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MODULI SPACES OF SHEAVES THAT ARE SEMISTABLE

WITH RESPECT TO A KÄHLER POLARISATION

by Daniel Greb & Matei Toma

Abstract. — Using an existence criterion for good moduli spaces of Artin stacks by Alper–
Fedorchuk–Smyth we construct a proper moduli space of rank two sheaves with fixed Chern
classes on a given complex projective manifold that are Gieseker-Maruyama-semistable with
respect to a fixed Kähler class.

Résumé (Espaces de modules de faisceaux semistables par rapport à une polarisation kähléri-
enne)

En utilisant le critère d’existence d’un bon espace de modules d’un champ d’Artin dû à
Alper–Fedorchuk–Smyth, nous construisons un espace de modules propre de faisceaux de rang 2

sur une variété projective complexe donnée, de classes de Chern fixées et qui sont Gieseker-
Maruyama-semistables par rapport à une classe de Kähler fixée.
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1. Introduction

Moduli spaces of sheaves of fixed topological type that are Gieseker-Maruyama-
semistable with respect to a given ample class on a projective manifold X have been
studied for several decades. When one studies the way these moduli spaces vary
if the polarisation changes, examples show that in dimension bigger than two one
encounters sheaves E that are Gieseker-Maruyama-semistable with respect to non-
rational, real ample classes α ∈ Amp(X)R on X, i.e., that enjoy the property that for
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234 D. Greb & M. Toma

a Kähler form ω representing α and for every proper coherent subsheaf F ⊂ E we have
pF (m) 6 pE (m) for all m sufficiently large, where the reduced Hilbert polynomial
pE(m) with respect to α = [ω] is defined by

pE(m) =
1

rank(E)

∫
X

ch(E)emω Todd(X),

see for example [GRT16a]. When ω represents the first Chern class of an ample line
bundle L, the Riemann–Roch theorem states that pE(m) equals 1

rank(E)χ(E ⊗ Lm),
and so the above generalises the notion of Gieseker-Maruyama–stability from integral
classes to real ample classes, and in fact to all Kähler classes [ω]. Both in the case
of a real ample polarisation and of an arbitrary Kähler class on a compact Kähler
manifold, the question arises whether there is a moduli space for such sheaves. In
fact, it seems that the problem of constructing such moduli spaces was explicitly
posed quite some time ago by Tyurin, see the discussion in [Tel08, §3.2].

When semistability is measured with respect to an ample line bundle, the construc-
tion of moduli spaces is based on Geometric Invariant Theory and is hence of global
nature. Using the special structure of cones of positive classes and Geometric Invari-
ant Theory for moduli spaces of quiver representations, it was shown by the authors
in joint work [GRT16b] with Julius Ross that a GIT-construction of projective mod-
uli spaces for ω-semistable sheaves can still be carried out on projective threefolds.
When dealing with arbitrary compact Kähler manifolds it is however quite unlikely
that a finite-dimensional, global construction of a moduli space is possible. As an
alternative approach, it is natural to study the symmetries induced by automorphism
groups on semi-universal deformation spaces and to carry out a functorial local con-
struction from which in the end the moduli space is glued. This approach is most
naturally pursued in the language of analytic/algebraic stacks. Using recent advances
in this theory, both regarding the correct type of moduli space to construct [Alp13]
and regarding existence criteria [AFS17], in this paper we establish the following main
result:

Theorem. — The algebraic stack of ω-semistable sheaves of rank two and given Chern
classes admits a good moduli space that is a proper algebraic space; in particular, the
moduli space is separated.

We do not expect the restriction to the rank two case to be necessary; here, it sim-
plifies the analysis of the local slice models describing the action of the automorphism
groups of stable sheaves on their semi-universal deformation space. Note however that
the theorem stated above does not claim that the moduli space is projective or even
a scheme; new methods seem to be needed to investigate these additional questions.

While the approach followed here is very promising in the general Kähler case,
both fundamental work extending [AFS17] to the analytic setup and a finer analysis
of the geometry of the symmetries of semi-universal analytic deformation spaces will
be needed to attack the existence question for semistable sheaves on compact Kähler
manifolds.
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Moduli spaces for ω-semistable sheaves 235

Structure of the paper. — In Section 2, we collect the basic notions and their funda-
mental properties. More precisely, Section 2.2 discusses sheaf extensions and their
automorphisms, in Section 2.3 we introduce the notion of Gieseker-Maruyama-
semistability with respect to a Kähler class and establish the basic properties of this
notion, in Section 2.4 we provide the structure theory of semistable sheaves of rank
two, and in Section 2.5 we establish the fundamental geometric properties of the
stack of semistable sheaves, with particular emphasis on local quotient presentations
and slice models. In Section 3 the existence of a good moduli space is established
by checking the conditions given in [AFS17, Th. 1.2]. In the final section, Section 4,
we identify the points of the moduli space as representing S-equivalence classes of
sheaves and establish separatedness and properness of the moduli space, completing
our investigation.

Acknowledgements. — The authors would like to thank Jarod Alper, Jochen Heinloth,
and David Rydh for discussions regarding algebraic stacks and good moduli spaces.
Moreover, they want to express their deep gratitude to Peter Heinzner who in the early
stages of the project invited MT to Bochum twice and contributed to the discussions
that lead to the development of the approach pursued here. Finally, they want to
thank the referee for finding a gap in an earlier version of the proof of Corollary 4.7
and for a number of questions that helped to improve the overall readability of the
paper.

2. Basic notions and first properties

2.1. Global conventions. — We work over the field of complex numbers. All mani-
folds are assumed to be connected. We will work on a fixed complex projective man-
ifold X endowed with a cohomology class α ∈ H1,1(X,R) that can be represented by
a Kähler form ω; i.e., α = [ω].

2.2. Sheaf extensions and automorphisms. — Here we recall a few facts about sheaf
extensions and state two lemmata to be used later in the paper. We start by consid-
ering extensions of OX -modules over a ringed space (X,OX), where OX is a sheaf of
C-algebras. It is known that the C-vector space E1(E2, E1) of classes of extensions
of E2 by E1 modulo Yoneda equivalence is canonically isomorphic to Ext1

OX (E2, E1),
cf. [Har77, Exer. III.6.1], [Eis95, Exer. A3.26]. Morphisms α ∈ HomOX (E1, E

′
1), β ∈

HomOX (E′2, E2) induce natural linear maps α∗ : E1(E2, E1) → E1(E2, E
′
1), β∗ :

E1(E2, E1) → E1(E′2, E1), cf. [Eis95, Exer. A3.26]. On the Ext1-side these corre-
spond exactly to the linear maps induced by α and β using the natural morphisms
α∗ : HomOX (E2, E1) → HomOX (E2, E

′
1), β∗ : HomOX (E2, E1) → HomOX (E′2, E1). It

follows that α∗ ◦ β∗ = β∗ ◦ α∗ in HomC(E1(E2, E1),E1(E′2, E
′
1)).

Remark 2.1. — The following particular cases of the above construction will be used
in the sequel:
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236 D. Greb & M. Toma

(1) When E′1 = E1, E′2 = E2, we get a natural action of Aut(E1) × Aut(E2) on
E1(E2, E1) by

(α, β)(ξ) := (α∗ ◦ (β−1)∗)(ξ) = ((β−1)∗ ◦ α∗)(ξ),

for α ∈ Aut(E1), β ∈ Aut(E2), ξ ∈ E1(E2, E1), cf. [LP97, Chap. 7]. If moreover
E1 = E2 =: E, we get a natural action of Aut(E) on E1(E,E) by

α(ξ) := (α, α)(ξ) = (α∗ ◦ (α−1)∗)(ξ) = ((α−1)∗ ◦ α∗)(ξ).

(2) By functoriality, when j ∈ HomOX (E1, E
′
1) admits a retract or when p ∈

HomOX (E′2, E2) admits a section, we get injective maps j∗ : E1(E2, E1)→ E1(E2, E
′
1),

p∗ : E1(E2, E1)→ E1(E′2, E1).

We next show how these considerations apply to infinitesimal deformations of
sheaves. For simplicity we restrict ourselves to the case when X is a compact analytic
space and the sheaves involved are coherent, but note that similar arguments work in
the category of coherent sheaves over schemes. We denote by ↗:= (point,C[t]) the
double point, where C[t] := C[T ]/(T 2) is the algebra of dual numbers over C. Let F
be a coherent sheaf on X and (S, 0) a germ of a complex space. A deformation of F
with base S is a pair (F , φ) where F is a coherent sheaf on X × S flat over S and
φ : F0 → F is an isomorphism. Two deformations (F , φ), (F ′, φ′) of F with base S
are called isomorphic if there exists an isomorphism of sheaves Φ : F → F ′ such that
φ′ ◦Φ = φ, [Pal90, §4.2.2]. There is a natural bijection between the set of isomorphism
classes of deformations of F with base ↗ also called (first-order deformations) and
the vector space E1(F, F ), [Har10, Th. 2.7]. Any deformation of F with base S gives
rise to a “tangent map” T0S → E1(F, F ). Finally we mention that the automorphism
group of F naturally acts on the set of (isomorphism classes of) deformations of F
with base S by g(F , φ) := (F , g ◦ φ), for g ∈ Aut(F ).

Lemma 2.2. — The natural identification between the set of isomorphism classes of
first-order deformations of F and E1(F, F ) is Aut(F )-equivariant.

