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THE PARALLELOGRAM IDENTITY ON GROUPS AND

DEFORMATIONS OF THE TRIVIAL CHARACTER

IN SL2(C)

by Julien Marché & Maxime Wolff

Se le ha’i volver chacarera.
Atahualpa Yupanqui - Cachilo Dormido

Abstract. —We describe on any finitely generated group Γ the space of maps Γ → C which
satisfy the parallelogram identity, f(xy) + f(xy−1) = 2f(x) + 2f(y). It is known (but not well-
known) that these functions correspond to Zariski-tangent vectors at the trivial character of the
character variety of Γ in SL2(C). We study the obstructions for deforming the trivial character
in the direction given by f . Along the way, we show that the trivial character is a smooth point
of the character variety if dimH1(Γ,C) < 2 and not a smooth point if dimH1(Γ,C) > 2.

Résumé (L’identité du parallélogramme sur les groupes et les déformations du caractère trivial
dans SL2(C))

On décrit sur tout groupe de type fini Γ l’espace de toutes les fonctions f : Γ → C qui
satisfont à l’identité du parallélogramme, f(xy) + f(xy−1) = 2f(x) + 2f(y). Il est connu (mais
peu) que ces fonctions correspondent aux vecteurs Zariski-tangents au caractère trivial dans
la variété des caractères de Γ dans SL2(C). On étudie les obstructions à déformer le caractère
trivial dans la direction donnée par f . Au passage, on montre que le caractère trivial est lisse
si dimH1(Γ,C) < 2 et singulier si dimH1(Γ,C) > 2.
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1. Introduction

It is a classical undergraduate exercise to show that any function f : Zn → C
satisfying the parallelogram identity below is a quadratic form:

(1) f(xy) + f(xy−1) = 2f(x) + 2f(y).
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264 J. Marché & M. Wolff

The identity, written multiplicatively for the purpose of generalization, holds for all
x, y ∈ Zn. Solving this equation for a general group is a nice and recreational question
which has already been studied although not completely solved as far as we know
(see [19] for instance). The question sounds deeper once we relate it to the theory of
character varieties. This relation was first noticed by Chenevier in [5] in which this
theory is partially developed. Our interest in it grew out independently from different
motivations (skein theory and dynamics on character varieties). Before explaining this
relation, let us fix a finitely generated group Γ and give a complete description of the
space P(Γ) of all functions satisfying Equation (1).

1.1. Description of the parallelogram functions. — The first solutions are the
quadratic forms, defined as f(γ) = b(γ, γ) with b : Γ × Γ → C a bimorphism, i.e.,
a morphism in both variables. They form a set we denote by Q(Γ). Interestingly,
some groups admit other parallelogram functions, contrary to the case of Zn.

The case Γ = 〈a, b, c〉 of a free group of rank 3 gives the simplest example. If w is
a reduced word in the variables aε1 , bε2 , cε3 where ε1, ε2, ε3 ∈ {±1}, we count, with sign
ε1ε2ε3, all ways of extracting aε1bε2cε3 , up to cyclic permutation, from the word w,
and we subtract, with sign δ1δ2δ3, all ways of extracting aδ1cδ2bδ3 inside w, up to cyclic
permutation. The resulting map, which satisfies for example f(abc) = −f(cba) = 1,
turns out to be in P(Γ), see Lemma 2.2. It is obviously not in Q(Γ), as it does not
factor through the abelianization of Γ.

To understand this phenomenon in greater generality, let us introduce the notion
of polynomial functions on groups. We can linearize any map f : Γ → C and view
it as a linear form on C[Γ], the group algebra of Γ. Let us abuse notation and still
denote it by f . A map f : Γ→ C is polynomial of order < n if

f((γ1 − 1) · · · (γn − 1)) = 0 ∀ γ1, . . . , γn ∈ Γ,

see e.g. [18, Chap. 5]. For instance a constant function has order 0, a morphism has
order 6 1, a quadratic form has order 6 2, and we will see in Section 2.2 that
a parallelogram function f has order 6 3. Moreover, for a parallelogram function, the
map

f ◦ ε3(γ1, γ2, γ3) = f((γ1 − 1)(γ2 − 1)(γ3 − 1)),

which may be thought of as a kind of differential of order 3 of f , is an alternating
trimorphism on Γ × Γ × Γ. We will see that a parallelogram function is quadratic
if and only if this third derivative vanishes hence we get an exact sequence

(2) 0 −→ Q(Γ) −→P(Γ)
ε∗3−−−→ Λ3H1(Γ,C)∗.

This exact sequence was already noticed in [5, 19]. Our contribution so far is to
describe completely the image of ε∗3. This requires some basic knowledge of group
cohomology for which we refer to [3]. The shortest way to formulate our result is to
consider the dual of the cup-product map H1(Γ,C)×H1(Γ,C)→ H2(Γ,C). By uni-
versal coefficients, it may be seen as a map c : H2(Γ,C) → Λ2H1(Γ,C), which has a
rather elementary description, as we will recall in Section 2.3.
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Parallelograms on groups 265

Theorem 1.1. — Given any finitely generated group Γ, the image of ε∗3 in the se-
quence (2) is the space

E (Γ) =
{

Φ: Λ3H1(Γ,C)→ C | ∀x ∈ H1(Γ,C), ∀ y ∈ H2(Γ,C), Φ(x ∧ c(y)) = 0
}
.

The proof is an elementary application of the Hopf formula for H2(Γ,Z) and our
theorem gives a complete, and efficient description of the space of parallelogram func-
tions (see the comments after the proof of Lemma 2.6). As an application, we show
that for a surface Σg of genus g > 2, the group Mod(Σg) = Out(π1Σg) acts by pre-
composition on P(π1Σg) in a way which recovers the Johnson homomorphism on the
Torelli group.

1.2. Relation with the character variety. — We consider the space

R(Γ) = Hom(Γ,SL2(C))

of morphisms from Γ to SL2(C). This is an affine algebraic set. One can embed it –non
canonically– in C4n by sending ρ to the tuple (ρ(γ1), . . . , ρ(γn)) where γ1, . . . , γn is
a generating set of Γ. The ring A(Γ) of “regular functions” on R(Γ) is the ring of
polynomials in the indeterminates a`i,j (1 6 i, j 6 2, 1 6 ` 6 n) where a`i,j is the entry
(i, j) of ρ(γ`). Of course these functions satisfy some relations: the relations among
the generators in Γ and those telling that det ρ(γ`) = 1. It should be observed however
that the algebra A(Γ) is not necessarily reduced.

The group SL2(C) acts algebraically on R(Γ) by conjugation and the character
variety X(Γ) is the algebraic quotient of R(Γ) by this action (see for instance [15,
§5.1]). As a topological space, X(Γ) is the quotient of R(Γ) by the relation ρ ∼ ρ′

if and only if f(ρ) = f(ρ′) for all regular functions on R(Γ) invariant by conjugation.
Equivalently, X(Γ) is the space of characters, i.e., maps from Γ to C of the form
χρ(γ) = Tr ρ(γ) for some ρ ∈ Hom(Γ,SL2(C)). The trivial character is then simply
that of the trivial representation, mapping all elements of Γ to 2.

The subring A(Γ)SL2(C) of invariant functions becomes by definition the ring of
regular functions on X(Γ). Generators for the ring of invariants by the group SL2(C)

were known to specialists of the late 19th century (see for instance [12]) but the search
for a complete description of the ring of invariants of tuples of matrices of size n started
only with Artin in [2] and was completed by Procesi in [20]. The statement has been
reformulated many times since then: we state here the case of SL2(C) and postpone
to the end of the introduction the case of GLn(C). In this form, this statement first
appears in [4, Prop. 9.1] and a simpler proof is due to Chenevier, see [6, Prop. 2.3].

Theorem 1.2 (see [4, 6]). — The ring A(Γ)SL2(C) is generated by the elements tγ for
γ ∈ Γ where tγ(ρ) = Tr ρ(γ) (and a finite number of them suffice). Moreover these
functions satisfy t1 = 2 and the famous trace identity

tγtδ = tγδ + tγδ−1 , ∀ γ, δ ∈ Γ

and these relations generate the ideal of relations among them.
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266 J. Marché & M. Wolff

As a main consequence, any function f : Γ → C satisfying the relations f(1) = 2

and f(γ)f(δ) = f(γδ) + f(γδ−1) for all γ, δ ∈ Γ has the form f = χρ for some
representation ρ : Γ→ SL2(C).

