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CHARACTERIZING SMOOTH AFFINE SPHERICAL

VARIETIES VIA THE AUTOMORPHISM GROUP

by Andriy Regeta & Immanuel van Santen

Abstract. — Let G be a connected reductive algebraic group. We prove that for a quasi-affine
G-spherical variety the weight monoid is determined by the weights of its non-trivial Ga-
actions that are homogeneous with respect to a Borel subgroup of G. As an application we
get that a smooth affine spherical variety that is non-isomorphic to a torus is determined
by its automorphism group (considered as an ind-group) inside the category of smooth affine
irreducible varieties.

Résumé (Caractérisation des variétés sphériques affines lisses par le groupe des automorphismes)
Soit G un groupe réductif connexe. Nous montrons que le monoïde des poids d’une variété

G-sphérique quasi-affine est déterminé par les poids de ses Ga-actions non triviales homo-
gènes sous l’action d’un sous-groupe de Borel de G. Comme application, nous obtenons qu’une
variété sphérique affine lisse non isomorphe à un tore est déterminée par son groupe des auto-
morphismes (considéré comme un ind-groupe) dans la catégorie des variétés irréductibles affines
lisses.
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380 A. Regeta & I. van Santen

1. Introduction

In this article, we work over an algebraically closed field k of characteristic zero if
it is not specified otherwise.

In [Kra17, Th. 1.1], Kraft proved that An is determined by its automorphism group
Aut(An) seen as an ind-group inside the category of connected affine varieties (see [FK]
for a reference of ind-groups) and in [KRvS19, Main Th.], this result was partially
generalized (over the complex numbers) in case Aut(An) is seen only as an abstract
group. In [CRX19, Th.A], the last results are widely generalized in the following
sense: An is completely characterized through the abstract group Aut(An) inside the
category of connected affine varieties. The result of Kraft was partially generalized
(over the complex numbers) to other affine varieties than the affine space in [Reg17]
and [LRU19]. More precisely, there is the following statement (formulated over the
complex numbers, but valid with the same proof over k):

Theorem 1 ([LRU19, Th. 1.4]). — Let X be an affine toric variety different from the
torus and let Y be an irreducible normal affine variety. If Aut(X) and Aut(Y ) are
isomorphic as ind-groups, then X and Y are isomorphic as varieties.

Remark 2. — In fact, in both [Kra17] and [LRU19, Th. 1.4], the authors prove the
statements under the slightly weaker assumption that there is a group isomorphism
Aut(X) ' Aut(Y ) that preserves algebraic subgroups (see Section 5 for the defini-
tion).

A natural generalization of toric varieties are the so-called spherical varieties. Let G
be a connected reductive algebraic group. Recall that a normal variety X endowed
with a faithful G-action is called G-spherical if some (and hence every) Borel subgroup
in G acts on X with an open dense orbit, see e.g. [Bri10] for a survey and [Tim11]
for a reference of the topic. If G is a torus, then a G-spherical variety is the same
thing as a G-toric variety. If X is G-spherical, then X has an open G-orbit which is
isomorphic to G/H for some subgroup H ⊂ G. The family of G-spherical varieties is,
in a sense, the widest family of G-varieties which is well-studied: in fact, G-equivariant
open embeddings of G-homogeneous G-spherical varieties are classified by certain
combinatorial data (analogous to the classical case of toric varieties) by Luna-Vust
[LV83] (see also the work of Knop [Kno91]) and homogeneous G-spherical varieties are
classified for k equal to the complex numbers by Luna, Bravi, Cupit-Foutou, Losev
and Pezzini [Lun01, BP05, Bra07, Lun07, Los09b, BCF10, CF14].

In this paper, we generalize partially Theorem 1 to quasi-affine G-spherical vari-
eties. In order to state our main results, let us introduce some notation. Let X be an
irreducible G-variety for a connected algebraic group G with a fixed Borel subgroup
B ⊂ G. We denote by X(B) the character group of B, i.e., the group of regular group
homomorphisms B → Gm. The weight monoid of X is defined by

Λ+(X) = {λ ∈ X(B) | O(X)
(B)
λ 6= 0},

J.É.P. — M., 2021, tome 8



Characterizing smooth affine spherical varieties 381

where O(X)
(B)
λ ⊂ O(X) denotes the subspace of B-semi-invariants of weight λ of the

coordinate ring O(X) of X, i.e.,

O(X)
(B)
λ = {f ∈ O(X) | b · f = λ(b)f for all b ∈ B}.

Our main result in this article is the following:

Main Theorem A. — Let X, Y be irreducible normal quasi-affine varieties, let
θ : Aut(X) ' Aut(Y ) be a group isomorphism that preserves algebraic subgroups
(see Section 5 for the definition) and let G be a connected reductive algebraic group.
Moreover, we fix a Borel subgroup B ⊂ G. If X is G-spherical and not isomorphic to
a torus, then the following holds:

(1) Y is G-spherical for the induced G-action via θ;
(2) the weight monoids Λ+(X) and Λ+(Y ) inside X(B) are the same;
(3) if one of the following assumptions holds

(i) X, Y are smooth and affine or
(ii) X, Y are affine and G is a torus,

then X and Y are isomorphic as G-varieties.

We prove Main Theorem A(1) in Proposition 7.7, Main Theorem A(2) in Corol-
lary 8.6 and Main Theorem A(3) in Theorem 8.7.

In case X is isomorphic to a torus and X is G-spherical, it follows that G is in
fact a torus of dimension dimX. Indeed, as each unipotent closed subgroup of G acts
trivially on X ' (k∗)dimX and since G acts faithfully on X, it follows that G has no
unipotent elements; hence G is a torus [Hum75, Prop. B, §21.4]. Thus X ' G. Then
[LRU19, Exam. 6.17] gives an example of an affine variety Y such that there is a group
isomorphism θ : Aut(X)→ Aut(Y ) that preserves algebraic subgroups, but Y is not
G-toric. Thus the assumption that X is not isomorphic to a torus in Main Theorem A
is essential.

Moreover, in general, we cannot drop the normality condition in Main Theorem A:
We provide an example in Proposition 9.1 where the weight monoids of X and Y are
different, see Section 9.

Outline of the proof of Main Theorem A(1). — We introduce generalized root sub-
groups of Aut(X) and study these subgroups and their weights for a G-variety X (see
Section 7 for details). We show that if G is not a torus, then an irreducible normal
quasi-affine variety with a faithful G-action is G-spherical if and only if the dimension
of all generalized root subgroups of Aut(X) with respect to B is bounded (see Def-
inition 7.1, Proposition 7.3 and Lemma 7.6). This characterization of the sphericity
is stable under group isomorphisms of automorphism groups that preserve algebraic
groups and thus we get Main Theorem A(1).

J.É.P. — M., 2021, tome 8



382 A. Regeta & I. van Santen

Outline of the proof of Main Theorem A(2). — We show that the weight monoid
Λ+(X) of a quasi-affine G-spherical variety X is encoded in the following set:

D(X) =

{
λ ∈ X(B)

∣∣∣ there exists a non-trivial B-homogeneous
Ga-action on X of weight λ

}
(see Section 4.2 for the definition of a B-homogeneous Ga-action). We call D(X) the
set of B-homogeneous Ga-weights ofX. ToD(X) ⊂ X(B) we may associate its asymp-
totic cone D(X)∞ inside X(B)⊗ZR and consider the convex cone Conv(D(X)∞) of it
(see Section 2 for the definitions). We prove then the following “closed formula” for
the weight monoid:

Main Theorem B. — Let G be a connected reductive algebraic group, B ⊂ G a Borel
subgroup, and X a quasi-affine G-spherical variety that is non-isomorphic to a torus.
If neither G is a torus nor Spec(O(X)) 6' A1 × (A1 r {0})dim(X)−1, then

Λ+(X) = Conv(D(X)∞) ∩ SpanZ(D(X)),

where the asymptotic cones and linear spans are taken inside X(B)⊗Z R.

Main Theorem B is proved in Theorem 8.2. As a consequence of this result, we
get that the set of B-homogeneous Ga-weights determines the weight monoid, see
Corollary 8.4:

Main Theorem C. — Let G be a connected reductive algebraic group and let X,Y be
quasi-affine G-spherical varieties with D(X) = D(Y ). Then Λ+(X) = Λ+(Y ).

Using this last result, we get then Theorem A(2), as the existence of a group
isomorphism Aut(X)→ Aut(Y ) that preserves algebraic groups implies that D(X) =

D(Y ), see Lemma 5.1.

Outline of the proof of Main Theorem A(3). — Note that the statement of Main
Theorem A(3ii) is the same as Theorem 1 together with Remark 2. We mentioned
it here as it is a direct consequence of Main Theorem A(2). Again using Main The-
orem A(2), the statement of Main Theorem A(3i) is a direct consequence of the
following beautiful result of Losev that proves Knop’s Conjecture:

Theorem 3 ([Los09a, Th. 1.3]). — If X and Y are smooth affine G-spherical varieties
with Λ+(X) = Λ+(Y ), then X and Y are isomorphic as G-varieties.

Outline of the structure of the paper. — In Section 2 we introduce the concept
of the asymptotic cone D∞ associated to a given set D in a Euclidean vector space.
One can think of D∞ as the set one receives if one looks at D from “infinitely far
away”. We provide in this Section several properties of (asymptotic) cones used for
our study of homogeneous Ga-actions on toric varieties in Section 6 and also for the
proof of our “closed formula” of the weight monoid in terms of the set of homogeneous
Ga-weights, i.e., Main Theorem B.

J.É.P. — M., 2021, tome 8
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In Sections 3, 4, 5 we gather general results about quasi-affine varieties, vector
fields, automorphism groups of varieties and root subgroups. This material is con-
stantly used in the rest of the article. For several results we don’t have an appropriate
reference to the literature and thus we provide full proofs.

In Section 6 we study homogeneous Ga-actions on quasi-affine toric varieties. Let us
highlight the two main results. For this, let X be a quasi-affine toric variety described
by some fan Σ of convex cones. Then the associated affine variety Xaff := Spec(O(X))

is again toric (see Lemma 3.4) and thus can be described by some convex cone σ.
Our first main result in this section (Corollary 6.7) provides a full description of
the homogeneous Ga-actions on X in terms of the fan Σ. In our second main result
(Corollary 6.9) we describe the asymptotic cone of the set D(X) of homogeneous
Ga-weights of X in terms of the convex cone σ.

In Section 7 we show that the automorphism group determines the sphericity, i.e.,
we prove Main Theorem A(1). As already mentioned, the idea is to characterize the
sphericity in terms of so-called generalized root subgroups, see Proposition 7.3.

In Section 8 we prove Theorem 8.2 which gives the closed formula in Main Theo-
rem B. Note that for a quasi-affine G-spherical variety X the following fact holds: the
algebraic quotient Xaff//U is an affine toric variety, where U denotes the unipotent
radical of a Borel subgroup of G. Using this fact and our study of the homogeneous
Ga-actions presented in Section 6, we prove Theorem 8.2. We then get Main The-
orem C as a consequence, see Corollary 8.4. At the end of this Section we prove
Theorem 8.7 which is the statement of Main Theorem A(3).

In Section 9 we provide an example that shows that the normality condition in
Main Theorem A is essential.

Acknowledgements. — The authors would like to thank Michel Brion for giving them
the idea to study asymptotic cones, which eventually led to a proof of the main
results. The authors also thank the anonymous referees for very helpful suggestions
and comments.

2. Cones and asymptotic cones

In the following section we introduce some basic facts about cones and asymptotic
cones. As a reference for cones we take [Ful93, §1.2] and as a reference for asymptotic
cones we take [AT03, Chap. 2].

Throughout this section V denotes a non-zero Euclidean vector space, i.e., a finite
dimensional R-vector space V 6= {0} together with a scalar product

V × V −→ R, (u, v) 7−→ 〈u, v〉.

The induced norm on V we denote by ‖·‖ : V → R.
A subset C ⊂ V is a cone if for all λ ∈ R>0 and for all c ∈ C we have λ · c ∈ C.

The asymptotic cone D∞ of a subset D ⊂ V is defined as follows:

D∞ =
{
x ∈ V r {0}

∣∣∣ there exists a sequence (xi)i in D with ‖xi‖ → ∞
such that xi/‖xi‖ → x/‖x‖

}
∪ {0}.