Fix now two coherent sheaves E1, E2 on X. In our set-up W := E1(E2, E1) is a
finite dimensional complex vector space and there exists a universal extension
(2.1) 0 −→ E1,W −→ E −→ E2,W −→ 0

on X ×W , [LP97, Chap. 7]. The central fibre of the universal extension is a trivial
extension
(2.2) 0 −→ E1

α−−→ E0
β−−→ E2 −→ 0

on X. Fixing a section s ∈ HomOX (E2,E0) gives us an isomorphism φ : E0 → E1⊕E2

hence a deformation (E , φ) of E1 ⊕ E2 with base (W, 0).

Lemma 2.3. — The tangent map E1(E2, E1) → E1(E1 ⊕ E2, E1 ⊕ E2) to the defor-
mation (E , φ) induced by the universal extension coincides with the natural inclusion
(φ ◦α)∗ ◦ (β ◦φ−1)∗ = (β ◦φ−1)∗ ◦ (φ ◦α)∗ given by Remark 2.1(2) and is equivariant
with respect to the group homomorphism Aut(E1) × Aut(E2) → Aut(E1 ⊕ E2) and
the actions described in Remark 2.1(1).
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Proof. — We will check that the images in E1(E1 ⊕ E2, E1 ⊕ E2) of the class ξ ∈
E1(E2, E1) of any extension

(2.3) 0 −→ E1
j−−→ E

p−−→ E2 −→ 0

of coherent sheaves on X induced in the two different ways described in the statement
coincide. The second part of the lemma will follow from this.

Consider in addition a trivial extension

(2.4) 0 −→ E1
α−−→ E0

β−−→ E2 −→ 0

and fix a section s : E2 → E0 of β and the induced retraction r : E0 → E1 of α. Then
it is directly seen that the class α∗(ξ) ∈ E1(E2, E0) is represented by the second line
of the following commutative diagram:

0 // E1

α
��

j
// E

p
//(

id
0

)
��

E2

id
��

// 0

0 // E0 ( j◦r
β

) // E ⊕ E2 (
p 0
) // E2

// 0

and that the first line of the diagram

0 // E0

id
��

( j◦r
s◦β
)
// E ⊕ E0

(
s◦p α◦r

)
//(

id 0
0 β

)
��

E0

β
��

// 0

0 // E0 ( j◦r
β

) // E ⊕ E2 (
p 0
) // E2

// 0

represents β∗(α∗(ξ)). We will later use this first line in the form

(2.5) 0 −→ E0
γ1−−−→ E0 ⊕ E

δ1−−−→ E0 −→ 0,

with γ1 =
(
s◦β
j◦r
)
and δ1 = (α ◦ r s ◦ p).

We next look at the restriction of the universal extension over the embedded double
point ↗ at 0 in W , which points in the direction of ξ. We will write 2X := X× ↗⊂
X×W , X := X×0 ⊂ X× ↗⊂ X×W and denote by OX [t] := OX⊗CC[t] = O2X the
structure ring of 2X and by π : 2X → X the projection. The class of this extension will
be given by tπ∗(ξ) ∈ Ext1

O2X
(E2,2X , E1,2X), where Ei,2X := π∗Ei. The multiplication

by t on Ext1
O2X

(F2, F1) is given by µ∗ : Ext1
O2X

(F2, F1)→ Ext1
O2X

(F2, F1), where µ =

µt : F1 → F1 is the multiplication morphism by t on F1. We apply it to the element
π∗(ξ) which is represented by the pull-back of the extension (2.3) to 2X. We first
note that the inverse image π∗F = F ⊗C C[t] to 2X through π of a OX -module F
is isomorphic as a OX -module to F ⊕ F . On F ⊕ F multiplication by t is given by
the OX -linear operator

(
0 0
id 0

)
which gives F ⊕ F its OX [t]-module structure back.
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238 D. Greb & M. Toma

In these terms the extension (2.3) pulls back to 2X as

(2.6) 0 −→ E1 ⊕ E1

( j 0
0 j

)
−−−−−→ E ⊕ E

( p 0
0 p

)
−−−−−→ E2 ⊕ E2 −→ 0

and the lower line of the following diagram of O2X -modules represents tπ∗(ξ):

(2.7)

0 // E1 ⊕ E1(
0 0
id 0

)
��

( j 0
0 j

)
// E ⊕ E(

0 s◦p
id 0

)
��

( p 0
0 p

)
// E2 ⊕ E2

id
��

// 0

0 // E1 ⊕ E1 (
α 0
0 j

) // E0 ⊕ E ( 0 p
β 0

) // E2 ⊕ E2
// 0,

where the t-multiplication on the term E0 ⊕ E is given by the operator
( 0 s◦p
j◦r 0

)
.

We may write this line also in the form 0→ π∗E1 → E → π∗E2 → 0. Tensoring it by
0→ OX

t−→ O2X → OX → 0 leads to a commutative diagram

(2.8)

0

��

0

��

0

��

0 // E1

α
��

// π∗E1

��

// E1

α
��

// 0

0 // E0

β
��

γ2
// E

��

δ2 // E0

β
��

// 0

0 // E2

α
��

// π∗E2
//

��

E2

��

// 0

0 0 0

of O2X -modules with exact rows and columns and the extension class of its middle
row is the first order deformation induced by the family E , see [Har10, Th. 2.7]. If
we replace now the morphisms in the middle row by those of the sequence (2.5)
representing β∗(α∗(ξ)) we get again a diagram of O2X -modules with exact rows and
columns, cf. (2.7),

(2.9)

0

��

0

��

0

��

0 // E1

α
��

(
0
id

)
// E1 ⊕ E1(

α 0
0 j

)
��

(
id 0
)
// E1

α
��

// 0

0 // E0

β
��

γ1
// E0 ⊕ E( 0 p

β 0

)
��

δ1 // E0

β
��

// 0

0 // E2

��

(
0
id

) // E2 ⊕ E2 (
id 0
)//

��

E2

��

// 0.

0 0 0

We will show that the two middle rows of (2.8) and (2.9) are equivalent as extensions.
In this direction, first notice that the differences δ2− δ1 and γ2− γ1 factorise through
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Moduli spaces for ω-semistable sheaves 239

morphisms of O2X -modules E2 ⊕ E2 → E1 and E2 → E1 ⊕ E1, respectively. Using
the O2X -module structure given by multiplication with t, we see that the induced
morphisms have the form

(
u 0
)
and

(
0
v

)
, respectively, with u, v ∈ HomOX (E2, E1).

Putting ε =
(

0 α◦u◦p
0 0

)
and ε′ =

(
0 0

j◦v◦β 0

)
in EndOX (E0 ⊕ E) we get ε2 = (ε′)2 =

ε ◦ ε′ = ε′ ◦ ε = 0, δ2 − δ1 = δ1 ◦ ε, γ2 − γ1 = ε′ ◦ γ1, ε ◦ γ1 = 0 and δ1 ◦ ε′ = 0. Hence,
the diagram

0 // E0

id
��

γ2
// E0 ⊕ E

δ2 //

id +ε− ε′
��

E0

id
��

// 0

0 // E0

γ1
// E0 ⊕ E

δ1 // E0
// 0

is commutative and shows that the two extensions under consideration lie in the same
class in Ext1

OX (E0, E0), which was to be shown. �

2.3. Semistable coherent sheaves. — We will work on a fixed complex projective
manifold X endowed with a cohomology class ω ∈ H1,1(X,R) that can be represented
by a Kähler form. This class will serve as a polarisation which will help us to define
Gieseker-Maruyama-semistability for coherent sheaves on X, cf. [GRT16b, Def. 11.1].
We start by studying basic properties of semistable sheaves. For simplicity, we will
only consider the case of torsion-free sheaves, although most properties are valid for
pure coherent sheaves. Later on, we will focus on the case of rank two torsion-free
sheaves.

Definition 2.4. — Let E be a coherent sheaf on X. Its Hilbert-polynomial (with
respect to ω) is defined as the polynomial function (with coefficients in C) that is
given by

PE(m) := PωE (m) :=

∫
X

ch(E) emω Todd(X),

where ch(E) and Todd(X) denote the Chern character of E and the Todd class of X,
respectively. If E is torsion-free and non-zero we define its reduced Hilbert-polynomial
as

pE := pωE :=
PE

rankE
.

We will say that E is (Gieseker-Maruyama-)stable (with respect to ω) and semistable,
respectively, if E is torsion-free and if for any coherent subsheaf 0 6= F ( E one has
pF < pE and pF 6 pE , respectively. We will call E polystable if it splits as a direct sum
of stable subsheaves having the same reduced Hilbert-polynomial. If E is semistable
but not stable we will say that it is properly semistable.

The usual relations to slope-stability (with respect to ω), which will also be referred
to as µ-stability, continue to hold in this context, namely:

µ-stable =⇒ stable =⇒ semistable =⇒ µ-semistable,

cf. [HL10, Lem. 1.6.4]. In particular, the boundedness result [GT17, Prop. 6.3] for µ-
semistable sheaves implies:

J.É.P. — M., 2020, tome 7



240 D. Greb & M. Toma

Proposition 2.5 (Boundedness). — Let X be a d-dimensional projective manifold
and let K a compact subset of the Kähler cone K (X) ⊂ H1,1(X,R) of X. Fix a
natural number r > 0 and classes ci ∈ H2i(X,R), i = 1, . . . , d. Then, the family of
rank r torsion-free sheaves E with ci(E) = ci that are semistable with respect to some
polarisation contained in K is bounded.

The proofs of the following three basic results are standard and therefore left to
the reader, cf. [HL10, Prop. 1.2.7], [Ses67, Prop. 3.1](1) and [LP97, §9.3], and finally
[HL10, Prop. 1.5.2], respectively.

