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BODY OF CONSTANT WIDTH WITH MINIMAL AREA IN

A GIVEN ANNULUS

by Antoine Henrot & Ilaria Lucardesi

Abstract. — In this paper we address the following shape optimization problem: find the planar
domain of least area, among the sets with prescribed constant width and inradius. In the
literature, the problem is ascribed to Bonnesen, who proposed it in [3]. In the present work, we
give a complete answer to the problem, providing an explicit characterization of optimal sets
for every choice of width and inradius. These optimal sets are particular Reuleaux polygons.

Résumé (Corps de largeur constante d’aire minimale dans un anneau). — Dans cet article nous
étudions le problème d’optimisation de forme : trouver le domaine plan d’aire minimale parmi
les convexes de largeur constante et d’inradius donnés. Dans la littérature, ce problème est
attribué à Bonnesen qui a proposé une conjecture pour le domaine optimal. Nous donnons ici
une réponse complète à ce problème en décrivant les domaines optimaux pour tout choix de la
largeur et de l’inradius. Ces domaines sont des polygones de Reuleaux particuliers.
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1. Introduction

Bodies of constant width (also named after L. Euler orbiforms) are fascinating
geometric objects and a huge amount of literature has been devoted to them. We refer
to the recent book [15] for a nice presentation of the topic. The fact that many open
problems for these objects remain unsolved, in spite of their simple statement, is
probably an element of their popularity. Among known facts, the famous Blaschke-
Lebesgue theorem asserts that the Reuleaux triangle minimizes the area among plane
bodies of constant width, see [2] for the proof of W.Blaschke or [13] for a more
modern exposition and [14] for the original proof of H. Lebesgue and [3] where this
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416 A. Henrot & I. Lucardesi

proof is reproduced. Let us mention that many other proofs with very different flavors
appeared later, for example [1], [5], [7], [8] and [9].

A related problem is the following. For any planar compact set K, the set of
points between the incircle (the biggest disk contained into K) and the circumcircle
(the smallest disk containing K) is called the minimal annulus associated with K

(in higher dimension, the region between the insphere and circumsphere is called
minimal shell). For a body of constant width d, it is known, see [6], that the incircle
and the circumcircle are centered at the same point that we will choose as the origin
in all the paper. Moreover, the inradius r and the circumradius R satisfy
(1.1) r +R = d.

Now, given an annulus S with inner radius r and outer radius R satisfying r+R = d

with a fixed d > 0, it is natural to try to determine the bodies of constant width d
having S as their associated minimal annulus and having either maximum or minimum
volume. A. E.Mayer in [17] has given upper and lower bounds for the areas of plane
sets of constant width with prescribed minimal annulus. In particular Mayer’s lower
bound yields another proof of the Blaschke-Lebesgue theorem. The maximization
problem has been solved by T.Bonnesen and the result is explained in the book
Bonnesen-Fenchel, see [3], pp. 134-135 in the original German edition and p. 143 in the
English version. For the minimization problem, in the same chapter, T.Bonnesen gave
a conjecture. Our result confirms this conjecture and makes it more precise. In a short
paper [16], A. E.Mayer already gave some sketch of proof which was not complete.
Let us quote Chakerian-Groemer whose chapter on bodies of constant width in the
Encyclopedia of convexity, see [6], is a well-known reference (see also [15]): “Mayer
in [16] gives a sketch of a proof that the minimum area, for a prescribed annulus,
is attained by a certain Reuleaux-type polygon, as conjectured by Bonnesen, however
a detailed proof does not appear to have been published.” This is the motivation of
our paper: we wanted to give a correct, complete and modern proof and describe
completely the body of constant width that minimizes the area among bodies having
a given minimal annulus (i.e., bodies having a given inradius). We recall that Reuleaux
polygons are the plane convex bodies of constant width d whose boundary consists of
a finite (necessarily odd, see e.g. [15, §8.1]) number of arcs of circle of radius d; when
the arcs have all the same length, the polygons are said to be regular and, among
them, the Reuleaux triangle is the one with three arcs (actually, it is the unique
Reuleaux polygon with three boundary arcs).

Therefore, in this paper we are concerned with the following problem: determine
the optimal shape(s) of

(1.2) A (r) := min
{
|Ω| : Ω ⊂ R2,

(convex) body of constant width w(Ω) = 1, ρ(Ω) = r
}
,

where ρ(Ω) denotes the inradius. Here, without loss of generality, we have set the
width w to be 1 (clearly, for a generic width t, the minimum and the minimizers
have to be rescaled by t2 and t, respectively). Accordingly, the possible values of the

J.É.P. — M., 2021, tome 8



Body of constant width with minimal area in a given annulus 417

inradius ρ run in the closed interval [1−1/
√

3, 1/2]: the left endpoint, 1−1/
√

3 ∼ 0.422,
is the inradius of the Reuleaux triangle, which is well known to be the minimizer of
the inradius among bodies of fixed constant width (see [3] or [6]); as for the right
endpoint, it is an easy consequence of (1.1). For the extremal values of r, the minimizer
is known: on one hand, for r = 1− 1/

√
3, the optimal shape is the Reuleaux triangle,

from Blaschke-Lebesgue theorem; on the other hand, for r = 1/2, it is clearly the disk
of radius 1/2 which is the only set in the corresponding annulus. For generic values
of r, the existence is straightforward and follows by the direct method of the calculus
of variations.

Proposition 1.1 (Existence). — Let 1−1/
√

3 6 r 6 1/2. Then the shape optimization
problem A (r) has a solution.

In this paper we give a complete answer to the problem (1.2), providing an explicit
characterization of the minimizers for every r. Our construction gives, as a by-product,
uniqueness among Reuleaux polygons.

In order to state the main result, let us denote by r
2N+1

, N ∈ N∗, (N > 1), the
inradius of the regular Reuleaux (2N + 1)-gon:

r
2N+1

= 1− 1

2 cos (π/2(2N + 1))
.

The sequence {r
2N+1
}N is increasing and runs from 1− 1/

√
3 to 1/2 (not attained).

Theorem 1.2 (Characterization of the optimal Reuleaux polygon)
Let r be such that 1− 1/

√
3 6 r < 1/2.

– If r = r
2N+1

for some N ∈ N∗, then an optimal set of A (r) is the regular
Reuleaux (2N + 1)-gon. In that case A (r

2N+1
) = (2N + 1)F (r

2N+1
, 0) where F is the

function defined in (4.1).
– If instead r

2N−1
< r < r

2N+1
for some N ∈ N, N > 2, setting

` := 2 arctan
(√

4(1− r)2 − 1
)
, h :=

π

2
− 2N − 1

2
`,

an optimal set of A (r) has the following structure:
(i) it is a Reuleaux polygon with 2N + 1 sides, all but one tangent to the

incircle;
(ii) the non tangent side has both endpoints on the outercircle and has length

a := 2 arcsin ((1− r) sin(h)) ,

its two opposite sides have one endpoint on the outercircle and meet at a point
in the interior of the annulus; moreover, they both have length

b := h+
`− a

2
;

(iii) the other 2N − 2 sides are tangent to the incircle, have both endpoints
on the outercircle, and have length `.

