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QUOTIENTS OF GROUPS OF BIRATIONAL

TRANSFORMATIONS OF CUBIC DEL PEZZO

FIBRATIONS

by Jérémy Blanc & Egor Yasinsky

Abstract. —We prove that the group of birational transformations of a del Pezzo fibration
of degree 3 over a curve is not simple, by giving a surjective group homomorphism to a free
product of infinitely many groups of order 2. As a consequence we also obtain that the Cremona
group of rank 3 is not generated by birational maps preserving a rational fibration. Besides,
the subgroup of Bir(P3) generated by all connected algebraic subgroups is a proper normal
subgroup.

Résumé (Quotients de groupes de transformations birationnelles de fibrations en del Pezzo
cubiques)

Nous démontrons que le groupe des transformations birationnelles d’une fibration de del
Pezzo de degré 3 sur une courbe n’est pas simple, en donnant un homomorphisme de groupes
surjectif vers un produit libre d’une infinité de groupes d’ordre 2. Par conséquent, nous obtenons
que le groupe de Cremona de rang 3 n’est pas engendré par les applications birationnelles qui
préservent une fibration rationnelles. De plus, le sous-groupe de Bir(P3) engendré par tous les
sous-groupes algébriques connexes est un sous-groupe distingué propre.
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1. Introduction

1.1. Non-simplicity of the Cremona groups. — Let X be an algebraic variety over a
field k. We denote by Birk(X) its group of birational automorphisms. During the last
few decades, there have been numerous papers concerning various properties of these
groups. A case of particular interest is X = Pn, when the group Birk(Pn) is called the
Cremona group of rank n. Rank one Cremona group over k is just PGL2(k). However,
already for n = 2 we get a much more complicated object, which is very far from being
a (finite dimensional) linear algebraic group. These days, we know quite a lot about the
group Birk(P2), especially when the base field k is algebraically closed of characteristic
zero. In particular, we know the presentation of this group in terms of generators
and relations [Giz82, IKT93, UZ19], description of finite subgroups [DI09] or more
generally finitely generated subgroups and other different group-theoretic properties:
see [Can13, Dés19] for some overviews and references. Here we only want to emphasize
that most questions about Cremona groups remain widely open in dimension greater
than 2.

The aim of this paper is to get some insights about the structure of Bir(X) for X a
three-dimensional complex algebraic variety, and in particular to address a question
about the simplicity of such a group. For Cremona groups, this question goes back to
F. Enriques, and it remained unsolved for more than 100 years. The non-simplicity of
BirC(P2) as an abstract group was first proved by S.Cantat and S. Lamy in [CL13]
using an action of BirC(P2) on an infinite-dimensional hyperbolic space. Later this
result was generalized by A. Lonjou to an arbitrary base field [Lon16]. Another ap-
proach to non-simplicity of BirR(P2), based on explicit presentation of BirR(P2) by
generators and relations, was discovered by S. Zimmermann in [Zim18]. The question
of the non-simplicity of higher rank Cremona groups remained open until the re-
cent preprint [BLZ19], where the so-called Sarkisov program and recent achievements
in the Borisov-Alexeev-Borisov conjecture [Bir19] allowed the authors to prove the
following result:

Theorem 1.1. — Let B ⊆ Pm be a smooth projective complex variety, P → Pm a
decomposable P2-bundle (projectivization of a decomposable rank 3 vector bundle) and
X ⊂ P a smooth closed subvariety such that the projection to Pm gives a conic bundle
η : X → B. Then there exists a group homomorphism

Bir(X) −→−→
⊕
Z
Z/2

which is surjective in restriction to Bir(X/B) = {φ ∈ Bir(X) | η ◦ φ = η}.
Moreover, if there exists a subfield k ⊆ C over which X,B and η are defined, the

image of elements of Bir(X/B) defined over k is also infinite.

Theorem 1.1 applies to any product X = P1 × B, to smooth cubic hypersurfaces
X ⊆ Pn and to many other non-rational varieties of dimension n > 3. Clearly, it also
includes the case of X = P1 × Pn−1 which is birational to Pn, hence proving that
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Cremona groups Bir(Pn) are not simple. For a version of this result in dimension 2

over a non-closed field, see [Sch19].

1.2. Are there simple “large” groups of birational automorphisms? — In view of
the previous discussion, it seems very natural to ask the following

Question (S. Cantat). — Is there a complex algebraic variety X such that the group
Bir(X) is “infinite-dimensional” and is a simple (abstract) group?

Let us now prove that a potential counterexample to this question must have
dimension at least 3. Firstly, the curve case is trivial. Let X be an algebraic surface.
We may assume that X is smooth projective and minimal. If X is of general type,
then Matsumura’s theorem [Mat63] says that Bir(X) is finite. If X is birational to P2,
then Bir(X) is isomorphic to the Cremona group of rank 2, which is not simple.
According to Enriques-Kodaira classification, in the remaining cases either X is a
non-rational ruled surface, or KX is nef. In the latter case Bir(X) = Aut(X) and by
Matsusaka’s theorem [Mat58] the group Aut(X) has a structure of a locally algebraic
group with finite or countably many components. Finally, if X is ruled over a non-
rational curve B, then

Bir(X) ' PGL2(C(B)) o Aut(B)

which is of infinite dimension, but is not simple. Indeed, the subgroup PSL2(C(B)) (
PGL2(C(B)) is a proper normal subgroup of Bir(X) (if Aut(B) is not trivial, one can
of course also consider PGL2(C(B))).

1.3. Threefolds and Mori fibrations. — Let X be a rationally connected three-
dimensional algebraic variety over an algebraically closed field of characteristic zero.
Run the Minimal Model Program on X. Recall that during this program we stay in
the category of projective normal varieties with at worst terminal Q-factorial singu-
larities. Since X is rationally connected, on the final step we get a Fano-Mori fibration
f : X̃ → Z, which means that dimZ < dimX, Z is normal, f has connected fibers,
the anticanonical Weil divisor −KX̃ is ample over Z, and ρ(X̃/Z) = 1. Then we have
one of the following three possibilities:

(1) Z is a rational surface and a general fiber of f is a conic;
(2) Z ' P1 and a general fiber of f is a smooth del Pezzo surface;
(3) Z is a point and X̃ is a Q-Fano threefold of Picard rank 1.
We see that Theorem 1.1 covers the first case of this trichotomy (or at least most

of them), so it is natural to proceed with the cases of del Pezzo fibrations and Fano
threefolds. Moreover, every del Pezzo fibration of degree > 4 is birational to a conic
bundle (see e.g. [BCDP19, Lem. 2.5]), so it is natural to study the next cases, which
correspond to del Pezzo fibrations of degrees 3, 2 or 1.

