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EXTREMAL NORMS FOR FIBER-BUNCHED COCYCLES

by Jairo Bochi & Eduardo Garibaldi

Abstract. —In traditional Ergodic Optimization, one seeks to maximize Birkhoff averages. The
most useful tool in this area is the celebrated Mañé Lemma, in its various forms. In this paper,
we prove a non-commutative Mañé Lemma, suited to the problem of maximization of Lyapunov
exponents of linear cocycles or, more generally, vector bundle automorphisms. More precisely,
we provide conditions that ensure the existence of an extremal norm, that is, a Finsler norm
with respect to which no vector can be expanded in a single iterate by a factor bigger than
the maximal asymptotic expansion rate. These conditions are essentially irreducibility and
sufficiently strong fiber-bunching. Therefore we extend the classic concept of Barabanov norm,
which is used in the study of the joint spectral radius. We obtain several consequences, including
sufficient conditions for the existence of Lyapunov maximizing sets.

Résumé (Normes extrémales pour des cocycles à fibres resserrées). —En optimisation ergodique
traditionnelle, on cherche à maximiser des moyennes de Birkhoff. L’outil le plus utile dans ce
domaine est le célèbre lemme de Mañé, sous ses diverses formes. Dans cet article, nous montrons
un lemme de Mañé non commutatif, adapté au problème de la maximisation des exposants de
Lyapunov de cocycles linéaires ou, plus généralement, des automorphismes de fibrés vectoriels.
Plus précisément, nous fournissons des conditions qui garantissent l’existence d’une norme ex-
trémale, c’est-à-dire une norme de Finsler pour laquelle aucun vecteur ne peut être dilaté en une
seule itération par un facteur plus grand que le taux de croissance asymptotique maximal. Ces
conditions sont essentiellement l’irréductibilité et un resserrement des fibres suffisamment fort.
Nous étendons donc le concept classique de norme de Barabanov, utilisé dans l’étude du rayon
spectral joint. Nous obtenons plusieurs conséquences, notamment des conditions suffisantes
pour l’existence des ensembles maximisants de Lyapunov.
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1. Introduction

1.1. Extremal norms. — Let E be a d-dimensional real vector bundle over a compact
metric space X, with projection map π. Let T : X → X be a homeomorphism. We say
that Φ is an automorphism of E covering T if the diagram

E E

X X

Φ

π π
T

commutes and moreover the restriction of Φ to each fiber Ex := π−1(x) is a lin-
ear isomorphism Φx onto the fiber ETx. The set of such automorphisms is denoted
Aut(E, T ). The simplest situation is when the vector bundle is trivial, say E = X×Rd.
Then Φ takes the form

(1.1) Φ(x, u) = (T (x), F (x)u),

for some continuous map F : X → GL(d,R). The pair (T, F ) is called a (linear)
cocycle.

A Finsler norm(1) on E is a continuous map ‖·‖ : E→ R whose restriction to each
fiber Ex is a norm. If L is a linear map from a fiber Ex to another fiber Ey, then we
define the operator norm:

(1.2) ‖L‖y←x := sup
u∈Ex
u 6=0

‖L(u)‖
‖u‖

.

When no confusion is likely to arise we denote this simply by ‖L‖.
Fix an automorphism Φ covering T and a Finsler norm ‖·‖. Given x ∈ X, the limit

χ1(Φ, x) := lim
n→+∞

1

n
log ‖Φnx‖ = lim

n→+∞

1

n
log ‖ΦTn−1x ◦ · · · ◦ ΦTx ◦ Φx‖,

if it exists, is called the (first) Lyapunov exponent of Φ at the point x. The Lya-
punov exponent is obviously independent of the choice of the Finsler norm. If µ is a
T -invariant Borel probability measure for T , then the Lyapunov exponent χ1(Φ, x)

(1)Beware that other definitions of Finsler norms appear in the literature; here the main point is
that the norm is not necessarily induced by inner products (i.e., “Riemannian”).
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Extremal norms for fiber-bunched cocycles 949

exists for µ-almost every x ∈ X; this is a well-known consequence of Kingman’s sub-
additive ergodic theorem; see e.g. [50]. Let us denote χ1(Φ, µ) :=

∫
χ1(Φ, ·) dµ. If the

measure µ is ergodic then χ1(Φ, x) = χ1(Φ, µ) for µ-almost every x ∈ X.
In this paper we are interested in the maximal Lyapunov exponent, defined as:

(1.3) β(Φ) := sup
µ∈MT

χ1(Φ, µ),

where MT denotes the set of all T -invariant Borel probability measures. The supre-
mum is always attained by an ergodic measure – this follows from upper semicon-
tinuity of χ1(Φ, ·) with respect to the weak-star topology, and the fact that MT is
a compact convex set whose extreme points are exactly the ergodic measures. Let
us mention that the maximal Lyapunov exponent can also be characterized in more
elementary terms as follows:

(1.4) β(Φ) = linf
n→∞

1

n
sup
x∈X

log ‖Φnx‖ = sup
x∈X

lim sup
n→∞

1

n
log ‖Φnx‖.

(We use “linf” to denote a limit that is also an infimum.) These equalities follow from
general results on “subadditive ergodic optimization”: see [55, App.A].

A trivial upper bound for the maximal Lyapunov exponent, which depends on the
chosen Finsler norm, is given by:

(1.5) β(Φ) 6 log sup
x∈X
‖Φx‖.

If equality holds then ‖·‖ is called an extremal norm for Φ. More precisely, the norm
is so “tight” that there is no vector u 6= 0 in E whose expansion factor ‖Φ(u)‖/‖u‖
exceeds the maximum asymptotic expansion rate eβ(Φ). In particular, if β(Φ) 6 0

then the extremal norm is a (non-strict) Lyapunov function for Φ.
Extremal norms first appeared in the 1960 paper [64] by Rota and Strang, who

considered the particular setting of one-step cocycles (details are given below), but
apparently were not considered in our level of generality before.

The existence of an extremal norm is far from automatic,(2) and has strong conse-
quences. In this paper we construct extremal norms for a large and natural class of
vector bundle automorphisms.

1.2. Previous results. — Consider the case of a 1-dimensional vector bundle E, with
an arbitrary Finsler norm ‖·‖. Given Φ ∈ Aut(E, T ), there exists a unique continuous
function f : X → R such that

(1.6) u ∈ Ex =⇒ ‖Φ(u)‖Tx = ef(x)‖u‖x.

(2)On the other hand, one can always construct “almost-extremal” norms, i.e., norms for which the
inequality (1.5) is an approximate equality, and such norms can be taken Riemannian. Furthermore,
it is possible to find a Riemannian norm with respect to which all the singular values of the linear
maps Φx (and not only the first) are suitably controlled: see [14, Prop. 4.1].

J.É.P. — M., 2019, tome 6
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Note that in this case the maximal Lyapunov exponent β(Φ) equals:

(1.7) β(f) := sup
µ∈MT

∫
f dµ.

Any other Finsler norm |||·||| is of the form:

|||u|||x = eh(x)‖u‖x,

for some continuous function h : X → R. Then |||·||| is a extremal norm if and only if h
satisfies the “cohomological inequality”:

f + h ◦ T − h 6 β(f).

Such a function h is called a subaction for (T, f). Existence of subactions can fail
dramatically: see e.g. [24, §3] and [37, App.]. However, if the dynamics T is in some
sense hyperbolic (e.g., a shift) and the function f is regular enough (e.g., Hölder) then
subactions h do exist. Results of this type are sometimes called Mañé lemmas; see
[34, 67, 33, 22, 23] for various versions and approaches, and see [14, Prop. 2.1] for a
negative result. Important applications include [25, 32]. The study of invariant mea-
sures that attain that supremum in (1.7) is called ergodic optimization; we refer the
reader to [42, 43, 37] for much more information. For a discussion of ergodic opti-
mization in a more general context, including optimization of Lyapunov exponents,
see [14].

When dimE > 1, commutativity is lost and much less is known. The most studied
situation is the following one. Let T : X → X be the full shift on N symbols, defined
on the space X := {0, 1, . . . , N − 1}Z. Given a N -tuple (A0, . . . , AN−1) of invertible
d × d matrices, let F : X → GL(d,R) be given by F (x) = Ax0 . We say that (T, F )

is a one-step cocycle. Let Φ the associated automorphism (1.1). In that case, the
quantity eβ(Φ) is known as the joint spectral radius of the set {A0, . . . , AN−1}.(3)

It was introduced by Rota and Strang [64].
If, for example, N = 1 and A0 = ( 1 1

0 1 ), then no extremal norm exists. However, if
the set {A0, . . . , AN−1} is irreducible, in the sense that there is no common invariant
non-trivial subspace, then extremal norms |||·||| do exist, and can be taken so that |||u|||x
is independent of x ∈ X. Actually, Barabanov [10] proved that there exists a norm
|||·||| on Rd with the following stronger property:

(1.8) ∀u ∈ Rd, max
i∈{0,...,N−1}

|||Aiu||| = eβ(Φ)|||u|||.

For more information on the joint spectral radius and Barabanov norms, see [74, 44].
Further applications of extremal norms were obtained by Morris [54, 55].

Still in the setting of one-step cocycles, a modification of the concept of Bara-
banov norm was used in [18, 16] to study Lyapunov-maximizing and also Lyapunov-
minimizing measures.

(3)More generally, one could consider (possibly infinite) bounded sets of (possibly non-invertible)
square matrices.

J.É.P. — M., 2019, tome 6
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Extremal norms for certain locally constant cocycles over sofic shifts have been
studied in the papers [58, 30].

The main purpose of this paper is to establish existence of extremal norms in a far
more general setting.

1.3. The main result. — We now describe the hypotheses on the automorphism Φ

and the underlying dynamics T from which we will prove the existence of extremal
norms. We first describe them informally, leaving the precise definitions for later
sections.

First, we assume that T : X → X is a transitive hyperbolic homeomorphism of a
compact metric space X. Hyperbolicity means that T has local stable and unsta-
ble sets with uniform exponential bounds, which satisfy a local product property.
Examples include subshifts of finite type and Anosov diffeomorphisms.

Second, we assume that the vector bundle E has a Hölder structure, and that the
automorphism Φ respects this structure. In the case of trivial vector bundles, this
means that the matrix function F in formula (1.1) is Hölder continuous.

Third, we assume that the automorphism Φ is fiber-bunched. In crude terms, this
means that the non-conformality of the linear maps Φx is small when compared to
the hyperbolicity rates of T . The precise condition involves the Hölder exponent of
the automorphism, so that more regular automorphisms are allowed to be less con-
formal. In the case that T and Φ are differentiable, fiber-bunching means that the
projectivization of Φ is a partially hyperbolic diffeomorphism.

Actually, for d > 3 we need to assume a stronger form of fiber-bunching.
Our last assumption is irreducibility, meaning that Φ admits no nontrivial regular

subbundle, where regular means as regular as the automorphism itself. We remark
that this condition is satisfied for typical fiber-bunched automorphisms: it holds on
an open and dense subset of infinite codimension.

The main result of this paper is that under the conditions above, extremal norms
exist. See Corollary 5.1 for a precise statement.

In the case where the base dynamics T is a subshift of finite type, we are able to
improve our main result and obtain an extremal norm with a further property akin
to the Barabanov property: see Section 5.3.

Classical Barabanov norms are usually non-Riemannian (that is, they do not come
from inner products), and it is easy to produce examples.(4) On the other hand, in our
setting, there is more flexibility as the norm is allowed to depend on the basepoint.
So one could wonder if the Finsler extremal norms in our main result could be taken
Riemannian. Unfortunately, that is not the case: we construct an explicit example in
Appendix B.2.

(4)The pair of matrices (B.1) is one such example.

J.É.P. — M., 2019, tome 6



952 J. Bochi & E. Garibaldi

1.4. Consequences. — As a consequence of our result on the existence of extremal
norms, we can show that the maximal Lyapunov exponent is a locally Lipschitz func-
tion on the space of strongly bunched irreducible automorphisms (see Proposition 5.4
for a more precise statement), thus extending a result of Wirth [74].

We are also able to obtain several general properties of strongly bunched automor-
phisms Φ (not necessarily irreducible):

– Their growth obeys certain uniform bounds: see Theorem 4.6.
– They obey the subordination principle: if µ and ν are invariant probability mea-

sures such that ν is Lyapunov maximizing in the sense that χ1(Φ, ν) = β(Φ), and
suppµ ⊆ supp ν, then µ is Lyapunov maximizing as well: see Theorem 7.1. This prop-
erty is far from being tautological, even in the commutative setting; in fact it was
introduced in this setting by Bousch [22].

– The maximal Lyapunov exponent β(Φ) can be approximated by Lyapunov expo-
nents of measures supported on periodic orbits, and moreover the quality of this
approximation is superpolynomial with respect to the period: see Theorem 7.2. This
extends a result of Morris [54], who gave a quantitative version of the celebrated
theorem of Berger–Wang [11].

We also introduceMather sets in our context; these sets are the habitat of Lyapunov
maximizing measures. We prove an important structural result on the existence of
dominated splittings on the Mather sets, namely Theorem 6.5, which is an essential
ingredient in the proof of the aforementioned Theorem 7.2.

1.5. Organization of the paper. — In Section 2 we introduce the setting for our
results, providing the definitions and properties of fiber-bunched automorphisms and
related concepts.

In Section 3 we study irreducibility and related concepts.
In Section 4 we provide sufficient conditions for relative product boundedness, an

intermediate property which is required for the existence of extremal norms.
The construction of extremal norms is given in Section 5, together with the con-

struction of Barabanov-like norms for shifts and an application to the regularity
of β(·).

In Section 6 we introduce Mather sets in a very general setting and, under the
assumption of existence of an extremal norm, establish fine properties about them.

In Section 7 we collect several applications of our results.
Appendix A contains the proofs of several subsidiary results, therefore making the

paper self-contained.
In Appendix B we exhibit some “pathological” examples, including an example

that fits in the setting of our main results, but where no Riemannian extremal norm
exists.

Acknowledgements. — We are very much indebted to Rafael Potrie for numerous
illuminating and influential conversations. We also thank Clark Butler and Kiho Park
for interesting discussions, and the referee for corrections and suggestions.
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2. The fiber-bunched setting

In this section, we fix the basic setting for our theorems. Namely, we define and
state the basic properties of Hölder vector bundles, intrinsically hyperbolic homeo-
morphisms, fiber-bunching, holonomies, and irreducibility. Our approach is influenced
by [21, 72, 46], and we tried to make it as general as possible. We also obtain some
new regularity results that are essential for the main theorems of the paper. However,
to make the presentation more fluid, we postpone most proofs to Appendix A.

2.1. The Hölder exponent. — From now on, assume that (X,d) is a compact metric
space. We also fix θ > 0 such that the algebra of θ-Hölder functions on X is normal,
that is, given any two disjoint compact subsets of X, there exists a θ-Hölder function
that takes values in the interval [0, 1] and equals 0 on one set and 1 on the other. This
assumption is automatically satisfied if θ 6 1. IfX is a Cantor set, then the assumption
holds for any θ > 0. Normality implies the existence of θ-Hölder partitions of unity:
see e.g. [48, p. 221].

2.2. Hölder vector bundles. — Let E be a d-dimensional vector bundle over X.
We recall the definition and fix the terminology. E is a topological space endowed
with a continuous map π : E→ X (called the projection), a cover of X by open sets Ui
(called coordinate neighborhoods), and a family of homeomorphisms (called coordinate
maps)

ψi : Ui × Rd −→ π−1(Ui) such that π(ψi(x, u)) = x for all (x, u) ∈ Ui × Rd,

which is required to have the following compatibility property: whenever x ∈ Ui ∩Uj ,
the map

gj←i(x) :=
[
ψj(x, ·)

]−1 ◦ ψi(x, ·) : Rd −→ Rd

is linear. Therefore we obtain a family of continuous maps:

(2.1) gj←i : Ui ∩ Uj −→ GL(d,R),

which are called coordinate transformations. Moreover, each fiber Ex := π−1(x) has a
unique structure of d-dimensional vector space such that the maps

(2.2) hi(x) := ψi(x, ·) : Rd −→ Ex
become isomorphisms. Since X is assumed to be compact, we will from now on assume
that the cover {Ui} is finite.

We say that E is a θ-Hölder vector bundle if the coordinate transformations (2.1)
are locally θ-Hölder. By compactness, we can reduce the coordinate neighborhoods
so that the coordinate transformations become (uniformly) θ-Hölder.

As mentioned in Section 1.1, a Finsler norm is a continuous function ‖·‖ on E that
restricts to a norm ‖·‖x on each fiber Ex. A Finsler norm ‖·‖ is called Riemannian if
each ‖·‖x is induced by an inner product 〈·, ·〉x. A Finsler norm ‖·‖ is called θ-Hölder if
for every u ∈ Rd and every coordinate neighborhood, the function x ∈ Ui 7→ ‖hi(x)u‖
is θ-Hölder. Every θ-Hölder vector bundle E admits a θ-Hölder Riemannian norm; the
proof is straightforward using a θ-Hölder partition of unity.

J.É.P. — M., 2019, tome 6
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We will also need a way of “transporting” vectors from one fiber to another:

Proposition 2.1 (Transport maps). — Let E be a θ-Hölder vector bundle. There exists
a family of linear maps Iy←x : Ex → Ey with the following properties:

(a) For every point x ∈ X, the linear map Ix←x equals the identity.
(b) For every pair of indices i, j, the matrix-valued map

(x, y) ∈ Ui × Uj 7−→ [hj(y)]−1 ◦ Iy←x ◦ hi(x)

is θ-Hölder.

See Appendix A.1 for the proof of Proposition 2.1. The next propositions, also
proved in Appendix A.1, give additional quantitative properties of the transport maps
that will be useful in subsequent calculations. Recall that we agree to denote a norm
and its induced operator norm by the same symbol, as in (1.2).

Proposition 2.2. — Let E be a θ-Hölder vector bundle, endowed with a Finsler norm.
Let {Iy←x} be the family of transport maps provided by Proposition 2.1. Then there
is C > 0 such that for all points x, y, z ∈ X,

‖Iy←z ◦ Iz←x − Iy←x‖ 6 C max{d(x, z)θ,d(y, z)θ}.

Proposition 2.3. — Let E be a θ-Hölder vector bundle, endowed with a Finsler
norm ‖·‖. Let {Iy←x} be the family of transport maps provided by Proposition 2.1.
Then the Finsler norm ‖·‖ is θ-Hölder if and only if there exists C > 0 such that for
all points x, y ∈ X, ∣∣‖Iy←x‖ − 1

∣∣ 6 Cd(x, y)θ.

2.3. θ-Hölder bundle automorphisms. — Assume that E is a θ-Hölder vector bundle
over the compact metric space X. Fix a θ-Hölder Riemannian norm on E.

