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SUPERCUSPIDAL UNIPOTENT REPRESENTATIONS:

L-PACKETS AND FORMAL DEGREES

by Yongqi Feng, Eric Opdam & Maarten Solleveld

Abstract. — Let K be a non-archimedean local field and let G be a connected reductive K-
group which splits over an unramified extension of K. We investigate supercuspidal unipotent
representations of the group G(K). We establish a bijection between the set of irreducible
G(K)-representations of this kind and the set of cuspidal enhanced L-parameters for G(K),
which are trivial on the inertia subgroup of the Weil group of K. The bijection is characterized
by a few simple equivariance properties and a comparison of formal degrees of representations
with adjoint γ-factors of L-parameters.

This can be regarded as a local Langlands correspondence for all supercuspidal unipotent
representations. We count the ensuing L-packets, in terms of data from the affine Dynkin
diagram of G. Finally, we prove that our bijection satisfies the conjecture of Hiraga, Ichino and
Ikeda about the formal degrees of the representations.

Résumé (Représentations unipotentes supercuspidales : L-paquets et degrés formels)
SoitK un corps local non archimédien et soitG unK-groupe connexe, réductif et deployé sur

une extension non ramifiée deK. Nous étudions des représentations unipotentes supercuspidales
du groupeG(K). Nous établissons une bijection entre l’ensemble de tellesG(K)-représentations
irréductibles et l’ensemble des L-paramètres étendus pour G(K), qui sont triviaux sur le sous-
groupe d’inertie du groupe de Weil de K. Le bijection est caractérisée par quelques propriétés
simples et une comparaison des degrés formels des représentations avec des facteurs γ adjoints
des L-paramètres.

On peut considérer cela comme une correspondance de Langlands locale pour toutes les
représentations unipotentes supercuspidales. Nous comptons les L-paquets résultants en termes
de données déduites du diagramme de Dynkin affine de G. Finalement, nous prouvons que
notre bijection satisfait à la conjecture de Hiraga, Ichino et Ikeda sur les degrés formels des
représentations.
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Introduction

Let K be a non-archimedean local field and let G be a connected reductive
K-group. Roughly speaking, a representation of the reductive p-adic group G(K)

is unipotent if it arises from a unipotent representation of a finite reductive group
associated to a parahoric subgroup of G(K). Among all (irreducible) smooth
G(K)-representations, this is a very convenient class, which can be studied well
with classification, parabolic induction and Hecke algebra techniques. The work of
Lusztig [Lus95, Lus02] and Morris [Mor96] goes a long way towards a local Langlands
correspondence for such representations, when G is simple and adjoint.

In this paper we focus on supercuspidal unipotent G(K)-representations. For this
to work well, we assume throughout that G splits over an unramified extension of K.
Our main goal is a local Langlands correspondence for such representations, with as
many nice properties as possible. We will derive that from the following result, which
says that one can determine the L-parameters of supercuspidal unipotent representa-
tions of a simple algebraic group by comparing formal degrees and adjoint γ-factors.

Denote the Weil group of K by WK and let Frob ∈WK be a geometric Frobenius
element. A Langlands parameter is called unramified if it is trivial on the inertia
subgroup of WK (so that it is determined by the image of Frob and by one unipotent
element).

Theorem 1. — Consider a simple K-group G which splits over an unramified exten-
sion. For each irreducible supercuspidal unipotent G(K)-representation π, there exists
a discrete unramified local Langlands parameter λ ∈ Φ(G(K)) such that

(0.1) fdeg(π) = Cπγ(λ) for some Cπ ∈ Q×

as rational functions in qK with Q-coefficients. (Here qK denotes the cardinality of
the residue field of K, and one makes the terms of (0.1) into functions of qK by
simultaneously considering unramified extensions of the field K.) Furthermore:

J.É.P. — M., 2020, tome 7
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• λ is essentially unique, in the sense that its image in the collection Φ(Gsc(K))

of L-parameters for the simply connected cover of G(K) is unique.
• When G is adjoint, the map π 7→ λ agrees with a parametrization of supercuspidal

unipotent representations obtained in [Mor96, Lus95, Lus02].

The credits for Theorem 1 belong to several authors. The larger part of it, namely
all cases with classical groups, was proved in [FO20, Th. 4.6.1]. Quite generally,
whenever G is adjoint, [Opd16, Th. 4.11] shows that the Langlands parameters from
[Lus95, Lus02] satisfy (0.1). Hence the L-parameters from [FO20] coincide with those
found by Lusztig [Lus95, Lus02]. A little before that, Morris [Mor96, §5–6] already
associated L-parameters to supercuspidal unipotent representations of inner forms of
split simple groups. We note that the parametrizations from [Mor96] and [Lus95] are
presented in combinatorial fashion and do not involve formal degrees. Instead, they
are motivated (and nearly determined) by considerations with character sheaves and
cuspidal local systems on unipotent orbits [Lus84]. For that reason, the L-parameters
from [Mor96] and [Lus95] agree. Then [FO20, Opd16] show that these parametriza-
tions can be characterized uniquely by the equality (0.1).

For split exceptional groups the formal degrees in Theorem 1 were computed in
[Ree94, §7] and [Ree00, §10–13], and it was shown that they determine essentially
unique Langlands parameters. Next (0.1) was proved in [HII08, §3.4]. The essential
uniqueness in the cases of the non-split inner forms of E6 and E7 is easy by the
extremely small number of instances [Opd16, §4.4]. Hence the Langlands parameters
determined by formal degrees agree with those from [Mor96, Lus95] for inner forms
of exceptional split groups. For outer forms of exceptional groups all this follows from
the explicit computations in [Fen19, §4.4] and a comparison with [Lus02].

We will make the above parametrization of supercuspidal unipotent representations
more precise and generalize it to connected reductiveK-groups. Let Irr(G(K))cusp,unip

be the collection of irreducible supercuspidal unipotent representations ofG(K), mod-
ulo isomorphism. Let Φ(G(K))cusp be the set of cuspidal enhanced L-parameters for
G(K), considered modulo conjugation by the dual group G∨. We denote its subset of
unramified parameters by Φnr(G(K))cusp. (See Section 1 for the definitions of these
and related objects.) Our main result can be summarized as follows:

Theorem 2. — Let G be a connected reductive K-group which splits over an unram-
ified extension. There exists a bijection

Irr(G(K))cusp,unip −→ Φnr(G(K))cusp

π 7−→ (λπ, ρπ)

with the properties:
(1) When G is semisimple, the formal degree of π equals the adjoint γ-factor of λπ,

up to a rational factor which depends only on ρπ.
(2) Equivariance with respect to tensoring by weakly unramified characters.
(3) Equivariance with respect to WK-automorphisms of the root datum.

J.É.P. — M., 2020, tome 7
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(4) Compatibility with almost direct products of reductive groups.
(5) Let Z(G)s be the maximal K-split central torus of G and let H be the derived

group of G/Z(G)s. When Z(G)s(K) acts trivially on π, we can regard π as a repre-
sentation of (G/Z(G)s)(K) and restrict to a representation πH of H(K). Then λπ
has image in the Langlands L-group of G/Z(G)s and the canonical map(

G/Z(G)s
)∨ oWK −→ H∨ oWK

sends λπ to λπH
.

(6)The map in (5) provides a bijection between the intersection of Irr(G(K))cusp,unip

with the L-packet of λπ and the intersection of Irr(H(K))cusp,unip with the L-packet
of λπH

.

For a given π the properties (1), (2), (4) and (5) determine λπ uniquely, modulo
tensoring by weakly unramified characters of (G/Z(G)s)(K).

Here a character of a group like G(K) is called weakly unramified if its kernel
contains all parahoric subgroups of G(K). Property (3) is important for the general-
ization of such a correspondence to all unipotent representations of reductive p-adic
groups, which is carried out in [Sol18].

The bijection exhibited in Theorem 2 is of course a good candidate for a local
Langlands correspondence (LLC) for supercuspidal unipotent representations, and we
will treat it as such. The second bullet of Theorem 1 says that comparing formal de-
grees and adjoint γ-factors completely characterizes the L-parameters of supercuspidal
unipotent representations of simple adjoint K-groups exhibited by Lusztig and Mor-
ris. In fact the method with formal degrees from [Ree00, FO20, Fen19] provides a little
more information, which we use to fix a few arbitrary choices in [Mor96, Lus95, Lus02].
In particular our LLC is determined already by formal degrees of supercuspidal unipo-
tent representations in combination with the functoriality properties (2) and (4).

We point out that our correspondence is constructive. Indeed, for inner twists of
simple adjoint unramified groups the enhanced L-parameters (λπ, ρπ) can already be
found in [Mor96]. For simple adjoint groups that split over an unramified extension
the elements λπ(Frob) are known explicitly from [Lus95, Lus02], while the unipotent
class from λπ is given in [Ree00, FO20, Fen19]. The enhancements ρπ are not uniquely
determined, but there are only very few possibilities and those are given by the clas-
sification of cuspidal local systems on simple complex groups in [Lus84]. Further, our
methods to generalize from simple adjoint to reductive groups are constructive, so
that for any given supercuspidal unipotent representation one can in principle write
down the enhanced L-parameter.

When G is semisimple we obtain finer results than Theorem 2, summarized in The-
orem 2.2. In that setting we explicitly describe the number of cuspidal enhancements
of λπ and the number of supercuspidal representations in the L-packet of λπ, with
combinatorial data coming from the affine Dynkin diagrams of G and G∨.

J.É.P. — M., 2020, tome 7
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Strengthening and complementing Theorem 2, we will prove a conjecture by Hiraga,
Ichino and Ikeda (cf. [HII08, Conj. 1.4]) for unitary supercuspidal unipotent represen-
tations G(K). It relates formal degrees and adjoint γ-factors more precisely than
Theorem 1.

Fix an additive character ψ : K → C× of order 0 and endow K with the Haar
measure that gives the ring of integers volume 1. Using these data, we normalize the
Haar measure on G(K) as in [HII08]. The adjoint γ-factor γ(s,Ad◦λ, ψ) involves the
adjoint representation Ad of LG on Lie

(
(G/Z(G)s)

∨
)
. Then γ(λ) from Theorem 1

equals γ(0,Ad ◦ λ, ψ). We will prove:

Theorem 3. — Let G be a connected reductive K-group which splits over an unrami-
fied extension. Let π ∈ Irr(G(K))cusp,unip be unitary and let (λπ, ρπ) be the enhanced
L-parameter assigned to it by Theorem 2. Then

fdeg(π) =
dim(ρπ) |γ(0,Ad ◦ λπ, ψ)|
|Z(G/Z(G)s)∨(λπ)|

.

Theorem 3 shows in particular that all supercuspidal members of one unipotent
L-packet have the same formal degree (up to some rational factor), as expected in the
local Langlands program.

Let us discuss the contents of the paper and the proofs of the main results in
more detail. In Section 1 we fix the notations and we recall some facts about reduc-
tive groups, enhanced Langlands parameters and cuspidal unipotent representations.
Let Ω be the fundamental group of G, interpreted as a group of automorphisms of the
affine Dynkin diagram of G. We denote the action of Frob ∈WK on G∨ by θ, so that
the group of weakly unramified characters of G(K) can be expressed as Z(G∨)WK

and as the dual group (Ωθ)∗ of Ωθ. In Section 2 we make Theorem 2 more precise
for semisimple K-groups, counting the involved objects in terms of subquotients of
the finite abelian group (Ωθ)∗. A large part of the paper is dedicated to proving
Theorem 2.2, in bottom-up fashion.

In Sections 3–11 we consider simple adjoint groups case-by-case. The majority
of our claims can be derived quickly from [Mor96, §5–6] and the tables [Lus95, §7]
and [Lus02, §11], which contain a lot of information about the parametrization of
Irr(G(K))cusp,unip from Theorem 1. A simple group of type E8, F4 or G2 is both
simply connected and adjoint, so Ω is trivial. Then Theorem 2.2 is contained entirely
in [Lus95], and we need not spend any space on it. For other simple adjoint groups
we compute several data that cannot be found in the works of Morris and Lusztig.

The main novelty in Sections 3–11 is the equivariance of the LLC with respect
to WK-automorphisms of the root datum (part (3) of Theorem 2), that was not
discussed in the sources on which we rely here. In some remarks we already take
a look at certain non-adjoint simple groups. This concerns cases where we can only
check Theorem 2 by direct calculations. In Section 12 we explain in detail which parts
of Sections 3–11 are needed where, and we complete the proof of the main theorem
for adjoint groups.

J.É.P. — M., 2020, tome 7
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In Sections 13 and 14 we generalize Theorem 2.2 from adjoint semisimple to
all semisimple groups. In particular, we investigate what happens when an ad-
joint K-group Gad is replaced by a covering group G. It is quite easy to see how
Irr(G(K))cusp,unip behaves. Namely, several unipotent cuspidal representations of
Gad(K) coalesce upon pullback to G(K), and then decompose as a direct sum of
a few irreducible unipotent cuspidal representations of G(K). With some technical
work, we prove that the same behaviour (both qualitatively and quantitatively)
occurs for enhanced L-parameters.

The proof of the main theorem for reductive K-groups (Section 15) can roughly be
divided into two parts. First we deal with the case where the connected center of G
is anisotropic. We reduce to the derived group of G, which is semisimple, and use
the already established results for semisimple groups. To deal with general connected
reductive groups, we note that the connected center is an almost direct product of
its maximal split and maximal anisotropic subtori. Applying Hilbert’s theorem 90 to
the maximal split torus, we obtain a corresponding decomposition of the group of
K-rational points. This enables us to reduce to the cases of tori (well-known) and of
reductive K-groups with anisotropic connected center.

We attack the HII conjecture in Section 16. For simple adjoint groups, the second
author already proved Theorem 3 in [Opd16]. Starting from that and using the proof
of Theorem 1, we extend Theorem 3 to all reductive K-groups that split over an
unramified extension.

Finally, in the appendix we explore the behaviour of L-parameters and adjoint
γ-factors under Weil restriction. Whereas L-functions are always preserved, it turns
out that adjoint γ-factors sometimes change under Weil restriction. Nevertheless, we
can use these computations to prove that the HII conjectures are always stable under
restriction of scalars. That is, if L/K is a finite separable extension of non-archimedean
local fields and the HII conjectures hold for a reductive L-group, then they also hold
for the reductive K-group obtained by restriction of scalars (and conversely).

Acknowledgements. — We thank the referees for their helpful comments and careful
reading.

1. Preliminaries

Throughout this paper we letK be a non-archimedean local field with finite residue
field F of cardinality qK = |F|. We fix a separable closureKs ofK and we letKnr ⊂ Ks

be the maximal unramified extension of K. The residue field F of Knr is an algebraic
closure of F. There are isomorphisms of Galois groups Gal(Knr/K) ' Gal(F/F) ' Ẑ.
The geometric Frobenius element Frob, whose inverse induces the automorphism
x 7→ xqK for any x ∈ F, is a topological generator of Gal(F/F). Let IK = Gal(Ks/Knr)

be the inertia subgroup of Gal(Ks/K) and let WK be the Weil group of K. We fix a
lift of Frob in Gal(Ks/K), so that WK = IK o 〈Frob〉.

Unless otherwise stated, G denotes an unramified connected reductive linear al-
gebraic group over K. By unramified we mean that G is a quasi-split group defined
J.É.P. — M., 2020, tome 7
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over K and that G splits over Knr. The group G(Knr) of Knr-points of G is often
denoted by G = G(Knr). Let Z(G) be the center of G, and write Gad := G/Z(G)

for the adjoint group of G.
We fix a Borel K-subgroup B and maximally split maximal K-torus S ⊂ B which

splits over Knr. We denote by θ the finite order automorphism of X∗(S) corresponding
to the action of Frob on S = S(Knr). Let R∨ be the coroot system of (G,S) and define
the abelian group

Ω = X∗(S)/ZR∨.
Let G∨ be the complex dual group of G. Then Z(G∨) can be identified with
Irr(Ω) = Ω∗, and Ω is naturally isomorphic to the group X∗(Z(G∨)) of algebraic
characters of Z(G∨). In particular

(1.1)
Ωθ ∼= X∗

(
Z(G∨)

)
θ

= X∗
(
Z(G∨)θ

)
,

Ωθ ∼= X∗
(
Z(G∨)

)θ
= X∗

(
Z(G∨)θ

)
.

The isomorphism classes of inner twists of G over K are naturally parametrized by
the elements of the continuous Galois cohomology group

H1
c (K,Gad) ∼= H1

c (F,Gad),

where F denotes the automorphism of Gad := Gad(Knr) by which Frob acts on Gad.
A cocycle in Z1

c (F,Gad) is determined by the image u ∈ Gad of F . The K-rational
structure of G corresponding to such a u ∈ Gad is given by the action of the inner
twist Fu := Ad(u)◦F ∈ Aut(G) of the K-automorphism F on G. We will denote this
K-rational form of G by Gu, and the corresponding group of K-points by GFu .

The cohomology class ω ∈ H1
c (F,Gad) of the cocycle is represented by the

F -twisted conjugacy class of u. Let Ωad be the fundamental group of Gad. By a
theorem of Kottwitz [Kot84, Thǎ11] and by (1.1) there is a natural isomorphism

(1.2) H1
c (F,Gad) ∼= H1

c (F,Ωad) ∼= (Ωad)θ ∼= X∗
(
Z(Gad

∨)θ
)
.

This works out to mapping ω to u ∈ (Ωad)θ. For each class ω ∈ H1
c (F,Gad) we fix an

inner twist Fu of F representing ω, and we denote this representative by Fω. Then

Gω(K) = GFω .

Let G1 be the kernel of the Kottwitz homomorphism G→ X∗(Z(G∨)) [Kot97, PR08].
This map is WK-equivariant and yields a short exact sequence

1 −→ GFω1 −→ GFω −→ X∗(Z(G∨))θ ∼= Ωθ −→ 1.

We say that a character χ of GFω is weakly unramified if χ is trivial on GFω1 , and we
denote by Xwr(G

Fω ) the abelian group of weakly unramified characters. Since G is
unramified there are natural isomorphisms [Hai14, §3.3.1]

(1.3) Irr(GFω/GFω1 ) = Xwr(G
Fω ) ∼= (Ωθ)∗ ∼= Z(G∨)θ.

This can be regarded as a special case of the local Langlands correspondence. The
identity components of the groups in (1.3) are isomorphic to the group of unramified
characters of GFω (which is trivial whenever G is semisimple).

J.É.P. — M., 2020, tome 7



1140 Y. Feng, E. Opdam & M. Solleveld

Let LG = G∨ o WK be the L-group of G. Recall that a L-parameter for
Gω(K) = GFω is a group homomorphism

λ : WK × SL2(C) −→ G∨ oWK

satisfying certain requirements [Bor79]. We say that λ is unramified if λ(w) = (1, w)

for every w ∈ IK and we say that λ is discrete if the image of λ is not contained in
the L-group of any proper Levi subgroup of GFω . We denote the set of G∨-conjugacy
classes of L-parameters (resp. unramified L-parameters and discrete L-parameters)
for GFω by Φ(GFω ) (resp. Φnr(G

Fω ) and Φ2(GFω )). The group Z(G∨) acts naturally
on the set of L-parameters, by

(1.4) (zλ)(Frobnw, x) = (zλ(Frob))nλ(w, x)

for z ∈ Z(G∨), n ∈ Z, w ∈ IK and x ∈ SL2(C). This descends to an action of

Z(G∨)θ ∼= (Ω∗)θ = (Ωθ)∗

on Φ(GFω ).
For any λ ∈ Φ(GFω ) the centralizer Aλ := ZG∨(imλ) satisfies

Aλ ∩ Z(G∨) = Z(LG) = Z(G∨)θ,

and Aλ/Z(G∨)θ is finite if and only if λ is discrete. Let Aλ be the component group
of the full pre-image of

(1.5) Aλ/Z(G∨)θ ∼= AλZ(G∨)/Z(G∨) ⊂ G∨ad

in the simply connected covering (G∨)sc of the derived group of G∨. Equivalently, Aλ

can also be described as the component group of

(1.6) Z1
G∨sc

(λ) =
{
g ∈ G∨sc : gλg−1 = λb for some b ∈ B1(WK , Z(G∨))

}
.

Here B1(WK , Z(G∨)) denotes the group of 1-coboundaries for group cohomology,
that is, the set of maps WK → Z(G∨) of the form w 7→ zw(z−1) for some z ∈ Z(G∨).

An enhancement of λ is an irreducible representation ρ of Aλ. The group G∨ acts
on the set of enhanced L-parameters by

g · (λ, ρ) = (gλg−1, ρ ◦Ad(g−1)).

We write

Φe(
LG) = {(λ, ρ) : λ is an L-parameter for G(K), ρ ∈ Irr(Aλ)}/G∨.

Fix a complex character ζ of the center Z(G∨sc) of G∨sc whose restriction to
Z(LGad) = Z(G∨sc)θ corresponds to ω via the Kottwitz isomorphism. If ω is given
as an element of Ωad (not just in (Ωad)θ), then there is a preferred way to define
a character of Z(G∨sc), namely via the Kottwitz isomorphism of the K-split form
of G. In particular ω = 1 corresponds to the trivial character.

Let Irr(Aλ, ζ) be the set of irreducible representations of Aλ whose restriction to
Z(G∨sc) is a multiple of ζ. The set of enhanced L-parameters for GFω is

(1.7) Φe(G
Fω ) :=

{
(λ, ρ) ∈ Φe(

LG) : ρ ∈ Irr(Aλ, ζ)
}
.

J.É.P. — M., 2020, tome 7



Supercuspidal unipotent representations 1141

We note that the existence of a ρ ∈ Irr(Aλ, ζ) is equivalent to λ being relevant [Bor79,
§8.2.ii] for the inner twist Gω of the quasi-split K-group G [ABPS17, Prop. 1.6].

Let Z1
G∨sc

(λ(WK)) be the inverse image of ZG∨(λ(WK))/Z(G∨)WK in G∨sc. The
unipotent element uλ := λ

(
1,
(

1 1
0 1

))
∈ G∨ can also be regarded as an element of the

unipotent variety of G∨sc, and then

(1.8) Aλ = π0

(
ZZ1

G∨sc
(λ(WK))(uλ)

)
.

We say that ρ is a cuspidal representation of Aλ, or that (λ, ρ) is a cuspidal (en-
hanced) L-parameter for GFω , if (uλ, ρ) is a cuspidal pair for Z1

G∨sc
(λ(WK)) [AMS18,

Def. 6.9]. Equivalently, ρ determines a Z1
G∨sc

(λ(WK))-equivariant cuspidal local sys-
tem on the conjugacy class of uλ. This is only possible if λ is discrete (but not every
discrete L-parameter admits cuspidal enhancements). We refer to [Lus84] for more
information about cuspidal local systems, and in particular their classification for
every simple complex group. We denote the set of G∨-conjugacy classes of cuspidal
enhanced L-parameters for GFω by Φ(GFω )cusp.