We may think of the trivial character, defined by tγ = 2 for all γ, as an origin for
the character variety. Thus, it may be convenient to write tγ = uγ+2. Now A(Γ)SL2(C)

is generated by the functions uγ , subject to the relations u1 = 0 and

(3) uγδ + uγδ−1 = 2uγ + 2uδ + uγuδ.

In this note we are interested in the “deformations” of the trivial character. This
word “deformations” is rather ubiquitous and deserves to be made explicit. Actual
deformations in the algebraic set X(Γ) may be realized as analytic paths t 7→ ft(γ),
with ft(γ) = tf1(γ) + t2

2 f2(γ) + · · · for each γ, which satisfy for any γ, δ ∈ Γ the
following equation:

(4) fn(γδ) + fn(γδ−1) = 2fn(γ) + 2fn(δ) +

n−1∑
k=1

(
n

k

)
fk(γ)fn−k(δ).

From this perspective, understanding the deformations of the trivial character consists
in solving Equation (4), for n gradually increasing. A solution for all n then yields
a formal deformation of the trivial character and the Artin approximation theorem
(see [1]) tells that there exists a convergent series which coincides with the formal one
at any given order.

At a purely algebraic level, the trivial character corresponds to the maximal idealm
of A(Γ)SL2(C) generated by all uγ , for γ ∈ Γ. The Zariski-tangent space at the trivial
character is then, by definition, the dual to the vector space m/m2. In the vector
space m/m2, Equation (3) loses its term uγuδ, and a Zariski-tangent vector at the
trivial character is then simply a map Γ→ C satisfying the parallelogram identity. In
other words,

Observation 1.3. — Let f1 : Γ→ C be any function. Then, f1 ∈P(Γ) if and only if
the map uγ 7→ tf1(γ) defines an algebra morphism from A(Γ)SL2(C) to C[t]/(t2).

Of course, this is nothing else than a solution of Equation (4) to the order n = 1.
More generally, solutions of Equation (4) to the order n may be thought of as Zariski-
jets to the order n at the trivial character. Said more abstractly, they form the space
of ring morphisms from A(Γ)SL2(C) to C[t]/(tn+1) that have zero constant term on m.

In this note we explore the problem of solving Equation (4) for small n. We find
that a parallelogram function has two universal obstructions: one at order 2 and one
at order 3. Here is the precise result.

Theorem 1.4. — Let f1 ∈P(Γ) be a parallelogram function.
(1) If there exists an algebra morphism f = tf1 + t2f2 : A(Γ)SL2(C) → C[t]/(t3)

then f1 is a quadratic form.
(2) If there exists an algebra morphism f = tf1 + t2f2 + t3f3 : A(Γ)SL2(C) →

C[t]/(t4) then f1 is a quadratic form of rank 6 2.
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We will see that there are no other “universal obstructions” in the sense that if Γ is
a free group and f1 ∈P(Γ) is a quadratic form of rank 6 2 then there is a complete
deformation f = tf1 + t2f2 + · · · . This fits into a more general result of independent
interest: any formal deformation of the trivial character (at all orders) is the character
of a formal deformation of a parabolic representation. Let us state the precise result.

Theorem 1.5. — Let f = tf1 + t2f2 + · · · and suppose that uγ 7→ f(γ) defines an
algebra morphism from A(Γ)SL2(C) to C[[t]]. Then there exists a representation ρ : Γ→
SL2(C[[t]]) such that for all γ ∈ Γ,

2 + f(γ) = Tr ρ(γ).

Notice that ρ evaluated at t = 0 has trivial character. Hence it is a parabolic rep-
resentation, that is, it takes values in the abelian group of unipotent upper triangular
matrices.

Using these results we show that the trivial character is a smooth point of X(Γ)

if dimH1(Γ,C) < 2 and is not smooth if dimH1(Γ,C) > 2. In the remaining case,
dimH1(Γ,C) = 2, we will see that X(Γ) is smooth at the trivial character, if and
only if R(Γ) is smooth at the trivial representation; and we will deduce some explicit
criteria for this smoothness.

Finally, we obtain the following consequence of a celebrated theorem of Stallings
(see [24]).

Theorem 1.6. — Let φ : Γ1 → Γ2 be a group homomorphism, that induces an iso-
morphism between H1(Γ1,Z) and H1(Γ2,Z) and an epimorphism from H2(Γ1,Z) to
H2(Γ2,Z). Then φ∗ : X(Γ2)→ X(Γ1) is étale at the trivial character.

This latter property is an algebraic analogue of a local diffeomorphism. Concretely,
this means that φ∗ induces an isomorphism between the spaces of Zariski-jets at the
trivial character, see e.g. [13, Chap. 4, Prop. 3.26].

It seems interesting to extend the results of this article to more general set-
tings. We conclude this introduction by determining the functional equation cor-
responding to the case of GLn(C). Let An(Γ) be the algebra of regular functions on
Hom(Γ,GLn(C)), Procesi’s theorem states that the functions tγ(ρ) = Tr ρ(γ) still gen-
erate the invariant subalgebra of An(Γ) and gives a complicated list of relations. We
learned from [6, Chap. 2] the following reinterpretation in terms of pseudo-characters.

Theorem 1.7 (Procesi [20] reformulated by Chenevier [6]). — Let R be a C-algebra
and T : Γ → R be a central map (i.e., invariant by conjugation) which maps 1 to n.
Then there exists a morphism of algebras An(Γ)GLn(C) to R mapping tγ to T (γ) if
and only if the following Frobenius identity is satisfied:

∀ γ0, . . . , γn ∈ Γ,
∑

σ∈Sn+1

ε(σ)Tσ(γ0, . . . , γn) = 0,

where T (i1,...,ik)(γ0, . . . , γn) = T (γi1 · · · γik) and Tσ =
∏k
j=1 T

σj if σ = σ1 · · ·σk is the
decomposition of σ into cycles (including the trivial ones).
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268 J. Marché & M. Wolff

Such a map T is called a pseudo-character. We can derive from this theorem a
higher rank analogue of parallelogram functions.

Corollary 1.8. — The Zariski-tangent space of Hom(Γ,GLn(C))//GLn(C) at the
trivial character is naturally isomorphic to the space of central functions f : Γ → C
satisfying the following equality:

(5) ∀ γ0, . . . , γn ∈ Γ,

n+1∑
k=1

∑
06i1,...,ik6n

(−1)k

k!
f(γi1 · · · γik) = 0.

Proof. — Writing T = n+ εf in Frobenius identity with ε2 = 0 we get the formula∑
σ∈Sn+1

ε(σ)nc(σ)−1
∑

(i1,...,ik) cycle of σ

f(γi1 . . . γik) = 0,

where c(σ) is the number of cycles of σ. Each time a cycle (i1, . . . , ik) appears in a
permutation σ, this permutation induces a permutation σ′ of {0, . . . , n}r{i1, . . . , ik}
of n+ 1− k letters, with c(σ′) = c(σ)− 1 and ε(σ′) = (−1)k+1ε(σ). We can count the
contribution of these terms by using the following formula due to Rouquier, see [21,
Cor. 3.2]: ∑

σ∈S`

ε(σ)tc(σ) = t(t− 1) · · · (t− `+ 1).

We get that the coefficient of f(γi1 · · · γik) is equal to (−1)k+1n(n − 1) · · · k, but we
have to divide by k because the cycle (i1, . . . , ik) appears k times in the first sum of
the proof. Dividing by −n! on both sides yields the result. �

1.3. Further remarks

(1) We choose to state our results with coefficients in C for simplicity. We can
replace it mutatis mutandis with any algebraically closed field of characteristic 0. In
fact, many statements are true on Q or even Z[ 12 ], as the diligent reader may notice.

(2) It is well-known (see e.g. [25]) that the Zariski-tangent space of R(Γ) at the
trivial representation is the space Z1(Γ, sl2(C)) which happens to be isomorphic to
H1(Γ, sl2(C)) and that all obstructions for deforming the trivial representation live
in H2(Γ, sl2(C)). In this perspective, experts in deformations should not be surprised
by the appearance of H2(Γ,C) in Theorem 1.1.

(3) The results of the present article apply to any central character. Indeed, the
group H1(Γ,Z/2Z) acts on the character variety by mapping tγ to ε(γ)tγ where
ε ∈ Hom(Γ,Z/2Z). This action reduces the study of central characters to the study
of the trivial one.