Moreover, in that case A (r) = (2N − 2)F (r, 0) + F (r, h) (with F defined in (4.1)).
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418 A. Henrot & I. Lucardesi

Remark 1.3. — To prove this result our strategy will consist in studying first this
shape optimization problem in the class of Reuleaux polygons and then, to use the
density of Reuleaux polygons in the class of bodies of constant width, see e.g. [3].
Our construction provides uniqueness of the minimizer in the class of Reuleaux poly-
gons and gives the minimal value of the area. Now, it is not clear whether we have
uniqueness in general. To prove that, we should for example approximate any body
of constant width by a sequence of Reuleaux polygons with increasing area lying in
the same minimal annulus.

To clarify this result, let us show some picture.

Figure 1. From left to right: optimal shapes for r = 0.45, 0.48, and 0.493.

Notice that in the limit as r → r
2N+1

, the lengths a, b, and ` all converge to
2 arctan

(√
4(1− r

2N+1
)2 − 1

)
, which is the length of the sides of the regular Reuleaux

(2N +1)-gon. Roughly speaking, in (ii), the interior (to the annulus) point gets closer
and closer to the outercircle and the non tangent arc gets closer and closer to the
incircle. More precisely, we show the following.

Proposition 1.4 (Continuity). — The map r 7→ A (r) is continuous in [1−1/
√

3, 1/2].
If we choose in argmin A (r) the optimal Reuleaux polygon Ω(r) described in Theo-
rem 1.2, then the map r 7→ Ω(r) is also continuous with respect to the Hausdorff
distance.

The continuity of r 7→ Ω(r) has to be intended “up to rigid motion”, namely for
every ε > 0 there exists δ > 0 such that

|r1 − r2| < δ =⇒ dH (Ω(r1); Ω(r2)) < ε,

for some representative Ω(ri) ∈ argmin A (ri), where dH ( · ; · ) denotes the Hausdorff
distance (see, e.g. [10] for the definition).

Remark 1.5. — The continuity of r 7→ A (r) can be obtained either using the explicit
formula of A (r) given above (see the end of the paper) or by a standard argument of
Γ-convergence.

We conclude by pointing out that the scope of Theorem 1.2 is twofold: on one hand,
it gives a complete answer to the Bonnesen’s problem; on the other hand, providing
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a lower bound of the area in terms of geometric quantities, it might prove useful in
other shape optimization problems. We use it for example in [11] to prove that the
Reuleaux triangle maximizes the Cheeger constant among bodies of constant width.

The plan of the paper is the following. The existence of minimizers (proof of Propo-
sition 1.1) is given in the next section. As already announced above, in order to char-
acterize the minimizers, we first restrict ourselves to the class of Reuleaux polygons.
In this framework, optimal shapes are shown to satisfy an optimality condition, that
we call rigidity (see Section 3). We use as fundamental tool the so called Blaschke
deformations (see Section 2). In the last section we characterize the optimal rigid
shapes (Theorem 4.1) and we show that actually they are the minimizers of the orig-
inal problem A (proof of Theorem 1.2). This relies on some analytic argument: the
key point is the concavity property (Proposition 4.4) of the map h 7→ F (r, h) that is
used to express the area of each sector. This concavity allows to solve a maximization
problem that gives the desired solution. The very end of the paper is devoted to the
continuity statement (proof of Proposition 1.4).

Acknowledgements. — The authors want to thank Gérard Philippin for stimulating
discussions and the two anonymous referees for their very interesting suggestions.
IL acknowledges the Dipartimento di Matematica - Università di Pisa for the hospi-
tality.

2. Preliminaries and Blaschke deformations

This section is devoted to some preliminary tools. In the first part, we give the
precise definition of convex body, width, and inradius, and we write the proof of
Proposition 1.1. In the second part, we gather some facts on Reuleaux polygons:
more precisely, we recall the notation and the family of deformations introduced by
Blaschke in [2], see also [13] for more details, and we write the first order shape
derivative with respect to these particular deformations.

Definition 2.1. — A convex body is a compact convex set with nonempty interior.

Definition 2.2. — Given a compact connected set Ω ⊂ R2 and a direction ν ∈ S1, we
define the width wν(Ω) of Ω in direction ν as the minimal distance of two parallel lines
orthogonal to ν enclosing Ω. We say that Ω has constant width if wν(Ω) is constant
for every choice of ν. In this case, the width is simply denoted by w(Ω). The inradius
of Ω, denoted by ρ(Ω), is the largest r for which an open disk of radius r is contained
into Ω. We also recall the classical Barbier theorem, see [6]: the perimeter of any plane
body of constant width d is given by P (Ω) = πd.

Proof of Proposition 1.1. — By definition the admissible shapes are (strictly) convex
and (up to translations) their boundary lie in the closed circular annulus A :=

B1−r(0) r Br(0). If Ωn, n ∈ N, is a minimizing sequence for A (r), we can extract a
subsequence (not relabeled) which, by Blaschke selection theorem, converges for the
Hausdorff distance to some convex set Ω∗, whose boundary is in the annulus A. Since
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420 A. Henrot & I. Lucardesi

the width constraint and the inradius constraint are continuous with respect to the
Hausdorff convergence of convex bodies (this is classical and follows from the uniform
convergence of the support functions that is equivalent to the Hausdorff convergence),
we conclude that Ω∗ is an admissible shape. Finally, since the area is also continuous
with respect to the Hausdorff convergence for convex domains, Ω∗ is a minimizer for
A (r), concluding the proof. �

2.1. Reuleaux polygons and Blaschke deformations. — Reuleaux polygons form a
particular subclass of constant width sets (here fixed equal to 1), whose boundary is
made of an odd number of arcs of circle of radius 1. The arcs are centered at boundary
points, intersection of pairs of arcs. We call such centers vertexes and we label them
as Pk, k = 1, . . . , 2N + 1, for a suitable N ∈ N∗. The arc opposite to Pk is denoted
by Γk and is parametrized by

Γk = {Pk + eit : t ∈ [αk, βk]},
for some pair of angles αk, βk. Here, with a slight abuse of notation, eit stands for
(cos t, sin t) ∈ R2. The subsequent and previous points of Pk are

Pk+1 = Pk + eiαk and Pk−1 = Pk + eiβk ,

respectively. Accordingly, the angles satisfy

βk+1 = αk + π mod 2π.

The concatenation of the parametrizations of the arcs provides a parametrization of
the boundary of the Reuleaux polygon in counterclockwise sense: the order is Γ2N+1,
Γ2N−1, . . . , Γ1, Γ2N , Γ2N−2, . . . , Γ2, namely first the arcs with odd label followed
by the arcs with even label. Notice that the length of the arc Γk is βk − αk and
since the perimeter of the Reuleaux polygon is π by the Barbier theorem, we have∑
k βk − αk = π.

Remark 2.3. — To clarify the notation above, let us see the case of a Reuleaux
pentagon.