The (Ωθ)∗-action (1.4) extends to enhanced L-parameters by

(1.9) z · (λ, ρ) = (zλ, ρ) z ∈ (Ωθ)∗, (λ, ρ) ∈ Φe(G
Fω ).

The extended action preserves both discreteness and cuspidality.
Let Irr(GFω ) be the set of irreducible smooth GFω -representations on complex

vector spaces. The group (Ωθ)∗ acts on Irr(GFω ) via (1.3) and tensoring with weakly
unramified characters. It is expected that under the local Langlands correspondence
(LLC) this corresponds precisely to the action (1.9) of (Ωθ)∗ on Φe(G

Fω ). In other
words, the conjectural LLC is (Ωθ)∗-equivariant.

Furthermore, the LLC should behave well with respect to direct products. Suppose
that Gω is the almost direct product of K-subgroups G1 and G2. Along the quotient
map

q : G1 ×G2 −→ Gω

one can pull back any representation π of Gω(K) to a representation π ◦ q of
G1(K)×G2(K). Since q need not be surjective on K-rational points, this operation
may destroy irreducibility. Assume that π is irreducible and that π1 ⊗ π2 is any
irreducible constituent of π ◦ q. Then the image of the L-parameter λπ of π under
the map

q∨ : (Gω)∨ −→ G∨1 ×G∨2

should be the L-parameter λπ1
×λπ2

of π1⊗π2. In this case Aλπ is naturally a subgroup
of Aλπ1

×Aλπ2
. We say that a LLC (for some class of representations) is compatible

with almost direct products if, when (λπ, ρπ) denotes the enhanced L-parameter of π
and Gω = G1G2 is an almost direct product of reductive K-groups,

(1.10) λπ1
× λπ2

= q∨(λπ) and
(
ρπ1
⊗ ρπ2

)
|Aλπ

contains ρπ.

We also want the LLC to be equivariant with respect to automorphisms of the root
datum, in a sense which we explain now. Let

R(G,S) = (X∗(S), R,X∗(S), R∨,∆)
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be the based root datum of G, where ∆ is the basis determined by the Borel subgroup
B ⊂ G. Since S and B are defined over K, the Weil group WK acts on this based
root datum.

When G is semisimple, any automorphism of R(G,S) is completely determined
by its action on the basis ∆. Then we call it an automorphism of the Dynkin diagram
of (G,S), or just a diagram automorphism of G. When G is simple and not of
type D4, the collection of such diagram automorphisms is very small: it forms a group
of order 1 (type A1, Bn, Cn, E7, E8, F4, G2 or a half-spin group) or 2 (type An, Dn, E6

with n > 1, except half-spin groups).
Suppose that τ is an automorphism of R(G,S) which commutes with the action

of WK . Via the choice of a pinning of G∨ (that is, the choice of a nontrivial element
in every root subgroup for a simple root), τ acts on G∨ and LG. Then it also acts on
enhanced L-parameters, by

τ · (λ, ρ) = (τ ◦ λ, ρ ◦ τ−1).

Then τ also acts on Φe(
LG). The action of τ on G∨ is uniquely determined up to

inner automorphisms, so the action on Φe(
LG) is canonical. Considering ω ∈ Ωad

as an element of Irr(Z(G∨sc)), we can define τ(ω) = ω ◦ τ . Then τ maps enhanced
L-parameters relevant for GFτ(ω) to enhanced L-parameters relevant for GFω .

From [Spr09, Lem. 16.3.8] we see that the automorphism τ of R(G,S) can be lifted
to a Knr-automorphism of Gad. That uses only the diagram automorphism induced
by τ . As τ also gives an automorphism of S, it determines an automorphism of S
stabilizing Z(G). The proof of [Spr09, Lem. 16.3.8] also works forG, when we omit the
condition that the connected center must be fixed and instead use the automorphism
of Z(G)◦ determined by τ . Then τ lifts to a Knr-automorphism τKnr

of G which
• stabilizes S and B,
• is unique up to conjugation by elements of Sad(Knr), where Sad = S/Z(G).

Further, τ determines a permutation of the affine Dynkin diagram of (G,S). This
in turn gives rise to a permutation of the set of vertices of a standard alcove in the
Bruhat–Tits building of (G,Knr). For every such vertex v, we can require in addition
that τKnr maps the G-stabilizer Gv to Gτ(v). Since Ωad acts faithfully on this standard
alcove and the image of S → Gad contains the kernel of Sad → Ωad [Opd16, §2.1],
this determines τKnr

∈ AutKnr
(G) up conjugation by elements of G1 ∩ S.

Let u ∈ Gad represent ω, so that

(1.11) GFω ∼= GFu = {g ∈ G : Ad(u) ◦ F (g) = g}.

By the functoriality of the Kottwitz isomorphism τKnr
(u) represents τ(ω). For g∈GFu :

(1.12) Ad(τKnr
(u)) ◦ F ◦ τKnr

(g) = τKnr
◦Ad(u) ◦ F (g) = τKnr

(g),

so τKnr
(g) ∈ GFτKnr

(u) . Thus we obtain an isomorphism of K-groups

τK : Gω −→ Gτ(ω).
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Since τKnr
was unique up to G1 ∩ S, τK is unique up to conjugation by elements of

S(K) ∩ G1. (Not merely up to Sad(K) because τK(Gv) = Gτ(v).) In particular, for
every representation π of GFτ(ω) we obtain a representation π◦τK of GFω , well-defined
up to isomorphism.

Equivariance with respect to WK-automorphisms of the root datum means: if
(λπ, ρπ) is the enhanced L-parameter of π then

(1.13) (τ · λπ, ρπ ◦ τ−1) is the enhanced L-parameter of π ◦ τK ,

for all τ ∈ Aut(R(G,S)) which commute with WK . When G is semisimple, we also
call this equivariance with respect to diagram automorphisms.

We note that it suffices to check this for automorphisms of R(G,S) which fix
ω ∈ Ωad. Indeed, if we know all those cases, then we can get equivariance with
respect to diagram automorphisms by defining the LLC for other groups GFω′ via the
LLC for GFω and a τ with τ(ω) = ω′.

We define a parahoric subgroup of G to be the stabilizer in G1 of a facet (say f)
of the Bruhat–Tits building of (G,Knr), and we typically denote it by P. Then P
fixes f pointwise. If f is Fω-stable, it determines a facet of the Bruhat–Tits build-
ing of (Gω,K), and PFω is the associated parahoric subgroup of GFω . All parahoric
subgroups of GFω arise in this way.

Let Pu be the pro-unipotent radical of P, that is, the kernel of the reduction map
from P to the associated reductive group P over F. Then PFωu is the pro-unipotent
radical of PFω , and the quotient

(1.14) PFω/PFωu = PFω ∼= PFω

is a connected reductive group over F. Unipotent representations of finite reductive
groups like (1.14) were classified in [Lus78, §3]. We call an irreducible representation
of PFω unipotent (resp. cuspidal) if it arises by inflation from an irreducible unipotent
(resp. cuspidal) representation of PFω .

An irreducible representation π of GFω is called unipotent if there exists a para-
horic subgroup PFω such that the restriction of π to PFω contains a unipotent repre-
sentation of PFω . We denote the set of irreducible unipotent GFω -representations by
Irr(GFω )unip.

In this paper we are mostly interested in supercuspidal GFω -representations, which
form a collection denoted Irr(GFω )cusp. Among these, the supercuspidal unipotent rep-
resentations form a subset Irr(GFω )cusp,unip which was described quite explicitly in
[Mor96, Lus95]. Every such GFω -representation arises from a cuspidal unipotent rep-
resentation σ of a maximal parahoric subgroup PFω . For a given finite reductive group
there are only few cuspidal unipotent representations, and the number of them does
not change when (1.14) is replaced by an isogenous F-group. From the classification
one sees that, when P is simple, any cuspidal unipotent representation (σ, Vσ) of PFω

is stabilized by every algebraic automorphism of PFω .
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By [Opd16] there is a natural isomorphism

(1.15) NGFω (PFω )/PFω ∼= Ωθ,P,

where the right hand side denotes the stabilizer of P in the abelian group Ωθ. Morris
shows in [Mor96, Prop. 4.6] that, when G is adjoint, any unipotent σ ∈ Irr(PFω )

can be extended to a representation of the normalizer of PFω in GFω . When G is
semisimple, the group Ωθ embeds naturally in Ωad

θ. Then NGFω (PFω )/PFωu Z(GFω )

can be identified with a subgroup of NGFωad
(PFωad )/PFωad,u, and in that way σ can be

extended to a representation of NGFω (PFω ), on the same vector space. (The same
conclusion holds when G is reductive, we will show that in Section 15.)

We fix one such extension, say σN . By (1.15), at least when G is semisimple:

(1.16) ind
N
GFω

(PFω )

PFω (σ) =
⊕

χ∈(Ωθ,P)∗ χ⊗ σ
N .

When Z(GFω ) is not compact, (1.16) remains true if the right hand side is replaced
by a direct integral over (Ωθ,P)∗. Furthermore it is known from [Mor96, Lus95] that
every representation indG

Fω

N
GFω

(PFω )(χ ⊗ σN ) is irreducible and supercuspidal. Hence
(when Ωθ is finite)

(1.17) indG
Fω

PFω (σ) =
⊕

χ∈(Ωθ,P)∗ indG
Fω

N
GFω

(PFω )(χ⊗ σN ).

Every element of Irr(GFω )unip,cusp arises in this way, from a pair (P, σ) which is
unique up to GFω -conjugation. We denote the packet of irreducible supercuspidal
unipotent GFω -representations associated to the conjugacy class of (P, σ) via (1.16)
and (1.17) by Irr(GFω )[P,σ]. In other words, these are precisely the irreducible quo-
tients of indG

Fω

PFω (σ). The group (Ωθ,P)∗ acts simply transitively on Irr(GFω )[P,σ], by
tensoring with weakly unramified characters. The choice of σN determines an equi-
variant bijection

(1.18) (Ωθ,P)∗ −→ Irr(GFω )[P,σ] : χ 7−→ indG
Fω

N
GFω

(PFω )(χ⊗ σN ).

We normalize the Haar measure on GFω as in [GG99, HII08]. Recall that the formal
degree of indG

Fω

PFω (σ) equals dim(σ)/vol(PFω ). When (Ωθ)∗ is finite, (1.17) implies that

(1.19) fdeg(π) =
dim(σ)

|Ωθ,P| vol(PFω )
for any π ∈ Irr(GFω )[P,σ].

We will make ample use of Lusztig’s arithmetic diagrams I/J [Lus95, §7]. This means
that I is the affine Dynkin diagram of G (including the action of WK), and that J is a
WK-stable subset of I. This provides a convenient way to parametrize parahoric sub-
groups of G up to conjugacy. The WK-action on I boils down to that of the Frobenius
element, and the maximal Frob-stable subsets J ( I correspond to maximal parahoric
subgroups of GFω . Recall that only those parahorics can give rise to supercuspidal
unipotent GFω -representations.

The above entails that Irr(GFω )cusp,unip depends only on some combinatorial data
attached to G and Fω: the affine Dynkin diagram I, the Lie types of the parahoric
subgroups of G associated to the subsets of I, the group Ωθ and its action on I.
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2. Statement of main theorem for semisimple groups

Consider a semisimple unramified K-group G with data P, σ as in (1.17). Theo-
rem 1 and compatibility with direct products of simple groups determine a map

(2.1) Irr(GFω )cusp,unip −→ (Ωθ)∗\Φ2
nr(G

Fω ),

such that the image of Irr(GFω )[P,σ] is an orbit (Ωθ)∗λ where λ satisfies the require-
ment (0.1) about formal degrees and adjoint γ-factors.

In this section we count the number of enhancements of L-parameters in (2.1),
and we find explicit formulas for the numbers of supercuspidal representations in the
associated L-packets. To this end we define four numbers:
• a is the number of λ′ ∈ Φ2

nr(G
Fω ) which admit a GFω -relevant cuspidal enhance-

ment and for each K-simple factor Gi of G satisfy

γ(0,AdG∨i
◦ λ′, ψ) = ci γ(0,AdG∨i

◦ λ, ψ)

for some ci ∈ Q× (as rational functions of qK);
• b is the number of GFω -relevant cuspidal enhancements of λ;
• a′ is defined as |ΩP,θ| times the number of GFω -conjugacy classes of Fω-stable

maximal parahoric subgroups P′ ⊂ G for which there exists a σ′ ∈ Irrcusp,unip(PFω )

such that the components σi, σ′i corresponding to any K-simple factor Gi of G satisfy

fdeg
(
indG

Fω

P
′Fω
i

σ′i
)

= c′i fdeg
(
indG

Fω

PFωi
σi
)

for some c′i ∈ Q× (as rational functions of qK);
• b′ is the number of cuspidal unipotent representations σ′ of PFω such that

deg(σ′) = deg(σ).

Lemma 2.1. — When G is adjoint, simple and K-split, the above numbers a, b, a′, b′

agree with those introduced (under the same names) in [Lus95, 6.8].

Proof. — Our b′ is defined just as that of Lusztig.
Under these conditions on G, all P′ as above are conjugate to P, so a′ = |ΩP,θ|.

From [Lus95, 1.20] we see that ΩP,θ equals Ω
u over there, so the two versions of a′

agree.
With b Lusztig counts pairs (C ,F ) consisting of a unipotent conjugacy class in C

in ZG∨(λ(Frob)) and a cuspidal local system F on C , such that Z(G∨) acts on F

according to the character defined by Gω via the Kottwitz isomorphism (1.2). The
set of such (C ,F ) is naturally in bijection with the set of extensions of λ|WF

to a
GFω -relevant cuspidal L-parameter [AMS18]. To equate Lusztig’s b to ours, we need
to show the following. Given Gω and s = λ(Frob), there exists at most one unipotent
class in ZG∨(s) supporting a GFω -relevant cuspidal local system.

Recall from [Ste68, §8.2] that ZG∨(s) is a connected reductive complex group (be-
cause G∨ is simply connected). For the existence of cuspidal local system on unipotent
classes ZG∨(s) has to be semisimple, so the semisimple element s = λ(Frob) must
have finite order and must correspond to a single node in the affine Dynkin diagram
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of G∨ [Ree10, §2.4]. As G∨ is simple, this implies that ZG∨(s) has at most two simple
factors.

For every complex simple group which is not a (half-)spin group, there exists at
most one unipotent class supporting a cuspidal local system, whereas for (half-)spin
groups there are at most two such unipotent classes [Lus84]. (There are two precisely
when the vector space to which the spin group is associated has as dimension a
square triangular number bigger than 1.) It follows that the required uniqueness holds
whenever G∨ does not have Lie type Bn or Dn. The GFω -relevance of the cuspidal
local system (i.e., the Z(G∨)-character ω) imposes another condition, limiting the
number of possibilities even further. Going through all the cases [Mor96, §5.4–5.5,
§6.7–6.11], or equivalently [Lus95, §7.38–7.53], one can see that in fact the uniqueness
of unipotent classes holds for all simple adjoint G. Alternatively, this can derived
from Theorem 1.

This uniqueness of unipotent classes also means that our a just counts the number
of possibilities for λ

∣∣
WF

, or equivalently for s = λ(Frob). The geometric diagram in
[Lus95, §7] determines a unique node v(s) of the affine Dynkin diagram I of G∨,
and hence completely determines the image of s in G∨ad. Then the possibilities for
s ∈ G∨ modulo conjugacy are parametrized by the orbit of v(s) in I under the group Ω

for Gad, see [Ree10, §2.2] and [Lus95, §2]. Since G∨ is simple, this coincides with the
orbit of v(s) under the group of all automorphisms of I. The cardinality of the latter
orbit is used as the definition of a in [Lus95], so it agrees with our a. �

Assume for the moment that G is simple (but not necessarily split or adjoint).
Then sθ = λ(Frob) ∈ G∨θ has finite order, and s determines a vertex v(s) in the
fundamental domain for the Weyl group W (G∨,S∨)θ acting on S∨. The order ns
of v(s) is indicated by the label in the corresponding Kac diagram [Kac90, Ree10].
We can also realize v(s) as a node in Lusztig’s geometric diagrams [Lus95, §7]. They
are denoted as “Ĩ/J”, where Ĩ is a basis of the affine root system of the complex
group (G∨)θ. The complement of J in Ĩ is one node, the one corresponding to v(s).
We point out that v(s) determines a unique G∨-conjugacy class in G∨adθ. Thus the
geometric diagram J determines the conjugacy class of sθ up to Z(G∨).

In first approximation, the semisimple group G is a product of simple groups, and
thus the above yields a description of the possibilities for λ(Frob) = sθ, v(s) ∈ G∨ad

and ns = ord(v(s)).
In the setting of (2.1), let (Ωθ)∗λ be the isotropy group of λ in (Ωθ)∗. We define

g =
∣∣(Ωθ)∗λ∣∣ [Ωθ : ΩP,θ]−1 and g′ = [Ωθad/Ω

P,θ
ad : Ωθ/ΩP,θ].

We say that π ∈ Irr(GFω )[P,σ] and λ satisfy (0.1) with respect to a K-simple factor Gi

of G if, in the notations from page 1145, there exists a ci ∈ Q× such that

(2.2) fdeg(indG
Fω

PFωi
σi) = ci γ(0,AdG∨i

◦ λ, ψ)

as rational functions of qK . Now we are ready to state our main result.
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Theorem 2.2. — Let G be an unramified semisimple K-group.
(1) There exists an (Ωθ)∗-equivariant bijection between Irr(GFω )cusp,unip and

Φnr(G
Fω )cusp, which is equivariant with respect to diagram automorphisms, compati-

ble with almost direct products and matches formal degrees with adjoint γ-factors as
in (0.1).

(2) The set of L-parameters associated in part (1) to Irr(GFω )[P,σ] is canonically
determined.
Now we fix a Fω-stable parahoric subgroup P⊂G and a cuspidal unipotent represen-
tation σ of PFω . Let λ∈Φ2

nr(G
Fω ) be an L-parameter associated to [PFω , σ] via part (1).

(3) The (Ωθ)∗-stabilizer of any π∈ Irr(GFω )unip,cusp and of any (λ, ρ)∈Φnr(G
Fω )cusp

which satisfies (0.1) with respect to any K-simple factor of G is (Ωθ/ΩP,θ)∗. In par-
ticular g = [(Ωθ)∗λ : (Ωθ/ΩP,θ)∗] ∈ N.

(4) b′ = φ(ns), where φ denotes Euler’s totient function. In particular, φ(ns) is
identically equal to 1 for groups isogenous to classical groups.

(5) We have ab = a′b′, which is equal to the total number of supercuspidal unipotent
representations π satisfying (0.1) with respect to any K-simple factor of G, for this λ.
Furthermore a = [(Ωθ)∗ : (Ωθ)∗λ], a′ = g′ |ΩP,θ|, and thus b = gg′φ(ns).

(6) The number of (Ωθ)∗-orbits on the set of π ∈ Irr(GFω )unip,cusp satisfying (0.1)
is g′φ(ns). These orbits can be parametrized by GFω -conjugacy classes of pairs (P, σ),
or (on the Galois side) by cuspidal enhancements of λ modulo (Ωθ)∗λ.

In (1.18) we saw that Irr(GFω )[P,σ] can be parametrized with the group (Ωθ,P)∗.
By (1.3) that is a quotient of Z(G∨)θ, and via (1.4) it acts naturally on the set of
involved L-parameters. Thus part (2) can also be formulated as: the L-parameter of
any π ∈ Irr(GFω )[P,σ] is canonically determined up to the action of (Ωθ)∗ ∼= Z(G∨)θ.

In the upcoming nine sections we will collect the data that are needed to establish
Theorem 2.2 for simple adjoint groups and cannot readily be found in the literature
yet. In particular this concerns the behaviour under diagram automorphisms of reduc-
tive p-adic groups. The actual proof for adjoint groups is written down in Section 12.

3. Inner forms of projective linear groups

We considerG = PGLn, of adjoint type An−1. ThenG∨ = SLn(C), Ω∗ = Z(G∨) ∼=
Z/nZ and Ω = Irr(Z(G∨)).

Cuspidal unipotent representations of GFω can exist only if J ⊂ Ãn−1 is empty and
ω ∈ Ω has order n. Then GFω is an anisotropic form of PGLn(K), so isomorphic to
D×/K× where D is a division algebra of dimension n2 over Z(D) = K.

The parahoric PFω is the unique maximal compact subgroup of GFω , so ΩP = Ω

and a = |ΩP| = n. The cuspidal unipotent representations of GFω are precisely its
weakly unramified characters. There are n of them, naturally parametrized by Z(G∨)

via the LLC. Hence a′b′ = n and b′ = 1.
The associated Langlands parameter λ sends Frob to an element of Z(G∨), while uλ

is a regular unipotent element of G∨. Hence Aλ = Z(G∨), which supports exactly
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one cuspidal local system relevant for GFω , namely ω ∈ A ∗λ . In particular b = 1. The
group (Ωθ)∗ = Z(G∨) acts simply transitively on Φnr(G

Fω )cusp, so a = n and

(Ωθ)∗λ = 1 = (Ωθ/Ωθ,P)∗.

Let τ be the unique nontrivial automorphism of An−1. It acts on G and G∨ by the
inverse transpose map, composed with conjugation by a suitable matrix M . Conse-
quently τ(λ, ω) is equivalent with (λ−T , ω−1). On the p-adic side τ sends g ∈ GFω

to Mg−TM−1 ∈ GFω−1 . Thus τ sends a weakly unramified character χ of GFω to
χ−1 ∈ Irr(GFω−1 ). If (χ,GFω ) corresponds to (λ, ω), then (χ−1, GFω−1 ) corresponds
to (λ−T , ω−1). This says that the LLC is τ -equivariant in this case.

4. Projective unitary groups

Take G = PUn, of adjoint type 2An−1, with G∨ = SLn(C). Now θ = τ is the
unique nontrivial diagram automorphism of An−1. When n is odd, the groups Ωθ,
Ωθ, (Ω∗)θ and (Ωθ)∗ are all trivial. When n is even,

Ωθ = {1, z 7→ zn/2}, Ωθ = Ω/Ω2,

(Ω∗)θ = Z(G∨)θ = {1,−1}, (Ωθ)∗ = Z(G∨)/Z(G∨)2

and all these groups have order 2. When n is even, the nontrivial element of Ωθ acts
on 2̃An−1 by a rotation of order 2.

When n is not divisible by four, there is a canonical way to choose the ω ∈ Ω

defining the inner twist, namely ω ∈ Ωθ. When n is divisible by four, the non-quasi-
split inner twist GFω cannot be written with a θ-fixed ω. For that group we just pick
one ω ∈ Ω r Ω2. Then the diagram automorphism τ sends GFω to GFω−1 , a different
group which counts as the same inner twist. So equivariance with respect to diagram
automorphisms is automatic, unless n is congruent to 2 modulo 4.