Lemma 2.6. — Let E and E′ be semistable sheaves on X and let φ : E → E′ be a
non-zero morphism of OX-modules. Then pE 6 pE′ . If equality holds, then Im(φ) is
semistable and pIm(φ) = pE = pE′ . If moreover the rank of Im(φ) coincides with the
rank of E or with the rank of E′ then Im(φ) is isomorphic to E or to E′ respectively.

Proposition 2.7. — The full subcategory Cohss (X,ω, p) of the category of coherent
sheaves on X, whose objects are the semistable sheaves with fixed reduced Hilbert
polynomial p and the zero-sheaf, is abelian, noetherian and artinian.

Proposition 2.8 (Jordan-Hölder filtrations). — Any semistable sheaf on X admits a
Jordan-Hölder filtration in the sense of [HL10, Def. 1.5.1] (with respect to ω-stability).
The associated graded sheaf is unique up to isomorphism.

The derivation of the following result is less formal and requires deeper insight into
the geometry of Douady spaces.

Theorem 2.9 (Openness of (semi)stability). — Let (S, 0) be a complex space germ
and E be a coherent sheaf on X × S that is flat over S. If the fibre of E over 0 ∈ S
is (semi)stable, then the fibres of E over any point in a neighbourhood of 0 in S are
likewise (semi)stable.

Proof. — The proof of [Tom16, Cor. 5.3] immediately adapts to our situation to show
that the relative Douady space DS(E )6b of quotients of E with degrees bounded
from above by b is proper over S; see [Tom19] for details. Using this as well as
[Tom16, Lem. 4.3] to replace Grothendieck’s Lemma, we may then prove openness of
(semi)stability as in the classical case of ample polarisations, as presented for example
in [HL10, Prop. 2.3.1]. �

2.4. Semistable sheaves of rank two. — The next result gives a classification of
semistable sheaves of rank two on a fixed projective manifold X that is endowed with
a given Kähler form ω and computes the automorphism group for all the resulting
classes.

(1)Seshadri formulates and proves the corresponding result for slope-semistable vector bundles
of degree zero over a Riemann surface; Gieseker-Maruyama-semistability is the correct higher-
dimensional semistability condition to make this work in general.
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Proposition 2.10 (Classification of semistable sheaves). — Any semistable sheaf E of
rank 2 on X falls into exactly one of the following classes:

(1) Polystable sheaves
(a) Stable sheaves. In this case Aut(E) ∼= C∗.
(b) Decomposable sheaves of the form L1⊕L2 with L1 � L2 and PL1 = PL2 .

In this case Aut(E) ∼= C∗ ×C∗, and Hom(L1, E), Hom(E,L1), Hom(E,L2), as
well as Hom(L2, E) are one-dimensional.

(c) Decomposable sheaves of the form L⊕L. In this case Aut(E) ∼= GL(2,C)

and Hom(L,E), Hom(E,L) are two-dimensional.
(2) Non-polystable sheaves

(a) Centres of non-trivial extensions of the form 0→ L1 → E → L2 → 0 with
L1 � L2 and PL1

= PL2
. In this case, we have Aut(E) ∼= C∗, Hom(L1, E) ∼= C,

Hom(E,L1) = 0, Hom(E,L2) ∼= C, and Hom(L2, E) = 0.
(b) Centres of non-trivial extensions of the form 0→ L

α−→ E
β−→ L→ 0. In

this case Aut(E) = {a ·IdE +c ·α◦β | a ∈ C∗, c ∈ C} ∼= C∗×C, Hom(L,E) ∼= C
and Hom(E,L) ∼= C.

In all cases listed above, L1, L2, L are torsion-free sheaves of rank one on X.

Proof. — The classification follows easily from the existence and uniqueness of
Jordan-Hölder filtrations, see Proposition 2.8. We will hence only compute the auto-
morphism groups and the homomorphism groups here, relying mostly on Lemma 2.6.
The three cases listed under (1) are clear. To deal with the cases listed under (2),
let E be the centre of a non-trivial extension of the form

0 −→ L1
α−−→ E

β−−→ L2 −→ 0

with PL1
= PL2

.
In case L1 � L2, using the fact that the extension is assumed to be non-split

we immediately get Hom(L1, E) ∼= C, Hom(E,L1) = 0, Hom(E,L2) ∼= C, and
Hom(L2, E) = 0. Applying now Hom(E, ·) to the defining exact sequence of E we
obtain Hom(E,E) ∼= C, hence Aut(E) ∼= C∗.

Suppose now that L1
∼= L2 =: L. Let σ ∈ Hom(E,L). Then, σ ◦α = 0, otherwise σ

would be a retraction of α, contradicting the assumption that the extension is non-
split. Consequently, σ factors through β, i.e., σ = cβ for some c ∈ C. In particular,
Hom(E,L) ∼= C. Similarly we get Hom(L,E) ∼= C. Applying as before Hom(E, ·) to
the defining exact sequence of E, we get

0 −→ Hom(E,L)
α ◦ ·−−−−→ Hom(E,E)

β ◦ ·−−−−→ Hom(E,L).

The image of an element φ in Hom(E,E) through the map Hom(E,E)
β◦·−→ Hom(E,L)

is of the form aβ for some a ∈ C, with a 6= 0 if φ ∈ Aut(E). With this notation
β ◦ (φ− a IdE) = 0, hence φ− a IdE = α ◦ cβ = c · α ◦ β and the desired description
of Aut(E) follows. �
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Corollary 2.11. — Up to a multiplicative constant every semistable non-polystable
sheaf E of rank 2 on X gives rise to a unique extension

0 −→ L1 −→ E −→ L2 −→ 0,

with rank one torsion free sheaves L1, L2 on X such that PL1
= PL2

.

2.5. Basic geometric properties of the stack of semistable sheaves. — In our basic
conventions regarding algebraic spaces we follow [Alp13, §2]. In particular, algebraic
spaces are sheaves in the étale topology and their diagonal morphisms are assumed
to be quasi-compact. This is in line with the conventions adopted in Knutson’s book
[Knu71]. We point out that the conventions of the Stacks Project are a priori different,
see [Sta19, Tag 025X], but eventually equivalent, see [Sta19, Tag 076L]. In our basic
conventions regarding algebraic stacks we follow [Sta19].

We consider the stack X := Cohss
(X,ω),τ of semistable sheaves on (X,ω) with

fixed rank and Chern classes; the latter data will be collected in a vector τ =

(r, c1, . . . , c2 dimX), which we call the type of the sheaves under consideration. This is
an algebraic stack locally of finite type over C since it satisfies Artin’s axioms [Alp15,
Th. 2.20]; see also [AHR15, Th. 2.19].

2.5.1. Quotient stack realisation. — The stack X may be realised as a quotient stack
in the sense of [Alp15, Def. 3.1] in the usual way; we quickly recall the construction,
which is explained for example in [HL10, §4.3] or [Alp13, Ex. 8.7]: choose an ample
line bundle OX(1) and an integer m such that all semistable sheaves (with respect
to ω) with fixed rank and Chern classes τ on X are m-regular with respect to OX(1).
This is possible since we have boundedness for such sheaves by Proposition 2.5. Since
the rank and the Chern classes of the sheaves F under consideration are fixed, by m-
regularity and Riemann-Roch we obtain that h0(F (m)) is constant, equal to N ∈ N.
Setting V := CN , H := V ⊗COX(−m), we obtain for any F as above an epimorphism
of OX -modules ρ : H → F as soon as we have fixed an isomorphism V → H0(F (m)).
Moreover, the induced map H0(ρ(m)) : H0(H (m)) → H0(F (m)) is bijective. We
thus get a point [ρ : H → F ] in the open (quasi-projective) subscheme R of QuotH

of semistable quotients F of H with type τ that induce isomorphisms at the level
of H0(ρ(m)) : H0(H (m)) → H0(F (m)). The natural action of the linear group
G := GL(V ) on V induces an action on QuotH leaving the open subset R invariant.
Let F be the universal quotient sheaf restricted to X×R. It is a G-sheaf and it allows
to define an isomorphism from the quotient stack [R/G] to X . Indeed, an object of
[R/G] is a triple (T, π : P → T, f : P → R), where T is a scheme, π is a principal
G-bundle and f is a G-equivariant morphism. Then the G-sheaf obtained from F by
pullback to X × P gives a flat family of semistable sheaves on X parametrised by T
and thus an object of X . Conversely if E is a flat family of semistable sheaves of type τ
on X parametrised by a scheme S, then as in the proof of [HL10, Lem. 4.3.1] the frame
bundle R(E (m)) associated to it gives an object (S,R(E (m))→ S,R(E (m))→ R) of
[R/G].
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As one consequence of the above analysis, we notice that X has affine diagonal
morphism; in particular, X is an Artin stack in the sense of [Alp13, §2]. Indeed, using
the chart R→X , in order to check that the map X →X ×SpecC X is affine comes
down to showing that G× R → R × R, (g, q) 7→ (q, g • q) is affine. But this is a map
of R-schemes, where G×R is affine over R and R×R is separated over R, hence the
conclusion follows by part (2) of [Sta19, Tag 01SG].

2.5.2. Closed points and closures of points. — We will characterise closed points in
terms of polystability and show that polystable degenerations are unique. Grauert
semicontinuity, see [Har77, Prop. III.12.8], is the key principle at work here. With
a view towards the discussion carried out in subsequent parts of the paper we will
restrict ourselves to the case of coherent sheaves having rank two.