Acknowledgements. — We are grateful to Louis Funar and Gwénaël Massuyeau for
their interest, their careful reading and their encouraging comments. We would also
like to thank Gaëtan Chenevier for his interest and for pointing out to us the beautiful
theory of pseudo-characters. Finally we thank the anonymous referees for their useful
comments and suggestions.
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2. Solving the parallelogram identity

We may start to play with Equation (1) and make the following first observations.

Lemma 2.1. — Any function f ∈P(Γ) satisfies the following identities for any γ, δ∈Γ:
(1) f(γn) = n2f(γ) for all n ∈ Z,
(2) f(γδ) = f(δγ),
(3) f(γδγ−1δ−1) = 0.

Lemma 2.2. — The map f : F3 = 〈a, b, c〉 → Z ⊂ C of Section 1.1 is in P(F3).

We leave the proof of Lemma 2.1 as an exercise, and now sketch a proof of
Lemma 2.2.

Proof. — First note that a word w in a, a−1, b, b−1, c, c−1 does not need to be reduced
for f(w) to make sense, and inserting a letter and its inverse in w does not change f(w).
Note also that for all w, we have f(w−1) = f(w). Indeed, every pick of aε1bε2cε3 in w,
for instance, corresponds to a pick of c−ε3b−ε2a−ε1 in w−1: this reverses the sign but
also reverses the cyclic order in which the letters appear, hence the contributions
to f(w) and f(w−1) are equal. Finally if w1, w2 are two words in a, a−1, b, b−1, c, c−1
then f(w1w2)+f(w1w

−1
2 )−2f(w1)−2f(w2) counts exactly the terms of type aε1bε2cε3

(or permutations) that use letters in both w1 and w2 (or w−12 ), as the others cancel
in the difference. Terms for which two letters are in w1 cancel in the sum f(w1w2) +

f(w1w
−1
2 ) because of the change of sign of the power in the third letter, while those

for which two letters are in w2 cancel because the cyclic order in which the letters
appear changes between the two terms, while the product of signs of the powers does
not. �

Other identities as in Lemma 2.1 can be obtained directly, but in the next section
we develop a more systematic approach which will give us information not only on
parallelogram functions but also on the functions fn involved in their deformations.

2.1. The map p and powers of the augmentation ideal. — Let us start by analyzing
Equation (4). Suppose it is solved up to the order n − 1: solving it to the order n is
the problem of finding a map fn : Γ→ C, such that the map

(γ, δ) 7→ fn(γδ) + fn(γδ−1)− 2fn(γ)− 2fn(δ)

is a prescribed function, in terms of a solution (f1, . . . , fn−1) of Equation (4) to the
order n− 1. This suggests to study the operator which sends a map f : Γ→ C to the
map Γ2 → C defined by (γ, δ) 7→ f(γδ) + f(γδ−1)− 2f(γ)− 2f(δ). By linearizing all
maps on Γ, we consider this operator as the adjoint of p : C[Γ]⊗C[Γ]→ C[Γ] defined
for all γ, δ ∈ Γ by

p(γ ⊗ δ) = γδ + γδ−1 − 2γ − 2δ.

Depending on the context, this map can also be viewed as a map p : Γ × Γ → C[Γ]

and we will call it the parallelogram map. More generally, we will often replace the

J.É.P. — M., 2020, tome 7



270 J. Marché & M. Wolff

symbol ⊗ by a (less cumbersome) coma when we evaluate on basis elements, maps
defined on tensor products. With this notation, Equation (4) becomes:

(6) fn ◦ p(γ ⊗ δ) =

n−1∑
k=1

fk(γ)fn−k(δ).

Let εn : C[Γ]⊗n → C[Γ] be the linear map defined by

εn(γ1 ⊗ · · · ⊗ γn) = (γ1 − 1) · · · (γn − 1).

Recall for instance from [18] that the augmentation ideal I is the kernel of the map
C[Γ] → C sending every γ ∈ Γ to 1. One sees that the range of the map εn is the
ideal In. Dually, the elements of (C[Γ])∗ vanishing on In+1 are the polynomial maps
of order 6 n. These maps ε combine well together, in the sense that for all suitable
k, j and n we have

εn(γ1, . . . , γj , εk(γj+1, . . . , γj+k), . . . , γn+k−1) = εn+k−1(γ1, . . . , γn+k−1).

Note also that if f : Γ→ C vanishes at 1, then f ◦ ε2(a⊗ b) = f(ab)− f(a)− f(b)

measures how far is f from being a morphism. More generally, we will repeatedly use
the following observation:

(7) f ◦ εn+1 = 0 =⇒ (γ1, . . . , γn) 7→ f((γ1 − 1) · · · (γn − 1))

is a morphism in each variable.

2.2. Parallelogram functions are cubic. — We will denote by C (Γ) the set of maps
f : Γ → C satisfying f(1) = 0, f(γ) = f(γ−1) and f(γδ) = f(δγ) for all γ, δ ∈ Γ. As
the generators tγ ∈ A(Γ)SL2(C) satisfy the same relations, all functions fn involved in
Equation (4) are elements of C (Γ); of course this also follows from Equation (4) by
induction on n (the inductive step follows by using Equation (6) with the elements
1⊗ 1, 1⊗ γ and then γ ⊗ δ − δ ⊗ γ).

The objective of this paragraph is to prove the following statement.

Lemma 2.3. — For every map f ∈ C (Γ) and every a, b, c, d ∈ Γ, we have

(8) 2f ◦ ε4(a, b, c, d)

= f ◦ p
(
ε3(a, b, c)⊗ d+ ε3(b, c, d)⊗ a+ ε3(a, b, d)⊗ c+ ε3(c, a, d−1)⊗ b
−ε2(a, d−1)⊗ ε2(b, c)− ε2(b, d)⊗ ε2(c, a)− ε2(d, c−1)⊗ ε2(a, b)

)
.

Also, for all f ∈P(Γ) and every a, b, c ∈ Γ, we have f ◦ ε3(a, b, c) + f ◦ ε3(a, c, b) = 0

and

(9) f(a[b, c])− f(a) = 2f ◦ ε3(a, b, c).

It follows that for all f ∈ P(Γ), the map f ◦ ε3 is an alternate trimorphism on
Γ×Γ×Γ. Also, the right hand side of Equation (8) will be useful for studying higher
order jets, and Equation (9) will be used in the next paragraph.
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Proof. — Observe that for all a, b, c ∈ Γ we have

abc+ acb = 2ab+ 2ac+ 2bc− 2a− 2b− 2c+ p(ab⊗ c+ ac⊗ b− a⊗ bc−1 − 2b⊗ c).

This yields for every map f :

(10) f ◦ ε3(a, b, c) + f ◦ ε3(a, c, b) = f ◦ p(ε2(a, b)⊗ c+ ε2(a, c)⊗ b− ε2(b, c−1)⊗ a).

In particular if f ∈ P(Γ) then f ◦ ε3(a, b, c) + f ◦ ε3(a, c, b) = 0. Now for every f ∈
C (Γ), the left hand side of Equation (10) is invariant under permutations of (a, b, c).
It follows that its right hand side has the same symmetries: for example, permuting b
and c gives that for all f ∈ C (Γ), the map f◦p vanishes on ε2(b, c−1)⊗a−ε2(c, b−1)⊗a.
We may obtain similarly other elements of C[Γ] ⊗ C[Γ] on which f ◦ p vanishes for
any f ∈ C (Γ), including

ε2(a, b)⊗ c+ ε2(a, b−1)⊗ c− ε2(c, a)⊗ b− ε2(c−1, a)⊗ b, or
ε2(b, c)⊗ a− ε2(c, b)⊗ a+ ε2(b, a)⊗ c− ε2(a, b)⊗ c

− ε2(a, c−1)⊗ b+ ε2(c−1, a)⊗ b.
(11)

Now, we apply Equation (10) successively to (a, bc, d), (ca, d, b) and (ab, d, c) to get:

f ◦ ε3(a⊗ bc⊗ d+ a⊗ d⊗ bc) = f ◦ p(ε2(bc, a)⊗ d+ ε2(bc, d)⊗ a− ε2(a, d−1)⊗ bc),

f ◦ ε3(ca⊗ d⊗ b+ ca⊗ b⊗ d) = f ◦ p(ε2(b, ca)⊗ d+ ε2(b, d)⊗ ca− ε2(ca, d−1)⊗ b),

f ◦ ε3(ab⊗ d⊗ c+ ab⊗ c⊗ d) = f ◦ p(ε2(ab, d)⊗ c+ ε2(ab, c)⊗ d− ε2(d, c−1)⊗ ab).