The subset J ⊂ 2̃An−1 has to consist of two (possibly empty) Fω-stable subdiagrams
2As and 2At, with s + t + 2 = n (or s + 1 = n if t = 0 and n is even). The analysis
depends on whether or not s equals t, so we distinguish those two possibilities.

The case J = 2As
2At with s 6= t. — When n is odd, no parahoric subgroup associated

to another subset of 2̃An−1 gives rise to a cuspidal unipotent representation with the
same formal degree as that coming from J. When n is even, the parahoric subgroup
associated to J′ = 2At

2As does have such a cuspidal unipotent representation, and
the subsets J, J′ of 2̃An−1 form one orbit for Ωθ. This leads to a′ = |Ωθ,P| = 1.

The group GFω has only one cuspidal unipotent representation with the given
formal degree, so that one is certainly fixed by τ .

The cuspidal enhancements of λ are naturally in bijection with the cuspidal local
systems supported on unipotent classes in ZSLn(C)(λ(Frob)). The centralizer of the
semisimple element λ(Frob) = yθ ∈ LG in SLn(C) is the classical group associated
to the bilinear form given by y times the antidiagonal matrix with entries 1 on the
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antidiagonal. This implies an isomorphism

(4.1) ZSLn(C)(λ(Frob)) ∼= Sp2q(C)× SOp(C),

where the Lie type depends on the index of the bilinear form and can be read off
from [Lus02, §11.2–11.3]. The unipotent element uλ is given in [FO20, 4.7.(i)]: it has
Jordan blocks 2, 4, 6, . . . and 1, 3, 5, . . . .

To get Aλ, we have to add Z(SLn(C)) to (4.1), and then to take the centralizer of
λ(SL2(C)). The inclusion of Z(SLn(C)) does not make a difference, because in (1.7)
we already fixed the restriction of representations of Aλ to that group. Since both
Sp2q(C) and SOp(C) admit at most one cuspidal pair (u, ρ) [Lus84, §10], λ has at
most one cuspidal enhancement. In other words, b = 1.
• When n is odd, Theorem 1 produces a unique L-parameter.
• When n is even, Theorem 1 gives one or two L-parameters. The action of

(Ωθ)∗ ∼= Z(G∨)/Z(G∨)2 on L-parameters is by multiplying λ(Frob) with an element
of Z(G∨). An element zIn∈Z(G∨)rZ(G∨)2 can be written as (1−θ)(z1/2U), where
U ∈GLn(C)θ has determinant z−n/2 = −1. When (4.1) contains a nontrivial special
orthogonal group, we can choose U in ZGLn(C)(λ(Frob)), which shows that zλ(Frob)

is conjugate to λ(Frob) within (4.1). By [Lus02, §11.3], this condition on (4.1) is
equivalent to s 6= t (and n even), which we already assumed here. With Theorem 1
it follows that in that case there is only one L-parameter with the required adjoint
γ-factor. Notice that here

(Ωθ/Ωθ,P)∗ = (Ωθ)∗ = (Ωθ)∗λ and a = b = 1 = a′ = b′.

Remark. — When n is even, some groups isogenous to G = PUn have trivial Ωθ,
for instance H = SUn. In other words, the image of HFω → GFω does not con-
tain representatives for the nontrivial element of Ωθ. For s 6= t, the pullback of the
GFω -representation π associated to J = 2As

2At to HFω decomposes as a direct sum
of two irreducible representations, associated to J and to J′ = 2At

2As. Since J and J′

are stable under τ , τ stabilizes both these H-representations.
The isotropy group of λ as a L-parameter λH for HFω is bigger than for GFω ,

for zλH = λH and elements of SLn(C) which send λ to zλ also stabilize λH. From
the above we see that one such new element in the isotropy group is z1/2U , where
U ∈ Op(C) r SOp(C) and p = n− 2q ∈ 2Z>0. Thus (4.1) becomes

(4.2) ZSLn(C)(λH(Frob)) ∼= Sp2q(C)×Op(C).

The group AλH
can be obtained from (4.2) in the same way as described after (4.1).

The group (4.2) has precisely two cuspidal pairs, which should be matched with
the two direct summands of the pullback of π. Note that the action of τ on (4.1) is
(up to some inner automorphism) the unique nontrivial diagram automorphism of that
group. In Sp2q(C)×Op(C) that diagram automorphism becomes inner, which implies
that τ fixes both cuspidal pairs for this group. In particular, the aforementioned
matching of these with HFω -representation is automatically τ -equivariant.
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The case J = 2As
2As (with 2s + 2 = n). — Now Ωθ,P = Ωθ is nontrivial and

a′ = 2. There are two cuspidal unipotent representations containing σ, parametrized
by the two extensions σ1, σ2 of σ to NGFω (PFω ). Then σ1(g) = −σ2(g) for all
g ∈ NGFω (PFω ) r PFω .

Consider the action of τ = θ on G. We may take it to be the action of F , only
without the Frobenius automorphism of Knr/K. It stabilizes GFω , unless n is divisible
by four and GFω is not quasi-split (a case we need not consider, for there equivariance
with respect to diagram automorphisms is automatic). Then (1.12) shows that the
action of τ on GFω reduces to the action of this Frobenius automorphism on the
matrix coefficients.

Since NGFω (PFω ) r PFω contains τ -fixed elements (they are easy to find knowing
the explicit form of τ), τ fixes σ1 and σ2. Thus τ fixes both cuspidal unipotent
representations under consideration.

The Jordan blocks of uλ are again given in [FO20, 4.7.(i)]. The same reasoning as
in the case J = 2As

2At with s 6= t shows that the L-parameters λ and zλ are not
equivalent and that ZSLn(C)(λ(Frob)) ∼= Spn(C) admits just one cuspidal pair. Hence
b = 1, (Ωθ)∗λ = 1 and (Ωθ)∗λ = (Ωθ/Ωθ,P)∗. As b′ = 1, we conclude that

a = ba = |(Ωθ)∗λ| = 2 = |Ωθ,P| = a′ = a′b′.

We can take for y = λ(Frob)θ−1 the diagonal matrix with alternating 1 and −1 on the
diagonal. Considering the eigenvalues of y and θ(y), it is clear that θ(λ(Frob)) = θ(y)θ

and zλ(Frob) = zyθ are not conjugate. So τ fixes both these L-parameters.
We checked that the diagram automorphism τ = θ fixes all L-parameters under

consideration in this section. Every such L-parameter has only one cuspidal enhance-
ment. Hence τ fixes everything on the Galois side, which means that our LLC is
τ -equivariant for the representations in this section.

5. Odd orthogonal groups

Here G=SO2m+1 =PSO2m+1, of type Bm. Now G∨=Sp2m(C) and |Ωθ|= |Ω|=2.
From [Mor96, §5.3] or [Lus95, §7] we see that J = DsBt and hence

Ωθ,P =

{
Ωθ if s > 0,

1 if s = 0.

Further Lusztig’s geometric diagram J has two (possibly empty) components of
type Cn± . Then

ZG∨(λ(Frob)) ∼= Sp2n+
(C)× Sp2n−(C),

and this determines λ(Frob)) up to Z(G∨). The L-parameter λ is described in [Mor96,
§5.3, §6.6] and [FO20, 4.7(ii)]: the unipotent class in Sp2n±(C) has Jordan blocks of
sizes 2, 4, 6 . . . , which forces n± to be a triangular number. One observes that

(Ωθ)∗λ =

{
(Ωθ)∗ if n+ = n−,

1 if n+ 6= n−.
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By [Lus95, 7.54–7.56] b = b′ = 1 and s = 0 is equivalent to n+ = n−. We conclude
that

ab = a = |(Ωθ)∗λ| = |(Ωθ/Ωθ,P)∗| = a′ = a′b′.

6. Symplectic groups

We consider G = PSp2n, the adjoint group of type Cn. The group Ω = Ωθ has two
elements and

(Ωθ)∗ = Z(Spin2n+1(C)) = {1,−1}.

The subset J ⊂ C̃n can be of three kinds.

The case J = CsCt with s 6= t. — Here Ωθ,P = 1, so ω = 1 and a′ = 1. By [Lus95,
7.48–7.50] b = b′ = 1 and the geometric diagram is of type DpBq with p > 0. More
precisely, [Mor96, §5.4] says that

ZG∨(λ(Frob)) ∼=
(
Spin2p(C)× Spin2q+1(C)

)/
〈(−1,−1)〉.

The unipotent class from λ is given in [FO20, 4.7(iii)]: it has Jordan blocks of sizes
1, 3, . . . , 2Np − 1 and 1, 3, . . . , 2Nq − 1, where N2

p = 2p and N2
q = 2q + 1. This shows

that (Ωθ)∗λ = (Ωθ)∗ = (Ωθ/Ωθ,P)∗ and a = 1.

The case J = CsCs (with 2s = n). — Now Ωθ,P = Ωθ, a′ = 2 and ω can be both
elements of Ω. The geometric diagram has type Bq and one checks that (Ωθ)∗λ = 1.
(This corrects [Lus95, §7.50].)

The group ZG∨(λ(Frob)) is just G∨ = Spin2n+1(C). By [Lus84, §14] it has (at
most) one cuspidal pair on which Z(G∨) acts as ω, so b = 1. Thus

ab = a = 2 = a′ = a′b′.

The case J = Cs
2AtCs with t > 0. — Here ω must be nontrivial. Now Ωθ,P = Ωθ and

b′ = 1, so a′ = a′b′ = 2. Also, (Ωθ/Ωθ,P)∗ is automatically contained in (Ωθ)∗λ.
By [Lus95, §7.51–7.53] the geometric diagram is of type DpBq with p, q > 0. The

L-parameters are given explicitly in [Mor96, §6.7] and [FO20, 4.7(v)]. The group (Ωθ)∗

stabilizes λ and a = 1. Here

ZG∨(λ(Frob)) ∼=
(
Spin2p(C)× Spin2q+1(C)

)/
〈(−1,−1)〉.

The unipotent element uλ has two factors, both with Jordan blocks of the types
1, 5, 9, . . . or 3, 7, 11, . . . . Its conjugacy class only admits cuspidal local systems on
which both −1 ∈ Spin2p(C) and −1 ∈ Spin2q+1(C) act nontrivially. From [Lus84,
§14] we know that there are precisely two such cuspidal local systems, differing only
by the action of Z(Spin2p(C)). Hence b = 2.

Let us also look at the action of (Ωθ)∗λ on this pair of enhancements of λ. For this we
need to exhibit a g ∈ G∨ such that gλ(Frob)g−1 = −1 ·λ(Frob). For that we can look
at the G∨-centralizer of the image v(s) of s = λ(Frob) in G∨/{1,−1} = SO2n+1(C).
As

ZSO2n+1(C)(v(s)) ∼= S(O2p(C)×O2q+1(C)),
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we find
ZG∨(v(s)) ∼= S

(
Pin2p(C)× Pin2q+1(C)

)/
〈(−1,−1)〉.

The required g must lie in ZG∨(v(s))rZG∨(s), so its image in Pin2p(C) does not lie
in Spin2p(C). Therefore conjugation by g is an outer automorphism of ZG∨(λ(Frob)).
Every outer automorphism of Spin2q(C) acts nontrivially on the center of that group
(but fixes −1), and hence exchanges the two cuspidal local systems supported by the
unipotent class from λ. Thus (Ωθ)∗λ acts transitively on the set of relevant cuspidal
enhancements of λ.

7. Inner forms of even orthogonal groups

We consider G = PSO2n, of adjoint type Dn. Then G∨ = Spin2n(C) and

Ω∗ = Z(Spin2n(C)) =

{
(Z/2Z)2 n even,
Z/4Z n odd.

Let τ be the standard diagram automorphism of Dn of order 2. Then (Ω∗)τ = {1,−1}
is the kernel of the projection Spin2n(C) → SO2n(C). Apart from that Ω∗ contains
elements ε and −ε. In the associated Clifford algebra, ε is the product of the elements
of the standard basis of C2n.

We write Ω = Irr(Ω∗) = {1, η, ρ, ηρ}, where η is fixed by τ and η(−1) = 1. Fur-
thermore we decree that ρ(ε) 6= 1. So ρ has order 2 if n is even and order 4 if n is
odd, while τ interchanges ρ and ηρ. The action of Ω o {1, τ} on the affine Dynkin
diagram D̃n can be pictured as

ρη

τ ρ (n odd)

(n even)η

ρ (n odd)

ρ (n even)

τ

To check τ -equivariance, the following elementary lemma is useful.

Lemma 7.1. — Let n be even and let X be a set with a simply transitive Ω∗-action.
Suppose that {1, τ} acts on X, Ω∗-equivariantly in the sense that τ(λx) = τ(λ)τ(x)

for all x ∈ X,λ ∈ Ω∗. Then X ∼= Ω∗ as Ω∗ o {1, τ}-spaces.

Proof. — First we show that τ fixes a point of X. Take any x ∈ X and consider
τ(x) ∈ X. If τ(x) = x, we are done. When τ(x) = −x, the element εx is fixed by τ ,
for

τ(εx) = τ(ε)τ(x) = −ε · −x = εx.
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Suppose that τ(x) = εx. We compute

x = τ(εx) = τ(ε)τ(x) = −ε · εx,

so ε2 = −1. But Ω∗ ∼= (Z/2Z)2 since n is even, so we have a contradiction. For similar
reasons τ(x) = −εx is impossible.

Thus X always contains a τ -fixed point, say x0. Then the map

Ω∗ −→ X : λ 7−→ λx0

is an isomorphism of Ω∗ o {1, τ}-spaces. �

For the group PSO2n there are five different kinds of subsets J of D̃n which can
support cuspidal unipotent representations.

The case J = Dn. — Here ΩP = 1 and a′ = 1. We must have ω = 1, for otherwise P
cannot be Fω-stable. There are four ways to embed J in D̃n, and they are all associate
under Ω.

By [Lus95, §7.40] the geometric diagram has type DpDp, so n is even. The element
s = λ(Frob) is a lift of the diagonal matrix In ⊕ −In ∈ SO2n(C) in Spin2n(C). It
follows that (Ω)∗λ = 1 and

(7.1) ZG∨(s) =
(
Spinn(C)× Spinn(C)

)/
〈(−1,−1)〉.

By [FO20, 4.7.iv], uλ has Jordan blocks of sizes 1, 3, . . . , 2
√
n − 1, in both almost

direct factors Spinn(C). The group (7.1) has (at most) one cuspidal pair on which
Z(G∨) acts as 1, so a = 1 and b = 1.

Remark. — Let us rename PSO2n as Gad, and investigate what happens when it is
replaced by an isogenous group G, which in particular can be the simply connected
cover Gsc = Spin2n. In this remark we will endow objects associated to Gad with a
subscript ad.

As Ωsc = 1, the four elements of Ωad · J define four non-conjugate Fω-stable para-
horic subgroups of GFωsc . Hence the pullback of the unique π ∈ Irr(GFωad )[P,σ] from above
to GFωsc decomposes as a direct sum of four irreducible representations, parametrized
by the four elements of Ωad · (P, σ) or, equivalently, by the four Ωad-associates of P.
We note that the diagram automorphism τ fixes two of these (P, σ) and exchanges
the other two.

For G = SO2n we find two direct summands of π, parametrized by {P, ρP} and
both τ -stable. For G a half-spin group of rank n, π also becomes a direct sum of two
irreducible representations upon pulling back to GFω . Then they are parametrized
by {P, ηP}. The diagram automorphism τ exchanges these two half-spin groups, so it
does not extend to an automorphism of the (absolute) root datum of such a group.

On the Galois side, the above (λad, ρad) determines a single L-parameter λsc

for GFωsc . The centralizer of λsc(Frob) is larger than that of λad(Frob):
(7.2) ZGad

∨(λsc(Frob)) = 〈w〉S
(
Pinn(C)× Pinn(C)

)/
〈(−1,−1)〉,

J.É.P. — M., 2020, tome 7



1154 Y. Feng, E. Opdam & M. Solleveld

where w ∈ Spin2n(C) is a lift of
(

0 In
−In 0

)
∈ SO2n(C). Since GFω is K-split, it suffices

to consider enhancements of λsc that are trivial on Z(G∨). The component group
of λsc for GFω is identified as

ZGad
∨(λsc)/Z(Gad

∨) ∼= 〈w〉n S
(
(Z/2Z)n × (Z/2Z)n

)/
Z(SO2n(C))

⊃ ZGad
∨(λad)/Z(Gad

∨) ∼= S
(
(Z/2Z)n

)
× S
(
(Z/2Z)n

)/
Z(SO2n(C)),

where w now has order two and a capital S indicates the subgroup of elements that can
be realized by an element of a Spin group (not just in a Pin group). The component
group for λad as a L-parameter λ for G = SO2n lies in between the above two:
(7.3) ZGad

∨(λ)/Z(Gad
∨) ∼= S

(
(Z/2Z)n × (Z/2Z)n

)/
Z(SO2n(C)).

It is known that ρad is the unique alternating character of Aλad
and of

ZG∨ad
(λad)/Z(G∨

ad).

It can be extended in two ways to an enhancement ρ of λ, a representation of (7.3).
Since τ fixes (7.3) pointwise, it also fixes ρ. In particular we can match these two ρ’s
with the set {P, ηP} (from the p-adic side for G = SO2n) in a τ -equivariant way.

Both these extensions ρ are symmetric with respect to the two almost direct factors,
so they are stabilized by w. With Clifford theory it follows that ρad can be extended
in precisely four ways to a representation of ZGad

∨(λsc)/Z(Gad
∨), and hence to a

ρsc ∈ Irr(Aλsc
). These four extensions differ only by characters of

(7.4) ZGad
∨(λsc)/ZGad

∨(λad) ∼= (Z/2Z)2.

The group (7.4) is isomorphic to Ω∗ad, by mapping z ∈ Ω∗ad to a g ∈ ZGad
∨(λsc) with

gλad(Frob)g−1 = zλad(Frob).

By Lemma 7.1 the set of enhancements ρsc of λsc is Ω∗ o {1, τ}-equivariantly in
bijection with the Ω-orbit of P.

For G a half-spin group of rank n and λad considered as a L-parameter λ for GFω ,
ZGad

∨(λ) is an index two subgroup of ZGad
∨(λad), which contains ZGad

∨(λsc) and
differs from (7.5). So ρad can be extended in two ways to an enhancement ρ of this λ.
We note that τ maps (λ, ρ) to an enhanced L-parameter for the other half-spin group
of rank n.

The case J = DsDt with s, t > 2 and s 6= t. — Here ΩP = {1, η} and the Fω-stability
of P forces ω ∈ {1, η}. In particular a′ = 2 and b′ = 1.

Now [NGFω (PFω ) : PFω ] = 2 and there are precisely two extensions of σ from PFω to
NGFω (PFω ). They differ by a sign on NGFω (PFω )rPFω . Since η stabilizes J and PFω ,
NGFω (PFω )rPFω contains elements of the form χ($K), where χ ∈ X∗(S) represents η.
Taking χ = e1, we see that NGFω (PFω )rPFω has τ -fixed elements. Hence τ stabilizes
both extensions of σ to NGFω (PFω ).

The two Langlands parameters built from J and the unipotent class associated
to σ [Mor96, §5.5, §6.9] differ by an element of Ω∗. From [Lus95, §7.38–7.39] we see
that the geometric diagram has type DpDq with p 6= q. The element λ(Frob) is a
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lift of −I2p ⊕ I2q to Spin2n(C). It is conjugate to −λ(Frob) ∈ Spin2n(C) by a lift of
−1⊕ I2n−2 ⊕−1 to g ∈ G∨. As λ(Frob) is not conjugate to ελ(Frob), we obtain

Ω∗λ = {1,−1} = (Ω∗)τ = (Ω/ΩP)∗.

The unipotent class from λ [FO20, 4.7.(iv)], in the group

(7.5) ZG∨(λ(Frob)) =
(
Spin2p(C)× Spin2q(C)

)/
〈(−1,−1)〉,

has Jordan blocks 1, 3, . . . , 2Np−1 and 1, 3, . . . , 2Nq−1, where N2
p = 2p and N2

q = 2q.
It only supports a (unique) cuspidal local system if n = p + q is even. Then Z(G∨)

acts as 1 if n is divisible by 4 and as η if n ≡ 2 modulo 4. So a = 2 and b = 1.
As τ fixes the above λ(Frob), it stabilizes both the L-parameters, and then also their
enhancements. In particular the LLC is τ -equivariant in this case.

Remark. — Again we work out what changes if we replace G by Gsc = Spin2n. Any
π ∈ Irr(GFω )cusp,unip as above decomposes a direct sum of irreducibles upon pulling
back to GFωsc . These are parametrized by {P, ρP}, the set of GFωsc -conjugacy classes of
parahoric subgroups of G which are GFω -conjugate to P. Since τ stabilizes P, it fixes
all four elements of Irr(GFωsc ) under consideration.

Regarding λ as a L-parameter λsc for GFωsc , we get

ZG∨(λsc(Frob)) = S
(
Pin2p(C)× Pin2q(C)

)/
〈(−1,−1)〉.

This group admits two cuspidal pairs (uλ, ρsc) on which Z(G∨) acts as 1 or η. Notice
that τ fixes some elements of ZG∨(λsc)rZG∨(λ), for example a lift of I2p−1⊕−I2⊕
I2q−1 to Spin2n(C). Hence τ fixes all enhanced L-parameters for GFωsc involved here.

The case J = DsDs (with 2s = n). — Since the finite reductive groups of type D1, D2

andD3 do not admit cuspidal unipotent representations, we have s > 4. Then ΩP = Ω,
so a′ = 4 and b′ = 1. By [Lus95, §7.41–7.42] or [Mor96, §5.5, §6.9] the geometric
diagram has type Dp and ω ∈ {1, η}. (The tables [Lus95, §7.44–7.45] cannot appear
here, because of parity problems.) For λ(Frob) we can take the unit element so Ω∗λ =

1 = (Ω/ΩP)∗. Then ZG∨(λ(Frob)) = Spin2n(C), which has precisely one cuspidal pair
on which Z(G∨) acts as 1 or η. We find a = 4 and b = 1. As usual the Jordan blocks
of uλ [FO20, 4.7.(iv)] must follow the pattern 1, 3, 5 . . .

The Ω∗-orbit of λ forms a set X as in Lemma 7.1. The four extensions of σ from
PFω to NGFω (PFω ) also form a set X ′ as in Lemma 7.1, and we may identify it with
Irr(GFω )[P,σ]. Now Lemma 7.1 yields a Ω∗ o {1, τ}-equivariant bijection X ←→ X ′,
which fulfills all the conditions we impose on the LLC.