J.É.P. — M., 2021, tome 8



384 A. Regeta & I. van Santen

The asymptotic cone satisfies the following basic properties, see e.g. [AT03,
Prop. 2.1.1, Prop. 2.1.9].

Lemma 2.1 (Properties of asymptotic cones)
(1) If D ⊂ V , then D∞ ⊂ V is a closed cone.
(2) If C ⊂ V is a closed cone, then C∞ = C.
(3) If D ⊂ D′ ⊂ V , then D∞ ⊂ (D′)∞.
(4) If D ⊂ V and v ∈ V , then (v +D)∞ = D∞.
(5) If D1, . . . , Dk ⊂ V , then (D1 ∪ · · · ∪Dk)∞ = (D1)∞ ∪ · · · ∪ (Dk)∞. �

In order to illustrate the definition of the asymptotic cone, we draw the picture of
two sets D in R2 and their asymptotic cones D∞ in R2. In the first case, D is given
by xy = 1, x > 0 and in the second case, D is the union of two translated copies of a
cone in the plane.

D

x

y

D∞

x

y

and
x

y

D

x

y

D∞

Lemma 2.2 (Asymptotic cone of a δ-neighbourhood). — Let D ⊂ V and let δ ∈ R
with δ > 0. Then the δ-neighbourhood of D

Dδ := {x ∈ V | there is y ∈ D with ‖x− y‖ 6 δ}

satisfies (Dδ)∞ = D∞.

Proof of Lemma 2.2. — We only have to show that (Dδ)∞ ⊂ D∞. Let 0 6= x ∈ (Dδ)∞
and let (xi)i be a sequence in Dδ such that ‖xi‖ → ∞ and xi/ ‖xi‖ → x/ ‖x‖.
By definition, there is a sequence (yi)i in D such that ‖xi − yi‖ 6 δ. In particular,
we get ‖yi‖ → ∞. Let mi := min{‖xi‖ , ‖yi‖}. Then mi →∞ and for sufficiently big i

0 6

∥∥∥∥ xi
‖xi‖

− yi
‖yi‖

∥∥∥∥ 6 ‖xi − yi‖mi
6

δ

mi
.

As δ/mi → 0, the above inequality implies x/‖x‖=limi→∞ xi/‖xi‖=limi→∞ yi/‖yi‖.
�

For a subset D ⊂ V we denote by int(D) the topological interior of D inside the
linear span of D.

Lemma 2.3 (Intersection of a cone with an affine hyperplane.) — Let C ⊂ V be a
cone and let H1 be an affine hyperplane in V such that 0 6∈ H1. If C ∩H1 6= ∅, then
int(C) ∩H1 6= ∅.

Proof. — Let π : V → R be a linear map such that H1 = π−1(1). By assumption,
there is c ∈ C ∩ H1. We may assume that c lies in the topological boundary of C
inside the linear span of C (otherwise we are finished). By the continuity of π, there

J.É.P. — M., 2021, tome 8



Characterizing smooth affine spherical varieties 385

is c′ ∈ int(C) such that |π(c) − π(c′)| < 1. As π(c) = 1, we get π(c′) > 0. Then
λ = 1/π(c′) ∈ R>0 and thus λc′ ∈ int(C) ∩H1. �

A subset C ⊂ V is called convex if for all x, y ∈ C and all α ∈ [0, 1], we have
αx + (1 − α)y ∈ C. A convex cone C ⊂ V is called strongly convex if it contains no
linear subspace of V except the zero subspace. For a subset D ⊂ V , we denote by
Conv(D) the convex cone generated by D in V , i.e.,

Conv(D) = {λ1v1 + · · ·+ λkvk ∈ V | v1, . . . , vk ∈ D and λ1, . . . , λk ∈ R>0}.

Lemma 2.4 (Asymptotic cone of the intersection of a closed convex cone with an affine
hyperplane)

Let C ⊂ V be a closed convex cone and let H ⊂ V be a hyperplane. Then for each
v ∈ V such that C ∩ (v +H) 6= ∅, we have

(C ∩ (v +H))∞ = C ∩H.

Proof. — We denoteD := C∩(v+H) ⊂ V . AsD 6= ∅ we can take x ∈ D. If y ∈ C∩H,
then x+ y ∈ C and x+ y ∈ v+H, thus x+ y ∈ D. This shows that x+ (C ∩H) ⊂ D
and by Lemma 2.1, we get C ∩ H ⊂ D∞. Now, from Lemma 2.1 we get also the
reverse inclusion (here we use that C is a closed cone):

D∞ = (C ∩ (v +H))∞ ⊂ C∞ ∩ (v +H)∞ = C∞ ∩H∞ = C ∩H. �

A subset C⊂V is a convex polyhedral cone if there is a finite subset F ⊂V such that

C = ConvF.

For a convex polyhedral cone C in V , set

C∨ = {x ∈ V | 〈c, x〉 > 0 for all c ∈ C}.

By [Ful93, Propty (1), p. 9] we have C = (C∨)∨. In particular C is closed in V .
A hyperplane H ⊂ V passing through the origin is called a supporting hyperplane

of a convex polyhedral cone C ⊂ V if C is contained in one of the closed half spaces
in V delimited by H, i.e., there is a normal vector u ∈ V to H such that

C ⊂ {x ∈ V | 〈u, x〉 > 0}.

A face of a convex polyhedral cone C ⊂ V is the intersection of C with a supporting
hyperplane of C in V . A face of dimension one of C is called an extremal ray of C.

For a fixed lattice Λ ⊂ V (i.e., a finitely generated subgroup of (V,+) of rank
dimV ), a convex polyhedral cone C ⊂ V is called rational (with respect to Λ) if there
is a finite subset F ⊂ Λ such that C = Conv(F ). In case C is strongly convex, then C
is rational if and only if each extremal ray of C is generated by some element from
C∩Λ, see [Ful93, p. 14]. Note that a face of a rational convex polyhedral cone is again
a rational convex polyhedral cone, see [Ful93, Prop. 2].

Lemma 2.5. — Let Λ ⊂ V be a lattice.
(1) If C ⊂ V is a rational convex polyhedral cone, then C = (C ∩ Λ)∞.

J.É.P. — M., 2021, tome 8



386 A. Regeta & I. van Santen

(2) If v0 ∈ V , S ⊂ V denotes the unit sphere with center 0 and ρ : V r {0} → S

denotes the map given by v 7→ v/‖v‖, then ρ((v0 + Λ) r {0}) is dense in S.

Proof
(1) Let v1, . . . , vr ∈ C ∩ Λ such that C = Conv(v1, . . . , vr). Then

K :=
{∑r

i=1 tivi ∈ V | 0 6 ti 6 1 for i = 1, . . . , r
}

is a compact subset of C. In particular, there is a real number δ > 0 such that
‖v‖ 6 δ for all v ∈ K. Now, let c ∈ C. Then there exist m1, . . . ,mr ∈ Z>0 and
0 6 t1, . . . , tr 6 1 such that

c =

r∑
i=1

mivi︸ ︷︷ ︸
∈C∩Λ

+

( r∑
i=1

tivi

)
︸ ︷︷ ︸

∈K

.

This shows that c is contained in the δ-neighbourhood (C ∩Λ)δ. In summary, we get
C ∩ Λ ⊂ C ⊂ (C ∩ Λ)δ and by using Lemmas 2.1 and 2.2 the statement follows.

(2) By (1) applied to C = V and Lemma 2.1 we get V = Λ∞ = (v0 + Λ)∞.
By definition of the asymptotic cone, thus for every v 6= 0 in V there exists a sequence
(λi)i in Λ such that ‖v0 + λi‖ → ∞ and ρ(v) = limi→∞ ρ(v0 + λi). This shows that
ρ((v0 + Λ) r {0}) is dense in S = ρ(V r {0}). �

Proposition 2.6. — Let Λ ⊂ V be a lattice, let C ⊂ V be a convex polyhedral cone,
let H ⊂ V be a hyperplane, and let H ′ := γ +H for some γ ∈ Λ rH.

(1) If C∩H ′ 6= ∅, dimC∩H = dimH and H is rational, then int(C)∩H ′∩Λ 6= ∅.
(2) If int(C) ∩H ′ ∩ Λ 6= ∅ and C ∩H is a rational convex polyhedral cone, then

C ∩H = (int(C) ∩H ′ ∩ Λ)∞.

The pictures below illustrate the setups of Proposition 2.6 in the two cases.

(1)
x

y

Λ

C

H H ′

γ (2)
x

y

Λ

C

H H ′

γ

Proof
(1) If dimV = 1, then H = {0}. Thus C ∩H ′ 6= ∅ gives C ∩H ′ = {γ} ⊂ Λ r {0}

and the statement follows. Hence, we assume dimV > 2.
As γ 6∈ H, we get 0 6∈ H ′. Since C ∩ H ′ 6= ∅ there is thus x ∈ int(C) ∩ H ′

by Lemma 2.3. As dim(C ∩H) = dimH, the linear span of C ∩H is H and we get
that int(C ∩H) is a non-empty open subset of H. Set

D := x+ (int(C ∩H) r {0}) ⊂ (int(C) ∩H ′) r {x}.
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Characterizing smooth affine spherical varieties 387

Denote by S the unit sphere in H with center 0 and consider

π : H ′ r {x} −→ S, w 7−→ w − x
‖w − x‖

.

For all h ∈ int(C ∩H) we have R>0h ⊂ int(C ∩H) and thus

π−1(π(D)) = D.

As dimH > 1 (note that dimV > 2), we get that D is a non-empty open subset of
H ′ r {x}, and thus the same is true for π(D) in S (because π is open). As γ ∈ Λ

and H ′ = γ + H, it follows that H ′ ∩ Λ = γ + (H ∩ Λ). Using that H is rational,
we get that π((H ′ ∩ Λ) r {x}) is dense in S by Lemma 2.5(2) applied to the point
γ − x ∈ H and the lattice H ∩ Λ in H. By the openness of π(D) in S, there is
λ ∈ (H ′ ∩ Λ) r {x} ⊂ Λ with π(λ) ∈ π(D). In particular, λ ∈ π−1(π(D)) = D and
thus λ ∈ D ∩ Λ ⊂ int(C) ∩H ′ ∩ Λ.

(2) By assumption, there is y ∈ int(C) ∩H ′ ∩ Λ. Thus we get

y + (C ∩H ∩ Λ) ⊂ int(C) ∩H ′ ∩ Λ.

This implies by Lemma 2.1

(a) (C ∩H ∩ Λ)∞ ⊂ (int(C) ∩H ′ ∩ Λ)∞ ⊂ (C ∩H ′)∞.

By Lemma 2.4 we get

(b) (C ∩H ′)∞ = C ∩H.

By Lemma 2.5(1) applied to the rational convex polyhedral cone C ∩H ⊂ V we get

(c) C ∩H = (C ∩H ∩ Λ)∞.

Combining (a), (b) and (c) yields the result. �

Proposition 2.7. — Let Λ ⊂ V be a lattice, C ⊂ V a convex polyhedral cone and
H0 ⊂ V a hyperplane such that C ∩ H0 is a rational convex polyhedral cone. Let
H1 ⊂ V be an affine hyperplane parallel to H0 and set H−1 := −H1. If C ∩Hi 6= ∅
for each i ∈ {±1}, then

C ∩H−1 ∩ Λ 6= ∅ ⇐⇒ C ∩H1 ∩ Λ 6= ∅.

The picture below illustrates the setup of Proposition 2.7.

x

y

Λ

C

H−1 H0 H1
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Proof. — If H0 = H1, then H0 = H−1 and the statement is trivial. Thus we assume
that H0 6= H1, whence H0 6= H−1 and H1 6= H−1.

Since C ∩ H±1 6= ∅ and since H0, H1 and H−1 are pairwise disjoint, there exist
c±1 ∈ int(C) ∩ H±1 by Lemma 2.3. As C is convex, the line segment in V that
connects c1 and c−1 lies in int(C) and thus int(C)∩H0 6= ∅. Let B ⊂ C be the union
of the proper faces of C, i.e., B is the topological boundary of C inside the linear span
of C, see [Ful93, Propty (7), p. 10]. If C ∩H0 ∩Λ ⊂ B, then by Lemma 2.5(1) applied
to the rational convex polyhedral cone C∩H0 in V we get C∩H0 = (C∩H0∩Λ)∞ ⊂
B∞ = B, a contradiction to int(C) ∩H0 6= ∅. In particular, we may choose

γ0 ∈ (C ∩H0 ∩ Λ) rB.