Γ1Γ2

Γ3

Γ4

Γ5

α2

β2

P4

P2

P3 P5

P1

Figure 2. A Reuleaux pentagon (here, for simplicity, regular).
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In Figure 2, we have chosen, without loss of generality, α1 = 0, namely the vertex P2

aligned horizontally with P1. Accordingly, the angles are ordered as follows

0 = α1 < β1 < α4 < β4 < α2 < β2 < α5 < β5 < α3 < β3 < 2π

and

β2 = α1 + π , α5 = β1 + π , β5 = α4 + π , α3 = β4 + π , β3 = α2 + π .

We now introduce a family of deformations in the class of Reuleaux polygons of
width 1, which allow to connect any pair of elements in a continuous way (with respect
to the Hausdorff distance), staying in the class. This definition has been introduced
by W. Blaschke in [2] and analyzed by Kupitz-Martini in [13].

Definition 2.4. — Let Ω be a Reuleaux polygon with 2N+1 arcs. Let k be one of the
indexes in {1, . . . , 2N + 1}. A Blaschke deformation acts moving the point Pk on the
arc Γk−1 increasing or decreasing the arc length. Consequently, the point Pk+1 moves
and the arcs Γk, Γk+1, and Γk+2 are deformed, as in Figure 3, so that the resulting
shape is still a Reuleaux polygon. We say that a Blaschke deformation is small if the
arc length of Γk−1 has changed of ε ∈ R, infinitesimal parameter. In that case, the
number of arcs remains constant.

P ε
k

Pk−1

Pk−2

P ε
k+1

Pk+2

Γε
k−1

Γε
k+1

Γε
k

Γε
k+2

Figure 3. A Blaschke deformation of a Reuleaux heptagon which
moves Pk on Γk−1 changing αk−1 into αεk−1 := αk−1 + ε, with ε > 0

small.

Let us consider a small Blaschke deformation acting on Pk as in Definition 2.4, for
some small ε ∈ R. Let us denote by Γεi , P εi , αεi , and βεi the deformed arcs, vertexes,
and angles. By definition,

(2.1) αεk−1 = αk−1 + ε, βεk = βk + ε.

The dependence on ε of the other angles is less evident. However, it can be derived by
imposing that the transformed configuration is a Reuleaux polygon. Let us determine
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422 A. Henrot & I. Lucardesi

the first order expansion in ε. The angles αεk, βεk+1, and βεk+2 are of the form

(2.2)
{
αεk = αk + ετ + o(|ε|), βεk+1 = βk+1 + ετ + o(|ε|),
αεk+1 = αk+1 + εσ + o(|ε|), βεk+2 = βk+2 + εσ + o(|ε|),

for some σ, τ ∈ R. The coefficients σ and τ are uniquely determined by the relation

P εk+1 = P εk + eiα
ε
k = Pk+2 + eiβ

ε
k+2 ,

which, using the expansions (2.1) and (2.2), easily leads to

eiαk−1 + τeiαk = σeiβk+2 ⇐⇒ eiαk−1 − τeiβk+1 = −σeiαk+1

⇐⇒ ei(αk−1−αk+1) − τei(βk+1−αk+1) = −σ

⇐⇒
{
σ = sin(βk − αk)/ sin(βk+1 − αk+1)

τ = sin(αk−1 − αk+1)/ sin(βk+1 − αk+1).
(2.3)

2.2. Shape derivatives with respect to Blaschke deformations. — In this para-
graph we compute the first order shape derivative of the area at a Reuleaux polygon,
with respect to a small Blaschke deformation. We recall that, given a one parameter
family of small deformations Ωε of Ω, the first order shape derivative of the area at Ω

is nothing but the derivative with respect to ε of the map ε 7→ |Ωε| evaluated at ε = 0,
namely the limit

lim
ε→0

|Ωε| − |Ω|
ε

.

Note that in the computation of the first order shape derivative the terms of order o(ε)
in |Ωε| do not play any role.

Proposition 2.5. — Let Ω be a Reuleaux polygon with angles αi and βi, i =

1, . . . , 2N + 1. The first order shape derivative of the area at Ω with respect to a small
Blaschke deformation acting on the point Pk is

dAB := 1− cos(βk − αk)− sin(βk − αk)

sin(βk+1 − αk+1)

(
1− cos(βk+1 − αk+1)

)
.

that can also be written introducing the lengths jk = βk −αk and jk+1 = βk+1−αk+1

of the arcs Γk and Γk+1:

dAB = 2
sin(jk/2)

cos(jk+1/2)
sin
(
(jk − jk+1)/2

)
.

In particular, the area decreases under a Blaschke deformation if
– Pk moves on Γk−1 in the direct sense (ε > 0) and jk < jk+1,
– Pk moves on Γk−1 in the indirect sense (ε < 0) and jk > jk+1.

Moreover, the case where jk = jk+1 corresponds to a local maximum of the area and
the area decreases when Pk moves on Γk−1 in both senses.

Proof. — It is well known (see, e.g. [12]) that the first order shape derivative of the
area at a Lipschitz domain Ω is a boundary integral which only depends on the
normal component of the deformation. More precisely, if Φ(ε, ·) : R2 → R2 is a family
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Body of constant width with minimal area in a given annulus 423

of diffeomorphisms which map Ω into Ωε, such that Φ(0, ·) is the identity, and such
that ε 7→ Φ(ε, ·) is differentiable at 0, the first order shape derivative of the area reads

(2.4)
∫
∂Ω

V · n dH 1,

where V (x) := ∂
∂εΦ(ε, x)bε=0. Roughly speaking, for every point x ∈ R2 we have

Φ(ε, x) = x+εV (x)+o(|ε|). In view of (2.4), we need to determine the action of Φ(ε, ·)
on boundary arcs: for the Blaschke deformation under study, only the arcs Γk and Γk+1

(see Definition 2.4) are deformed non tangentially, thus in the computation of (2.4)
we may disregard all the other arcs. Using the parametrization [αj , βj ] 3 t 7→ Pj + eit

of Γj , j = k, k + 1, and noticing that the outer normal vector is eit, we immediately
have the following simplification:∫

∂Ω

V · ndH 1 =

∫
Γk

V · ndH 1 +

∫
Γk+1

V · ndH 1

=

∫ βk

αk

V (t) · eitdt+

∫ βk+1

αk+1

V (t) · eitdt,
(2.5)

where, for brevity, we have denoted by V (t) the vector V (Pj + eit) on the arc Γj ,
j = k, k + 1.

In order to determine V , let us write the Φ(ε, ·) on Γk and Γk+1. The arc Γεk can
be parametrized as follows:

[αεk, β
ε
k] 3 t 7−→ P εk + eit

or, equivalently, recalling the expansions (2.1) and (2.2) of the angles αεk and βεk, as

[αk, βk] 3 t 7−→ Pk + eit + ε(ieiαk−1 + iCk(t)eit) + o(ε),

with
Ck(t) := τ + (1− τ)(t− αk)/(βk − αk),

and τ defined in (2.3).
Therefore, V acts on the arc Γk as V (t) = ieiαk−1 + iCk(t)eit. In particular,

(2.6) V (t) · eit = sin(t− αk−1) on Γk.