The case J = 2As. — The involvement of the diagram automorphism of As implies
that ω = ρ or ω = ηρ. These two are interchanged by τ . This points to an easy recipe
to make the LLC τ -equivariant in this case: construct it in some Ω∗-equivariant way
for ω = ρ, and then define if for ω = ηρ by imposing τ -equivariance.

There are four ways to embed J in D̃n, two of them are Fω-stable and the other
two are Fωη-stable. We have ΩP = {1, ω}, so a′ = 2 and b′ = 1.
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According to [Lus95, §7.46] and [Mor96, §6.10], just as in the case J = Dn, n is
even and the geometric diagram has type Dn/2Dn/2. As over there, Ω∗λ = Ω∗ and
a = 1. The group ZG∨(λ(Frob)) is as in (7.1). It admits two cuspidal pairs on which
Z(G∨) acts as ω (so b = 2). Let the unipotent element u be as in [FO20, 4.7.(vi)], so
with Jordan blocks following the patterns 1, 5, 9, . . . or 3, 7, 11, . . . .

Assume that ω = ρ. In terms of Spin2n(C)2, the cuspidal pairs are of the form
(u× u, ρ1⊗ ρ2), where ρ1 and ρ2 differ only by the nontrivial diagram automorphism
of Spin2n(C).

A lift g ∈ Spin2n(C) of In−1 ⊕ −I2 ⊕ In−1 ∈ SO2n(C) satisfies gλ(Frob)g−1 =

−λ(Frob). Such a g acts by outer automorphisms on both almost direct factors of
(7.1), so it exchanges (u× u, ρ1 ⊗ ρ2) and (u× u, ρ2 ⊗ ρ1). Thus Ω∗ acts transitively
on the enhancements L-parameters for this case.

The element w from (7.2) satisfies wλ(Frob)w−1 = ελ(Frob). Since n is even,
conjugation by w exchanges the two almost direct factors of (7.1), but nothing more.
That operation exchanges (u×u, ρ1⊗ρ2) and (u×u, ρ2⊗ρ1). Thus ε and −1 ∈ Ω∗ act
in the same (nontrivial) way on the set of enhancements of λ. Then −ε fixes stabilizes
both these enhancements. As n is even and ω = ρ, (Ω/ΩP)∗ = {1,−ε} is precisely the
isotropy group all of enhanced L-parameters under consideration here.

For ω = ηρ we would get the cuspidal pairs (u×u, ρi⊗ρi), and we would find that
Ω∗ acts transitively on them, with isotropy group {1, ε} = (Ω/ΩP)∗.

The case J = Dt
2AsDt with s, t > 1. — Here 2t+s = n−1. As for J = 2As, ω ∈ {ρ, ηρ}

and τ -equivariance of the LLC is automatic in this case. We have ΩP = Ω, so a′ = 4

and b′ = 1.
By [Mor96, §6.11] and [Lus95, §7.44–7.45] the geometric diagram has type DpDq

with p > q > 0 and p+ q = n. The unipotent class from λ is given in [FO20, 4.7.(vi)]
and has the same shape as in the previous case. The image of λ(Frob) in SO2n(C) is
I2p ⊕−I2q or −I2p ⊕ I2q.

When q = 0, the four possibilities for λ(Frob) are non-conjugate and central in G∨,
so a = 4. The given unipotent class inG∨ = Spin2n(C) supports just one cuspidal local
system on which Z(G∨) acts as ω, so b = 1. We also note that Ω∗λ = 1 = (Ω/ΩP)∗.

When q > 0, λ(Frob) and ελ(Frob) ∈ Spin2n(C) are not conjugate, but
gλ(Frob)g−1 = −λ(Frob) is achieved by taking for g a lift of −1 ⊕ I2n−2 ⊕ −1.
Hence

Ω∗λ = {1,−1} ) (Ω/ΩP)∗ = 1.

The group ZG∨(λ(Frob)) is given by (7.5). The unipotent class and ω impose that we
only look at cuspidal pairs on which −1 ∈ Z(G∨) acts nontrivially. Like in the case
J = 2As there are four of them, two relevant for GFρ and two relevant for GFηρ . Let
ρ1, ρ2 denote cuspidal enhancements for Spin2m(C) with different central characters,
nontrivial on −1, and m ∈ {p, q}. Then the enhancements for ω = ρ are ρ1 ⊗ ρ2

and ρ2⊗ρ1, and the enhancements for ω = ηρ are ρi⊗ρi. The same analysis as in the

J.É.P. — M., 2020, tome 7



Supercuspidal unipotent representations 1157

case J = 2As shows that Ω∗λ acts simply transitively on the GFω -relevant enhancements
of λ.

The exceptional automorphisms of D4. — All the diagram automorphisms of order 2

are conjugate to τ , so equivariance of the LLC with respect to those follows in the
same way as equivariance with respect to τ .

Let τ1 and τ2 = τ2
1 be the order 3 diagram automorphisms of D4. The subset

J = Dt
2AsDt with s > 0 cannot appear here, as s + 1 needs to be of the form

b(b + 1)/2 to support a cuspidal unipotent representation. Therefore we must have
J = DsDt with s+t = 4. The finite reductive groups of type D1, D2 and D3 (these are
actually of type A) do not admit cuspidal unipotent representations, so only the case
J = D4 remains. There a = b = a′ = b′ = 1, so it involves only one representation
of GFω and only one enhanced L-parameter, and these must be fixed by τ1 and τ2.

8. Outer forms of even orthogonal groups

Let us look at G = PSO∗2n, the quasi-split adjoint group of type 2Dn. Then
G∨ = Spin2n(C) and in LG the Frobenius elements act nontrivially, by the stan-
dard automorphism θ = τ of Dn of order 2. For this G we have

Ωθ = {1, η}, (Ωθ)∗ = Z(Spin2n(C))/{1,−1} = {1, ε}

and the inner twists are parametrized by Ωθ = Ω/{1, η} = {1, ρ}.

The case J = Ds
2Dt with s > 0, t > 1. — By [Lus02, §11.4] ω has to be 1 (which is

equivalent to u ∈ {θ, θη} in Lusztig’s notation). Here Ωθ,P = Ωθ, so a′ = 2 and b′ = 1.
Let E/K be the quadratic unramified field extension over which the quasi-split

group GFω splits, and let Frob be the associated field automorphism. From (1.11) we
see that

GFω = {g ∈ G(E) : θ ◦ Frob(g) = g},
where Frob acts on the coefficients of g as a matrix. In particular the action of τ = θ

on GFω reduces to the action of the field automorphism Frob.
There are precisely two extensions of σ from PFω to NGFω (PFω ). Since η stabilizes P

and commutes with τ , one can find τ -fixed elements in NGFω (PFω )rPFω (see the case
G = PSO2n, J = DsDt and a = 2). This entails that τ stabilizes both extensions of σ
to NGFω (P).

From [Lus02, §11.4] we see that the geometric diagram has type BpBq with p 6= q

and p+ q + 1 = n. We can represent the image of λ(Frob) in O2n(C) by the diagonal
matrix −I2p+1 ⊕ I2q+1. One finds

(8.1) ZG∨(λ(Frob)) ∼=
(
Spin2p+1(C)× Spin2q+1(C)

)/
〈(−1,−1)〉.

One checks that ελ(Frob) is not G∨-conjugate to λ(Frob), so

(Ωθ)∗λ = (Ωθ/Ωθ,P)∗ = 1 and a = 2.

One can obtain Aλ from (8.1) by intersecting with the centralizer of λ(SL2(C)) and
adding Z(G∨). But since GFω is quasi-split, we may ignore the addition of the center
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and just look at cuspidal pairs for (8.1) on which Z(G∨)θ acts trivially. According to
[FO20, 4.7.(iv)], uλ has Jordan blocks in the pattern 1, 3, 5, . . . One sees quickly from
the classification in [Lus84] that the class of uλ admits a unique cuspidal local system
which is equivariant for (8.1), so b = 1.

Since λ(Frob)θ−1 can be chosen in (G∨)θ [Ree10], τ fixes both enhanced L-para-
meters under consideration. We conclude that the LLC is τ -equivariant in this case.

The case J = 2Dt. — Here Ωθ,P = {1}, so ω = 1, a′ = 1 and b′ = 1. The description
of λ from s > 0 remains valid, only now p = q. Let w ∈ G∨ be a lift of

(
0 In
−In 0

)
∈

SO2n(C). Picking suitable representatives, we can achieve that

wλ(Frob)w−1 = ελ(Frob).

Thus (Ωθ)∗ fixes the equivalence class of λ, a = 1 and (Ωθ)∗λ = (Ωθ/Ωθ,P)∗. In the
same way as above one sees that b = 1. This case involves a unique object on both
sides of the LLC, and the LLC matches them in an obviously τ -equivariant way.

Remark. — Let Gsc = Spin∗2n be the simply connected cover of G. When we pull
back a GFω -representation coming from (P, σ) as above to GFωsc , it decomposes as
a direct sum of two irreducible representations, one associated to (P, σ) and one to
(ηP, η∗σ). The diagram automorphism τ stabilizes P and ηP, so it fixes both these
representations of GFωsc .

On the Galois side, we can consider λ as a L-parameter λsc for GFωsc . Its stabilizer
is larger than (8.1):

(8.2) ZG∨(λsc(Frob)) ∼= 〈w〉
(
Spin2q+1(C)× Spin2q+1(C)

)/
〈(−1,−1)〉.

The unipotent class from λ supports two cuspidal local systems which are equivari-
ant under (8.2). The diagram automorphism τ induces an inner automorphism of
(8.1) and (8.2) (namely, conjugation by λ(Frob)θ), so it stabilizes both these cuspidal
enhancements of λsc.

The case J = 2(DtAsDt) with t > 0. — By [Lus02, 11.5] ω = ρ ∈ Ωθ (or u = ρθ in
Lusztig’s notation). Notice that τ(ρ) = ηρ, so τ does not preserve the group GFω .
Also, τ maps enhanced L-parameters on which Z(G∨) acts according to ρ to enhanced
L-parameters on which Z(G∨) acts as ηρ. Consequently equivariance with respect to
diagram automorphisms is automatic in this case. We have Ωθ,P = Ωθ = {1, η} and
[NGFω (P) : P] = a′ = 2.

The element λ(Frob) and its G∨-centralizer are as in (8.1), only with different
conditions on p and q. In particular a = 2 as above. The unipotent class from λ is given
in [FO20, 4.7.(vi)]: its Jordan blocks come in the patterns 1, 5, 9, . . . or 3, 7, 11, . . . For
this class, only cuspidal Aλ-representations of dimension > 1 have to be considered.
The classification of cuspidal local systems for spin groups in [Lus84, §14] shows that
(8.1) admits precisely one on which Z(G∨) acts as ρ, so b = 1.
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The case J = 2As. — As in the previous case we take ω = ρ. There are four ways to
embed this J in 2̃Dn, all conjugate under Ωθ o {1, θ}. When n is even, none of these
is Fω-stable, so n has to be odd. Then two of these P’s are Fω-stable and Ωθ,P = {1}.
Hence NGFω (PFω ) = PFω and a′ = 1.

The element λ(Frob) and its G∨-centralizer are still as in (8.1), but with p = q.
Just as above for J = 2Dt, one finds (Ωθ)∗λ = (Ωθ/Ωθ,P)∗ and a = 1. The analysis of
enhancements of λ from the case J = 2Dt

2As
2Dt remains valid, so b = 1.

Remark. — Let us consider the pullback of one of the above GFω -representations to
GFωsc . It decomposes as a sum of two irreducibles, parametrized by (P, σ) and (ηP, η∗σ).
Notice that τ does not stabilize these two parahoric subgroups of G, rather, it sends
them to Fρη-stable parahoric subgroups. Just as in the remark to the case J = Ds

2Dt,
one can show that for GFωsc the L-parameter λ admits two relevant enhancements.
Both are fixed by τ , except for the action of Z(G∨) on the enhancements, which τ

changes from ρ to ηρ.

The exceptional group of type 3D4. — Here θ is a diagram automorphism of D4 of
order 3. We have G∨ = Spin8(C), Z(G∨)θ = {1} and Ωθ = {1}. In particular there is
a unique inner twist, the quasi-split adjoint group of type 3D4.

According [Lus02, 11.10–11.11] only the subset J = 3D4 of 3̃D4 supports cuspidal
unipotent representations. More precisely, the associated parahoric subgroup PFω has
two cuspidal unipotent representations with different formal degree [Fen19, §4.4.1],
so b′ = 1 for both. As Ωθ = {1}, NGFω (PFω ) = PFω and a′ = 1. As (Ωθ)∗ = {1}, also
a = 1.

From the geometric diagrams in [Lus02, 11.10–11.11] and [Ree10, §4.4] we see that
ZG∨(λ(Frob)) is either Spin4(C) or G2(C), while [Fen19, §4.4.1] tells us how these
must be matched with the two relevant supercuspidal representations. Both these
complex groups admit a unique cuspidal pair, so b = 1. Thus, given the formal degree
we find exactly one cuspidal unipotent representation of GFω and exactly one cuspidal
enhanced L-parameter. In particular these are fixed by any diagram automorphism
of D4, making the LLC for these representations equivariant with respect to diagram
automorphisms.

9. Inner forms of E6

Let G be the split adjoint group of type E6. Then G∨ also has type E6 and
Ω∗ = Z(G∨) ∼= Z/3Z.

We write Ω = Irr(Ω∗) = {1, ζ, ζ2} and we let τ be the nontrivial diagram automor-
phism of E6. There are two possibilities for J ⊂ Ẽ6.

The case J = E6. — Here ΩP = {1} and hence ω = 1. From [Lus95, 7.22] we deduce
that a = a′ = 1 and b = b′ = 2 and hence Ω∗λ = Ω∗. Let σ1 and σ2 be the two cuspidal
unipotent representations of PFω . Since Ω∗ has order 3 and ab = a′b′ = 2, Ω∗ fixes the
GFω -representations induced from σ1 and σ2, and fixes both enhanced L-parameters
with the appropriate adjoint γ-factor.
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According to [Lus78, Th. 3.23] the representation σk can be realized as the
eigenspace, for the eigenvalue e2kπi3q3, of a Frobenius element F acting on the top
`-adic cohomology of a variety Xw. Here w is an element of the Weyl group of E6

which stabilizes the subsystem of type A2A2A2. The action of θ on the σk comes
from its action on Xw, the variety of Borel subgroups B of E6(Fq) such that B
and F (B) are in relative position w. For the particular w used here, Xw is θ-stable.
Since E6 is split, F acts on it by a field automorphism applied to the coefficients.
The induced action on Xw commutes with the θ-action, because F and θ commute
as automorphisms of the Dynkin diagram of E6. In particular θ stabilizes every
eigenspace for F , and θ stabilizes both σ1 and σ2.

We work out the observations from [Mor96, §5.9] about the semisimple element
s = λ(Frob) ∈ LG. It corresponds to the central node v(s) of Ẽ6. By [Ste68] its
centralizer in the simply connected group E6(C) is a complex connected group of
type A2A2A2. The root lattice of A2A2A2 has index 3 in the root lattice of E6, so
ZG∨(s) has center of order 3 |Ω∗| = 9. Hence ZG∨(s) is the quotient of the simply
connected group SL3(C)3 by a central subgroup C of order 3, such that the projection
of C on any of the 3 factors SL3(C) is nontrivial. Consequently

(9.1) Aλ
∼= (Z/3Z)3/C.

Since ω = 1, we only have to look at enhancements of λ which are trivial on Z(G∨)

and we may replace ZG∨(s) by

ZG∨(s)/Z(G∨) ∼= SL3(C)3/CZ(G∨).

The center of the latter group has order 3, and it is generated by the image v(s)

of s. The group SL3(C)3 has 23 = 8 cuspidal pairs, corresponding to the characters
of Z(SL3(C)3) ∼= (Z/3Z)3 which are nontrivial on each of the 3 factors. Dividing out
CZ(G∨) leaves only 2 of these characters. Since τ fixes v(s), it stabilizes sZ(G∨) and
fixes both cuspidal enhancements of λ. Thus our LLC for these objects is θ-equivariant.

Remark. — Let us investigate what happens when G is replaced by its simply con-
nected cover Gsc and λ is regarded as a L-parameter λsc for GFωsc . The centralizer
of λsc(Frob) in G∨ is bigger than that of s. From [Ree10, Prop. 2.1] we get a precise
description, namely ZG∨(s) o {1, w, w2}, where the Weyl group element w cyclically
permutes the factors of A2A2A2. In G∨ we have w(s) = sz with z ∈ Z(G∨)r {1}, so

Aλsc
/Z(G∨) = 〈s〉 × 〈w〉 ∼= (Z/3Z)2.

In particular both the cuspidal representations ρ of Aλ can be extended in 3 ways to
characters of Aλsc

. As ρ is τ -stable the diagram automorphism group 〈τ〉 acts on the
set of extensions of ρ to Aλsc . There are 3 such extensions and τ has order 2, so it
fixes (at least) one extension, say ρsc. From the actions on the root systems we see
that τ(w) = w2. If χ is a nontrivial character of 〈w〉, then ρsc⊗χ is another extension
of ρ and

τ(ρsc ⊗ χ) = ρsc ⊗ χ2.
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Thus τ permutes the other two extensions of ρ. Notice that this 3-element set of
extensions is, as a 〈τ〉-space, isomorphic to the set of standard parahoric subgroups
of G which are GFω -conjugate to P.

The case J = 3D4. — Here ΩP = Ω and ω ∈ Ω has order 3. The parahoric subgroup
PFω has two cuspidal unipotent representations, say σ1 and σ2, with different formal
degrees. From Lusztig’s tables we get b = b′ = 1 and a = a′ = 3, so Ω∗λ = {1}.

The diagram automorphism τ stabilizes Irr(GFω )[P,σi], because it preserves formal
degrees. Using [Fen19, §4.4.1] we match the geometric diagrams [Lus95, 7.20 & 7.21]
with [P, σ1] and [P, σ2]. As these two diagrams differ, τ stabilizes the triple of (en-
hanced) L-parameters associated to [P, σi] (for i = 1, 2). As τ has order 2, it fixes
at least one element of Irr(GFω )[P,σi], say πi. The group Ω∗ acts simply transitively
on Irr(GFω )[P,σi] and τ acts nontrivially on Ω∗, so πi is the unique τ -fixed element of
Irr(GFω )[P,σi].

By the same argument, τ fixes exactly one the three enhanced L-parameters as-
sociated to [P, σi], say (λi, ρi). Decreeing that πi corresponds to (λi, ρi), we obtain
a Ω∗ o 〈τ〉-equivariant bijection between Irr(GFω )[P,σi] and the associated triple in
Φ(GFω )cusp.

10. The outer forms of E6

Now τ = θ is the nontrivial diagram automorphism of E6. The groups Ωθ,Ωθ, (Ω
θ)∗

and (Ω∗)θ are all trivial. In particular GFω is necessarily quasi-split.
From [Lus02] we see that only J = 2E6 supports cuspidal unipotent representations.

The group PFω has one self-dual cuspidal unipotent representation σ0, for which
a = a′ = b = b′ = 1. We see from [Fen19, §4.4.2] that ZG∨(λ(Frob)) ∼= F4(C),
which has just one unipotent class supporting a cuspidal local system. The associated
GFω -representation and its enhanced L-parameter are determined uniquely by the
geometric diagram [Lus02, 11.7], so the objects are fixed by τ .

Also, PFω has two other cuspidal unipotent representations σ1 and σ2. For σ1

and σ2 we have a = a′ = 1 and b = b′ = 2 [Lus02, 11.6]. The same reasoning as for
the inner forms of E6 with J = E6, relying on [Lus78], shows that τ stabilizes both σi.

By [Fen19, §4.4.2] λ(Frob) = sθ, where s ∈ (G∨)θ is associated to the central node
of the affine Dynkin diagram of G∨. The orders of θ and of the image of s in G∨ad

(2 and 3, respectively) are coprime, so

ZG∨(λ(Frob)) = (G∨)θ ∩ ZG∨(s) ∼=
(
SL3(C)3/C

)θ ∼= SL3(C)2/C ′

for suitable central subgroups C,C ′ of order 3. Thus the component group of the L-
parameter λ associated to σ1, σ2 is obtained from (9.1) by taking θ-invariants. That
removes Z(G∨) from (9.1), but then the very definition of Aλ says that we have to
include the center again. It follows that

Aλ = Z(G∨)× 〈s〉 ∼= (Z/3Z)2.
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In (1.7) we already fixed the Z(G∨)-character of every relevant representation of Aλ

(namely, the trivial central character), so it suffices to consider the representations of
the subgroup generated by s. Its irreducible cuspidal representations are precisely the
two nontrivial characters. Since 〈s〉 is fixed entirely by θ, so are these two enhance-
ments of λ. We conclude that also in this case the LLC is θ-equivariant.

11. Groups of Lie type E7

Let G be the split adjoint group of type E7. Then G∨ also has type E7 and |Ω| = 2.
From [Mor96, §5.9, §6.13] and [Lus95, 7.12–7.14] it is known that two subsets of the
affine Dynkin diagram Ẽ7 are relevant for our purposes.

The case J = E6. — This J only gives rise to supercuspidal unipotent representations
of GFω if ω is nontrivial. The associated parahoric subgroup satisfies ΩP = Ω. In
[Lus95, 7.12 and 7.13] a = a′ = 2 and b = b′ ∈ {1, 2}. In view of Theorem 1, Ω∗

in each case permutes the two involved L-parameters λ. Hence (Ω/ΩP)∗ = {1} is
precisely the stabilizer of λ and any of its GFω -relevant enhancements.

The case J = E7. — By [Lus95, 7.14] a = a′ = 1, b = b′ = 2, ΩP = 1 and ω = 1, so
the group GFω is split. In particular every relevant representation of Aλ is trivial on
Z(G∨). The group Aλ/Z(G∨) is isomorphic to Z/4Z [Ree00, p. 34] and is generated
by the element λ(Frob), which has order four in the derived group of G∨ [Ree10].
The nontrivial element of Ω∗ = Z(G∨) sends λ(Frob) to a different but conjugate
element of G∨. Suppose that g ∈ G∨ achieves this conjugation. Then conjugation
by g stabilizes λ(Frob)Z(G∨), so it fixes Aλ/Z(G∨) pointwise. Hence the action of Ω∗

on the enhancements of λ is trivial, and (Ω/ΩP)∗ stabilizes them all.

12. Adjoint unramified groups

First we wrap up our findings for unramified simple adjoint groups, then we prove
Theorem 2.2 for all unramified adjoint groups.

Proposition 12.1. — Theorem 2.2 holds for all unramified simple adjoint K-groupsG.

