the triple (X̂, ω̂, 〈τ〉) to the triple
(X̂, ω̂, Ẑ), that is, we forget about the automorphism τ . This map is actually a finite
morphism of algebraic varieties. In particular ψ1(ΩkMg(k)) is an algebraic subvariety
of ΩMĝ(k̂). Recall that a neighborhood of (X̂, ω̂, Ẑ) in ΩMĝ(k̂) can be identified with
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an open subset of H1(X̂, Ẑ,C). There is a neighborhood U of (X̂, ω̂, 〈τ〉) in ΩkMg(k)

such that ψ1(U) is an open subset of Vζ ⊂ H1(X̂, Ẑ,C), where Vζ is the eigenspace
associated with the eigenvalue ζ of the action of τ on H1(X̂, Ẑ,C) (see for instance
[4, 31]). Thus ψ1(ΩkMg(k)) is a linear submanifold of ΩMĝ(k̂).

Let p : H1(X̂, Ẑ,C) → H1(X̂,C) be the natural projection. By [31, Prop. 5.1],
the restriction of the intersection form on H1(X̂,C) to p(Vζ) is non-degenerate. Thus
ψ1(ΩkMg(k)) is polarized. Finally, by [31, Prop. 4.1],

dim kerp ∩ Vζ = #{ki ∈ k · Z | i = 1, . . . , n}.

Thus if ki 6∈ k · Z for all i = 1, . . . , n, then p(Vζ) is absolutely rigid. �

6.4. Counting in moduli spaces. — Let ΩkMM
g (k) (resp. ΩkM�

g (k)) denote the set
of x̂ = (X̂, ω̂, 〈τ〉) ∈ ΩkMg(k) which satisfy the condition (6.1) (resp. the condi-
tion (6.2)) of Proposition 6.1.

Lemma 6.3. — Let x̂=(X̂, ω̂, 〈τ〉) and x̂′=(X̂ ′, ω̂′, 〈τ ′〉) be two elements of ΩkMM
g (k)

(resp. of ΩkM�
g (k)). Then x̂ and x̂′ give the same triangulation (resp. quadran-

gulation) of S if and only if there exists α ∈ U6 (resp. α ∈ U4) such that x̂′ ' α · x̂.

Proof. — We only give the proof for the case x̂, x̂′ ∈ ΩkMM
g (k). Assume that x̂′ ' α·x̂,

where α6 = 1. This means that there is an isomorphism f : X̂ → X̂ ′ such that
f∗ω̂′ = αω̂ and 〈τ〉 = 〈f−1 ◦ τ ′ ◦ f〉. Since both ω̂ and ω̂′ satisfy (6.1), f∗ω̂′ and ω̂

give two triangulations of X̂ by unit equilateral triangles (see Proposition 6.1). Since
f̂∗ω̂′ = αω̂, with α ∈ U6, the two triangulations coincide. Thus, they induce the same
triangulation of S. The proof of the converse is left to the reader. �

For each k ∈ {1, 2, 3, 6} such that (6/k)| gcd(κ1, . . . , κn) (resp. each k ∈ {1, 2, 4}
such that (4/k)| gcd(κ1, . . . , κn)), denote by T (k)(κ) (resp. by Q(k)(κ)) the set of
triangulations (resp. quadrangulations) such that the corresponding flat surface is
induced by a k-differential. We then have a partition of the set T (κ) into the disjoint
union

⊔
k T (k)(κ), and a partition of Q(κ) into the disjoint union

⊔
k Q(k)(κ).

For any m ∈ Z>0, denote by ΩkMM
g (k,m) the set of elements of ΩkMM

g (k) whose
canonical triangulation is composed by at most km triangles. Since the area of an
equilateral triangle with unit side is

√
3/4, x̂ ∈ ΩkMM

g (k,m) if and only if x̂ satisfies
(6.1), and

‖ω̂‖2 =
ı

2

∫
X̂

ω̂ ∧ ω̂ 6
√

3

4
· km.

By definition, the triangulations of S that are induced by elements of ΩkMM
g (k,m)

have at most k triangles.
Similarly, denote by ΩkM�

g (k,m) the set of x̂ ∈ ΩkM�
g (k) such that the canonical

quadrangulation of x̂ has at most km squares, or equivalently ‖ω̂‖2 6 km. The
quadrangulations of S induced by elements of ΩkM�

g (k,m) have at most m squares.
Let T (k)(κ,m) (resp. Q(k)(κ,m)) denote the set of triangulations in T (k)(κ)

(resp. quadrangulations in Q(k)(κ)) that are composed by at most m triangles
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(resp. m squares). By definition, every element of ΩkMM
g (k,m) (resp. of ΩkM�

g (k,m))
gives us an element of T (k)(κ,m) (resp. and element of Q(k)(κ,m)). Notice however
that several elements of ΩkMM

g (k,m) (resp. ΩkM�
g (k,m)) may give the same element

of T (k)(κ,m) (resp. Q(k)(κ,m).

Proposition 6.4
– For any k ∈ {1, 2, 3, 6} such that (6/k)| gcd(κ1, . . . , κn), we have

(6.3) lim
m→∞

#ΩkMM
g (k,m)

#T (k)(κ,m)
=

6

k
.

– For any k ∈ {1, 2, 4} such that (4/k)| gcd(κ1, . . . , κn), we have

(6.4) lim
m→∞

#ΩkM�
g (k,m)

#Q(k)(κ,m)
=

4

k
.