Our goal is to study the first case which is not covered by Theorem 1.1 — the case
of del Pezzo fibrations of degree 3. Our main result is the following statement:
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1092 J. Blanc & E. Yasinsky

Theorem A. — For each complex del Pezzo fibration π : X → B of degree 3 over a
curve B, there exists a group homomorphism

Bir(X) −→−→ ˚
N
Z/2

whose restriction to Bir(X/B) = {ϕ ∈ Bir(X) | πϕ = π} is surjective.

As the following example shows, there are cubic del Pezzo fibrations which are not
birational to conic bundles and such that not all birational transformations preserve
the cubic del Pezzo fibration. Theorem A shows then that Bir(V2) is not simple, a
fact that does not follow from [BLZ19].

Example 1.2 ([Sob02]). — Let Vm ⊂ P1 × P3 be a general divisor of bidegree (m, 3).
Note that the variety V1 is rational: the restriction of the projection P1 × P3 → P3

on V1 gives a birational morphism V1 → P3.
Consider the variety V2. Let [u0 : u1] and [x0 : x1 : x2 : x3] be the homogeneous

coordinates on the factors. Then V is given by the equation

A(x0, x1, x2, x3)u2
0 +B(x0, x1, x2, x3)u0u1 + C(x0, x1, x2, x3)u2

1 = 0,

where A, B and C are polynomials of degree 3. The system A = B = C = 0 has
27 distinct solutions qi ∈ P3, i = 1, . . . , 27, which give 27 lines Li = P1 × qi ⊂ V2.
The Galois involution τ of the double cover V2 → P3 is well defined outside Li,
so τ ∈ Bir(V2). One can show that V2 is not birationally rigid. The involution τ

corresponds to the flop of the 27 lines mentioned above, giving another structure of
Mori fiber space on V2 and τ is a Sarkisov link of type IV(see §2.3). In [Sob02] it is
shown that V2 is not birational to a conic bundle and that

Bir(V2) = 〈τ〉 ∗ Bir(V2/P1).

Note that Theorem A also applies to the group BirC(P3), and gives a proof of the
non-simplicity of BirC(P3), alternative to the one of [BLZ19] (using in fact the four
first sections of [BLZ19], so essentially the half of the paper). Even if the quotients that
we obtain are isomorphic to the ones of [BLZ19], the normal subgroups of BirC(P3)

that we construct are quite different. For instance, every birational map of P3 that
preserves a conic fibration is in the kernel of our group homomorphisms. We then
obtain the following result on generators of BirC(P3):

Theorem B. — There is a surjective group homomorphism

ρ : BirC(P3) −→−→ ˚
N
Z/2

having the following property:
Denoting by G ⊆ BirC(P3) the group generated by all birational maps ϕ ∈ BirC(P3)

such that πϕ = π for some rational fibration π : P3 P2 (a rational map with general
fibres rational), we have AutC(P3) ( G ( Ker ρ. In particular, we have a strict
inclusion G ( BirC(P3).
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Theorem B generalizes the three-dimensional version of [BLZ19, Th.C], which
proves that BirC(P3) is not generated by birational maps preserving a linear fibration
P3 P2 (this corresponds to the Tame problem for BirC(P3), see [BLZ19, §1.C] for
more details on this question).

We also obtain the existence of another natural proper normal subgroup of BirC(P3)

in Theorem C below. For each n > 1, the subgroup of BirC(Pn) generated by all
connected algebraic subgroups of BirC(Pn) is a normal subgroup Hn ⊂ BirC(Pn),
that contains AutC(Pn) ∼= PGLn+1(C) (for a definition and characterizations of
algebraic subgroups of BirC(Pn), see for instance [BF13]). The fact that Hn is nor-
mal follows from the fact that the conjugate of any connected algebraic subgroup
is a connected algebraic subgroup. The equality H1 = BirC(P1) then follows from
AutC(P1) = BirC(P1), and the equality H2 = BirC(P2) follows from the Noether-
Castelnuovo theorem (Lemma 4.4). However, our results show that H3 is a strict
normal subgroup of BirC(P3):

Theorem C. — The subgroup of BirC(P3) generated by all connected algebraic sub-
groups of BirC(P3) is a strict normal subgroup of BirC(P3).

Question. — Does the statements of Theorems B and C hold for BirC(Pn) with
n > 4?

1.4. The strategy of the proof and a more detailed result. — Let us briefly de-
scribe how one can obtain the group homomorphisms of Theorems A and B. Accord-
ing to the Sarkisov program, any birational map between two Mori fiber spaces is a
composition of birational maps, called Sarkisov links. Moreover, the relations between
Sarkisov links are generated by so-called elementary relations ([BLZ19, Th. 4.29], that
we reproduce here in Theorem 2.14). We follow the strategy of [BLZ19], which studies
for a Mori fiber space X the groupoid BirMori(X) of all birational maps between Mori
fiber spaces birational to X and we construct as in [BLZ19] a groupoid morphism from
BirMori(X) to a free product of Z/2Z whose restriction to Bir(X) gives the desired
group homomorphisms of Theorems A and B.

The groupoid morphisms constructed in [BLZ19] send every Sarkisov link in
BirMori(X) onto the identity, except some special Sarkisov links between conic
bundles which are complicated enough. We follow the same approach, but focus on
Sarkisov links between del Pezzo fibrations. The ones we are interested in are called
Bertini links in the sequel (see Definition 2.6). We put an equivalence relation on such
links (Definition 2.8) and associate to every Bertini link χ an integer number g(χ),
the genus of χ (see Definition 2.9), which measures the “complexity” of this link and
only depends on the equivalence class. We then associate to each Mori fiber space X
the set BX of all equivalence classes of Bertini links between varieties birational to X
and denote by B>g

X ⊂ BX the subset of equivalence classes of Bertini links having
genus > g.

The advantage of working only with Bertini links of “high complexity” is that they
occur only in very simple elementary relations. Altogether, in Section 3.3 it allows us
to prove the following statement:
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Theorem D. — There is an integer g > 0 such that for each complex del Pezzo
fibration X → B over a curve, there exists a group homomorphism

Bir(X) −→ ˚
B>g

X

Z/2

which is the restriction of a groupoid homomorphism

BirMori(X) −→ ˚
B>g

X

Z/2

that sends every Sarkisov link χ of Bertini type with g(χ) > g to the generator of Z/2
indexed by equivalence class of χ, and all other Sarkisov links and all automorphisms
of Mori fiber spaces birational to X onto the trivial element.

Theorem A will follow from Theorem D. Note that in Theorem D there is no
restriction on the degree of the del Pezzo fibration X/B, but we only prove that the
image is non-trivial for del Pezzo fibrations of degree 3. This is done in Section 4,
where we show that for a del Pezzo fibration X/B of degree 3, the image by the group
homomorphism of Theorem D of a natural birational involution associated with a
2-section of X/B of genus g′ > g (where g is as in Theorem D) is the generator of one
of the Z/2, indexed by a Sarkisov link of genus g′. It then suffices to show that the
genus of 2-sections in X/B is not bounded (a fact already proved in [BCDP19]) to
show that the image of Bir(X) under the group homomorphism surjects onto a free
product of Z/2 indexed by an infinite set.