Proof. — In view of Lemma A.4 and Proposition A.7, the objects in Theorem 2.2
are unaffected by restriction of scalars for reductive groups. Hence we may assume
thatG is absolutely simple. We start with the Langlands parameters for supercuspidal
unipotent representations from [Mor96, Lus95, Lus02], where all free choices are made
compatibly with Theorem 1. In some of the cases a completely canonical λ can be
found by closer inspection, for instance see Section 3.

On the p-adic side the subgroup (Ωθ/Ωθ,P)∗ of (Ωθ)∗ acts trivially, and the quotient
group (Ωθ,P)∗ acts simply transitively on Irr(GFω )[P,σ], see (1.18) (based on [Lus95]).
A bijection from (Ωθ,P)∗ to Irr(GFω )[P,σ] can be determined by fixing an extension
of σ to NGFω (PFω ).

All possibilities for (P, σ) up to conjugacy can be found in [Mor96, §5–6] and
[Lus95, §7] (for inner forms of split groups) and [Lus02, §11] (for outer forms of split
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groups). These lists show that the GFω -conjugacy class of P is uniquely determined
by λ. Hence the (Ωθ)∗-orbits on the set of solutions π of (0.1) are parametrized
by the cuspidal unipotent PFω -representations with the same formal degree as σ. In
particular there are b′ such orbits.

For inner forms of split groups the numbers a, b, a′, b′ and the equality ab = a′b′

are known from [Lus95, §7]. For outer forms we have exhibited these numbers in
Sections 4, 8 and 10. That b′ = 1 for classical groups is known from [Lus78]. The
equality b′ = φ(ns) can be seen from [Lus95, §7] and [Lus02, §11].

In the adjoint case all parahorics admitting cuspidal unipotent representations
with the same formal degree are conjugate, so a′ = |Ωθ,P|. By (1.1), (Ωθ)∗ is naturally
isomorphic with Z(G∨)θ. By Theorem 1 Z(G∨) acts transitively on the set of λ’s
with the same adjoint γ-factor, and that descends to a transitive action of (Ωθ)∗.
Therefore (Ωθ)∗/(Ωθ)∗λ acts simply transitively on the set of such λ, and a is as
claimed in Theorem 2.2.(5). In the previous sections we checked that (Ωθ)∗λ always
contains (Ωθ/Ωθ,P)∗.

This entails that we can find a bijection as in part (1), which is (Ωθ)∗-equivariant
as far as π and λ are concerned, but maybe not on the relevant enhancements of λ.
Notice that by Theorem 1 our method determines λ uniquely up to (Ωθ)∗ (given π).

A priori it is possible that (Ωθ/Ωθ,P)∗ acts nontrivially on some enhancements. To
rule that out we need another case-by-case check. There are only few cases with b > b′,
or equivalently (Ωθ)∗λ ) (Ωθ/Ωθ,P)∗, namely [Lus95, 7.44, 7.46, 7.51 and 7.52]. In those
cases b′ = 1, and we checked in Sections 6 and 7 that (Ωθ)∗λ acts transitively on the
set of GFω -relevant cuspidal enhancements of λ, with isotropy group (Ωθ/Ωθ,P)∗.

In the other cases b = b′ and (Ωθ)∗λ = (Ωθ/Ωθ,P)∗. Usually b = b′ = 1, then Aλ has
only one relevant cuspidal representation ρ and (Ωθ/Ωθ,P)∗ is the stabilizer of (λ, ρ).
When b = b′ > 1, G must be an exceptional group. For Lie types G2, F4, E8 and 3D4

the group (Ωθ)∗ is trivial, so there is nothing left to prove. For Lie types E6 and E7

see Sections 9, 10 and 11.
This shows part (3) and part (1) except the equivariance with respect to diagram

automorphisms. But the latter was already verified in the previous sections (notice
that in Sections 5 and 6 the Dynkin diagrams only admit the trivial automorphism).

Now only part (6) on the Galois side remains. By the earlier parts, there are
precisely b′ = φ(ns) orbits under (Ωθ)∗. Since all solutions λ for (0.1) are in the
same (Ωθ)∗-orbit, the orbits on Φnr(G

Fω )cusp can be parametrized by enhancements
of one λ. More precisely, such orbits are parametrized by any set of representatives
for the action of (Ωθ)∗λ on the GFω -relevant enhancements of λ. �

Proposition 12.2. — Theorem 2.2 holds for all unramified adjoint K-groups G.

Proof. — Every adjoint linear algebraic group is a direct product of simple adjoint
groups. It is clear that everything in Theorem 2.2 (apart from diagram automor-
phisms) factors naturally over direct products of groups. Here the required compati-
bility with (almost) direct products, as in (1.10), says that the enhanced L-parameter
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of a π ∈ Irr(GFω )cusp,unip is completely determined by what happens for the simple
factors of G. In particular, Proposition 12.1 establishes Theorem 2.2, except equivari-
ance with respect to diagram automorphisms, for all unramified adjoint groups which
are inner forms of a K-split group.

Consider an unramified adjoint K-group with simple factors Gi:

(12.1) G = G1 × · · · ×Gd.

Suppose that a diagram automorphism τ maps G1 to G2. Then G1 and G2 are
isomorphic, and τ also maps G∨1 to G∨2 inside G∨. Let Γ1 be the stabilizer of G1 in
the group of diagram automorphisms of G.

Assume that the θ-action on the set {G1, . . . ,Gd} is trivial. Then Theorem 2.2
for G follows directly from Proposition 12.1 for the Gi, except possibly for part (2).
But we can make the LLC from Theorem 2.2.(2) τ -equivariant by first constructing it
forG1 in a Γ1-equivariant way, and then defining it forG2 by imposing τ -equivariance.

When θ acts nontrivially on the set of direct factors of G, the above enables us
to reduce to the case where the Gi form one orbit under the group 〈θ〉. Then clearly
GFω ∼= G

Fdω
1 . For a more precise formulation, let K(d) be the unramified extension

of K of degree d. Then the K-group Gω is the restriction of scalars, from K(d) to K,
of the K(d)-group Gω

1 . Lemma A.4 says that there is a natural bijection

(12.2) Φ(GFω )cusp −→ Φ(G
Fdω
1 )cusp.

Proposition A.7 says that Theorem 2.2 for theK-groupG is equivalent to Theorem 2.2
for the simple, adjoint K(d)-group G1, via (12.2). Now θ has been replaced by θd,
which stabilizes G1, so we can apply the method from the case with trivial θ-action
on the set of simple factors of G. �

13. Semisimple unramified groups

Let G be a semisimple unramified K-group, and let Gad be its adjoint quotient.
We will compare the numbers a, b, a′ and b′ for G with those for Gad, which we denote
by a subscript ad.

Let πad, λad,Pad, σad be as in (2.1), for Gad. From [Lus95, Lus02], Theorem 2.2 and
Lemma 2.1 we know that (Ωθ,Pad )∗ acts simply transitively on the set of πad ∈ Irr(GFωad )

containing (Pad, σad). In other words, (Ωθad)∗ acts transitively, and (Ωθad/Ω
θ,P
ad )∗ is the

stabilizer of πad.
Let π ∈ Irr(GFω )cusp,unip be contained in the pullback of πad to GFω . It is known

[Lus78, §3] that unipotent cuspidal representations of a finite reductive group depend
on the Lie type of the group. So every (Pad, σad) lifts uniquely to (P, σ) and π ∈
Irr(GFω )[P,σ]. The packets of cuspidal unipotent representations of these parahoric
subgroups satisfy

(13.1) b′ = b′ad.

When Gad is adjoint and simple, Theorem 1 and Lusztig’s classification show that
the formal degree (of πad) determines a unique conjugacy class of Fω-stable parahoric
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subgroups of GFωad which gives rise to one or more supercuspidal unipotent represen-
tations with that formal degree. Via a factorization as in (12.1) this extends to all
unramified adjoint Gad.

This need not be true when G is not adjoint, but then still all such parahoric sub-
groups are associate by elements of Ωθad. It follows that the number of GFω -conjugacy
classes of such parahoric subgroups is precisely [Ωθad/Ω

P,θ
ad : Ωθ/ΩP,θ] = g′. By (1.18)

the group (Ωθ,P)∗ acts simply transitively on the set of irreducible GFω -representations
containing σ. It follows that

(13.2) a′ = |Ωθ,P|g′ = [Ωθ,Pad : Ωθ,P]−1g′ a′ad,

and that a′b′ equals the number of supercuspidal unipotentGFω -representations which
on each K-simple factor Gi give the same formal degree as π (see page 1145).

By Theorem 2.2.(3) for Gad:

(13.3) (Ωθad)∗λad
= (Ωθad/Nλad

)∗ for a subgroup Nλad
⊂ Ωθ,Pad .

By Theorem 2.2.(5) N∗λad
is naturally in bijection with the (Ωθad)∗-orbit of λad. In par-

ticular

(13.4) aad = |(Ωθad)∗λad| = |Nλad
|.

Also, (Ωθad)∗λad
has bad elements and acts simply transitively on the set of GFωad -relevant

cuspidal enhancements of λad.

Lemma 13.1. — Let λ ∈ Φ2
nr(G

Fω ) be the projection of λad via G∨sc → G∨.

(1) (Ωθ)∗ acts transitively on the collection of λ′ ∈ Φ2
nr(G

Fω ) which, for every
K-simple factor Gi of G, have the same γ-factor γ(0,AdG∨i

◦ λ′, ψ) as λ.
(2) The stabilizer of (the equivalence class of) λ equals (Ωθ/Ωθ ∩ Nλad

)∗, and it
contains (Ωθ/Ωθ,P)∗.

(3) a = |Nλad
∩ Ωθ|.

Proof

(1) By Theorem 2.2 for Gad, (Ωθad)∗λad is precisely the collection of L-parameters
for GFωad with a given adjoint γ-factor. Consequently every lift of a G∨-conjugate
of λ is G∨ad-conjugate to an element of (Ωθad)∗λad, and (Ωθ)∗λ is the collection of
L-parameters for GFω with the same adjoint γ-factor as λ.

(2) Since (Ωθad/Ω
θ,P
ad )∗ stabilizes λad (by Theorem 2.2.(3) for Gad), its image

(Ωθ/Ωθ,P)∗ under (Ωθad)∗ → (Ωθ)∗ stabilizes λ.
In G∨ some different elements of G∨sc become equal, namely ker(G∨sc → G∨) =

(Ωad/Ω)∗. The image of ker(G∨sc → G∨) in (Ωθad)∗ is

(Ωθad/Ω
θ)∗ = ker

(
(Ωθad)∗ −→ (Ωθ)∗

)
.
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Hence the stabilizer of λ in (Ωθ)∗ is precisely the image in (Ωθ)∗ of the (Ωθad)∗-stabilizer
of the orbit (Ωθad/Ω

θ)∗λad. That works out as

(Ωθad/Ω
θ)∗(Ωθad)∗λad

/
(Ωθad/Ω

θ)∗ = (Ωθad)∗λad

/(
(Ωθad/Ω

θ)∗ ∩ (Ωθad)∗λad

)
= (Ωθad/Nλad

)∗
/

(Ωθad/Ω
θNλad

)∗ = (ΩθNλad
/Nλad

)∗ = (Ωθ/Ωθ ∩Nλad
)∗.

(3) We saw in (13.3) that (Nλad
)∗ acts simply transitively on (Ωθad)∗λad, so it also

acts transitively on (Ωθ)∗λ. The stabilizer of λ in this group is (Nλad
/Nλad

∩Ω)∗, the
image of (Ωad/Ω)∗ in (Nλad

)∗. Then the quotient group

N∗λad
/(Nλad

/Nλad
∩ Ω)∗ = (Nλad

∩ Ω)∗ = (Nλad
∩ Ωθ)∗

acts simply transitively on (Ωθ)∗λ. We deduce that a = |Nλad
∩ Ωθ|. �

In the setting of Lemma 13.1, Aλ contains Aλad
as a normal subgroup. We want to

compare these subgroups of G∨sc, and the cuspidal local systems which they support.

Lemma 13.2. — The group Aλ/Aλad
is isomorphic to (Ωθad/Ω

θNλad
)∗.

Proof. — First we determine which lifts of λ to a L-parameter for GFωad are G∨sc-conju-
gate. To be conjugate, they have to be related by elements of (Ωθad)∗λad

= (Ωθad/Nλad
)∗.

To be lifts of the one and the same λ, they may differ only by elements of

ker(G∨sc −→ G∨) = (Ωad/Ω)∗.

Therefore two lifts of λ are conjugate if and only if they differ by an element of the
intersection

(Ωθad/Nλad
)∗ ∩ (Ωθad/Ω

θ)∗ = (Ωθad/Ω
θNλad

)∗.

We write Sλ = ZG∨sc(imλ) = π0

(
ZG∨sc(imλ)

)
, where G∨sc acts by conjugation, via the

natural map to the derived group of G∨. The above implies

(13.5) Sλ/Sλad
∼= (Ωθad/Ω

θNλad
)∗.

The more subtle component group Aλad
contains Sλad

with index

[Z(G∨sc) : Z(G∨sc)WF ] = |(1− θ)Z(G∨sc)|.

Similarly [Aλ : Sλ] = [Z(G∨sc) : Z(G∨sc)WF ] and hence

�(13.6) Aλ/Aλad
∼= Sλ/Sλad

.

Next we compare the cuspidal enhancements of λ and λad. Since Aλ contains Aλad

as normal subgroup, it acts on Aλad
(by conjugation) and it acts on Irr(Aλad

). For
ρad ∈ Irr(Aλad

), we let (Aλ)ρad be its stabilizer in Aλ.

Lemma 13.3. — Every irreducible cuspidal representation ρad of Aλad
extends to a

representation of (Aλ)ρad .
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Proof. — Recall from Theorem 2.2.(3) for Gad that the stabilizer of (λad, ρad) in
(Ωθad)∗ is (Ωθad/Ω

θ,P
ad )∗. Under the isomorphism from Lemma 13.2 or (13.5), the stabi-

lizer of ρad in Aλ/Aλad
corresponds to

(13.7) (Ωθad/Ω
θNλad

)∗ ∩ (Ωθad/Ω
θ,P
ad )∗ = (Ωθad/Ω

θΩθ,Pad )∗.

In the proof of Proposition 12.2 we checked that everything for Gad factors as a direct
product of objects associated to simple adjoint groups. In particular ρad is a tensor
product of cuspidal representations ρi of groups Ai associated to L-parameters λi
for adjoint simple groups GFωi . Thus it suffices to show that every such ρi extends
to a representation of (Aλ)ρad . The action of Aλ on ρi factors through the almost
direct factor of GFω which corresponds to GFωi . This enables us to reduce to the case
where G is almost simple, which we assume for the remainder of this proof.

Now we can proceed by classification, using [Lus95, §7]. By (13.7) and [AMS18,
Th. 1.2] we have to consider projective representations of (Ωθad/Ω

θΩθ,Pad )∗. In almost
all cases this group is cyclic, because Ωθad is cyclic. Every 2-cocycle (with values
in C×) of a cyclic group is trivial, so then by [AMS18, Prop. 1.1.a] ρad extends to a
representation of (Aλ)ρad .

The only exceptions are the inner twists of split groups of type D2n, for those
Ωθad

∼= (Z/2Z)2. The group (Ωθad/Ω
θΩθ,Pad )∗ can only be non-cyclic if G is simply

connected and Ωθ,Pad = 1, which forces P to be of type D2n. For this case, see the
remark to J = Dn in Section 7. �

It requires more work to relate the numbers of GFω -relevant cuspidal enhancements
of λ (i.e., b) and of λad (i.e., bad), in general their ratio is less than [Aλ : Aλad

].

Lemma 13.4. — b = g′[Ωθ,Pad : Ωθ,PNλad
]−1bad.

Proof. — It follows directly from [AMS18, Def. 6.9] that an irreducible Aλ-represen-
tation is cuspidal if and only if its restriction to Aλad

is a direct sum of cuspidal
representations. Such a situation can be analyzed with a version of Clifford theory
[AMS18, Th. 1.2]. Briefly, this method entails that first we exhibit the Aλ-orbits of cus-
pidal representations in Irr(Aλad

). In every such orbit we pick one representation ρad

and we determine its stabilizer (Aλ)ρad . By a choice of intertwining operators, ρad can
be extended to a projective representation ρ̃ad of (Aλ)ρad . Then the set of the irre-
ducible Aλ-representations that contain ρad is in bijection with the set of irreducible
representations (say τ) of a twisted group algebra of (Aλ)ρad/Aλad

. The bijection
sends τ to

(13.8) indAλ

(Aλ)ρad
(τ ⊗ ρ̃ad) ∈ Irr(Aλ).

If ρad can be extended to a (linear) representation of (Aλ)ρad , the aforementioned
twisted group algebra becomes simply the group algebra of (Aλ)ρad/Aλad

. In that
simpler case, the desired number of cuspidal irreducible Aλ-representations is the
sum, over the Aλ-orbits of the appropriate Aλad

-representations, of the numbers

(13.9) |Irr((Aλ)ρad/Aλad
)| = [(Aλ)ρad : Aλad

].
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For this equality we use that Aλ/Aλad
is abelian, which is immediate from Lem-

ma 13.2.
Let us make this explicit. By (13.7) (Aλ)ρad is the inverse image of (Ωθad/Ω

θΩθ,Pad )∗

in Aλ under (13.5). Notice that this does not depend on ρad, every other relevant
enhancement gives the same stabilizer. It follows that the quotient group

(13.10)
Aλ/(Aλ)ρad

∼= (Ωθad/Ω
θNλad

)∗/(Ωθad/Ω
θΩθ,Pad )∗

∼= (ΩθΩθ,Pad /Ω
θNλad

)∗ ∼= (Ωθ,Pad /Ω
θ,PNλad

)∗

acts freely on the collection of GFω -relevant cuspidal enhancements of λad. Now we
can compute the number of Aλ-orbits of such enhancements:

(13.11) bad |(Ωθ,Pad /Ω
θ,PNλad

)∗|−1 = bad |Ωθ,PNλad
| |Ωθ,Pad |

−1.

By Lemma 13.3 ρad can be extended to a representation ρ̃ad of (Aλ)ρad . It follows from
(13.9) that every Aλ-orbit of GFω -relevant cuspidal enhancements of λad accounts for
the same number of GFω -relevant cuspidal enhancements of λ, namely

(13.12) |(Ωθad/Ω
θΩθ,Pad )∗| = |Ωθad|

|ΩθΩθ,Pad |
=
|Ωθad| |Ωθ,P|
|Ωθ| |Ωθ,Pad |

= g′.

By [AMS18, Th. 1.2] b is the product of (13.11) and (13.12). �

Lemma 13.5. — Fix a GFω -relevant cuspidal ρad ∈ Irr(Aλad
). There exists a bijection

between:
• the set of ρ ∈ Irr(Aλ) that contain ρad,
• the set of GFω -conjugacy classes of parahoric subgroups of G that are GFωad -con-

jugate to P,
which is equivariant for Ωθad/Ω

θ,P
ad Ωθ and with respect to diagram automorphisms.

Proof. — By (13.8) and Lemma 13.3 every ρ ∈ Irr(Aλ) which contains ρad is of the
form

(13.13) ρ = indAλ

(Aλ)ρad
(ω ⊗ ρ̃ad)

for a unique

(13.14) ωΩθ,Pad Ωθ ∈ Ωθad/Ω
θ,P
ad Ωθ = Irr

(
(Ωθad/Ω

θ,P
ad Ωθ)∗

)
.

On the other hand, the group in (13.14) parametrizes the GFω -conjugacy classes of
GFωad -conjugates of P. Decreeing that (13.13) corresponds to ωPω−1, we obtain the
required bijection and the Ωθad/Ω

θ,P
ad Ωθ-equivariance.

Notice that the set of (standard) parahoric subgroups of G is the direct product
of the analogous sets for the almost direct simple factors of G. Together with the
explanation at the start of the proof of Lemma 13.3, this entails that for equivariance
with respect to diagram automorphisms it suffices to check the cases where G is
almost simple.

We only have to consider the Lie types An, Dn and E6, for the others do not
admit nontrivial diagram automorphisms. Among these, we only have to look at the
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parahoric subgroups P with Ωθ,P 6= Ωθ, or equivalently at the J that are not Ωθ-
stable. That takes care of the inner forms of type An and of the outer forms of type
E6. For the outer forms of type An (J = 2As

2At), the inner forms of Dn (J = Dn and
J = DsDt), the outer forms of Dn (J = 2Dt and J = 2As) and the inner forms of E6

(J = E6) see the remarks in Sections 4, 7, 8 and 9. �

14. Proof of main theorem for semisimple groups

Proposition 12.2 proves Theorem 2.2 for unramified adjoint groups. When we
replace an adjoint group by a group in the same isogeny class, several unipotent
cuspidal representations of GFωad coalesce and then decompose as a sum of g′ ir-
reducible unipotent cuspidal representations of GFω . Similarly, several enhanced
L-parameters for GFωad coincide, and they can be further enhanced in g′ ways to
elements of Φnr(G

Fω )cusp.
From (1.18) we see that the GFωad -representations which contain π ∈ Irr(GFω )[P,σ]

form precisely one orbit for (Ωθad/Ω
θ)∗. The action of (Ωθad)∗ on Irr(GFωad )unip,cusp

reduces to an action of (Ωθ)∗ on Irr(GFω )unip,cusp, and the stabilizers become

(Ωθ/Ωθ,Pad ∩ Ωθ)∗ = (Ωθ/Ωθ,P)∗.

A bijection

(14.1) (Ωθ,P)∗ ∼= (Ωθ)∗/(Ωθ/Ωθ,P)∗ −→ Irr(GFω )[P,σ]

can be specified by fixing an extension of σ from PFω to NGFω (PFω ) [Opd16, §2]. In
particular Irr(GFω )[P,σ] forms exactly one (Ωθ)∗-orbit. Consequently the (Ωθ)∗-orbits
on the set of solutions π of (0.1) are parametrized by the GFω -conjugacy classes of
(P′, σ′) with fdeg(σ′) = fdeg(σ). There are g′b′ = g′φ(ns) of those.

Recall that λ is the image of λad under G∨sc → G∨. When G is simple, Theorem 1
says that (Ωθ)∗λ is the unique (Ωθ)∗-orbit of L-parameters for GFω with for each
K-simple factor of G the same adjoint γ-factor as λad (up to a rational number).
It follows quickly from the definitions that adjoint γ-factors are multiplicative for
almost direct products of reductive groups, cf. [GR10, §3]. From (1.19) we see that
the formal degrees of supercuspidal unipotent representations are also multiplicative
for almost direct products, up to some rational numbers Cπ (which can be made
explicit, see [HII08, §1] and [Opd16, §4.6]). Hence the uniqueness of (Ωθ)∗λ in the
above sense also holds for semisimple G, provided we impose the compatibility with
almost direct products from (1.10). Together with (14.1) this proves Theorem 2.2.(2).