A map Φ: E → E is called an endomorphism of E if there exists a continuous
map T : X → X such that π ◦ Φ = T ◦ π (we say that Φ covers T ) and for each
x ∈ X, the restriction of Φ to the fiber Ex is a linear map Φx to the fiber ETx.
If T is a homeomorphism and each Φx is a isomorphism then we say that Φ is an
automorphism.

We say that the endomorphism Φ covering T is θ-Hölder if T is Lipschitz and the
maps

x ∈ Ui ∩ T−1(Uj) 7−→ [hj(Tx)]−1 ◦ Φx ◦ hi(x) ∈ GL(d,R)

are θ-Hölder.(5) As an immediate consequence, the function x ∈ X 7→ ‖Φx‖ is
θ-Hölder.

We can characterize θ-Hölder automorphisms in terms of the transport maps from
Proposition 2.1:

(5)This is similar to the definition of θ-bounded vertical shear in [61].
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Proposition 2.4. — An endomorphism Φ: E → E covering a Lipschitz map T is
θ-Hölder if and only if there exists K > 0 such that for all x, y ∈ X, we have∥∥ITy←Tx ◦ Φx − Φy ◦ Iy←x

∥∥ 6 Kd(x, y)θ.

A proof is provided in Appendix A.1. Next, we want to topologize the set of
θ-Hölder automorphisms.

Let Endθ(E, T ) denote the vector space of θ-Hölder endomorphisms Φ: E → E
covering T . Define the C0 norm:

(2.3) ‖Φ‖0 := sup
x∈X
‖Φx‖.

The stronger θ-Hölder norm makes Endθ(E, T ) a Banach space:

(2.4) ‖Φ‖θ := max

{
‖Φ‖0, sup

x 6=y

‖ITy←Tx ◦ Φx − Φy ◦ Iy←x‖
d(x, y)θ

}
.

The set Autθ(E, T ) of θ-Hölder automorphisms is a C0-open subset of Endθ(E, T ).
Given K > 1, let:

(2.5) AutθK(E, T ) :=
{

Φ ∈ Autθ(E, T ) ; ‖Φ‖θ 6 K, ‖Φ−1‖θ 6 K
}
.

2.4. Hyperbolic homeomorphisms. — The concept of hyperbolicity in differentiable
dynamical systems was introduced by Anosov [3] and Smale [70]. Even without re-
course to a differentiable structure, it is possible to define hyperbolicity (and to prove
interesting theorems); this has been done in various ways: [26, 65, 2, 1, 4]. In this
paper, we will use a minor variation of the definition of hyperbolic homeomorphism
given by Sakai [66] (see Remark 2.5 below).

Recall that X is a compact metric space. Let T : X → X be a homeomorphism.
Given x ∈ X and ε > 0, we define the following sets:

– local unstable set W u
ε (x) :=

{
y ∈ X ; d(T−ny, T−nx) 6 ε for all n > 0

}
;

– local stable set W s
ε (x) :=

{
y ∈ X ; d(Tny, Tnx) 6 ε for all n > 0

}
.

We say that T is a hyperbolic homeomorphism if the following axioms hold:
(a) T is bi-Lipschitz, i.e., both T and T−1 are Lipschitz;
(b) there exist a constant ε0 > 0 and a pair of continuous positive functions λu, λs

(called the hyperbolicity exponents) such that:

x ∈ X, x′, x′′ ∈W u
ε0(x) =⇒ d(T−1x′, T−1x′′) 6 e−λu(x) d(x′, x′′),(2.6)

y ∈ X, y′, y′′ ∈W s
ε0(y) =⇒ d(Ty′, Ty′′) 6 e−λs(y) d(y′, y′′);(2.7)

(c) there exists a constant ε1 ∈ (0, ε0) such that for any pair of points x, y ∈ X with
d(x, y) 6 2ε1, the intersection W u

ε0(x) ∩W s
ε0(y) contains exactly one point, denoted

by [x, y] and called the bracket of x and y, which depends continuously on x and y;
(d) there exists a constant C > 0 such that:

(2.8) x, y ∈ X, d(x, y) 6 2ε1 =⇒ max
{

d([x, y], x),d([x, y], y)
}
6 Cd(x, y).
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Remark 2.5. — Sakai [66] uses the terminology L -hyperbolic homeomorphism, while
Ruelle [65] uses Smale spaces. Modulo a change of metric, both definitions are equiv-
alent to ours, and also to expansivity plus the shadowing property: see [66] and ref-
erences cited there.

Let us also define other sets associated with T :

– unstable set W u(x) := {y ∈ X ; d(T−ny, T−nx)→ 0 as n→ +∞};
– stable set W s(x) := {y ∈ X ; d(Tny, Tnx)→ 0 as n→ +∞};

If T is a hyperbolic homeomorphism then, as an immediate consequence of part (b)
of the definition, for every ε ∈ (0, ε0] we have the following set relations:

(2.9) W u(x) =
⋃
n>0

Tn(W u
ε (T−nx)), W s(x) =

⋃
n>0

T−n(W s
ε (Tnx)).

The transverse regularity of the unstable and stable sets is a classical subject, and
fine results about hyperbolicity rely on it: see [47, Chap. 19]. Nevertheless, we could
not find a reference for the following property for hyperbolic homeomorphisms:

Proposition 2.6. — Let T be a hyperbolic homeomorphism. There exist constants
0 < κs 6 1 and C > 0 such that if x, x′, y, y′ ∈ X satisfy (see Figure 2.1):

(2.10) x′ ∈W u
ε0(x), y′ ∈W u

ε0(y), y ∈W s
ε0(x), y′ ∈W u

ε0(x′),

then:

d(y, y′) 6 C d(x, x′)κs .

W u

W u

W s W s

x x′

y y′

Figure 2.1. Four points in the configuration (2.10).

The proof, which includes an estimate for the constant κs, is given in Appendix A.
If T is the restriction of a C2 diffeomorphism to a basic hyperbolic basic set then a
better estimate for κs is given in [68]. Even better regularity estimates can be obtained
under various types of extra assumptions: see [59] and references therein.
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2.5. Fiber-bunched automorphisms and their holonomies. — We now discuss the
notion of fiber-bunching. It was introduced in a setting very similar to ours by Bonatti,
Gómez-Mont, and Viana [21], though related concepts can be traced back to Brin and
Pesin [29] and Hirsch, Pugh, and Shub [41]. Earlier papers [21, 19] use a different ter-
minology (“dominated cocycles”), but subsequently the term “fiber-bunched cocycles”
prevailed: [7, 8, 46].

If L is a linear isomorphism between inner product spaces, we define its bolicity(6)

as

(2.11) bol(L) := ‖L‖ ‖L−1‖,

which measures the lack of conformality of L (see Proposition 3.1).
Let E be a θ-Hölder d-dimensional vector bundle over X. Assume that T is a

hyperbolic homeomorphism, and that Φ is a θ-Hölder automorphism of E covering T .
We say that E is fiber-bunched if there exists a Riemannian norm (sometimes called
an adapted norm) such that for all x ∈ X,

(2.12) log bol(Φx) < min {θλu(x), θλs(x)} ,

where λu, λs are the hyperbolicity rates of T . By perturbing the adapted norm if
necessary, we can assume it is also θ-Hölder.

Consider the subset of fiber-bunched automorphisms in the space Autθ(E, T ) of
θ-Hölder automorphisms; then this set is open with respect to the C0 norm (2.3), and
therefore also open with respect to the stronger θ-Hölder norm (2.4).

Sometimes we need stronger bunching: we say that it is (ηu, ηs)-bunched for certain
constants ηu, ηs ∈ (0, θ] if, for some adapted norm, and all x ∈ X,

(2.13) log bol(Φx) < min {ηuλu(x), ηsλs(x)} .

Remark 2.7. — We have used the pointwise definition of fiber-bunching; the more
stringent notion of absolute fiber-bunching requires the same condition with constant
hyperbolicity exponents λu, λs. Furthermore, our definition of fiber-bunching is im-
mediate in the sense that it manifests itself in a single iterate; one can also define a
notion of eventual fiber-bunching.

The most basic and fruitful consequence of fiber-bunching is the existence of certain
unstable and stable holonomy maps. Like the transport maps from Proposition 2.1,
unstable and stable holonomy maps provide a way of linearly transporting vectors
from a fiber Ex to another fiber Ey (as long as the points x, y belong to the same
unstable or stable set), but with several extra properties:

Proposition 2.8 (Holonomy maps). — Let Φ ∈ AutθK(E, T ) be a fiber-bunched auto-
morphism. For each ? ∈ {u, s}, there exist a unique family of linear maps

H?
y←x : Ex −→ Ey,

(6)The term and the notation come from [62, 60]. In numerical analysis, the bolicity is called
condition number.
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defined whenever y ∈W ?(x), such that the following properties hold:
(a) H?

x←x = id.
(b) H?

z←y ◦H?
y←x = H?

z←x.
(c) Φy ◦H?

y←x = H?
Ty←Tx ◦ Φx.

(d) There exists a constant C > 0 such that:

(2.14) y ∈W ?
ε0(x) =⇒ ‖H?

y←x − Iy←x‖ 6 Cd(x, y)θ.

(e) The following map is continuous:

(2.15)
{

(u, y) ∈ E×X ; y ∈W ?
ε0(π(u))

}
−→ E

(u, y) 7−→ H?
y←π(u)(u)

Furthermore, the constant C in (2.14) works for all automorphisms in a C0-neighbor-
hood of Φ in AutθK(E, T ), and the the right-hand side in (2.15) depends continuously
on the automorphism in that neighborhood.

The maps Hu and Hs are called unstable and stable holonomies, respectively. Prop-
erties (a) and (b) are called groupoid properties, and property (c) is called equivariance.

The stable holonomies are actually defined by the following formula:

Hs
y←x := lim

n→+∞
(Φny )−1 ◦ ITny←Tnx ◦ Φnx ,

and unstable holonomies are defined likewise, taking n → −∞ instead. The proof of
Proposition 2.8 consists essentially in proving uniform convergence in these formulas,
and it turns out that fiber-bunching is the precise condition for this to work. Except
for minor adjustments, the argument is the same as in [21, §1.4], [46, §4.1], but for
completeness and convenience of the reader we present the proof in Appendix A.2.

Remark 2.9. — Fiber-bunched automorphisms satisfy a non-commutative version of
Walters’ condition [22], namely:

∀ ε > 0 ∃ δ > 0 such that sup
i∈[[0,n]]

d(T ix, T iy) < δ =⇒
∥∥Φny◦Iy←x−ITny←Tnx◦Φnx

∥∥ < ε.

Indeed, consider z := [x, y] and note the following identity:

Φny = Hs
Tnx←Tnz ◦Hu

Tnz←Tnx ◦ Φnx ◦Hu
x←z ◦Hs

z←y.

Then, using the continuity of the bracket and the regularity of the holonomies, it is
straightforward to obtain the non-commutative Walters’ condition.

We use the holonomies to define certain subsets of E. For ε > 0, u ∈ E, and
x = π(u), let:

Wu
ε(u) :=

{
Hu
y←x(u) ; y ∈W u

ε (x)
}
,

Wu(u) :=
{
Hu
y←x(u) ; y ∈W u(x)

}
=
⋃
n>0

Φn(Wu
ε0(Φ−n(u))),

Analogously we define Ws
ε(u) and Ws(u). The sets Wu (resp. Ws) form a Φ-invariant

partition of E and project by π onto the sets W u (resp. W s).
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Part (d) of Proposition 2.8 basically says that the “leaves” Wu, Ws are Hölder-
continuous. We will need the transverse regularity of the holonomies:

Proposition 2.10. — Let Φ ∈ AutθK(E, T ) be a fiber-bunched automorphism. There
exist θs ∈ (0, θκs] and C > 0 such that if x, x′, y, y′ ∈ X satisfy conditions (2.10) as
in Figure 2.1 then:∥∥Hu

y′←y ◦Hs
y←x −Hs

y′←x′ ◦Hu
x′←x

∥∥ 6 Cd(x, x′)θs .

Furthermore, the same constants θs and C work for every automorphism in a C0-
neighborhood of Φ in AutθK(E, T ).

We were not able to find such a statement in the literature, so we provide a proof
in Appendix A.3.

3. Invariant subbundles

3.1. Subbundles and rigidity. — Let E be an inner product space of dimension d,
and let p ∈ [[1, d]]. We denote by Gp(E) the p-th Grassmannian of E, i.e., the set of all
p-dimensional subspaces of E. There are many metrics on this set that are “natural”
in the sense that they are preserved by the action of orthogonal linear maps: see [63].
As shown in Appendix A.4, we can find one such metric d with the useful properties
stated in the following propositions:

Proposition 3.1. — If L : E → F is a linear isomorphism between d-dimensional
inner product spaces and p < d, then the induced map Gp(E) → Gp(F ) is Lipschitz
with a constant equal to the bolicity of L (2.11).

Proposition 3.2. — If L : E → E is a linear isomorphism of a inner product space
such that ‖L− id‖ 6 δ then the induced map on Gp(E) is O(δ)-close to the identity,
provided δ is sufficiently small.

Proposition 3.3. — The map that associates a p-tuple of linearly independent vectors
to its span is locally Lipschitz.

In particular, the metric d induces the usual topology on the Grassmannian.
Now consider a θ-Hölder d-dimensional vector bundle E over X. For each p ∈

[[1, d− 1]], let Gp(E) denote the fiber bundle whose fiber over x ∈ X is Gp(Ex). As just
explained, the fixed Riemannian norm on E induces a distance on each fiber of this
bundle.

Let F be a continuous p-dimensional subbundle of E. We say that F is η-Hölder,
for some η ∈ (0, θ], if there exists C > 0 such that for all sufficiently close points x,
y ∈ X we have:

(3.1) d
(
Fy, Iy←x(Fx)

)
6 C d(x, y)η,

where the d in the left hand side is the distance in Gp(Ey). (Recall that Iy←x is an
isomorphism when x and y are close enough.)
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Let Φ be a fiber-bunched automorphism of E. We say that a subbundle F ⊆ E is
Φ-invariant if for all x ∈ X, we have

Φx(Fx) = FTx.

We say that F is Hu-invariant (or Wu-saturated) if for all x ∈ X and all y ∈W u(x),
we have

Hu
y←x(Fx) = Fy.

We say that F is η-Hölder along unstable sets, for some η ∈ (0, θ], if there exists C > 0

and ε > 0 such that the estimate (3.1) holds whenever y ∈W u
ε (x). Equivalently, there

exists C > 0 such that for all x ∈ X and all y ∈W u
ε0(x), we have:

(3.2) d
(
Fy, Hu

y←x(Fx)
)
6 C d(x, y)η;

to see the equivalence, use θ-Hölderness of the holonomy (2.14) and Proposition 3.2.
Hs-invariance and η-Hölderness along stable sets are defined analogously.

Proposition 3.4 (Rigidity). — Let η ∈ (0, θ]. Suppose that Φ is (η, θ)-bunched. Let
F ⊆ E be a continuous Φ-invariant subbundle. If F is η-Hölder along unstable sets
then F is Hu-invariant, and in particular F is actually θ-Hölder along unstable sets.

Proof. — Since Φ is (η, θ)-bunched, there is a constant r ∈ (0, 1) such that bol(Φx) <

reηλu(x) for every x ∈ X. Now fix x ∈ X and y ∈ W u
ε0(x). For each n > 0,

let xn := T−nx and yn := T−ny. Then:

d
(
Fy, Hu

y←x(Fx)
)

= d
(
Φnyn(Fyn), Φnyn(Hu

yn←xn(Fxn)
)

(by Φ-invariance of F)
6 bol(Φnyn) d

(
Fyn , Hu

yn←xn(Fxn)
)

(by Proposition 3.1)
6 C bol(Φnyn) d(xn, yn)η (by η-Hölderness of F).

On the one hand, by submultiplicativity of bolicity, bol(Φnyn) 6 bol(Φy1
) · · · bol(Φyn).

On the other hand, using (2.6) recursively,

d(xn, yn) = d(T−1xn−1, T
−1yn−1) 6 e−λu(yn−1)d(xn−1, yn−1) 6 · · ·

6 e−λu(y0)−···−λu(yn−1)d(x, y).

Combining these estimates, we have:

d
(
Fy, Hu

y←x(Fx)
)
6 C

[ n∏
j=1

bol(Φyj )

][n−1∏
j=0

e−ηλu(yj)

]
d(x, y)η

6 CB2rn−2 d(x, y)η,

where B > 1 is the maximal bolicity. As n → ∞, the right hand side tends to zero.
So Fy = Hu

y←x(Fx), proving that the subbundle F is Hu-invariant. Since (3.2) holds
with C = 0, the subbundle F is θ-Hölder along unstable sets. �

Corollary 3.5. — Let Φ be a fiber-bunched automorphism of E. Let F ⊆ E be a
Φ-invariant continuous subbundle. Then the following conditions are equivalent:

(a) F is a θ-Hölder subbundle;
(b) F is both Hu- and Hs-invariant.
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Proof. — If condition (a) holds then F is θ-Hölder along unstable sets, and so Propo-
sition 3.4 (with η = θ) guarantees that F is Hu-invariant. By symmetry, F is also
Hs-invariant. That is, condition (b) holds. Conversely, assume that condition (b)
holds, and consider a pair x, y of nearby points. Then the bracket z := [x, y] is well-
defined, and by property (2.8), it is O(d(x, y))-close to either x or y. By hypothesis,
Fy = Hs

y←z ◦ Hu
z←x(Fx). Using Proposition 2.2 and θ-Hölderness of the holonomies

(2.14), we see that ‖Iy←x − Hs
y←z ◦ Hu

z←x‖ = O(d(x, y)θ). It follows from Proposi-
tion 3.2 that d(Fy, Iy←x(Fx)) = O(d(x, y)θ), i.e., condition (a) holds. �

3.2. Irreducibility. — The trivial subbundles of E are the zero section and E itself.
A fiber-bunched automorphism Φ is called reducible if it has a nontrivial Φ-invariant
subbundle F satisfying either of the equivalent conditions of Corollary 3.5, and irre-
ducible otherwise.

While the existence of continuous Φ-invariant subbundles is common, the existence
of θ-Hölder ones is not. For example, if the automorphism admits a dominated split-
ting,(7) then the subbundles that form the splitting are Φ-invariant, continuous, and
actually Hölder, but usually with smaller Hölder exponent. Actually, the dominating
bundle is Hu-invariant and so θ-Hölder along unstable sets, but usually not so well
behaved along stable sets.

A precise formulation of the fact that reducibility is uncommon among fiber-
bunched automorphisms is provided by Proposition A.6.