Remark 1.3. — Theorem D, when restricted to del Pezzo fibrations of degrees 2 and 1,
gives an empty result. Indeed, there is no Bertini link on a del Pezzo fibration of
degree 1 and the genus of any Bertini link on a del Pezzo fibration of degree 2 is equal
to the genus of the base curve B, as it corresponds to the genus of a section blown-up.
Whether Bir(X) is a simple group or not for del Pezzo fibrations of degrees 2 and 1

is an interesting question, open for the moment. The techniques developed here do
not easily extend to these groups. One should consider other links and study possible
relations to understand the question.

Acknowledgements. — The authors would like to thank Hamid Ahmadinezhad, Ivan
Cheltsov, Stéphane Lamy and Yuri Prokhorov for interesting discussions during the
preparation of this text. We would also like to thank the referees for helpful suggestions
that improved the exposition of this paper.

2. Preliminaries on the Sarkisov program

2.1. Notation and conventions. — Throughout the paper, we stick to the following
agreements:

– all the varieties and maps are defined over C, if not stated otherwise;
– the plain arrows (→) denote morphisms; the dashed arrows ( ) denote rational

maps; the dotted arrows ( //) denote pseudo-isomorphisms (isomorphisms outside
codimension 2 closed subsets);
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– we write X ' Y if two varieties are isomorphic, and X ≈ Y if they are pseudo-
isomorphic;

– a birational contraction is a birational map such that the inverse does not contract
any divisor.

Below we very briefly recall some standard notions of the Minimal Model Program
(MMP in the sequel) which are used in in this paper. Our main references are [KM98]
and [BCHM10]; see also [BLZ19, §2].

2.2. Rank r fibrations. — At the heart of this paper, as well as in [BLZ19], lies the
notion of rank r fibration. It puts together the notions of terminal Mori fiber space, of
Sarkisov links and of elementary relations between Sarkisov links, for r = 1, 2 and 3

respectively.

Definition 2.1. — Let r > 1 be an integer.A morphism η : X → B is a rank r

fibration if the following conditions are satisfied:
(1) X/B is a Mori dream space;
(2) dimX > dimB > 0 and ρ(X/B) = r;
(3) X is Q-factorial and terminal, and for any divisor D on X, the output of any

D-MMP from X over B is still Q-factorial and terminal;
(4) B has klt singularities.
(5) −KX is η-big.

Remark 2.2. — For the definition of a Mori dream space we refer to [BLZ19, Def. 2.3],
which is a relative version of [HK00, Def. 1.10]. Standard examples include toric vari-
eties and Fano varieties (with B = pt). For us, the reason to work with Mori dream
spaces is that they behave well with respect to the MMP. Namely, if X/B is a Mori
dream space, then for any divisor D one can run a D-MMP on X over B, and there
exists only finitely many possible outputs of such a process (see [HK00, Prop. 1.11] or
[KKL16, Th. 5.4]).

Further, we say that a rank r fibration X/B factorizes through a rank r′ fibration
X ′/B′, or that X ′/B′ is dominated by X/B, if the fibrations X/B and X ′/B′ fit in
a commutative diagram

X //

))

B

X ′ // B′

55

where X X ′ is a birational contraction, and B′ → B is a morphism with connected
fibers. Note that r > r′.

Proposition 2.3 ([BLZ19, Lem. 3.3]). — Let η : X → B be a surjective morphism
between normal varieties. Then X/B is a rank 1 fibration if and only if X/B is a
terminal Mori fiber space.

Remark 2.4. — In threefold case, there are three possible cases for a Mori fiber
space X/B:

J.É.P. — M., 2020, tome 7



1096 J. Blanc & E. Yasinsky

(1) If dim(B) = 0, then X is a Fano variety with ρ(X) = 1;
(2) If dim(B) = 1, then X is a del Pezzo fibration over a curve B;
(3) If dim(B) = 2, then X is a conic bundle over the surface B.

In the following lemma we gather some properties of rank r fibrations which we
will need later.

Lemma 2.5. — Let r > 1 and let η : X → B be a rank r fibration. Then, the following
hold:

(1) If X ′ is obtained from X by making a log-flip (resp. a divisorial contraction)

over B, then X ′/B is a rank r fibration (resp. a rank (r − 1)-fibration).
(2) For a general point b ∈ B the fiber Xb = η−1(b) is pseudo-isomorphic to a weak

Fano terminal variety, and the curves in Xb which have a non-positive intersection
with KXb

cover a subset of codimension at least 2 in Xb.

Proof. — (1) is [BLZ19, Lem. 3.4(1)] and (2) is [BLZ19, Cor. 3.6]. �

2.3. Sarkisov links. — The notion of a rank 2 fibration corresponds to the notion of
Sarkisov link. Namely, a 2-ray game allows to show [BLZ19, Lem. 3.7] that a rank 2

fibration Y/B factorizes through exactly two rank 1 fibrations X1/B1, X2/B2 (up to
isomorphisms), which both fit into a diagram

��

Yoo //

��

** ttB

where the top dotted arrows are sequences of log-flips, and the other four arrows are
morphisms of relative Picard rank 1. In this situation we say that the birational map
χ : X1 X2 is a Sarkisov link. In the diagram above, there are two possibilities for
the sequence of two morphisms on each side of the diagram: either the first arrow is a
Mori fiber space, or it is a divisorial contraction and then the second arrow is a Mori
fiber space. Thus, we have 4 possibilities, which correspond to the classical definition
of Sarkisov links of type I, II, III and IV, as illustrated on Figure 1. Note that the
varieties Y1, Y2 on the figure are Q-factorial terminal varieties pseudo-isomorphic to Y ,
obtained via sequences of anti-flips/flops/flips, steps of the MMP.

The dashed arrow are pseudo-isomorphisms, the plain arrows are morphisms of
relative Picard rank 1, and the arrows labeled by “div” are divisorial contractions.

2.4. Crucial example: Bertini links. — In this paper, one particular family of Sark-
isov links will be especially important for us. Those are the only links which will be
sent to non-trivial elements by the group homomorphism of Theorem D. Let us now
define this kind of links.

Definition 2.6. — We say that a Sarkisov link χ : X1 X2 is of Bertini type (or χ
is just a Bertini link) if

(1) χ has type II with B being a curve and X1, X2 being of dimension 3;

J.É.P. — M., 2020, tome 7
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Y1

div
��

X2

fib
��

X1

χ

33

fib ((

B2

vv

B1 = B

Y1

div
��

Y2

div
��

X1 χ
//

fib ))

X2

fibvv

B1 = B = B2

I II

X1

fib
�� χ

++

Y2

div
��

B1

((

X2

fibvv

B = B2

X1

fib
��

χ
// X2

fib
��

B1

((

B2

fibvv
B

III IV

Figure 1. The four types of Sarkisov links.