In the subsequent discussion, we will use the following notation: If G is an algebraic
group and X is a G-scheme, then for x ∈ X(C) we denote by [x]G the image of x
under the morphism X → [X/G]. We will also use the same notion for the associated
points in the corresponding topological spaces |X| and |[X/G]|.

Proposition 2.12 (Characterising closed points). — Let z ∈ R be a closed point.
Then, the following are equivalent.

(1) The point [z]G ∈ |[R/G]| ∼= |X | is closed.
(2) The G-orbit G • z ⊂ R is closed.
(3) The sheaf Fz is polystable.

Proof. — The equivalence “(1) ⇔ (2)” follows directly from the definitions. In or-
der to show “(2)/(1) ⇒ (3)”, assume that Fz is non-polystable. Then, Fz can be
realised as a non-trivial extension 0 → L1 → Fz → L2 → 0, see Proposition 2.10.
Consequently, Fz degenerates to L1 ⊕ L2 over the affine line, and therefore does not
give a closed point of X . It remains to show that orbits of polystable sheaves are
closed. This however follows as in [Gie77, Lem. 4.7], whose proof we reproduce here:
Suppose that Fz is polystable and and that F is a flat family of semistable sheaves
over a non-singular curve C such that for some point P ∈ C one has FQ ∼= Fz for all
Q ∈ Cr{P}. Let E be any stable sheaf on X with pωE = pωFz

. By upper semicontinu-
ity of the function Q 7→ Hom(E,FQ) we see that FP contains at least as many copies
of E as are contained in Fz. Thus FP ∼= Fz. �

The following now is a consequence of Proposition 2.10.

Corollary 2.13. — Every closed point of X has linearly reductive stabiliser.

Next, we look at closures of non-closed points.

Proposition 2.14 (Uniqueness of polystable degenerations). — For any C-point y
of X , there exists a unique closed point in {y} ⊂ |X |.

Proof. — If Fz is polystable, by Proposition 2.12 the corresponding point y = [z]G
is closed, so there is nothing to show.
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If Fz is semistable but not polystable, then clearly the closed point corresponding
to the polystable sheaf grJH(Fz) lies in {[z]G}. Suppose that there is another closed
point x of |X | lying in {[z]G}, and let E be a polystable sheaf representing x. Let

0 −→ L1 −→ Fz −→ L2 −→ 0

be the unique extension with rank one torsion free sheaves L1, L2 on X such that
PL1

= PL2
as ascertained by Corollary 2.11. Grauert semicontinuity then implies

dimC Hom(E ,Fz) > dimC Hom(Fz,Fz),

dimC Hom(L1,E ) > dimC Hom(L1,Fz), and
dimC Hom(E , L2) > dimC Hom(Fz, L2),

from which together with Proposition 2.10 we deduce that the polystable sheaf E has
to be isomorphic to L1 ⊕ L2

∼= grJH(Fz). �

2.5.3. Slices and local quotient presentations. — We note that by construction R ad-
mits G-equivariant locally closed embeddings into the projective spaces associated
with finite-dimensional complex G-representations, arising from natural G-linearised
ample line bundles on the Quot-scheme induced by OX(1), see [HL10, p. 101]. This
fact will be used in the proof of the subsequent result, which provides rather ex-
plicit local quotient presentations for the stack X . We continue to use the notation
established in Section 2.5.1.

Proposition 2.15 (Local quotient presentation induced by slice). — Let E be a semi-
stable sheaf on X corresponding to a closed point x ∈ X (C). Let s ∈ R project to
the closed point [s]G ∈ [R/G] that is mapped to x by the isomorphism [R/G] ∼= X

established above. Then, there exists a Gs-invariant, locally closed, affine subscheme S
in R with s ∈ S such that TsR = TsS⊕Ts(G·s), such that the morphism G×S → R is
smooth, and such that the induced morphism f : [S/Gs]→X is étale and affine, maps
the point 0 := [s]Gs ∈ [S/Gs](C) to x, and induces an isomorphism of stabiliser groups
Gs = Aut[S/Gs](0)

∼=−→ AutX (x) ∼= Aut(E); i.e., f is a local quotient presentation of
X at x in the sense of [AFS17, Def. 2.1].

Proof. — By Corollary 2.13, the stabiliser subgroup AutX (x) ∼= Aut(E) is linearly re-
ductive. Consequently, the proof of the claim presented in Remark 3.7 and Lemma 3.6
of [AK16] continues to work even without the normality assumption made there, if
we replace the application of Sumihiro’s Theorem (which uses the normality assump-
tion) by the observation made in the paragraph preceding the proposition that in
our setup right from the start R comes equipped with a G-equivariant locally closed
embedding into the projective space associated with a finite-dimensional complex G-
representation. Alternatively, see [JS12, Props. 9.6 and 9.7]. �

Corollary 2.16 (Slice is stabiliser-preserving). — In the setup of Proposition 2.15,
let t ∈ S ⊂ R and let Ht be the stabiliser group of the action of H := Gs on S at the
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point t ∈ S. Then, we have Ht = Gt. As a consequence, we obtain

Ht
∼= Aut(Ft)

under the morphism of stabiliser groups induced by f : [S/Gs]→X .

Proof. — As the H-action on S ⊂ R is obtained by restricting the G-action to the
subgroup H, we clearly have the inclusion

(2.10) Ht ⊂ Gt ∀ t ∈ S.

Moreover, as for all t ∈ S the stabiliser subgroup Gt is isomorphic to the automor-
phism group Aut(Ft) of the corresponding member of the family F , and is therefore
connected by Proposition 2.10, it suffices to show that the two groups appearing in
(2.10) have the same dimension. Consider the twisted product G×H S, which is the
quotient ofG×S with respect to the properH-action given by h • (g, t) := (gh−1, h • t).
The fact that f : [S/Gs] → X is étale implies that the natural G-equivariant mor-
phism

ϕ : G×H S −→ R, [g, t] 7−→ g • t

is étale. In particular, the restriction of ϕ to any G-orbit is étale. We conclude that

dimHt = dimG[e,t] = dimGϕ([e,t]) = dimGt,

as desired. �

The subsequent results will be crucial for the proof of our main result, as it relates
abstract deformation theory to the concrete group actions appearing in our setup, see
Section 3.2.3.

Proposition 2.17 (Slice provides semi-universal deformation). — In the situation of
Propositions 2.15, the analytic germ (San, s) of San at s together with the restriction
(U an, s) := (F |(S,s)×X)an of the universal family F of R to (San, s) is a semi-
universal deformation of E.

Proof. — As both [S/Gs] and X are algebraic stacks, there exist formal miniversal
deformations D̂ef(x) and D̂ef([s]) of x ∈ X (C) and [s] ∈ [SpecA/Gx](C). Moreover,
the local quotient presentation establishes an isomorphism of formal schemes f̂ :

D̂ef([s]) → D̂ef(x). We will check that the first space is isomorphic to the formal
completion Ŝ of S at s.

We claim that the natural morphism (S, s) → ([S/Gs], 0) is formally versal at s
in the sense of [AHR15, Def. A.8]. For this, we check the assumptions of [AHR15,
Prop.A.9]: Both s and 0 are closed points. Moreover, the morphism S → [S/Gs] is
representable and smooth. Hence, the induced map of the 0-th infinitesimal neigh-
bourhoods S[0] → [S/Gs]

[0] is likewise representable, and for every n ∈ N the induced
map of n-th infinitesimal neighbourhoods S[n] → [S/Gs]

[n] is smooth. Finally, the
stabiliser of [S/Gs] at s, which is equal to Gs ∼= Aut(E), is reductive. Consequently,
part (2) of [AHR15, Prop.A.9] implies that (S, s)→ ([S/Gs], 0) is formally versal at s,
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as claimed. Moreover, as s is a Gs-fixed point, the induced map on tangent spaces
TsS → T0[S/Gs] is an isomorphism.

As a consequence, we see that the restriction Û of the universal family F to the
formal completion Ŝ of S at s is an object of X over Ŝ that is formally miniversal
at s in the sense of [Alp15, Def. 2.8]. Moreover, U an = (F |S×X)an obviously provides
an analytification of Û . It follows from the fact that a versal deformation of E exists
and from [Fle78, Satz 8.2] that the germ (S, s) of S at s together with the restriction
of U an to this germ is a semi-universal deformation of E. �

Remark 2.18. — Using analytic stacks, an alternative proof can be given as follows:
As in the above proof, one easily checks that the map (S, s)an → [S/Gs]

an = [San/Gs]

is smooth and the induced map on tangent spaces is an isomorphism. These two
conditions are equivalent to the conditions in the definition of a semi-universal family,
cf. [KS90, p. 19].

We also note two properties of the Aut(E)-action on its semi-universal space
(S, s)an:

Lemma 2.19 (Action of the homothety subgroup). — In the situation of Proposi-
tion 2.15, the subgroup of homotheties C∗ ·IdE of E acts trivially on the semi-universal
deformation space S.

Proof. — Under the identification of Aut(E) with Gs ⊂ GL(V ), the subgroup C∗ ·IdE
is mapped to C∗ · IdV , which acts trivially on QuotH , see [HL10, proof of Lem. 4.3.2].

�

Lemma 2.20 (Action on tangent space). — Using the identification of Aut(E) with Gs,
the tangent space of (S, s) is Aut(E)-equivariantly isomorphic to E1(E,E), where the
action on the latter space is as described in Section 2.2.

