
Michael Björklund, Alexander Fish, & Ilya D. Shkredov
Sets of transfer times with small densities
Tome 8 (2021), p. 311-329.

<http://jep.centre-mersenne.org/item/JEP_2021__8__311_0>

© Les auteurs, 2021.
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

L’accès aux articles de la revue « Journal de l’École polytechnique — Mathématiques »
(http://jep.centre-mersenne.org/), implique l’accord avec les conditions générales
d’utilisation (http://jep.centre-mersenne.org/legal/).

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

http://jep.centre-mersenne.org/item/JEP_2021__8__311_0
https://creativecommons.org/licenses/by/4.0/
http://jep.centre-mersenne.org/
http://jep.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 8, 2021, p. 311–329 DOI: 10.5802/jep.147

SETS OF TRANSFER TIMES WITH SMALL DENSITIES

by Michael Björklund, Alexander Fish & Ilya D. Shkredov

Abstract. — In this paper we introduce and discuss various notions of doubling for measure-
preserving actions of a countable abelian group G. Our main result characterizes 2-doubling
actions, and can be viewed as an ergodic-theoretical extension of some classical density theorems
for sumsets by Kneser. All of our results are completely sharp and they are new already in the
case when G = (Z,+).

Résumé (Ensembles de temps de transfert avec petites densités). — Dans cet article, nous intro-
duisons et discutons plusieurs notions de doublement pour des actions préservant la mesure sur
un groupe abélien dénombrable G. Notre résultat principal caractérise les actions 2-doublantes
et peut être vu comme une extension de nature ergodique de certains théorèmes de densité
classiques pour les sommes d’ensembles par Kneser. Tous nos résultats sont optimaux et sont
nouveaux déjà pour le cas où G = (Z,+).
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1. Introduction

Throughout this paper, we shall assume that
– G is a countable and discrete abelian group.
– (X,µ) is a standard probability measure space, endowed with an ergodic prob-

ability measure-preserving action of G. In other words, (X,µ) is an ergodic Borel
G-space.
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– (Fn) is a sequence of finite subsets of G with the property that for every bounded
measurable function ϕ on X, there exists a µ-conull subset Xϕ ⊂ X such that

(1.1) lim
n

1

|Fn|
∑
g∈Fn

ϕ(gx) =

∫
X

ϕdµ, for all x ∈ Xϕ.

Definition 1.1. — Let C be a subset of G. The lower asymptotic density d(C) of the
set C with respect to the sequence (Fn) is defined by

(1.2) d(C) = lim
n

|C ∩ Fn|
|Fn|

.

Definition 1.2. — Let A and B be measurable subsets ofX with positive µ-measures.
The set of transfer times RA,B is defined by

(1.3) RA,B =
{
g ∈ G | µ(A ∩ g−1B) > 0

}
.

We set RA = RA,A, and refer to RA as the set of return times to the set A. If we wish
to emphasize the dependence on the measure µ, we write Rµ

A,B and Rµ
A respectively.

The aim of this paper is to establish various lower bounds on d(RA,B), and to
discuss when these lower bounds are attained. As we shall see in the proofs below,
these questions are closely related to direct and inverse theorems for product sets with
small doubling, which is an active line of research in additive combinatorics.

Before we state our main results, we make a few preliminary remarks. Firstly,
our assumption (1.1) on the sequence (Fn) readily implies that the lower asymptotic
density of RA,B is strictly positive for all measurable subsets A and B of X with
positive measures. Secondly,

(i) If µ(A) + µ(B) > 1, then µ(A ∩ g−1B) > 0 for all g, whence RA,B = G.
(ii) If µ(A) + µ(B) = 1, then either RA,B = G, or µ(A ∩ g−1o B) = 0 for some go.

In the latter case, B = g−1o Ac modulo µ-null sets, so if denote by H the µ-essential
stabilizer of A, then RA,B = Gr g−1o H.

In order to arrive at non-trivial results about sets of transfer times, we shall for the
rest of the paper, always assume that the measurable subsets A and B in X satisfy

(1.4) µ(A) + µ(B) < 1.

In particular, if A = B, we shall assume that µ(A) < 1/2.

1.1. Main results. — Our first theorem roughly asserts that if the lower asymptotic
density of RA is small enough, then the set of transfer times RA is in fact a subgroup
of G.

Theorem 1.3. — Let A and B be measurable subsets of X with positive µ-measures.
(i) d(RA,B) > max(µ(A), µ(B)).
(ii) If d(RA)<

3
2µ(A), then there exists a subgroup Go<G with [G : Go]61/µ(A),

such that RA = Go.

J.É.P. — M., 2021, tome 8
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Our second theorem in particular tells us that a measurable subset A ⊂ X with
positive µ-measure for which (ii) in Theorem 1.3 holds must be rather special. To be
able to state the full result, we need the following notation of control.

Definition 1.4. — Let (Y, ν) be an ergodic Borel G-space and let π : (X,µ)→ (Y, ν)

be a G-factor map. If (A,B) and (C,D) are pairs of measurable subsets with positive
measures in X and Y respectively, then we say that (C,D) controls (A,B) if

A ⊂ π−1(C) and B ⊂ π−1(D), modulo µ-null sets,

and Rµ
A,B = Rν

C,D. If we wish to emphasize the dependence on π, we say that (C,D)

π-controls (A,B).