(2) η1 is a blow-up of a curve Γ1 ⊂ X1 such that Γ1 → B is surjective and the
generic fiber of Y1/B is a del Pezzo surface of degree 1 (see Figure 2).

Y1

η1
��

β
Y2

η2
��

X1

χ
//

dPd ''

X2

dPdww
B

Figure 2. A Bertini link

Remark 2.7. — The definition implies that the birational map between the generic
fibers of X1/B and X2/B induced by χ is equal, up to an isomorphism of the target,
to a birational involution that lifts to the Bertini involution on the generic fiber of
Y1/B, and implies that X1/B and X2/B are del Pezzo fibrations of the same degree
d > 2 (follows from [Isk96, Th. 2.6]). This motivates the terminology. Moreover, this
implies that η2 is the blow-up of a curve Γ2 which is birational to Γ1.

Definition 2.8. — We say that two Bertini links χ : X1 X2 and χ′ : X ′1 X ′2
over B and B′ respectively are equivalent via birational maps ψ1 and ψ2 (or simply
equivalent), if there exists a commutative diagram

X1

χ
//

ψ1
��

++

X2

ψ2
��

ssB
ψ

��
X ′1

++

χ′
// X ′2

ssB′
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1098 J. Blanc & E. Yasinsky

where for each i ∈ {1, 2}, ψi is a birational map inducing an isomorphism between
the generic fibers of the del Pezzo fibrations Xi/B and X ′i/B′, and where ψ : B → B′

is an isomorphism. The equivalence class of χ will be denoted [χ].
For each variety X, we denote by BX the set of equivalence classes of Bertini links

χ : X1 X2, where X1 and X2 are birational to X.

Definition 2.9. — Let χ be a Bertini link. The genus g(χ) of χ is the geometric
genus of the curve Γ1 blow up by η1:

g(χ) = g(Γ1).

Remark 2.10. — Equivalent Bertini links have the same genus. Indeed, taking the
notation of Definitions 2.6 and 2.8, if χ and χ′ are equivalent via ψ1 and ψ2, then the
restriction of ψ1 gives a birational map between the curve Γ1 ⊂ X1 blown-up by η1

and the curve Γ′1 ⊂ X ′1 blown-up by η′1. One can thus define B>g
X ⊂ BX to be the

subset of equivalence classes of Bertini type links χ such that g(χ) > g.
Moreover, the curves Γ1 and Γ2 associated to a Bertini link χ are birational (see

Remark 2.7), so we have g(χ) = g(χ−1) for each Bertini link χ.

2.5. Elementary relations. — Finally, the notion of rank 3 fibration recovers the
notion of an elementary relation between Sarkisov links, introduced in [LZ17] and
[BLZ19].

Definition 2.11. — Let X/B and X ′/B′ be two rank r fibrations, and T X,
T X ′ two birational maps from the same variety T . We say that X/B and
X ′/B′ are T -equivalent (the birational maps being implicit) if there exist a pseudo-
isomorphism X // X ′ and an isomorphism B

∼−→ B′ such that all these maps fit in
a commutative diagram:

T

uu ))
X
��

// X ′

��

B
∼ // B′

As every rank 3 fibration T/B is a Mori dream space, there are only finitely many
rank 1 and rank 2 fibrations dominated by T/B (see Remark 2.2). Moreover, if T/B
factorizes through a rank 1 fibration X/B′, then up to T -equivalence there are exactly
two rank 2 fibrations which factorize through X/B′ and dominated by T/B [BLZ19,
Lem. 4.2]. From these two facts one can deduce the following statement:

Proposition 2.12 ([BLZ19, Prop. 4.3]). — Let T/B be a rank 3 fibration. Then there
are only finitely many Sarkisov links χi dominated by T/B, and they fit in a relation

χt ◦ · · · ◦ χ1 = id.

Definition 2.13. — In the situation of Proposition 2.12, we say that

χt ◦ · · · ◦ χ1 = id
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is an elementary relation between Sarkisov links, coming from the rank 3 fibration
T/B. Observe that the elementary relation is uniquely defined by T/B, up to taking
the inverse, cyclic permutations and insertion of isomorphisms.

Now we are ready to state a keynote result, which allows us to study the structure
of birational automorphism groups. Its first part is basically the Sarkisov program
itself, following [HM13]. The second part is inspired by [Kal13, Th. 1.3] and proved in
[BLZ19].

Let X/B a Mori fiber space. We denote by BirMori(X) the groupoid(1) of birational
maps between Mori fiber spaces birational to X. Note that Bir(X) is a subgroupoid
of BirMori(X).

Theorem 2.14 ([BLZ19, Th. 4.29]). — Let X/B be a terminal Mori fiber space.
(1) The groupoid BirMori(X) is generated by Sarkisov links and automorphisms.
(2) Any relation between Sarkisov links in BirMori(X) is generated by elementary

relations.

3. Elementary relations involving Bertini links

Let χt◦· · ·◦χ1 = id be an elementary relation between Sarkisov links, coming from
a rank 3 fibration T/B. Assume that one of the χi is a Sarkisov link χi : Xi Xi+1

of type II over a curve Bi. Depending on whether B is a point or a curve, there are
only two possible ways in which T/B can factorize through χi, see Figure 3 where the
dotted arrows and vertical arrows are pseudo-isomorphisms and divisorial contractions
respectively, obtained by running an MMP, so Yi, Yi+1, Ti, Ti+1 are then Q-factorial
terminal varieties birational to Xi and Xi+1.

Yi
��

T Yi+1

��

Xi

χi
//

**

Xi+1

tt
Bi

��

B = pt

Ti
��

Ti+1

��

Yi
��

Yi+1

��

Xi

χi
//

**

Xi+1

tt
B = Bi

Over a point Over a curve

Figure 3. Two types of relations

We call them relation over a point and relation over a curve respectively. The goal
of the next two paragraphs is to show that Bertini links of large genus do not occur
in non-trivial relations over a point, and occur only in very simple relations over a
curve.

(1)For the formalism of groupoids and of generators and relations in groupoids, we refer to [Bro06,
§8.2 & 8.3].
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3.1. Relations over a point. — In this paragraph we prove that Bertini links of large
genus do not occur in non-trivial elementary relations over a point (Proposition 3.3).

The following statement is a consequence of the Borisov-Alexeev-Borisov conjec-
ture, established in [KMMT00, Kaw92] for dimension 6 3 and in [Bir16] for any
dimension.

Proposition 3.1 ([BLZ19, Prop. 5.1]). — Let n be an integer, and let Fn be the set of
weak Fano terminal varieties of dimension n. There are integers d, `,m > 1, depending
only on n, such that for each X ∈ Fn the following hold:

(1) h0(−mKX) 6 `;
(2) The linear system |−mKX | is base-point free;
(3) The morphism

φ|−mKX | : X −→ Ph0(−mKX)−1

is birational onto its image and contracts only curves C ⊆ X with C ·KX = 0;
(4) deg φ|−mKX |(X) 6 d.