By exchanging H1 and H−1, it is enough to prove “⇒” of the statement. For this,
let γ−1 ∈ C ∩ H−1 ∩ Λ. Since C is a convex polyhedral cone in V (and thus in the
linear span SpanR(C)), there is a finite set E ⊂ SpanR(C) r {0} with

C =
⋂
u∈E
{v ∈ SpanR(C) | 〈u, v〉 > 0},

see [Ful93, Propty (8), p. 11]. Since γ0 ∈ C r B, we get 〈u, γ0〉 > 0 for all u ∈ E.
In particular, we may choose an integer m > 0 big enough so that

〈u,mγ0 − γ−1〉 = m〈u, γ0〉 − 〈u, γ−1〉 > 0

for all u ∈ E, i.e., mγ0−γ−1 ∈ C. As γ0 ∈ H0∩Λ, we get mγ0−γ−1 ∈ C∩H1∩Λ. �

3. Quasi-affine varieties

To any variety X, we can naturally associate an affine scheme

Xaff := Spec O(X).

Moreover this scheme comes equipped with the so-called canonical morphism

ι : X −→ Xaff

which is induced by the natural isomorphism O(X) = O(Xaff).

Remark 3.1. — For any variety X, the canonical morphism ι : X → Xaff is dominant.
Indeed, let X ′ := ι(X) ⊂ Xaff be the closure of the image of ι (endowed with the
induced reduced subscheme structure). Since the composition

O(X) = O(Xaff) −→ O(X ′) −→ O(X)

is the identity on O(X), it follows that the surjection O(X) = O(Xaff) → O(X ′) is
injective and thus X ′ = X.

Lemma 3.2 ([Gro61, §5, Prop. 5.1.2]). — Let X be a variety. Then X is quasi-affine
if and only if the canonical morphism ι : X → Xaff is an open immersion. �

If X is quasi-affine and endowed with an algebraic group action, then this action
uniquely extends to an algebraic group action on Xaff :
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Lemma 3.3. — Let X be a quasi-affine H-variety for some algebraic group H. Then
Xaff is an affine scheme that has a unique H-action that extends the H-action on X
via the canonical open immersion X ↪→ Xaff .

Proof. — By Lemma 3.2, the canonical morphism X → Xaff is an open immersion of
schemes and there is a unique action of H on Xaff that extends the H-action on X,
see e.g. [KRvS19, Lem. 5]. �

Now, we compare the G-sphericity of X and Xaff .

Lemma 3.4. — Let G be a connected reductive algebraic group and let X be a quasi-
affine G-variety. Then

X is G-spherical ⇐⇒ Xaff is an affine G-spherical variety.

Proof. — If Xaff is an affine G-spherical variety, then X is G-spherical by Lemma 3.2.
For the other implication, assume that X is G-spherical. It follows that O(X) is a

finitely generated algebra over the ground field by [Kno93] and thusXaff = Spec O(X)

is an affine variety. Since X is irreducible, Xaff is irreducible by Remark 3.1. Moreover,
for each x ∈ X, the local ring OX,x is integrally closed and thus O(X) =

⋂
x∈X OX,x

is integrally closed, i.e., Xaff is normal. Since X is an open subset of Xaff , and since
a Borel subgroup of G acts with an open orbit on X, the same is true for Xaff . �

For the rest in this section, we recall two classical facts from invariant theory.

Proposition 3.5 (see [Sha94, Lem. 1.4, part II] and [Kra84, §2.4 Lem.])
Let X be any variety endowed with an H-action for some algebraic group H. The

natural action of H on O(X) satisfies the following: If f ∈ O(X), then Spank(Hf)

is a finite dimensional H-invariant subspace of O(X) and H acts regularly on it. �

Proposition 3.6 (see [Sha94, Th. 3.3, part II]). — Let H be a connected solvable alge-
braic group and let X be an irreducible quasi-affine H-variety. Then, for every H-inva-
riant rational map f : X k there exist H-semi-invariants f1, f2 ∈ O(X) such that
f = f1/f2. �

4. Vector fields

4.1. Generalities on vector fields. — Let X be any variety. We denote by Vec(X)

the vector space of all algebraic vector fields on X, i.e., all algebraic sections of the
tangent bundle TX → X. Note that Vec(X) is in a natural way an O(X)-module.

Now, assume X is endowed with a regular action of an algebraic group H. Then,
Vec(X) is an H-module, via the following action: Let h ∈ H and ξ ∈ Vec(X), then
h · ξ is defined via

(h · ξ)(x) = dϕh(ξ(ϕh−1(x))) for each x ∈ X,

where ϕh denotes the automorphism of X given by multiplication with h and dϕh
denotes the differential of ϕh. For a fixed character λ : H → Gm we say that a vector
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field ξ ∈ Vec(X) is normalized by H with weight λ if ξ is a H-semi-invariant of
weight λ, i.e., for all h ∈ H the following diagram commutes

TX
dϕh

// TX

X

ξ

OO

ϕh
// X

λ(h)ξ

OO

We denote by Vec(X)λ,H the subspace in Vec(X) of all vector fields which are normal-
ized by H with weight λ. If it is clear which action on X is meant, we drop the index H
and simply write Vec(X)λ. Note that Vec(X)λ is in a natural way an O(X)H -module,
where O(X)H denotes theH-invariant regular functions onX. We denote by VecH(X)

the subspace of all H-invariant vector fields in Vec(X), i.e., VecH(X) = Vec(X)0,
where 0 denotes the trivial character of H.

Now, assume that X is affine. There is a k-linear map

Vec(X) −→ Derk(O(X)), ξ 7−→ Dξ,

where Dξ : O(X) → O(X) is given by Dξ(f)(x) := ξ(x)(f) (here we identify the
tangent space of X at x with the k-derivations OX,x → k in x). In fact, Vec(X) →
Derk(O(X)) is an isomorphism: Indeed, as X is affine, we have

Vec(X) =

{
η : X −→ TX

∣∣∣ η is a set-theoretical section and for all f ∈ O(X)

the map x 7→ η(x)(f) is a regular function on X

}
,

see [FK, §3.2].

4.2. Homogeneous Ga-actions and vector fields. — The material of this small sub-
section is contained in [FK, §6.5], however formulated for all varieties.

Let P be an algebraic group that acts regularly on a variety X. Then we get a
k-linear map LieP → Vec(X), A 7→ ξA, where the vector field ξA is given by

(�) ξA : X −→ TX, x 7−→ (deµx)A

and µx : P → X, p 7→ px denotes the orbit morphism in x: Indeed (�) is a morphism
as it is the composition of the morphisms

X −→ TeP × TX, x 7−→ (A, 0x) and dµ|TeP×TX : TeP × TX −→ TX,

where 0x ∈ TX denotes the zero vector inside TxX and µ : P ×X → X denotes the
P -action.

Lemma 4.1. — If P is an algebraic group that acts faithfully on a variety X, then the
k-linear map LieP → Vec(X), A 7→ ξA is injective.

Proof. — For each x ∈ X, the kernel of the differential deµx : LieP → TxX of
the orbit morphism µx : P → X, p 7→ px is equal to LiePx, where Px denotes the
stabilizer of x in P . If A ∈ LieP satisfies ξA = 0, then (deµx)A = 0 for each x ∈ X,
i.e., A ∈ LiePx for each x ∈ X. As P acts faithfully on X, we get {e} =

⋂
x∈X Px

and thus {0} = Lie(
⋂
x∈X Px) =

⋂
x∈X Lie(Px) which implies A = 0. �
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Let H be an algebraic group. A Ga-action on an H-variety X is called H-homo-
geneous of weight λ ∈ X(H) if

h ◦ ε(t) ◦ h−1 = ε(λ(h) · t) for all h ∈ H and all t ∈ Ga,

where ε : Ga → Aut(X) is the group homomorphism induced by the Ga-action.

Lemma 4.2. — Let H be an algebraic group, X an H-variety and ρ an H-homogeneous
Ga-action on X of weight λ ∈ X(H). Then the image of the previously introduced
k-linear map LieGa → Vec(X), A 7→ ξA associated to ρ lies in Vec(X)λ,H .

Proof. — As ρ isH-homogeneous, we get for each x ∈ X and each h ∈ H the following
commutative diagram

Ga

µx
��

t 7→ λ(h)t
// Ga

µhx
��

X
ϕh

// X

where ϕh : X → X denotes multiplication by h. Taking differentials in the neutral
element e ∈ Ga gives dxϕhdeµx = λ(h)deµhx for each A ∈ LieGa. This implies that
h · ξA(x) = λ(h)ξA(x) for each A ∈ LieGa and thus the statement follows. �

Lemma 4.3. — Let H be an algebraic group and let N ⊂ H be a normal subgroup such
that the character group X(N) is trivial. If X is an irreducible H-variety, then

DH(X) =

{
λ ∈ X(H)

∣∣∣ there is a non-trivial H-homogeneous
Ga-action on X of weight λ

}
is contained in the set of H-weights of non-zero vector fields in VecN (X) that are
normalized by H.

Proof. — Let ρ : Ga × X → X be a non-trivial Ga-action on X. By Lemmas 4.1
and 4.2 there is a non-zero ξ ∈ Vec(X) such that for each h ∈ H we have h ·ξ = λ(h)ξ.
Moreover, since X(N) = 0, ξ is N -invariant. Thus DH(X) is contained in the set of
H-weights of non-zero vector fields in VecN (X) that are normalized by H. �

Now, assume that X is an affine variety and fix some non-zero element A0 ∈
LieGa. Moreover, denote by LNDk(O(X)) ⊂ Derk(O(X)) the cone of locally nilpotent
derivations on O(X), i.e., the cone in Derk(O(X)) of k-derivations D of O(X) such
that for all f ∈ O(X) there is a n = n(f) > 1 such that Dn(f) = 0, where Dn denotes
the n-fold composition of D. There is a map

{Ga-actions on X}
1:1←→ LNDk(O(X)), ρ 7−→ DξA0

,

where ξA0 is defined as in (�) with respect to the Ga-action ρ. As for each f ∈ O(X)

we have that DξA0
(f) is the morphism x 7→ A0(f ◦ µx) (we interpret A0 as a k-

derivation of OGa,e → k in e), it follows from [Fre17, §1.5] that the above map is in
fact a bijection.

J.É.P. — M., 2021, tome 8



392 A. Regeta & I. van Santen

4.3. Finiteness results on modules of vector fields. — Let G be an algebraic
group. For this subsection, let X be a G-variety. Note that Vec(X) is an O(X)-
G-module via the O(X)- and G-module structures given in §4.1, i.e., Vec(X) is a
G-module, it is an O(X)-module, and both structures are compatible in the sense
that

g · (f · ξ) = (g · f) · (g · ξ) for all g ∈ G, f ∈ O(X) and ξ ∈ Vec(X).

Lemma 4.4. — Assume that X is a quasi-affine G-variety and that O(X) is finitely
generated as a k-algebra. Then the O(X)-G-module Vec(X) is finitely generated
and rational, i.e., Vec(X) is finitely generated as an O(X)-module and the G-repre-
sentation Vec(X) is a sum of finite dimensional rational G-subrepresentations.

Proof. — Since O(X) is finitely generated, Xaff = Spec O(X) is an affine variety that
is endowed with a natural G-action, see Lemma 3.3. By [Kra84, Satz 2, II.2.S] there
is a rational G-representation V and a G-equivariant closed embedding Xaff ⊆ V .
We denote by

ι : X −→ V

the composition of the canonical open immersion X ⊂ Xaff with Xaff ⊂ V . Note that
the image of ι is locally closed in V and that ι induces an isomorphism of X onto that
locally closed subset of V . Thus, dι : TX → TV |X is aG-equivariant closed embedding
over X which is linear on each fiber of TX → X. Thus we get an O(X)-G-module
embedding

Vec(X) −→ Γ(TV |X), ξ 7−→ dι ◦ ξ,

where Γ(TV |X) denotes the O(X)-G-module of sections of TV |X → X. However,
since the vector bundle TV |X → X is trivial, there is a O(X)-G-module isomorphism

Γ(TV |X) ' Mor(X,V ),

where G acts on Mor(X,V ) via g · η = (x 7→ gη(g−1x)). Now, the O(X)-G-module
Mor(X,V ) ' O(X)⊗k V is finitely generated and rational (see Proposition 3.5), and
thus the statement follows. �

For the next result we recall the following definition.