Theorem 1.5. — Let A and B be measurable subsets of X with positive µ-measures
and suppose that d(RA,B) < µ(A) + µ(B). Then there exist

(i) a proper finite-index subgroup Go < G and a homomorphism η from G onto the
quotient group G/Go,

(ii) a non-trivial G-factor σ : (X,µ) → (G/Go,mG/Go
), where mG/Go

denote the
normalized counting measure on G/Go and G acts on G/Go via η,

(iii) a finite subset M ⊂ G/Go,
such that RA,B = η−1(M). Furthermore, there are finite subsets Io, Jo ⊂ G/Go such
that the pair (Io, Jo) σ-controls (A,B).

Remark 1.6. — Theorem 1.5 can be viewed as an ergodic-theoretical extension of
Kneser’s celebrated inverse theorem [4] for the lower asymptotic density of sumsets
in (N,+), which roughly asserts that if d(A + B) < d(A) + d(B) for two subsets A
and B of N, where d denotes the lower asymptotic density with respect to the sequence
([1, n]), then A+B is periodic (modulo a finite set). The connection between sumsets
and sets of transfer times will be discussed in more details below.

Theorem 1.5 also tells us that an ergodic Borel G-space which admits a pair (A,B)

of measurable subsets with positive measures with a small set of transfer times (in
the sense that the inequality d(RA,B) < µ(A) + µ(B) holds) must have a non-trivial
periodicG-factor. We recall that a BorelG-space is called totally ergodic if every finite-
index subgroup Go < G acts ergodically. Such Borel G-spaces cannot have non-trivial
periodic G-factors, and thus we conclude the following corollary from Theorem 1.5.

Corollary 1.7. — Suppose that Gy (X,µ) is totally ergodic. Then, for all measur-
able subsets A,B ⊂ X with positive µ-measures,

d(RA,B) > min(1, µ(A) + µ(B)).

Our third theorem characterizes exactly when the lower bound in Corollary 1.7 is
attained (assuming that the action is totally ergodic).

J.É.P. — M., 2021, tome 8
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Theorem 1.8. — Suppose that the action Gy (X,µ) is totally ergodic. If

d(RA,B) = µ(A) + µ(B) < 1,

then there exist
(i) a homomorphism η : G→ T with dense image.
(ii) a G-factor σ : (X,µ)→ (T,mT), where mT denotes the normalized Haar mea-

sure on T and G acts on T via η.
(iii) closed intervals Io and Jo of T with mT(Io) = µ(A) and mT(Jo) = µ(B)

such that (Io, Jo) σ-controls (A,B) and

RA,B = η−1(JoI
−1
o ),

modulo at most two cosets of the subgroup ker η.

Remark 1.9. — Conversely, it is not hard to show that if a pair (A,B) of measurable
subsets in X is σ-controlled by a pair (Io, Jo) as in the theorem above, then

d(RA,B) = min(1, µ(A) + µ(B)),

and thus Theorem 1.8 really provides a complete characterization of when the lower
bound in Corollary 1.7 is attained (assuming total ergodicity).

1.2. Concerning the novelty and sharpness of our results so far

Example 1.1 (The constant 3
2µ(A) in Theorem 1.3 is optimal). — Let N > 4 and

consider the action of G = (Z,+) on X = Z/NZ by translations modulo N . The nor-
malized counting measure µ on X is clearly invariant and ergodic. Let A={0, 1}⊂X
and note that

µ(A) =
2

N
and RA = NZ ∪

(
NZ+ 1

)
∪ (NZ− 1) ( Z.

It is not hard to check that

d(RA) =
3

N
=

3

2
µ(A),

but RA is not a subgroup of Z.

Example 1.2 (Ergodicity of the action is needed in Theorem 1.3). — Given positive
real numbers δ and ε, we shall construct a non-ergodic probability measure µ for the
shift action by G = (Z,+) on the space 2Z of all subsets of Z, endowed with the
product topology, such that

µ(A) < δ and d(RA) 6 (1 + ε)µ(A),

where A = {C ∈ 2Z | 0 ∈ C}, and such that the set of return times RA projects onto
every finite quotient of Z. In particular, RA cannot be a subgroup of Z, nor can it be
contained in a subgroup of Z. Here, the exact choice of the sequence (Fn) in Z is not
so important; for simplicity, we can assume that Fn = [1, n] for all n > 1.

J.É.P. — M., 2021, tome 8



Sets of transfer times with small densities 315

The construction of µ goes along the following lines. Given positive real numbers δ
and ε, we choose 0 < η < 1 such that 1 + ε = (1 + η)/(1− η), and we pick a strictly
increasing sequence (pk) of prime numbers such that

(1.5) 1

p1
< δ and

∑
k>2

1

pk
6

η

p1
.

For every k > 1, we denote by µk the uniform probability measure on the Z-orbit of
the subgroup pkZ in 2Z and we note that µk(A) = 1/pk. We now define

µ = (1− η)µ1 + η
∑
k>2

µk
2k−1

,

which is clearly a Z-invariant non-ergodic Borel probability measure on 2Z. One readily
checks that

µ(A) =
1− η
p1

+ η
∑
k>2

1

pk2k−1
, and RA =

⋃
k>1

pkZ ( Z,

whence,
1− η
p1

6 µ(A) < δ

and, thus, by (1.5) and the choice of η,

d(RA) 6
∑
k>1

1

pk
6

1 + η

p1
6
(1 + η

1− η

)
µ(A) = (1 + ε)µ(A).

Clearly, RA projects onto every finite quotient of Z, which finishes our construction.

Example 1.3 (Non-Følner sequences). — All of the results in this paper are new
already in the case when G = (Z,+) and Fn = {1, . . . , n} (this sequence satisfies (1.1)
by Birkhoff’s Ergodic Theorem). We stress however that we do not need to assume
that the sequence (Fn) is Følner (asymptotically invariant) in G. For instance, in the
case of (Z,+), our results above also apply to the sparse sequence

Fn =
{
bk
√
2 + k5/2c | k = 1, . . . , n

}
, n > 1,

which is far from being a Følner sequence in Z, but nevertheless satisfies (1.1) by [2].