Corollary 3.2. — There is an integer N > 0 such that the following holds. Let X be a
terminal threefold, and η : Y → X be the blow-up of an irreducible and reduced curve
Γ ⊂ X. Assume that both X and Y are pseudo-isomorphic to weak Fano terminal
threefolds having a small anticanonical morphism. Then the geometric genus of Γ

satisfies g(Γ) 6 N .

Proof. — We have the following commutative diagram:

X̂

φ|−mK
X̂
|

��

Xoo

ψ
��

Y
η

oo // Ŷ

φ|−mKŶ |

��

Γ

∪
_

��

Pa ψ(X)⊃ Γ̃⊃ Pb

where X̂ and Ŷ are weak terminal Fano threefolds, and the positive integers m and
a = h0(−mKX) − 1 = h0(−mKX̂) − 1, b = h0(−mKY ) − 1 = h0(mKŶ ) − 1 6 l

are given by Proposition 3.1. By hypothesis, the morphism φ|−mK
X̂
| is small, so

the composition ψ : X // X̂ → Pa is a pseudo-isomorphism with its image ψ(X), the
exceptional locus Exc(ψ) is a closed subset ofX of dimension 6 1, and each irreducible
curve contained in Exc(ψ) has genus 0. As we may assume that g(Γ) > 0, we obtain
Γ * Exc(ψ). Set Γ̃ = ψ(Γ).

Since η∗(mKY ) = mKX , we obtain that b 6 a and the induced rational map
π : Pa Pb is a linear projection from a linear subspace L ⊂ Pa. The variety X̃ =

ψ(X) ⊂ Pa is a threefold of degree 6 d by Proposition 3.1, and is not contained in a
hyperplane section. As in [BLZ19, Cor. 5.2], one can show that there are no irreducible
surfaces S ⊆ X̃ ∩ L. Then Bézout Theorem implies that all irreducible components
of X̃ ∩ L of dimension 1 have degree 6 d. Thus, deg(Γ̃) 6 d.
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By Castelnuovo’s theorem (see e.g. [Har81]), it implies that g(Γ̃) is bounded by
some constant N , depending only on a and d, so the same holds for the geometric
genus of Γ̃, which is equal to the geometric genus of Γ. �

Proposition 3.3. — There exists some positive integer g such that no Bertini link χ
with g(χ) > g occurs in a non-trivial elementary relation over a point.

Proof. — From Lemma 2.5 we know that Y1/pt and X1/pt are rank 3 and rank 2

fibrations respectively. Moreover, they are both pseudo-isomorphic to weak Fano ter-
minal varieties. It remains to apply Corollary 3.2 and take g = N + 1. �

3.2. Relations over a curve. — The main result of this paragraph is Proposition 3.6
which shows that if a Bertini link occurs in some elementary relation over a curve,
then this relation has a very simple form. Before proving this, we need some lemmas.

Lemma 3.4. — Let us take a Bertini link

Y1

η1
��

Y2

η2
��

X1

χ
//

dPd ''

X2

dPdww
B

dominated by a rank 3 fibration T/B, where B is a curve, and let X̂/B̂ be a rank 1

fibration (or equivalently a Mori fiber space) such that T/B factorizes through X̂/B̂
(see the picture below). Then the following hold:

(1) The associated morphism B̂ → B is an isomorphism;
(2) The birational contraction T Y1 contracts a divisor onto a point or a curve

contained in one fiber of Y1/B, and the generic fibers of T/B and Y1/B are isomorphic
del Pezzo surfaces of degree 1 and Picard rank 2;

(3) Exactly one of the two birational maps X1 X̂ and X2 X̂ induces an
isomorphism between the generic fibers of Xi/Bi ' Xi/B and of X̂/B.

T

uu )) ,,Y1

η1
��

Y2

η2
��

X̂

��

X1

χ
//

))

X2

uu

B̂

rrB

Proof. — Let ε be the generic point of B and let (X1)ε, (X2)ε, X̂ε, (Y1)ε, (Y2)ε and Tε
be the generic fibers of X1/B, X2/B, X̂/B, Y1/B, Y2/B and T/B respectively. As χ
is a Bertini link, the surfaces (Y1)ε and (Y2)ε are isomorphic del Pezzo surfaces of
degree 1 and Picard rank 2, and the contractions of the two extremal rays give two
morphisms (Y1)ε → (X1)ε and (Y2)ε → (X2)ε induced by η1 and η2.
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By Lemma 2.5 a general fiber of T → B is pseudo-isomorphic, and thus isomorphic,
to a weak del Pezzo surface. As (Y1)ε is a del Pezzo surface of degree 1, the birational
contraction T Y1 contracts a divisor onto a point or a curve contained in one fiber
of Y1/B. In particular, Tε is isomorphic to (Y1)ε. This proves (2). As T/B factorizes
through X̂/B̂, we have a commutative diagram

T
π //

ϕ ))

B

X̂
π̂

// B̂ σ

55

where ϕ is a birational contraction, and σ is a morphism with connected fibers. As
dim B̂ 6 2, the generic fiber B̂ε of B̂/B is either a curve or a point, and we get
morphisms of generic fibers

Tε
f−−→ X̂ε

g−−→ B̂ε.

The contractions of the two extremal rays of Tε give (X1)ε and (X2)ε, and both are del
Pezzo surfaces of Picard rank 1, so there is no morphism to a curve, and B̂ε is a point,
which means that B̂ → B is an isomorphism (as B and B̂ are normal), proving (1).
As X̂/B̂ is a rank 1 fibration, the Picard rank of X̂ε is 1, so f corresponds to one of
the contractions of the two extremal rays of Tε. This gives (3). �

We also need the following easy lemma.

Lemma 3.5 ([BLZ19, Lem. 2.22]). — Let T → Y and Y → X be two divisorial contrac-
tions between Q-factorial varieties, with respective exceptional divisors E and F . As-
sume that there exists a morphism X → B such that T/B is a Mori dream space. Then
there exist two others Q-factorial varieties T ′ and Y ′, with a pseudo-isomorphism
T // T ′ and birational contractions T ′ → Y ′ → X, with respective exceptional divi-
sors the strict transforms of F and E, such that the following diagram commutes:

T

E ��

T ′

F��
Y

F ''

Y ′

Eww
B

We can now prove the main statement of this paragraph.