By Lemma 13.1 the λad which coalesce to λ form precisely one orbit under
(Ωθad/Ω

θ ∩ Nλad
)∗. From the proof of Lemma 13.2 we see that the restriction of a

relevant cuspidal representation ρ of Aλ to Aλad
contains precisely the enhancements

of λad in one (Ωθad/Ω
θNλad

)∗-orbit.
From Lemma 13.1.(2) we know that the (Ωθ)∗-stabilizer of (λ, ρ) is contained in

(Ωθ/Ωθ ∩Nλad
)∗, and from the proof of Lemma 13.4 we see that it must stabilize the

Aλ-orbit of a ρad ∈ Irr(Aλad
). By Theorem 2.2.(3) for Gad and by Lemma 13.2, the
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(Ωθad)∗-stabilizer of that orbit is

(14.2) (Ωθad/Ω
θ,P
ad )∗(Ωθad/Ω

θNλad
)∗.

Hence the (Ωθ)∗-stabilizer of that orbit is the image of (14.2) in (Ωθ)∗, that is,
(Ωθ/Ωθ,P)∗. From (13.12) we know that the different representations ρ of Aλ associ-
ated to the orbit of ρad are parametrized by Ωθad/Ω

θΩθ,Pad . Elements of (Ωθ)∗ exert no
influence on the last group, so (Ωθ/Ωθ,P)∗ is precisely the stabilizer of (λ, ρ) in (Ωθ)∗.
This proves Theorem 2.2.(3).

Part (4) can be observed from the adjoint case and (13.1). For Part (5), we note
by (13.1) and (13.2)

a′b′

a′adb
′
ad

=
g′ |Ωθ,P|
|Ωθ,Pad |

.

On the other hand, by Lemmas 13.1 and 13.4

ab

aadbad
=

|Nλad
∩ Ωθ| g′

|Nλad
| [Ωθ,Pad : Ωθ,PNλad

]
=
|Nλad

∩ Ωθ| g′|Ωθ,P| |Nλad
|

|Nλad
| |Ωθ,Pad | |Ωθ,P ∩Nλad

|
=
g′ |Ωθ,P|
|Ωθ,Pad |

.

Thus Theorem 2.2.(5) for Gad implies that a′b′ = ab.
Now we can construct a LLC for Irr(GFω )unip,cusp. Every π in there corresponds to

a unique (Ωθad/Ω
θ)∗-orbit in Irr(GFωad )unip,cusp. Then Proposition 12.2 gives an orbit

(14.3) (Ωθad/Ω
θ)∗(λad, ρad) ⊂ Φnr(G

Fω
ad )cusp.

By Lemma 13.1.(2) that determines a single λ ∈ Φnr(G
Fω ) and from Lemma 13.2 we

get one Aλ-orbit

(14.4) (Ωθad/Ω
θNλad

)∗ρad ⊂ Irr(Aλad
).

But (14.3) does not yet determine a unique representation of Aλ, in general several
extensions of ρad to ρ ∈ Irr(Aλ) are possible. By Lemma 13.5 we can match these ρ’s
with the GFω -conjugacy classes of parahoric subgroups of G that are GFωad -conjugate
to P, in a way which is equivariant for Ωθad and for diagram automorphisms. For
π ∈ Irr(GFω )[P,σ] we now choose the ρ which corresponds to the GFω -conjugacy class
of the P. Above we saw that π and (λ, ρ) have the same isotropy group in (Ωθ)∗, so we
get a well-defined map from (Ωθ)∗π to (Ωθ)∗(λ, ρ). This map is equivariant for (Ωθ)∗

and for all diagram automorphisms that stabilize the domain.
For all GFω -representations in the Out(GFω )-orbit of (Ωθ)∗π, we define the LLC

by imposing equivariance with respect to diagram automorphisms. If τ is a diagram
automorphism of G with τ(ω) 6= ω, then for z ∈ (Ωθ)∗ ∼= Xwr(G

Fω ) we define the
enhanced L-parameter of τ∗(z ⊗ π) ∈ Irr(GFτ(ω))cusp,unip to be (τ(zλ), τ∗ρ).

For another π′ ∈ Irr(GFω )unip,cusp we construct (λ′, ρ′) ∈ Φnr(G
Fω )cusp in the same

way. We only must take care that, if λ′ = λ, we select a ρ′ that we did not use already.
Since a′b′ = ab, this procedure yields a bijection Irr(GFω )unip,cusp → Φnr(G

Fω )cusp.
As explained above, at the same time this determines bijections

Irr(GFτ(ω))unip,cusp −→ Φnr(G
Fτ(ω))cusp
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for all diagram automorphisms τ of G. The union of all these bijections is the LLC
for all the involved representations, and then it is equivariant with respect to diagram
automorphisms.

From parts (1) and (3) we get the number of (Ωθ)∗-orbits on the Galois side of
the LLC, namely g′φ(ns), just as on the p-adic side. Since the L-parameters with the
same adjoint γ-factor form just one (Ωθ)∗-orbit, the orbits of enhanced L-parameters
can be parametrized by enhancements of λ, just as in the adjoint case.

15. Proof of main theorem for reductive groups

First we check that Theorem 2 is valid for any K-torus, ramified or unramified.
Of course, the local Langlands correspondence for K-tori is well-known, due to Lang-
lands.

Proposition 15.1. — Let T be a K-torus and write T = T(Knr).
(1) The unipotent representations of T(K) are precisely its weakly unramified char-

acters.
(2) The LLC for Irr(T(K))unip is injective, and has as image the collection of

L-parameters
λ : WK × SL2(C) −→ T∨ oWK

such that λ(w, x) = (1, w) for all w ∈ IK , x ∈ SL2(C).
(3) The map from (2) is equivariant for (ΩIK

∗)Frob and with respect to WK-
automorphisms of the root datum.

The target in part (2) is the analogue of Φnr(G
Fω ) for tori. As Aλ = 1, we can

ignore enhancements here.

Proof

(1) The kernel T1 of the Kottwitz homomorphism [Kot97, §7]

T −→ X∗((T∨)IK )

has finite index in the maximal bounded subgroup of T . By [PR08, App., Lem. 5],
T1 equals the unique parahoric subgroup of T . Then T(K)1 = TFrob

1 is the unique
parahoric subgroup of T(K) = TFrob. The finite reductive quotient TFrob is again
a torus, so its only cuspidal unipotent representation is the trivial representation.
Hence the unipotent T(K)-representations are precisely the characters of T(K) that
are trivial on T(K)1, that is, the weakly unramified characters.

(2) It is known (e.g. from [Hai14, §3.3.1]) that the LLC for tori puts Xwr(T(K))

in bijection with (Z(T∨)IK )Frob.
(3) From Z(T∨) ∼= Ω∗ we see that

(15.1) Xwr(T(K)) ∼= (Z(T∨)IK )Frob
∼= (Ω∗)IKFrob

∼= (ΩIK
∗)Frob.

Now it is clear that the LLC for Irr(T(K))unip is equivariant under (15.1).
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Since the LLC for tori is natural, it is also equivariant with respect to all automor-
phisms of X∗(T) that define automorphisms of T(K). These are precisely the auto-
morphisms of the root datum (X∗(T),∅, X∗(T),∅,∅) that commute with WK . �

Next we consider the case that G is an unramified reductive K-group such that
Z(G)◦(K) is anisotropic. By [Pra82, Th.BTR], that happens if and only if Z(GFω )

is compact. Equivalently, every unramified character of GFω is trivial. We will divide
the proof of Theorem 2 for such groups over a sequence of lemmas.

Lemma 15.2. — Suppose that Z(G)◦ is K-anisotropic, and let Ωder be the Ω-group
for Gder. Then Ωθder = Ωθ.

Proof. — By (1.1) Ωθder
∼= X∗(Z(G∨)θ/Z(G∨)◦). Since Z(G)◦ is K-anisotropic, so is

G/Gder, and
0 = X∗(G/Gder)

Frob = X∗(Z(G∨)◦)θ.

This implies

(15.2) (1− θ)Z(G∨)◦ = Z(G∨)◦,

so Ωθ = X∗(Z(G∨)θ) = X∗(Z(G∨)θ/Z(G∨)◦). �

Lemma 15.3. — Suppose that Z(G)◦ is K-anisotropic. The inclusion GFωder → GFω

induces a bijection

Irr(GFω )cusp,unip −→ Irr(GFωder)cusp,unip.

Proof. — These two groups have the same affine Dynkin diagram I. For any proper
subset of I, the two associated parahoric subgroups, of G and of Gder, give rise to
connected reductive F-groups of the same Lie type. The collection of (cuspidal) unipo-
tent representations of a connected reductive group over a (fixed) finite field depends
only on the Lie type of the group [Lus78, Prop. 3.15]. Hence any cuspidal unipotent
σ ∈ Irr(PFωder) extends in a unique way to a representation σ′ of PFω . More precisely,
both σ and σ′ factor via the canonical map to PFωad .

By Lemma 15.2GFω andGFωder also have the same Ωθ-group. From (1.15) we see that

(15.3) NGFω (PFω ) = NGFωder
(PFωder)P

Fω .

After (1.15) we checked that there exists an extension σN of σ to a representation of
NGFωder

(PFω ). Since σ and σ′ factor via PFωad , σN extends uniquely to a representation
of (15.3).

Now the classification of supercuspidal unipotent representations, as in (1.17) and
further, is the same for GFω and for GFωder. The explicit form (1.18) shows that the
ensuing bijection is induced by GFωder → GFω . �

Lemma 15.4. — Suppose that Z(G)◦ is K-anisotropic. The canonical map G∨ →
G∨/Z(G∨)◦ induces a bijection Φnr(G

Fω )→ Φnr(G
Fω
der).
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Proof. — Suppose that λ, λ′ ∈ Φnr(G
Fω ) become equal in Φnr(G

Fω
der). Then there

exists a g ∈ G∨ such that gλ′g−1 = λ as maps WK × SL2(C)→ G∨/Z(G∨)◦ oWK .
In particular gλ′(Frob)g−1 = z1λ(Frob) for some z1 ∈ Z(G∨)◦. By (15.2) we can find
z2 ∈ Z(G∨)◦ with z−1

2 θ(z2) = z1. Then

z2gλ
′(Frob)g−1z−1

2 = z2z1λ(Frob)z−1
2 = z2z1θ(z

−1
2 )λ(Frob) = λ(Frob).

Replace λ′ by the equivalent parameter λ′′ = z2gλ
′g−1z−1

2 . These parameters are
unramified, so λ′′|WK

= λ|WK
. But λ|SL2(C) = λ′′|SL2(C) still only holds as maps

SL2(C)→ G∨/Z(G∨)◦. In any case, λ
(
1, ( 1 1

0 1 )
)
and λ′′

(
1, ( 1 1

0 1 )
)
determine the same

unipotent class (inG∨ and inG∨/Z(G∨)◦). Consequently, λ and λ′′ areG∨-conjugate.
Conversely, consider a λ̃ ∈ Φnr(G

Fω
der). We may assume that λ̃(Frob) = sθZ(G∨)◦

for some s ∈ S∨. Then sθ and λ̃(Frob) centralize the same subalgebra of

Lie(G∨) = Lie(G∨der)⊕ Lie(Z(G∨)◦).

As dλ̃(sl2(C)) is contained in
Lie
(
(G∨)sθ

)
= Lie

(
ZG∨(sθ)

)
= Lie

(
ZG∨(λ̃(Frob))

)
,

we can lift dλ̃(sl2(C)) to a homomorphism λ : SL2(C) → ZG∨(sθ)◦. Together with
λ(Frob) := sθ this defines a preimage of λ̃ in Φnr(G

Fω ). �

Lemma 15.5. — Suppose that Z(G)◦ is K-anisotropic. Let λ ∈ Φnr(G
Fω ) and let λder

be its image in Φnr(G
Fω
der). Then Aλ = Aλder

.

Proof. — Recall the construction of Aλ from (1.5) and (1.6). It says that Aλder
is the

component group of
Z1

(Gder)∨sc
(λder) =

{
g ∈ (Gder)

∨
sc : gλderg

−1 = λderb for some b ∈ B1(WK , Z(Gder
∨))
}
.

From Gder
∨ = G∨/Z(G∨)◦ we see that (Gder)

∨
sc = G∨sc. Since λ is unramified,

the difference with λder resides only in the image of the Frobenius element (see the
second half of the proof of Lemma 15.4). To centralize λder means to centralize λ, up
to adjusting λ(Frob) by an element of Z(G∨)◦. Together with (15.2) this implies that

Z1
(Gder)∨sc

(λder) =
{
g∈G∨sc : gλg−1 =λb for some b∈B1(WK , Z(G∨))

}
= Z1

G∨sc
(λ).

In particular
Aλder

= π0

(
Z1

(Gder)∨sc
(λder)

)
= π0

(
Z1
G∨sc

(λ)
)

= Aλ. �

Proposition 15.6. — Theorem 2 holds whenever Z(G)◦ is K-anisotropic.

Proof. — Lemmas 15.2, 15.3, 15.4, 15.5 and Theorem 2.2 prove parts (5) and (6) of
Theorem 2, as well as the unicity up to weakly unramified characters. The equivariance
properties (2) and (3) in Theorem 2 follow from the semisimple case, because the
isomorphisms in the aforementioned lemmas are natural.

Assume that G is the almost direct product of K-groups G1 and G2. Then

(15.4) Gder = G1,derG2,der and Z(G)◦ = Z(G1)◦Z(G2)◦

are also almost direct products, and there are epimorphisms of K-groups

(15.5) G1,der × Z(G1)◦ ×G2,der × Z(G2)◦ −→ Gder × Z(G)◦ −→ G.
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Notice that the connected centers of G1 and G2 are K-anisotropic. By Lemma 15.3
Z(G)◦(K), and the Z(Gi)

◦(K) have unique irreducible unipotent representations,
namely the trivial representation of each of these groups. That and Theorem 1 show
that our instances of the LLC forG(K) and theGi(K) are compatible with the almost
direct products (15.4). For the same reason they are compatible with the second map
in (15.5). The composition of the maps in (15.5) factors via G1 ×G2 → G, so our
LLC is also compatible with that almost direct product.

Conversely, Lemma 15.3 and Theorem 2.2.(4) leave no choice for the LLC in this
case, it just has to be the same as for Irr(Gω

der(K))cusp,unip. We already know from
Theorem 2.2 that for the latter the L-parameters are uniquely determined modulo
(Ωθ)∗ by properties (1), (2) and (4) in Theorem 2. Hence the same goes for the LCC
for Irr(Gω(K))cusp,unip. �

Now G may be any unramified reductive K-group. Let Z(Gω)s be the maximal
K-split central torus ofGω. Recall that theK-torus Z(Gω)◦ is the almost direct prod-
uct of Z(Gω)s and a K-anisotropic torus Z(Gω)a [Spr09, Prop. 13.2.4]. These central
subgroups do not depend on ω, so may denote them simply by Z(G)s and Z(G)a.

Lemma 15.7. — Any cuspidal unipotent σ ∈ Irr(PFω ) can be extended to NGFω (PFω ).

Proof
Recall that by Hilbert 90 the continuous Galois cohomology group H1

c (K,Z(Gω)s)

is trivial. The long exact sequence in Galois cohomology yields a short exact sequence

(15.6) 1 −→ Z(Gω)s(K) −→ Gω(K) −→
(
Gω/Z(Gω)s

)
(K) −→ 1.

The restriction of σ to PFω ∩ Z(Gω)s(K) = Z(G)s(oK) is inflated from a unipotent
representation of Z(G)s(F), so it is a multiple of the trivial representation. Thus we
can extend σ trivially across Z(G)s(K), making it a representation of

PFωZ(G)s(K)/Z(G)s(K) ∼= PFωGω/Z(Gω)s
.

By [Spr09, Prop. 13.2.2] the connected center of Gω/Z(Gω)s is K-anisotropic. From
Lemma 15.3 we know that σ extends canonically to a representation of

N(
Gω/Z(Gω)s

)
(K)

(
PFωGω/Z(Gω)s

) ∼= NGFω (PFω )
/
Z(Gω)s(K).

This can be regarded as the required extension of σ. �

With a similar argument we can prove a part of Theorem 2 for reductive groups.
Every (cuspidal) unipotent representation of Gω(K) restricts to a unipotent char-
acter of Z(Gω)s(K). From Proposition 15.1.(1) we know that those are precisely
the weakly unramified characters of Z(Gω)s(K). This torus is K-split, so all its
weakly unramified characters are in fact unramified. Since C× is divisible, every
χ ∈ Xnr(Z(Gω)s(K)) can be extended to an unramified character of Gω(K). Thus
every π ∈ Irr(Gω(K))cusp,unip can be made trivial on Z(Gω)s(K) by an unramified
twist:
(15.7) π = χ⊗ π′ with χ ∈ Xnr(G

ω(K)) and π′ ∈ Irr(Gω/Z(Gω)s)(K).
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By the functoriality of the Kottwitz homomorphism, (15.6) induces a short exact
sequence

1 −→ Xwr

((
Gω/Z(Gω)s

)
(K)

)
−→ Xwr(G

ω(K)) −→ Xnr(Z(Gω)s(K)) −→ 1.

Thus we can reformulate the above as a bijection

(15.8) Irr
((
Gω/Z(Gω)s

)
(K)

)
cusp,unip

×
Xwr((Gω/Z(Gω)s)(K))

Xwr

(
Gω(K)

)
−→ Irr

(
Gω(K)

)
cusp,unip

.

On the Galois side of the LLC there is a short exact sequence

(15.9) 1 −→ L(G/Z(G)s) −→ LG −→ LZ(G)s = Z(G)s
∨ ×WK −→ 1.

This induces maps between L-parameters for these groups. It also induces a short
exact sequence

(15.10) 1 −→ Z
(
(G/Z(G)s)

∨
)
θ
−→ Z(G∨)θ −→

(
Z(G)s

∨)
θ

= Z(G)s
∨ −→ 1,

whose terms can be interpreted as the sets of weakly unramified characters of the
associated K-groups (or of their inner forms). As Φ2

nr(Z(Gω)s) ∼= Z(Gω)s
∨, (15.10)

and (15.9) show that the map

Φ2
nr(G

ω(K)) −→ Φ2
nr(Z(Gω)s)

is surjective with fibres Φ2
nr(G

ω/Z(Gω)s). With (15.10) we obtain a bijection

(15.11) Φ2
nr

((
Gω/Z(Gω)s

)
(K)

)
×

Z((G/Z(G)s)∨)θ

Z(G∨)θ −→ Φ2
nr(G

ω(K)).

Lemma 15.8. — B1
(
WK , Z

(
(G/Z(G)s)

∨
))

= B1
(
WK , Z(G∨)

)
Proof. — Consider the short exact sequence of K-groups

1 −→ Gω
derZ(Gω)a −→ Gω −→ T := Gω

/(
Gω

derZ(Gω)a
)
−→ 1.

By [Spr09, Prop. 13.2.2] T is a K-split torus. In the short exact sequences of complex
groups

1 //
(
G/Z(G)s

)∨
// G∨ // Z(G)s

∨ // 1,

1 // T∨ // G∨ //
(
GderZ(G)a

)∨
// 1,

the Lie algebra of T∨ maps isomorphically to the Lie algebra of Z(G)s
∨. Hence

G∨ = T∨
(
G/Z(G)s

)∨ and Z(G∨) = T∨Z
((
G/Z(G)s

)∨)
.

The last equation entails that every element b ∈ B1
(
WK , Z(G∨)

)
is of the form

b(w) = tzwz−1t−1w−1 for some t ∈ T∨, z ∈ Z
(
(G/Z(G)s)

∨
)
.

As T∨ is fixed by WF and central in G∨, b(w) = zwz−1w−1. This says that
b ∈ B1

(
WK , Z

(
(G/Z(G)s)

∨
))
. �

J.É.P. — M., 2020, tome 7



1176 Y. Feng, E. Opdam & M. Solleveld

Proof of Theorem 2. — Both for Gω(K) and for
(
Gω/Z(Gω)s

)
(K) the component

groups of L-parameters are computed in the simply connected cover of

G∨der =
(
G/Z(G)s

)∨
der
,

see (1.5). By Lemma 15.8 and (1.6) the group Aλ for λ ∈ Φ
((
Gω/Z(Gω)s

)
(K)

)
is the same as the component group for λ as L-parameter for Gω(K). Any z ∈
Z(G∨)θ is made from central elements ofG∨, so Azλ forGω(K) equals Aλ forGω(K),
and then also for

(
Gω/Z(Gω)s

)
(K). This says that (15.11) extends to a bijection

between the spaces of enhanced L-parameters. Recall from (1.8) that cuspidality of
the enhancements is defined via the group Z1

(Gω)∨sc
(λ(WK)), which is the same for

Gω(K) as for
(
Gω/Z(Gω)s

)
(K). Hence (15.11) extends to a bijection

(15.12) Φnr

((
Gω/Z(Gω)s

)
(K)

)
cusp

×
Z((G/Z(G)s)∨)θ

Z(G∨)θ −→ Φnr(G
ω(K))cusp.

As Gω/Z(Gω)s has K-anisotropic center, we already know Theorem 2 for that group
from Proposition 15.6. Using that and comparing (15.12) with (15.8), we obtain a
bijection

(15.13) Irr
(
Gω(K)

)
cusp,unip

←→ Φnr(G
ω(K))cusp.

By construction (15.13) satisfies parts (2), (5) and (6) of Theorem 2, while part (1)
does not apply. What happens for Z(Gω)s(K) in (15.8) and (15.12) is completely
determined by the LLC for tori, so any non-canonical choices left in (15.13) come
from

(
Gω/Z(Gω)s

)
(K). By Theorem 2 for the latter group, the only free choices are

twists by weakly unramified characters of that group.
Concerning part (3), let τ be a WK-automorphism of the absolute root datum of

(G,S). From Theorem 2 for
((
Gω/Z(Gω)s

)
(K) we know that (15.13) is τ -equivariant

on the subset Irr
((
Gω/Z(Gω)s

)
(K)

)
cusp,unip

. We also know, from (1.3), that the LLC
for Xwr(G

ω(K)) is τ -equivariant. In view of (15.8) and (15.12), this implies that
(15.13) is also τ -equivariant.

We note that the LLC for unipotent characters of tori is compatible with almost
direct products, that follows readily from Proposition 15.1. Consider G as the almost
direct product of Z(Gω)s and Gω

derZ(Gω)a, where Z(Gω)a denotes the maximal
K-anisotropic subtorus of Z(Gω)◦. Let π ∈ Irr(Gω(K))cusp,unip with enhanced
L-parameter (λπ, ρπ). In terms of (15.8) we write π = πder ⊗ χ and in terms of
(15.11) we write λπ = λπder

λχ and ρπ = ρπder
. Then

π|Z(Gω)s(K) = χ|Z(Gω)s(K),

π|(Gω
derZ(Gω)a)(K) = πder|(Gω

derZ(Gω)a)(K) ⊗ χ|Gω
der(K).