Example 1.4 (“Non-conventional” lower asymptotic density). — If Z y (X,µ) is
totally ergodic, then the sequence (Fn) of squares

Fn = {k2 | k = 1, . . . , n}, for n > 1,

satisfies (1.1) (the almost sure convergence follows from the work of Bourgain [3],
while the identification of the limit – for totally ergodic actions – follows from the
equidistribution (modulo 1) of the sequence (n2α), for irrational α). In particular, by
Corollary 1.7 we have

lim
n→∞

|RA,B ∩ {1, 4, . . . , n2}|
n

> min(1, µ(A) + µ(B)),

for all measurable subsets A,B ⊂ X with positive µ-measures.

J.É.P. — M., 2021, tome 8
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1.3. On ergodic actions with small doubling

Definition 1.10 (C-doubling actions). — Let C > 1. We say that G y (X,µ) is a
C-doubling action if for every δ > 0, there exists a measurable subset A ⊂ X with
0 < µ(A) < δ such that d(RA) 6 Cµ(A).

Remark 1.11. — We note that if the action is C-doubling, then it must also be
C ′-doubling for every C ′ > C.

It seems natural to ask about the structure of C-doubling actions. The following
theorem provides a complete characterization of such actions.

Theorem 1.12. — Let C > 1. An ergodic action Gy (X,µ) is C-doubling if and only
if there exist

(i) an infinite compact metrizable group K and a homomorphism η : G→ K with
dense image.

(ii) a G-factor σ : (X,µ) → (K,mK), where mK denotes the normalized Haar
measure on K and G acts on K via η.
Furthermore,

– if the identity component Ko of K has infinite index, then the action is
1-doubling.

– if the identity component Ko of K has finite index, then the action is 2-doubling.

Remark 1.13. — Theorem 1.12 in particular asserts that an ergodic action is
C-doubling for some C > 1 if and only if it has an infinite Kronecker factor (see
e.g. [1] for definitions).

The same line of argument as the one leading up to Theorem 1.12 also proves the
following result, whose proof we leave to the reader. We recall that G y (X,µ) is
weakly mixing if the diagonal action Gy (X ×X,µ⊗ µ) is ergodic.

Scholium 1.14. — There exist measurable subsets A and B of X with µ(A), µ(B) > 0

such that d(RA,B) < 1 if and only if Gy (X,µ) is not weakly mixing.

1.4. A brief outline of the proofs. — Our first observation is that for any two
measurable subsets A and B of X with positive µ-measures, there is a measurable
µ-conull subset X1 of X such that

RA,B = BxA
−1
x , for all x ∈ X1,

where Ax and Bx are the return times of the point x to the sets A and B (see Sec-
tion 2.1 below for notation). We then observe in Lemma 2.2 that for some measurable
µ-conull subset X2 ⊂ X,

d(BxA
−1
x ) > µ(A−1x B), for all x ∈ X2,

which puts us in the framework of our earlier paper [1]. We combine some of the key
points of this paper in Lemma 2.4 below, the outcome of which is that there exist

J.É.P. — M., 2021, tome 8
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– a measurable G-invariant µ-conull subset X3 ⊂ X1 ∩X2,
– a compact and metrizable abelian group K with Haar probability measure mK

and a homomorphism τ : G→ K with dense image,
– a G-equivariant measurable map π : X3 → K such that π∗(µ|X3

) = mK , where G
acts on K via τ ,

– two measurable subsets I and J of K,
such that

µ(A−1x B) = mK(JI−1)

and
A ∩X3 ⊂ π−1(I) and B ∩X3 ⊂ π−1(J).

In particular,
µ(A) 6 mK(I) and µ(B) 6 mK(J),

and if A = B, then we can take I = J . In the settings of Theorem 1.3, Theorem 1.5
and Theorem 1.8, we see that

mK(II−1) <
3

2
mK(I) and mK(JI−1) < mK(I) +mK(J)

and
mK(JI−1) = min(1,mK(I) +mK(J))

respectively. At this point, we use some classical results [5] of Kneser for sumsets in
compact abelian groups, to conclude that the pair (I, J) is “reduced” to a nicer pair
(Io, Jo) in a much “smaller” quotient group Q of K (see Definition 2.6 for details).
The point of all this is that the transfer times RA,B is contained in the transfer times
between Io and Jo, which is equal to the set η−1(JoI−1o ). Here η : G → Q is the
composition of τ with the quotient map from K to Q. To prove that the sets actually
coincide, we shall use the overshoot relation

(1.6) µ(A) + µ(B) 6 mQ(Io) +mQ(Jo)−mQ(Io ∩ η(g)−1Jo),

for all g ∈ η−1(JoI−1o )r RA,B . This inequality is proved in Proposition 2.7. It turns
out that in the settings of the theorems above, the sets Io and Jo have the property
that the mQ-measure of the intersection Io∩η(g)−1Jo, for g in η−1(JoI−1o )rRA,B , is
large enough to contradict (1.6), whence we can conclude that RA,B = η−1(JoI

−1
o ).