Similarly, using the expansions in (2.2) of αεk+1 and βεk+1, and recalling the definition
of σ in (2.3), we infer that the arc Γk+1 is transformed into Γεk+1 parametrized by

[αεk+1, β
ε
k+1] 3 t 7−→ P εk+1 + eit,

or equivalently, by

[αk+1, βk+1] 3 t 7−→ Pk+1 + eit + ε(iσeiβk+2 + iCk+1(t)eit)

with
Ck+1(t) = σ + (τ − σ)(t− αk+1)/(βk+1 − αk+1).

Thus, recalling that βk+2 = αk+1 + π modulo 2π,

(2.7) V (t) · eit = −σ sin(t− αk+1) on Γk+1.
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424 A. Henrot & I. Lucardesi

Inserting (2.6) and (2.7) into (2.5), developing the integral, we get the first formula.
The second follows using elementary trigonometry. The conclusion, in the case of
equality of the lengths, comes from the fact that the derivative becomes negative
in the direct sense when we perform the Blaschke deformation (since jk+1 increases
and jk decreases) and vice-versa. �

Remark 2.6. — For any non regular Reuleaux polygon, we observe that we can always
choose a Blaschke deformation such that the first derivative of the area is negative,
making the area decrease. This is precisely the idea used by W. Blaschke in his proof
of the Blaschke-Lebesgue theorem. We can also make the area increase (for a non
regular Reuleaux polygon), which implies the Firey-Sallee theorem asserting that the
regular Reuleaux polygons maximize the area among Reuleaux polygons with a fixed
number of sides, see [6], [13].

3. Rigid shapes

We have seen that a Blaschke deformation allows to make the area decrease. There-
fore, for our minimization problem we can concentrate on sets for which no such
Blaschke deformation is permitted (because any Blaschke deformation would violate
the annulus constraint). This is the sense of the next definition.

Definition 3.1. — Let r be fixed. We say that a Reuleaux polygon is rigid if no
Blaschke deformation that decreases the area can be performed keeping the inradius
constraint satisfied. For brevity, since we are searching for minimizers in the class
of Reuleaux polygons with width 1 and inradius r, we will refer to these particular
objects simply as rigid shapes or rigid configurations.

A Blaschke deformation is impossible in our class of sets if it moves an arc inside
the incircle (or outside the outercircle) violating the constraint of minimal annulus.
This is why we introduce the following definitions that describe the only possible arcs
such that no deformation is possible.

Definition 3.2. — Let be given a Reuleaux polygon of width 1 and inradius r. We
say that one arc of its boundary is extremal if it is tangent to the incircle and both
endpoints are on the outercircle.

Definition 3.3. — Let be given a Reuleaux polygon of width 1 and inradius r. We say
that three arcs Γk−1, Γk, and Γk+1 of the boundary form a cluster if the arcs Γk−1

and Γk+1 are tangent to the incircle, their common point Pk lies in the interior of the
annulus B1−r(0) rBr(0), and the other endpoints Pk±2 are on the outercircle.

Furthermore, we define the characteristic parameter h as half of the angle
Pk+1ÔPk−1. These definitions are summarized in Figure 4.

Remark 3.4. — In the definition of cluster, the arc Γk can be arbitrarily close to the
empty set or to an extremal arc. In the first limit case, we have that Γk−1 and Γk+1

form a unique arc tangent to the incircle, namely an extremal arc. In the second limit
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O

Pk

Pk−2Pk+2

Pk+1Pk−1
Γk

Γk−1
Γk+1

h

Figure 4. A triple of arcs (Γk−1,Γk,Γk+1) forming a cluster and the
characteristic parameter h.

case, Γk−1 and Γk+1 are a pair of extremal arcs. All in all, extremal arcs (counted
individually or in suitable groups of three) can be seen as particular cases of clusters.
At last, let us remark that any cluster has an axis of symmetry: by construction, it is
the line connecting Pk with the midpoint of the opposite arc Γk (see also Figure 4).

The fundamental proposition in our approach is the following, in which we give a
characterization of rigid shapes. It shows that we can restrict the study of optimal
shapes to Reuleaux polygons having only extremal arcs and clusters.

Proposition 3.5. — The boundary of a rigid shape is made of a finite number (possibly
zero) of clusters and of extremal arcs.

Proof. — Let us start with some elementary observations.
– No vertex can lie on the incircle.
– When a vertex is on the outercircle, its corresponding arc is tangent to the incircle

and this arc goes over the tangent point on both sides.
– Conversely, when a vertex is in the interior of the annulus, its corresponding arc

is not tangent to the incircle.
Assume that the set Ω is rigid. First of all, let us prove that if a set has two

consecutive vertexes, say Pk and Pk+1 lying in the interior of the annulus, it cannot be
rigid. Indeed, in such a case the two arcs Γk and Γk+1 are not tangent and therefore the
Blaschke deformation described in Definition 2.4 is admissible in both senses (ε > 0

or ε < 0) without violating the annulus constraint. Now, following Proposition 2.5 we
see that such a deformation will decrease the area by choosing ε > 0 if jk 6 jk+1 or
ε < 0 if jk > jk+1.

Now let us consider a point Pk lying in the interior of the annulus with its two
opposite points Pk−1 and Pk+1 on the outercircle. We want to prove that these three
points belong to a cluster, namely that Pk−2 and Pk+2 are on the outercircle. Let
us assume, for a contradiction, that Pk+2 is in the interior of the annulus (it will
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obviously be the same proof with Pk−2). According to the beginning of the proof,
necessarily Pk+3 has to be on the outercircle.

In that case, two particular admissible Blaschke deformations can be considered:
– Move Pk+1 on Γk in the direct sense (in the direction of Pk−1).
– Move Pk+1 on Γk+2 in the indirect sense (in the direction of Pk+3).

According to Proposition 2.5, the area will decrease for the first deformation as soon
as jk+1 6 jk+2, while it will decrease for the second deformation as soon as jk+1 6 jk.
Therefore, we obtain the conclusion (this configuration is not rigid) if we can prove
jk+1 6 max(jk, jk+2). This claim is proved in the next Lemma. �

Lemma 3.6. — Assume that Pk and Pk+2 lie in the interior of the annulus, and that
Pk−1, Pk+1, Pk+3 lie on the outercircle. Then the lengths jk, jk+1, jk+2 of the arcs
Γk, Γk+1, Γk+2, satisfy jk+1 6 max(jk, jk+2).

Proof. — Let us introduce the two characteristic parameters hk and hk+2 as half
of the angles Pk+1ÔPk−1 and Pk+3ÔPk+1, see Figure 5. Elementary trigonometry

O

2hk+22hk

Pk

Pk−1

Pk+1

Pk+2

Pk+3

jk

2hk

O

Pk

Pk−1

Pk+1

Figure 5. The parameters hk and hk+2.

provides the following relations with the corresponding lengths jk and jk+2:

(1− r) sinhk = sin(jk/2), (1− r) sinhk+2 = sin(jk+2/2).