The naturality of the LLC for weakly unramified characters entails that the
L-parameter of χ|Z(Gω)s(K) (resp. of χ|Gω

derZ(Gω)a)(K)) is the image of λχ in Z(G)∨s
(resp. in Z(G∨)/Z(G∨)◦,WF ). Lemmas 15.3, 15.4 and 15.5 show that, to analyze the
enhanced L-parameter of πder|(Gω

derZ(Gω)a)(K), it suffices to consider the restriction
to Gω

der(K). Then we are back in the case of semisimple groups, and the construc-
tions in the proof of Theorem 2.2, see especially (14.3), were designed such that the
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L-parameter of πder|Gω
der(K) is the image of λπder

in Φnr(G
ω
der(K)). Similarly, the

constructions in Section 13 and their wrap-up after (14.4) show that the enhancement
for πder|Gω

der(K) contains ρλπder
.

The above says that (15.13) is compatible with the almost direct product G =(
Gω

derZ(Gω)a
)
Z(Gω)s. Now the same argument as in and directly after (15.4) and

(15.5) shows that Theorem 2.(4) holds. �

16. The Hiraga–Ichino–Ikeda conjecture

We fix an additive character ψ : K → C× which is trivial on the ring of integers oK
but nontrivial on any larger fractional ideal. We endow K with the Haar measure
that gives oK volume 1 and we normalize the Haar measure on (Gω/Z(Gω)s)(K) =

Gω(K)/Z(Gω)s(K) as in [HII08]. As ψ has order 0, the Haar measure agrees with
that in [GG99, §5] and [Gro97, §4]. The formal degree of a square-integrable modulo
center representation of Gω(K) (e.g. a unitary supercuspidal representation) can be
defined as in [HII08, p. 285].

For a L-parameter λ ∈ Φ(Gω(K)) we write

(16.1) S]λ = π0

(
Z(G/Z(G)s)∨(λ)

)
.

When λ is discrete, as it will be most of the time in this paper, we do not have to
take the group of components in (16.1), for the centralizer group is already finite.

Let π ∈ Irr(Gω(K))cusp,unip and let (λπ, ρπ) be its enhanced L-parameter from
Theorem 2. It was conjectured in [HII08, Conj. 1.4] that

(16.2) fdeg(π) = dim(ρπ) |S]λπ |
−1 |γ(0,Ad ◦ λπ, ψ)|.

We will prove (16.2) with a series of lemmas, of increasing generality. Thanks to
Proposition A.7 we do not have to worry about restriction of scalars.

Lemma 16.1. — The equality (16.2) holds for Irr(Gω(K))cusp,unip when G is semisim-
ple and adjoint.

Proof. — By [GG99, Prop. 6.1.4] the normalization of the Haar measure on Gω(K)

is respected by direct products of reductive K-groups. It follows that all the terms
in (16.2) behave multiplicatively with respect to direct products. Using that and
Proposition A.7, we can follow the strategy from the proof of Proposition 12.2 to
reduce to the case of simple adjoint groups. For such groups (16.2) was proved in
[Opd16, Th. 4.11]. �

Lemma 16.2. — The equality (16.2) holds for Irr(Gω(K))cusp,unip when G is semisim-
ple.

Proof. — As in Sections 13 and 14, we consider the covering map G→ Gad. We will
show that it adjusts both sides of (16.2) by the same factor.

From (1.16) and (1.17) we see that

(16.3) fdeg(π) =
dim(σN )

vol(NGFω (PFω ))
=

dim(σ)

vol(PFω ) |Ωθ,P|
.
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The volume of the Iwahori subgroup of Gω(K) with respect to our normalized Haar
measure was computed in [Gro97, (4.11)]. In our notation, it says

(16.4) vol(PFω ) = |PFω |q−(dim P+dimG)/2
K .

With [DR09, §5.1] one sees that this formula holds for all parahoric subgroups of
Gω(K).

By [GM16, Prop. 1.4.12.c] the cardinality of the group of F-points of a connected
reductive group does not change when we replace it by an isogenous F-group. In par-
ticular |Pad

Fω | = |PFω |. From [Lus78, §3] we know that σ can also be regarded as a
cuspidal unipotent representation σad of Pad

Fω , and then of course dim(σad) = dim(σ).
Choose a πad ∈ Irr(Gω

ad(K))[Pad,σad] whose pullback to Gω(K) contains π. The
above allows us to simplify

(16.5) fdeg(π)

fdeg(πad)
=

dim(σ)q
−(dim Pad+dimGad)/2
K |Pad

Fω | |Ωθ,Pad |

dim(σad)q
−(dim P+dimG)/2
K |PFω | |Ωθ,P|

=
|Ωθ,Pad |
|Ωθ,P|

.

Recall from Section 14 that the image of λπad
under Gad

∨ → G∨ is λπ. Adjoint
γ-factors are defined via the action on the Lie algebra of G∨, so

(16.6) γ(s,Ad ◦ λπ, ψ) = γ(s,Ad ◦ λπad
, ψ).

From (13.8) and Lemmas 13.2 and 13.3 we see that

(16.7) dim(ρπ)/ dim(ρπad
) = [Aλπ : (Aλπ )ρπad ].

With (13.10) we can express (16.7) as

(16.8) [Ωθ,Pad : Ωθ,PNλπad ] = |Ωθ,Pad | |Ω
θ,P ∩Nλπad | |Ω

θ,P|−1|Nλπad |
−1.

Write Sλπ = π0

(
ZG∨sc(λ)

)
, as in the proof of Lemma 13.2. Then Sλπad = S]λπad

and

(16.9) |Sλπ | |S
]
λπ
|−1 = |Z(G∨sc)θ| |Z(G∨)θ|−1.

Like for any finite abelian group with a Z-action, there are as many invariants as
co-invariants. Also taking (1.1) account, (16.9) equals

(16.10) |Z(G∨sc)θ| |Z(G∨)θ|−1 = |(Ωθad)∗| |(Ωθ)∗|−1 = [Ωθad : Ωθ].

With (13.5) we obtain

(16.11)

|S]λπ | |S
]
λπad
|−1 = |S]λπ | |Sλπ |

−1[Sλπ : Sλπad ]

= [Ωθad : Ωθ]−1[Ωθad : ΩθNλπad ]

= |Ωθ| |ΩθNλπad |
−1 = |Ωθ ∩Nλπad | |Nλπad |

−1.
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Recall from (13.3) that Nλπad ⊂ Ωθ,Pad , which implies Ωθ ∩Nλπad = Ωθ,P∩Nλπad . From
(16.6), (16.8), (16.9) and (16.11) we deduce

(16.12)
dim(ρπ) |S]λπad | |γ(0,Ad ◦ λπ, ψ)|

dim(ρπad
) |S]λπ | |γ(0,Ad ◦ λπad

, ψ)|
=
|Ωθ,Pad

ad | |Ωθ,P ∩Nλπad | |Nλπad |
|Ωθ,P| |Nλπad | |Ω

θ ∩Nλπad |
=
|Ωθ,Pad

ad |
|Ωθ,P|

.

Now (16.5), (16.12) and Lemma 16.1 imply (16.2) for all π ∈ Irr(Gω(K))cusp,unip. �

Lemma 16.3. — The equality (16.2) holds for Irr(Gω(K))cusp,unip when G is reductive
and Z(G)◦ is K-anisotropic.

Proof. — Recall that in Section 15 we established Theorem 2 for G via restriction to
Gder. By [Lus78, §3], the cuspidal unipotent representations of PFω can be identified
with those of PFωder. (Recall that by definitions all these representations are inflated
from finite reductive groups.) We denote σ as PFωder-representation by σder. In Lemma
15.2 we checked that Ωθ,P = Ωθ,Pder.

Let Pa be the image of Z(G)a(Knr) = Z(G)◦(Knr) in P, an F-anisotropic torus
of the same dimension as Z(G)a. Then Pa × Pder is isogenous to P, and [GM16,
Prop. 1.4.12.c] tells us that

|Pa
Fω | |Pder

Fω | = |PFω |.

Since (16.3) and (16.4) are also valid for Gω(K), we can compare the formal degrees
of π and its restriction πder to Gω

der(K):

fdeg(π)

fdeg(πder)
=

dim(σ)q
−(dim Pder+dimGder)/2
K |Pder

Fω | |Ωθ,Pder|

dim(σder)q
−(dim P+dimG)/2
K |PFω | |Ωθ,P|

=
q

(dim Pa+dimZ(G)a)/2
K

|Pa
Fω |

.

(16.13)

Recall from Lemma 15.4 and the proof of Proposition 15.6 that λπder
is the canonical

image of λπ under G∨ → Gder
∨. Using the decomposition

g∨ = g∨der ⊕ Z(g∨) = Lie(Gder
∨)⊕ Lie(Z(G)∨a),

we can write

AdG∨ ◦ λπ = AdGder
∨ ◦ λπder

⊕ (action of WK/IK on Z(g∨)).

The action of WK on Z(g∨) can be considered as the composition of the adjoint rep-
resentation of LZ(G)a and idWK

(as L-parameter for Z(G)a(K)). From the definition
(A.6) we see that

(16.14) γ(s,AdG∨ ◦ λπ, ψ) = γ(s,AdGder
∨ ◦ λπder

, ψ)γ(s,AdZ(G)∨a
◦ idWK

, ψ).

Recall from Lemma 15.5 and the proof of Proposition 15.6 that ρπ can be identified
with ρπder

. Since Z(G)a(K) is a torus, L-parameters for that group do not need
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enhancements. Formally, we can say that the enhancement of idWK
is the trivial

one-dimensional representation of AidWK
= π0(Z(G)∨a) = 1.

As in the proof of Lemma 15.5 we see that

S]λπder
=
{
gZ(G∨)◦ ∈ Gder

∨ : gλπg
−1 = zλπ for some z ∈ Z(G∨)◦

}
.

By (15.2) this equals{
gZ(G∨)◦ ∈ Gder

∨ : g′λπg
′−1 = λπ for some g′ ∈ gZ(G∨)◦

}
= ZG∨(λπ)

/
ZZ(G∨)◦(λπ) = S]λπ

/
Z(G∨)◦,θ.

Now we compare the right hand sides of (16.2) for π and πder:

(16.15)
dim(ρπ) |S]λπder

| |γ(0,AdG∨ ◦ λπ, ψ)|

dim(ρπder
) |S]λπ | |γ(0,AdGder

∨ ◦ λπder
, ψ)|

=
|γ(0,AdZ(G)∨a

◦ idWK
, ψ)|

|Z(G∨)◦,θ|
.

It was shown in [HII08, Lem. 3.5] that
|γ(0,AdZ(G)∨a

◦ idWK
, ψ)| = q

dim(Z(G)a)
K |(Z(G∨)◦,θ| |Pa

Fω |−1.

Then (16.15) becomes
q

dimZ(G)a
K |Pa

Fω |−1 = q
(dim Pa+dimZ(G)a)/2
K |Pa

Fω |−1,

which equals (16.13). In combination with Lemma 16.2 for Gder that gives (16.2) for
π ∈ Irr(Gω(K))cusp,unip. �

We are ready to extend (16.2) to Knr-split reductive K-groups.

Proof of Theorem 3. — Let π ∈ Irr(Gω(K))cusp,unip be unitary. As observed in (15.7),
there exists an unramified character χ ∈ Xnr(G

ω(K)) such that π′ := π ⊗ χ−1 is
trivial on Z(Gω)s(K). By definition [HII08, p. 285]

(16.16) fdeg(π) = fdeg(π′),

where π′ is regarded as a representation of (Gω/Z(Gω)s)(K). By construction (15.13)

(λπ, ρπ) = (λπ′χ
∨, ρπ′),

where χ∨ ∈ Z(G∨)◦θ is the image of χ under (1.3). Recall that our adjoint represen-
tation of LG does not act on Lie(G∨) but on Lie((G/Z(G)s)

∨). From (A.6) and the
definitions of L-functions and ε-factors in [Tat79] we see that

γ(s,Ad ◦ λπ, ψ) = γ(s,Ad ◦ λπ′ , ψ).

The group S]λπ is already defined via (G/Z(G)s)
∨, so it equals S]λπ′ . A part of the

construction of (15.13) is that ρπ can be identified with ρπ′ . Thus the entire expression

dim(ρπ) |S]λπ |
−1 γ(s,Ad ◦ λπ, ψ)

remains unchanged when we replace π by π′ and Gω by Gω/Z(Gω)s. In view of
(16.16) this means that (16.2) forGω(K) is equivalent to (16.2) for (Gω/Z(Gω)s)(K).
The group Gω/Z(Gω)s has K-anisotropic connected center, so for

Irr
(
(Gω/Z(Gω)s)(K)

)
cusp,unip

we already established (16.2) in Lemma 16.3. �
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Appendix. Restriction of scalars and adjoint γ-factors

Let L/K be a finite separable extension of non-archimedean local fields. In this
appendix we will first investigate to what extent local factors are inductive for
WL ⊂WK . This question is well-known for Weil group representations, but more
subtle for representations of Weil–Deligne groups. We could not find in the literature,
although it probably is known to some experts. After establishing the inductivity
result for general Weil–Deligne representations, we will check that it applies to the
Langlands parameters obtained from restriction of scalars of reductive groups. Then
we will show that the HII conjectures are stable under Weil restriction.

We follow the conventions of [Tat79] for local factors. Let ψ : K → C× be a
nontrivial additive character. We endow K with the Haar measure that gives the ring
of integers oK volume 1, and similarly for L. For s ∈ C let ωs : WK → C× be the
character w 7→ ‖w‖s. For any (finite dimensional) WK-representation V , by definition

L(s, V ) = L(ωs ⊗ V ) and ε(s, V, ψ) = ε(ωs ⊗ V, ψ).

We endow objects associated to L with a subscript L, to distinguish them from objects
forK (without subscript). The restriction of ωs fromWK toWL equals ωs (as defined
purely in terms of L), so for any WL-representation VL:

(A.1) indWK

WL

(
ωs ⊗ VL

)
= ωs ⊗ indWK

WL
VL.

As concerns representations of the Weil–Deligne groupWK×SL2(C), we only consider
those which are admissible, that is, finite dimensional and the image of WK consists
of semisimple automorphisms. In view of [Tat79, §4.1.6] that is hardly a restriction
for local factors. It has the advantage that the category of such representations is
semisimple, so all the local factors are additive and make sense for virtual admissible
representations of WK×SL2(C). (The definitions of these local factors will be recalled
in the course of the next proofs.)

Lemma A.1. — L-functions of Weil–Deligne representations are inductive. That is,
for any admissible virtual representation (τL, VL) of WL × SL2(C):

L(s, ind
WK×SL2(C)
WL×SL2(C) τL) = L(s, τL) for all s ∈ C.

Proof. — Since these local factors are additive, we may assume that (ρL, VL) is an
actual representation. We write NL = d(τL|SL2(C)) ( 0 1

0 0 ) ∈ EndC(VL) and

V = ind
WK×SL2(C)
WL×SL2(C) VL, τ = ind

WK×SL2(C)
WL×SL2(C) τL, N = d(τ |SL2(C)) ( 0 1

0 0 ) .

Then the kernel of N ∈ EndC(V ) is stable under τ(WK) and the kernel of NL is a
τL(WL)-stable subspace of VL. One checks directly that kerN = indWK

WL
(kerNL) and

(A.2) τ |kerN = indWK

WL

(
τL|kerNL

)
.

By definition [Tat79, §4.1.6]

(A.3) L(s, τ) = L(ωs ⊗ kerN IK ) = det
(
1− q−sK τ(Frob)|kerNIK

)−1
.
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The function L, from Weil group representations to C×, is additive and inductive
[Tat79, §3.3.2]. The latter means that

(A.4) L
(
ωs ⊗ kerN IL

L

)
= L

(
indWK

WL
(ωs ⊗ kerN IL

L )
)

= L
(
ωs ⊗ indWK

WL
kerN IL

L

)
.

Let E be the maximal unramified subextension of L/K, and define NE , τE etcetera
in the same way as for K. Since IE = IK ,

(A.5) indWK

WE

(
kerN IE

E

)
=
(
indWK

WE
kerNE

)IK
= kerN IK .

From (A.2), (A.3), (A.4) and (A.5) we deduce that

L(s, τ) = L(ωs ⊗ kerN IK ) = L
(
ωs ⊗ indWK

WE
(kerN IE

E )
)

= L(s, τE).

The extension L/E is totally ramified, so qL = qE . We can take FrobE in WL, then
it is also a Frobenius element of WL. From

ωs⊗kerN IE
E =

(
ωs⊗ indWE

WL
(kerN IL

L )
)IE

=
(
indWE

WL
(ωs⊗kerN IL

L )
)IE

= ωs⊗kerN IL
L

and (A.3) we obtain L(s, τE) = L(s, τL). �

Let eL/K and fL/K denote the ramification index and the residue degree of L/K,
respectively. We endow L with the discrete valuation whose image is Z ∪ {∞}. The
restriction of this valuation to K equals eL/K times the valuation of K.

Recall that the order of ψ is the largest n ∈ Z such that ψ(k) = 1 for all k ∈ K
of valuation > −n. Let ψL : L → C× be the composition of ψ with the trace map
for L/K. We recall from [Ser79, Prop. III.3.7] that the order of ψL is determined by
the order of ψ and the different DL/K of L/K. For l ∈ L× we define another additive
character ψL,l of L by

ψL,l(y) = ψL(ly) = ψ(trL/K(ly)).

Theorem A.2. — Let (τL, VL) be an admissible virtual representation of WL×SL2(C).
(1) For every l ∈ L× and every s ∈ C:

γ(s, ind
WK×SL2(C)
WL×SL2(C) τL, ψ)

γ(s, τL, ψL,l)
=
ε(s, ind

WK×SL2(C)
WL×SL2(C) τL, ψ)

ε(s, τL, ψL,l)
.

(2) For all s ∈ C:

ε(s, ind
WK×SL2(C)
WL×SL2(C) τL, ψ)

ε(s, τL, ψL)
=

(
ε(C[WK/WL], ψ)

ε(trivWL
, ψL)

)dim(VL)

.

In particular, ε-factors of Weil–Deligne representations are inductive for virtual rep-
resentations of dimension zero.

(3) When L/K is unramified:

ε(s, ind
WK×SL2(C)
WL×SL2(C) τL, ψ)ε(s, τL, ψL)−1 = (−1)([L:K]−1)ord(ψ) dim(VL).

(4) Suppose that (ωs ⊗ τL, VL) is self-dual or unitary. For any l ∈ L×:∣∣∣∣ε(s, ind
WK×SL2(C)
WL×SL2(C) τL, ψ)

ε(s, τL, ψL,l)

∣∣∣∣ =

∣∣∣∣ε(C[WK/WL], ψ)

ε(trivWL
, ψL,l)

∣∣∣∣dim(VL)

.
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(5) We denote the Artin conductor of a WK-representation V by a(V ). When
ord(ψ) = ord(ψL,l) = 0 and (ωs ⊗ τL, VL) is self-dual or unitary:∣∣∣∣ε(s, ind

WK×SL2(C)
WL×SL2(C) τL, ψ)

ε(s, τL, ψL,l)

∣∣∣∣ = q
a(C[WK/WL]) dim(VL)/2
K = [oL : DL/K ]dim(VL)/2.

Proof. — We use the conventions and notations from the proof of Lemma A.1.
(1) Recall from [GR10, §3.2] that for any admissible representation V of WK ×

SL2(C):

(A.6) γ(s, V, ψ) = ε(s, V, ψ)L(1− s, V ∗)L(s, V )−1.

With this definition (1) is an obvious consequence of Lemma A.1.
(2) We write

cokerN = V/ kerN and coker NL = VL/ kerNL.

These are representations of WK and WL, respectively. From (A.1) and (A.2) we see
that

(A.7) indWK

WL
(ωs ⊗ cokerNL) = ωs ⊗ cokerN.

Since IK is compact,
(cokerN)IK = V IK

/
kerN IK .

For a WK ×SL2(C)-representation (τ, Vτ ) we define a WK-representation (τ0, Vτ ) by

τ0(w) = τ
(
w,
(
‖w‖1/2 0

0 ‖w‖−1/2

))
.

By definition [Tat79, §4.1.6]

(A.8) ε(s, τ, ψ) = ε(ωs ⊗ τ0, ψ) det
(
− ωs ⊗ τ(Frob)|cokerNIK

)
,

As L/E is totally ramified, qL = qE and FrobL = FrobE . From (A.1) we see that

ωs ⊗ cokerN IE =
(
ωs ⊗ indWE

WL
cokerNL

)IE
= ωs ⊗ cokerN IL

L .

Hence the rightmost term in (A.8) is the same for τE and for τL.
As in (A.5), we find that

ωs ⊗ cokerN IK =
(
ωs ⊗ indWK

WE
cokerNE

)IK
= indWK

WE

(
ωs ⊗ cokerN IE

E

)
.

With elementary linear algebra one checks that

(A.9) det
(
− ωs ⊗ τ(Frob)|cokerNIK

)
= det

(
− ωs ⊗ τE(Frob[E:K])|

cokerN
IE
E

)
.

Since Frob[E:K] is a Frobenius element of WE , we see that here the rightmost term
in (A.8) is the same for τ and for τE , which we already know is the same as for τL.

By [Tat79, §3.4], ε(V, ψ) is additive and inductive in degree 0 (i.e., for virtual
WK-representations V of dimension 0). Consider the virtual WL-representation

(A.10) V ◦L := (ωs ⊗ τL,0, VL) − dim(VL)(triv,C).
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The inductivity in degree 0 says

(A.11) ε(ωs ⊗ τL,0, ψL)ε(trivWL
, ψL)− dim(VL) = ε(V ◦L , ψL)

= ε(indWK

WL
V ◦L , ψ) = ε(ωs ⊗ τ0, ψ)ε(C[WK/WL], ψ)− dim(VL).

We rewrite (A.11) as

(A.12) ε(ωs ⊗ τ0, ψ)

ε(ωs ⊗ τL,0, ψL)
=

(
ε(C[WK/WL], ψ)

ε(trivWL
, ψL)

)dim(VL)

.

In view of (A.8) and the above analysis of the rightmost term in that formula, (A.12)
equals ε(s, τ, ψ)ε(s, τL, ψL)−1, as asserted. In particular we see that

ε(s, τ, ψ) = ε(s, τL, ψL) if dim(VL) = 0,

proving the inductivity in degree zero.
(3) When L/K is unramified, we can simplify (A.12). In that case [Ser79,

Prop. III.3.7 & Th. III.5.1] show that ord(ψL) = ord(ψ). Furthermore the WK-repre-
sentation C[WK/WL] is a direct sum of unramified characters, which makes it easy
to calculate its ε-factor. Pick a ∈ K× with valuation −ord(ψ), so that the additive
character ψa : k 7→ ψ(ak) has order zero. From [Tat79, (3.4.4) and §3.2.6] we obtain

(A.13) 1 = ε(C[WK/WL], ψa) = |a|−[L:K]
K det(a,C[WK/WL])ε(C[WK/WL], ψ).