Definition 4.5. — Let G be an algebraic group. A closed subgroup H ⊂ G is called
a Grosshans subgroup if G/H is quasi-affine and O(G/H) = O(G)H is a finitely
generated k-algebra.

Let G be a connected reductive algebraic group. Examples of Grosshans subgroups
of G are unipotent radicals of parabolic subgroups of G, see [Gro97, Th. 16.4]. In par-
ticular, the unipotent radical U of a Borel subgroup B ⊂ G is a Grosshans subgroup
in G (see also [Gro97, Th. 9.4]). A very important property of Grosshans subgroups
is the following:
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Proposition 4.6 ([Gro97, Th. 9.3]). — Let A be a finitely generated k-algebra and
let G be a connected reductive algebraic group that acts via k-algebra automorphisms
on A such that A becomes a rational G-module. If H ⊂ G is a Grosshans subgroup,
then the ring of H-invariants

AH = {a ∈ A | ha = a for all h ∈ H}

is a finitely generated k-subalgebra of A. �

Proposition 4.7. — Let R be a finitely generated k-algebra and assume that a con-
nected reductive algebraic group G acts via k-algebra automorphisms on R such that R
becomes a rational G-module. Let H ⊂ G be a Grosshans subgroup. If M is a finitely
generated rational R-G-module, then MH is a finitely generated RH-module.

Proof. — We consider the k-algebra A = R ⊕ εM , where the multiplication on A is
defined via

(r + εm) · (q + εn) = rq + ε(rn+ qm).

Since R is a finitely generated k-algebra and sinceM is a finitely generated R-module,
A is a finitely generated k-algebra. Moreover, since R and M are rational G-modules,
A is a rational G-module. Moreover, G acts via k-algebra automorphisms on A.
Since H is a Grosshans subgroup of G, it now follows by Proposition 4.6 that

AH = RH ⊕ εMH

is a finitely generated k-algebra. Thus one can choose finitely many elements
m1, . . . ,mk ∈MH such that εm1, . . . , εmk generate AH as an RH -algebra. However,
since ε2 = 0, it follows that m1, . . . ,mk generate MH as an RH -module.

As M is a rational G-module, it follows that MH is a rational H-module. �

As an application of Lemma 4.4 and Proposition 4.7 we get the following finiteness
result of VecH(X) for a Grosshans subgroup H of a connected reductive algebraic
group.

Corollary 4.8. — Let H be a Grosshans subgroup of a connected reductive algebraic
group G. If X is a quasi-affine G-variety such that O(X) is finitely generated as a
k-algebra, then VecH(X) is a finitely generated O(X)H-module. �

4.4. Vector fields normalized by a group action with an open orbit. — For this
subsection, let H be an algebraic group and let X be an irreducible H-variety which
contains an open H-orbit. Moreover, fix a character λ of H. We provide an upper
bound on the dimension of Vec(X)λ = Vec(X)λ,H .

Lemma 4.9. — Fix x0 ∈ X that lies in the open H-orbit and let Hx0
be the stabilizer

of x0 in H. Then, there exists an injection of Vec(X)λ into the Hx0-eigenspace of the
tangent space Tx0X of weight λ|Hx0 given by

ξ 7−→ ξ(x0).
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In particular, the dimension of Vec(X)λ is smaller than or equal to the dimension of
the Hx0-eigenspace of weight λ|Hx0 of Tx0X.

Proof. — Let ξ ∈ Vec(X)λ. By definition we have for all h ∈ H

(�) λ(h)ξ(hx0) = dϕhξ(x0),

where ϕh : X → X denotes the automorphism given by multiplication with h. Since x0

lies in the open H-orbit and X is irreducible, ξ is uniquely determined by ξ(x0).
Moreover, (�) implies that ξ(x0) is an Hx0 -eigenvector of weight λ|Hx0 of Tx0

X. �

5. Automorphism group of a variety and root subgroups

Let X be a variety and denote by Aut(X) its automorphism group. A subgroup
H ⊂ Aut(X) is called an algebraic subgroup of Aut(X) if H has the structure of an
algebraic group such that the action H ×X → X is a regular action of the algebraic
group H on X. It follows from [Ram64] (see also [KRvS19, Th. 2.9]) that this algebraic
group structure on H is unique in the following sense: if H1, H2 are algebraic groups
with group isomorphisms ιi : Hi → H for i = 1, 2 such that the induced actions
Hi ×X → X are morphisms for i = 1, 2, then ι−1

2 ◦ ι1 : H1 → H2 is an isomorphism
of algebraic groups.

Let X, Y be varieties. We say that a group homomorphism θ : Aut(X)→ Aut(Y )

preserves algebraic subgroups if for each algebraic subgroup H ⊂ Aut(X) its image
θ(H) is an algebraic subgroup of Aut(Y ) and if the restriction θ|H : H → θ(H) is a
homomorphism of algebraic groups. We say that a group isomorphism θ : Aut(X)→
Aut(Y ) preserves algebraic subgroups if both homomorphisms θ and θ−1 preserve
algebraic subgroups.

Assume now that X is an H-variety for some algebraic group H and that U0 ⊂
Aut(X) is a one-parameter unipotent subgroup, i.e., an algebraic subgroup of Aut(X)

that is isomorphic to Ga. If for some isomorphism Ga ' U0 of algebraic groups the
induced Ga-action on X is H-homogeneous of weight λ ∈ X(H), then we call U0 a
root subgroup with respect to H of weight λ (see §4.2). Note that this definition does
not depend on the choice of the isomorphism Ga ' U0. This notion goes back to
Demazure [Dem70].

Lemma 5.1. — Let X, Y be H-varieties for some algebraic group H. If θ : Aut(X)→
Aut(Y ) is a group homomorphism that preserves algebraic subgroups and if θ is com-
patible with the H-actions in the way that

H

yy $$

Aut(X)
θ // Aut(Y )

commutes, then for any root subgroup U0 ⊂ Aut(X) with respect to H, the image
θ(U0) is either the trivial group or a root subgroup with respect to H of the same
weight as U0.
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Proof. — We can assume that θ(U0) is not the trivial group. Hence, θ(U0) is a one-
parameter unipotent group.

Let ε : Ga ' U0 ⊂ Aut(X) be an isomorphism and let λ : H → Gm be the weight
of U0. Then we have for each t ∈ Ga

h ◦ θ(ε(t)) ◦ h−1 = θ(h ◦ ε(t) ◦ h−1) = θ(ε(λ(h) · t)).

Since θ|U0 : U0 → θ(U0) is a surjective homomorphism of algebraic groups that are
both isomorphic to Ga (and since the ground field is of characteristic zero), θ|U0

is
in fact an isomorphism. Thus θ ◦ ε : Ga ' θ(U0) ⊂ Aut(X) is an isomorphism and
hence λ is the weight of θ(U0) with respect to H. �

6. Homogeneous Ga-actions on quasi-affine toric varieties

In this section, we provide a description of the homogeneous Ga-actions on a quasi-
affine toric variety. Throughout this section, we denote by T an algebraic torus. Recall
that a T -toric variety is a T -spherical variety. A Ga-action is called homogeneous if it
is T -homogeneous of some weight λ ∈ X(T ), see §4.2.

Let X be a toric variety. In case X is affine, Liendo [Lie10] gave a full description
of all homogeneous Ga-actions. In case X is quasi-affine, Xaff = Spec(O(X)) is an
affine T -toric variety by Lemma 3.4. Moreover, every homogeneous Ga-action on X
extends uniquely to a homogeneous Ga-action on Xaff by Lemma 3.3. Thus we are
led to the problem of describing the homogeneous Ga-actions on Xaff that preserve
the open subvariety X.

This requires some preparation. First, we provide a description of Xaff in case X is
toric and provide a characterization, when X is quasi-affine. For this, let us introduce
some basic terms from toric geometry. As a reference we take [Ful93] and [CLS11].

Note that M = X(T ) = HomZ(N,Z), where N denotes the free abelian group
of rank dimT of the regular group homomorphisms Gm → T and denote by MR =

M ⊗Z R, NR = N ⊗Z R the extensions to R. Moreover, let

MR ×NR −→ R, (u, v) 7−→ 〈u, v〉

be the canonical R-bilinear form. Denote by k[M ] the k-algebra with basis χm for all
m ∈M and multiplication χm · χm′ = χm+m′ . Note that there is an identification

T = Speck[M ].

Let σ ⊂ NR be a strongly convex rational polyhedral cone in NR, i.e., it is a convex
rational polyhedral cone with respect to the lattice N ⊂ NR and σ contains no non-
zero linear subspace of NR. Then its dual

σ∨ = {u ∈MR | 〈u, v〉 > 0 for all v ∈ σ}

is a convex rational polyhedral cone in MR. Denote by σ∨M the intersection of σ∨
with M inside MR. We can associate to σ a toric variety

Xσ = Speck[σ∨M ], where k[σ∨M ] =
⊕

m∈σ∨M
kχm ⊂ k[M ].
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The torus T acts onXσ with an open orbit where this action is induced by the coaction
k[σ∨M ]→ k[σ∨M ]⊗kk[M ], χu 7→ χu⊗χu. Note that we have an order-reversing bijection
between the faces of σ and the faces of its dual σ∨:

{faces of σ} 1:1←→ {faces of σ∨}, τ 7−→ σ∨ ∩ τ⊥,

where τ⊥ consists of those u ∈ MR that satisfy 〈u, v〉 = 0 for all v ∈ τ , see [Ful93,
Propty (10), p. 12]. Moreover, each face τ ⊂ σ determines an orbit of dimension
n− dim(τ) of the T -action on Xσ (see [Ful93, §3.1]). We denote its closure in Xσ

by V (τ). In particular, V (τ) is an irreducible closed T -invariant subset of Xσ.
More generally, for a fan Σ of strongly convex rational polyhedral cones in NR we

denote by XΣ its associated toric variety, which is covered by the open affine toric
subvarieties Xσ, where σ runs through the cones in Σ.

Lemma 6.1. — Let X = XΣ be a toric variety for a fan Σ of strongly convex rational
polyhedral cones in NR. Denote by σ1, . . . , σr ⊂ NR the maximal cones in Σ and set

σ = Conv
r⋃
i=1

σi ⊂ NR.

Then:
(1) We have Xaff = Xσ and the canonical morphism ι : X → Xaff is induced by the

embeddings σi ⊂ σ for i = 1, . . . , r.(1)

(2) The toric variety X is quasi-affine if and only if each σi is a face of σ. Moreover,
if X is quasi-affine, then σ is strongly convex.

(3) If X is quasi-affine, then the irreducible components of Xaff rX are the closed
sets of the form V (τ), where τ is a minimal face of σ with τ 6∈ Σ.

(4) If X is quasi-affine, then each face τ of σ with τ 6∈ Σ has dimension at least 2.
In particular, Xaff rX is a closed subset of codimension at least 2 in Xaff .

Below we draw a picture where the fan Σ with maximal cones σ1, . . . , σ4 defines a
3-dimensional quasi-affine variety with associated cone σ = Conv

⋃4
i=1 σi:

Σ

σ1
σ2

σ3σ4

σ

Proof of Lemma 6.1
(1) Since the affine toric varietiesXσ1

, . . . , Xσr coverX, we get inside O(T )=k[M ]:

O(X) =
r⋂
i=1

O(Xσi) =
r⋂
i=1

k[(σi)
∨
M ] = k

[(
r⋂
i=1

σ∨i

)
∩M

]
.