The alternating sum of these three identities leads to the equation we are after. The
left part yields 2f ◦ε4(a, b, c, d)+2f ◦ε3(a, c, d)+2f ◦ε3(a, d, c). Subtracting the term
2f ◦ ε3(a, c, d) + 2f ◦ ε3(a, d, c) to the right-hand side, expanding it by linearity, and
using the relations from (11) we finally obtain our main formula, Equation (8).

Let us turn to the proof of Equation (9). For all a, b, c ∈ Γ, we have a[b, c] =

abc · b−1 · c−1, while a = abc · c−1 · b−1. Hence we have a[b, c]− a ≡ ε3(abc, b−1, c−1)−
ε3(abc, c−1, b−1), where we denote by ≡, in C[Γ], the equality modulo the subspace
generated by all γδ − δγ for γ, δ ∈ Γ. Hence if f ∈ P(Γ) we conclude by using the
multilinearity and antisymmetry of f ◦ ε3. �

2.3. The parallelogram exact sequence. — In this section, we prove Theorem 1.1.
By Lemma 2.3, if f ∈ P(Γ) then f ◦ ε3 is an alternate trimorphism on Γ × Γ × Γ.
If f ◦ ε3 = 0 then setting b(γ, δ) = 1

2 (f(γδ) − f(γ) − f(δ)) we observe that b is a
symmetric bimorphism, that is, f(γ) = b(γ, γ) is quadratic. Summing up, we obtain
the exact sequence (2) and our remaining task is to determine the range of the map
ε∗3 : P(Γ)→ Λ3H1(Γ,C)∗.

We will start by recalling the basics of homology that we need. We may write Γ

as a quotient F/R, where F is finitely generated free group and R is a normal sub-
group. For any group Γ, set Γ(1) = Γ and let Γ(k+1) = [Γ(k),Γ] be the subgroup of Γ

generated by commutators [a, b] with a ∈ Γ(k) and b ∈ Γ. The Hopf formula asserts
then that H2(Γ,Z) = [F, F ] ∩ R/[F,R]. If we further denote by R′ (resp. R′′) the
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subgroup generated by R and [F, F ] (resp. R and [F, [F, F ]]), we observe the inclu-
sions [F,R] ⊂ [F,R′] ⊂ R′′, yielding the following maps, where the first one mixes an
inclusion and a quotient:

[F, F ] ∩R/[F,R] −→ [F, F ]/[F,R′] −→ [F, F ]/R′′ ∩ [F, F ] −→ 1.

It is an easy exercise to check that the sequence above is exact, and the Hopf formula
applied first to Γ = F/R and then to its abelianization F/R′, enable to rewrite the
sequence above as:

(12) H2(Γ,Z) −→ H2(Γ/Γ(2),Z) −→ Γ(2)/Γ(3) −→ 1.

This exact sequence is due to Hopf, and we learned it from [24]. Now, for the abelian
group Γ/Γ(2) = H1(Γ,Z), we have the classical identification, H2(H1(Γ,Z),Z) '
Λ2H1(Γ,Z), which identifies commutators [a, b] from the Hopf formula (in the relations
defining H1(Γ,Z)) with the corresponding wedges a∧ b. We denote by c : H2(Γ,Z)→
Λ2H1(Γ,Z) the composition map, and still denote c : H2(Γ,C) → Λ2H1(Γ,C) after
tensoring with C.

Recall that we denoted by E (Γ) the space of linear maps Φ : Λ3H1(Γ,Z)→ C such
that Φ(x ∧ c(y)) = 0 for all x ∈ H1(Γ,C) and y ∈ H2(Γ,C).

Lemma 2.4. — If f ∈P(Γ) then f ◦ ε3 ∈ E (Γ).

Proof. — Let x∈H1(Γ,Z) and y∈H2(Γ,Z); it suffices to prove that

f ◦ ε3(x ∧ c(y)) = 0.

Let a ∈ Γ be an element whose abelianization is x, and let r ∈ [F, F ]∩R represent y; let
us write r =

∏
i[bi, ci]. As r maps to 1 in Γ, we have f(ar)−f(a) = 0, and by repeated

use of Formula (9) this yields 2
∑
i f ◦ ε3(a, bi, ci) = 0, i.e., f ◦ ε3(x ∧ c(y)) = 0. �

This proves the condition of Theorem 1.1 and it remains to prove that any Φ ∈ E

may be written f ◦ε3 for some f ∈P(Γ). We have two proofs for it, an explicit and a
more conceptual one. We present first the explicit formula, leaving the tedious details
to the reader and then move to the conceptual proof.

Let Φ ∈ E (Γ). The abelianization of Γ has the form H1(Γ,Z) = Zr ⊕
⊕d

i=1 Z/piZ.
We choose generators a1, . . . , ar, t1, . . . , td of H1(Γ,Z) corresponding to the above
decomposition, lift them to Γ, and, abusively, still denote them by the same letter.
Every element γ ∈ Γ can be written in the form

(13) γ = an1
1 · · · anr

r tα1
1 · · · t

αd

d

q∏
i=1

[hi, ki],

with, for i ∈ {1, . . . , d}, αi ∈ {0, . . . , pi − 1}. We then put

(14) f(γ) =
∑
i<j<k

ninjnkΦ(ai ∧ aj ∧ ak) + 2

q∑
i=1

Φ(u ∧ hi ∧ ki),
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where u = an1
1 · · · anr

r , and hi, ki still (abusively) denote their images in H1(Γ,C).
As announced, we encourage the reader to check that this formula is well-defined,
satisfies the parallelogram identity and the equation f ◦ ε3 = Φ.

Let us avoid these tedious verifications and move to a more conceptual proof.
First, observe that all elements of P(Γ) factor through Γ/Γ(3), as a consequence of
Equation (9). Thus, the parallelogram equation we have to solve is an equation on
the group Γ/Γ(3), which sits in the central extension 0 → Γ(2)/Γ(3) → Γ/Γ(3) →
Γ/Γ(2) → 0. Let us set A = Γ(2)/Γ(3) ⊗ C and B = H1(Γ,Z). In order to solve
the parallelogram equation, it is convenient to introduce a different central extension
0→ A→ U → B → 0 related to Γ, defined as follows. The commutator map Γ2 → Γ

induces an antisymmetric bilinear map : H1(Γ,Z)2 → Γ(2)/Γ(3) which, after tensoring
with C, gives an antisymmetric map : H1(Γ,C)2 → A; we denote (without distinction)
these maps by σ. With this notation, the Hopf exact sequence (12) becomes the exact
sequence

H2(Γ,C)
c−−→ Λ2H1(Γ,C)

σ−−→ A −→ 0.

The map σ is a cocycle, that is, the set U = A × B endowed with the product
(a, x)(b, y) = (a+ b+ σ(x, y), x+ y) is a group which fits into a central extension as
above. The advantage of U is that it comes with a “canonical” parallelogram function
as follows.

Lemma 2.5. — Let Ω = Λ3H1(Γ,C)/ Span{c(u) ∧ v, u ∈ H2(Γ,C), v ∈ H1(Γ,C)} and
let F : U → Ω be defined by F (a, x) = α ∧ x, where α is any element of Λ2H1(Γ,C)

such that σ(α) = a. Then F is well-defined, and satisfies the parallelogram identity.

Proof. — Since the Hopf sequence above is exact, different choices of α differ by
elements of the form c(u) with u ∈ H2(Γ,C); and by definition of Ω these do not
impact the value of F (a, x). Now, if (a, x), (b, y) ∈ U we have (b, y)−1 = (−b,−y), so

F ((a, x)(b, y))+F ((a, x)(b, y)−1) = (α+β+x∧y)∧ (x+y)+(α−β−x∧y)∧ (x−y),

where α, β are lifts of a, b to Λ2H1(Γ,C). Expanding this expression and simplifying,
we get 2α ∧ x+ 2β ∧ y as expected. �

Let us relate Γ with U . A map Θ: Γ → U , γ 7→ (θ(γ), γ) (where the overline
stands for the abelianization) is a morphism if and only if for all γ, δ ∈ Γ we have
θ(γδ) − θ(γ) − θ(δ) = σ(γ, δ) ∈ A. Such a map exists if and only if the class of σ
is zero in H2(Γ, A), and we claim that this holds tautologically. As A is a divisible
group, the universal coefficients theorem tells us that the evaluation map H2(Γ, A)→
Hom(H2(Γ,Z), A) is an isomorphism. Hence it is sufficient to show that σ vanishes
on generators of H2(Γ,Z). By the Hopf formula, elements of H2(Γ,Z) are expressions
of the form r =

∏
i[xi, yi] which vanish in Γ. By definition, the value of σ on r is the

class of r in A which is trivial by definition of r. This proves the existence of such a
map θ.