3.3. The strong bunching hypothesis. — If d = 2 then ordinary fiber-bunching suf-
fices for our main results, while if d > 3 we need Φ to be not only fiber-bunched, but
(η0, θ)-bunched, where η0 is given by the following:

Lemma 3.6. — There exists η0 ∈ (0, θ] that depends only on the hyperbolic homeo-
morphism T (or, more precisely, on its hyperbolicity exponents) and on the Hölder
exponent θ such that if Φ is a (η0, θ)-bunched automorphism then the associated reg-
ularity exponent θs from Proposition 2.10 satisfies:

θs > η0.

For the proof (and an explicit value for η0), see Appendix A.3. Let us say that a
θ-Hölder automorphism Φ: E→ E covering T is strongly bunched if:

– the vector bundle E has fibers of dimension d 6 2, and Φ is fiber-bunched; or
– Φ is a (η0, θ)-bunched automorphism.

The precise point of our proofs where we need strong bunching is for the validity
of Theorem 3.7, explained in the next section.

(7)See Section 6.3 for the definition and properties of dominated splittings.
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3.4. Spannability. — The following concept of spannability will play an important
role in this paper; it is vaguely similar to the concept of accessibility in partially
hyperbolic dynamics (see e.g. [57, §8.1]).

Let us say that a fiber-bunched automorphism Φ is spannable if for all x, y ∈ X,
and all nonzero u ∈ Ex, there exist:

– points x1, . . . , xd ∈W u(x);
– integers n1, . . . , nd > 0 such that the points yi := Tnixi all belong to W s(y);

with the property that the vectors v1, . . . , vd ∈ Ey defined by

(3.3) vi := Hs
y←yi ◦ Φnixi ◦H

u
xi←x(u)

form a basis for Ey.
It is clear that every spannable automorphism is irreducible. The following impor-

tant result provides a converse under extra assumptions:

Theorem 3.7 (Sufficient conditions for spannability). — Let T be a transitive hyper-
bolic homeomorphism. Let Φ be a strongly bunched irreducible automorphism cover-
ing T . Then Φ is spannable.

In particular (see Proposition A.6), typical strongly bunched automorphisms are
spannable (provided T is transitive).

It would be interesting to know whether or not strong bunching is really necessary
for the validity of Theorem 3.7; see Remark 3.12 below for a possible approach to this
question.

In order to prove the theorem, we need the following easy property of the unstable
and stable sets for the base dynamics:

Lemma 3.8. — For every x ∈ X, the sets
⋃
n>0W

u(Tnx) and
⋃
n>0W

s(T−nx) are
dense in X.

Proof. — Let D be the set of points whose forward orbits are dense. Since T is
transitive, D is itself dense. Moreover, D is W s-saturated (i.e., it is a union of sta-
ble sets). By definition of hyperbolic homeomorphism, local stable and unstable sets
whose basepoints are sufficiently close always intersect. It follows that D intersects
all unstable sets. This implies that for every x ∈ X, the set

⋃
n>0W

u(Tnx) is dense.
Applying this to T−1 we obtain that

⋃
n>0W

s(T−nx) is also dense. �

Proof of Theorem 3.7. — Fix a point x ∈ X and a nonzero vector u ∈ Ex. Let Λ :=⋃
n>0W

u(Tnx), which by Lemma 3.8 is a dense subset of X. Define the following
subsets of the vector bundle E:

U :=
⋃
n>0

Wu(Φn(u)), S :=
⋃
v∈U

Ws(v), F := span(S),

where the latter equation means that for each y ∈ X, the fiber Fy := Ey ∩ F is the
vector space spanned by Sy := Ey ∩S. In order to prove the theorem, we need to show
that F = E. Clearly,
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– U projects onto Λ, and is both forward-Φ-invariant (i.e., Φ(U) ⊆ U) and Wu-sat-
urated (i.e., it is a union of Wu sets);

– S projects ontoX, and is both forward-Φ-invariant andWs-saturated; therefore F
has the same properties.

We claim that the function y ∈ X 7→ dimFy has the following properties:
(a) it is non-decreasing along orbits of T (i.e., dimFTy > dimFy);
(b) it is constant along W s sets;
(c) it is lower semicontinuous.

Indeed, properties (a) and (b) follow from the facts that F is forward-invariant and
Ws-saturated, respectively. In order to check property (c), fix an arbitrary point
y ∈ X and let p := dimFy. Then there exist points x1, . . . , xp ∈ W u(x) and integers
n1, . . . , np > 0 such that the points yi := Tnixi all belong toW s(y), and the vectors vi
given by formula (3.3) span Fy. If y′ is sufficiently close to y, then for each i we can find
y′i ∈ W u(yi) ∩W s(y′) such that the holonomies Hu

y′i←yi
and Hs

y′←y′i
are respectively

close to the identity and Hs
y←yi . Then each vector v′i := Hs

y′←y′i
◦Hu

y′i←yi
◦Hs

yi←y(vi)

is close to vi, and so the span of {v′1, . . . , v′p} has dimension p. Since each v′i belongs
to Fy′ , we conclude that dimFy′ > p, therefore proving the semicontinuity prop-
erty (c).

Let C be the set of points y ∈ X where dimFy attains its minimum. By the
properties (a), (b), and (c) that we have just proved, the set C is nonempty, backwards-
invariant (i.e., T−1(C) ⊆ C), W s-saturated, and closed. It follows from Lemma 3.8
that C = X. In other words, F has constant dimension, say p. So F is not only
forward-Φ-invariant, but Φ-invariant.

Let θs be given by Proposition 2.10. We claim that F is θs-Hölder along unstable
sets, in the sense defined in Section 3.1. By compactness, it suffices to prove this
claim on a neighborhood of each point y ∈ X. Take points x1, . . . , xp ∈ W u(x) and
integers n1, . . . , np > 0 such that the points yi := Tnixi all belong to W s(y), and the
vectors vi given by formula (3.3) span Fy. Take k > 0 large enough so that the points
T kyi all belong to W s

ε1(T ky), where ε1 is constant from condition (c) in the definition
of hyperbolic homeomorphism. If we prove that F is θs-Hölder along unstable sets on
a neighborhood of T ky then, by invariance, it will follow that F is θs-Hölder along
unstable sets on a neighborhood of y. So let us assume that k = 0, for simplicity
of notation. Let y′ ∈ W u

ε1(y) be close to y. Then the brackets y′i := [yi, y
′] are well-

defined; see Figure 3.1. We need to compare the following two subspaces of Ey′ :

Fy′ = span
{
Hs
y′←y′i

◦Hu
y′i←yi

◦Hs
yi←y︸ ︷︷ ︸

1

(vi)
}p
i=1

,

Hu
y′←y(Fy) = span

{
Hs
y′←y′i

◦Hs
y′i←y′

◦Hu
y′←y︸ ︷︷ ︸

2

(vi)
}p
i=1

.

By Proposition 2.10, ‖ 1 − 2 ‖ = O(d(y, y′)θs); moreover ‖Hs
y′←y′i

‖ = O(1). So, by
Proposition 3.3, we conclude that d

(
Fy′ , Hu

y′←y(Fy)
)

= O(d(y, y′)θs). This concludes
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the proof that F is θs-Hölder along unstable sets. A fortiori, F is continuous (since it
is invariant under stable holonomies).

W u
x1 x x2

Tn1

Tn2

W u

W s

y y′

y2 y′2

y1 y′1

Figure 3.1. Proof of Theorem 3.7

The proof ends differently according to the dimension of E. If d = 1 then F = E
and we are done.

Next, consider the case d = 2. Assume for a contradiction that F 6= E, i.e., that F
has 1-dimensional fibers. For each y ∈ Λ, the set Uy contains a nonzero vector and
therefore spans Fy. Since Λ is dense in X and F is continuous, we conclude that F
is the closure of span(U). In particular, F is Wu-saturated. Recalling that F is also
Ws-saturated, we contradict irreducibility. This concludes the proof in the case d = 2.

Now consider the case d > 3. Then, by definition of strong bunching, Φ is (η0, θ)-
bunched. Recall from Lemma 3.6 that η0 6 θs. So Proposition 3.4 (rigidity) applies
and the regularity of the subbundle is upgraded: it is actually θ-Hölder along unstable
sets. Irreducibility implies that F = E, thus concluding the proof. �

We will use an apparently stronger, but equivalent form of spannability. Recall
that ε1 > 0 is one of the constants that appear in the definition of hyperbolic home-
omorphism (Section 2.4).

Proposition 3.9 (Uniform spannability). — Suppose Φ is a spannable automorphism.
Then there exist constants n > 0 and C0 > 0 with the following properties: For all
points x, y ∈ X, and all unit vectors u ∈ Ex, there exist:

– points x1, . . . , xd ∈W u
ε1(x);

– integers n1, . . . , nd ∈ [[0, n]] such that the points yi := Tnixi all belong to W s
ε1(y);

with the property that the vectors v1, . . . , vd ∈ Ey defined by (3.3) form a basis for Ey;
moreover, if L : Ey → Ey is a linear map that sends this basis to an orthonormal basis
then ‖L‖ < C0.

Proof. — If u ∈ E is a nonzero vector, let [u] denote its class in the projective bundle
Ê := G1(E). Let Φ be a spannable automorphism. Given ([u], y) ∈ Ê × X, consider
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x = π(u) and let xi, ni, yi, and vi, where i ∈ [[1, d]], be as in the definition of spannabil-
ity. Note that if ([ũ], ỹ) belongs to a sufficiently small neighborhood of ([u], y) then
we can find the corresponding data (x̃i, ñi, ỹi, [ṽi]) close to (xi, ni, yi, [vi]) (so ñi = ni)
and actually depending continuously on ([ũ], ỹ). Since the space Ê × X is compact,
we can cover it by finitely many such neighborhoods Uj . We can also assume that the
sets Uj are compact.

Fix any set Uj and an element ([u], y) ∈ Uj . Let x = π(u) and let (xi, ni, yi, [vi]),
i ∈ [[1, d]] be the corresponding spannability data. For each k > 0, the pair

([Φ−k(u)], T ky) ∈ Ê×X

has (T−kxi, ni + 2k, T kyi, [Φ
k(vi)]), i ∈ [[1, d]], as valid spannability data. By (2.9),

if k is large enough then

T−kxi ∈W u
ε1(T−kx) and T kyi ∈W s

ε1(T ky) for each i ∈ [[1, d]].

By continuity of the spannability data on the compact set Uj , this conclusion
holds provided k is bigger than some kj . There are finitely many indices j

to consider, so let us fix a definitive k bigger than all kj ’s. The compact sets
Vj := {([Φ−k(u)], T ky) ; ([u], y) ∈ Uj} also cover the space Ê × X. They provide
the spannability data with the required uniformity properties. This proves the
proposition. �

Corollary 3.10. — Given a spannable automorphism Φ ∈ AutθK(E, T ), we can choose
n > 0 and C0 > 0 such that the the statement of Proposition 3.9 holds for all auto-
morphisms in a C0-neighborhood of Φ in the space AutθK(E, T ).

In particular, spannable automorphisms form a C0-open subset of AutθK(E, T ).

Proof. — By part (e) of Proposition 2.8, holonomies depend continuously on the
fiber-bunched automorphism Φ, with respect to the C0-norm. So, in the situation of
Proposition 3.9, if we make a C0-perturbation of Φ (among θ-Hölder automorphisms)
then the vectors v1, . . . , vd change little and therefore stay linearly independent. �

Remark 3.11. — Let us say that a automorphism is topologically irreducible if it ad-
mits no continuous proper invariant subbundle. As the proof of Theorem 3.7 shows, if
a fiber-bunched automorphism over a transitive hyperbolic homeomorphism is topo-
logically irreducible then it is spannable.

Remark 3.12. — As Clark Butler has pointed out to us, if a fiber-bunched automor-
phism satisfies the pinching-and-twisting condition from [19, Def. 1.3], [7, Def. 1.2]
then it is spannable. In other words, one can remove the strong bunching hypothesis
from Theorem 3.7, provided one replaces irreducibility with the (strictly stronger)
pinching-and-twisting condition.

Let us sketch the proof. Let U ⊆ F be as in proof of Theorem 3.7. Let V be the
closure of the span of

⋃
n>0 Φ−n(U); then V is Φ-invariant, Wu-saturated, projects

down on X, and is contained in F. Let µ be the T -invariant probability measure on X
with maximal entropy (other choices are possible). Let PΦ be the projectivization

J.É.P. — M., 2019, tome 6



966 J. Bochi & E. Garibaldi

of the automorphism Φ. Then PΦ admits an invariant u-state, that is, an invariant
measure m̂ that projects on µ and whose disintegration w.r.t. to this projection is
µ-a.e. invariant under unstable holonomies: see [7, §4.1]. By adapting the construction,
we can ensure that the invariant u-state m̂ gives full weight to PV, and in particular
to PF, which is a continuous Ws-saturated invariant subbundle of PE. Under the
pinching-and-twisting assumption, [19, Prop. 5.1] or [7, Prop. 5.1] say that such a
situation is impossible unless F = E. (Actually in these papers T is a shift, but the
proofs can be adapted to the general situation, or we can use a Markov partition.)
Therefore Φ is spannable.

It is not clear how to relax the pinching-and-twisting hypothesis in the arguments
from [19, 7]. Therefore we still lack an optimal criterion for spannability.

4. Bounding the growth

4.1. Relative product boundedness. — A vector bundle automorphism Φ is called
product bounded if

sup
n>0

sup
x∈X
‖Φnx‖ <∞

for some and hence any Finsler norm on E. This condition evidently implies that
β(Φ) 6 0, i.e., the maximal Lyapunov exponent (1.3) is nonpositive. On the other
hand, we say that Φ is relatively product bounded if e−β(Φ)Φ is product bounded,
that is,

sup
n>0

e−β(Φ)n sup
x∈X
‖(Φn)x‖ <∞.

Of course, if Φ has an extremal norm then it is relatively product bounded. The
converse is true in the 1-step case, as noted by Rota and Strang [64]. But the converse
is not true in general;(8) in fact it may fail even in dimension 1, as shown by Morris
[53, Prop. 2]. In Morris’ example, the dynamics is uniformly hyperbolic (actually a full
shift), but the function is not Hölder.

In this paper, we need to prove relative product boundedness as an essential pre-
liminary step in the construction of extremal norms. We will show the following:

Proposition 4.1. — Every spannable automorphism is relatively product bounded.

The proof, which will occupy Sections 4.2 and 4.3, is roughly as follows: first, we
find pieces of Wu sets of uniform size that stay relatively product bounded for a long
time (Lemma 4.3), then we use a compactness argument to find small pieces of Wu

sets that stay relatively product bounded forever (Lemma 4.4), and finally we use
spannability to spread this property to the whole bundle (Lemma 4.5).

Let us close this section with some remarks about product boundedness and relative
product boundedness.

(8)The naive attempt of defining an extremal norm by |||u||| := supn>0 e
−β(Φ)n‖Φn(u)‖ does not

necessarily work because continuity may fail.
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It was shown by Blondel and Tsitsiklis [12] that the product boundedness of a pair
of rational matrices is algorithmically undecidable.

A result of Coronel, Navas, and Ponce [35] states if T is a minimal homeomorphism
(i.e., all its orbits are dense) and Φ and Φ−1 are both product bounded then there
exists an invariant Riemannian norm.

It is easy to give examples of regular (e.g. Hölder) automorphisms that are not
relatively product bounded: any cocycle constant equal to ( 1 1

0 1 ) will do. Here is a
more interesting example:

Example 4.2. — Let the base dynamics T be an irrational rotation of the circle R/Z,
and consider the matrix-valued map F (x) :=

(
2 0
0 1/2

)
R2πx, where Rθ denotes the

rotation matrix by angle θ. As shown by Herman [40, p. 471–473], the SL(2,R)-cocycle
(T, F ) has a positive Lyapunov exponent, but it is not uniformly hyperbolic. Therefore
it cannot be relatively product bounded, because otherwise it would contradict a result
of Morris [54, Th. 2.1].

4.2. Existence of local unstable sets with relatively bounded orbits. — Let Φ be
a fiber-bunched automorphism in the set AutθK(E, T ). By the definition (2.5) of this
set,

(4.1) ‖Φ±1
x ‖ 6 K for all x ∈ X.

By equicontinuity of local holonomies, there exists a constant C1 > 1 such that:

(4.2) ‖H?
y←x‖ < C1 for all x ∈ X, ? ∈ {u, s}, y ∈W ?

ε0(x).

Moreover, by Proposition 2.8, it is possible to choose a constant C1 that works for all
automorphisms in a C0-neighborhood of Φ in AutθK(E, T ).

Let E× denote the complement of the zero section in E. Recall that ε0 comes from
the definition of hyperbolic homeomorphism.

Lemma 4.3. — Let Φ be a fiber-bunched automorphism. Then there exists ε2 ∈ (0, ε0),
depending only on T , such that for every integer m > 0 there exists u ∈ E× with the
following property:

sup
n∈[[1,m]]

sup
v∈Wu

ε2
(u)

e−β(Φ)n‖Φn(v)‖ 6 2‖u‖.

Proof. — Multiplying Φ by a nonzero constant, we can assume that β(Φ) = 0. Let λu

be the hyperbolicity exponent of T along unstable sets, and let

(4.3) a := sup
x∈X

e−λu(x) < 1.

Hyperbolicity implies:

(4.4) ∀x ∈ X, ∀ ε ∈ (0, ε0], T−1(W u
ε (x)) ⊆W u

aε(T
−1x).

Let ε2 := (1 − a)ε0. In order to show that the conclusion of the lemma holds for
this ε2, let us assume for a contradiction that there exists an integer m > 0 such that:

(4.5) ∀u ∈ E×, ∃n = n(u) ∈ [[1,m]], ∃ v = v(u) ∈Wu
ε2(u) s.t. ‖Φn(v)‖ > 2‖u‖.
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We recursively define sequences (uk), (vk) in E× and (nk) in [[1,m]] as follows:
We choose u0 ∈ E× arbitrarily. Assuming uk was already defined, we let nk := n(uk)

and vk := v(uk) be given by (4.5), and let uk+1 := Φnk(vk). Note that for each k > 0

we have ‖uk+1‖ > 2‖uk‖ and so ‖uk‖ > 2k‖u0‖.
Now let `k := n0 +n1 + · · ·+nk−1 (so `0 := 0), and wk := Φ−`k(vk). We claim that

each wk belongs to Wu
ε0(u0); indeed:

vk ∈Wu
ε2(uk)

=⇒ Φ−nk−1(vk) ∈Wu
aε2(vk−1) ⊆Wu

(1+a)ε2
(uk−1)

=⇒ Φ−nk−2−nk−1(vk) ∈Wu
(a+a2)ε2

(vk−2) ⊆Wu
(1+a+a2)ε2

(uk−2)

...
...