(1)Note that we defined Xσ only for strongly convex rational polyhedral cones σ. However, the
definition Xσ makes sense for every convex rational polyhedral cone σ. In this case, the torus T may
act non-faithfully on Xσ .
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Since

σ∨ =

(
Conv

r⋃
i=1

σi

)∨
= {u ∈MR | 〈u, v〉 > 0 for all v ∈ σi and all i} =

r⋂
i=1

σ∨i ,

we get O(X) = O(Xσ) which implies the first claim.
For the second claim, denote by ιi : Xσi → (Xσi)aff the canonical morphism of Xσi

(which is in fact an isomorphism). Then we have for each i = 1, . . . , r the commutative
diagram

X
ι // Xaff Xσ

Xσi

⋃
ιi // (Xσi)aff

η
OO

where η is induced by the inclusion k[σ∨M ] ⊂ k[(σi)
∨
M ]. As η ◦ ιi : Xσi → Xaff = Xσ is

induced by the inclusion σi ⊂ σ, the second claim follows.
(2) If σi ⊂ σ is a face, then the induced morphism Xσi → Xσ is an open immersion

(see [Ful93, §1.3 Lem.]). Now, if each σi is a face of σ, then by (1) the canonical
morphism ι : X → Xσ is an open immersion, i.e., X is quasi-affine (see Lemma 3.2).

On the other hand, if X is quasi-affine, then ι : X → Xσ is an open immersion
(again by Lemma 3.2) and by (1), the morphism Xσi → Xσ induced by σi ⊂ σ is also
an open immersion. It now follows from [Ful93, §1.3 Exer. p. 18] that σi is a face of σ.

If X is quasi-affine, then Xaff = Xσ is a toric variety by Lemma 3.4 and thus σ is
strongly convex.

(3) We claim that Xaff r X is the union of all V (τ), where τ ⊂ σ is a face with
τ 6∈ Σ.

Let τ ⊂ σ be a face such that τ 6∈ Σ. In particular we have for all i that τ 6⊂ σi.
Since X is quasi-affine, σi is a face of σ by (2). Hence, there is a ui ∈ σ∨M with
u⊥i ∩ σ = σi and

Xσi = Xσ r ZXσ (χui)

by [Ful93, §1.3 Lem.], where ZXσ (χui) denotes the zero set of χui ∈ O(Xσ) inside Xσ.
As τ ⊂ σ, but τ 6⊂ σi, we get τ 6⊂ u⊥i and thus ui ∈ σ∨M r τ⊥. By [Ful93, §3.1], the
closed embedding V (τ) ⊂ Xσ corresponds to the surjective k-algebra homomorphism

k[σ∨M ] −→ k[σ∨M ∩ τ⊥], χm 7−→

{
χm if m ∈ τ⊥,
0 if m ∈ σ∨M r τ⊥.

In particular, χui vanishes on V (τ) and thus V (τ) and Xσi are disjoint for all i =

1, . . . , r, i.e., V (τ) ⊂ Xaff r X. On the other hand, if η ⊂ σ is a face with η ∈ Σ,
then there is a i ∈ {1, . . . , r} such that η is a face of σi. Then by [Ful93, §3.1, p. 53],
it follows that V (η) and Xσi do intersect. In particular, V (η) 6⊂ Xaff r X. Since
Xaff rX is a closed T -invariant subset, it is the union of some V (ε) for some faces ε
of σ. This implies then the claim.

Statement (3) now follows from the claim, since the minimal faces τ ⊂ σ with
τ 6∈ Σ correspond to the maximal V (τ) in Xaff rX.
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(4) Since X is quasi-affine it follows from (2) that each σi is a face of σ. Since σ is
the convex hull of the σi, we get thus that the extremal rays of σ are the same as the
extremal rays of all the σi. Hence the extremal rays of σ are the same as the cones
of dimension one in Σ. In particular, each face τ of σ with τ 6∈ Σ has dimension at
least 2. �

For the description of the homogeneous Ga-actions, let us set up the following
notation. Let σ ⊂ NR be a strongly convex rational polyhedral cone. If ρ ⊂ σ is an
extremal ray and τ ⊂ σ a face, we denote

τρ := Conv(extremal rays in τ except ρ) ⊂ NR.

In the picture below, we draw a picture of τ and τρ:

τ
ρ

τρ

In particular, if ρ is not an extremal ray of τ , then τρ = τ . Let us mention the
following easy observations of this construction for future use:

Lemma 6.2. — Let σ ⊂ NR be a strongly convex rational polyhedral cone, τ ⊂ σ a face
and ρ ⊂ σ an extremal ray. Then

(1) τρ is a face of σρ;
(2) If dim τρ < dim τ , then τρ is a face of τ .

Proof
(1) By definition, there is u ∈ σ∨ with τ = σ ∩ u⊥. Hence τρ ⊂ σρ ∩ u⊥ ⊂ τ . Since

u ∈ (σρ)
∨, σρ ∩ u⊥ is a face of σρ. If ρ 6⊂ τ , then τρ = τ and thus τρ = σρ ∩ u⊥ is a

face of σρ. If ρ ⊂ τ , then σρ ∩ u⊥ is the convex cone generated by the extremal rays
in τ , except ρ, i.e., τρ = σρ ∩ u⊥. Thus τρ is a face of σρ.

(2) As dim τρ < dim τ , we get ρ ⊂ τ and

(�) SpanR(τ) = Rρ⊕ SpanR(τρ).

Hence, there is u ∈M such that SpanR(τρ) = u⊥∩SpanR(τ). After possibly replacing u
by −u, we may assume 〈u, vρ〉 > 0, where vρ ∈ ρ denotes the unique primitive
generator. As τρ ⊂ u⊥, we get now u ∈ τ∨. Moreover,

u⊥ ∩ τ = (u⊥ ∩ SpanR(τ)) ∩ τ = SpanR(τρ) ∩ τ = τρ,

where the third equality follows from (�) as one may write each element in τ as
λvρ + µw for w ∈ τρ and λ, µ > 0. Thus τρ is a face of τ . �

For each extremal ray ρ in a strongly convex rational polyhedral cone σ, let

Sρ := {w ∈ (σρ)
∨ | 〈w, vρ〉 = −1} ∩M,
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where vρ ∈ ρ denotes the unique primitive generator. In [Lie10, after Def. 2.3] there is
an illuminating picture that shows the situation. We provide below our own picture
of the situation. In the first picture we draw (σρ)

∨ in light gray whereas in the second
picture we draw σ∨ in light gray.

(σρ)
∨

ρ⊥ ∩ σ∨
σ∨

{w ∈ (σρ)
∨ | 〈w, vρ〉 = −1}

Remark 6.3 (see also [Lie10, Rem. 2.5]). — The set Sρ is non-empty. Indeed, apply
Proposition 2.6(1) to the convex polyhedral cone C = σ∨ρ and the hyperplanesH = ρ⊥,
H ′ = {u ∈MR | 〈u, vρ〉 = −1} inside V = MR.

Now, we come to the promised description of the homogeneous Ga-actions on toric
varieties due to Liendo:

Proposition 6.4 ([Lie10, Lem. 2.6, Th. 2.7]). — Let σ ⊂ NR be a strongly convex
rational polyhedral cone. Then for any extremal ray ρ in σ and any e ∈ Sρ, the
k-linear map

∂ρ,e : k[σ∨M ] −→ k[σ∨M ], χm 7−→ 〈m, vρ〉χe+m

is a homogeneous locally nilpotent derivation of degree e, and every homogeneous
locally nilpotent derivation of k[σ∨M ] is a constant multiple of some ∂ρ,e. �

Remark 6.5. — The weight of the homogeneous Ga-action induced by ∂ρ,e is e ∈M .
The kernel of the locally nilpotent derivation ∂ρ,e is k[σ∨M ∩ ρ⊥].

The following lemma is the key for the description of the homogeneous Ga-actions
on a quasi-affine toric variety.

Proposition 6.6. — Let σ ⊂ NR be a strongly convex rational polyhedral cone, τ ⊂ σ
a face, ρ ∈ σ an extremal ray and e ∈ Sρ. Then the Ga-action on Xσ corresponding
to the locally nilpotent derivation ∂ρ,e leaves V (τ) invariant if and only if

ρ 6⊂ τ or e 6∈ τ⊥ρ .

Proof. — As in the proof of Lemma 6.1 (3), the embedding ι : V (τ) ⊂ Xσ corresponds
to the surjective k-algebra homomorphism

ι∗ : k[σ∨M ] −→ k[σ∨M ∩ τ⊥], χm 7−→

{
χm if m ∈ τ⊥,
0 if m ∈ σ∨M r τ⊥.

Thus the Ga-action on Xσ corresponding to ∂ρ,e preserves V (τ) if and only if

∂ρ,e(ker ι∗) ⊂ ker ι∗,
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see [Fre17, §1.5]. Since 〈m, vρ〉 = 0 for all m ∈ ρ⊥ and since e + m ∈ σ∨M for all
m ∈ σ∨M r ρ⊥, this last condition is equivalent to

(�) m ∈ σ∨M r (τ⊥ ∪ ρ⊥) =⇒ e+m 6∈ τ⊥.

We now distinguish two cases:
(1) Assume ρ 6⊂ τ . Then τ ⊂ σρ. In particular, we get 〈e, v〉 > 0 for all v ∈ τ . Let

m ∈ σ∨M r τ⊥. Then we get 〈m, v〉 > 0 for some v ∈ τ and hence

〈e+m, v〉 > 0 for some v ∈ τ ,

which in turn implies e+m 6∈ τ⊥. Thus (�) is satisfied.
(2) Assume ρ ⊂ τ . In particular, we have τ⊥ ⊂ ρ⊥. We distinguish two cases:

• e 6∈ τ⊥ρ : Then there exists an extremal ray ρ′ ⊂ τ with ρ′ 6= ρ such that
e 6∈ (ρ′)⊥ and the unique primitive generator vρ′ ∈ ρ′ satisfies

〈e+m, vρ′〉 = 〈e, vρ′〉︸ ︷︷ ︸
>0

+ 〈m, vρ′〉︸ ︷︷ ︸
>0

> 0 for all m ∈ σ∨M .

In particular e+m 6∈ τ⊥ for all m ∈ σ∨M and thus (�) is satisfied.
• e ∈ τ⊥ρ : Now, we want to apply Proposition 2.7. For this we fix the lattice

Λ = M ∩ τ⊥ρ inside V = τ⊥ρ . Since τρ is a face of σρ (see Lemma 6.2(1)),
C = (σρ)

∨ ∩ τ⊥ρ is a rational convex polyhedral cone in MR and thus also in V .
Moreover, we set H0 = ρ⊥ ∩ V = τ⊥ and H±1 = {u ∈ V | 〈u, vρ〉 = ±1}. Since
e ∈ (Sρ∩τ⊥ρ )rH0,H0 is a hyperplane in V and C∩H−1∩Λ = Sρ∩τ⊥ρ 6= ∅. Since
H0 ( V we get thus dim τρ < dim τ . Now, by Lemma 6.2(2), τρ is a face of τ
and therefore σ∨ ∩ τ⊥ρ ) σ∨ ∩ τ⊥ by the order-reversing bijection between faces
of σ and σ∨. Hence, there is u ∈ (σ∨ ∩ τ⊥ρ ) r τ⊥ and in particular u ∈ C rH0.
As 〈u, vρ〉 > 0, after scaling u with a real number > 0, we may assume u ∈ C∩H1

and hence C ∩H1 6= ∅. Now, as C ∩H0 = σ∨ ∩ τ⊥ is rational in MR and thus
also in V , we may apply Proposition 2.7 and get an element

m1 ∈ (σρ)
∨ ∩ τ⊥ρ ∩ {m ∈M | 〈m, vρ〉 = 1}.

Hence, m1 ∈ σ∨M r ρ⊥. Since e,m1 ∈ τ⊥ρ , we get e+m1 ∈ τ⊥ρ . Since

〈e+m1, vρ〉 = 〈e, vρ〉+ 〈m1, vρ〉 = −1 + 1 = 0,

we get thus e+m1 ∈ τ⊥. This implies that (�) is not satisfied. �

We can use this lemma to provide a full description of all homogeneous Ga-actions
on a quasi-affine toric variety X = XΣ. Recall that Xaff = Xσ, where σ is the cone
inNR generated by all maximal cones in Σ, see Lemma 6.1. Moreover, Xaff rX is the
union of the sets of the form V (τ), where τ ⊂ σ runs through the minimal faces with
the property that τ 6∈ Σ (again by Lemma 6.1). In the next corollaries (Corollary 6.7-
Corollary 6.10), we use this notation freely.