Now let us write the angle (or length) jk+1 as

jk+1 = Pk+2P̂k+1Pk = Pk+2P̂k+1O +OP̂k+1Pk.

In the triangles Pk+1OPk+2 and Pk+1OPk we get the relations

Pk+2P̂k+1O = hk+2 −
jk+2

2
, OP̂k+1Pk = hk −

jk
2
.

Therefore
jk+1 = hk + hk+2 −

jk + jk+2

2
.
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Now the lengths jk, jk+2 are less than the length of an extremal arc given by ` =

2 arctan
(√

4(1− r)2 − 1
)
(see Proposition 3.8). We get the thesis if we can prove

that for two positive numbers x, y ∈ [0, `] and for r ∈ [1− 1/
√

3, 1/2], we have

(3.1) arcsin
( sin(x/2)

1− r
)

+ arcsin
( sin(y/2)

1− r
)
− x+ y

2
6 max(x, y).

Without loss of generality, by symmetry, we can assume y > x, so that the right-hand
side in (3.1) is y. Let us introduce the function

G(x, y) := arcsin
( sin(x/2)

1− r
)

+ arcsin
( sin(y/2)

1− r
)
− x+ 3y

2
.

We have
∂G

∂y
=

1

2(1− r)
cos(y/2)√

1− sin2(y/2)/(1− r)2

− 3

2
.

Since the function
c 7−→ c√

1− (1− c2)/(1− r)2

is decreasing (its derivative has the sign of 1− 1/(1− r)2), the maximum value of the
derivative ∂G

∂y is obtained for y = `. This implies

∂G

∂y
6

1

2(1− r)
cos(`/2)√

1− sin2(`/2)/(1− r)2

− 3

2
=

1

2− 4(1− r)2
− 3

2
6 0,

where we have used the expression cos(`/2)=1/(2(1−r)) and the bound (1−r)261/3.
Therefore, y 7→ G(x, y) is decreasing and its maximum on the triangle 0 6 x 6 y 6 ` is
on the line x = y. Exactly in the same way, it is immediate to check that x 7→ G(x, x)

is decreasing, thus G(x, y) 6 G(0, 0) = 0, proving the lemma. �

Example 3.7. — Regular Reuleaux polygons are clearly rigid shapes. For a generic r /∈
{r

2N+1
}N , many different rigid configurations can be constructed as we will see below.

For example, there is one (up to rotations) rigid configuration with one cluster, since
in that case the parameter h is fixed (see (3.8) below). When r is large enough, we can
find a continuous family of rigid shapes with two clusters. They are characterized by an
arbitrary pair of parameters h1, h2 such that their sum h1 +h2 is fixed. And similarly
for rigid shapes with more clusters. Actually, as shown by Proposition 3.8 below, the
lengths of arcs in a cluster are completely characterized by the parameter h, moreover,
the constraint that the sum of all lengths is π fixes the sum of these parameters.

In the next proposition we show that the length of an extremal arc is uniquely
determined by r, whereas that of a cluster can be expressed as a function of h (which
is, on the other hand, not uniquely determined by r, see also Example 3.7).

Proposition 3.8. — Let r be fixed. The length of an extremal arc is

(3.2) `(r) := 2 arctan
(√

4(1− r)2 − 1
)
.
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Figure 6. Two rigid configurations for r = 0.493. On the left, the one
with a single cluster, on the right, one with two clusters.

Let (Γk−1,Γk,Γk+1) form a cluster of parameter h. Then the length of the arc Γk is

(3.3) a(r, h) := 2 arcsin((1− r) sin(h)),

and the length of the opposite arcs Γk±1 is

(3.4) b(r, h) := h+
`(r)− a(r, h)

2
.

Moreover, b(r, h) > a(r, h).

Proof. — Throughout the proof we omit the dependence on r and h, which are fixed.
Let ` denote the length of an extremal arc Γ with opposite point P and endpoints Q

and R. The triangle POQ is isosceles, with base of length 1, legs of length 1− r, and
base angle `/2, see also Figure 7. Therefore cos(`/2) = 1/(2(1−r)), which gives (3.2).

O

P

Q

1− r
1

1− r

2

Figure 7. Computation of `.

Let us now consider a cluster of parameter h. Without loss of generality, the in-
volved vertexes are P1, . . . , P5, oriented in such a way that the parameter h is the angle
between the vertical line through O and the segment OP4, see Figure 8-left. According
to this notation, we have to determine the length a of Γ3, and the length b of Γ4 and Γ2.
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Let us consider the triangle P3OP4, see Figure 8-right: the side P3P4 has length 1 and
its opposite angle is π − h; similarly, the side OP4 has length 1 − r and its opposite
angle is a/2; therefore a is determined by the relation sin(a/2) = (1− r) sinh, which
implies (3.3). Let us now compute b. It is the sum of two angles: OP̂4P5 and OP̂4P3.

O

h

P3

P1P5

P4P2 a

bb

O

h

a
2

1− r

1

P3

P4

Figure 8. Left: cluster configuration under study. Right: computation
of a.

The former is `/2, since it is the base angle of an isosceles triangle with basis 1 and
legs 1− r (see also Figure 7). The latter can be determined by difference and equals
h− a/2 (see also Figure 8-right). Summing up, we get (3.4).

Finally to prove that b > a, we have to study the function G : h 7→ 3a(h)/2−h−`/2
for h ∈ (0, `) that are the possible values for the parameter h. Its derivative is given by

G′(h) =
3(1− r) cosh√

1− (1− r)2 sin2 h
− 1.

Since the function c 7→ c/
√

1− (1− r)2(1− c2) is increasing (its derivative has the
sign of 1− (1−r)2), we see that G′(h) > G′(0) = 3(1−r)−1 > 0 since r 6 1/2. Thus,
G is increasing. Finally G(`) = 0 because arcsin((1−r) sin `) = arcsin(sin(`/2)) = `/2,
therefore G(h) < 0⇔ b(h) > a(h) for h < `. �

By definition and in view of the last proposition, the parameter associated to a
cluster is between 0 and `(r). Another constraint comes from the fact that the perime-
ter of Reuleaux polygons of width 1 is π: given a rigid configuration of inradius r,
2N + 1 sides, and m clusters of parameters h1, . . . hm ∈ (0, `(r)), there holds

m∑
i=1

[a(r, hi) + 2b(r, hi)] + (2N + 1− 3m)`(r) = π,

where a and b are the functions defined above. Recalling the relation (3.4), we get

(3.5) 2

m∑
i=1

hi + (2N + 1− 2m)`(r) = π.
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Remark 3.9. — The constraint (3.5) can be written in a more general form, allowing
the parameters hi to take also the values 0 and `(r). Indeed, as already noticed in
Remark 3.4, extremal arcs can be seen as degenerate cases of clusters: when h = 0 the
arc Γk reduces to a point whereas the two opposite sides Γk−1 and Γk form a unique arc
of length `(r); when h = `(r), the triple (Γk−1,Γk,Γk+1) is of extremal arcs. In both
cases, the formulas above for a, b, and perimeter are still valid. Therefore, every rigid
shape can be described in terms of a collection of parameters hi, i = 1, . . . , m̃, varying
in the closed interval [0, `(r)]. The necessary condition (3.5) reads

(3.6)
m̃∑
i=1

[2hi + `(r)] = π.