Alternatively, and more explicitly, we may define two set-theoretic sections
s1, s2 : Γ0 → Γ of the projection p : Γ → Γ0, where Γ0 is the quotient of H1(Γ,Z) by
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its torsion, by letting s1(an1
1 · · · anr

r ) = an1
1 · · · anr

r and s2(an1
1 · · · anr

r ) = anr
r · · · a

n1
1

with the notation of Equation (13). Then for i = 1, 2, the map θi : x 7→ xsi(p(x))−1

may be viewed as a map from Γ to A, and it turns out θ = θ1 + θ2 is a solution.
Up to linearizing the map F ◦Θ: Γ→ Ω as we did for all parallelogram maps, we

may compose it with the map ε3, and the following observation shows that F is a
“universal” solution to the parallelogram problem.

Lemma 2.6. — The composition F ◦Θ ◦ ε3 : Ω→ Ω is the identity.

This concludes the proof of Theorem 1.1, as for any map Φ ∈ E (Γ), it suffices to
set f = Φ ◦ F ◦Θ to get a map f ∈P(Γ) such that f ◦ ε3 = Φ.

Proof of Lemma 2.6. — Formally, ε3 is defined only on C[Γ]⊗3. But since F ◦Θ satisfies
the parallelogram identity, all the properties of parallelogram maps established above
apply to it. In particular, F ◦ Θ ◦ ε3 reduces to a map Ω → Ω, and we have, for all
x, y, z ∈ Γ,

2F ◦Θ ◦ ε3(x, y, z) = F ◦Θ(x[y, z])− F ◦Θ(x) =
(
θ̂(x[y, z])− θ̂(x)

)
∧ x,

where θ̂(γ) is any lift of θ(γ) to Λ2H1(Γ,Z). Now, it follows from the defining formula
of θ that θ(x[y, z]) = θ(x) + 2σ(y, z); it follows that 2F ◦Θ ◦ ε3(x, y, z) = 2y ∧ z ∧x =

2x ∧ y ∧ z. �

Now that the proof of Theorem 1.1 is complete, let us add a few words to mention
that this description of E (Γ), or dually, of the space Ω above can be computed effec-
tively given a finite presentation of Γ. Suppose Γ = F/R where F is the free group on
the letters a1, . . . , ar and R its normal subgroup generated by the words r1, . . . , rk. Up
to simple operations on the rj , we may suppose that for some ` their images r1, . . . , r`
in the abelianization of F freely generate an abelian subgroup, and that rj = 0 for all
j > `. All elements of R, resp. R ∩ [F, F ], are equivalent, modulo [R,F ], to products
of the form rn1

1 · · · r
nk

k , resp. rn`+1

`+1 · · · r
nk

k . In other words, the abelian group H2(Γ,Z)

is finitely generated by the elements r`+1, . . . , rk, although in general it may be dif-
ficult to know if these elements satisfy some relations in H2(Γ,Z). Nevertheless Ω is
the (computable) quotient of Λ3H1(Γ,C) by all elements of the form c(rj) ∧ am with
j > `+ 1 and where am are generators of H1(Γ,C).

2.4. Examples. — For every n ∈ N, we have two opposite examples. The first one
is Fn for whichH2(Fn,Z) = 0 and hence E (Fn) = Λ3H1(Fn,C)∗, it is generated by the
maps raised in the introduction, for each choice of three generators. The other example
is Zn for which H2(Zn,Z) = Λ2Zn and c : H2(Zn,Z) → Λ2Zn is an isomorphism.
Hence E (Zn) = 0.

More interesting examples lie in between the previous ones. Let us give some detail
on the case of the fundamental group of closed orientable surfaces of genus g > 2,
denoting by Σg this surface and by Γg its fundamental group. Then H2(Γg,Z) =
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H2(Σg,Z) = Z is generated by the fundamental class [Σg]. Moreover, if we have the
presentation

Γg = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1〉,

then c([Σg]) =
∑g
i=1 ai ∧ bi. This gives the description of E (Γg) as the space of linear

forms Φ : Λ3H1(Γg,Z) → C such that
∑g
i=1 Φ(x ∧ ai ∧ bi) = 0 for all x ∈ H1(Γg,Z).

This is trivial when g = 2, as, for example, a1 ∧ a2 ∧ b2 equals −a1 ∧ a1 ∧ b1 in the
quotient Ω of Λ3H1(Γ,C) by H2 ∧H1, but it is nontrival as soon as g > 3.

The group Aut(Γg) acts on Hom(Γg,SL2(C)) by precomposition. The induced ac-
tion on X(Γg) factors through the group Out(Γg) of outer automorphism also known
as the (extended) mapping class group. This action has been extensively studied as it
extends the action of the mapping class group of the Teichmüller space, a connected
component of the real part of X(Γg). Goldman popularized many questions around
the dynamics of this action, see e.g. [11]. In some cases, understanding the neighbour-
hood of the trivial representation may be useful, as in [10] where the Torelli group
(i.e., the subgroup Ig of Out(Γg) acting trivially on the abelianization H1(Γg,Z)) is
shown to act ergodically on some component of the real part of X(Γg). Let us show
that the tangent action of Out(Γg) at the trivial character in X(Σg) is related to the
Johnson homomorphism.

The group Aut(Γg) also acts on P(Γg) by precomposition and because parallelo-
gram functions are invariant by conjugation this action also factors through the group
Out(Γg). By restriction, Ig acts on the exact sequence (2), and its action is trivial on
the extreme terms. This defines a morphism q : Ig → Hom(E (Γ),Q(Γ)), such that
for all φ ∈ Ig,

f ◦ φ = f + q(φ)(f ◦ ε3).

Recall from [9, Chap. 6] that the Johnson morphism

τ : Ig −→ Hom(H1(Γg,Z),Γ(2)
g /Γ(3)

g )

is defined by the formula τ(φ)(x) = φ(x)x−1 for x ∈ Γg. Then, for any x ∈ Γg we get

f(φ(x)) = f(x · φ(x)x−1) = f(x) + 2f ◦ ε3(x ∧ y),

by formula (9), where y is a lift of τ(φ)(x) in Λ2H1(Γg,Z) (as in the Hopf exact
sequence (12)). This yields the simple formula, q(φ)(Φ)(x) = 2Φ(x ∧ τ(φ)(x)): the
action of the Torelli group Ig on parallelogram functions is similar to the Johnson
homomorphism. This is of course valid for any group, the case of surface groups being
more classical.

The mix of binary and ternary elements in the same space P(Γ), and the constant
interplay between them, for example by this Johnson morphism, evokes to us a genre
of latino-american folk music.
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3. Obstructions and smoothness

The description of parallelogram functions being done, we know completely the
Zariski-tangent space of X(Γ) at the trivial representation. We now turn to the jets
of higher order.

3.1. Proof of Theorem 1.6. — As noticed from Formula (8), whenever (f1, . . . , fn)

is a solution of Equation (4) up to order n, we have fi ∈ C (Γ) for all i ∈ N and
f1 ◦ ε4 = 0. Equation (6) gives f2 ◦ p = f1 ⊗ f1. By evaluating f2 ◦ ε4 at an element
of (I4)4 in Formula (8), we deduce that f2 ◦ ε16 = 0, and, by immediate induction,
fn ◦ ε4n = 0: all solutions to any order to the higher parallelogram equation (4) are
polynomial. In the upcoming subsections we will obtain better bounds for their orders;
for now we deduce Theorem 1.6.

As observed in the end of the proof of Lemma 2.3, for all a, b, c ∈ Γ the term
a[b, c] − a is equivalent to an element of I3, modulo elements of the form γδ − δγ in
C[Γ]. More explicitly,

a[b, c]− a ≡ (abc− 1)
(
(b−1 − 1)(c−1 − 1)− (c−1 − 1)(b−1 − 1)

)
.