Proof. — By Lemma 6.3, we have a bijection between T (k)(κ,m) and the set of
U6-orbits in ΩkMM

g (k,m). By construction, the stabilizer of a point x̂ ∈ ΩkMg(k) for
theU6 action containsUk. Thus generically, anU6-orbit contains 6/k elements. There
may exist x̂ ∈ ΩkMg(k) such that U6 · x̂ contains less than 6/k elements, in which
case x̂ is an orbifold point of ΩkMg(k). Since the set of orbifold points of ΩkMg(k)

is a (finite) union of proper subvarieties, the number of elements of ΩkMM
g (k,m) that

are orbifold points is negligible compared to #ΩkMM
g (k,m) as m → +∞. Therefore,

we have

lim
m→∞

#ΩkMM
g (k,m)

#T (k)(κ,m)
=

6

k
.

The proof of (6.4) follows the same lines. �

6.5. Comparison with Masur-Veech measure. — By Proposition 6.4, to get the
asymptotics of T (k)(κ,m) and of Q(k)(κ,m), it suffices to compute the asymptotics
of the points in ΩkMM

g (k,m) and in ΩkM�
g (k,m) respectively. For this purpose, we

introduce some volume forms on ΩkMg(k) as follows: let Λ3 := (Z ⊕ Ze2πı/3)2ĝ+n̂−1

and Λ4 := (Z ⊕ Zı)2ĝ+n̂−1. Given a point (X̂, ω̂, 〈τ〉) ∈ ΩkMg(k), using a basis
of H1(X̂, Ẑ,Z), we identify H1(X̂, Ẑ,C) with C2ĝ+n̂−1. Let Vζ ⊂ C2ĝ+n̂−1 be the
eigenspace associated with the eigenvalue ζ of the action of τ on H1(X̂, Ẑ,C).
A neighborhood of (X̂, ω̂, 〈τ〉) in ΩkMg(k) is then identified with an open subset
of Vζ .

Note that Vζ is defined over Q(ζ). Thus if ζ ∈ U6, then Λ3(ζ) := Vζ ∩ Λ3 is a
lattice of Vζ , and if ζ ∈ U4 then Λ4(ζ) := Vζ ∩ Λ4 is a lattice of Vζ . There is a
unique volume form dvol∗3 (resp. dvol∗4) on Vζ which is proportional to the Lebesgue
measure such that the lattice Λ3(ζ) (resp. Λ4(ζ)) has covolume 1. Recall that the
coordinate changes on ΩkMg(k) consist in changing the basis of H1(X̂, Ẑ,Z), which
correspond to applying some matrices in GL(2ĝ + n̂− 1,Z). Note that such matrices
preserve the lattices Λ3,Λ4. If V ′ζ = A(Vζ) for some A ∈ GL(2ĝ + n̂ − 1,Z), then
Λ′3(ζ) := V ′ζ ∩ Λ3 = A(Λ3(ζ)), and Λ′4(ζ) := V ′ζ ∩ Λ4 = A(Λ4(ζ)). This implies that
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vol∗3 and vol∗4 give rise to two well-defined volume forms on ΩkMg(k), that will be
called theMasur-Veech volume forms. By the same argument as in Lemma 5.1, we get:

Lemma 6.5. — Let Ωk1Mg(k) denote the set of (X̂, ω̂,〈τ〉)∈ΩkMg(k) such that ‖ω̂‖<1.
Then

lim
m→+∞

ΩkMM
g (k,m)

(
√

3
4 km)d

= vol∗3(Ωk1Mg(k)),(6.5)

lim
m→+∞

ΩkM�
g (k,m)

(km)d
= vol∗4(Ωk1Mg(k)),(6.6)

where d = dimC ΩkMg(k).

The Masur-Veech volume forms induce the volume forms dµ∗3 and dµ∗4 on PΩkMg(k)

in the same manner as dµ is induced from vol. By definition, we have vol∗3(Ωk1Mg(k)) =

µ∗3(PΩkMg(k)), and vol∗4(Ωk1Mg(k)) = µ∗4(PΩkMg(k)). From their construction, there
are constants λs ∈ R∗, s ∈ {3, 4}, such that

dvol∗s
dvol

=
dµ∗s
dµ

= λs.

The following proposition follows from similar arguments as in Proposition 5.2 (see
also [31, §5.2]).

Proposition 6.6. — Assume that kerp ∩ Vζ = {0}, where

p : H1(X̂, Ẑ;C) −→ H1(X̂,C)

is the natural projection. Then we have
dvol∗

dvol
=
dµ∗

dµ
∈ Q.

6.6. Proof of Theorem 1.1. — We will only give the proof for T (κ) as the proof
for Q(κ) is exactly the same. Combining Proposition 6.4, Lemma 6.5, and the fact
that vol∗3(Ωk1Mg(k)) = µ∗3(PΩkMg(k)), we get

lim
m→+∞

#T (k)(κ,m)

(
√

3
4 km)d

∈ Q · µ∗3(PΩkMg(k)).

Now the hypothesis on κ implies that for all i ∈ {1, . . . , n}, the order ki of the k-dif-
ferentials in ΩkMg(k) is not a multiple of k. This implies in particular that k 6= 1,
that is, ΩkMg(k) is not a stratum of Abelian differentials. Therefore (see [4, 31])

d = dimC ΩkMg(k) = 2g + n− 2.

By Proposition 6.2 we know that ΩkMg(k) is a polarized absolutely rigid linear sub-
manifold of the stratum ΩMĝ(k̂). Therefore, from Proposition 6.6 we get

lim
m→+∞

#T (k)(κ,m)

(
√

3
4 km)2g+n−2

∈ Q · µ(PΩkMg(k)).
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By Theorem 4.1, we know that µ(PΩkMg(k)) ∈ Q · π2g+n−2. Thus

lim
m→+∞

#T (k)(κ,m)

m2g+n−2
∈ Q · (

√
3π)2g+n−2.

Since
#T (κ,m) =

∑
k∈{2,3,6}

#T (k)(κ,m),

the theorem follows. �
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