In the remaining part of the section, we define a family of rigid shapes {Ω(r)}r,
whose optimality for A (r) will be proved in the next section.

Definition 3.10. — Let r ∈ [1− 1/
√

3, 1/2]. We define

(3.7) N(r) :=
⌈ π

2`(r)
− 1

2

⌉
,

where dxe denotes the ceiling function of x, namely the least integer greater than
or equal to x. This is the inverse of the function which associates to r the unique
N ∈ N∗, such that r ∈ (r2N−1, r2N+1]. We define Ω(r) as the regular (2N(r) + 1)-
gon if r = r2N(r)+1, and as the unique rigid shape with 2N(r) + 1 sides and only
one cluster. In this last case, the parameter h associated to the cluster is uniquely
determined by r, thus we may denote it by h(r): in view of (3.5), it reads

(3.8) h(r) :=
π − (2N(r)− 1)`(r)

2
.

4. Proof of Theorem 1.2 and Proposition 1.4

This section is devoted to the proofs of the main results. As announced in the
Introduction, as a first step we address the problem AN , N ∈ N∗, of area minimization
restricted to the class of Reuleaux polygons with at most 2N + 1 sides. We will prove
the following.

Theorem 4.1. — The area minimization problem restricted to the family of Reuleaux
polygons with at most 2N + 1 sides, N ∈ N∗, has the following solution: if N < N(r),
then there is no admissible shape for AN (r); otherwise, if N > N(r), the unique (up to
rigid motion) minimizer of AN (r) is Ω(r), where N(r) and Ω(r) are the function and
the shape introduced in Definition 3.10.

In order to prove Theorem 4.1, we need to compute the area of a rigid shape.
To this aim, we split a shape with M sides into M subdomains, by connecting with
straight segments the origin to the vertexes. As previously, the origin is put at the
center of the minimal annulus. The elements of this partition can be regrouped as
triples of subdomains associated to clusters and subdomains associated to extremal
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arcs. Examples of triples of subdomains associated with clusters are the gray regions
in Figure 6 : on the left, one triple; on the right, two triples. In the next lemma we
provide a formula for the areas of these subdomains.

Lemma 4.2. — Let r be the inradius. Then the area of a triple of subdomains associated
to a cluster of parameter h is

(4.1) F (r, h) := (1− r)2 sinh cosh+
a− sin a

2

+ (1− r)
(
cos(a/2)− (1− r) cosh

)
sin(h+ `) + b− sin b,

where ` = `(r), a = a(r, h) and b = b(r, h) are the functions introduced in (3.2), (3.3),
and (3.4), respectively.

Proof. — The area F (r, h) is the sum of two terms: F (r, h) = |A|+ 2|B|, where A is
the subdomain with boundary arc of length a and B is one of the two subdomains
with boundary arc of length b (which clearly have the same area). Each of them can
be further decomposed as a triangle of the form OPjPj+2 and a portion of disk. For
the subdomain A, the triangle is isosceles: the two sides which meet at O have length
1− r and meet with an angle of 2h, therefore the area is

(1− r)2 sinh cosh.

The area of the remaining part can be computed by difference, as the area of the
circular sector with vertexes PjPj+1Pj+2 and the triangle with the same vertexes.
The result is

a− sin a

2
.

Let us now consider B. The triangle in B (not isosceles) has the following structure:
the two sides which meet atO have length 1−r and cos(a/2)−(1−r) cosh, respectively,
and form an angle of amplitude `+ h; therefore its area is

1

2
(1− r)

(
cos(a/2)− (1− r) cosh

)
sin(h+ `).

As already done for A, it is immediate to check that the remaining part in B has area
b− sin b

2
.

By summing up the contributions we find (4.1). �

Remark 4.3. — Notice that the formula above is valid also for h = 0 or `, with the
appropriate interpretation. As already noticed in Remarks 3.4 and 3.9, when h = 0,
the cluster reduces to a single extremal arc. The formula above at 0 gives

F (r, 0) = (1− r)2 sin ` cos `+
`− sin `

2
;

which is the area of the subdomain bounded by an extremal arc and the two segments
joining its endpoints to the origin. Similarly, when h = ` we have three extremal arcs,
which is in accordance to

F (r, `(r)) = 3F (r, 0).
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The properties of F are summarized in the following.

Proposition 4.4. — The first and second derivatives of F with respect to the second
variable are given by

∂F (r, h)

∂h
=1 + 2(1− r)2 cos(2h) + 2(1− r) cosh

cos(a/2)

(
2(1− r)2 sin2 h− 1

)
,(4.2)

∂2F (r, h)

∂h2
=− 4(1− r)2 sin(2h) + 2(1− r)5 sin3 h cos2 h

cos3(a/2)
(4.3)

+ 2(1− r) sinh

cos(a/2)

(
1− 2(1− r)2 sin2 h+ 3(1− r)2 cos2 h

)
,

where a = a(r, h) is the function introduced in (3.3). In particular,

∂2F (r, h)

∂h2
< 0

for any h ∈ [0, `(r)], `(r) being the function introduced in (3.2).

Proof. — Throughout the proof r is fixed, therefore we omit the dependence on it. In
particular, F , a, and b, introduced in (4.1), (3.3), (3.4), respectively, will be regarded
as functions of the sole variable h, and their derivatives will be denoted simply by a
prime.

We will use the following formulas, which can be deduced from tan(`/2) =√
4(1− r)2 − 1 (cf. (3.2)):

(4.4) cos(`/2) =
1

2(1− r) , sin(`/2) =

√
4(1− r)2 − 1

2(1− r) ,

and

(4.5) cos ` =
1

2(1− r)2
− 1, sin ` =

√
4(1− r)2 − 1

2(1− r)2
.

From the definition of a and b, we have

(4.6) a′ = 2(1− r) cosh

cos(a/2)
, b′ = 1− (1− r) cosh

cos(a/2)
.

Differentiating F and using (4.6) yields:

F ′(h) = (1− r)2 cos(2h) + (1− r)(1− cos a)
cosh

cos(a/2)

+
(

(1− r) sinh− (1− r)2 sinh
cosh

cos(a/2)

)
(1− r) sin(h+ `)

+ (cos(a/2)− (1− r) cosh)(1− r) cos(h+ `) + (1− cos b)
(

1− (1− r) cosh

cos(a/2)

)
.