By induction this formula gives that a1[a2, [a3, . . . [an−1, an] · ··]] ≡ a1 modulo In for
all a1, . . . , an ∈ Γ. It follows that for any solution (f1, . . . , fn) of Equation (4), and
for all γ ∈ Γ, the value of fk(γ), for k ∈ {1, . . . , n} depends only on the image of γ
in Γ/Γ(4n−1). Now if φ : Γ1 → Γ2 is a morphism inducing an isomorphism between
Γ1/Γ

(n)
1 → Γ2/Γ

(n)
2 for all n > 0, then it induces a bijection between the set of solu-

tions of the functional equation (4) at any order. It follows that φ∗ : X(Γ2)→ X(Γ1)

induces an isomorphism between the spaces of Zariski-jets at the trivial character at
any order. With this in head, Theorem 1.6 is a consequence of the following theorem
of Stallings.

Theorem 3.1 (Stallings [24, Th. 3.4]). — Let φ : Γ1 → Γ2 be a morphism, that in-
duces an isomorphism between H1(Γ1,Z) and H1(Γ2,Z) and an epimorphism from
H2(Γ1,Z) to H2(Γ2,Z). Then φ induces an isomorphism between Γ1/Γ

(n)
1 and Γ2/Γ

(n)
2

for all n > 1.

3.2. First obstruction. — Now we turn to the proof of Theorem 1.4. Suppose (f1, f2)

is a solution of Equation (4) up to order 2. In other words, we suppose that f1 ∈P(Γ)

and f2 ◦ p(a, b) = f1(a)f1(b) for all a, b ∈ Γ. We will prove in this section that this
forces f1 to be a quadratic form.

Take a1, . . . , a6 ∈ Γ. We have, using linearity and Formula (8),

2f2 ◦ ε6(a1, . . . , a6) = 2f2 ◦ ε4(ε3(a1, a2, a3), a4, a5, a6)

= f2 ◦ p


ε5(a1, a2, a3, a4, a5)⊗ a6 + ε3(a4, a5, a6)⊗ ε3(a1, a2, a3)

+ε5(a1, a2, a3, a4, a6)⊗ a5 + ε5(a5, a1, a2, a3, a
−1
6 )⊗ a4

−ε4(a1, a2, a3, a
−1
6 )⊗ ε2(a4, a5)− ε2(a4, a6)⊗ ε4(a5, a1, a2, a3)

−ε2(a6, a
−1
5 )⊗ ε4(a1, a2, a3, a4)

 .
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Since f1 vanishes on I4, this simplifies to

2f2 ◦ ε6(a1, . . . , a6) = f1 ◦ ε3(a1, a2, a3)f1 ◦ ε3(a4, a5, a6).

As f1 ∈ P(Γ), the right hand side of this expression changes sign upon exchang-
ing a5 with a6, while the left hand side remains equal upon permuting cyclically
the ai because f2 is invariant by conjugation. In other words, the permutation (5 6)

changes the sign of this complex number, while the permutation (2 3 4 5 6 1) leaves
it invariant. As the latter has signature −1, it follows that for all a1, . . . , a6 we have
f2 ◦ ε6(a1, . . . , a6) = 0, and that f1 ◦ ε3 = 0, i.e., f1 ∈ Q(Γ).

Note also that from all the above relations, we get that the map Γ2 → C defined
by 〈a, b〉 = f1 ◦ ε2(a, b) is bilinear and symmetric, and that, for all a, b, c, d ∈ Γ, by
applying again Formula (8) we have

(15) f2 ◦ ε4(a, b, c, d) = 〈a, b〉〈c, d〉+ 〈a, d〉〈b, c〉 − 〈a, c〉〈b, d〉.

This expression being linear in each variable, we get that f2 ◦ ε5 vanishes, hence f2 is
a polynomial function of order 6 4.

3.3. Second obstruction. — Now let (f1, f2, f3) be a solution to the order 3. Then
f2 ◦ ε4 satisfies Equation (15). We may write different formulas for f3 ◦ ε6, by using
the equalities

ε6(a1, . . . , a6) = ε4(ε3(a1, a2, a3), a4, a5, a6) = ε4(ε2(a1, a2), ε2(a3, a4), a5, a6).

The first equality, together with Formula (8) and the facts that f1 ◦ ε3 and f2 ◦ ε5
vanish, gives

2f3 ◦ ε6(a1, . . . , a6) = f1 ◦ ε2(a4, a5)f2 ◦ ε4(a1, a2, a3, a6)

− f1 ◦ ε2(a4, a6)f2 ◦ ε4(a5, a1, a2, a3) + f1 ◦ ε2(a5, a6)f2 ◦ ε4(a1, a2, a3, a4),

while the second gives

2f3 ◦ ε6(a1, . . . , a6) = f1 ◦ ε2(a1, a2)f2 ◦ ε4(a3, a4, a5, a6)

+ f1 ◦ ε2(a5, a6)f2 ◦ ε4(a1, a2, a3, a4)− f1 ◦ ε2(a3, a4)f2 ◦ ε4(a1, a2, a6, a5).

Now by expanding both these expressions, by using Equation (15) and by writing the
equality between the two, we get an equality that fits in the following determinant:∣∣∣∣∣∣

〈a1, a3〉 〈a4, a3〉 〈a2, a3〉
〈a1, a5〉 〈a4, a5〉 〈a2, a5〉
〈a1, a6〉 〈a4, a6〉 〈a2, a6〉

∣∣∣∣∣∣ = 0.

It follows that the induced bilinear form 〈·, ·〉 on H1(Γ,C) cannot have a family of
three orthonormal vectors: its rank cannot exceed 2. This is a non-trivial condition
as soon as dimH1(Γ,C) > 3.
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3.4. No other universal obstructions. — First, let us observe that there are no
other “universal” – i.e., valid for any group – obstructions of higher order.

Proposition 3.2. — Let Γ = Fn be a free group. Let 〈·, ·〉 be a symmetric bilinear
product of rank 6 2 on H1(Fn,C). Then there exists a smooth deformation of the
trivial character, [ρt], such that

Tr(ρt(γ)) = 2 + t〈γ, γ〉+ o(t), for all γ ∈ Γ.

Proof. — Let Fn = 〈a1, . . . , an〉 be a free group of rank n. Being of rank 6 2, the
quadratic form associated to 〈·, ·〉 can be written as the product of two linear forms
`1, `2 on H1(Fn,C) (observe that `21 + `22 = (`1 + i`2)(`1 − i`2)).

Now we construct ρt as follows. We simply put

ρt(ai) =

(
1 `1(ai)

0 1

)(
1 0

t`2(ai) 1

)
.

We check that Tr ρt(aiaj) = 2 + t〈ai, aj〉+ o(t), for all i, j. �

3.5. Lifting deformations. — The proof of Proposition 3.2 suggests that deforma-
tions of characters can be lifted to deformations of representations; this is the content
of Theorem 1.5, that we will prove now. Thus, let us consider a function f : Γ→ C[[t]]

satisfying f(γδ) + f(γδ−1) = f(γ)f(δ) for all γ, δ ∈ Γ. By Theorem 1.2, f can be
viewed as an algebra morphism φ : A(Γ)SL2(C) → C[[t]], which maps the function tγ
to f(γ). We want to prove that there exists a morphism ρ : Γ→ SL2(C[[t]]) such that
Tr(ρ(γ)) = f(γ) for all γ ∈ Γ.

Let K be the field of fractions of C[[t]], i.e., the field of formal Laurent series in t,
and let K be its algebraic closure. By invariant theory over K, the map R(Γ)→ X(Γ)

is surjective (see e.g. [15, Th. 5.9]). In particular, there exists an algebra morphism
φ : A(Γ) → K extending φ. This defines a representation ρ : Γ → SL2(K) by sending
the generator γ` to the matrix with entries φ(a`i,j) in the notation of Subsection 1.2.
In particular, for all γ, Tr(ρ(γ)) = f(γ). We want to prove that ρ can be conjugated
to a representation in SL2(C[[t]]). In fact, it suffices to conjugate it into SL2(K), as
the following observation shows.