Proposition 3.6. — Let χ1 : X1/B X2/B be a Bertini link appearing in some
non-trivial elementary relation over a curve. Then this relation has the form

χ4 ◦ χ3 ◦ χ2 ◦ χ1 = id,

where the Sarkisov links χ2 : X2 X3, χ3 : X3 X4, χ4 : X4 X1 are between
Mori fiber spaces Xi/B, i = 1, 2, 3, 4, such that χ3 is a Bertini link and χ2, χ4 induce
isomorphisms between the generic fibres of Xi/B. In particular, the Bertini links χ1

and χ3
−1 are equivalent via χ4

−1 and χ2.
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Proof. — Let T/B be a rank 3 fibration corresponding to an elementary relation
χn ◦ · · · ◦ χ1 = id. Denote by {Xi/Bi}ni=1 the finite collection of rank 1 fibrations
dominated by T/B and corresponding to Sarkisov links χi : Xi Xi+1. We are
going to show that n = 4.

First, Lemma 3.4(1) shows that the morphism Bi → B is an isomorphism for
each i. In particular, all χi are Sarkisov links of type II over B. We will show that
the links are given as in the diagram below, where the varieties associated with χi are
arranged in circles according to their Picard number and where the morphisms are
labeled by divisors which those morphisms contract.

Y ′
1

T ′
1

Y1

T1

Y2

T2

Y ′
2

T ′
2

Y ′
3

T ′
3

Y3

T3

Y4

T4

Y ′
4

T ′
4

B

X1

X2 X3

X4

χ1

χ2

χ3

χ4

E1

E2

F1 F2

E2

E1

F2F1
F1

F1

E2 E2

F2

F2

E1E1

We start with the link χ1 and try to recover the whole relation. Let E1 ⊂ Y1 and
E2 ⊂ Y2 be exceptional divisors of the divisorial contractions Y1 → X1 and Y2 → X2

respectively. As χ1 is a Bertini link, both are contracted onto curves of X1 and X2

respectively, which are not contained in one fiber. We again denote by E1, E2 ⊂ T

the strict transforms of these divisors on T . We denote by F1 the divisor contracted
by the divisorial contraction T1 → Y1. By Lemma 3.4(2), the generic fibers of T1/B

and Y1/B are isomorphic, so the image of F1 is a point or a curve contained in a fiber
of Y1/B. The same then holds for T2 → Y2, and we obtain the following part of the
above diagram.

T1

F1 ��

T2

F1��

Y1

E1 ��

Y2

E2��

X1

χ1
//

''

X2

ww
B

Denote by F2 ⊂ Y1 the fiber containing the image of F1. As before, we again write F2

for the strict transforms of F2 in the threefolds Xi, Yi, Ti.
For each integer i, the rank 3 fibration Ti/B factorizes through Xi/Bi = Xi/B.

We obtain the following key facts:
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(1) The morphism Ti → Xi contracts exactly one divisor among F1 and F2. Indeed,
each fiber of our del Pezzo fibration Xi → B is an irreducible surface.

(2) The morphism Ti → Xi contracts exactly one divisor among E1 and E2. This
is because exactly one of the two birational maps X1 Xi and X2 Xi induces an
isomorphism between the generic fibers of X1/B or X2/B with Xi/B (Lemma 3.4(3)).

We use these to finish the proof. Let us consider then next link χ2 that starts
from X2. Its resolution is given by

T ′2

��

T ′3

��

Y ′2

��

Y ′3

��

X2

χ2
//

''

X3

ww
B

As T2 ≈ T ′2 over X2 and the birational map χ2 ◦χ1 should not be an isomorphism,
the morphism Y ′2 → X2 must contract F1, and T ′2 → Y ′2 must contract E2 (this exists
by Lemma 3.5). As T2 ≈ T ′3 and Y ′2 ≈ Y ′3 , the morphism T ′3 → Y ′3 contracts E2.
Then (2) implies that Y ′3 → X3 contracts F2.

Proceeding this game further, we recover all labels and prove n = 4. The next step
consists of studying χ3. We obtain a commutative diagram

T ′2

E2 ��

T ′3

E2��

T3

��

T4

��

Y ′2
F1 ��

Y ′3
F2

''

Y3

ww

Y4

��

X2

χ2
//

++

X3

��

χ3
// X4

ssB

As before, the fact that T3 ≈ T ′3 implies that T3 → X3 contracts E2 and F2. This
has to be in a different order than T ′3 → X3 (since otherwise χ3 ◦ χ2 would be the
identity), so T3 → Y3 contracts F2 and Y3 → X3 contracts E2; these contractions
exist again by Lemma 3.5. As above, the fact that T3 ≈ T4 and Y3 ≈ Y4 implies that
T4 → Y4 contracts F2, and then Y4 → X4 contracts E1 by (2). The same argument
applied to the next link χ4 gives a commutative diagram

T3

F2
��

T4

F2
��

T ′4

E1 ��

T ′5

E1��

Y3

E2 ��

Y4
E1

''

Y ′4
F2

ww

Y ′5
F1��

X3

χ3
//

++

X4

��

χ4
// X5

ssB
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As T ′5 ≈ T1 and both T1 → X1 and T ′5 → X5 contract the two divisors E1 and F1,
there is an isomorphism X5

∼−→ X1 compatible with the morphisms T1 → X1 and
T ′5 → X5 (see also Lemma 3.5). In particular, we may replace X5 with X1 in the above
diagram and then simply write T ′5 = T ′1 and Y ′5 = Y ′1 . The rational map T1 X1

obtained here is the same as the initial one, so we have covered all possibilities, and
obtain n = 4, together with the desired diagram.

As Y3 → X3 contract E2, the link χ3 is a Bertini link (see Definition 2.6). As
only the divisor E2 (and not E1) is contracted by T ′2 → X2 and T ′3 → X3, the
link χ2 induces an isomorphism between the generic fibers of X2 → B and X3 → B.
Similarly, only E1 (and not E2) is contracted by T ′4 → X4 and T ′1 → X1, so χ4

induces an isomorphism between the generic fibers of X4 → B and X1 → B. This
means that χ1 is equivalent to χ3

−1 via χ−1
4 and χ2 (Definition 2.8). �

3.3. Proof of Theorem D. — We are now ready to prove Theorem D. We use the
presentation of the groupoid BirMori given in Theorem 2.14 and the description of
elementary relations involving Bertini links, obtained in Propositions 3.3 and 3.6.

Proof of Theorem D. — Let X be a del Pezzo fibration of degree 3. By Theo-
rem 2.14(1), the groupoid BirMori(X) is generated by Sarkisov links and auto-
morphisms of Mori fiber spaces. By Theorem 2.14(2), the relations are generated
by elementary relations. Fix a positive integer g ∈ Z>0 given by Proposition 3.3.
Consider the map

Φ : BirMori(X) −→ ˚
B>g

X

Z/2

which sends each Sarkisov link χ of Bertini type with g(χ) > g to the generator of
Z/2 indexed by [χ], and all other Sarkisov links and automorphisms of Mori fiber
spaces are sent to zero. To check that Φ is a well-defined groupoid homomorphism,
we need to show that every elementary relation is sent to the neutral element.