1.5. Ergodic actions of semi-groups. — Our definition of transfer times between
two sets makes sense also for actions by non-invertible maps. Suppose that S is a
countable abelian semigroup, sitting inside a countable abelian group G. If S acts
ergodically by measure-preserving maps on a standard probability measure space
(X,µ), then, under some technical assumptions (see e.g. [6] for more details in the
general setting), one can construct a so called natural extension (X̃, µ̃) of the S-action,
which is a measure-preserving G-action, together with a measurable S-equivariant
map ρ : X̃ → X, mapping µ̃ to µ. It is not hard to see that if we set

Ã = ρ−1(A) and B̃ = ρ−1(B),

J.É.P. — M., 2021, tome 8



318 M. Björklund, A. Fish & I. D. Shkredov

then
RÃ,B̃ ∩ S =

{
s ∈ S | µ(A ∩ s−1B) > 0

}
,

where the transfer times RÃ,B̃ are measured with respect to µ̃. We can now apply
our results above to the G-action on the natural extension (X̃, µ̃) (which is ergodic if
and only if the semi-group action S y (X,µ) is), and conclude the same results for
the S-action. We leave the details to the interested reader.

Acknowledgements. — The authors thank the anonymous referees for their comments.
I.S. is grateful to SMRI and the School of Mathematics and Statistics at Sydney
University for funding his visit and for their hospitality. M.B. and A.F. wish to thank
the organizers of the MFO workshop “Groups, dynamics and approximation”, during
which parts of this paper were written, for the invitation.

2. Preliminaries

2.1. Transfer times and action sets. — Given a subset D of X and x ∈ X, we define
the set of return time of x to D by

Dx =
{
g ∈ G | gx ∈ D

}
⊂ G,

and we note that (gD)x = gDx and Dx g
−1 = Dgx for all g ∈ G. If F is a subset of G,

then we define the action set FD ⊂ X by

FD =
⋃
f∈F

fD,

and we note that (FD)x = FDx. If E is another subset of X, then

(D ∩ E)x = Dx ∩ Ex and (D ∪ E)x = Dx ∪ Ex.

In particular,

(2.1) Dx∩g−1Ex = (D∩g−1E)x and Dx∪g−1Ex = (D∪g−1E)x, for all g ∈ G.

2.2. Transfer times as difference sets. — Let D be a measurable subset of X, and
define

De =
{
x ∈ X | Dx = ∅

}
and Dne =

{
x ∈ X | Dx 6= ∅

}
.

We note that De =
⋂
g∈G gD

c and Dne = GD. In particular, De and Dne are both
measurable and G-invariant. Since µ is assumed to be ergodic, we conclude that

(2.2) µ(De) = 1 if µ(D) = 0

and

(2.3) µ(Dne) = 1 if µ(D) > 0.

Lemma 2.1. — Let A and B be two measurable subsets of X with positive µ-measures,
and define

X1 =
( ⋂
g∈RA,B

{
x ∈ X | Ax ∩ g−1Bx 6= ∅

})
∩
( ⋂
g/∈RA,B

{
x ∈ X | Ax ∩ g−1Bx = ∅

})
.
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Then X1 is a G-invariant measurable µ-conull subset of X and

RA,B = BxA
−1
x , for all x ∈ X1.

Proof. — Measurability and G-invariance of X1 is clear, and µ-conullity of X1 readily
follows from applying (2.2) and (2.3) to the sets

D(g) := A ∩ g−1B, for g ∈ G.

Indeed, µ(D(g)) > 0 if and only if g ∈ RA,B , and by (2.1), we have

D(g)e =
{
x ∈ X | Ax ∩ g−1Bx = ∅

}
and D(g)ne =

{
x ∈ X | Ax ∩ g−1Bx 6= ∅

}
.

Note that for every x ∈ X,

BxA
−1
x =

{
g ∈ G | Ax ∩ g−1Bx 6= ∅

}
=
{
g ∈ RA,B | Ax ∩ g−1Bx 6= ∅

}
t
{
g /∈ RA,B | Ax ∩ g−1Bx 6= ∅

}
.

If x ∈ X1, then{
g ∈ RA,B | Ax ∩ g−1Bx 6= ∅

}
= RA,B and

{
g /∈ RA,B | Ax ∩ g−1Bx 6= ∅

}
= ∅,

which finishes the proof. �

2.3. Generic points. — We recall our assumptions on the sequence (Fn) of finite
subsets of G: For every bounded measurable function ϕ on X, there exists a µ-conull
subset Xϕ ⊂ X such that

lim
n

1

|Fn|
∑
g∈Fn

ϕ(gx) =

∫
X

ϕdµ, for all x ∈ Xϕ.

The points in Xϕ are said to be generic with respect to µ, ϕ and the sequence (Fn).

Lemma 2.2. — Let A and B be two measurable subsets of X with positive µ-measures.
Then there exists a measurable µ-conull subset X2 ⊆ X such that

µ(A−1x B) 6 d(RA,B), for all x ∈ X2.

Furthermore, for every finite subset L of G,

d(L−1Ax) = µ(L−1A) and d(L−1Bx) = µ(L−1B),

and for every g /∈ RA,B,

d(Ax ∪ g−1Bx) = µ(A) + µ(B),

for all x ∈ X2.

Proof. — Given a subset L ⊂ G, we define

ϕL = χL−1A and ψL = χL−1B and XL = XϕL
∩XψL

.

We note XL is a measurable µ-conull subset of X and for every x ∈ XL,

(2.4) d(L−1Ax) = lim
n

1

|Fn|
∑
g∈Fn

χL−1A(gx) = µ(L−1A)

J.É.P. — M., 2021, tome 8
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and

(2.5) d(L−1Bx) = lim
n

1

|Fn|
∑
g∈Fn

χL−1B(gx) = µ(L−1B).

We now set X ′2 =
⋂
LXL, where the intersection is taken over the countable set of

all finite subsets of G. Then X ′2 is a measurable µ-conull subset of X, and for every
x ∈ X ′2 and for every finite subset L of Ax, we have

d(A−1x Bx) > d(L
−1Bx) = µ(L−1B).