Corollary 6.7. — Let X = XΣ be a quasi-affine toric variety, let Xaff = Xσ and
let τ1, . . . , τs ⊂ σ be the minimal faces of σ which do not belong to Σ. Then, the
homogeneous Ga-actions on X are the restricted homogeneous Ga-actions on Xaff
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that are induced by the constant multiples of ∂ρ,e ∈ LNDk(O(X)) such that for all
i = 1, . . . , s we have

(~) ρ 6⊂ τi or e 6∈ (τi)
⊥
ρ .

Proof. — Assume that ∂ρ,e is a locally nilpotent derivation of O(X) such that (~) is
satisfied for all i = 1, . . . , s. Then by Proposition 6.6, the sets V (τ1), . . . , V (τs) ⊂ Xaff

are left invariant by the homogeneous Ga-action ερ,e : Ga × Xaff → Xaff which is
induced by ∂ρ,e. In particular, X = Xaff r (V (τ1)∪ . . . V (τs)) (see Lemma 6.1) is left
invariant by ερ,e.

On the other hand, let ε : Ga × X → X be a homogeneous Ga-action on X. By
Lemma 3.3 and Proposition 6.4 this Ga-action extends to a homogeneous Ga-action
ερ,e : Ga×Xaff → Xaff which is induced by some locally nilpotent derivation λ ·∂ρ,e ∈
LNDk(O(X)) for some constant λ ∈ k, some extremal ray ρ in σ and some e ∈ Sρ.
Since ερ,e extends ε, the subset V (τ1) ∪ · · · ∪ V (τs) = Xaff r X is left invariant
by ερ,e. Since the V (τ1), . . . , V (τs) are the irreducible components of Xaff r X and
since Ga is an irreducible algebraic group, it follows that ερ,e preserves each V (τi).
By Proposition 6.6 we get that for each i = 1, . . . , s the condition (~) is satisfied. �

For the next consequences of Corollary 6.7 we recall the following notation from
Section 2: For a subset E ⊂ MR we denote by int(E) the topological interior of E
inside the linear span of E. In these consequences we provide a closer description of
the weights in M arising from homogeneous Ga-actions on quasi-affine toric varieties
and compute the asymptotic cone of these weights.

Corollary 6.8. — Let X = XΣ be a quasi-affine toric variety, let Xaff = Xσ, let
ρ ⊂ σ be an extremal ray and let Dρ(X) be the set of weights e ∈ Sρ such that the
locally nilpotent derivation ∂ρ,e of O(X) induces a homogeneous Ga-action on X.
Then

Sρ ∩ int(σ∨ρ ) ⊂ Dρ(X) ⊂ Sρ.

Proof. — Let e ∈ Sρ ⊂M such that e is contained in int(σ∨ρ ) ⊂MR. Let τ1, . . . , τs be
the minimal faces of σ which are not contained in Σ. According to Corollary 6.7 it is
enough to show that for each τi with ρ ⊂ τi we have e 6∈ (τi)

⊥
ρ . By Lemma 6.1 (4) we

get that dim τi > 2 for every i. Hence, dim(τi)ρ > 1 and thus (τi)
⊥
ρ ∩ σ∨ρ is a proper

face of σ∨ρ . As e ∈ int(σ∨ρ ), we get e 6∈ (τi)
⊥
ρ ∩ σ∨ρ and thus e 6∈ (τi)

⊥
ρ . �

Corollary 6.9. — Let X = XΣ be a quasi-affine toric variety. Let Xaff = Xσ and
let D(X) be the set of homogeneous Ga-weights on X. Then the asymptotic cone of
D(X) ⊂MR satisfies

D(X)∞ = σ∨ r int(σ∨).

By Corollary 6.8, the set D(X) is contained in the set

S :=
⋃

ρ is an extr.
ray of σ

{w ∈ (σρ)
∨ | 〈w, vρ〉 = −1}.
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Below, we illustrate the dual cone of σ in light gray and the set S associated to σ in
dark gray:

σ∨

D(X) ⊂ S

Intuitively (and rigorously with Lemma 2.4 applied to the convex polyhedral cone
(σρ)

∨ and the hyperplane ρ⊥ for each ρ) it follows that the asymptotic cone of D(X)

is contained in
⋃
ρ{w ∈ (σρ)

∨ | 〈w, vρ〉 = 0}. This last set is equal to σ∨ r int(σ∨).
Now, we provide a detailed proof.

Proof. — By [Ful93, Propty (7), p. 10] we have

σ∨ r int(σ∨) =
⋃

ρ is an extr.
ray of σ

σ∨ ∩ ρ⊥.

Since D(X) is the union of the Dρ(X) for the extremal rays ρ ⊂ σ (with the definition
of Dρ(X) from Corollary 6.8), we get by Lemma 2.1 that

D(X)∞ =
⋃

ρ is an extr.
ray of σ

Dρ(X)∞.

Hence, it is enough to show that σ∨ ∩ ρ⊥ = Dρ(X)∞ for every extremal ray ρ of σ.
In order to do this, we want to apply Proposition 2.6. For this we fix the lattice

Λ = M inside V = MR and consider the convex polyhedral cone C = σ∨ρ inside V
and the hyperplane H = ρ⊥ ⊂ V . Note that C ∩ H = σ∨ ∩ ρ⊥ is a rational convex
polyhedral cone in V of dimension dimH and that H is rational. Moreover, setting
H ′ = {u ∈MR | 〈u, vρ〉 = −1}, where vρ ∈ ρ denotes the unique primitive generator,
there exists m−1 ∈ M r H such that H ′ = m−1 + H (as the coordinates of vρ are
coprime after identifying N with ZrankN ). Since ρ is an extremal ray of σ, it follows
that σρ ( σ and thus σ∨ρ ) σ∨ = σ∨ρ ∩ {u ∈MR | 〈u, vρ〉 > 0}. This implies that there
is u ∈ C with 〈u, vρ〉 < 0. Since C is a cone, we get that C ∩H ′ is non-empty. Now,
Proposition 2.6 applied to Λ, C,H,H ′ ⊂ V implies that

(d) σ∨ ∩ ρ⊥ = σ∨ρ ∩ ρ⊥ = (Sρ ∩ int(σ∨ρ ))∞.

By Corollary 6.8, Lemma 2.1 and Lemma 2.4 we get

(e) (Sρ ∩ int(σ∨ρ ))∞ ⊂ Dρ(X)∞ ⊂ (Sρ)∞ ⊂ (σ∨ρ ∩ (m−1 + ρ⊥))∞ ⊂ σ∨ρ ∩ ρ⊥.

Combining (d) and (e) yields σ∨ ∩ ρ⊥ = Dρ(X)∞ which implies the result. �

Corollary 6.10. — Let X be a quasi-affine toric variety and let D(X) be the set of
homogeneous Ga-weights. If X 6' T , then D(X) generates M as a group.
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Proof. — Let Xaff = Xσ. Since X is quasi-affine and X 6' T , the cone σ is strongly
convex and non-zero by Lemma 6.1(2). In particular it has an extremal ray ρ. Corol-
lary 6.10 follows thus from the next lemma, since Sρ ∩ int(σ∨ρ ) ⊂ D(X) (see Corol-
lary 6.8). �

Lemma 6.11. — Let σ ⊂ NR be a strongly convex rational polyhedral cone. Then for
every extremal ray ρ ⊂ σ, the set Sρ ∩ int(σ∨ρ ) generates M as a group.

Proof. — Denote by vρ ∈ ρ the unique primitive generator. By Remark 6.3, Sρ is
non-empty. Thus by Proposition 2.6(1) applied to the convex polyhedral cone C = σ∨ρ
and the hypersurfaces H = ρ⊥, H ′ = {u ∈ V | 〈u, vρ〉 = −1} in V = MR we get
Sρ ∩ int(σ∨ρ ) 6= ∅. Let A = Sρ ∩ int(σ∨ρ ) and choose a ∈ A. By definition of Sρ,

a+ (σ∨M ∩ ρ⊥) ⊂ A.

Since vρ ∈ N is primitive, we may choose a basis of N = Zn (where n = rankN) such
that vρ = (1, 0, . . . , 0). We then identify M = HomZ(N,Z) with Zn by choosing the
dual basis of N = Zn. Since σ∨∩ρ⊥ is a convex rational polyhedral cone of dimension
dim ρ⊥ in ρ⊥, there is m ∈ σ∨M ∩ ρ⊥ such that the closed ball of radius 1 and center m
in ρ⊥ is contained in σ∨ ∩ ρ⊥. In particular, m+ ei ∈ σ∨M ∩ ρ⊥ for i = 2, . . . , n, where
ei = (0, . . . , 0, 1, 0, . . . , 0) and 1 is at position i. In particular,

ei = (a+m+ ei)− (a+m) ∈ SpanZ(A) for i = 2, . . . , n.

Since vρ = (1, 0, . . . , 0) and 〈a, vρ〉 = −1, it follows that a = (−1, a2, . . . , an) for
certain a2, . . . , an ∈ Z. In particular, (1, 0, . . . , 0) = −a +

∑n
i=2 aiei ∈ SpanZ(A).

Thus, SpanZ(A) = M . �

7. The automorphism group determines sphericity

Our first goal in this section is to provide a criterion for a solvable algebraic group B
to act with an open orbit on a quasi-affine B-variety. For this, we introduce the notion
of generalized root subgroups:

Definition 7.1. — Let H be an algebraic group and let X be an H-variety. We call
an algebraic subgroup U0 ⊆ Aut(X) of dimension m which is isomorphic to (Ga)m

a generalized root subgroup (with respect to H) if there exists a character λ ∈ X(H),
called the weight of U0 such that

h ◦ ε(t) ◦ h−1 = ε(λ(h) · t) for all h ∈ H and all t ∈ (Ga)m,

where ε : (Ga)m
∼→ U0 is a fixed isomorphism.

Using that a group automorphism of (Ga)m is k-linear, we see that the weight of
a generalized root subgroup U0 does not depend on the choice of an isomorphism
ε : (Ga)m ' U0.
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Remark 7.2. — Let H be an algebraic group and let X be an H-variety. Using again
that algebraic group automorphisms of (Ga)m are k-linear, one can see the following:
An algebraic subgroup U0 ⊂ Aut(X) which is isomorphic to (Ga)m for some m > 1

is a generalized root subgroup with respect to H if and only if each one-dimensional
closed subgroup of U0 is a root subgroup of Aut(X) with respect to H. In particular,
root subgroups are generalized root subgroups of dimension one.

Proposition 7.3. — Let B be a connected solvable algebraic group that contains non-
trivial unipotent elements and let X be an irreducible quasi-affine variety with a faith-
ful B-action. Then, the following statements are equivalent:

(1) The variety X has an open B-orbit;
(2) There is a constant C such that dim Vec(X)λ 6 C for all weights λ ∈ X(B);
(3) There exists a constant C such that dimU0 6 C for each U0 ⊆ Aut(X) that is

a generalized root subgroup with respect to B.

Proof
(1) =⇒ (2) By Lemma 4.9 we get dim Vec(X)λ 6 dimTx0

X, where x0 ∈ X is a
fixed element of the open B-orbit.

(2) =⇒ (3) Let U0 ⊆ Aut(X) be a generalized root subgroup of weight λ ∈ X(B).
By Lemma 4.1, the k-linear map Lie(U0)→ Vec(X), A 7→ ξA is injective. Now, take
A ∈ Lie(U0) which is non-zero. Then there is a one-parameter unipotent subgroup
U0,A ⊂ U0 such that Lie(U0,A) is generated byA. By definition, U0,A is a root subgroup
with respect to B of weight λ. By Lemma 4.2, it follows that ξA lies in Vec(X)λ.
Thus the whole image of Lie(U0) → Vec(X) lies in Vec(X)λ and we get dimU0 6
dim Vec(X)λ.