=⇒ wk = Φ−n0−···−nk−1(vk) ∈Wu
(a+···+ak)ε2

(v0) ⊆Wu
(1+a+···+ak)ε2

(u0),

proving the claim. In particular, by (4.2) we obtain ‖wk‖ 6 C1‖u0‖. Since vk ∈
Wu
ε2(uk), using (4.2) again we have ‖uk‖ 6 C1‖vk‖. Therefore:

‖Φ`k(wk)‖
‖wk‖

=
‖vk‖
‖wk‖

>
C−1

1 ‖uk‖
C1‖u0‖

> C−2
1 2k.

Since `k 6 mk, using (1.4) we obtain

β(Φ) = lim
k→∞

sup
x∈X

log ‖Φ`kx ‖
`k

> lim sup
k→∞

log(‖Φ`kwk‖/‖wk‖)
`k

>
log 2

m
> 0.

This contradiction concludes the proof. �

The next lemma supersedes the previous one:

Lemma 4.4. — Let Φ ∈ AutθK(E, T ) be a fiber-bunched automorphism. Then there
exist a constant C2 > 1 and a vector u∗ ∈ E× such that

sup
n>0

sup
v∈Wu

ε1
(u∗)

e−β(Φ)n‖Φn(v)‖ 6 C2‖u∗‖.

Moreover, the same constant C2 works for all automorphisms in a C0-neighborhood
of Φ in AutθK(E, T ).

Proof. — Again, multiplying Φ by a nonzero constant (and increasingK if necessary),
we can assume that β(Φ) = 0.

Let ε2 be given by Lemma 4.3. By the continuity of the bracket, there exists
ε3 ∈ (0, ε1) such that:

z1, z2 ∈ X, d(z1, z2) < 2ε3 =⇒ d([z1, z2], zi) 6 ε2.

For each integer m > 1, Lemma 4.4 provides um ∈ E×, say with ‖um‖ = 1, such
that for every n ∈ [[1,m]] and every v ∈ Wu

ε2(um) we have ‖Φn(v)‖ 6 2. Passing
to a subsequence if necessary, we assume that (um) converges to some u, which has
‖u‖ = 1. Let xm := π(um) and x := π(u).
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We claim that

(4.6) sup
n>0

sup
v∈Wu

ε3
(u)

‖Φn(v)‖ 6 2C1.

Indeed, given v ∈ Wu
ε3(u) and n > 0, consider y := π(v). Since xm → x, for every

sufficiently large m > n we have d(xm, y) < 2ε3, and in particular ym := [xm, y] is
well-defined and belongs toW u

ε2(xm). Let vm := Hu
ym←xm(um) and wm := Hs

y←ym(vm)

(see Figure 4.1).

W u
xm ym

Wuum

vm

W u

x y

Wu
u

W s W s

Ws

v

wm

Figure 4.1. Proof of Lemma 4.4.

Then:

‖Φn(wm)‖ =
∥∥Hs

Tmy←Tmym(Φn(vm))
∥∥ 6 C1 ‖Φn(vm)‖ 6 2C1.

As m→∞ (recall that n is fixed), we have ym → [x, y] = y and so:

wm = Hs
y←ym ◦H

u
ym←xm(um) −→ Hu

y←x(u) = v,

by continuity of holonomies. It follows that ‖Φn(v)‖ 6 2C1, completing the proof of
the claim (4.6).

Fix a constant ` > 0 depending only on T such that W u
ε1(T `x) ⊆ T `(W u

ε3(x)).
Let u∗ := Φ`(u). Then

sup
n>0

sup
v∈Wu

ε1
(u∗)

‖Φn(v)‖ 6 sup
n>0

sup
v∈Wu

ε3
(u)

‖Φn+`(v)‖ 6 2C1,

by (4.6). On the other hand, recalling (4.1), we have ‖u∗‖ > K−`‖u‖ = K−`. So the
vector u∗ has the desired property with C2 := 2K`C1, completing the proof of the
lemma. �

4.3. Proof of relative product boundedness. — The next lemma uses spannability
to spread local product boundedness from a local unstable set to the whole space:

Lemma 4.5. — Let Φ∈AutθK(E, T ) be a spannable automorphism. There exists C3>1

with the following properties. Suppose u ∈ E is a nonzero vector such the following
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quantity is finite:

r :=
1

‖u‖
lim sup
n→∞

e−nβ(Φ) sup
v∈Wu

ε1
(u)

‖Φn(v)‖.

Then
lim sup
n→∞

e−nβ(Φ) sup
y∈X
‖Φny‖ 6 C3r.

Furthermore, the same constant C3 works for all automorphisms in a C0-neighborhood
of Φ in AutθK(E, T ).

Note that the hypothesis of Lemma 4.5 is non-void by Lemma 4.4, and that its
conclusion implies that Φ is relatively product bounded. So Lemma 4.5 implies Propo-
sition 4.1. However, the more technical statement of Lemma 4.5 is necessary for the
construction of an extremal norm in the next section.

Proof of Lemma 4.5. — It is sufficient to consider β(Φ) = 0. Let n and C0 be the
uniform spannability constants provided by Proposition 3.9. Fix a nonzero vector u
for which the associated quantity r is finite, and without loss of generality, let us
assume that ‖u‖ = 1. Let r′ > r be arbitrary. Then there exists n∗ such that

sup
n>n∗

sup
v∈Wu

ε1
(u)

‖Φn(v)‖ 6 r′.

Consider arbitrary y ∈ X and w ∈ Ey. Apply Proposition 3.9 to the points x := π(u)

and y and the vector u, obtaining points x1, . . . , xd ∈W u
ε1(x) and times n1, . . . , nd ∈

[[0, n]] such that each point yi := Tnixi belongs to W s
ε1(y) and the vectors vi defined

by (3.3) form a basis for Ey. Moreover, if we express w as a linear combination
a1v1 + · · ·+ advd, then the proposition also yields that (

∑
i a

2
i )

1/2 6 C0‖w‖. So each
|ai| 6 C0‖w‖. For each i and n > n∗, we have

Φn(vi) = Hs
Tny←Tnyi︸ ︷︷ ︸

1

◦Φni+nxi ◦Hu
xi←x(u)︸ ︷︷ ︸

2

.

We have ‖ 1 ‖ 6 C1 by (4.2), and ‖ 2 ‖ 6 r′ by definition. Combining these estimates,
we obtain:

‖Φn(w)‖ 6 dC0C1r
′‖w‖,

that is, ‖Φny‖ 6 C3r
′, where C3 := dC0C1. So lim supn→∞ supy∈X ‖Φny‖ is bounded by

C3r
′, and actually by C3r, since r′ > r is arbitrary. This proves the desired inequality.
Now consider a C0-perturbation of Φ in the set AutθK(E, T ). By Corollary 3.10,

this perturbation is also spannable, and we can use the same constants n and C0. So
the argument above applies verbatim for the perturbed automorphism. �

4.4. Application: polynomial bounds. — Let us give an application of what we have
proved so far, namely that under the hypothesis of strong fiber-bunching, relative
product boundedness fails at most by a polynomial factor. The reader anxious to see
extremal norms may skip this section.
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Theorem 4.6. — Let T be a transitive hyperbolic homeomorphism. Let Φ: E → E be
strongly bunched automorphism covering T . Then there exists an integer d′ ∈ [[0, d−1]]

and C > 0 such that

‖Φnx‖ 6 Cnd
′
enβ(Φ) for all x ∈ X and n > 0.

For related results, see [46, Th. 3.10], [44, §3.5–3.6]. Before proving this theorem, let
us fix some terminology. Suppose E is a θ-Hölder vector bundle over X, with a fixed
θ-Hölder Riemannian norm, and that F ⊆ E is a θ-Hölder subbundle. Let F⊥ ⊆ E be
the orthogonal complement subbundle, which is also θ-Hölder. Then the orthogonal
projections

(4.7) P : E −→ F and Q : E −→ F⊥

are θ-Hölder endomorphisms covering idX . Now suppose Φ: E → E is θ-Hölder
automorphism covering T and that F is Φ-invariant. Then there are two induced
θ-Hölder automorphisms, both covering T , namely the obvious restricted automor-
phism Φ|F : F → F, and the quotient automorphism Φ/F : F⊥ → F⊥ defined by Φ/F :=

(Q ◦ Φ)|F⊥ . If the automorphism Φ is fiber-bunched (or strongly bunched) then so
are Φ|F and Φ/F.

Proof of Theorem 4.6. — Let Φ: E→ E be a strongly bunched automorphism. If Φ is
irreducible then by Theorem 3.7 it is spannable, and by Proposition 4.1 it is relatively
product bounded, hence our claim holds with d′ = 0. In particular, the theorem holds
when d = 1. Now suppose Φ is reducible, that is, there exists a θ-Hölder Φ-invariant
nontrivial subbundle F ⊂ E. By induction on dimension, we can assume that the the-
orem holds for the restricted automorphism Φ|F and the quotient automorphism Φ/F,
that is, there are nonnegative integers d1 < dimF and d2 < d− dimF such that:

(4.8) ‖(Φ|F)nx‖ = O
(
nd1enβ(Φ|F)

)
and ‖(Φ/F)nx‖ = O

(
nd2enβ(Φ/F)

)
.

Note that, by the definitions of the automorphisms Φ|F and Φ/F,

max
{
‖(Φ|F)nx‖, ‖(Φ/F)nx‖

}
6 ‖Φnx‖ for all x ∈ X and n > 0,

and therefore

(4.9) max
{
β(Φ|F), β(Φ/F)

}
6 β(Φ).

Letting P and Q be the orthogonal projections (4.7), note the identity:

Φx = (Φ|F)x ◦ Px + PTx ◦ Φx ◦Qx + (Φ/F)x ◦Qx.

More generally, for every n > 1, we have:

(4.10) Φnx = (Φ|F)nx ◦ Px

+

[n−1∑
j=0

(Φ|F)n−j−1
T j+1x ◦ PT j+1x ◦ ΦT jx ◦ (Φ/F)jx ◦Qx

]
+ (Φ/F)nx ◦Qx,

which can be checked by induction. Using the bounds (4.8), it follows that:

‖Φnx‖ = O
(
nd1+d2+1 enmax{β(Φ|F),β(Φ/F)}).
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Noting that d1 + d2 + 1 < d and recalling (4.9), we obtain the desired polynomial
bound. �

Incidentally, note that (4.10) implies that (4.9) is an equality, that is:

(4.11) β(Φ) = max
{
β(Φ|F), β(Φ/F)

}
.

Actually, a more general fact holds: for any T -invariant ergodic probability measure µ,

(4.12) χ1(Φ, µ) = max
{
χ1(Φ|F, µ), χ1(Φ/F, µ)

}
.

We will use this fact in Section 7.1. We were not able to find a precise reference
for it, but it follows easily from the identity (4.10) together with an estimate such as
[13, Lem. 12].

5. Construction of extremal norms

5.1. Extremal norms for spannable automorphisms. — In this section we state and
prove the central result of this paper, Theorem 5.2 below. Let us present a simple
consequence first:

Corollary 5.1. — Let T be a transitive hyperbolic homeomorphism. Let Φ be a
strongly bunched irreducible automorphism covering T . Then Φ admits an extremal
norm.

Here is the full statement of our result on extremal norms. Let θu be the exponent
provided by applying Proposition 2.10 to Φ−1.

Theorem 5.2. — Every spannable automorphism Φ ∈ AutθK(E, T ) admits an extremal
norm |||·|||, which has the following additional properties:

(a) there exists C4 > 1 such that for every u ∈ E,

(5.1) C−1
4 ‖u‖ 6 |||u||| 6 C4‖u‖;

(b) |||·||| is θu-Hölder, that is, there is a constant C5 > 0 such that for all x, x′ ∈ X,

(5.2)
∣∣|||Ix′←x||| − 1

∣∣ 6 C5d(x, x′)θu .

(c) |||·||| is θ-Hölder along unstable sets with θ := max{θ, 1}, that is, there is a
constant C6 > 0 such that for all x ∈ X and x′ ∈W u

ε0(x),

(5.3)
∣∣|||Hu

x′←x||| − 1
∣∣ 6 C6d(x, x′)θ;

Furthermore, for every sufficiently C0-small perturbation of the automorphism Φ in
the set AutθK(E, T ), we can find an extremal norm that satisfies the properties above
with the same constants θu, C4, C5, C6.

Combining the theorem above with Theorem 3.7 we immediately obtain Corol-
lary 5.1.

Note that part (b) of the statement of Theorem 5.2 is compatible with the charac-
terization of Hölderness of a norm given by Proposition 2.3. In summary, our extremal
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norm is Hölder, but perhaps with a smaller Hölder exponent than the original Φ.(9)

Nevertheless, part (c) says that the norm is more regular along unstable sets: there is
no loss of exponent, and if θ < 1 there is a gain.

Concerning the final part of the statement of Theorem 5.2, recall from Corol-
lary 3.10 that the set of spannable automorphisms is a C0-open subset of the set
AutθK(E, T ). So the theorem also says that our extremal norms vary in a bounded
way if the automorphism is perturbed; this is useful to certain applications (see Sec-
tion 5.2).

Before commencing the actual proof, let us establish an auxiliary fact:

Lemma 5.3. — Let 0 < a < 1. Let θ := max{θ, 1}. Then there exists a θ-Hölder
function ζ : X ×X → [0, 1] such that:

ζ(x, y) = 1 if d(x, y) 6 aε1;

ζ(x, y) = 0 if d(x, y) > ε1.

Proof. — If θ 6 1, let f : [0,+∞) → [0, 1] be a non-increasing smooth function such
that f(aε1) = 1 and f(ε1) = 0. Then the function ζ(x, y) := f(d(x, y)) meets our
requirements.

If θ > 1 then the existence of ζ is an immediate consequence of the fact that the
algebra of θ-Hölder functions on X ×X is normal (Lemma A.1). �

Proof of Theorem 5.2. — As in (4.3), let a := exp(−minλu) ∈ (0, 1). Let ζ be given
by Lemma 5.3. For each u ∈ E, let

(5.4) |||u||| := lim sup
n→∞

e−β(Φ)n sup
v∈Wu

ε1
(u)

ζ(π(u), π(v)) ‖Φn(v)‖.

We will check that formula (5.4) defines an extremal norm with the additional proper-
ties stated in Theorem 5.2. To simplify writing, we assume from now on that β(Φ) = 0.

Since 0 6 ζ 6 1 and Φ is relatively product bounded (thanks to Proposition 4.1),
the quantity (5.4) is always finite, and therefore defines a seminorm on each fiber of E.

Take arbitrary nonzero u ∈ E. Since ζ(x, y) = 1 whenever y ∈W u
aε1(x), we have:

lim sup
n→∞

sup
v∈Wu

aε1
(u)

‖Φn(v)‖ 6 |||u|||.

Recalling the hyperbolicity property (4.4), we have Wu
aε1(u) ⊇ Φ−1

(
Wu
ε1(Φ(u))

)
,

and so:

(5.5) lim sup
n→∞

sup
v∈Wu

ε1
(Φ(u))

‖Φn(v)‖ 6 |||u|||.

(9)A similar loss of exponent also appears in the first version of Mañé Lemma for Anosov dif-
feomorphisms, obtained by Lopes and Thieullen [51]. Later, Bousch [23] obtained a stronger Mañé
Lemma without loss of exponent. However, it is unclear whether Bousch’s strategy can be applied
in our setting.
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So, letting ũ := Φ(u), we have:
1

‖ũ‖
lim sup
n→∞

sup
v∈Wu

ε1
(ũ)

‖Φn(v)‖ 6 |||u|||
‖ũ‖

6 K
|||u|||
‖u‖

,

using the bound (4.1). This allows us to apply Lemma 4.5 to ũ and conclude that, for
some constant C3 > 1 that only depends on Φ,

(5.6) lim sup
n→∞

sup
y∈X
‖Φny‖ 6 C3K

|||u|||
‖u‖

, for all u ∈ E×.

The left-hand side is at least 1; indeed by (1.4), for every n > 0 there exists y ∈ X
such that ‖Φny‖ > enβ(Φ) = 1. Therefore:

(5.7) |||u||| > K−1C−1
3 ‖u‖, for all u ∈ E.

In particular, the seminorm |||·||| is actually a norm.
Since 0 6 ζ 6 1 and ζ(x, y) = 0 whenever y ∈W u

ε1(x), inequality (5.5) implies:

|||Φ(u)||| 6 |||u|||, for all u ∈ E,

that is, |||·||| is an extremal norm.
Now consider the vector u∗ ∈ E× given by Lemma 4.4. It satisfies |||u∗||| 6 C2‖u∗‖,

where C2 > 1 is a constant depending only on Φ. Applying (5.6) to this vector we
obtain:

lim sup
n→∞

sup
y∈X
‖Φny‖ 6 KC2C3.

Therefore, for all u ∈ E,

|||u||| 6 lim sup
n→∞

sup
v∈Wu

ε1
(u)

‖Φn(v)‖ 6 KC2C3 sup
v∈Wu

ε1
(u)

‖v‖ 6 KC1C2C3‖u‖,

where C1 > 1 is the constant from (4.2). So, letting C4 := KC1C2C3 and recalling
the lower bound (5.7), we obtain (5.1): the extremal norm is uniformly comparable
to the original norm by a factor C4 that works not only for Φ but also for its C0

perturbations in AutθK(E, T ).
Before proving regularity properties of the extremal norm, let us establish a few

auxiliary facts. For all u ∈ E, v ∈ Wu
ε1(u), and n > 0, using (5.1), extremality, and

(4.2), we obtain:

(5.8) ‖Φn(v)‖ 6 C4|||Φn(v)||| 6 C4|||v||| 6 C2
4‖v‖ 6 C1C

2
4‖u‖ 6 C1C

3
4 |||u|||.

Fix a constant b < 1 sufficiently close to 1 so that:

d(x, y) > bε1 =⇒ ζ(x, y) < 1
2C
−1
1 C−3

4 .

Then:
v ∈Wu

ε1(u) rWu
bε1(u) =⇒ ζ(π(u), π(v))‖Φn(v)‖ 6 1

2 |||u|||.
So vectors v outside Wu

bε1
(u) do not contribute in formula (5.4), which therefore can

be rewritten as:

(5.9) |||u||| := lim sup
n→∞

sup
v∈Wu

bε1
(u)

ζ(π(u), π(v)) ‖Φn(v)‖.
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We will prove property (c) first, and use it later in the proof of property (b). In order
to simplify writing, let us use the O notation to denote constants that depend only
on Φ and can be taken uniform on a C0-neighborhood of Φ in AutθK(E, T ). In order
to prove property (c), we need to show:

x ∈ X, x′ ∈W u
ε0(x), u ∈ Ex, ‖u‖ = 1 =⇒

∣∣|||Hu
x′←x(u)||| − |||u|||

∣∣ = O
(
d(x, x′)θ

)
.