Using (3.3), (3.4), and (4.4), we obtain

cos a = 1− 2(1− r)2 sin2 h, cos(a/2) =
1− (1− r)2 sin2 h

cos(a/2)
,
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and

cos b = cosh cos
(
(`− a)/2

)
− sinh sin

(
(`− a)/2

)
=

cos(a/2)

2(1− r)
[
cosh− sinh

√
4(1− r)2 − 1

]
+

sinh

2

[
cosh

√
4(1− r)2 − 1 + sinh

]
.

These computations allow to simplify the expression above of F ′ and to get (4.2).
Differentiating one more time (4.2) we get

F ′′(h) = −8(1− r)2 cosh sinh+
2(1− r)3 sinh cos2 h

[
2(1− r)2 sin2 h− 1

]
cos3(a/2)

+
2(1− r) sinh

[
1− 2(1− r)2 sin2 h+ 4(1− r)2 cos2 h

]
cos(a/2)

.

Finally, writing 2(1 − r)2 sin2 h − 1 = (1 − r)2 sin2 h − cos2(a/2) and reordering the
terms, we arrive at (4.3).

Let us now prove that F ′′(h) < 0 when h ∈ [0, `]. To this aim, we write the second
derivative as F ′′ = 2(1− r) sinh(A+B), with

A(r, h) :=− 1

9
(1− r) cosh+

(1− r)4 sin2 h cos2 h

cos3(a/2)

B(r, h) :=− 35

9
(1− r) cosh+

3(1− r)2 cos2 h− 2(1− r)2 sin2 h+ 1

cos(a/2)
.

If we prove that A and B are negative, we are done.
Since h 7→ a(h) is increasing, both terms in A are increasing. Therefore A(r, h) 6

A(r, `). Using (4.4) and (4.5) we get

A(r, `) = −1

9
(1− r)

[
1

2(1− r)2
− 1

]
+ 8(1− r)7 4(1− r)2 − 1

4(1− r)4

[
1

2(1− r)2
− 1

]2

.

This leads to look at the sign of the polynomial P (x) = −4x4+3x2− 5
9 , with x := 1−r.

Since the roots of P are 1/
√

3 and
√

5/12, P is negative in [ 1
2 ,

1√
3
], we conclude that

A(r, h) 6 0.
Let us look at B(r, h). It has the same sign of

B1(r, h) = −35

9
(1− r) cosh cos(a/2) + 1 +

(1− r)2

2
(5 cos(2h) + 1).

Now, comparing their sin, it is immediate that, for any h, a/2 6 (1− r)h. Therefore,

B1(r, h) 6 B2(r, h) = −35

9
(1− r) cosh cos((1− r)h) + 1 +

(1− r)2

2
(5 cos(2h) + 1).

We now compute the three first derivatives of h 7→ B2(r, h). It comes, after lineariza-
tion

d3B2

dh3
= (1− r)

[
−35

18

(
r3 sin(rh) + (2− r)3 sin((2− r)h)

)
+ 20(1− r) sin(2h)

]
.

Using sin(rh) 6 rh, sin((2− r)h) 6 (2− r)h and sin(2h) > 4h/π we get
d3B2

dh3
> (1− r)h

[
−35

18

(
r4 + (2− r)4

)
+

80

π
(1− r)

]
.
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Since r4 + (2 − r)4 6 56/9 and 1 − r > 1/2 we conclude that d3B2/dh
3 > 0 and

then dB2/dh is convex in h, moreover it vanishes at 0. Thus, dB2/dh is either always
positive or always negative or negative and then positive (and this is actually the
case). In any case, we see that

B2(r, h) 6 max (B2(r, 0), B2(r, `)) .

Now we see that

B2(r, 0) = 3(1− r)2 − 35

9
(1− r) + 1 6 − 7

36
< 0.

It remains to estimate B2(r, `). For that purpose, we claim the following:

(4.7) cos((1− r)`) > 11

5
− 12

5
(1− r) =

12

5
r − 1

5
.

Recalling the relation (3.2) between ` and r, the validity of (4.7) is related to the
positivity of the auxiliary function

ψ(r) := arccos
(12

5
r − 1

5

)
− 2(1− r) arctan

(√
4(1− r)2 − 1

)
.

The second derivative of ψ reads

ψ′′(r) = − 144(12r − 1)

(25− (12r − 1)2)
3/2

+
2

(1− r)(4(1− r)2 − 1)3/2

and is negative in [1− 1/
√

3, 1/2]. In particular ψ is concave and
ψ(r) > min(ψ(1− 1/

√
3), ψ(1/2)) > 0.

This proves the claim.
We insert the estimate (4.7) in B2 to get (we still use x = 1− r):

B2(r, `) 6 −7

9
x
( 1

2x2
− 1
)

(11− 12x) + 1 +
x2

2

(
5
( 1

2x2
− 1
)2

− 5
4x2 − 1

4x4
+ 1

)
.

This leads to consider the polynomial

Q(x) = −19

3
x4 +

77

9
x3 +

2

3
x2 − 77

18
x+

5

4
.

This polynomial is negative in [1/2, 1/
√

3], implying that B2 is negative too. �

Proof of Theorem 4.1. — We begin by noticing that if N < N(r), then the class of
admissible shapes is empty: assume by contradiction that there exists a Reuleaux
polygon contained into the annulus B1−r(0)rBr(0) with M < 2N(r) + 1 sides. Each
arc of the boundary has length at most `(r), therefore, imposing that the perimeter
is π and recalling the definition (3.7) of N(r), we get

π 6M`(r) 6 (2N(r)− 1)`(r) =
(

2
⌈ π

2`(r)
− 1

2

⌉
− 1
)
`(r) < π,

which is absurd.
Let now N > N(r). The proof is divided into four steps.
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Step 1. — By Definition 3.1, any shape that is not rigid can be modified, through an
admissible Blaschke deformation, to decrease the area. Thus, it remains to minimize
the area among rigid shapes. We have seen in Proposition 3.5 that these rigid shapes
are composed of extremal arcs and clusters.

Step 2. — Let us write an area formula for a rigid shape Ω. Connecting with straight
segments the origin to the vertexes, we split Ω into subdomains, which can be re-
grouped as triples of subdomains associated to clusters (see also Figure 6) and sub-
domains associated to extremal arcs. According to the notation used in Remark 3.9,
all the subdomains can be regarded associated to clusters, allowing the parameters hi
to vary in the closed interval [0, `(r)], i = 1, . . . , m̃, for a suitable m̃ ∈ N. In view of
Lemma 4.2 and Remark 4.3, we infer that the total area is

|Ω| =
m̃∑
i=1

F (r, hi).

Notice that the area does not explicitly depend on the relative position of the clusters
(this dependence is enclosed into the relation among the lengths). The necessary con-
dition (3.6) gives a restriction on the possible values of m̃: since every hi is between 0

and `(r), we infer that 2hi + `(r) ∈ [`(r), 3`(r)], so that, summing over i from 1 to m̃,
we get

(4.8) π

3`(r)
6 m̃ 6

⌊ π

`(r)

⌋
.