(3) =⇒ (1) Assume that X admits no open B-orbit. This implies by Rosen-
licht’s Theorem [Ros56, Th. 2] that there is a B-invariant non-constant rational
map f : X k. By Proposition 3.6, there exist B-semi-invariant regular functions
f1, f2 : X → k such that f = f1/f2 and since f is B-invariant, the weights of f1

and f2 under B are the same, say λ0 ∈ X(B).
Moreover, there exists no non-zero homogeneous polynomial p in two variables with

p(f1, f2) = 0. Indeed, otherwise there exist m > 0 and a non-zero tuple (a0, . . . , am) ∈
km+1 such that

∑m
i=0 ai(f1)i(f2)m−i = 0 and hence

∑m
i=0 aif

i = 0. Since f is non-
constant, we get a contradiction, as k is algebraically closed.

Since B contains non-trivial unipotent elements, the center of the unipotent radical
in B is non-trivial. Since this center is normalized by B, there exists a one-dimensional
closed subgroup U of this center that is normalized by B. Let ρ : Ga × X → X be
the Ga-action on X corresponding to U . Hence ρ is B-homogeneous for some weight
λ1 ∈ X(B). Thus for any m > 0, we get a faithful (Ga)m+1-action on X given by

Gm+1
a ×X −→ X, ((t0, . . . , tm), x) 7−→ ρ

( m∑
i=0

ti(f
i
1 · fm−i2 )(x), x

)
,
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since
∑m
i=0 tif

i
1·fm−i2 6= 0 for all non-zero (t0, . . . , tm). The corresponding subgroup U0

in Aut(X) is then a generalized root subgroup of dimension m+ 1 with respect to B
of weight λ1 +mλ0 ∈ X(B). As m was arbitrary, (3) is not satisfied. �

Example 7.4. — If the connected solvable algebraic group B does not contain unipo-
tent elements, then Proposition 7.3 is in general false: Let B = Gm act on the product
X = Gm ×C via t · (s, c) = (ts, c), where C is any affine curve of genus > 1. Then X
has no open B-orbit.

On the other hand, X admits no non-trivial Ga-action and thus property (3) of
Proposition 7.3 is satisfied. Indeed, if there is a Ga-action on X with a non-trivial
orbit Ga ' O ⊂ X, then one of the restrictions of the projections

pr1 |O : O −→ Gm, (s, c) 7−→ s or pr2 |O : O −→ C, (s, c) 7−→ c

is non-constant, contradiction.

Lemma 7.5. — Let T be an algebraic torus and let X be a quasi-affine T -toric variety
such that X 6' T . Then there exists a non-trivial T -homogeneous Ga-action on X and
a subtorus T ′ ⊂ T of codimension one such that the induced Ga oT ′-action on X has
an open orbit.

Proof. — Since X 6' T , there is a non-trivial T -homogeneous Ga-action on X by
Corollary 6.10. Denote by U ⊂ Aut(X) the corresponding root subgroup.

Let x0 ∈ X such that Tx0 ⊂ X is open in X and let S be the connected component
of the stabilizer in U o T of x0. As dimU o T = dimX + 1, we get dimS = 1. If S
would be contained in U , then S = U and thus ux0 = x0 for all u ∈ U . From this we
would get for all t ∈ T , u ∈ U that

(tut−1) · (tx0) = tx0

and hence U would fix each element of the open orbit Tx0, contradiction. Hence,
S 6⊂U , which implies that there is a codimension one subtorus T ′ ⊂ T with S 6⊂ UoT ′.
This implies that (U o T ′) ∩ S is finite and thus (U o T ′)x0 is dense in X. As orbits
are locally closed, we get that (U o T ′)x0 is open in X. �

For the sake of completeness let us recall the following well-known fact from the
theory of algebraic groups:

Lemma 7.6. — Let G be a connected reductive algebraic group and let B ⊂ G be a
Borel subgroup. If G is not a torus, then B contains non-trivial unipotent elements.

Proof. — If B contains no non-trivial unipotent elements, then B is a torus and it
follows from [Hum75, Prop. 21.4B] that G = B, contradiction. �

Now, we prove that one can recognize the sphericity of an irreducible quasi-affine
normal G-variety from its automorphism group.
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Proposition 7.7. — Let G be a connected reductive algebraic group and let X, Y be
irreducible quasi-affine normal varieties. Assume that there is a group isomorphism
θ : Aut(X) → Aut(Y ) that preserves algebraic subgroups. If X is non-isomorphic to
a torus and G-spherical, then Y is G-spherical for the induced G-action via θ.

Proof. — We denote by B ⊆ G a Borel subgroup and by T ⊆ G a maximal torus.
We distinguish two cases:
• G 6= T : By Lemma 7.6 the Borel subgroup B contains unipotent elements and

thus we may apply Proposition 7.3 in order to get a bound on the dimension of every
generalized root subgroup with respect to B of Aut(X). Since the generalized root
subgroups of Aut(X) (with respect to B) correspond bijectively to the generalized root
subgroups of Aut(Y ) (with respect to θ(B)) via θ (see Remark 7.2 and Lemma 5.1),
it follows by Proposition 7.3 that Y is θ(G)-spherical.
• G = T : In this case X is T -toric. Since X is not isomorphic to a torus, we

may apply Lemma 7.5 in order to get a codimension one subtorus T ′ ⊂ T and a
root subgroup V ⊂ Aut(X) with respect to T such that V · T ′ acts with an open
orbit on X. As before, it follows from Proposition 7.3 that θ(V ) · θ(T ′) acts with an
open orbit on Y . This implies that dim(Y ) 6 dim(V ) + dim(T ′) = dim(T ). On the
other hand, since θ(T ) acts faithfully on Y , we get dim(T ) 6 dim(Y ). In summary,
dim(Y ) = dim(T ) and thus Y is θ(T )-toric. �

8. Relation between the set of homogeneous Ga-weights and
the weight monoid

Throughout the whole section we fix the following

Notation. — We denote by G a connected reductive algebraic group, by B ⊂ G

a Borel subgroup and by T ⊂ B a maximal torus. By convention G is non-trivial.
We denote by U ⊂ B the unipotent radical of B. Moreover, we denote X(B)R =

X(B)⊗Z R, where X(B) is the character group of B. For a G-variety X let us recall
the definition of the set of B-homogeneous Ga-weights:

D(X) =

{
λ ∈ X(B)

∣∣∣ there exists a non-trivial B-homogeneous
Ga-action on X of weight λ

}
(see Section 4.2 for the definition of a B-homogeneous Ga-action).

In this section we provide for a quasi-affine G-spherical variety X a description of
the weight monoid Λ+(X) in terms of D(X), see Theorem 8.2 below.

Proposition 8.1. — Let X be an irreducible quasi-affine variety with a faithful
G-action such that O(X) is a finitely generated k-algebra. If G 6= T , then there is a
λ ∈ D(X) with

λ+ Λ+(X) ⊂ D(X) and Λ+(X)∞ = D(X)∞,

where the asymptotic cones are taken inside X(B)R.
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Proof. — We denote D = D(X). By Lemma 4.3 we have

D ⊂
{
λ ∈ X(B)

∣∣∣ there is a non-zero vector field in VecU (X)

that is normalized by B of weight λ

}
=: D′.

By Corollary 4.8 we know that VecU (X) is finitely generated as an O(X)U -module.
Hence, there are finitely many non-zero B-homogeneous ξ1, . . . , ξk ∈ VecU (X) such
that the B-module homomorphism

π :
k⊕
i=1

O(X)Uξi −→ VecU (X), (r1ξ1, . . . , rkξk) 7−→ r1ξ1 + · · ·+ rkξk

is surjective. Let λ ∈ D′ and let η ∈ VecU (X) be a non-zero vector field that is
normalized by B of weight λ. Thus M = π−1(kη) is a rational B-submodule of⊕k

i=1 O(X)Uξi (see Proposition 3.5). As each element in M can be written as a sum
of T -semi-invariants, as U acts trivially on M and as X(U) is trivial, it follows that
each element inM can be written as a sum of B-semi-invariants. Hence, there is a non-
zero B-semi-invariant ξ ∈ M such that π(ξ) = η. As a consequence, the weight of ξ
is λ. Thus we proved that D′ is contained in the weights of non-zero B-semi-invariants
of
⊕k

i=1 O(X)Uξi, i.e.,

D′ ⊂
k⋃
i=1

(
λi + Λ+(X)

)
,

where λi ∈ X(B) denotes the weight of ξi.
Since G 6= T , we get by Lemma 7.6 that U 6= {e}. Since G (and therefore U) acts

faithfully on X, there is a non-trivial B-homogeneous Ga-action ρ : Ga ×X → X of
a certain weight λ ∈ D associated to a root subgroup with respect to B in the center
of U . Now, we claim that

λ+ Λ+(X) ⊂ D.
Indeed, this follows since for every non-zero B-semi-invariant r ∈ O(X)U of weight
λ′ ∈ X(B), the Ga-action

Ga ×X −→ X, (t, x) 7−→ ρ(r(x)t, x)

is non-trivial and B-homogeneous of weight λ+ λ′ ∈ X(B).
In summary, we have proved

λ+ Λ+(X) ⊂ D ⊂ D′ ⊂
k⋃
i=1

(
λi + Λ+(X)

)
⊂ X(B)R.

From Lemma 2.1 it now follows that Λ+(X)∞ ⊂ D∞ ⊂ D′∞ = Λ+(X)∞. �

Theorem 8.2. — Let X be a quasi-affine G-spherical variety which is non-isomorphic
to a torus. If G 6= T or Xaff 6' A1× (A1r{0})dim(X)−1, then D(X) is non-empty and

(�) Λ+(X) = Conv(D(X)∞) ∩ SpanZ(D(X)),

where the asymptotic cones and linear spans are taken inside X(B)R. Moreover,
dim Conv(D(X)∞) = dim SpanR(D(X)).
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In case X is isomorphic to a torus, D(X) is empty and thus SpanZ(D(X)) = {0}.
In particular, (�) is not satisfied (as G is non-trivial). In case G = T and Xaff '
A1 × (A1 r {0})dim(X)−1, Remark 8.5 below implies that (�) is not satisfied.

Proof of Theorem 8.2. — As in the last proof, we set D = D(X). We get D 6= ∅.
Indeed: if G 6= T , this follows from Lemma 7.6 and if G = T , this follows from
Corollary 6.10 (as X is not a torus).

Since X is a quasi-affine G-spherical variety, it follows from Lemma 3.4 that Xaff =

Spec O(X) is an affine G-spherical variety. In particular, O(X) is an integrally closed
domain, that is finitely generated as a k-algebra. Hence O(X)U is integrally closed
and it is finitely generated as a k-algebra (by Proposition 4.6). Since B acts with an
open orbit on Xaff , the algebraic quotient Xaff//U = Spec O(X)U is an affine T ′-toric
variety, where T ′ is a quotient torus of T . Thus we get a natural inclusion of character
groups

X(T ′) ⊂ X(T ) = X(B),

where we identify X(B) with X(T ) via the restriction homomorphism. Using the above
inclusion, Λ+(X) is contained inside X(T ′) and it is equal to the set of T ′-weights
of non-zero T ′-semi-invariants of O(X)U . As Xaff//U is T ′-toric, Λ+(X) is a finitely
generated semi-group and Conv(Λ+(X)) is a convex rational polyhedral cone inside
X(T ′)R ⊂ X(B)R. Moreover, Λ+(X) generates X(T ′) as a group inside X(B) and
Λ+(X) is saturated in X(T ′), i.e.,

Λ+(X) = Conv(Λ+(X)) ∩ X(T ′)

(see [CLS11, Ex. 1.3.4 (a)]). Using the inclusion X(T ′) ⊂ X(T ) = X(B) again, we get
D ⊂ X(T ′), since each B-homogeneous Ga-action on X induces a T ′-homogeneous
Ga-action on Xaff//U . We distinguish two cases:
• G 6= T . By Proposition 8.1, we get inside X(B)R

Λ+(X)∞ = D∞

and there is a λ ∈ D with λ + Λ+(X) ⊂ D ⊂ X(T ′). Since Λ+(X) generates the
group X(T ′), we get thus SpanZ(D) = X(T ′). As Conv(Λ+(X)) is a rational convex
polyhedral cone, we get Conv(Λ+(X)) = Conv(Λ+(X)∞). In summary, we have

Λ+(X) = Conv(Λ+(X)) ∩ X(T ′) = Conv(Λ+(X)∞) ∩ X(T ′)

= Conv(D∞) ∩ SpanZ(D)

and thus (�) holds. The second statement now follows from

dim SpanR(D) = dimT ′ = rank Λ+(X) 6 dim Conv(D∞) 6 dimT ′.