It is sufficient to consider x′ very close to x, so assume d(x′, x) 6 (1− b)ε1. Fix a unit
vector u ∈ Ex and let u′ := Hu

x′←x(u). For all v ∈Wu
ε1(u), and n > 0, using (5.8) and

the fact that ζ is θ-Hölder, we estimate:∣∣∣ζ(x′, π(v))‖Φn(v)‖ − ζ(x, π(v))‖Φn(v)‖
∣∣∣ = O

(
d(x, x′)θ

)
.

Noting that Wu
bε1

(u′) ⊆Wu
ε1(u), we have:

sup
v∈Wu

bε1
(u′)

ζ(x′, π(v))‖Φn(v)‖ 6 sup
v∈Wu

ε1
(u)

ζ(x, π(v))‖Φn(v)‖+O
(
d(x, x′)θ

)
|||u|||.

Using (5.9) and (5.4), we obtain:

|||u′||| 6 |||u|||+O
(
d(x, x′)θ

)
.

On the other hand, using Wu
bε1

(u) ⊆Wu
ε1(u′), a similar argument shows that:

|||u||| 6 |||u′|||+O
(
d(x, x′)θ

)
.

This completes the proof of property (c).
We are left to check θu-Hölderness of the norm, that is, property (b). In fact, it is

sufficient to prove θu-Hölderness along stable sets, that is:

(5.10) x ∈ X, x′ ∈W s
ε0(x), u ∈ Ex, ‖u‖ = 1

=⇒
∣∣|||Hs

x′←x(u)||| − |||u|||
∣∣ = O

(
d(x, x′)θu

)
.

Since we have already proven θ-Hölderness of the norm along unstable sets, and
θu 6 θ, property (b) will follow from (5.10): just mimic the proof of (b) ⇒ (a) in
Corollary 3.5.

In order to prove (5.10), it is sufficient to consider x′ very close to x. Fix a unit
vector u ∈ Ex and let u′ := Hs

x′←x(u). Consider arbitrary v ∈ Wu
ε1(u), and write

y := π(v). Since d(x′, y) 6 ε1 + d(x, x′) < 2ε1, the bracket [x′, y] =: y′ is well-defined.
Let also w := Hs

y′←y(v), and v′ := Hu
y′←x′(u

′): see Figure 5.1.
Then for each n > 0 we estimate:∣∣ζ(x, y)‖Φn(v)‖ − ζ(x′, y′)‖Φn(v′)‖

∣∣ 6 1 + 2 + 3 , where
1 := |ζ(x, y)− ζ(x′, y′)| ‖Φn(v)‖,
2 :=

∣∣‖Φn(v)‖ − ‖Φn(w)‖
∣∣,

3 := ‖Φn(w − v′)‖.
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W ux y
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x′ y′
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W s
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v′

w

Figure 5.1. Proof of property (b).

In order to estimate 1 , recall that by (5.8), ‖Φn(v)‖ = O(1). On the other hand,
by Hölder-continuity of ζ,

|ζ(x, y)− ζ(x′, y′)| = O
(

max
{

d(x, x′)θ,d(y, y′)θ
})
.

Using Proposition 2.6 for T−1, we have d(y, y′) = O(d(x, x′)κu), where the expo-
nent κu is at most 1. So:

|ζ(x, y)− ζ(x′, y′)| = O(d(x, x′)κuθ).

Note that κuθ > κuθ > θu, so the weaker estimate 1 = O(d(x, x′)θu) holds.
The next term is estimated as follows:

2 =
∣∣‖Hs

Tny′←TnyΦn(v)‖ − ‖Φn(v)‖
∣∣

6
∣∣‖Hs

Tny′←Tny − ITny′←Tny‖+ ‖ITny′←Tny‖ − 1
∣∣ ‖Φn(v)‖.

Since d(Tny′, Tny) = o(1) (i.e., it tends to 0 as n→∞), using regularity of holonomies
(2.14) and of the transport maps (Proposition 2.3) together with product bounded-
ness (5.8), we conclude that 2 = o(1).

In order to estimate the last term, we use Proposition 2.10 applied to T−1:

3 = O(‖v′ − w‖) = O
(
‖Hu

y′←x′ ◦Hs
x′←x −Hs

y′←y ◦Hu
y←x‖

)
= O

(
d(x, x′)θu

)
,

Summing the three estimates,

(5.11)
∣∣ζ(x, y)‖Φn(v)‖ − ζ(x′, y′)‖Φn(v′)‖

∣∣ = O
(
d(x, x′)θu

)
+ o(1).

As in the proof of the previous property (c), we need to use the cutoff property (5.9)
to conclude. If we are careful enough to take d(x, x′) sufficiently small then d(y, y′) =

O(d(x, x′)κu) is also small and therefore the following two implications are correct:

d(x, y) 6 bε1 =⇒ d(x′, y′) 6 ε1,

d(x′, y′) 6 bε1 =⇒ d(x, y) 6 ε1.
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That is,

v ∈Wu
bε1(u) =⇒ v′ ∈Wu

ε1(u′),

v′ ∈Wu
bε1(u′) =⇒ v ∈Wu

ε1(u).

Then, using (5.11), (5.9), and (5.4), we obtain:∣∣|||u||| − |||u′|||∣∣ = O
(
d(x, x′)θu

)
,

proving (5.10) and the theorem. �

5.2. Application: Lipschitz continuity of the maximal Lyapunov exponent

As a simple application of Theorem 5.2, let us establish a local regularity result
for the maximal Lyapunov exponent. A similar property for the joint spectral radius
(under the assumption of irreducibility) was established by Wirth [74, Cor. 4.2], also
using extremal norms; see also [49] for a more precise result.

Let SK denote the set of spannable automorphisms in AutθK(E, T ), which by Corol-
lary 3.10 is relatively C0-open.

Proposition 5.4. — The maximal Lyapunov exponent β(·) is a locally Lipschitz func-
tion on the set SK , with respect to the C0-norm (2.3).

Proof. — Let Φ ∈ SK . Let U ⊂ SK be a C0-neighborhood of Φ where Theorem 5.2
applies with uniform constants. Take any two automorphisms Φ1 and Φ2 in U , and
let |||·|||1 and |||·|||2 be the corresponding extremal norms provided by Theorem 5.2.
Then, using the bound (5.1), we obtain:

eβ(Φ2) 6 sup
x
|||Φ2x|||1 6 sup

x
|||Φ1x|||1 + sup

x
|||Φ1x − Φ2x|||1

6 eβ(Φ1) + C4 sup
x
‖Φ1x − Φ2x‖ = eβ(Φ1) + C4‖Φ1 − Φ2‖0,

where ‖·‖0 is the C0-norm (2.3). By symmetry, we obtain

|eβ(Φ1) − eβ(Φ1)| 6 C4‖Φ1 − Φ2‖0.

This shows that the function eβ(·) is Lipschitz on the neighborhood U , with respect
to the C0-norm. Since the function β(·) is uniformly bounded on U (and in the whole
set AutθK(E, T ), in fact), it is Lipschitz as well. �

Remark 5.5. — For reducible automorphisms, it is clear that β is not locally Lips-
chitz: see e.g. [74, p. 27]. Nevertheless, β is continuous on the whole space of θ-Hölder
automorphisms: indeed, upper semicontinuity is automatic from (1.4), while lower
semicontinuity follows by a theorem of Kalinin [45, Th. 1.4] that allows one to ap-
proximate β by the Lyapunov exponents of periodic orbits. Let us also remark that
if T is no longer hyperbolic, then β becomes discontinuous with respect to the C0

topology. For example, the cocycle from Example 4.2 can be C0-perturbed so that β
drops to 0, as it follows e.g. from the the result of [6].
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5.3. Barabanov-like norms for linear cocycles over shifts. — Let us consider sub-
shifts of finite type, that is, X is the set of two-sided sequences (xn)n∈Z in an alphabet
{0, 1, . . . , N−1} whose neighboring pairs are those allowed by a fixed 0-1 matrix, and
T : X → X is the (left) shift map. As usual, we consider on X the (ultra)metric

(5.12) d(x, y) := e−λk, where k = min{|n| ; xn 6= yn},

and λ > 0 is a fixed parameter. Then T is a hyperbolic homeomorphism. Indeed
letting ε0 := e−λ, the corresponding local unstable and stable sets at x = (xn) ∈ X
are:

W u
loc(x) := W u

ε0(x) =
{

(yn) ∈ X ; yn = xn for all n 6 0
}
,

W s
loc(x) := W s

ε0(x) =
{

(yn) ∈ X ; yn = xn for all n > 0
}
.

and so hyperbolicity property (b) holds with λu = λs = λ, property (c) holds with
2ε1 = ε0, and property (d) holds with C = 1. Also note that Proposition 2.6 holds
with κs = 1 = C.

We will consider θ-Hölder automorphisms covering the subshift T : X → X.
Since X is a Cantor set, every θ-Hölder vector bundle is trivial, i.e., θ-Hölder isomor-
phic to the product bundle. So we are actually dealing with θ-Hölder linear cocycles;
nevertheless, we will keep using the vector bundle terminology.

Example 5.6. — As mentioned in Section 1.2, the one-step cocycle determined by
a N -tuple of matrices (A0, . . . , AN−1) ∈ GL(d,R)N is the pair (T, F ) where T is
the full shift on N symbols and F : X → GL(d,R) is given by F (x) := Ax0

. Let Φ

the associated automorphism (1.1). Then eβ(Φ) is joint spectral radius of the set
{A0, . . . , AN−1}. Since F is locally constant, it is θ-Hölder for any θ ∈ (0,+∞).
Choosing θ large enough, the automorphism Φ becomes fiber-bunched. (Alternatively,
we can take θ = 1, say, and then take the parameter λ large enough.) The holonomies
are locally trivial:

(5.13) ? ∈ {u, s}, y ∈W ?
loc(x) =⇒ H?

y←x = id.

A useful generalization of one-step cocycles are the sofic cocycles from [17, §5.1];
the same concept appears in [58] under the terminology constrained switching systems.

Let us present an improved version of Theorem 5.2 for subshifts of finite type. We
obtain an extremal norm with an additional Barabanov-like property: given any vector
u ∈ E, there always exists a vector in its local unstable set Wu

loc(u) := Wu
ε0(u) whose

expansion factor in a single iterate equals the maximum asymptotic expansion rate
eβ(Φ). Furthermore, the norm is invariant under local unstable holonomies. Therefore,
for the case of one-step cocycles, we reobtain the Barabanov property (1.8).

Theorem 5.7. — Let T be a two-sided subshift of finite type. Let E be a d-dimensional
θ-Hölder vector bundle. Let Φ be a spannable automorphism of E covering T . Then

(5.14) |||u||| := lim sup
n→∞

e−β(Φ)n sup
v∈Wu

loc(u)

‖Φn(v)‖
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is a well-defined Barabanov norm on E, namely, an extremal norm satisfying, for all
u ∈ E,

(1) local Hu-invariance: |||u||| = |||v||| for all v ∈Wu
loc(u);

(2) calibration: there exists v ∈Wu
loc(u) such that |||Φ(v)||| = eβ(Φ)|||v|||.

Furthermore, |||·||| satisfies the other properties stated in Theorem 5.2.

Let us comment on the hypotheses. Given θ > 0, Lemma 3.6 holds with the value
η0 = θ/3; indeed, this follows from formula (A.24), recalling that λu = λs = λ,
and noting that we can also take Λu = λ in (A.7). Therefore θ-Hölder automorphism
Φ: E→ E covering T is strongly bunched if Φ is fiber-bunched and the fibers of E have
dimension d 6 2, or Φ is a (θ/3, θ)-bunched. In that case, it follows from Theorem 3.7
that Φ is spannable, provided it is irreducible and T is transitive.

Proof of Theorem 5.7. — Since X is a Cantor set, we can simplify the construction in
Theorem 5.2 and dispense with the bump function ζ from Lemma 5.3. Ultimately, we
can replace the definition (5.4) of the extremal norm by the simpler formula (5.14).
Note that in the latter formula we maximize over Wu

loc(u) := Wu
ε0(u) instead of

Wu
ε1(u) = Wu

ε0/2
(u); this is possible because the metric on X is an ultrametric. It is

straightforward to check that the proof in Theorem 5.2 applies, with simplifications.
It is immediate from its definition that the norm satisfies local Hu-invariance, that is
property (1), which of course subsumes property (c) from Theorem 5.2.

We only left to check the calibration property (2). Given u ∈ E, by definition, there
exist sequences ni ↗∞ and vi ∈Wu

loc(u) such that

|||u||| = lim
i→∞

e−β(Φ)ni‖Φnivi‖.

Denote yi = π(vi). By compactness, we may suppose that yi → y ∈ W u
loc(x) and

vi → v ∈Wu
loc(u). For i large enough, y′i := T (yi) ∈W u

loc(T (y)). We can assume that
this property is true for all i. Let v′i := Φ(vi). Thus, we have:

|||Φ(v)||| = lim sup
n→∞

e−β(Φ)n sup
v′∈Wu

loc(Φ(v))

‖Φnv′‖

> lim sup
i→∞

e−(ni−1)β(Φ)‖Φni−1v′i‖

= lim
i→∞

e−(ni−1)β(Φ)‖Φnivi‖ = eβ(Φ)|||u||| = eβ(Φ)|||v|||.

By extremality, the inequality is actually an equality. This proves calibration. �

6. Mather sets

In traditional ergodic optimization, that is, the optimization of Birkhoff averages
(see [42, 43, 37]), a maximizing set is a closed subset such that an invariant probabil-
ity is maximizing if and only if its support lies on this subset. The existence of such
sets is guaranteed in any context where a Mañé Lemma holds. The Mather set is the
smallest maximizing set: it is defined as the union of the supports of all maximiz-
ing measures. The nomenclature is borrowed from Lagrangian dynamics, where the
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concept of minimizing measures proved to be a useful generalization of the notion of
action minimizing orbits: see [52]. There are other canonical maximizing sets, such as
the Aubry set: see e.g. [37]. Some of these concepts have been already considered in
the optimization of the top Lyapunov exponent: see [55, 38].

In this section, we are going to study some notions of Mather sets for continu-
ous vector bundle automorphisms, not necessarily with any Hölder or hyperbolicity
structures. Our approach was profoundly influenced by some works of Morris [54, 55].

Throughout the section, we assume that X is a compact metric space, T : X → X

is a homeomorphism, E is a d-dimensional vector bundle over X, and Φ is an auto-
morphism covering T .

6.1. The first Mather set. — By a Lyapunov maximizing measure we mean any
T -invariant probability µ whose upper Lyapunov exponent χ1(Φ, µ) equals β(Φ). Fol-
lowing Morris [55], we define the (first) Mather set M(Φ) ⊆ X as the union of the
supports of all Lyapunov maximizing measures.

Proposition 6.1. — The Mather set M(Φ) is the support of some Lyapunov maxi-
mizing measure and, a fortiori, it is a nonempty, compact, and T -invariant set.

Proof. — The argument is quite standard, but we add it for completeness. For sim-
plicity, write M = M(Φ). As explained at the introduction, at least one Lyapunov
maximizing measure exists, soM 6= ∅. Given a countable basis {Bj}j∈N for the topol-
ogy of X, consider the subset of indices J := {j ∈ N ; Bj ∩M 6= ∅}. For each j ∈ J ,
we assign a Lyapunov maximizing measure µj such that Bj ∩ suppµj 6= ∅, which
means µj(Bj) > 0. Define then µ :=

∑
j∈J αjµj , where αj > 0 and

∑
j∈J αj = 1.

As a convex combination of Lyapunov maximizing measures, µ is also Lyapunov max-
imizing. Now consider an arbitrary k ∈ N such that Bk ∩ suppµ = ∅. Then for all
j ∈ J we have Bk ∩ suppµj = ∅ and therefore µj(Bk) = 0. This implies that k 6∈ J ,
and so Bk ∩ M = ∅. We have shown that X r suppµ ⊆ X r M , which yields
M(Φ) = suppµ. �

Proposition 6.2. — If Φ admits an extremal norm |||·||| then

|||Φnx ||| = enβ(Φ), ∀x ∈M(Φ), ∀n > 1,

and, in particular, every T -invariant probability measure whose support is contained
in M(Φ) is Lyapunov-maximizing.

Proof. — By extremality,

fn(x) :=
1

n
log|||Φnx ||| 6 β(Φ), ∀x ∈ X, ∀n > 1.

On the other hand, if µ is the Lyapunov maximizing measure with suppµ = M(Φ) con-
structed in Proposition 6.1 then, by Kingman’s subadditive theorem, infn

1
n

∫
fn dµ =

β(Φ). It follows that 1
n

∫
fn dµ = β(Φ) for each n > 1. Since the functions fn are con-

tinuous, they must be identically equal to β(Φ) over suppµ = M(Φ), as we wanted
to show. �
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6.2. Mather sets of higher index. — Up to here we have only considered the first
Lyapunov exponent χ1, but now we will need to consider the full Lyapunov spectrum.
Let us recall the definitions and main properties, referring to [5] for details.

If µ is a T -invariant probability measure then the Lyapunov exponents of the au-
tomorphism Φ with respect to µ are the numbers

(6.1) χ1(Φ, µ) > χ2(Φ, µ) > · · · > χd(Φ, µ)

uniquely defined by the following equations: for every p ∈ [[1, d]],

(6.2)
p∑
i=1

χi(Φ, µ) = χ1(ΛpΦ, µ),

where the automorphism ΛpΦ: ΛpE → ΛpE is the p-fold exterior power of the auto-
morphism Φ: E→ E.

Suppose µ is ergodic, and that λ is a Lyapunov exponent with respect to µ of
multiplicity k, in the sense that it appears k times in the list (6.1). Then Oseledets’
theorem says that for µ-a.e. x ∈ X, there exists a k-dimensional subspace Ox(λ) of
the fiber Ex, called a Oseledets space, such that:

u ∈ Ox(λ) r {0} if and only if lim
n→±∞

1

n
log ‖Φn(u)‖ = λ.

Moreover, Oseledets spaces form a splitting of Ex, depend measurably on the point x,
and are Φ-equivariant.

We now consider other Mather sets that take multiplicity into account. Define a
chain of sets

(6.3) M(Φ) = M1(Φ) ⊇M2(Φ) ⊇ · · · ⊇Md(Φ)

as follows: the p-th Mather set Mp(Φ) is the union of the supports of all T -invariant
probabilities µ whose p first Lyapunov exponents are all maximal, that is,

χ1(Φ, µ) = χ2(Φ, µ) = · · · = χp(Φ, µ) = β(Φ).

Repeating the argument of the proof of Proposition 6.1, we see that if the set Mp(Φ)

is nonempty then there exists a measure µ with p maximal Lyapunov exponents and
whose support is exactly Mp(Φ); in particular, Mp(Φ) is compact and T -invariant.