3. Construction of the moduli space

The aim of this section is to construct a good moduli space for the stack X :=

Cohss
(X,ω),τ of semistable sheaves with fixed type τ = (2, c1, . . . , c2 dimX) on (X,ω). As

we have seen in Section 2.5, whose notation we will use in our subsequent arguments,
this is an algebraic stack with affine diagonal and locally of finite type over C, which
can be realised as a quotient stack X ∼= [R/G]. Using this global quotient presentation
as well as the local slice models also constructed in Section 2.5, we will prove that the
algebraic stack X admits a good moduli space by checking the conditions of [AFS17,
Th. 1.2].

To set the stage, recall the following fundamental definition from [Alp13], to
which the reader is referred for motivating examples (e.g. from the theory of Deligne-
Mumford stacks and from Geometric Invariant Theory) and for basic properties.
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Definition 3.1. — Let X be an algebraic stack with affine diagonal. A morphism
φ : X → X to an algebraic space X is a good moduli space if the push-forward functor
on quasi-coherent sheaves is exact and if φ induces an isomorphism OX ∼= φ∗OX .

The following is the main result of this section.

Theorem 3.2 (Existence). — The stack Cohss
(X,ω),τ of ω-semistable sheaves with rank

two and fixed Chern classes admits a good moduli space M ss := M ss
(X,ω),τ with affine

diagonal.

Proof. — Recall the criteria for the existence of a good moduli space given in [AFS17,
Th. 1.2]:

(1) For any C-point y ∈ X (C), the closed substack {y} ⊂ X admits a good
moduli space.

(2) For any closed point x ∈ X (C) there exists a local quotient presentation
f : W →X around x in the sense of [AFS17, Def. 2.1] such that

(a) f sends closed points to closed points,
(b) f is stabiliser preserving at closed points of W .

Following the structure of these conditions, our proof is subdivided into two big steps,
establishing Condition (1) and (2), respectively. The claim regarding affineness of the
diagonal of M ss follows from the construction carried out in the proof of [AFS17,
Th. 1.2], which is summarised in [AFS17, §1.1].

3.1. Condition (1). — If y is closed, the condition is easily verified, as the stabiliser
group of y is linearly reductive. So, suppose that y corresponds to a semistable sheaf F
appearing as an extension

0 −→ L1 −→ F −→ L2 −→ 0,

where L1, L2 are rank one sheaves with the same Hilbert-polynomial P .
To deal with such extensions we consider the stack of flags DrapX(P, P ) whose

objects over S are sheaves F1 ⊂ F2 on X × S such that F1 and F2/F1 are flat
over S with fixed Hilbert-polynomials P and P respectively, cf. [HL10, §2.A.1]. In
fact since the Hilbert polynomial Pω is constant in flat families, DrapX(P, P ) is a
closed and open substack of the stack Quot((X × Coh(X))/Coh(X),F ), where F is
the universal sheaf on X × Coh(X).

We note that the forgetful morphism φ : DrapX(P, P )→ Coh(X), (F1,F2) 7→ F2

is representable, cf. [Sta19, Tag 04YY]. We next claim that φ is proper in the sense of
[LMB00, Définition 3.10.1]. Indeed, for any object of Coh(X), given by a flat family F

of coherent sheaves on X parametrised by a scheme S we get a Cartesian diagram

S ×Coh(X) DrapX(P, P ) //

φS
��

DrapX(P, P )

φ
��

S // Coh(X)
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in which the first vertical map comes from the universal family of quotients of F

relative to S of Hilbert polynomial P . Thus, the morphism φS is the natural map
QuotF/S(P ) → S, which is proper by [Tom19, Cor. 6.1].(2) Hence, also φ is proper.
In our case since X is projective it follows in fact that φ is even projective, but we
will not need this fact.

Let now P = 1
2P

ω
E , where E is a coherent sheaf on X of type τ . We consider

the substack Drapss
X(P, P ) ⊂ DrapX(P, P ) of sheaves F1 ⊂ F2 as before such that

moreover F2 is semistable of Hilbert polynomial 2P . Note that in this situation
the quotient F2/F1 has rank one and no torsion, since otherwise the saturation
of F1 in F2 would contradict the semistability of F2. We thus get a morphism
Drapss

X(P, P ) →M s(X,P ) ×M s(X,P ), (F1,F2) 7→ (F1,F2/F1) whose fibre over
a closed point (L1, L2) ∈M s(X,P )×M s(X,P ) is the closed substack

DrapX(L1, L2) ⊂ Drapss
X(P, P )

of flags F1 ⊂ F2 such that the fibres of F1 are isomorphic to L1 and the fibres of
F2/F1 are isomorphic to L2. Here M s(X,P ) denotes the moduli space of rank one
stable sheaves on X with Hilbert polynomial P .

3.1.1. The case when L1
∼= L2. — We look at points y ∈ Coh(X)(C) corresponding

to coherent sheaves F on X that sit in a short exact sequence of the type

0 −→ L −→ F −→ L −→ 0.

Such coherent sheaves F are semistable with respect to any polarisation on X, so also
with respect to the ample line bundle OX(1). Let h = c1(OX(1)) and consider the
open substack V := Cohss

(X,ω),τ ∩Cohss
(X,h),τ of Cohss

(X,ω),τ . Then, y ∈ V (C). The stack
DrapX(L,L) is proper over both Cohss

(X,ω),τ and Cohss
(X,h),τ , and its image contains

the respective closures of y in Cohss
(X,ω),τ and Cohss

(X,h),τ , which therefore coincide.
It is thus enough to show that the closure {y} in Cohss

(X,h),τ admits a good moduli
space. But the latter stack admits a good moduli space itself [Alp13, Ex. 8.7], so the
same will hold for the closed substack {y} by [Alp13, Lem. 4.14].

3.1.2. The case when L1 � L2. — For later usage in the subsequent argument, we
recall the following well known result.

Lemma 3.3. — If L1 � L2, then DrapX(L1, L2) ∼= [E1(L2, L1)/C∗ × C∗].

Proof. — We only sketch the line of the argument, which is most likely already present
somewhere in the literature on the subject.

We choose to identify C∗ × C∗ with Aut(L1)× Aut(L2). Then the induced action
on W := E1(L2, L1) is given by w(θ1, θ2) = θ1θ

−1
2 w. With this convention if w ∈ W

(2)The cited result covers our setup, in which the Hilbert polynomial is considered with respect to
a Kähler class ω. If one restricts to Cohss

(X,ω),τ
an alternative argument using the classical version for

the properness of the Quot scheme combined with Proposition 2.5 on the boundedness of semistable
sheaves should be possible.
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is the class of an extension 0→ L1
α−→ F

β−→ L2 → 0 then θ1θ
−1
2 w is represented by

the second line of the diagram

0 // L1
α //

θ1 IdL1

��

F
β

//

IdF
��

L2
//

θ2 IdL2

��

0

0 // L1

θ−1
1 α

// F
θ2β

// L2
// 0.

An object of [W/C∗ ×C∗] is a triple (T, P
π−→ T, P

f−→W ), where T is a scheme,
P

π−→ T is a principal C∗ × C∗-bundle and P f−→ W is a C∗ × C∗-equivariant mor-
phism, cf. [Alp15, Def. 3.1]. To such an object we associate an object of DrapX(L1, L2)

in the following way. By [LP97, Chap. 7], [Lan83, Cor. 3.4] there exists a universal ex-
tension

(3.1) 0 −→ L1,W −→ F −→ L2,W −→ 0

on W × X which we pull back to P × X. The action of C∗ × C∗ on W induces a
C∗×C∗-linearisation on the sheaves L1,P and FP , which thus descend to T ×X and
give the desired object in DrapX(L1, L2) over T , [HL10, Th. 4.2.14].

For the converse we use the fact that Ms(X,P ) admits local universal families
(cf. [HL10, App. 4D.VI]), so for any object (F1,F2) of DrapX(L1, L2) over S, one
has F1

∼= L1,S ⊗L1,X and F2/F1
∼= L2,S ⊗L2,X , for suitable line bundles L1,L2

on S. Let P1 → S, P2 → S be the C∗-principal bundles associated with the line
bundles L1,L2 on S and let P := P1 ×S P2. On P × X we get a “tautological”
extension

0 −→ L1,P −→ F2 −→ L2,P −→ 0,

which is the pullback of the universal extension (3.1) by means of some equivariant
morphism P

f−→ W by [Lan83, Cor. 3.4] again. The triple (S, P → S, P
f−→ W ) is

the corresponding object of [W/C∗ × C∗] that we were looking for. �

As L1 � L2 the natural morphism DrapX(L1, L2) → Cohss
(X,ω),τ is proper with

finite fibres, hence finite, cf. [Sta19, Tag 0F2N], and therefore affine. Let YL1,L2 ⊂
Cohss

(X,ω),τ be its image. We will use [AFS17, Prop. 1.4] to show that YL1,L2
admits

a good moduli space. From this and [Alp13, Lem. 4.14] it will follow that the closed
substack {y} ⊂ YL1,L2 likewise admits a good moduli space.