Let χn ◦ · · · ◦ χ1 = id be a non-trivial elementary relation between the Sarkisov
links. We may assume that it involves a Bertini link χ1 with g(χ1) > g, otherwise the
relation is sent to the neutral element automatically. By Proposition 3.3, our relation
is a relation over a curve. Then Proposition 3.6 shows that n = 4. Moreover, χ1

and χ3 are equivalent links of Bertini type, while χ2 and χ4 are not of Bertini type;
this latter fact follows from the fact that χ2 and χ4 are isomorphisms between the
generic fibres Xi → B, by Proposition 3.6, and thus cannot be of Bertini type, by
Remark 2.7. Thus, our elementary relation is sent to the neutral element. This proves
the existence of the groupoid homomorphism. The restriction on Bir(X) gives a group-
theoretic homomorphism. �

4. Image of the group homomorphism given by Theorem D

In this section, we prove that the image of the group homomorphism given by
Theorem D is large when X is a cubic del Pezzo fibration. Recall that a Bertini
involution on a cubic surface F ⊂ P3 associated with two general points p, q ∈ F is
given by πιπ−1 ∈ Bir(X), where π : F̂ → F is the blow-up of the two points p, q and
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ι ∈ Aut(F̂ ) is the Bertini involution of the del Pezzo surface F̂ of degree 1, given by
the double covering

F̂
|−2KF̂ |−−−−−−−→ V ⊂ P3

onto a quadric cone V ⊂ P3. The following result does this in family on a cubic del
Pezzo fibration.

Proposition 4.1 ([BCDP19, Prop. 5.3]). — Let X/B be a del Pezzo fibration of de-
gree 3. For each positive integer m > 0 there exists a smooth 2-section Γ ⊂ X with
genus g(Γ) > m, and a birational involution ιΓ which acts on a general fiber F of X/B
as the Bertini involution of the cubic surface F , centered at the two points of F ∩ Γ.

Sketch of proof. — We may assume that X is brought to a standard model. Take a
section Z ⊂ X, and let η : Y → X be its blow-up (note that Z exists by [Kol96, IV,
Th. 6.8]). Then Y is a del Pezzo fibration of degree 2. Denote by FX a general fiber
of X → P1, and by FY a general fiber of Y → P1. For some large integer n, consider
the divisor

D = −KY + nFY .

One can show that D is base-point-free, for n big enough. Now take two general
elements D1, D2 ∈ |D|, and consider the curve ∆ = D1 ∩ D2. Then Q is a smooth
curve contained in the smooth locus of Y .

As D1, D2 correspond to the strict transforms of two hyperplanes in P3 through
the point Z ∩FX , we get that FY ∩∆ consists of 2 points, i.e., ∆ is a 2-section. Now
let Γ = η(∆), which is a 2-section of X/B. Straightforward calculations show that

deg(−KΓ) = 4n−K3
Y ,

which proves that the genus of Γ is bigger than m if one chooses n large enough. The
birational involution ιΓ ∈ Bir(X) is then obtained by applying to a general fiber F
of X/B the Bertini involution of the cubic surface F , centered at the two points of
F ∩ Γ. �

To deduce Theorem A and Theorem B from Theorem D, we will show that the
involutions ιΓ of Proposition 4.1 are sent, via the group homomorphism of Theorem D,
onto infinitely many different generators of ˚

B>g
X

Z/2.

Lemma 4.2. — Let X/B and Y/B be two Mori fiber spaces over the same base, and
ϕ : X Y be a birational map over B. There exists a decomposition of ϕ into a
product of Sarkisov links

ϕ = χ1 ◦ · · · ◦ χr,

where χi : Xi/Bi Xi+1/Bi+1 and the following hold:
(1) if dim(B) = 2, one can assume that dim(Bi) = 2 for each i;
(2) if X/B is a del Pezzo fibration of degree d 6 3 over a curve B, then one can

choose each χi to be a Sarkisov link of type II, each Bi equal to B, and all Xi/Bi to
be del Pezzo fibrations of the same degree d (here we set X = X1, Y = Xr+1);
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Proof. — We first note that the proof of [HM13, Th. 1.1] works in relative settings,
i.e., the map ϕ can be decomposed into a product of Sarkisov links χi over the fixed
base B. This means that all intermediate varieties admit morphisms to that B, as in
the diagram below.

X = X1

χ1
//

��

X2

χ2
//

��

· · ·
χr−1

// Xr

χr
//

��

Xr+1 = Y

��

B

**

B2

$$

· · · Br

zz

B

ttB

If dimB = 2, then all Bi are surfaces, proving (1). To prove (2), we suppose that
X/B is a del Pezzo fibration of degree d 6 3. We denote by (Xi)ε the generic fiber of
Xi/B, for each i, and obtain a birational map (X1)ε (Xi)ε for each i. As (X1)ε is
a del Pezzo surface of degree d 6 3 with Picard rank equal to 1, the same holds for
(Xi)ε (follows from the classification of Sarkisov links between two-dimensional Mori
fibrations over a perfect field given in [Isk96, Th. 2.6]). This implies that the generic
fiber (Bi)ε of Bi → B is a point and thus Bi → B is an isomorphism. The Sarkisov
link χi is then of type II. This achieves the proof of (2). �

Lemma 4.3. — Let g > 0 be an integer as in Theorem D. Let X/B be a cubic del Pezzo
fibration over a curve B, and ιΓ ∈ Bir(X) be the birational involution associated with
a smooth 2-section Γ of X/B with g(Γ) > g, as in Proposition 4.1. Then, the image
of ιΓ under the group homomorphism

Bir(X) −→ ˚
B>g

X

Z/2

of Theorem D is the generator of a group Z/2 indexed by the equivalence class of a
Bertini link of genus g(Γ).

Proof. — By Lemma 4.2(2), the map ϕ can be decomposed into the product of Sark-
isov links χ1, . . . , χr between cubic del Pezzo fibrations over B. The decomposition
given in the proof of [HM13, Th. 1.3] comes from birational contractions πi : Z Xi,
where Z is the resolution of indeterminacy points of ϕ.

Z
π1

tt
π2

zz
πr

$$

πr+1

**

X = X1 χ1

//

**

X2 χ2

//

$$

· · · χr−1

// Xr χr

//

zz

Xr+1 = X

ttB

Denote by S1 ⊂ X1 and Sr+1 ⊂ Xr+1 the divisors contracted by ϕ and ϕ−1 respec-
tively. Further, let Ei ⊂ Z be πi-exceptional divisor over Si, where i ∈ {1, r + 1}.
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Note that the generic fiber of Z/B is a del Pezzo surface of degree 1 and Picard rank 2

over C(B). Thus each πi contracts precisely one of E1 and Er+1, and possibly some
“vertical” divisors contained in the fibers of Z/B. If πi and πi+1 contract the same
divisor Ej , the Sarkisov link χi induces an isomorphism between the generic fibers
of Xi/B and Xi+1/B. If the contracted divisors are different, the corresponding link
is a Bertini link. Since the first and the last morphisms (i.e., π1 and πr+1) contract
different divisors, the number of Bertini links must be odd. Moreover, all Bertini links
have the same genus g(Γ). �

We now can complete the proof of Theorem A.