The following properties follow immediately from the definition of Mather sets and
relations (6.1) and (6.2):

Proposition 6.3. — For any p ∈ [[1, d]], we have:

β(ΛpΦ) 6 pβ(Φ) and Mp(Φ) ⊆M1(ΛpΦ).

Furthermore, these two relations become equalities if and only if Mp(Φ) 6= ∅.

Let us extend the chain of sets (6.3). Let Md+1(Φ) := ∅ and let M0(Φ) be defined
as the union of the supports of all T -invariant probability measures (which is also the
support of one of them). So M0(Φ) only depends on T , and is in fact the classical
minimal center of attraction of T : see [69], [1, p. 164].
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6.3. Dominated splittings over the Mather sets. — We want to provide more infor-
mation about the action of Φ on the fibers above the Mather sets, assuming the
existence of a extremal norm. We will use the notion of dominated splitting, which
is very useful in Differentiable Dynamics (see [20]). It appears in the celebrated book
[41] as relative pseudo hyperbolicity. It also appears in ODE and Control Theory under
the terminology exponentially separated splitting (see [31]), and is intimately related
to the concept of Anosov representations in Geometric Group Theory (see [17]).

Let Y ⊆ X be a nonempty T -invariant compact set, and let EY := π−1(Y ) be
the restricted vector bundle. (Recall that π : E → X denotes the bundle projection.)
Let ‖·‖ be a Finsler norm on E. Suppose that the bundle EY splits as a direct sum
F⊕G of two (continuous) subbundles whose fibers Fx, Gx have constant dimensions,
and are equivariant in the sense that Φx(Fx) = FTx, Φx(Gx) = GTx. We say that
F⊕G is a dominated splitting with dominating bundle F and dominated bundle G if
there are positive constants c and τ such that for each point x ∈ Y , if u ∈ Fx, v ∈ Gx
are unit vectors then

(6.4) ‖Φnx(v)‖ 6 ce−τn‖Φnx(u)‖ for all n > 0.

An equivalent definition is to say that there exists an adapted norm ‖·‖ for which
relation (6.4) holds with c = 1 (and therefore only needs to be checked for n = 1):
see [39]. Dominated splittings are unique given the dimensions: see [36, Prop. 2.2].
Continuity of the subbundles actually follows from the uniform estimates (6.4) and
therefore could be removed from the definition: see [36, Prop. 2.5]. Actually, if Φ is
Hölder then the bundles of a dominated splitting are always Hölder (with a smaller
exponent): see [36, Th. 4.11]. Domination can be characterized in terms of existence
of invariant cone fields: see [36, Th. 2.6]. This implies strong robustness properties:
see [36, Cor. 2.8].

We will use another criterion for the existence of dominated splittings, expressed
in terms of singular values. Recall that if L : E → F is a linear map between
d-dimensional inner product spaces, then the singular values σ1(L) > · · · > σd(L)

are the eigenvalues of the symmetric operator (L∗L)1/2. So σ1(L) coincides with the
Euclidean operator norm ‖L‖. Endowing the exterior power spaces with the induced
inner products, the exterior powers of L have norm:

(6.5) ‖ΛpL‖ = σ1(L)σ2(L) · · ·σp(L);

see e.g. [5, p. 120]. Another useful characterization of the singular values is:

(6.6) σp(L) = max
V ∈Gp(E)

min
u∈V

‖Lu‖
‖u‖

;

see e.g. [71, p. 68].
A theorem from [15] says that the domination is equivalent to a uniform expo-

nential gap between singular values of the powers of Φ (computed with respect to a
Riemannian norm fixed a priori). More precisely:
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Theorem 6.4 (Bochi–Gourmelon). — The bundle EY admits a dominated splitting
with a dominating bundle of dimension p if and only if there exist positive constants c
and τ such that

σp+1(Φnx) 6 ce−τnσp(Φ
n
x) for all x ∈ Y and n > 0.

We now come back to the Mather sets:

Theorem 6.5. — Suppose Φ admits an extremal norm |||·|||. Let p ∈ [[1, d]]. Suppose Y
is a nonempty compact T -invariant set contained in Mp(Φ) r Mp+1(Φ). Then the
restricted bundle EY admits a dominated splitting F⊕G where the dominating bundle F
has fibers of dimension p and is calibrated in the sense that |||Φ(u)||| = eβ(Φ)|||u||| for
every u ∈ F.

In particular, if exactly one of the sets Mp(Φ) rMp+1(Φ) is nonempty then we
obtain a dominated splitting over the whole Mather set M(Φ).

Related results were previously obtained by Morris: [54, Th. 2.1] produces a dom-
inated splitting under the weaker assumption of relative product boundedness, but
with the strong hypothesis that the set Y is minimal (i.e., all orbits in Y are dense).
Assuming existence of an extremal norm, Morris also proves the calibration property
of the dominating bundle in his Theorem 2.2.

For a complement to Theorem 6.5, see Proposition B.4 in Appendix B.2.

6.4. Proof of Theorem 6.5. — Consider the set of vectors whose bi-infinite orbits
under Φ are calibrated with respect to the extremal norm |||·|||:

(6.7) K :=
{
u ∈ E ; |||Φn(u)||| = enβ(Φ)|||u||| for all n ∈ Z

}
.

This is a closed, Φ-invariant subset of E. Denote its fibers by Kx := Ex ∩K.

Proposition 6.6. — There exists a T -invariant Borel set R ⊆M(Φ) such that:
– µ(M(Φ) rR) = 0 for every T -invariant probability measure µ;
– for all x ∈ R, the Oseledets space corresponding to the Lyapunov exponent β(Φ)

exists and coincides with Kx.

Proof. — Without loss of generality, assume that β(Φ) = 0. Let R0 ⊆ X be the Borel
set of points that satisfy the conclusions of Oseledets theorem. For each x ∈ R0∩M(Φ),
the Oseledets space Ox = Ox(0) ⊆ Ex is well-defined and has positive dimension, say
p(x). Calibrated vectors have zero Lyapunov exponent, so Kx ⊆ Ox. Consider the unit
balls on these Oseledets spaces, i.e., Bx := {u ∈ Ox ; |||u||| 6 1}. Then Φx(Bx) ⊆ BTx,
and therefore the following function is non-positive:

ψ(x) := log
vol(Φx(Bx))

vol(BTx)
.

Here vol means p(x)-dimensional volume with respect to a fixed Riemannian norm
on the bundle E; of course, the choice of this metric does not affect the function ψ.
Then ψ is cohomologous to the function ψ̃(x) := log det Φ(x)|Ox , where det denotes
the signless determinant induced by the Riemannian metric (see [5, p. 213]); indeed
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ψ = ψ̃+ϕ−ϕ◦T where ϕ(x) := log vol(Bx). All these functions are Borel measurable
and bounded. Let µ be any T -invariant probability measure supported onM(Φ), that
is, any Lyapunov maximizing measure. As a consequence of Oseledets theorem, we
have

∫
ψ̃ dµ = 0 (see [5, p. 214]). Since ψ is cohomologous to ψ̃, its integral is zero

as well. But ψ 6 0, so ψ = 0 µ-a.e. Let R1 := {x ∈ R0 ∩M(Φ) ; ψ(x) = 0} and
R :=

⋂
n∈Z T

−n(R1); then µ(R) = 1. Noting that ψ(x) = 0 if and only if Φ(x)|Ox
preserves |||·|||, we see that if x ∈ R then Ox ⊆ Kx. As remarked before, the reverse
inclusion is automatic, so Ox = Kx for every x ∈ R. Since set R has full measure with
respect to any Lyapunov maximizing measure, the set M(Φ) r R has zero measure
with respect to any T -invariant probability measure, as we wanted to show. �

Corollary 6.7. — Suppose Φ admits an extremal norm |||·|||. For each p ∈ [[1, d]] and
x ∈Mp(Φ), the set Kx contains a vector space of dimension p.

Proof. — Let µ be a measure whose p first Lyapunov exponents equal β(Φ) and
whose support equals Mp(Φ). Given x ∈Mp(Φ), take a sequence of neighborhoods Ui
converging to x. Since µ(Ui) > 0, by Proposition 6.6 we can find xi ∈ Ui such that the
Oseledets space corresponding to the Lyapunov exponent β(Φ) exists and coincides
with Kxi . Moreover, these spaces have dimensions at least p. Passing to subsequences,
we can assume that these dimensions are constant equal to some q > p, and that Kxi
converges to some q-dimensional space V . As K is a closed subset of E, we conclude
that V ⊆ Kx, completing the proof. �

Remark 6.8. — It is not necessarily the case that Kx is a subspace: see Example B.1
in Appendix B.1. On the other hand, if Kx is a subspace, then by Corollary 6.7 its
dimension is at least the number p such that x ∈ Mp(Φ) rMp+1(Φ). However, it is
not necessarily true that dimKx = p: see Example B.2 in Appendix B.1.

Proof of Theorem 6.5. — As usual, it is sufficient to consider β(Φ) = 0.
In the case p = d, we have Y ⊆Md(Φ) and so by Corollary 6.7 the extremal norm

is preserved along the bundle EY . So the trivial splitting EY ⊕ 0 has the required
properties. So let us suppose that p < d.

Fix a Riemannian norm ‖·‖ on E. For each x ∈ Y , by Corollary 6.7 the fiber Ex
contains a p-dimensional subspace formed by vectors u such that for every n > 0, we
have |||Φn(u)||| = |||u||| and therefore c−1

1 ‖u‖ 6 ‖Φn(u)‖ 6 c1‖u‖, for some constant
c1 > 1. Recalling the maxmin characterization of singular values (6.6), we conclude
that:

(6.8) c−1
1 6 σp(Φ

n
x) 6 · · · 6 σ1(Φnx) 6 c1 for all x ∈ Y and n > 0.

On the other hand, note that the set Mp+1(Φ|EY ) is contained in Y ∩Mp+1(Φ) and
therefore is empty. So Proposition 6.3 yields

β
(
Λp+1(Φ|EY )

)
< (p+ 1)β(Φ|EY ) = 0.
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Recalling that β(·) can also be characterized by (1.4), we conclude that there exist
positive constants c2 and τ such that for all x ∈ Y and n > 0,

‖Λp+1Φnx‖ 6 c2e−τn.

So, using (6.5) and (6.8), we have:

σp+1(Φnx) =
‖Λp+1Φnx‖
‖ΛpΦnx‖

6 cp1c2e
−τn

and σp(Φnx) > c−1
1 . So we have a uniform exponential gap between the p-th and p+ 1-

th singular values. By Theorem 6.4, the bundle EY admits a dominated splitting F⊕G
with a dominating bundle F of dimension p.

To conclude, we need to check that Φ preserves the extremal norm along the
bundle F. We will actually show that, in terms of notation (6.7), Kx = Fx for every
x ∈ Y . Since Φ is product bounded, domination implies that vectors inG are uniformly
contracted in the future, and therefore uniformly expanded in the past. Furthermore,
any vector in u ∈ Ex r Fx is uniformly expanded in the past, since we can write
u = v + w with v ∈ Fx, w ∈ Gx r {0} and then

|||Φ−n(u)||| > |||Φ−n(w)|||
(

1− |||Φ
−n(v)|||

|||Φ−n(w)|||

)
−→∞ as n −→ +∞.

In particular, vectors in ExrFx cannot be calibrated; that is, Kx ⊆ Fx. This inclusion
cannot be strict, thanks to Corollary 6.7. So Kx = Fx, as claimed. �

7. Further applications of extremal norms and Mather sets

7.1. Subordination. — By definition, the Mather set M(Φ) contains the support of
every Lyapunov maximizing measure. Let us see that the converse holds under the
hypothesis of strong fiber-bunching, regardless of reducibility:

Theorem 7.1. — Let T be a transitive hyperbolic homeomorphism. Let Φ be strongly
bunched automorphism covering T . Then every T -invariant probability measure whose
support is contained in the Mather set M(Φ) is Lyapunov maximizing.

Proof. — Let Φ: E → E be a strongly bunched automorphism and let ν be a
T -invariant probability measure whose support is contained in M(Φ); we want to
prove that χ1(Φ, ν) = β(Φ). By ergodic decomposition, it is sufficient to consider the
case of ergodic ν.

If Φ is irreducible (which is certainly the case if d = 1) then Φ is spannable by The-
orem 3.7, and so Φ admits an extremal norm by Theorem 5.2. Then Proposition 6.2
yields the desired conclusion.

From now on, assume that Φ is reducible, that is, there exists a θ-Hölder Φ-invariant
nontrivial subbundle F ⊂ E. By induction on dimension, we can assume that the
theorem holds for the restricted automorphism Φ|F and the quotient automorphism
Φ/F. Recall from (4.11) that β(Φ) = max{β(Φ|F), β(Φ/F)}.

As a first case, suppose that β(Φ) = β(Φ|F) > β(Φ/F). Then it follows from (4.12)
that an ergodic measure µ is Lyapunov maximizing for Φ if and only if it is Lyapunov
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maximizing for Φ|F. Therefore the Mather sets coincide: M(Φ) = M(Φ|F). The mea-
sure ν fixed at the beginning is supported on this set; so, by the induction hypothesis,
it is Lyapunov maximizing for Φ|F, that is, it is Lyapunov maximizing for Φ, as we
wanted to show.

The second case where β(Φ) = β(Φ/F) > β(Φ|F) is entirely analogous.
In the last case, we have β(Φ) = β(Φ|F) = β(Φ/F). Then it follows from (4.12) that

an ergodic measure µ is Lyapunov maximizing for Φ if and only if it is Lyapunov max-
imizing for Φ|F or for Φ/F. ThereforeM(Φ) = M(Φ|F)∪M(Φ/F). So the measure ν fixed
at the beginning has a support contained in the union of the two closed T -invariant
sets M(Φ|F) and M(Φ/F). By ergodicity, this support must be contained in one of the
two sets. By the induction hypothesis, ν is Lyapunov maximizing for Φ|F or for Φ/F.
In either case, it is Lyapunov maximizing for Φ, as we wanted to show. �

7.2. Lyapunov almost-maximizing periodic orbits of low period

Let Φ be a θ-Hölder automorphism covering a hyperbolic homeomorphism. For
each integer n > 1, let

βn(Φ) := max
{
χ1(Φ, µ) ; µ is supported on a periodic orbit of period 6 n

}
.

This is a bounded non-decreasing sequence, and so it is convergent. Actually, the
limit is:

(7.1) lim
n→∞

βn(Φ) = β(Φ).

Indeed, this follows from a much more general result of Kalinin [45, Th. 1.4] on the
approximation of Lyapunov exponents using measures supported on periodic orbits.
In the case of one-step cocycles, formula (7.1) is known as the Berger–Wang theorem,
and it was first proved in [11]. For other extensions of Berger–Wang theorem, see
[56, 28].

It is quite possible that the limit (7.1) is attained for some finite n (and indeed this
is expected to be the typical situation). On the other hand, in the worst-case scenario,
what can we say about the speed of the approximation in formula (7.1)? A result of
Morris [54] says that for one-step cocycles, this speed is always superpolynomial. Here
we show that the same is true for strongly bunched automorphisms:

Theorem 7.2. — If Φ is a strongly bunched automorphism then for every τ > 0,

β(Φ)− βn(Φ) = O(n−τ ).

The first result of superpolynomial approximation was actually obtained in the
context of ergodic optimization of Birkhoff averages by Bressaud and Quas [27], who
also showed that this type of bound is essentially sharp. The key ingredient is a
quantitative version of Anosov Closing Lemma, also due to Bressaud and Quas [27],
which we state as follows:

Theorem 7.3 (Bressaud–Quas Closing Lemma). — Let T : X → X be a hyperbolic
homeomorphism. Let Y ⊆ X be a nonempty compact T -invariant set. Then for every
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τ > 0 and every sufficiently large n, there exists a periodic orbit of period at most n
entirely contained in the n−τ -neighborhood of Y .

This result is proved in [27] for the one-sided full shift; as remarked in that paper,
one can use standard techniques to reduce to that case. Alternatively, one can prove
Theorem 7.3 directly, and we do so in Appendix A.6.

Proof of Theorem 7.2. — Recall from (4.11) that if Φ is reducible then we can replace
it by either a restricted or a quotient automorphism with the same maximal Lyapunov
exponent. Repeating this procedure a finite number of times, we eventually find a
irreducible automorphism with the same maximal Lyapunov exponent; this induced
automorphism will also be strongly bunched. So, without loss of generality, we assume
that Φ is irreducible. By Theorem 3.7, Φ is spannable, and by Theorem 5.2, Φ admits
a Hölder extremal norm |||·|||. Let p ∈ [[1, d]] be maximal such that the p-th Mather
set Mp(Φ) =: Y is nonempty. By Theorem 6.5, the restricted bundle EY admits a
dominated splitting F⊕G where the dominating bundle F has fibers of dimension p and
is calibrated in the sense that for every x ∈ Y and u ∈ Fx, we have |||Φ(u)||| = eβ(Φ)|||u|||.

By robustness of dominated splittings [36, Cor. 2.8], there exists a closed neighbor-
hood U of Y such that if Z :=

⋂
k∈Z T

−k(U) ⊇ Y is the maximal invariant set in this
neighborhood, then the restricted bundle EZ over the compact invariant set admits a
dominated splitting F⊕G, extending the previously found dominated splitting on EY .
Recall that the bundles of a dominated splitting are Hölder-continuous [36, Th. 4.11].
Furthermore, the extremal norm is also Hölder-continuous. It follows that there exist
ρ > 0 and C0 > 0 such that for every x ∈ Z and every u ∈ Fx,

eβ(Φ)−C0d(x,Y )ρ |||u||| 6 |||Φ(u)||| 6 eβ(Φ)|||u|||.

Fix τ > 0. Let C be given by Theorem 7.3; so for all sufficiently large n, there exists
a periodic orbit of period at most n supported on the Cn−τ -neighborhood of Y , and
so contained in Z. Let νn be the invariant probability measure supported on that
orbit. The bound obtained before implies:

χ1(Φ, ν) > β(Φ)− C0(Cn−τ )ρ.

So β(Φ)− βn(Φ) = O(n−ρτ ). Since τ > 0 is arbitrary, the theorem is proved. �

Appendix A. Proof of some technical results

A.1. Basic constructions on θ-Hölder bundles. — Recall our assumption from Sec-
tion 2.1 that the algebra of θ-Hölder functions on X is normal. Let us metrize the
product X ×X by d

(
(x, y), (x′, y′)

)
:= max

{
d(x, y),d(x′, y′)

}
.

Lemma A.1. — The algebra of θ-Hölder functions on X ×X is normal.

Proof. — Let K0, K1 ⊂ X ×X be two disjoint nonempty compact sets. Let ε > 0 be
a lower bound for the distance between a point in K0 and a point in K1. Let {Bi}
be a finite cover of X by open sets of diameter less than ε. Let {ρi} be a partition of
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unity subordinated to this cover and formed by θ-Hölder functions. Define a function
f : X ×X → R by:

f(x, y) :=
∑

(i,j) such that
(Bi×Bj)∩K1 6=∅

ρi(x)ρj(y).