Lemma 3.3 states that DrapX(L1, L2) ∼= [E1(L2, L1)/C∗×C∗], so that in particular
DrapX(L1, L2) admits a separated good moduli space obtained using classical invari-
ant theory. It remains to check that YL1,L2

is a global quotient stack and admits local
quotient presentations. As a closed substack of the global quotient stack X ∼= [R/G],
YL1,L2 is a global quotient stack as well, cf. [Alp15, Def. 3.4]. Moreover,the morphism
DrapX(L1, L2) → YL1,L2

is itself a local quotient presentation for YL1,L2
, [AFS17,

Def. 2.1]. Indeed, the only condition of that definition which we haven’t yet checked is
the fact that the morphism DrapX(L1, L2)→ YL1,L2

is étale. By [Sta19, Tag 04HG]
it is enough to show that the morphism DrapX(L1, L2) → Cohss

(X,ω),τ is unramified,
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since finiteness has already been established. This follows from the differential study
of the Quot scheme, [HL10, Prop. 2.2.7], applied to diagrams of the form

(3.2)

S ×Cohss
(X,ω),τ

DrapX(L1, L2) //

��

DrapX(L1, L2)

��

S // Cohss
(X,ω),τ

as before and from the fact that Hom(L1, L2) = 0, as L1 � L2.

3.2. Condition (2). — We next turn our attention to condition (2). Let x ∈ X (C)

be a closed point and Gx its stabiliser. We will do a case by case analysis depending
on the type of a representative E of x.

3.2.1. The stable case. — The case when E is stable is quickly dealt with. By openness
of stability, see Theorem 2.9, it suffices to construct a local quotient presentation at [E]

with the desired properties in the open substack Cohs
(X,ω),τ ⊂ X of stable sheaves

on X. We consider the corresponding open G-invariant subspace Rs ⊂ R of stable
quotients and choose a point p ∈ Rs mapping to x under the natural map [R/G]→X .
We note as a first point that every G-orbit in Rs is closed in R by Proposition 2.12,
as a second point that for every point p ∈ Rs the stabiliser group Gp is isomorphic
to C∗ as Ep is simple, and as a third point that it follows from Lemma 2.19 that Gp
acts trivially on the slice S 3 p whose existence is guaranteed by Proposition 2.15
and which, shrinking S if necessary, we may assume to be contained in Rs. As every
G-orbit in Rs is closed in R, condition (2a) is fulfilled for the quotient presentation
induced by S, whereas condition (2b) is guaranteed to hold by Corollary 2.16. This
concludes the discussion of the stable case.

3.2.2. The case of a polystable point with Aut(E) ∼= GL(2,C). — If E is polystable
with Aut(E) ∼= GL(2,C), x is a point in the open substack V = Cohss

(X,ω),τ∩Cohss
(X,h),τ

of Cohss
(X,ω),τ . Let Rh-ss be the corresponding G-invariant open subscheme of R con-

sisting of h-semistable quotients and let Rss be the G-invariant open subscheme of R
consisting of ω-semistable quotients. Both subschemes contain the G-orbit G • p cor-
responding to E. As Cohss

(X,h),τ admits a good moduli spaceMh-ss and as x is a closed
point of Cohss

(X,h),τ , there exists an open, G-invariant subscheme U ⊂ Rh-ss∩Rss that
contains x and is saturated with respect to the moduli map Rh-ss →Mh-ss. It follows
that the restriction of the moduli map to U yields a good quotient U → U//G ↪→
Mh-ss for the G-action on U . The desired quotient presentation is then produced by
an application of Luna’s slice theorem, see for example [Dré04], at the closed orbit
G • p ⊂ U .

3.2.3. The case of a polystable point with Aut(E) ∼= C∗ × C∗. — We now start giving
the main argument, which is slightly involved and therefore divided into several steps.

Setup. — Under the assumption, the point x is in the image Y of Drapss
X(P, P )

which is proper over X . Moreover, inside Drapss
X(P, P ) we have a closed substack

corresponding to the condition F1
∼= F2/F1. Let Z be the image of this closed

substack in Y . The point x lies in the complement of Z , so we may assume that the
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image of the local quotient presentation f guaranteed by Proposition 2.15 is contained
in the complement of Z too. We will use the notation of that proposition throughout
the rest of the proof.

Basic properties of the action of Aut(E). — Recall the following properties of the action
of Aut(E) on S = Spec(A):

(1) The subgroup of homotheties C∗ · IdE ⊂ Aut(E) acts trivially on S, see
Lemma 2.19; the action of Aut(E) hence factors over an action of C∗ ∼= (C∗×C∗)/C∗
on S.

(2) The fibres F over the fixed points for the action of Aut(E) have Aut(F ) ∼=
C∗ × C∗ and conversely, if Aut(Ft) = C∗ × C∗ for some t ∈ S, then t is contained in
the Aut(E)-fixed point set in S, see Corollary 2.16.

The proof is completed once we establish the following

Key technical claim. — After S has been possibly shrunk further, the orbits of non-
polystable fibres F by the Aut(E)-action are not closed.

The proof of this claim will be given in several steps.

Reducing to a low dimensional setup. — The set of points of S parametrising non-
polystable fibres is constructible by semicontinuity arguments, and so is the set of
points belonging to closed orbits by Luna’s slice theorem. Both sets are invariant
under the Aut(E)-action. If the closure of their intersection does not contain s, we
just shrink S so that it no longer intersects this closure. So, aiming for a contradiction,
suppose that the closure does contain s. As this closure is an invariant closed subset
of S, its image in S//Aut(E) := Spec(AAut(E)) is a closed subvariety. Next, we will in
a two-step procedure select a one-dimensional analytic space germ inside this image
that captures the essential features of the situation.

By cutting down we get an irreducible curve C through the image o of s in
S//Aut(E) whose general points correspond to non-trivial closed Aut(E)-orbits in S
parametrising non-polystable sheaves. Let Z ⊂ SpecA be an irreducible component
of the inverse image of C in SpecA containing such a general orbit. Without loss of
generality, the only point of Z corresponding to a polystable sheaf is s. Then, Z is an
affine surface with a regular C∗-action and good quotient π : Z � C ⊂ S//Aut(E).
As π realises the equivalence relation

z1 ∼ z2 ⇐⇒ C∗ • z1 ∩ C∗ • z2 6= ∅,

the fibres of π are connected.
Let (B, o) be an analytic branch of (C, o), i.e., an irreducible component of the

analytic space germ (C, o), and let Y be the closure of ZB r Zo in ZB . This is an
irreducible analytic space over the germ (B, o). It comes equipped with the naturally
induced holomorphic C∗-action with quotient π : Y � (B, o), which continues to have
connected fibres.(3) We may suppose that B was chosen in such a way that s belongs

(3)There is a notion of “semistable quotients”, which is the holomorphic analogue of the notion
“good quotient”, e.g. see [HMP98]. Since in our case the quotient map arises as the restriction of a
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to Y . The fibre Yo over o ∈ B is affine and the only point of Y corresponding to a
polystable sheaf is s. We set Y ◦ := Y r {s}.

The following diagram sums up the relation between the geometric objects con-
structed so far:

(3.3)

(Y, s)

$$

(Yo, s)oo

��

// (S, s)

��

(B, o) // (S//Aut(E), o).

Introducing universal extension spaces. — For simplicity we denote again by F the
universal sheaf on X × Y . Any fibre F of F over a point y of Y appears as the
middle term of an extension 0 → L1 → F → L2 → 0, where L1 and L2 are stable of
fixed Hilbert polynomial P and non-isomorphic. If s 6= y ∈ Y , this extension is non-
trivial and unique up to a multiplicative constant in C∗, see Corollary 2.11. Moreover,
the sheaves parametrised by points lying in a fibre of π over some point of B r {o}
are all isomorphic, and thus they all correspond to the same extension, again up to
multiplication by a non-zero constant. Let Fs = L1,s ⊕ L2,s. The natural morphism
QuotF/Y (P )→ Y is hence one-to-one over Y ◦, whereas its fibre over s has two points
corresponding to L1,s and L2,s. Together with the analytic irreducibility of Y , these
properties imply that only one of the two quotients L1,s and L2,s over s, say L2,s, is
in the closure Y ′ of QuotF/Y (P )Y ◦ in QuotF/Y (P ). We denote by s′ the point of Y ′
lying over s and by Y ′o the fibre over o of the composition Y ′ → Y → B.

On X × Y ′ we have two rank one universal sheaves, the universal kernel and the
universal quotient, which we denote by L1 and L2, respectively. As explained in the
proof of Lemma 3.3 above, the corresponding extension 0→ L1 → F → L2 → 0 on
X × Y ′ restricted to X × Y ′o gives rise to a C∗ ×C∗-principal bundle P := P1 ×Yo P2

and an equivariant morphism P → W , where W := E1(L2,s, L1,s) is the space of
extensions of L2,s by L1,s. Let s′′ be any point of P lying over s′ ∈ Y ′o . At the
level of germs of complex analytic spaces, we get the following commutative diagram
extending (3.3):

(3.4)

(P, s′′)

��

// (W, 0)

χ

��

(Y ′, s′)

��

(Y ′o , s
′)

��

oo

(Y, s)

%%

(Yo, s)oo

��

// (S, s)

��

(B, o) // (S//Aut(E), o).

good quotient over a germ inside the original quotient space, we do not need to delve deeper into
this theory, though.
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Analysing the action of Aut(E). The automorphism group Aut(E) ∼= C∗ × C∗ acts
equivariantly on the induced diagram of the respective tangent spaces of the germs
above. Recall that by Proposition 2.17 the germ (S, s) may be viewed as the base
of the semi-universal deformation of E. From Lemma 2.20 we obtain an equivariant
isomorphism TsS

∼=−→ E1(L1,s ⊕ L2,s, L1,s ⊕ L2,s). The horizontal map in the second
row of the induced equivariant diagram

T0W
d0χ

// TsS

∼=
��

E1(L2,s, L1,s)

∼=
OO

// E1(L1,s ⊕ L2,s, L1,s ⊕ L2,s)

is the one described by Lemma 2.3, and the group action is induced by the action of
Aut(L1,s)×Aut(L2,s) ∼= C∗×C∗; in particular, note that the diagonal C∗ ⊂ C∗×C∗
operates trivially on both sides, cf. the proof of Lemma 3.3. Almost by definition, the
weight of the induced C∗-action on W is +1 or −1 depending on the isomorphism
C∗ ∼= (C∗ × C∗)/C∗ we have chosen. Without loss of generality, we will assume it to
be equal to +1.