Proof of Theorem A. — Let X/B be a cubic del Pezzo fibration and let us write

Bir(X/B) = {ϕ ∈ Bir(X) | πϕ = π}.

By Theorem D, there exists an integer g > 0 and a group homomorphism

ρ : Bir(X) −→ ˚
B>g

X

Z/2

which sends every Sarkisov link χ of Bertini type with g(χ) > g to the generator
indexed by equivalence class of χ, and all other Sarkisov links and all automorphisms
of Mori fiber spaces birational to X onto the trivial element. For each integer g′ > g,
Proposition 4.1 gives a birational involution ιΓ ∈ Bir(X/B) associated to a curve of
genus g(Γ) > g′, and whose image by ρ is the generator of a Sarkisov link of genus
g(Γ) (Lemma 4.3). We obtain then infinitely many distinct involutions ιΓ ∈ Bir(X)

that are sent onto infinitely many distinct generators of ˚
B>g

X
Z/2. Projecting on the

corresponding factors gives a group homomorphism

Bir(X) −→−→ ˚
N
Z/2

whose restriction to Bir(X/B) is surjective. �

4.1. Proof of Theorems B and C. — We now use the group homomorphisms con-
structed in Theorems A and D and the relative Sarkisov program to prove Theo-
rem B and C. We work as before over the field of complex numbers, and thus write
Aut(Pn) = AutC(Pn) and Bir(Pn) = BirC(Pn).

Proof of Theorem B. — Let X/B be a del Pezzo fibration of degree 3 such that X is
rational (one can take e.g. V1 from Example 1.2). Fixing a birational map ψ : X P3

gives an isomorphism Bir(P3) ' Bir(X). We then obtain an surjective group homo-
morphism

ρ : Bir(P3) ' Bir(X) −→−→ ˚
N
Z/2

given by Theorem A. By construction, it is obtained by composing the group homo-
morphism

ρ̂ : Bir(X) −→ ˚
B>g

X

Z/2
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of Theorem D with a projection

˚
B>g

X

Z/2 −→ ˚
N
Z/2.

Let ϕ ∈ Bir(P3) be a birational map such that πϕ = π for some rational fibration
π : P3 P2 (a rational map with general fibres being rational curves). We want to
show that ϕ ∈ Ker ρ, which corresponds to ask that ϕ′ = ψ−1ϕψ is in the kernel of ρ̂.

Writing π′ = πψ, the element ϕ′ ∈ Bir(X) satisfies π′ϕ′ = π′. Consider the follow-
ing diagram:

Z
MMP/P2

//

σ
��

ηZ

))

Z ′

ηZ′

��

X
π′

// P2

where σ is a resolution of indeterminacy points of π′, and Z Z ′ is a Minimal
Model Program over P2. As the general fibres of Z → P2 are rational curves, the mor-
phism Z ′ → P2 is a Mori fiber space which is a conic bundle. Denote by µ : X Z ′

the induced birational map and put ϕ′′ = µϕ′µ−1. Then ϕ′′ ∈ Bir(Z ′/P2). By
Lemma 4.2(1), the map ϕ′′ can be decomposed into the product of Sarkisov links
(of conic bundles over surfaces dominating P2) of type II and thus into a product of
Sarkisov links with no Bertini links. This implies that ψ−1ϕψ is in the kernel of the
group homomorphism

Bir(X) −→ ˚
B>g

X

Z/2,

as desired.
Denoting as in the statement of the theorem by G ⊆ BirC(P3) the group generated

by all birational maps ϕ ∈ BirC(P3) such that πϕ = π for some rational fibration
π : P3 P2, we have proved that G ⊆ Ker ρ. The inclusion Aut(P3) ⊆ G follows
from the fact that Aut(P3) ' PGL4(C) is generated by elementary matrices and that
all of them preserve a rational fibration. We moreover have Aut(P3) ( G by taking
for instance the map

ϕ : [x0 : x1 : x2 : x3] 7−→
[
x0
x1

x2
: x1 : x2 : x3

]
∈ Gr Aut(P3),

which preserves the rational fibration π : [x0 : x1 : x2 : x3] [x1 : x2 : x3]. It remains
to prove that we may assume that G ( Ker ρ. To do this, we may simply change ρ
by considering an infinite subset I ( N and projecting onto ˚I Z/2. �

Lemma 4.4. — Every normal subgroup N of Bir(P2) that contains a non-trivial ele-
ment of Aut(P2) is equal to Bir(P2).

Proof. — As N ∩ Aut(P2) is a non-trivial normal subgroup of the simple group
Aut(P2) = PGL3(k) = PSL3(k), it is equal to Aut(P2). The Noether-Castelnuovo
theorem [Cas01] implies that Bir(P2) is generated by Aut(P2) and by the standard
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quadratic transformation σ : [x : y : z] [yz : xz : xy]. As σ corresponds locally to
(x, y) 7→ (x−1, y−1), conjugate to (x, y) 7→ (−x,−y) via

(x, y) 7−→
(x+ 1

x− 1
,
y + 1

y − 1

)
,

we find that σ ∈ N . This shows that N = Bir(P2). �

Lemma 4.5. — Every algebraic subgroup of Bir(P3) that is isomorphic to Ga or Gm

is conjugate, in Bir(P3), to a subgroup of Aut(P3).

Proof. — The result follows from [BFT19, 2.5.8]. The idea of the proof is classical and
as follows: one may find a birational map P3 X, where X is a smooth variety, that
conjugates the group G ' Ga or G ' Gm to a subgroup of Aut(X) (using a result
of Weil, see [Wei55] or [Kra18]), and then one uses some arguments of Rosenlicht to
find an open set U ⊂ X together with an equivariant isomorphism U ∼= G×V , where
the action on V is trivial and the action on G is the group multiplication. As V is
unirational and of dimension 2, it is rational. So we can assume that V = A2 and then
obtain a linear action on A3, that we can extend to P3. Note that such an argument
is also contained in the work of Białynicki-Birula, see the proof of [BB73, Th. 2]. �

Proof of Theorem C. — As we already noticed in the introduction, the subgroup H3 ⊆
BirC(P3) generated by all connected algebraic subgroups of BirC(P3) is a normal
subgroup of BirC(P3). It remains to prove the main part of Theorem C, i.e., to prove
that H3 6= Bir(P3). To do this, it suffices to show that H3 is generated by elements
ϕ ∈ H3 that are conjugate in Bir(P3) to elements of Aut(P3) and to apply Theorem B.
Every connected algebraic subgroup G ⊂ Bir(P3) is a linear algebraic group [BF13,
Rem. 2.21] and is thus generated by its algebraic subgroups isomorphic to Gm or
to Ga. The proof ends by applying Lemma 4.5. �
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