Then f is θ-Hölder, takes values in the interval [0, 1], equals 0 on K0, and equals 1

on K1. This proves normality. �

Proof of Proposition 2.1 (existence of transport maps Iy←x)
Consider(10) the finite cover of X ×X formed by the following open sets:

Vk,` :=

{
Uk × Uk if k = `;
Uk × U` r ∆ if k 6= `,

where ∆ ⊆ X × X is the diagonal. Consider a partition of unity subordinate to
this cover, composed of θ-Hölder functions ρk,`; its existence is a consequence of
Lemma A.1. Given any pair of points x, y ∈ X, define a linear map from Ex to Ey by:

Iy←x :=
∑
(k,`)

ρk,`(x, y)h`(y) ◦ [hk(x)]−1,

where the sum is taken over the indices (k, `) such that Vk,` 3 (x, y). If (x, y) ∈ Ui×Uj
then the matrix:

[hj(y)]−1 ◦ Iy←x ◦ hi(x) =
∑
(k,`)

ρk,`(x, y) gj←`(y) ◦ gk←i(x)

is θ-Hölder continuous as a function of (x, y), and equals the identity when x = y. �

For the following proofs, it is convenient to fix another open cover {Vi} of X such
that Vi ⊂ Ui for each k. Note that for any Finsler norm ‖·‖ on E, we have:

(A.1) max
i

sup
x∈Vi

max
{
‖hi(x)‖, ‖[hi(x)]−1‖

}
<∞,

where these operators norms are relative to the norm ‖·‖x on Ex and the Euclidean
norm ‖·‖eucl on Rd.

Proof of Proposition 2.2 (composition of transport maps). — In order to prove the asser-
tion, it is sufficient to consider triples of points x, y, z that are close enough so that
they belong to a common coordinate neighborhood Vi. Consider the matrix

(A.2) Ĩy←x := [hi(y)]−1 ◦ Iy←x ◦ hi(x),

which by Proposition 2.1 is O(d(x, y)θ)-close to the identity matrix. Using a similar
notation for the other points, we have:

‖Ĩz←x − Id‖eucl = O(d(x, z)θ) and ‖Ĩy←z − Id‖eucl = O(d(y, z)θ).

(10)A different construction that provides the additional property (Iy←x)−1 = Ix←y (for suffi-
ciently close x, y) can be found in [46, p. 169]; however, we will not need that property.
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Therefore:

‖Ĩy←z ◦ Ĩz←x − Ĩy←x‖eucl = O
(

max{d(x, z)θ,d(y, z)θ}
)
.

Since Iy←z ◦ Iz←x − Iy←x = hi(y) ◦
(
Ĩy←z ◦ Ĩz←x − Ĩy←x

)
◦ [hi(x)]−1, using the

boundedness property (A.1) we obtain

‖Iy←z ◦ Iz←x − Iy←x‖eucl = O
(

max{d(x, z)θ,d(y, z)θ}
)
,

as we wanted to show. �

Proof of Proposition 2.3 (characterization of θ-Hölder norms). — Let ‖·‖ be a θ-Hölder
Finsler norm. In order to prove the desired estimate, it is sufficient to consider pairs of
points x, y that are close enough so that they belong to a same set Vi. By definition,
for every u ∈ Rd, the map x ∈ Vi 7→ ‖hi(x)u‖ is θ-Hölder, and so there is a constant
C > 0 such that, for all x, y ∈ Vi,

(A.3)
∣∣‖hi(y)u‖ − ‖hi(x)u‖

∣∣ 6 C‖u‖eucl d(x, y)θ.

Using the boundedness property (A.1) and compactness of the unit sphere, we can
find a uniform C so that the estimate above holds for every u ∈ Rd.

Recall that that the matrix defined in (A.2) satisfies ‖Ĩy←x− Id‖eucl = O(d(x, y)θ).
Now, given v ∈ Ex, consider u := [hi(x)]−1v. Then:∣∣‖Iy←xv‖ − ‖v‖∣∣ =

∣∣‖hi(y)Ĩy←xu‖ − ‖hi(x)u‖
∣∣

6
∣∣‖hi(y)Ĩy←xu‖ − ‖hi(y)u‖

∣∣+
∣∣‖hi(y)u‖ − ‖hi(x)u‖

∣∣.
Using (A.1) and (A.3), we conclude that

∣∣‖Iy←xv‖ − ‖v‖∣∣ = O(‖v‖d(x, y)θ), that is,∣∣‖Iy←x‖ − 1
∣∣ = O(d(x, y)θ), as claimed.

The proof of the converse is entirely analogous. �

Proof of Proposition 2.4 (characterization of θ-Hölder endomorphisms)
Suppose Φ is θ-Hölder. In order to prove the desired estimate, it is sufficient to

consider pairs of points x, y that are close enough so that they belong to a same set
Vi ∩ T−1(Vj). Let Φ̃x := [hj(Tx)]−1 ◦Φx ◦ hi(x) and similarly define Φ̃y. Let Ĩy←x be
defined by (A.2), and similarly define ĨTx←Ty; by Proposition 2.1 these matrix-valued
maps are θ-Hölder as functions of (x, y). So the map (x, y) 7→ ĨTy←Tx ◦ Φ̃x− Φ̃y ◦ Ĩy←x
is also θ-Hölder, and since it vanishes on (x, x) we conclude that:

(A.4)
∥∥ĨTy←Tx ◦ Φ̃x − Φ̃y ◦ Ĩy←x

∥∥ = O(d(x, y)θ).

Using the boundedness property (A.1) we obtain:∥∥ITy←Tx ◦ Φx − Φy ◦ Iy←x
∥∥ = O(d(x, y)θ),

as desired.
Conversely, assume that such an estimate holds; then (A.4) follows from (A.1).

By Proposition 2.1, the matrices Ĩy←x and ĨTy←Tx are O(d(x, y)θ)-close to the iden-
tity. It follows that the matrices Φ̃x and Φ̃y are O(d(x, y)θ)-close. This means that Φ

is θ-Hölder. �

J.É.P. — M., 2019, tome 6



990 J. Bochi & E. Garibaldi

A.2. Existence of holonomies. — We begin with a straightforward estimate:

Lemma A.2. — Let Φ ∈ AutθK(E, T ). For every x, y ∈ X and n > 0 we have:

‖(Φny )−1‖ ‖Φnx‖ 6
n−1∏
j=0

eK1d(T jx,T jy)θ bol(ΦT jy),

where K1 depends only on K.

Proof. — By submultiplicativity of norms and the definition of bolicity, we have:

‖(Φny )−1‖ ‖Φnx‖ 6
n−1∏
j=0

‖(ΦT jy)−1‖ ‖ΦT jx‖ =

n−1∏
j=0

‖ΦT jy‖−1 ‖ΦT jx‖ bol(ΦT jy),

and so the claimed inequality holds with K1 being the θ-Hölder constant of log ‖Φ‖.
This constant can be estimated in terms of K, using (2.3). �

Proof of Proposition 2.8 (existence of holonomies). — By symmetry, it is sufficient to
consider ? = s. The stable holonomy is defined as:

(A.5) Hs
y←x := lim

n→+∞
(Φny )−1 ◦ ITny←Tnx ◦ Φnx︸ ︷︷ ︸

Hn

,

where x and y are in a same stable set. Let us establish convergence. Assume first
that y ∈W s

ε0(x). We have:

Hn+1 −Hn = (Φn+1
y )−1 ◦

(
ITn+1y←Tn+1x ◦ ΦTnx − ΦTny ◦ ITny←Tnx

)︸ ︷︷ ︸
∆n

◦Φnx ,

and so, using the definition (2.5) of the set AutθK(E, T ) and Lemma A.2,

‖Hn+1 −Hn‖ 6 K‖∆n‖ ‖(Φny )−1‖ ‖Φnx‖

6 K2 d(Tnx, Tny)θ
n−1∏
j=0

eK1d(T jx,T jy)θ bol(ΦT jy).

By property (2.7) in the definition of hyperbolicity, for every j > 0 we have

d(T jx, T jy) 6 e−λ
(j)
s (y)d(x, y), where λ(j)

s (y) :=

j−1∑
i=0

λs(T
iy).

Since λs is strictly positive, the series
∑∞
j=0 d(T jx, T jy)θ is convergent. Therefore

‖Hn+1 −Hn‖ 6 K2 e
−θλ(n)

s (y)

(n−1∏
j=0

bol(ΦT jy)

)
d(x, y)θ,

where K2 > 0 is another constant. Take a small constant η > 0 such that the fiber-
bunching condition (2.12) still holds if the right hand side is multiplied by 1 − η. In
particular, bol(ΦT jy) < e(1−η)θλs(T

jy) and so

(A.6) ‖Hn+1 −Hn‖ 6 K2 e
−ηθλ(n)

s (y)d(x, y)θ.
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This establishes uniform exponential convergence in formula (A.5) when y ∈W s
ε0(x).

Using (2.9) we see that convergence holds whenever y ∈ W s(x). The groupoid prop-
erties (a) and (b) are the equivariance property (c) are automatic from the definition.
The Hölderness property (d) follows by summing (A.6) for n = 0 to∞, and noting that
H0 = Iy←x. The joint continuity property (e) also follows from the uniformity of our
estimates. Finally, if we consider a small C0 perturbation of Φ in the set AutθK(E, T ),
then we can use the same constantsK2 and η in (A.6), and so the remaining assertions
of the proposition follow. �

A.3. Regularity estimates. — In this section, we prove Propositions 2.6 and 2.10.
Before going into the proofs, let us state our estimates for Hölder exponents.

Since T is Lipschitz, we can find ε1 ∈ (0, ε0) and a continuous strictly positive
function Λu such that for all x, x′, x′′ ∈ X,

(A.7) x′, x′′ ∈W u
ε1(x) =⇒

{
Tx′, Tx′′ ∈W u

ε0(Tx),

d(Tx′, Tx′′) 6 eΛu(x)d(x′, x′′).

We will show that the conclusion of Proposition 2.6 holds for any κs in the range:

(A.8) 0 < κs < inf
X

λs + λu

λs + Λu
.

Let

(A.9) ϕ(x) := log bol(Φx).

We will show that the conclusion of Proposition 2.10 holds for any κs in the range:

(A.10) θs < inf
X

θλs − ϕ
λs + Λu

.

(Note that the numerator is positive by fiber-bunching.)
The idea of the proof of Proposition 2.6 is roughly as follows. Without loss of

generality, we can assume that the “quadrilateral” in Figure 2.1 has a “base” d(x, x′)

much smaller than the two “legs” d(x, x′), d(x, y). We take N > 0 as big as possible
for which we can guarantee that the TN -image of that quadrilateral has a base smaller
than the legs. We estimate the “summit” d(TNy, TNy′) using the triangle inequality,
and finally we iterate backwards to obtain the desired estimate for d(y, y′). The proof
of Proposition 2.10 uses the same “there and back again” idea. Formal proofs follow.

Let us denote the Birkhoff sums of a function f : X → R as:

f (n) := f + f ◦ T + · · ·+ f ◦ Tn−1, f (0) := 0.

Lemma A.3. — For any strictly positive continuous function f on X and any a ∈
(0, 1), there exists b(f, a) > 0 such that for any z ∈ X and any n > 0,

z′ ∈W s
ε0(z) ∪ T−n(W u

ε0(Tnz)) =⇒ f (n)(z′) > af (n)(z)− b(f, a).

Proof. — It is sufficient to consider the case z′ ∈ W s
ε0(z), since the case z′ ∈

T−n(W u
ε0(Tnz)) follows by reversing the time. By uniform continuity of f and uni-

form contraction on local stable sets, we can find an integer k = k(f, a) > 0 such that

J.É.P. — M., 2019, tome 6



992 J. Bochi & E. Garibaldi

if z′ ∈ W s
ε0(z) then f(T jz′) > af(T jz) for every j > k. Letting b(f, a) := ak supX f ,

we obtain the desired conclusion. �

We start the proofs of Propositions 2.6 and 2.10 with some estimates that are
common to them. Fix κs and θs satisfying (A.8) and (A.10), respectively. Fix a number
a ∈ (0, 1) sufficiently close to 1 such that:

κs < inf
X

a(λs + λu)

aλs + Λu
,(A.11)

θs < inf
X

a(θλs − ϕ)

aλs + Λu
.(A.12)

Fix four points x, x′, y, y′ satisfying (2.10). Let δ := d(x, x′). Note that to prove
Propositions 2.6 and 2.10, it is sufficient to consider δ smaller than a fixed positive
constant, say ε1 from (A.7). Let N be the largest nonnegative integer such that:

(A.13) aλ(N)
s (x) + Λ(N)

u (x) < log(ε1/δ);

Then:

(A.14) aλ(N)
s (x) + Λ(N)

u (x) > log(ε1/δ)− c,

for some constant c, namely c := supX(aλs + Λu). In particular, assuming that δ is
small enough, N will be large and so the following inequality will hold:

(A.15) eaλ
(N)
s (x) > 2 + eb(λs,a)

(where b comes from Lemma A.3).
Using (A.7) and (A.13), one checks by induction that the following chain of inequa-

lities hold for each n ∈ [[0, N ]]:

(A.16) d(Tnx, Tnx′) 6 δeΛ(n)
u (x) 6 ε1e

−aλ(n)
s (x) 6 ε1.

This gives estimates for the base of the “quadrilateral” obtained as the Tn-image of
that of Figure 2.1. Let us estimate the other sides; the “legs” are:

d(Tnx, Tny) 6 ε0e
−λ(n)

s (x),(A.17)

d(Tnx′, Tny′) 6 ε0e
−λ(n)

s (x′) 6 ε0e
−aλ(n)

s (x)+b(λs,a),(A.18)

where in the last inequality we used Lemma A.3. Therefore the “summit” is:

d(Tny, Tny′) 6 d(Tnx, Tny) + d(Tnx, Tnx′) + d(Tnx′, Tny′)(A.19)

6 (2 + eb(λs,a))ε0e
−aλ(n)

s (x)(A.20)
6 ε0,(A.21)

where in the last step we used assumption (A.15).
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We estimate the base of the original quadrilateral by iterating backwards:

d(y, y′) 6 e−λ
(N)
u (y)d(TNy, TNy′) (by (A.21))

= O
(
e−aλ

(N)
u (x)d(TNy, TNy′)

)
(by Lemma A.3)

= O
(
e−a[λ(N)

s (x)+λ(N)
u (x)]

)
(by (A.20))

= O
(
e−κs[aλ

(N)
s (x)+Λ(N)

u (x)]
)

(by (A.11))
= O

(
δκs
)

(by (A.14)).

This proves Proposition 2.6. �
We proceed to the proof of Proposition 2.10. In what follows, the constants implicit

in O can be taken uniform on a a C0-neighborhood of Φ in AutθK(E, T ). For n > 0,
define

Γn := Hu
Tny′←Tny ◦Hs

Tny←Tnx −Hs
Tny′←Tnx′ ◦Hu

Tnx′←Tnx.

Let us estimate the norm of these linear maps. First,

‖Γ0‖ 6
∥∥Hu

y′←y ◦Hs
y←x − Iy′←x

∥∥+
∥∥Hs

y′←x′ ◦Hu
x′←x − Iy′←x

∥∥ =: 1 + 2 .

We estimate the first term:

1 6
∥∥Hu

y′←y ◦ (Hs
y←x − Iy←x)

∥∥
+
∥∥(Hu

y′←y − Iy′←y) ◦ Iy←x
∥∥+ ‖Iy′←y ◦ Iy←x − Iy′←x‖ .

Using (2.14) and Proposition 2.2, we conclude that

1 = O
(

max
{

d(x, y)θ,d(y, y′)θ
})
.

An analogous reasoning yields:

2 = O
(

max
{

d(x, x′)θ,d(x′, y′)θ
})
.

So we obtain:

‖Γ0‖ = O
(

max
{

d(x, x′)θ,d(y, y′)θ,d(x, y)θ,d(x′, y′)θ
})
.

Any of these four distances, say d(y, y′), is less than the sum of the other three; so:

‖Γ0‖ = O
(

max
{

d(x, x′)θ,d(x, y)θ,d(x′, y′)θ
})
.

Now if n ∈ [[0, N ]], the corresponding quadrilateral has sides are bounded by ε0 (esti-
mates (A.16)–(A.21)), and the exact same argument yields:

‖Γn‖ = O
(

max
{

d(Tnx, Tnx′)θ,d(Tnx, Tny)θ,d(Tnx′, Tny′)θ
})
.

Then, using estimates (A.16), (A.17), and (A.18) we obtain:

(A.22) ‖Γn‖ = O
(
e−θaλ

(n)
s (x)

)
.

As a consequence of estimates (A.16) and (A.18), if j ∈ [[0, N ]] then d(T jy′, T jx) =

O
(
e−aλ

(j)
s (x)

)
. So it follows from Lemma A.2 that

(A.23) ‖(Φny′)−1‖ ‖Φnx‖ = O
(
eϕ

(n)(y′)
)
, for n ∈ [[0, N ]].
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Now we want to iterate backwards to obtain a finer estimate for ‖Γ0‖. By the
groupoid properties of holonomies, Γ0 = (Φny′)

−1 ◦ Γn ◦ Φnx . Therefore:

‖Γ0‖ = O
(
eϕ

(N)(y′) ‖ΓN‖
)

(by (A.23))

= O
(
e−θaλ

(N)
s (x)+aϕ(N)(x)

)
(by (A.22) and Lemma A.3)

= O
(
e−θs[aλ

(N)
s (x)+Λ(N)

u (x)]
)

(by (A.12))

= O
(
δθs
)

(by (A.14)).

Proposition 2.10 is proved. �

Proof of Lemma 3.6 (the strong bunching constant). — Fix any positive

(A.24) η0 6 inf
X

θλs

λs + λu + Λu
.

Suppose Φ is a (η0, θ)-bunched automorphism. This means that the function ϕ defined
by (A.9) is less than η0λu. Therefore we have pointwise inequalities:

θλs − ϕ
λs + Λu

>
θλs − η0λu

λs + Λu
> η0.

So there exists θs > η0 that satisfies (A.10). �

A.4. The metric on the Grassmannian. — Let E be an inner product space of di-
mension d. If V1, V2 ⊆ E are subspaces of the same dimension p > 0, we define:

(A.25) d(V1, V2) := inf
F1,F2

‖F1 − F2‖,

where each Fi runs over all linear isomorphisms Fi : Rp → Vi such that ‖F−1
i ‖ 6 1.

(We consider Rp endowed with the canonical inner product, and ‖·‖ always denotes
the operator norm.)

Proposition A.4. — d is a metric on the Grassmannian Gp(E).