Since µ is σ-additive and L ⊂ Ax is an arbitrary finite set, we can now conclude that

d(A−1x Bx) > µ(A
−1
x B) for all x ∈ X ′2.

By Lemma 2.1, there exists a measurable µ-conull subset X1 ⊆ X such that RA,B =

BxA
−1
x for all x ∈ X1, and thus, since G is abelian,

d(RA,B) = d(A−1x Bx) > µ(A
−1
x B), for all x ∈ X1 ∩X ′2.

Let X2 = X1 ∩ X ′2 and pick x ∈ X2. We note that if g /∈ RA,B = BxA
−1
x , then

Ax ∩ g−1Bx = ∅, whence

d(Ax ∪ g−1Bx) = lim
n

( |Ax ∩ Fn|
|Fn|

+
|(g−1B)x ∩ Fn|

|Fn|

)
= µ(A) + µ(B) = µ(A ∪ g−1B),

by (2.4) and (2.5) (applied to the sets L = {e} and L = {g} respectively), since the
limits of each term exist (the last identity follows from the fact that µ(A∩ g−1B) = 0

if g /∈ RA,B). Since x ∈ X2 is arbitrary, this finishes the proof. �

Corollary 2.3. — For all measurable subsets A and B of X, we have

d(RA,B) > max(µ(A), µ(B)).

Proof. — By Lemma 2.2, there is a measurable µ-conull subset X2 of X such that

d(RA,B) > µ(A
−1
x B) > µ(B), for all x ∈ X2.

Since the roles of A and B are completely symmetric, this proves the corollary. �

2.4. A correspondence principle for action sets. — The key ingredient in the
proofs of Theorem 1.3, Theorem 1.5 and Theorem 1.8 is the following merger of a
series of observations made by the first two authors in [1]. We outline the anatomy
of this merger in the proof below. The rough idea is that action sets in an arbitrary
ergodic G-action can be controlled by sets in an isometric factor (that is to say, a
compact group, on which G acts by translations via a homomorphism from G into
the compact group with dense image).

Lemma 2.4. — Let A and B be measurable subsets of X with positive µ-measures.
Then there exist

– a G-invariant measurable µ-conull subset X3 ⊆ X,
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– a compact and metrizable abelian group K with Haar probability measure mK ,
a homomorphism τ : G→ K with dense image, and two measurable subsets I and J
of K,

– a G-equivariant measurable map π : X3 → K such that π∗(µ|X3
) = mK , where G

acts on K via τ ,
such that

A ∩X3 ⊆ π−1(I) and B ∩X3 ⊆ π−1(J)
and

µ(A−1x B) = mK(I−1J) and A−1x (B ∩X3) ⊆ π−1(π(x)I−1J),
for all x ∈ X3. In the case when A = B, we can take I = J . Finally, if G y (X,µ)

is totally ergodic, then K must be connected.

Remark 2.5. — If I and J are Borel measurable subsets of K, then their difference
set I−1J might fail to be Borel measurable. However, since I−1J is the image of the
Borel measurable subset I×J in K×K under the continuous map (k1, k2) 7→ k−11 k2,
we see that I−1J is an analytic set, so in particular measurable with respect to the
completion of the Borel σ-algebra of K with respect to mK , and thus the expression
mK(I−1J) is well-defined.

Proof. — By [1, Lem. 5.3], there exists a G-invariant measurable µ-conull subset
X ′3 ⊂ X such that

µ(A−1x B) = µ⊗ µ(G(A×B)), for all x ∈ X ′3.

By [1, Th. 5.1], there exist
– a measurable G-invariant µ-conull subset X ′′3 ⊂ X,
– a compact and metrizable abelian group K with Haar probability measure mK

and a homomorphism τ : G→ K with dense image,
– a G-equivariant measurable map π : X ′′3 →K such that π∗(µ|X′′3 )=mK , where G

acts on K via τ ,
– two measurable subsets I and J of K,

such that
µ⊗ µ(G(A×B)) = mK(I−1J)

and
A ∩X ′′3 ⊂ π−1(I) and B ∩X ′′3 ⊂ π−1(J).

It follows from the proof of [1, Th. 5.1] that if A = B, then we can take I = J . Since
the set X ′′3 is G-invariant, we see that

Ax ⊂ π−1(I)x = τ−1(Iπ(x)−1), for all x ∈ X ′′3 ,

whence

A−1x (B ∩X ′′3 ) ⊂ A−1x π−1(J) = π−1(τ(Ax)
−1J) ⊂ π−1(π(x)I−1J).

Let X3 := X ′3 ∩X ′′3 and note that X3 is G-invariant and µ-conull. Thus the proof is
finished modulo our assertion about total ergodicity. Suppose thatK is not connected.
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Then there is an open subgroup U of K, and Go = τ−1(U) is a finite-index subgroup
of G. We note that C := π−1(U) is a Go-invariant measurable subset of X, with
positive µ-measure, but which cannot be µ-conull, since it does not map onto K

under π (modulo µ-null sets). We conclude that Gy (X,µ) is not totally ergodic. �

2.5. Putting it all together. — Let K and Q be compact groups with Haar prob-
ability measures mK and mQ respectively and suppose that there is a continuous
homomorphism p from K onto Q.

Definition 2.6 (Pair reduction). — Let (I, J) and (Io, Jo) be two pairs of measurable
subsets of K and Q respectively. We say that (I, J) reduces to (Io, Jo) with respect
to p if

I ⊂ p−1(Io) and J ⊂ p−1(Jo) and mK(JI−1) = mQ(JoI
−1
o ).