By the assumptions on a and L/K,

|a|[L:K]
K = q

ord(ψ)[L:K]
K = q

ord(ψ)
L = q

ord(ψL)
L .

The group WK/WL can be identified with 〈Frob〉/〈Frob[L:K]〉. Elements of valuation
one act on that through a cycle of length [L : K], and a acts by the ord(ψ)-th power
of that cycle. Consequently

det(a,C[WK/WL]) = (−1)([L:K]−1)ord(ψ).

On the other hand, by [Tat79, (3.2.6.1)] ε(trivWL
, ψL) = q

ord(ψL)
L . Now (A.13) be-

comes

ε(C[WK/WL], ψ) = q
ord(ψ)
L (−1)([L:K]−1)ord(ψ)

= ε(trivWL
, ψL)(−1)([L:K]−1)ord(ψ).

Combine this with part (2).
(4) By [Tat79, (3.4.4)] applied to (A.10)

(A.14) ε(V ◦L , ψL,l)ε(V
◦
L , ψL)−1 = det(l, V ◦L ) = det(ωs ⊗ τL,0(l), VL).

By the assumed self-duality or unitarity of ωs ⊗ τ , |det(ωs ⊗ τL,0(l), VL)| = 1. Then
(A.14) says ∣∣∣∣ ε(s, τL, ψL,l)

ε(trivWL
, ψL,l)dim(VL)

∣∣∣∣ =

∣∣∣∣ ε(s, τL, ψL)

ε(trivWL
, ψL)dim(VL)

∣∣∣∣ .
Combine that with part (2).

(5) We work out the right hand side of part (4). Since ord(ψL,l) = 0 and oL has
volume 1, ε(trivWL

, ψL,l) = 1 [Tat79, §3.2.6]. The Haar measure on K which gives oK
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volume 1 is self-dual with respect to the additive character ψ of order 0. Hence [Tat79,
(3.4.7)] applies. It tells us that

(A.15) |ε(C[WK/WL], ψ)|2 = q
a(C[WK/WL])
K .

Let doL/oK be the discriminant of oL/oK , an ideal of oK . By [Ser79, Cor.VI.2.4]
applied to the trivial representation of WL:

(A.16) a(C[WK/WL]) = fL/Ka(trivWL
) + valK(doL/oK ) = valK(doL/oK ).

By [Ser79, Prop. III.3.6] the image of the different DL/K (an ideal in oL) under the
norm map for L/K is precisely doL/oK , so

(A.17) valK(doL/oK ) = valL(DL/K)[L : K]e−1
L/K = valL(DL/K)fL/K .

It follows from (A.15)–(A.17) that

(A.18)
∣∣∣∣ε(C[WK/WL], ψ)

ε(trivWL
, ψL,l)

∣∣∣∣ = q
a(C[WK/WL])/2
K = q

valL(DL/K)fL/K/2

K = q
valL(DL/K)/2

L .

Finally we use that qvalL(DL/K)

L = [oL : DL/K ] and we plug (A.18) into part (4). �

Suppose that L/K is a finite separable field extension and that H is any connected
reductive L-group. Let G = ResL/K(H) be the restriction of scalars of H, from L

to K. Then G(K) = H(L) and, according to [Bor79, Prop. 8.4], Shapiro’s lemma
yields a natural bijection

(A.19) Φ(G(K)) −→ Φ(H(L)).

It is desirable that (A.19) preserves L-functions, ε-factors and γ-factors – basically
that is an aspect of the well-definedness of these local factors. Recall from [Spr09,
§12.4.5] that

G = indWL

WK
H ∼= H[L:K] as L-groups.

This yields isomorphisms of WK-groups

(A.20) G∨ ∼= indWK

WL
(H∨) ∼= (H∨)[L:K].

We regard H∨ as a subgroup of G∨, embedded as the factor associated to the iden-
tity element in WK/WL. From the proof of Shapiro’s lemma one gets an explicit
description of (A.19): it sends

λ ∈ Φ(G(K)) to
(
H∨-component of λ

∣∣
WL×SL2(C)

)
∈ Φ

(
H(L)

)
.

Let Ad or AdG∨ denote the adjoint representation of LG on

g∨/Z(g∨)WK = Lie(G∨)
/

Lie
(
(Z(G)s)

∨
)
.

For any λ ∈ Φ(G(K)), Ad ◦ λ is an admissible representation of WK × SL2(C) on
g∨/Z(g∨)WK . We refer to the local factors of Ad ◦ λ as the adjoint local factors of λ
(all of them tacitly with respect to the Haar measure on K that gives oK volume 1).

Beware that the split component of the center Z(H)s is not compatible with restric-
tion of scalars: ResL/KZ(H)s is not K-split and contains Z(ResL/KH)s as a proper
subgroup.
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Lemma A.3. — Let L be a finite separable extension of K and denote the bijection
Φ(G(K))→ Φ

(
H(L)

)
from (A.19) by λ 7→ λH. Suppose that Z(H)◦ is L-anisotropic.

Then AdG∨ ◦ λ can be regarded as ind
WK×SL2(C)
WL×SL2(C) (AdH∨ ◦ λH). In particular the

adjoint local factors of λ and λH are related as in Lemma A.1 and Theorem A.2 (with
VL = h∨ and V = g∨).

Proof. — The proof of Shapiro’s lemma and (A.19) entail that every λ ∈ Φ(G(K))

is of the form

(A.21) λ = ind
WK×SL2(C)
WL×SL2(C) λH for a λH ∈ Φ

(
H(L)

)
.

To make sense of this induction, we regard λ (resp. λH) as a representation on G∨

(resp. H∨) and we apply (A.20). Then AdG∨ ◦ λ : WK × SL2(C) → Aut(g∨) equals
ind

WK×SL2(C)
WL×SL2(C) (AdH∨ ◦ λH). Knowing that, Lemma A.1 and Theorem A.2 apply. �

Lemma A.3 shows that adjoint L-functions of groups with anisotropic center are
always preserved under restriction of scalars (most likely that was known already).
Surprisingly, it also shows that adjoint ε-factors and adjoint γ-factors are usually not
preserved under Weil restriction, only if L/K is unramified (and up to a sign).

We will deduce from Theorem A.2 that the HII conjectures [HII08] are stable
under Weil restriction: they hold for G(K) if and only if they hold for H(L). For that
statement to make sense, we need a way to transfer enhancements of L-parameters
from G(K) to H(L):

Lemma A.4. — The map (A.19) extends naturally to a bijection Φe(G(K)) →
Φe
(
H(L)

)
, which preserves cuspidality.

Proof. — For Φ(H(L)) the equivalence relation on L-parameters and the component
groups come from the conjugation action of H∨ and for Φ(G(K)) they come from
the conjugation action of (A.20). But (A.19) means that a L-parameter for G(K)

depends (up to equivalence) only on its coordinates in one factor H∨ of G∨, so the
conjugation action of the remaining factors of G∨ can be ignored. Further, (A.21)
induces a group isomorphism

AλH
∼= Aλ

a 7−→ [γ 7→ a],
(A.22)

where the right hand side is a subgroup of indWK

WL
(H∨sc). Consequently (A.19) extends

to a bijection

(A.23) Φe(G(K)) −→ Φe
(
H(L)

)
.

For G(K) cuspidality of enhancements of λ is formulated via

(A.24) ZG∨sc(λ(WK)) = Z
ind

WK
WL

(H∨sc)
(λ(WK)) ∼= ZH∨sc(λ(WL)),

where the isomorphism is a restriction of Aλ
∼= AλH

. The right hand side of (A.24)
is just the group in which we detect cuspidality of enhancements of λ

∣∣
WL×SL2(C)

.
Therefore (A.23) respects cuspidality. �
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In [GG99] a canonical Haar measure |ωG| on G(K) was constructed. It involves the
motiveMG of a reductive group [Gro97]. By [GR10, (18) and §3.4] the Artin conductor
of MG equals the Artin conductor a(g∨), where the Lie algebra g∨ is endowed with
the WF -action from conjugation in LG.

In [HII08] a measure µG,ψ on G(K) is defined in terms of |ωG| and the Haar
measure on K that is self-dual with respect to ψ. When ψ has order 0, that self-
dual measure gives oK volume 1 and µG,ψ equals |ωG|. That works well for Knr-split
groups, but for ramified groups we need [HII08, Corr.]. Unfortunately the formula

µ′G,ψ = q−a(g∨)/2µG,ψ

from [HII08, Corr.] is incompatible with the equality µ′G,ψ = µG,ψ for many groups
[GG99, Cor. 7.3]. On the other hand, such a µ′G,ψ is definitely needed in [HII08, Corr.].
To make it work in all cases, we redefine

(A.25) µG,ψ := q
−(a(g∨)+ord(ψ) dimG)/2
K |ωG|.

For Knr-split reductive groups this µG,ψ agrees with [HII08], because for those
a(g∨) = 0 [GG99, §4] and (A.25) exhibits the same transformation behaviour with
respect to ψ as in [HII08, (1.1)].

Lemma A.5. — Let N be a normal connected K-subgroup of G such that the sequence
of K-rational points

1 −→ N(K) −→ G(K) −→ (G/N)(K) −→ 1

is exact. Then µG,ψ = µN,ψµG/N,ψ, in the sense that for all f ∈ Cc(G(K)):∫
G(K)

f(g) dµG,ψ(g) =

∫
(G/N)(K)

(∫
N(K)

f(hn) dµN,ψ(n)
)
dµG/N,ψ(h).

Proof. — We revisit the construction of |ωG| in [GG99, §5]. Let G0 be the split
form of G and let ϕ : G → G0 be a isomorphism of Ks-groups. Write N0 = ϕ(N)

and (G/N)0 = G0/N0. We choose a Chevalley model for G0 over oK . This also
provides N0 and (G/N)0 with Chevalley models over oK . Let ωN0

be an invariant
differential form of top degree which has good reduction modulo $K (with respect to
the Chevalley model). Choosing ω(G/N)0 in the same way, the product ωN0ω(G/N)0

defines an analogous invariant differential form ωG0 for G0.
The invariant differential forms ωN, ωG and ωG/N are obtained from their “split

versions” by pullback along ϕ, so they also satisfy ωG = ωNωG/N. In view of the
exactness of the sequence in the statement, the associated measures on the K-rational
points of the involved groups are related as

(A.26) |ωG| = |ωN| |ωG/N|.
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As representation of Gal(Ks/K), g∨ is the direct sum of n∨ := Lie(N∨) and
Lie(G/N)∨. With the additivity of Artin conductors we deduce that

(A.27) q
−(a(g∨)+ord(ψ) dimG)/2
K

= q
−(a(n∨)+ord(ψ) dimN)/2
K q

−
(
a(Lie(G/N)∨)+ord(ψ) dim(G/N)

)
/2

K .

Comparing (A.26) and (A.27) with (A.25), we obtain µG,ψ = µN,ψµG/N,ψ. �

Replacing H(L) by G(K) effects the formal degrees of square-integrable represen-
tations with respect to (A.25), but in a transparent way:

Lemma A.6. — Suppose that Z(H)◦ is L-anisotropic and that π ∈ Rep(G(K)) is
square-integrable. Then

fdeg(π, µG,ψ)q
−(a(g∨)+ord(ψ) dimG)/2
K = fdeg(π, µH,ψL)q

−(a(h∨)+ord(ψL) dimH)/2
L .

Proof. — By [GG99, Prop. 6.1.4] the measure |ωG| is respected by restriction of
scalars, that is, |ωH| = |ωG|. Note that

fdeg(π, µG,ψ)q
−(a(g∨)+ord(ψ) dimG)/2
K = fdeg(π, |ωG|)

and similarly for H. �

Our adjoint local factors coincide with those [HII08] if the additive characters on K
and L have order zero. But that is not always tenable. Namely, if ψ : K → C× has
order zero, then ψL (the composition of ψ with the trace map for L/K) need not
have order zero. More precisely, when ord(ψ) = 0, [Ser79, Th. III.5.1] says that ψL
has order zero if and only if L/K is unramified.

So far we used the Haar measure dx on K that gives oK volume 1. When we
compute ε-factors or γ-factors with respect to an arbitrary additive character ψ, the
conventions in [HII08] impose that employ the Haar measure on K which is self-dual
with respect to ψ. Thus we take q−ord(ψ)/2dx and we include it in the notations of
ε-factors and γ-factors.

For a ∈ K× the additive character ψa : x 7→ ψ(xa) has order ord(ψ) + valK(a).
We recall from [Tat79, (3.4.3) and (3.4.4)] that

ε(s, V, ψa,q
−(ord(ψ)+valK(a))/2dx)

= ε(s, V, ψ, q−(ord(ψ)+valK(a))/2dx)q
valK(a) dim(V )
K det(V, a)

= ε(s, V, ψ, q−ord(ψ)/2dx)q
valK(a) dim(V )/2
K det(V, a)

= ε(s, V, ψ, q−ord(ψ)/2dx)|a|− dim(V )/2
K det(V, a).

With these notations, the HII conjecture can be formulated more precisely as

(A.28) fdeg(π, µG,ψ) = dim(ρπ) |S]λπ |
−1 |γ(0,AdG∨ ◦ λπ, ψ, q−ord(ψ)/2dx)|.

Let us recall what [HII08] says about this for a split torus GLn1 . Let χ be a unitary
smooth character of GLn1 (L). By definition fdeg(χ, µGLn1 ,ψL

) equals the formal degree
of the trivial representation of the trivial group, which is just 1. Similarly all objects

J.É.P. — M., 2020, tome 7



Supercuspidal unipotent representations 1189

on the right hand of (A.28) are trivial, for they come from the zero-dimensional
representation of WK × SL2(C). Hence (A.28) reduces to the equality 1 = 1.

After restriction of scalars and dividing out the split component of the center, we
end up with the anisotropic K-torus T := ResL/K(GLn1 )/GLn1 . From the proof of
Theorem 3 on page 1180, we know that both sides of (A.28) for ResL/K(GL1)(K)

reduce to the same expressions for T(K). Hence we may assume that χ is trivial on
GLn1 (K). The conjecture of Hiraga, Ichino and Ikeda was never conjectural for tori,
they proved it immediately. By [HII08, Corr.], applied to the smooth character χ
of T(K):

(A.29) fdeg(χ, µT,ψ) =
qa(t∨)/2

|T∨,WK |
L(1,AdT∨ ◦ λχ)

L(0,AdT∨ ◦ λχ)
=

dim(ρχ)

|S]λχ |
|γ(0,AdT∨ ◦ λχ, ψ)|.

Moreover, none of the terms in (A.29) depends on χ and ρχ is just the trivial repre-
sentation of the group Aλχ = 1.

Proposition A.7. — Let H be any connected reductive L-group and let π ∈ Irr(H(L))

be square-integrable modulo center. Let (λ, ρ) ∈ Φe(G(K)) be an enhanced L-para-
meter associated to π, and let (λπH

, ρπH
) ∈ Φe(H(L)) be its image under the map

from Lemma A.4. The following are equivalent:
• The HII conjecture (16.2) holds for π as G(K)-representation, with respect to

any nontrivial additive character of K.
• The HII conjecture (16.2) holds for π as H(L)-representation, with respect to any

nontrivial additive character of L.

Proof. — If the HII conjecture holds for π ∈ Irr(G(K)) with respect to one nontrivial
additive character of K, then by [HII08, Lem. 1.1 and 1.3] it holds with respect to all
nontrivial additive characters of K. The same applies to π as representation of H(L).
Therefore we may assume that ord(ψ) = 0, and it suffices to consider one additive
character of L.

First we assume that Z(H)◦ is L-anisotropic. Choose `∈L× of valuation −ord(ψL).
Then the character ψL,` : x 7→ ψL(`x) of L has order zero. By Lemma A.6

(A.30) fdeg(π, µH,ψL,`) = fdeg(π, µG,ψ) q
(fL/Ka(h∨)−a(g∨))/2

K .

By the self-duality of the adjoint representation of LG, the right hand side of the HII
conjecture (A.28) is

(A.31) dim(ρπ)

|S]λπ |

∣∣∣∣ε(0,AdG∨ ◦ λπ, ψ)
L(1,AdG∨ ◦ λπ)

L(0,AdG∨ ◦ λπ)

∣∣∣∣ .
It follows quickly from (A.24) that (A.19) induces an isomorphism

(A.32) S]λπ = π0

(
ZG∨(λπ)

)
−→ π0

(
ZH∨(λπH

)
)

= S]λπH
.

In (A.22) we checked that Aλπ
∼= AλπH

, which implies dim(ρπ) = dim(ρπH
). By Lem-

mas A.1 and A.3 the L-functions in (A.31) do not change if we replace λπ by λπH
.
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So all terms in (A.31), except possibly the ε-factor, are inert under

(λπ, ρπ) 7−→ (λπH
, ρπH

).

By Lemma A.3 and Theorem A.2.(5)

(A.33) |ε(0,AdH∨ ◦ λπH
, ψL,`)| = |ε(0,AdG∨ ◦ λπ, ψ)|q−a(C[WK/WL]) dim(H∨)/2

K .

By [Ser79, Cor.VI.2.4]

a(g∨) = fL/Ka(h∨) + dim(H∨)a(C[WK/WL]).

Then (A.33) becomes

(A.34) |ε(0,AdH∨ ◦ λπH
, ψL,`)| = |ε(0,AdG∨ ◦ λπ, ψ)| q(fL/Ka(h∨)−a(g∨))/2

K .

From (A.30) and (A.34) we see that replacing G(K) by H(L) adjusts both sides of
(A.28) by the same factor q(fL/Ka(h∨)−a(g∨))/2

K .
We come to the general case: H can be any connected reductive L-group. We ab-

breviate G′ = ResL/K(H/Z(H)s) and T = ResL/K(Z(H)s)/Z(G)s. Applying (15.13)
to H(L), we obtain a short exact sequence

(A.35) 1 −→ Z(H)s(L) −→ G(K) −→ G′(K) −→ 1.

With Galois cohomology one checks that T(K) = Z(H)s(L)/Z(G)s(K), just like
(15.13). Plugging that into (A.35), we obtain a short exact sequence

(A.36) 1 −→ T(K) −→ (G/Z(G)s)(K) −→ G′(K) −→ 1.

Fix a unit vector v in the Hilbert space on which π is defined. The formal degree of π
is given in [HII08] as

(A.37) fdeg(π, dµG/Z(G)s,ψ)−1 =

∫
(G/Z(G)s)(K)

|〈π(g)v, v〉|2dµG/Z(G)s,ψ(g).

As π is square-integrable, its central character is unitary. Hence |〈π(g)v, v〉| depends
only on the image of g in H(L)/Z(H)s(L) = G′(K). With (A.36) and Lemma A.5
we see that (A.37) equals∫

G′(K)

∫
T(K)

|〈π(g)v, v〉|2dµT,ψdµG′,ψ(g) = µT,ψ(T(K))

∫
G′(K)

|〈π(g)v, v〉|2dµG′,ψ(g).

By (16.3) and (A.29), for any χ ∈ Irr(T(K)):

(A.38) µT,ψ(T(K))−1 = fdeg(χ, dµT,ψ) = dim(ρχ)|S]λχ |
−1|γ(0,AdT∨ ◦ λχ, ψ)|.

We point out that h′∨ := Lie((H/Z(H)s)
∨) is a representation of Gal(Ks/L). Its

Artin conductor is understood as such. From [GG99, Prop. 6.1.4] and (A.25) with
ord(ψ) = ord(ψL,`) = 0 we see that∫
G′(K)

|〈π(g)v, v〉|2dµG′,ψ(g) = q
−a(g′∨)/2
K q

a(h′∨)/2
L

∫
(H/Z(H)s)(L)

|〈π(g)v, v〉|2dµH/Z(H)s,ψL,`(g)

= q
(fL/Ka(h′∨)−a(g′∨))/2

K fdeg(π, dµH/Z(H)s,ψL,`)
−1.
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When we put all this into (A.37), we find that

(A.39) fdeg(π, dµG/Z(G)s,ψ)

= q
(a(g′∨)−fL/Ka(h′∨))/2

K fdeg(π, dµH/Z(H)s,ψL,`)fdeg(χ, dµT,ψ).

By (A.36) the representation space Lie(G∨)/Lie((Z(G)s)
∨) for the adjoint γ-factor

can be decomposed as Lie(G′∨)⊕ Lie(T∨). The action on the central Lie subalgebra
Lie(T∨) does not depend on the specific L-parameter, it comes only from the canonical
WK-action. The additivity of local factors tells us that

(A.40) γ(s,AdG∨ ◦ λπ, ψ) = γ(s,AdG′∨ ◦ λπ, ψ)γ(s,AdT∨ ◦ λχ, ψ).

From (A.36) we also get a short exact sequence

(A.41) 1 −→ ZG′∨(λπ) −→ Z(G∨/Z(G)s)∨(λπ) −→ ZT∨(λχ) −→ 1.

The involved L-parameters are discrete, so all the groups in (A.41) are finite. By
definition, their component groups are the S]λπ for the three cases. Thus (A.41) says
that

(A.42) S]λπ
/
S]λ′π
∼= Sλχ and |S]λπ | = |S

]
λ′π
| |Sλχ |,

where the prime means that the group comes from G′. Similar calculations show that
Aλχ = 1 and Aλ′π

= Aλπ . In particular ρπ is the same for G and for G′. From that,
(A.40) and (A.42) we deduce that

(A.43) dim(ρπ)

|S]λπ |
|γ(0,AdG∨ ◦ λπ, ψ)|

=
dim(ρπ)

|S]λ′π |
|γ(0,AdG′∨ ◦ λπ, ψ)| |γ(0,AdT∨ ◦ λχ, ψ)|

|S]λχ |
.

Using (A.29) and our earlier findings for groups with anisotropic center, in particular
(A.34), we can simplify (A.43) to

q
(a(g′∨)−fL/Ka(h′∨))/2

K

dim(ρπH
)

|S]λπH |
|γ(0,AdH∨ ◦ λπH

, ψ)| fdeg(χ, dµT,ψ).

We compare that with (A.39) and we note that replacing H(L) by G(K) adjusts both
sides of the HII conjecture (A.28) by a factor

q
(a(g′∨)−fL/Ka(h′∨))/2

K fdeg(χ, dµT,ψ). �

In the body of the paper we only use Proposition A.7 for unramified extensions
L/K. That case can be proved more elementarily, without Artin conductors.
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