In particular, this implies that the number of sides of a rigid configuration cannot be
arbitrarily large, but it is bounded by a quantity depending only on r. We infer that
the sequence of minima {AN (r)}N>N(r) is constant after a finite number of values
(depending on r). A priori, the first terms of the sequence could be different. In the
next step we show that, actually, the sequence is constant in N .

Step 3. — Let us optimize the area when m̃ is fixed. In view of the previous step, we
are led to minimize the function

F (h1, . . . , hm̃) :=

m̃∑
i=1

F (r, hi),

over the set

C :=
{

(h1, . . . , hm̃) ∈ [0, `(r)]m̃ :
∑m̃
i=1[2hi + `(r)] = π

}
.

In that way, we transform a geometric problem into an analytic one which might have
solutions that do not correspond to real geometric shapes. It turns out, as we will
see below, that the minimizer is unique and actually corresponds to a real body of
constant width.

The set of constraints is the intersection of an hypercube and an hyperplane. In view
of Proposition 4.4, the function F is strictly concave, therefore it attains a minimum
on extremal points of C . The extremal points of C lie on the edges of the hypercube,
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namely (up to relabeling) h1 ∈ [0, `] and h2, . . . , hm̃ ∈ {0, `}. Without loss of general-
ity, we may label the his in such a way that h2, . . . , hq = 0 and hq+1, . . . , hm̃ = `.

We claim the following facts:
(i) for m̃ fixed, the extremal point of C is unique;
(ii) for a fixed r, the minimum of F does not depend on m̃ in the range (4.8).

The case in which r is the inradius of some regular Reuleaux polygon is trivial: in view
of (3.6), the parameter h1 has to belong to {0, `(r)} and, again by (3.6), no matter
how the sides are regrouped (one by one when h = 0, three by three when h = `(r)),
they are necessarily 2N(r) + 1, where N(r) is the number introduced in (3.7).

In all the other cases, h1 lies necessary between 0 and `(r), strictly. A first conse-
quence is that the number of sides is 3 + (q − 1) + 3(m̃− q). Since it is odd, we infer
that m̃ is odd, too. In view of (3.6), q is given by

q =
3

2
m̃− π

2`(r)
+

h1

`(r)
.

More precisely, taking into account that h1/`(r) ∈ (0, 1), we get

q = q(m̃) := 1 +
⌊3

2
m̃− π

2`(r)

⌋
.

Using again (3.6), we infer that h1 is given by

h1 = `(r)(1− δ),
with

δ :=
3

2
m̃− π

2`(r)
−
⌊3

2
m̃− π

2`(r)

⌋
∈ (0, 1).

All in all, once fixed m̃, h1 and q are determined. This concludes the proof of (i).
Notice that if we replace m̃ by m̃ + 2 (as already noticed m̃ has to be odd), the

value of δ does not change. This allows us to write h1, without the dependence on m̃.
Therefore, in order to prove (ii), it is enough to show that the number of sides of
length `(r) does not depend on m̃:

q(m̃)− 1 + 3(m̃− q(m̃)) = 3m̃− 2q(m̃)− 1 = 3m̃− 2

⌊
3

2
m̃− π

2`(r)

⌋
− 3

= 3(m̃− 1)− 2

⌊
3

2
(m̃− 1)−

( π

2`(r)
− 3

2

)⌋
= 2

(⌊ π

2`(r)
− 3

2

⌋
+ 1

)
.

Here we have used that m̃−1 is even, together with the equality bk − xc = k−bxc−1,
true for every k ∈ N and every 0 < x < k, x /∈ N. This proves (ii).

Step 4. — In view of the previous step, we immediately get that the optimal shape
associated to the inradius r of a regular Reuleaux polygon, is the Reuleaux polygon
itself, for every N > N(r). When r is not the inradius of a regular Reuleaux polygon,
we have shown that, for every N > N(r), the optimal configuration has a unique
cluster and have all the other sides of length `(r). As already underlined in Defini-
tion 3.10, these properties characterize the set Ω(r), and the proof of the theorem is
concluded. Note that 2 bπ/(2`(r))− 3/2c+ 2 (i.e., the number of sides of length `(r)
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found in Step 3) is equal to N(r)− 2, implying that the total number of sides of the
optimal shape is 2N(r) + 1, as expected. �

We are now in a position to prove the main results, about the characterization of
minimizers and the continuity of minima and minimizers with respect to r.

Proof of Theorem 1.2. — In view of the density of the Reuleaux polygons in the class
of constant width sets see [3] or [4], we infer that

A (r) = inf
N>1

AN (r).

In view of Theorem 4.1, we infer that the sequence AN (r) is finite and constant after
N(r), so that A (r) = infN>1 AN (r) = |Ω(r)|. The other statements follow from the
characterization of Ω(r) (see Definition 3.10 and Proposition 3.8). �

Proof of Proposition 1.4. — In view of Theorem 1.2, its proof, and Definition 3.10,
A (r) can be computed by dividing the optimal shape Ω(r) into 2N(r)+1 subdomains,
obtained by joining with segments the vertexes with the origin. The partition is made
of subdomains associated to extremal arcs of length `(r) and (possibly) to one triple
associated to the cluster of parameter h(r). According to (4.1), the former have all area
F (r, 0), the latter (when present) has area F (r, h(r)). When r = r

2N+1
the partition

is regular and
A (r

2N+1
) = (2N + 1)F (r

2N+1
, 0).

In all the other cases, namely when r ∈ (r
2N−1

, r
2N+1

), we have

A (r) = (2N − 2)F (r, 0) + F (r, h(r)).

In the open interval (r
2N−1

, r
2N+1

) the functions F (r, 0), h(r), and F (r, h(r)) are
continuous, therefore A (r) is continuous too. In the limit as r ↘ r

2N−1
, we have

h(r)→ 0, so that

lim
r↘r

2N−1

A (r) = (2N − 2)F (r
2N−1

, 0) + F (r
2N−1

, 0) = A (r
2N−1

);

similarly, when r ↗ r
2N+1

, we have h(r) → `(r
2N+1

) and F (r, `(r)) → 3F (r
2N+1

, 0),
thus

lim
r↗r

2N+1

A (r) = (2N−2)F (r
2N+1

, 0)+3F (r
2N+1

, 0) = (2N+1)F (r
2N+1

, 0) = A (r
2N+1

).

Therefore, A is continuous in each closed interval [r
2N−1

, r
2N+1

]. This concludes the
proof of the continuity of A .

Let us now consider the optimal shapes. We choose the following orientation:
for regular Reuleaux polygons, we take one of the vertexes aligned vertically with
the origin, above it; in all the other cases, we choose the point Pk of the cluster (see
Definition 3.3) aligned vertically with the origin, below it (see also Figure 1). By con-
struction, the position of the vertexes varies continuously with respect to r, so that
the optimal shapes vary continuously with respect to the Hausdorff convergence. �
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Remark 4.5. — We could also be interested in the dual problem, namely to maximize
the inradius among shapes of constant width and fixed area. If we check that the
function r 7→ A (r) is strictly increasing (what is clearly true numerically), then an
easy argument shows that the domain Ω(r) also solves this dual problem.
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