Lemma 3.3. — Let Γ be a finitely generated group. Let K be the field of fractions of
C[[t]]. Let ρ : Γ→ SL2(K) and suppose that for all γ ∈ Γ, Tr(ρ(γ)) ∈ C[[t]]. Then ρ is
conjugate, in SL2(K), to a representation in SL2(C[[t]]).

Proof. — Let v be the valuation on K defined by v(t) = 1. Then Γ acts on the
Bass-Serre tree T associated to (K, v). See e.g. [23, Chap. 2]. For any γ ∈ Γ, we
have Tr(ρ(γ)) ∈ C[[t]], and it follows that ρ is conjugate to an element of SL2(C[[t]]):
hence, ρ(γ) fixes a vertex of T . Thus, Γ acts on T by isometry, in such a way that
every element of Γ fixes a point. Therefore, Γ has a global fixed point, see e.g. [23,
Chap. I.6.5, Cor. 3]. This means that ρ is conjugate to a representation in the stabilizer
of a point of T , i.e., conjugate to a representation in SL2(C[[t]]). �
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A similar statement is true in the more general case of n×n-matrices but with the
additional assumption of absolute irreducibility, see [7, Lem. 1.4.3].

It remains to conjugate our representation ρ into SL2(K). We suppose first that
it is (absolutely) irreducible, and leave the (easier) reducible case to the end of the
proof. Experts would notice that the result follows from the fact that there are no
non-trivial quaternion algebras over K (see [14]). We prefer to give a down-to-earth
proof. The irreducibility condition is caught by pairs of elements of Γ, by two classical
observations that we recall now.

Lemma 3.4 ([7, Cor. 1.2.2]). — Let k be an algebraically closed field of characteris-
tic zero, let Γ be any group, and let ρ : Γ → SL2(k) be a representation. Then ρ is
irreducible if and only if there exist α, β ∈ Γ such that Tr ρ([α, β]) 6= 2.

Lemma 3.5. — Let k be any field and let A,B ∈ SL2(k). Then the determinant of the
Gram matrix of the family (Id, A,B,AB) ∈M2(k)4, with respect to the non-degenerate
bilinear form (M,N) 7→ Tr(MN) is equal to − (Tr[A,B]− 2)

2.

This classical identity which we learned from [22] may be checked by a direct
computation. Fix α, β ∈ Γ given by Lemma 3.4, and set A = ρ(α) and B = ρ(β).
Now we seek to conjugate A and B to the respective forms(

0 −1

1 TrA

)
and

(
a b

c d

)
with a, b, c, d in K as follows. For A it is just a matter of finding a vector v which is
not an eigenvector of A and considering the basis (v,Av) of K2. The entries of B in
this basis then satisfy the system:

(S) a+ d = TrB, b− c+ dTrA = TrAB, ad− bc = 1;

it will follow from Lemma 3.6 below that this system actually has solutions in K.
Reciprocally, given a solution of (S), a simple computation shows that the matrix
X = B − aId − cA has rank 1 (indeed we have TrX2 = (TrX)2, and X 6= 0 as A
and B do not commute). Then for any non-zero vector v ∈ kerX, we may check that
(v,Av) is a basis in which A and B have the desired form.

By Lemma 3.5, the matrices Id, A,B,AB generate M2(K). Hence, for any element
γ ∈ Γ, ρ(γ) is a linear combination of Id, A,B,AB whose coefficients are a priori in K.
The values of f(γ), f(γα), f(γβ) and f(γαβ) yield a system of four equations that
enable to retrieve these four coefficients, as its determinant is the Gram determinant
of Lemma 3.5. Hence, it follows from the Cramer formula that these coefficients are
in K. Hence ρ takes values in SL2(K).

To conclude with the proof of Theorem 1.5 in this case, we need to check that the
system (S) above has solutions in K. This is the content of next lemma where we
have set x = TrA, y = TrB and z = TrAB. Recall from trace formulas that in this
notation Tr[A,B] = x2 + y2 + z2 − xyz − 2 6= 2.
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Lemma 3.6. — Let x, y, z be in K such that x2 + y2 + z2−xyz 6= 4. Then there exists
a solution (a, b, c, d) ∈ K4 to the system

a+ d = y, b− c+ dx = z, ad− bc = 1.

Proof. — Eliminating d and c from the first two equations we get a2 + b2 − abx −
ay+ b(yx− z) + 1 = 0. We complete the square by setting a′ = a− bx/2− y/2 to get

a′2 + b2(1− x2/4) + b(xy/2− z) + 1− y2/4 = 0.

If x = ±2, we can easy solve the equation in b unless z = ±y, but this is forbidden
by our assumptions. Hence, we factorize 1−x2/4 and complete the square in b to get

a′2 + (1− x2/4)b′2 =
x2 + y2 + z2 − xyz − 4

4− x2
.

We can conclude from the following nice exercise: in K, any equation of the form
ax2 + by2 = 1 for a, b ∈ K r {0} has a solution (hint: any non-zero element of K has
the form x2 or tx2). �

Now suppose finally that ρ is reducible. This implies that ρ has the same character
than a diagonal representation in SL2(K), so we will suppose that ρ is diagonal. So ρ
factors through the abelianization of Γ. If f(γ) = ±2 for all γ ∈ Γ then we may
as well take ρ to be the corresponding representation in {±Id}. Thus, let us assume
there exists γ0 such that f(γ0) 6= ±2. Again, we may consider a vector v ∈ SL2(K)

which is not an eigenvector of ρ(γ0) and conjugate ρ into the basis (v, ρ(γ0)v), by
some element g ∈ SL2(K). This yields

gρ(γ0)g−1 =

(
0 −1

1 f(γ0)

)
, and, for all γ ∈ Γ, gρ(γ)g−1 =

(
x y

−y x− yf(γ0)

)
,

as ρ(γ) and ρ(γ0) commute. Now, the equations f(γ) = Tr ρ(γ) and f(γ0γ) =

Tr(ρ(γ0)ρ(γ)) yield the system{
2x − f(γ0)y = f(γ)

f(γ0)x + (2− f(γ0)2)y = f(γ0γ)

whose determinant equals 4−f(γ0)2, which is nonzero by hypothesis. Hence, again by
the Cramer formula, x and y lie in K, in other words, gρg−1 takes values in SL2(K)

once again.

3.6. Smoothness. — Let us begin by recalling some basics of algebraic geometry.
The dimension of a (Zariski) open set U ⊂ X(Γ) is the maximal length of a chain
of irreducible closed subsets Z0 ( Z1 · · · ( Zn ⊂ U . The dimension of X(Γ) at the
trivial character χ is by definition

dimχX(Γ) = inf{dimU, χ ∈ U ⊂ X(Γ)}.

It is known that dimχX(Γ) 6 dimTχX(Γ), and X(Γ) is said to be smooth at χ if
the equality holds. The meaning of this smoothness condition is that there are no
obstructions to interpolate any Zariski-tangent vector by an actual deformation of
the character, as we recall now.
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Let m ⊂ A(Γ)SL2(C) be the maximal ideal corresponding to χ. The smoothness of
X(Γ) at χ is equivalent to the regularity of the localization of A(Γ)SL2(C) at m that
we denote by R, see [13, Chap. 4.2]. This property implies that the completion R̂ of R
with respect to the filtration by powers ofm is an algebra of power series in dimm/m2

variables (see [13, Prop. 2.27]).
Suppose that X(Γ) is smooth at χ. Any tangent vector f1 ∈ TχX(Γ) = P(Γ) can

be viewed as a map f1 : A(Γ)SL2(C) → C[t]/t2 mapping uγ to tf1. This map extends
to the localization R and maps m2 to 0. As R̂ is an algebra of power series, it is easy
to extend the map f1 to a full series f =

∑
i>1 t

ifi as in the following diagram:

R
f1
//

� _

��

C[t]/t2

R̂
f
// C[[t]].

OO

The existence of f shows that there are no obstructions for any tangent vector f1.

Proposition 3.7. — Let Γ be a finitely generated group and set n = dimH1(Γ,C).
If n < 2 then X(Γ) is smooth at the trivial character if n > 2, it is not.

Proof. — If n = 0 then we computed that P(Γ) = 0. This proves that the trivial
character is an isolated (and smooth) point of X(Γ). If n = 1 then dim P(Γ) = 1.
Moreover, there is a surjection Γ → Z which induces an injection X(Z) → X(Γ).
The variety X(Z) is isomorphic to C (map [ρ] to Tr ρ(1)) hence is 1-dimensional and
contains the trivial character. It follows that dimχX(Γ) > 1 and againX(Γ) is smooth
at χ.