This notion is quite useful when we now summarize our discussion above.

Proposition 2.7 (A correspondence principle for transfer times). — Let A and B be
measurable subsets of X with positive µ-measures. Then there exist

– a compact and metrizable abelian group K with Haar probability measure mK ,
– a homomorphism τ : G→ K with dense image,
– a pair (I, J) of measurable subsets of K,
which satisfy

µ(A) 6 mK(I) and µ(B) 6 mK(J) and mK(JI−1) 6 d(RA,B).

Furthermore, suppose that Q is a compact group and p : K → Q is a continuous
surjective homomorphism. If (Io, Jo) is a pair of measurable subsets of Q such that
(I, J) reduces to (Io, Jo) with respect to p, then

RA,B ⊆ τ−1p (JoI
−1
o ),

where τp = p ◦ τ , and for all g ∈ τ−1p (JoI
−1
o )r RA,B, we have

µ(A) + µ(B) 6 mQ(Io) +mQ(Jo)−mQ(Io ∩ τp(g)−1Jo),

Moreover, there exists a G-factor map σ : (X,µ) → (Q,mQ), where G acts on Q

via τp, such that

A ⊆ σ−1(Io) and B ⊆ σ−1(Jo), modulo µ-null sets.

In the case when A = B, we can take I = J .

Proof. — By Lemma 2.4, we can find a G-invariant measurable µ-conull subset
X3 ⊆ X, a compact and metrizable abelian group K with Haar probability mea-
sure mK , a homomorphism τ : G → K with dense image, and two measurable
subsets I and J of K, a G-equivariant measurable map π : X3 → K such that
π∗(µ|X3

) = mK , where G acts on K via τ , such that

(2.6) A ∩X3 ⊆ π−1(I) and B ∩X3 ⊆ π−1(J)
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and
mK(JI−1) 6 µ(A−1x B) and A−1x (B ∩X3) ⊆ π−1(π(x)I−1J),

for all x ∈ X3. Furthermore, by Lemma 2.1 and Lemma 2.2, there exist measurable
µ-conull subsets X1 and X2 of X such that

RA,B = BxA
−1
x and µ(A−1x B) 6 d(RA,B)

and, for every g /∈ RA,B ,

(2.7) d(Ax ∪ g−1Bx) = µ(A) + µ(B) = µ(A ∪ g−1B),

for all x ∈ X1 ∩X2. In particular, since X1 ∩X2 ∩X3 is a µ-conull subset of X, and
thus non-empty, we have

µ(A) 6 mK(I) and µ(B) 6 mK(J) and mK(JI−1) 6 d(RA,B).

Let us now assume that Q is a compact group, p : K → Q is a continuous surjective
homomorphism and Io and Jo are measurable subsets of Q such that (I, J) reduces
to (Io, Jo). We recall that this means that

I ⊂ p−1(Io) and J ⊂ p−1(Jo) and mK(JI−1) = mQ(JoI
−1
o ).

Hence, JI−1 ⊂ p−1(JoI−1o ), and

mQ(JoI
−1
o ) 6 µ(A−1x B) and A−1x (B ∩X3) ⊆ π−1(π(x)p−1(JoI−1o )),

for all x ∈ X3. We note that we can write

π−1(π(x)p−1(JoI
−1
o )) = σ−1(σ(x)JoI

−1
o ),

for all x ∈ X3, where σ = p ◦ π, and thus

(2.8) A−1x (B ∩X3) ⊆ σ−1(σ(x)JoI−1o ), for all x ∈ X3.

The map σ is a G-factor map from (X,µ) to (Q,mQ), where G acts on Q via τp = p◦τ ,
and it follows from (2.6) that

(2.9) A ∩X3 ⊂ σ−1(Io) and B ∩X3 ⊂ σ−1(Jo).

It remains to prove that
RA,B ⊆ τ−1p (JoI

−1
o ),

and that for every g ∈ τ−1p (JoI
−1
o )r RA,B , we have

(2.10) µ(A) + µ(B) 6 mQ(Io) +mQ(Jo)−mQ(Io ∩ τp(g)−1Jo).

To prove the inclusion, we first note that since X3 is G-invariant, we have

(A−1x (B ∩X3))x = A−1x Bx ⊂ σ−1(σ(x)JoI−1o )x

= τ−1p (σ(x)JoI
−1
o σ(x)−1) = τ−1p (JoI

−1
o ),

for all x ∈ X3. To prove (2.10), we recall from (2.7) that if g /∈ RA,B , then

d(Ax ∪ g−1Bx) = µ(A) + µ(B) = µ(A ∪ g−1B),
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whence, by (2.9),

d(Ax ∪ g−1Bx) = µ(A) + µ(B) = µ(A ∪ g−1B)

6 µ(σ−1(Io) ∪ g−1σ−1(Jo)) = mQ(Io ∪ τp(g)−1Jo)
= mQ(Io) +mQ(Jo)−mQ(Io ∩ τp(g)−1Jo),

which finishes the proof. �

2.6. Classical product set theorems in compact groups. — We shall use the fol-
lowing two results about product sets in compact groups due to Kneser in his very
influential paper [5].

Theorem 2.8 ([5, Satz 1]). — Let K be a compact and metrizable abelian group with
Haar probability measure mK and suppose that I and J are measurable subsets of K
with positive mK-measures such that

mK(JI−1) < mK(I) +mK(J).