Choose a C∗-equivariant closed embedding ψ : S ↪→ V into a finite-dimensional C∗
representation space V . By composing with the translation by the C∗-fixed point
ψ(s) if necessary, we may assume that ψ(s) = 0 ∈ V . Let V = V+ ⊕ V0 ⊕ V− be
the decomposition of V into subspaces according to the sign of the weights of the
C∗-action on V . From Diagram (3.4) and the consideration regarding the weight of
the action on W we infer that ψ embeds Yo into V+.

We claim that this implies that ψ embeds the reduced space Yred into V+ ⊕ V0.
Indeed, if not, there would exist a sequence of points zn = (zn,+, zn,0, zn,−) in
ψ(Yred) r (V+ ⊕ V0) converging to 0 in V . Then, we can find a sequence of ele-
ments λn ∈ C∗ with limn→∞ λn = 0 such that ‖λn • zn,−‖ = 1 for each n ∈ N. It
follows that (λn • (zn,+, zn,0))n∈N converges to 0 in V+ ⊕ V0 and that a subsequence
of (λn • zn)n∈N converges to a point of norm 1 in ψ(Yred)∩V−. Such a point would lie
in Yo contradicting the fact that Yo is mapped to V+ by ψ. Thus, Yred is embedded
into V+ ⊕ V0, as claimed.

This analysis finally leads to the desired contradiction: the only closed orbits of
the C∗-action on V+ ⊕ V0 are the fixed points, whereas by construction Y has many
positive-dimensional closed orbits.

This concludes the proof of the key technical claim and hence the proof of Theo-
rem 3.2, establishing the existence of a good moduli space M ss

(X,ω),τ . �

4. Properties of the moduli space

In this section we will establish the functorial properties of M ss
(X,ω),τ and describe

its closed points. Moreover, we will show thatM ss
(X,ω),τ is separated and in fact proper.
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4.1. Functorial properties. — Analogously to [HL10, §4.1] we consider the functors
M ′ := M ′(X,ω),τ : (Sch/C) → (Sets), M := M ′/ ∼, where, for a scheme S over C,
M ′(S) is the set of isomorphism classes of flat families over S of semistable sheaves
of type τ on X and two such families F,E ∈M ′(S) are equivalent through ∼ if there
exists a line bundle L ∈ Pic(S) such that E is isomorphic to F ⊗LX . As explained
in [HL10, §4.1], if an algebraic space M corepresents the functor M ′, then it also
corepresentsM and the other way round. Finally, using [HL10, Lem. 4.3.1] and [Alp13,
Th. 4.16(vi)] we get:

Proposition 4.1. — M ss
(X,ω),τ corepresents the functors M ′(X,ω),τ and M (X,ω),τ .

4.2. Closed points of the moduli space. — Recall that two semistable sheaves on X
are called S-equivalent if their Jordan-Hölder graduations are isomorphic. By [Alp13,
Th. 4.16(iv)], [HL10, Lem. 4.1.2] and our previous considerations we immediately ob-
tain:

Proposition 4.2 (Closed points of moduli space). — The closed points of M ss
(X,ω),τ

correspond precisely to S-equivalence classes of semistable sheaves of type τ on X.

4.3. Separatedness. — The aim of the current section is to prove that the con-
structed moduli space is separated. This will essentially follow from a refinement of
Langton’s valuative criterion for separatedness, which is only formulated in [Lan75] for
two semistable sheaves, at least one of which is stable. But whereas Langton’s theorem
is stated for slope-semistable sheaves, we are working within the abelian category of
Gieseker-Maruyama-semistable sheaves of fixed Hilbert polynomial with respect to ω
(and 0), cf. Proposition 2.7. This fact is essential for the following discussion to go
through.

Setup. — We consider a discrete valuation ring A over C with maximal ideal m gen-
erated by a uniformising parameter π. We set K the field of fractions of A. We denote
by XK := X × Spec(K) the generic fibre and by XC := X × Spec(C) the special
fibre of XA := X × Spec(A) and by i : XK → XA, j : XC := X → XA the inclu-
sion morphisms. We denote furthermore by ξ and by Ξ the generic points of XC and
of XK , respectively. Note that OXA,ξ is a discrete valuation ring with maximal ideal
generated by π.

Langton edges. — Let EK be a torsion-free sheaf of rank r on XK and let E ⊂ i∗EK
be a coherent torsion-free sheaf of rank r on XA such that i∗E = EK . Then Eξ is a
rank r free OXA,ξ-submodule of (EK)Ξ. Conversely, by [Lan75, Prop. 6] any rank r free
OXA,ξ submodule M of (EK)Ξ gives rise to a unique torsion-free coherent subsheaf E
of i∗EK on XA such that i∗E = EK , Eξ = M and j∗E is torsion-free on XC. Langton
introduces an equivalence relation on such submodules by putting M ∼ πnM and
calls two equivalence classes [M ], [M ′] adjacent if there exists a direct sum decompo-
sition M = N ⊕ P such that M ′ = N + πM . Equivalent modules induce isomorphic
extensions of EK to coherent subsheaves on XA as in [Lan75, Prop. 6]. This is no
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longer true in general for adjacent classes. We describe what happens in this case in
the following

Remark 4.3. — In the above setup suppose that [M ] and [M ′] are adjacent classes
of free rank r submodules [M ] and [M ′] of (EK)Ξ and let E, E′ denote the co-
herent sheaf extensions of M and M ′ to XA. We may suppose that M has a basis
(e1, . . . , er) over OXA,ξ such that for a suitable s ∈ {1, . . . , r} the module M ′ admits
(e1, . . . , es, πes+1, . . . , πer) as a basis. Then the inclusion of OXA,ξ-modules M ′ ⊂M
induces an inclusion of coherent sheaves E′ ⊂ E on XA which restricts to a morphism
α : E′C → EC on XC, whose image is the unique saturated coherent subsheaf F of EC
such that Fξ is the OXC,ξ-vector space generated by e1, . . . , es, where the elements ej
are the images of ej under M → (M ⊗ OXA,ξ/πOXA,ξ). In [Lan75, Prop. 7] it is
shown that F is saturated in EC and that E′ appears as what is called an elementary
transformation of E and in particular that Ker(α) ∼= Coker(α). One gets two exact
sequences

0 −→ Ker(α) −→ E′C −→ Im(α) −→ 0,(4.1)
0 −→ Im(α) −→ EC −→ Coker(α) −→ 0(4.2)

of torsion-free sheaves on XC. Langton calls the passage from [M ] to [M ′] an edge
and denotes it by [M ]− [M ′].

The following is the key technical observation of this section, eventually proving
separatedness of the moduli space. Its proof is modelled after [Lan75, p. 101–102].

Proposition 4.4. — Let EK be a torsion-free sheaf of rank r on XK and let E1, E2 ⊂
i∗EK be two torsion-free coherent sheaves on XA such that i∗E1 = i∗E2 = EK and
such that E1,C := j∗E1 and E2,C := j∗E2 are torsion-free on XC. Then, the following
statements hold.

(1) The sheaves E1,C and E2,C have the same (reduced) Hilbert polynomial.
(2) If E1, E2 correspond to an edge with induced morphism α as in Remark 4.3, and

if E1,C and Im(α) are semistable with reduced Hilbert polynomial p, then both Ker(α)

and E2,C are semistable with reduced Hilbert polynomial p. Moreover, grJH(E1,C) ∼=
grJH(E2,C).

(3) If E1,C and E2,C are semistable on XC, then they can be connected by a fi-
nite chain of edges [M ] − [M ′], [M ′] − [M ′′],. . . , [M (mr−1)] − [M (mr)] such that all
the associated sheaf extensions E = E1, E′,. . . , E(mr) = E2 to XA are families of
semistable sheaves. Moreover,

grJH(E1,C) ∼= grJH(E2,C).

Proof. — We start by noting that E1 and E2 are flat over Spec(A) since they are
torsion free and A is a discrete valuation ring. Moreover, since they coincide over
Spec(K), their restrictions to XC have the same Hilbert polynomial, which proves the
first assertion.
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If E1, E2 correspond to an edge and if E1,C and Im(α) are semistable with reduced
Hilbert polynomial p, then using the exact sequences in Remark 4.3 together with
Proposition 2.7 we see that also Ker(α) and E2,C are semistable with reduced Hilbert
polynomial p. We moreover get grJH(E1,C) ∼= grJH(E2,C), thus establishing the second
assertion.

We suppose now that E1,C and E2,C are semistable on XC and consider now OXA,ξ-
modules E1,ξ, E2,ξ. We can find a basis (e1, . . . , er) of E1,ξ over OXA,ξ such that
(πm1e1, . . . , π

mrer) is a basis of E2,ξ, where m1,. . . , mr are suitable integers. Up to
replacing E2 by πnE2 for some n and up to permuting the ei-s we may suppose that
m1 = 0 and that m1 6 m2 6 · · · 6 mr. We will construct a sequence of mr edges

[M ]− [M ′], [M ′]− [M ′′], . . . , [M (mr−1)]− [M (mr)]

starting at [M ] = [E1,ξ] and ending at [M (mr)] = [E2,ξ] in the following way. If s is such
that ms = m1 = 0 and ms+1 > ms, we set M ′ := (e1, . . . , es, πes+1, . . . , πer) to be
the OXA,ξ-submodule of (EK)Ξ generated by the elements e1, . . . , es, πes+1, . . . , πer.
We next set

M ′′ := (e1, . . . , es, π
2es+1, . . . , π

2er),
...