Suppose now that n > 3. Any non-degenerate quadratic form q ∈ Q(Γ) is a tangent
vector at χ. If X(Γ) is smooth at χ, it cannot be obstructed, but it follows from
Theorem 1.4 that q must have rank 6 2 and we get a contradiction. �

The remaining case where dimH1(Γ,C) = 2 appears to be more subtle, and we will
prove that the trivial character is smooth provided thatH2(Γ,C) = 0. Before doing so,
let us observe that Theorem 1.6 already proves this statement under slightly stronger
hypothesis.

Lemma 3.8. — Suppose H1(Γ,Z) ' Z2 and H2(Γ,Z) = 0. Then X(Γ) is smooth at
the trivial character.

Proof. — We may choose a morphism φ : F2 → Γ that induces an isomorphism of the
abelianizations. Then φ satisfies the hypothesis of Theorem 1.6. Now, it is classical
that X(F2) ' C3 is smooth at the trivial character; it follows that all Zariski-tangent
vectors to the trivial character in X(Γ,SL2(C)) are unobstructed, and hence, this is
a smooth point. �

For example, if H1(Γ,Z) ' Z2 and Γ admits a finite presentation with two more
generators than relations (such a presentation is said to be of deficiency two), then
we may check that H2(Γ,Z) = 0, following the comments after Lemma 2.6 above.
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This also follows from the Epstein inequality, which states that the minimal number
of generators of H2(Γ,Z) is less than the rank of H1(Γ,C) minus the deficiency of Γ,
see [8]. This gives many examples of groups with smooth trivial character, as an
application of Theorem 1.6.

Now we will extend this result to homology with complex coefficients. To this end
let us start with the observation that smoothness can be read in the representation
variety.

Lemma 3.9. — Let Γ be a group such that dimH1(Γ,C) = 2. Then, X(Γ) is smooth
at the trivial character if and only if R(Γ) is smooth at the trivial representation.

Proof. — As dimH1(Γ,C) = 2, we have Λ3H1(Γ,C) = 0, hence E (Γ) = 0. It follows
that P(Γ) = Q(Γ) has dimension 3. Also, H1(Γ, sl2(C)) i.e., the Zariski-tangent space
of R(Γ) at the trivial representation has dimension 6. Therefore, the statement of the
lemma would follow if the following inequality holds if we specialize the representa-
tion ρ to the trivial representation.

(16) dim[ρ]X(Γ) = dimρR(Γ)− 3.

This equality does not hold in general, but it does hold for an irreducible represen-
tation ρ as, restricted to this open set, the quotient map is a “geometric quotient”, i.e.,
each fiber consists in a single orbit of maximal dimension. In that case, the quotient
map is flat because it is a locally trivial PSL2(C)-principal bundle (see [16, Prop. 0.9])
and the equality (16) follows from general properties of flat morphisms (see e.g. [13,
Th. 3.12]). Observe that one can prove it directly by constructing local cross-sections
of the quotient map in the spirit of Section 3.5.

Observe also that the space of reducible characters of Γ is isomorphic to X(Z2)

hence has dimension 2. Its preimage in R(Γ) has dimension at most 5. Suppose that
R(Γ) is smooth at the trivial representation. It follows that every neighbourhood of
the trivial representation contains an irreducible representation, at which R(Γ) still
has dimension 6, and for which the equality (16) holds. As the dimension is upper
semi-continuous, the local dimension of X(Γ) at the trivial character is at least 3. The
converse holds for the same reason. �

We deduce some concrete criteria for the smoothness of the trivial character in this
case.

Proposition 3.10. — Let Γ be a group such that dimH1(Γ,C) = 2. If one of the
following conditions holds, then X(Γ) is smooth at the trivial character.

(1) H2(Γ,C) = 0.
(2) Γ admits a finite presentation with deficiency 2.
(3) There exists a surjection Γ→ F2.

Condition (2) holds, for example, for the fundamental group of a non-orientable
surface of genus 3. Condition (3) holds for the fundamental group Γ = π1(S3 r L) of
a homology boundary link L ⊂ S3 with two components.
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Proof. — By Lemma 3.9 above, it suffices to prove that the trivial representation is
a smooth point of R(Γ). The first case is a standard result of deformation theory
for which we refer to [17]. Let us give a rough idea: following [25], a tangent vector
to the trivial representation is a cocycle, in our case, a morphism z1 : Γ → sl2(C).
The space R(Γ) is smooth at 1 provided that any z1 gives rise to a morphism
ρ = exp(

∑
n>1 t

nzn) : Γ → SL2(C[[t]]). One can prove its existence recursively by
constructing zn : Γ → sl2(C) from the data of zk for k < n. Indeed, the equation
ρ(γδ) = ρ(γ)ρ(δ) at the order n can be written

zn(γδ)− zn(γ)− zn(δ) = Fn(γ, δ),

where Fn is a linear combination of iterated brackets of zk(γ) and zk(δ) for k < n. It
may be checked that Fn is a 2-cocycle (see [17]), hence this equation has a solution
as it can be written dzn = Fn. This proves our assumption.

In the second case, the remark following Lemma 2.6 shows that H2(Γ,Z) = 0

hence H2(Γ,C) = 0 and we are done. Let us mention however that in this case the
smoothness of R(Γ) at 1 is much easier to prove directly from the implicit func-
tion theorem: a presentation Γ = 〈a1, . . . , an | r1, . . . , rn−2〉 gives an embedding
of R(Γ) into SL2(C)n which is smooth at the trivial representation. The reason is
that (r1, . . . , rn−2) is a submersion at (1, . . . , 1) as r1, . . . , rn−2 are linearly indepen-
dent in the abelian group generated by a1, . . . , an.

In the third case, the surjection gives an inclusion R(F2) ⊂ R(Γ). As R(F2) =

SL2(C)2 has dimension 6, the conclusion follows. �

Although Proposition 3.10 covers many cases, it is not a closed statement. Let us
observe that its second condition gives a concrete strategy as one can always extract
from a presentation of a group Γ a presentation with deficiency two of a group Γ′ that
surjects on Γ; then X(Γ) ⊂ X(Γ′) is smooth at the trivial character if and only if the
extra relations in Γ are superfluous in a neighbourhood of the trivial character.

A simple example is the group Γ = 〈a, b, c, d | c3, d3, (cd)3〉, the free product of F2

with the triangular group (3, 3, 3). Indeed, close to the identity in SL2(C), the equation
w3 = 1 as the unique solution w = 1. Hence the last relation is (locally) superflu-
ous. Let us conclude with the following more sophisticated example where the extra
relations are globally superfluous.

Remark 3.11. — Set Γ′ = 〈a, b, c, d | c4[a, b]2, d3[a, b]3〉 and set

Γ = 〈a, b, c, d | c4[a, b]2, d3[a, b]3, [[c, [a, b]], [d, [a, b]]]〉.

Let ϕ : Γ′ → Γ be the most obvious morphism, mapping a, b, c, d to a, b, c, d respec-
tively. Then, the associated map ϕ∗ : X(Γ)→ X(Γ′) is an isomorphism. However, ϕ is
not an isomorphism.

Proof. — This amounts to saying that any representation of Γ′ in SL2(C) factors
through Γ. The key property is that, whenever A,B ∈ SL2(C) are two roots of a
common non-central element (i.e., if ∃C 6= ±1, and n,m such that An = Bm = C),
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then A and B commute. Let A,B,C,D ∈ SL2(C) be the respective images of a, b, c, d
by any morphism Γ′ → SL2(C). If [A,B] = ±1 then [[C, [A,B]], [D, [A,B]]] = 1,
obviously. If [A,B] 6= ±1, then [A,B]2 and [A,B]3 cannot be both equal to ±1. If,
say, [A,B]2 6= ±1, then C−1 and [A,B] are both roots of this nontrivial element,
hence they commute, and we have again [[C, [A,B]], [D, [A,B]]] = 1.

We still have to check that ϕ is not an isomorphism. For this, it suffices to construct
a morphism Γ′ → S6 which does not kill [[c, [a, b]], [d, [a, b]]]. One such example ψ is
defined as follows: ψ(a) = (1 2 3), ψ(b) = (1 4)(2 5)(3 6), ψ(c) = (1 6 3 5 2 4) and
ψ(d) = (2 3 4). �
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