Then JI−1 is a clopen subset of K, and there exist
– a finite group Q and a homomorphism p from K onto Q.
– a pair (Io, Jo) of subsets of Q with

mQ(JoI
−1
o ) = mQ(Jo) +mQ(Io)−mQ({eQ}),

such that (I, J) reduces to (Io, Jo) with respect to p. If I = J , we can take Io = Jo.

Corollary 2.9. — Let K be a compact and metrizable abelian group with Haar prob-
ability measure mK and assume that I is a measurable subset of K with positive
mK-measure such that

mK(II−1) <
3

2
mK(I).

Then there exist a finite group Q, a surjective homomorphism p : K → Q and a point
q ∈ Q such that (I, I) reduces to ({q}, {q}) with respect to p. In particular, II−1 is
an open subgroup of K.

Proof. — By Theorem 2.8, there exist a finite group Q, a homomorphism p from K

onto Q and a subset Io of Q, such that

I ⊂ p−1(Io) and II−1 = p−1(IoI
−1
o ) and mQ(IoI

−1
o ) = 2mQ(Io)−mQ({eQ}).

Since mK(II−1) < 3
2mK(I), we conclude that

(2.11) mQ(IoI
−1
o ) = 2mQ(Io)−mQ({eQ}) <

3

2
mQ(Io),

whence mQ(IoI
−1
o ) < 3

2mQ({eQ}). Since Io is non-empty, we conclude that IoI−1o
must be a point. Hence Io = {q} for some q ∈ Q. �

If K is connected and non-trivial, then there are no proper clopen subsets of K,
whence the assumed upper bound in Theorem 2.8 can never occur.
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Corollary 2.10. — Let K be a compact, metrizable and connected abelian group with
Haar probability measure mK . Then, for all measurable subsets I and J of K,

mK(JI−1) > min
(
1,mK(I) +mK(J)

)
.

In the connected case, Kneser further characterized the pairs of measurable subsets
of the group for which the lower bound in Corollary (2.10) is attained. We denote
by T the group R/Z endowed with the quotient topology.

Theorem 2.11 ([5, Satz 2]). — Let K be a compact, metrizable and connected abelian
group with Haar probability measure mK . If I and J are measurable subsets of K such
that

mK(JI−1) = mK(I) +mK(J) 6 1,

then there exist
– a continuous homomorphism p from K onto T,
– closed intervals Io and Jo in T with

mT(Io) = mK(I) and mT(Jo) = mK(J),

such that (I, J) reduces to (Io, Jo) with respect to p.

3. Proof of Theorem 1.3 and Theorem 1.5

Let A and B be measurable subsets of X with positive µ-measures. The first
assertion of Theorem 1.3 is contained in Corollary 2.3. Let us assume that either

(3.1) A = B and d(RA) <
3

2
µ(A)

or

(3.2) d(RA,B) < µ(A) + µ(B).

By the first part of Proposition 2.7, there exist
– a compact and metrizable abelian group K with Haar probability measure mK ,
– a homomorphism τ : G→ K with dense image,
– a pair (I, J) of measurable subsets of K,

which satisfy

µ(A) 6 mK(I) and µ(B) 6 mK(B) and mK(JI−1) 6 d(RA,B).

In the case (3.1), which corresponds to Theorem 1.3, we can take I = J , and thus

mK(II−1) 6 d(RA) <
3

2
mK(I).

and in the case (3.2), which corresponds to Theorem 1.5, we have

mK(JI−1) 6 d(RA,B) < µ(A) + µ(B) 6 mK(I) +mK(J).
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In both cases, Theorem 2.8 tells us that there exist a finite group Q, a continuous
surjective homomorphism p : K → Q and a pair (Io, Jo) of subsets of Q such that
(I, J) reduces to (Io, Jo) with respect to p. By Proposition 2.7, this implies that

RA,B ⊂ τ−1p (JoI
−1
o ),

and that for all g ∈ τ−1p (JoI
−1
o )r RA,B ,

µ(A) + µ(B) 6 mQ(Io) +mQ(Jo)−mQ(Io ∩ τp(g)−1Jo).

In the case (3.1), Corollary 2.9 further asserts that Io = Jo = {q} for some point q ∈ Q,
whence IoI−1o = eQ and thus we can conclude from above that RA ⊂ Go := ker τp,
and

(3.3) mQ({eQ}) = mK(IoI
−1
o ) 6 d(RA,B) <

3

2
µ(A).

Since Q is finite, Go has finite index in G and for every g ∈ Go r RA, we have

mQ(Io ∩ τp(g)−1Io) > mQ({eQ}).

Hence,
2µ(A) 6 2mQ(Io)−mQ(Io ∩ τp(g)−1Io) 6 mQ({eQ}).

The last inequality clearly contradicts (3.3), so we conclude that Go = RA, which
finishes the proof of Theorem 1.3.

In the case of (3.2), Theorem 2.8 asserts that the pair (Io, Jo) in Q satisfies

mQ(JoI
−1
o ) = mQ(Io) +mQ(Jo)−mQ({eQ}),

whence

(3.4) mQ(Io) +mQ(Jo)−mQ({eQ}) 6 d(RA,B) < µ(A) + µ(B).

By Proposition 2.7, we have

RA,B ⊂ τ−1p (JoI
−1
o )

and for all g ∈ τ−1p (JoI
−1
o )r RA,B , we have

µ(A) + µ(B) 6 mQ(Io) +mQ(Jo)−mQ(Io ∩ τp(g)−1Jo).