M (ms+1) := (e1, . . . , es, π
ms+1es+1, . . . , π

ms+1er)

and continue with

M (ms+1+1) := (e1, . . . , es, π
ms+1es+1, . . . , π

ms+1et, π
ms+1+1et+1, . . . , π

ms+1+1er),

where t is such that mt = ms+1, mt+1 > mt and so on until we reach E2,ξ. For this
sequence of edges we denote by E = E1, E′,. . . , E(mr) = E2 the associated sheaf
extensions to XA and by α1, . . . , αmr the induced morphisms. By construction we
have Im(α1) = Im(α1 ◦ α2 ◦ · · · ◦ αmr ). By Proposition 2.7 it follows that Im(α1)

is semistable with reduced Hilbert polynomial p := pE1,C = pE2,C so by the second
assertion of the proposition also E′C is semistable with reduced Hilbert polynomial p
and grJH(EC) ∼= grJH(E′C). Iterating this piece of argument we thus obtain

grJH(E1,C) ∼= grJH(E′C) ∼= · · · ∼= grJH(E
(mr−1)
C ) ∼= grJH(E2,C). �

Remark 4.5. — The proof of Proposition 4.4 works for slope semistability and for
more general semistability notions as in [Tom17, Def. 2.2] if one replaces the Jordan-
Hölder graduation in the category Coh(X) by the Jordan-Hölder graduation in an
appropriate quotient category Cohd,d′(X) as defined in [HL10]. The problem is that
while for such semistability notions Jordan-Hölder graduations exist in Coh(X), they
are no longer unique, [BTT17, Prop. 2.1].

In a next step, the sheaf-theoretic construction explained above is re-interpreted
in terms of stacks.

Remark 4.6. — In [AHLH18, §3.5] the authors introduce a general framework
that allows the characterisation of separatedness and properness of good moduli
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spaces. We retain here only the interpretation of a Langton edge that they give
in [AHLH18, Rem. 3.36]. In the above setup, denote by STA the quotient stack
[Spec(A[s, t]/(st− π))/C∗], where s and t have weights +1 and −1 with respect to
the C∗-action. We note that STA → Spec(A) is a good moduli space. The open locus
in STA where s 6= 0 is isomorphic to

[Spec(A[s, t]s/(t− π/s))/C∗] ∼= [Spec(A[s]s)/C∗] ∼= Spec(A).

As similar remark holds for the open locus where t 6= 0. We denote by [0/C∗] the
closed substack [Spec(C)/C∗] of [Spec(A[s, t]/(st− π))/C∗].

In this setup, it is shown in [AHLH18, Rem. 3.36] that a Langton edge [M ]− [M ′]

with associated sheaf extensions E and E′ to XA gives rise to a morphism h : STA →
Coh(X) such that h|{s6=0} and h|{t 6=0} correspond to E and E′, respectively. One can
moreover check using (4.1) and (4.2) and the discussion at the end of loc. cit. that the
coherent sheaf on XC corresponding to the composition Spec(C) → STA → Coh(X)

is isomorphic to Ker(α) ⊕ Im(α), where α : E′C → EC is the morphism of sheaves
on XC described in Remark 4.3. Thus, if EC and E′C are moreover supposed to be
semistable, Proposition 2.7 implies that the constructed morphism h takes values in
the open substack X of Coh(X) corresponding to semistable sheaves on X.

The proof of the following central result uses Proposition 4.4 as well as properties
of the good moduli spaces X →M and STA → Spec(A).(4)

Corollary 4.7 (Separatedness). — The moduli space M ss
(X,ω),τ is separated.

Before giving the proof we state and prove two technical results. While we could
not find a reference containing these lemmata,(5) their statements are probably well
known to experts in the area. They are also not stated here in the most general version
in which they hold, but with assumptions that both make our subsequent proof work
and allow for a relatively quick proof.

Lemma 4.8 (Checking universal closedness by special DVRs). — Let k be an alge-
braically closed field and let f : X → Y be a morphism of algebraic spaces of finite
type over k. Suppose that f is affine. If for every DVR A with residue field k and
fraction field K and for every commutative diagram of solid arrows

Spec(K) //

��

X

f
��

Spec(A) //

;;

Y

there exists a dotted arrow making it commutative, then f is universally closed.

(4)Note that in [AHLH18] separation criteria for good moduli spaces are given that apply in very
general situations. For the convenience of the reader, we decided to extract parts of the relevant
arguments from loc. cit. and to combine them with our results established above in order to give a
relatively elementary proof and to make explicit which results of [AHLH18] are actually needed in
our situation.

(5)But see [Kem93, §7.2] and [Ant19].
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Proof. — We adapt the proof of [Sta19, Lem. 03KA] to our situation. By [Sta19,
Lem. 03IT] and the argument in the proof of [Sta19, Lem. 03IY] we may suppose that
Y is an affine scheme of finite type over k. Since f is affine we are led to checking the
statement when X and Y are affine schemes of finite type over k.

Let T ⊂ |X| be closed. To finish the proof, we have to show that the image f(|T |)
is closed. For this, it suffices to show that every closed point y contained in the closure
f(|T |) already belongs to f(|T |). Suppose by contradiction that y is a closed point
in f(|T |) not in f(|T |). As the image f(|T |) is constructible by Chevalley’s Theorem,
there exists a (reduced, irreducible) subvariety Z of Y such that U := Z ∩ f(|T |) is
open in Z and additionally y ∈ Z r U . By [Kem93, Lem. 7.2.1], there also exists an
affine curve C ↪→ Y such that y ∈ CrU and C ∩U 6= ∅. There exists then a DVR A

dominating a finite extension of the normalisation of OC,y whose generic point lifts
to X. Applying the assumptions of the lemma to A, we conclude that y ∈ f(|T |). �

Lemma 4.9 (Checking separatedness by special DVRs). — Let k be an algebraically
closed field and let X be an algebraic space with affine diagonal and of finite type
over k. If for every DVR A with residue field k and fraction field K and for every
commutative diagram of solid arrows

(4.3)

Spec(K) //

��

X

��

Spec(A) //

99

Spec(k)

there exists at most one dotted arrow making it commutative, then X is separated
over k.

Proof. — We follow the proof given in [Sta19, Tag 03KV]. By assumption the diagonal
map ∆ : X → X ×X is quasi-compact. Moreover, for any solid diagram

Spec(K) //

��

X

∆
��

Spec(A) //

99

X ×X

and A as in the statement there exists a dotted arrow making it commutative, namely
the composition of Spec(A)→ X ×X with any of the two projections X ×X → X,
as these compositions coincide by assumption. Thus, by Lemma 4.8, ∆ is universally
closed, and hence a immersion as in the proof of [Sta19, Tag 03KV]. �

Proof of Corollary 4.7. — To prove the statement, we will apply Lemma 4.9 above.
More precisely, for every solid diagram of the form (4.3) we want to show that there
exists at most one dotted arrow making it commutative. Here and in the subsequent
discussion, we write M := M ss

(X,ω),τ to simplify notation. Since M is of finite type
over C we may suppose moreover that in the diagram above A is a discrete valuation
ring over C; cf. [Sta19, Tag 0ARJ].
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First, we observe that by [AHLH18, Th.A.8 and Rem. A.9] for any morphism
f : Spec(A)→M filling in Diagram (4.3) there exists a lift f̃ : Spec(A′)→X to the
stack X , possibly after passing to a finite extension A ↪→ A′ of A. Next we will show
that two such lifts f̃ , g̃ : Spec(A′)→X give the same morphism Spec(A′)→M after
composition with the moduli morphism X → M . Since Spec(A′) → Spec(A) is an
epimorphism in the category of algebraic spaces, this will imply the desired equality
f = g.

Resetting notation we are led to consider a discrete valuation ring A with fraction
field K and residue field C and two morphisms f, g : Spec(A) → M admitting lifts
f̃ , g̃ which make the following corresponding diagrams commutative:

Spec(K) //

��

X

��

Spec(A)
f

//

g
//

f̃
;;

g̃

;;

M.

We remark that by Proposition 4.4 the families of semistable sheaves that correspond
to f̃ and g̃ are connected by a finite number of Langton edges, each such edge making
the connection between two families of semistable sheaves on XA. So we may reduce
ourselves to the case when f̃ and g̃ correspond to the ends of a Langton edge. By
Remark 4.6 we see that such an edge gives rise to a morphism STA → Coh(X) that
factors through the open substack X ⊂ Coh(X). As mentioned in the same remark,
the projection STA → Spec(A) is a good moduli space and as such it is universal for
morphisms to algebraic spaces by [Alp13, Th. 6.6]. Consequently, the two morphisms f
and g must be equal to the uniquely determined morphism Spec(A) → M that is
induced by the composition STA →X →M . �

4.4. Properness. — As a final item we have

Proposition 4.10 (Properness). — The moduli space M ss
(X,ω),τ is proper.

Proof. — This follows from the analogon of Langton’s valuative criterion for proper-
ness proved in [Tom17]. �
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