• G = T . In particular, T acts faithfully with an open orbit on X. Thus T ′ = T

and both varieties X, Xaff = Xaff//U are T -toric.
Denote by σ ⊂ HomZ(X(T ),R) the strongly convex rational polyhedral cone that

describes Xaff and let σ∨ ⊂ X(T )R be the dual of σ. By Corollary 6.9

(4) D∞ = σ∨ r int(σ∨),
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where int(σ∨) denotes the interior of σ∨ inside X(T )R. By assumption,

Xaff 6' A1 × (A1 r {0})dim(X)−1.

This implies that dimσ > 1 and we may write σ∨ = C × W , where C ⊂ X(T )R
is a strongly convex polyhedral cone of dimension > 1 and W ⊂ X(T )R is a linear
subspace. Hence, C is the convex hull of its codimension one faces and thus the same
holds for σ∨. Using (4), we get

Conv(D∞) = σ∨ = Conv(Λ+(X)).

Since Λ+(X) is saturated in X(T ), the above equality implies that

Λ+(X) = Conv(Λ+(X)) ∩ X(T ) = Conv(D∞) ∩ X(T ).

It follows from Corollary 6.10 that X(T ) = SpanZ(D) (here we use that X 6' T ) and
thus (�) holds. The second statement now follows from

dim SpanR(D) = dimT = rank Λ+(X) 6 dim Conv(D∞) 6 dimT. �

Remark 8.3. — Assume that G = T and that X is a T -toric quasi-affine variety. Then
one could recover the extremal rays of the strongly convex rational polyhedral cone
that describes Xaff from D(X) in a similar way as in [LRU19, Lem. 6.11] by using
Corollary 6.8. In particular, one could then recover Λ+(X) from D(X). However,
we wrote Theorem 8.2 in order to have a nice “closed formula” of Λ+(X) in terms of
D(X) for almost all quasi-affine G-spherical varieties.

Corollary 8.4. — For a quasi-affine G-spherical variety X, exactly one of the fol-
lowing cases holds (the linear spans and asymptotic cones are taken inside X(B)R):

(1) dim Conv(D(X)∞) = dim SpanR(D(X)), D(X) is non-empty and

Λ+(X) = Conv(D(X)∞) ∩ SpanZ(D(X));

(2) dim Conv(D(X)∞) < dim SpanR(D(X)), D(X) is non-empty, D(X)∞ is a
hyperplane in SpanR(D(X)) and

Λ+(X) = H+ ∩ SpanZ(D(X)),

where H+ ⊂ SpanR(D(X)) is the closed half space with boundary D(X)∞ that does
not intersect D(X);

(3) D(X) is empty and Λ+(X) = X(T ).
In particular, the following holds: If Y is another quasi-affine G-spherical variety with
D(Y ) = D(X), then Λ+(Y ) = Λ+(X).

Proof. — If X is a torus, then D(X) is empty. In particular, G = T by Lemma 7.6
and thus X ' T . Hence, Λ+(X) = X(T ) and we are in case (3). Thus we may assume
that X is not a torus.

If G 6= T or Xaff 6' A1× (A1 r{0})dim(X)−1, then Theorem 8.2 implies that we are
in case (1).

Thus we may assume that G = T andXaff ' A1×(A1r{0})dim(X)−1. In particular,
D(X) is non-empty and by Corollary 6.10 we get X(T ) = SpanZ(D(X)). Denote
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by σ ⊂ HomZ(X(T ),R) the closed strongly convex rational polyhedral cone that
describes Xaff . In this case σ is a single ray and thus σ∨ is a closed half space in X(T )R.
AsD(X)∞ = σ∨rint(σ∨) (see Corollary 6.9), it follows thatD(X)∞ is a hyperplane in
SpanR(D(X)). By definition Λ+(X) = σ∨∩SpanZ(D(X)) and σ∨ is in fact the closed
half space with boundary D(X)∞ that does not intersect D(X) (see Corollary 6.8).
In particular, dim Conv(D(X)∞) < dimT = dim SpanR(D(X)) and thus we are in
case (2). �

Remark 8.5. — The proof of Corollary 8.4 shows that in case G = T and Xaff '
A1 × (A1 r {0})dim(X)−1 we are in case 2. In particular,

Λ+(X) 6= Conv(D(X)∞) ∩ SpanZ(D(X)).

As a consequence of Corollary 8.4 we prove that for a G-spherical variety X the
weight monoid Λ+(X) ⊆ X(B) is determined by its automorphism group.

Corollary 8.6. — Let X,Y be irreducible quasi-affine normal varieties. Assume
that X is G-spherical, X is different from an algebraic torus and that there exists
an isomorphism of groups θ : Aut(X) ' Aut(Y ) that preserves algebraic subgroups.
Then Y is G-spherical for the G-action induced by θ and Λ+(X) = Λ+(Y ).

Proof. — The first claim follows from Proposition 7.7. To show that Λ+(X) = Λ+(Y )

let us denote by D(X), D(Y ) ⊂ X(B) the set of B-weights of non-trivial B-homo-
geneous Ga-actions on X and Y , respectively. We get D(X) = D(Y ) from Lemma 5.1.
Now, Corollary 8.4 implies Λ+(X) = Λ+(Y ). �

Theorem 8.7. — Let X and Y be irreducible normal affine varieties. Assume that X is
G-spherical and that X is not isomorphic to a torus. Moreover, we assume that there
is an isomorphism of groups θ : Aut(X) ' Aut(Y ) that preserves algebraic subgroups.
We consider Y as a G-variety by the induced action via θ. Then X, Y are isomorphic
as G-varieties, provided one of the following statements holds

(a) X and Y are smooth or
(b) G = T is a torus.

Proof. — By Corollary 8.6, Y is G-spherical and the weight monoids Λ+(X) and
Λ+(Y ) coincide. In case X and Y are smooth, the statement now follows from Losev’s
result, i.e., Theorem 3. In case G is a torus, it is classical, that from the weight monoid
Λ+(X) one can reconstruct the toric variety X up to G-equivariant isomorphisms, see
e.g. [Ful93, §1.3]. �

We end this Section with the following natural question concerning Theorem 8.7:

Question 8.8. — Does the conclusion of Theorem 8.7 also hold without the extra
assumptions (a) and (b)?
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9. A counterexample

For the rest of this article, we give an example which shows that we cannot drop
the normality condition in Main Theorem A. The example is borrowed from [Reg17].

Let µd ⊂ k∗ be the finite cyclic subgroup of order d and let it act on An via
t · (x1, . . . , xn) = (tx1, . . . txn). The algebraic quotient An/µd has the coordinate ring

O(An/µd) =
⊕
k>0

k[x1, . . . , xn]kd ⊂ k[x1, . . . , xn],

where k[x1, . . . , xn]i ⊂ k[x1, . . . , xn] denotes the subspace of homogeneous polynomi-
als of degree i. For each s > 2, let

Asd,n = Spec

(
k ⊕

⊕
k>s

k[x1, . . . , xn]kd

)
.

Proposition 9.1. — For n, s > 2, d > 1 and the algebraic quotient π : An → An/µd
holds:

(1) The variety An/µd is SLn(k)-spherical for the induced SLn(k)-action on An

and An/µd is smooth outside π(0, . . . , 0);
(2) There is an SLn(k)-action on Asd,n such that the morphism η : An/µd → Asd,n

which is induced by the natural inclusion O(Asd.n) ⊂ O(An/µd) is SLn(k)-equivariant.
Moreover, η is the normalization morphism and it is bijective;

(3) The natural group homomorphism Aut(Asd,n) → Aut(An/µd) is a group iso-
morphism that preserves algebraic subgroups;

(4) The variety Asd,n is not normal;
(5) The weight monoids Λ+(Asd,n) and Λ+(An/µd) inside X(B) are distinct when

we fix a Borel subgroup B ⊂ SLn(k).

Proof
(1) As the natural SLn(k)-action on An commutes with the µd-action, we get an

induced SLn(k)-action on An/µd such that π is SLn(k)-equivariant and An/µd is
SLn(k)-spherical. As SLn(k) acts transitively on An r {0}, the projection π induces
a finite étale morphism Anr{(0, . . . , 0)} → (An/µd)r{π(0, . . . , 0)}. This shows that
(An/µd) r {π(0, . . . , 0)} is smooth.

(2) As SLn(k) acts linearly on An, we get an SLn(k)-action on Asd,n such that
η : An/µd → Asd,n is SLn(k)-equivariant.

As An is normal, the algebraic quotient An/µd is normal. As O(Asd,n) has finite
codimension in O(An/µd), the ring extension O(Asd,n) ⊂ O(An/µd) is integral. More-
over, for each monomial f ∈ k[x1, . . . , xn] of degree sd, we get an equality by local-
izing, namely O(Asd,n)f = O(An/µd)f , and thus η is birational. This shows that η
is the normalization morphism. Moreover, as η is SLn(k)-equivariant and as SLn(k)

acts transitively on (Ad/µd) r {π(0, . . . , 0)}, we get that Asd,n r {η(π(0, . . . , 0))} is
smooth and as η is the normalization, it is an isomorphism over the complement of
η(π(0, . . . , 0)). Moreover, η−1(η(π(0, . . . , 0))) = {π(0, . . . , 0)} and thus η is bijective.
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(3) Each automorphism ε of Asd,n lifts uniquely to an automorphism ε̃ of An/µd
via the normalization morphism An/µd → Asd,n and therefore

θ : Aut(Asd,n) −→ Aut(An/µd), ε 7−→ ε̃

is an injective group homomorphism.
Now we prove that θ is surjective. For this, let ϕ ∈ Aut(An/µd). As n > 2, the

algebraic quotient An → An/µd is in fact the Cox realization of the toric variety
An/µd (see [AG10, Th. 3.1]). By [Ber03, Cor. 2.5, Lem. 4.2], ϕ lifts via An → An/µd
to an automorphism ψ of An and there is an integer c > 1 which is coprime to d such
that for each t ∈ µd and each (a1, . . . , an) ∈ An we have

ψ(ta1, . . . , tan) = tcψ(a1, . . . , an).

This implies that for each i ∈ {1, . . . , n},

ψ∗(xi) ∈
⊕
k>0

k[x1, . . . , xn]kd+c.

As ψ is an automorphism of An, we get c = 1 and thus ψ is µd-equivariant (see also
[Reg17, Prop. 4]). Hence, ψ∗ : k[x1, . . . , xn] → k[x1, . . . , xn] maps O(Asd,n) onto itself
and by construction restricts to ϕ∗ on O(An/µd). Therefore, there is an endomor-
phism ϕ̃ : Asd,n → Asd,n that induces ϕ ∈ Aut(An/µd) via the normalization morphism
η : An/µd → Asd,n. As η and ϕ are bijective, ϕ̃ is bijective as well; hence ϕ̃ is an
automorphism of Asd,n by [Kal05, Lem. 1] and thus θ is surjective.

Since θ : Aut(Asd,n) → Aut(An/µd) is a group isomorphism and as it is induced
by the normalization morphism An/µd → Asd,n, it follows that θ is an isomorphism
of ind-groups, see [FK, Prop. 12.1.1]. In particular, θ is a group isomorphism that
preserves algebraic subgroups.

(4) The normalization morphism An/µd → Asd,n is not an isomorphism, since the
inclusion O(Asd,n) ⊂ O(An/µd) is proper (note that s > 2).

(5) We may assume that B ⊂ SLn(k) is the Borel subgroup of upper triangular
matrices. Denote by U ⊂ B the unipotent radical, i.e., the upper triangular ma-
trices with 1 on the diagonal. Then the subrings of U -invariant functions satisfy
O(An/µd)U =

⊕
k>0 kx

kd
n and O(Asd,n)U = k⊕

⊕
k>s kx

kd
n . Denote by χn : B → Gm

the character which is the projection to the entry (n, n). Then we get

Λ+(An/µd) = {χkdn | k > 0} and Λ+(Asd,n) = {χkdn | k = 0 or k > s}

inside X(B) and as s > 2, these monoids are distinct. �
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