Since g ∈ τ−1p (JoI
−1
o ) and Q is finite, we have

mQ(Io ∩ τp(g)−1Jo) > mQ({eQ}),

whence
µ(A) + µ(B) 6 mQ(Io) +mQ(Jo)−mQ({eQ}),

which clearly contradicts (3.4). We conclude that τ−1p (JoI
−1
o ) r RA,B is empty, and

thus
RA,B = τ−1p (JoI

−1
o ) =MGo,

where Go = ker τp, and M is a finite subset of G whose image under τp equals JoI−1o .
Since Q is finite, Go has finite index in G. This proves Theorem 1.5 (with η = τp).
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4. Proof of Theorem 1.8

Suppose that G y (X,µ) is totally ergodic. Let A and B be measurable subsets
of X with positive µ-measures, and assume that

d(RA,B) = µ(A) + µ(B) < 1.

By the first part of Proposition 2.7, we can find
– a compact and metrizable abelian group K with Haar probability measure mK ,
– a homomorphism τ : G→ K with dense image,
– a pair (I, J) of measurable subsets of K,

which satisfy

µ(A) 6 mK(I) and µ(B) 6 mK(B) and mK(JI−1) 6 d(RA,B).

Furthermore, since Gy (X,µ) is totally ergodic, K must be connected. In particular,
by Corollary 2.10,

min(1,mK(I)+mK(J)) 6 mK(JI−1) 6 d(RA,B) 6 µ(A)+µ(B) 6 mK(I)+mK(J).

If mK(I) + mK(J) > 1, then mK(JI−1) = 1, whence µ(A) + µ(B) > 1, which
we have assumed away. Hence, mK(I) + mK(J) < 1, and thus µ(A) = mK(I) and
µ(B) = mK(J), and

mK(JI−1) = mK(I) +mK(J) < 1.

Theorem 2.11 now asserts that there is a continuous surjective homomorphism
p : K → T and closed intervals Io and Jo of T such that

µ(A) = mK(I) = mT(Io) and µ(B) = mK(J) = mT(Jo),

and (I, J) reduces to the pair (Io, Jo) with respect to p. Hence, by the second part of
Proposition 2.7,

RA,B ⊆ τ−1p (JoI
−1
o )

and for all g ∈ τ−1p (JoI
−1
o )r RA,B , we have

µ(A) + µ(B) 6 mT(Io) +mT(Jo)−mT(Io ∩ τp(g)−1Jo).

We conclude that

mT(Io ∩ τp(g)−1Jo) = 0, for all g ∈ τ−1p (JoI
−1
o )r RA,B .

Note that JoI−1o is a closed interval in T. Hence mT(Io ∩ τp(g)−1Jo) = 0 for some
g ∈ τ−1p (JoI

−1
o ) if and only if τp(g) is one of the endpoints of this interval. In other

words, RA,B can only differ from the Sturmian set τ−1p (JoI
−1
o ) by at most two cosets

of the subgroup ker τp.
Furthermore, since µ(A) = mQ(Io) and µ(B) = mQ(Jo), the last part of Proposi-

tion 2.7 asserts that there is a G-factor map σ : (X,µ)→ (T,mT), where G acts on T
via τp, such that

A = σ−1(Io) and B = σ−1(Jo),

modulo µ-null sets. This finishes the proof of Theorem 1.8 (with η = τp).
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5. Proof of Theorem 1.12

Let us first assume that Gy (X,µ) is C-doubling for some C > 1. Then, for every
n > 1, there is a measurable subset An ⊂ X such that

0 < µ(An) <
1

n
and d(RAn

) 6 Cµ(An) <
C

n
.

To avoid trivialities, we shall from now on assume that n > C. By Lemma 2.4, we can
find a (non-trivial) compact metrizable group Kn, a homomorphism ηn : G → Kn

with dense image, a G-factor map πn : (X,µ)→ (Kn,mKn
) and a measurable subset

In ⊂ Kn such that

An ⊂ π−1n (In) modulo null sets and mKn
(I−1n In) 6

C

n
, for all n > 1.

In particular, mKn
(In) 6 mKn

(I−1n In) 6 C
n . Let K denote the closure in

∏
nKn

of the diagonally embedded subgroup {(ηn(g)) | g ∈ G}. We note that π = (πn) :

(X,µ) → (K,mK) is a G-factor map, where G acts on K via η = (ηn). Since the
pull-backs to K of the sets In provide measurable subsets of K with arbitrarily small
mK-measures, we see that K must be infinite.

Let us now assume that there exist
(i) an infinite compact metrizable group K and a homomorphism η : G→ K with

dense image.
(ii) a G-factor σ : (X,µ) → (K,mK), where mK denotes the normalized Haar

measure on K and G acts on K via η.
We wish to prove that (X,µ) is C-doubling for some C > 1. Since G y (K,mK) is
a G-factor of (X,µ), it is clearly enough to prove that G y (K,mK) is C-doubling.
IfKo has infinite index inK, thenK/Ko is an infinite totally disconnected group, and
thus we can find a decreasing sequence (Un) of open subgroups of K with mK(Un) =

1/[K : Un] < 1/n for all n. Since RUn = η−1(Un), we have

d(RUn) =
1

[K : Un]
= mK(Un), for all n > 1,

which shows that Gy (X,µ) is 1-doubling (we are using here that the sequence (Fn)
also satisfy (1.1) for all bounded measurable functions on K). If Ko has finite index
in K, then Ko is an open subgroup, and thus has positive mK-measure. Fix a non-
trivial continuous character χ : Ko → T, and note that by connectedness, χ is onto.
Set

In = χ−1
([
− 1

2n
,
1

2n

])
⊂ Ko ⊂ K, for n > 1.

Then, mK(In) = mK(Ko)/n for all n, and it is not hard to show that

d(RIn) = d(η−1(In − In)) 6 2mK(In), for all n,

whence Gy (X,µ) is 2-doubling.
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