Proof. — Symmetry and the triangular inequality are trivially satisfied, so let us
check non-degeneracy. Suppose V1 6= V2 ∈ Gp(E). Take a unit vector v1 in V1 but not
in V2. Then there exists δ > 0 such that ‖v1 − v2‖ > δ for every v2 ∈ V2. For each
i ∈ {1, 2}, let Fi : Rp → Vi be a linear isomorphism such that ‖F−1

i ‖ 6 1. Then:

‖F1 − F2‖ >
‖v1 − F2(F−1

1 (v1))‖
‖F−1

1 (v1))‖
> ‖v1 − F2(F−1

1 (v1))‖ > δ.

This shows that d(V1, V2) > δ > 0. �

Proof of Proposition 3.1 (linearly induced maps are Lispchitz). — Consider a linear iso-
morphism L : E → F between d-dimensional inner product spaces. For each i ∈ {1, 2},
let Vi ∈ Gp(E), and let Wi := L(Vi). Let Fi : Rp → Vi be a linear isomorphism such
that ‖F−1

i ‖ 6 1. Define Gi : Rp → Wi by Gi := ‖L−1‖L ◦ Fi. Then Gi is a linear
isomorphism and ‖G−1

i ‖ 6 1. So

d(W1,W2) 6 ‖G1 −G2‖ = ‖L−1‖ ‖L ◦ F1 − L ◦ F2‖ 6 bol(L)‖F1 − F2‖.
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Taking infimum over the Fi’s, we obtain d(W1,W2) 6 bol(L)d(V1, V2). This proves
that the map induced by L has Lipschitz constant bol(L). �

Proof of Proposition 3.2 (maps close to the identity). — Suppose L : E → E satisfies
‖L − id‖ 6 δ 6 1/2. Note that ‖L−1‖ 6 (1 − δ)−1. Fix an arbitrary V ∈ Gp(E).
Let F1 : Rp → V be an isometry, and let F2 := (1 − δ)−1L ◦ F1. Then ‖F−1

1 ‖ = 1,
‖F−1

2 ‖ 6 1, and so

d(V,LV ) 6 ‖F1 − F2‖ = ‖id− (1− δ)−1L‖ 6 ‖id−L‖+
δ

1− δ
‖L‖ 6 2δ

1− δ
6 4δ. �

Proof of Proposition 3.3 (span is locally Lipschitz). — This is an easy consequence of
the definition (A.25), and details are left to the reader. �

Remark A.5. — It can be shown that our metric (A.25) coincides with the metric
used in [17, §A.1].

A.5. Typical fiber-bunched automorphisms are irreducible. — Recall from Sec-
tion 2.3 that Endθ(E, T ) denotes the vector space of θ-Hölder endomorphisms, which
becomes a Banach space with the θ-Hölder norm (2.4). The set Autθ(E, T ) of θ-Hölder
automorphisms and the subset B ⊂ Autθ(E, T ) of fiber-bunched automorphisms are
both open subsets of Endθ(E, T ) (actually they are C0-open).

A subset of a Banach space is said to be of infinite codimension if it is locally
contained in the union of finitely many closed submanifolds of arbitrarily large codi-
mension.

Proposition A.6. — Suppose X is infinite, T : X → X is a transitive hyperbolic
homeomorphism, and E is a θ-Hölder vector bundle over X. Then there exists an open
and dense subset I of the set B ⊂ Autθ(E, T ) of fiber-bunched automorphisms such
that every Φ ∈ I is irreducible. Furthermore, the set BrI has infinite codimension.

The proof is an obvious adaptation of arguments from [21, 72], so we will make it
concise.

Proof. — As a consequence of shadowing and expansivity, the hyperbolic homeomor-
phism T has infinitely many periodic points (see e.g. [1, p. 228]). Select one of these,
say a point p of period k, and a homoclinic point q associated to p. If Φ is reducible
then it admits a non-trivial θ-Hölder Φ-invariant subbundle F which by Corollary 3.5
is both Hu- and Hs-invariant. Then the subspace Fp ⊆ Ep is invariant under two
different linear maps, namely Φkp and Hu

p←q ◦Hu
q←p. On the other hand, we claim that

the property that these two maps admit a common nontrivial invariant subspace is
atypical in the space Autθ(E, T ); more precisely, it has positive codimension and, a
fortiori, empty interior.

First note that the property that an element of GL(d,R) admits infinitely many in-
variant subspaces is atypical (because it implies the existence of a complex eigenvalue
of geometric multiplicity bigger than 1). So for typical Φ ∈ Autθ(E, T ), the collection
of Φkp-invariant subspaces is finite.
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On the other hand, choose a closed neighborhood U of q that is disjoint from the
future and past iterates of q. If we perturb the automorphism in this neighborhood
(or rather in π−1(U)) then the maps Φkp and Hu

q←p are unaffected, but Hs
p←q changes,

and actually any small perturbation of Hs
p←q can be realized with a perturbation

of Φ supported in U . In particular, with a well-chosen perturbation, the composition
of holonomies sends each of the (finitely many) Φkp-invariant nontrivial subspaces of Ep
into something transverse to it. Such an automorphism Φ cannot be reducible. This
shows that irreducibility has dense interior in Autθ(E, T ).

The argument actually shows that if Φ is reducible then it must satisfy infinitely
many independent conditions of positive codimension, at least one for each homoclinic
orbit. Therefore reducibility has infinite codimension. See [72, §4] for full details. �

A.6. Bressaud–Quas Closing Lemma. — Here we will prove Theorem 7.3. Though
our formulation is different, the key ideas come from [27].

Let f : Y → Y be any homeomorphism of a compact metric space (Y,d). For
ε > 0, an (ε,d, f)-pseudoorbit is a string of points (x0, x1, . . . , xn−1) such that
d(f(xi), xi+1) < ε for every i ∈ [[0, n− 2]]. If additionally d(f(xn−1), x0) < ε then we
say that the pseudo-orbit is periodic, with period n; in that case indices can be taken
as integers mod n instead. Let R(ε, d, f) denote the minimal period of a periodic
(ε, d, f)-pseudoorbit. Note that:

(A.26) R(ε, d, f) 6 nR(ε, d, fn) for every n > 1.

A set E ⊆ Y is called (ε, d)-separated if d(x, y) > ε for every pair of distinct points
x, y ∈ E. Let S(ε,d) be the maximal cardinality of a (ε,d)-separated set.

Define a sequence of metrics by:

dn,f (x, y) := max
i∈[[0,n−1]]

d(f i(x), f i(y)).

Lemma A.7. — Let ε > 0. Suppose that R(ε, d, f) > m > 0. Then:

logm 6 logS(ε/2,d)− 1
m logS(ε, dm,f ) + 1.

Proof. — Let E be a (ε/2,d)-separated set of maximal cardinality. Note that the
d-balls of radius ε/2 and centers at the points of E cover Y , because otherwise we
could enlarge E by adding any point not covered.

Let F be a (ε, dm,f )-separated set of maximal cardinality. For each y ∈ F , choose
a m-tuple (x0, . . . , xm−1) of points in E such that d(xj , f

j(y)) < ε/2 for each j ∈
[[0,m − 1]]. First, we claim that these xj ’s are all distinct. Indeed, if xj = xk with
j < k, then d(f j(y), fk(y)) < ε, so

(
f i(y)

)
i∈[[j,k−1]]

is a periodic (ε, d)-pseudoorbit of
period k − j 6 m− 1 < R(ε, d, f), contradiction.

Second, we claim that if y 6= y′ ∈ F then the correspondingm-tuples (x0, . . . , xm−1)

and (x′0, . . . , x
′
m−1) are distinct. Indeed, if the two m-tuples coincide then for each

j ∈ [[0,m − 1]] we have d(f j(y), f j(y′)) < ε. This means that dm,f (y, y′) < ε. Since
the set F is (ε, dm,f )-separated, we conclude that y = y′.
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Third, we claim that if y 6= y′ ∈ F then the sets {x0, . . . , xm−1} and {x′0, . . . , x′m−1}
are distinct. Indeed, if the two sets coincide then x′i = xσ(i) for some permutation σ of
[[0,m−1]]. By the previous claim, this permutation is not the identity; therefore there
exists ` ∈ [[0,m−2]] such that k := σ(`) > σ(`+1) =: j. Then d(f `(y′), fk(y)) < ε and
d(f `+1(y′), f j(y)) < ε. Therefore

(
f j(y), f j+1(y), . . . , fk−1(y), f `(y′)

)
is a periodic

(ε, d)-pseudoorbit of period k − j + 1 6 m < R(ε,d, f), contradiction.
We conclude that the number of elements of the set F cannot exceed the number

of subsets of the set E with exactly m elements, that is,

|F | 6
(
|E|
m

)
6
|E|m

m!
6
(e|E|
m

)m
.

Taking log’s, recalling that |E| = S(ε/2,d) and |F | = S(ε/2,dm,f ), and rearranging,
we obtain the inequality stated in the lemma. �

Recall that a homeomorphism f : Y → Y is called expansive if there is a uniform
separation between every pair of distinct orbits. In that case, the topological entropy
htop(f) is finite; furthermore, for every sufficiently small ε > 0, the limit

(A.27) lim
n→∞

logS(ε, dn,f )

n
exists and equals htop(f);

see [73, p. 174, 177].

Lemma A.8. — If f is expansive then for every sufficiently small ε > 0 we have:

lim
n→∞

logR(ε, dn,f , f)

n
= 0.

Proof. — Fix a small ε > 0 and a large integer n. Write Rn := R(ε, dn,f , f) and
mn := b(Rn − 1)/nc. Assume that mn > 0, otherwise (logRn)/n is already small.
Using (A.26), we have R(ε,dn,f , f

n) > mn. Applying Lemma A.7, we obtain that
logmn

n
6

logS(ε/2,dn,f )

n
− logS(ε, dnmn,f )

nmn
+

1

n
.

By (A.27), the right-hand side is small: the first two terms essentially cancel each
other. It follows that (logRn)/n is small. �

Proof of Theorem 7.3. — Given the hyperbolic homeomorphism T and the compact
T -invariant set Y 6= ∅, let f be the restriction of T to Y . Hyperbolic homeomorphisms
are expansive (recall Remark 2.5), so f is expansive as well.

Fix ε > 0 small enough so that Lemma A.8 applies. Note that if (xi)i∈Z/kZ is a
periodic (ε, dn, f)-pseudoorbit then, letting yi := fdn/2e(xi), we have, for all i ∈ Z/kZ,

max
j∈[[−dn/2e,dn/2e−1]]

d(f j+1(yi), f
j(yi+1)) < ε.

Hyperbolicity implies that d(f(yi), yi+1)) < Ce−λnε =: εn, where C and λ are positive
constants. That is, (yi)i∈Z/kZ is a periodic (εn,d, f)-pseudoorbit. So R(ε, df,n, f) >
R(εn,d, f) =: Nn. In particular,

logNn
n

and logNn

log ε−1
n

also tend to 0 as n −→∞.

J.É.P. — M., 2019, tome 6



998 J. Bochi & E. Garibaldi

Therefore, for any given τ > 0, if n is large enough then εn < N−τn . By definition, there
exists a periodic (εn,d, T )-pseudoorbit of period Nn in the set Y . By the Lipschitz
shadowing lemma [66, Th. 2], there exist a periodic orbit for T of period Nn within
distance O(εn) = O(N−τn ). This proves the theorem. �

Appendix B. Examples

Here we present examples that show some of the limits of our results.

B.1. Examples of sets of calibrated vectors with exceptional behavior

The following two examples show that the set K of calibrated vectors defined by
(6.7) can have exceptional fibers, justifying Remark 6.8.

Example B.1. — Let T : X → X be a hyperbolic homeomorphism having a fixed
point x0. Let f be a non-negative Hölder function vanishing only at x0. Consider the
cocycle

A(x) :=

(
1 0

0 e−f(x)

)
.

Then the corresponding automorphism Φ on the trivial bundle E := X × R2 has
β(Φ) = 0, and its Mather sets are M1(Φ) = X and M2(Φ) = {x0}. The max norm
|||(u1, u2)||| := max{|u1|, |u2|} is extremal. Consider the corresponding set K of cali-
brated vectors, defined by (6.7). If x ∈W u(x0) r {x0} then the fiber

Kx =
{

(u1, u2) ∈ R2 ; |u2| 6 e
∑∞
n=1 f(T−nx)|u1|

}
is not a subspace.

Example B.2. — Suppose T : X → X is a homeomorphism admitting two nonempty
compact invariant sets X1, X2 such that:

– each Xi equals the support of some T -invariant probability measure µi;
– X1 ∪X2 = X;
– X1 ∩ X2 = {x0} ∪ {Tny0 ; n ∈ Z} where x0 is a fixed point and y0 6= x0 is an

homoclinic point.
Let f be a non-negative continuous function vanishing only at X1 ∩X2. Consider the
cocycle

A(x) :=

(
1 0

0 e−f(x)

)
if x ∈ X1, A(x) :=

(
e−f(x) 0

0 1

)
if x ∈ X2.

Then the corresponding automorphism Φ on the trivial bundle E := X × R2 has
β(Φ) = 0, and its Mather sets are M1(Φ) = X and M2(Φ) = {x0}. The Euclidean
norm is extremal. Consider the corresponding set K of calibrated vectors, defined by
(6.7). Then Ky0

= R2 despite the fact that y0 ∈M1(Φ) rM2(Φ).

Remark B.3. — One may contend that “correctly” defined Mather sets should not
lie in the base X, but instead in the bundle E, or in its projectivization Ê. Fix a
norm ‖·‖ on E and define a function f : Ê→ R by f([u]) := log(‖Φu‖/‖u‖). Let M̂ be
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the union of the supports of all probability measures on Ê that are invariant under
the automorphism Φ̂ and that maximize the integral of the function f . Let M :=

{u ∈ E ; u = 0 or [u] ∈ M̂}. This is a closed subset of E that projects down on the
Mather set M(Φ) ⊆ X. Given an extremal norm, it is clear that the fibers of M are
calibrated, i.e., Mx ⊆ Kx for every x ∈ M(Φ). A stronger property actually holds:
span(Mx) ⊆ Kx for every x ∈M(Φ); we omit the proof. However, Mx may fail to be
a subspace. Indeed, in Example B.2 the set My0 is a union of two lines.

B.2. On Riemannian extremal norms. — After having established the existence of
extremal Finsler norms (under appropriate hypotheses), one naturally wonders about
the existence of extremal Riemannian norms. Let us begin with a weak positive result:

Proposition B.4. — In the situation of Theorem 6.5, there exists a Riemannian norm
‖·‖′ such that for all x ∈ Y , the spaces Fx and Gx are orthogonal, and

‖Φ(v)‖′ = eβ(Φ) > ‖Φ(w)‖′ for all unit vectors v ∈ Fx, w ∈ Gx.

Proof. — As usual, assume β(Φ) = 0. For each x ∈ Y , consider the restriction of
the extremal norm to the space Fx, and let Bx ⊆ Fx be the unit ball. Let Ex be the
John ellipsoid of Bx, namely the unique ellipsoid of maximal volume contained in Bx

(see e.g. [9]). This field of ellipsoids is continuous, since finding the John ellipsoid is a
continuous operation (as a consequence of its uniqueness). Consider the Riemannian
norm on the bundle F whose unit balls are the Ex’s. Since Φx(Bx) = BTx and the John
ellipsoid is equivariant with respect to linear isomorphisms, we obtain Φx(Ex) = ETx.
This means that the Riemannian norm just constructed on the bundle F is preserved
by Φ.(11)

In the bundle G, we use the standard construction of Lyapunov norms (see e.g. [47,
p. 667]). Fix a small positive ε, and for each x ∈Mp and w ∈ Gx, let:

‖w‖′x :=

( ∞∑
n=0

e2εn‖Φnx(v)‖2
)1/2

.

As a consequence of domination, the series converges exponentially, so the formula
yields a well-defined continuous Riemannian norm on the bundle G. It is immediate
that ‖Φx(w)‖′ 6 e−ε‖w‖′, so the norm along G is uniformly contracted. Finally, we
extend the Riemannian norm to the fibers Ex for x ∈ Y by declaring Fx and Gx to
be orthogonal. This completes the construction. �

The Riemannian norm ‖·‖′ provided by Proposition B.4 is extremal over the re-
stricted subbundle EY = π−1(Y ). Can one extend this Riemannian norm to the whole
bundle, keeping it extremal? The answer is no, as we will see next.

We will present an example of an irreducible fiber-bunched automorphism in di-
mension 2 that admits no Riemannian extremal norm.

(11)Incidentally, note that if the John ellipsoid were monotonic with respect to set inclusion,
then we could use it to “Riemannize” any given Finsler extremal norm. However, monotonicity fails:
consider for instance a pair of rectangles as in Figure B.1.
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Consider the following two matrices:

(B.1) A0 :=

(
0 −1

1 0

)
, A1 :=

(
0.8 −0.1

0.8 0.1

)
.

Let (T, F ) be the corresponding one-step cocycle (see Example 5.6), and let Φ be
the corresponding automorphism of the trivial vector bundle E = X × R2. Con-
sider a Hölder exponent θ = 1, and take the parameter λ in the metric (5.12) large
enough so that Φ becomes fiber-bunched. Consider the fixed point p = (pn) where
each pn := 0. Since F (p) = A0 has non-real eigenvalues, the automorphism Φ is
irreducible: there can be no nontrivial Φ-invariant subbundle. Then Theorem 5.2
yields the existence of an extremal norm. Actually, the max norm in R2, defined by
|||(u1, u2)||| := max{|u1|, |u2|}, is an extremal norm. Indeed, the operator norms of our
two matrices are:

|||A0||| = 1, |||A1||| = 0.9.

Since the spectral radius of A0 is 1, it follows that β(Φ) = 0, and so |||·||| is a (constant)
extremal norm, as claimed. Also note that δp is the unique Lyapunov-maximizing
measure.

Proposition B.5. — The automorphism Φ admits no Riemannian extremal norm.

Proof. — Assume for a contradiction that Φ admits a Riemannian extremal norm
{‖·‖x}x∈X . Since eβ(Φ) = 1 is the spectral radius of F (p) = A0, we must have:

‖A0‖p←p 6 1,

in the operator norm notation (1.2). This means that if D ⊂ R2 denotes the unit ball
in the norm ‖·‖p, we have A0(D) ⊆ D. Since the norm is assumed to be Riemannian,
D is a (filled) ellipse, and since A0 is a rotation, this ellipse must be a disk. Rescaling
the norm if necessary, we can assume that D is the unit disk. Equivalently, ‖·‖p←p is
the usual Euclidean operator norm, which for emphasis we will write ‖·‖eucl.

Consider the homoclinic point q := (. . . 0, 0, 1. , 0, 0 . . . ), i.e., the sequence that has
a unique symbol 1 at position 0. Note that for any k > 0 we have the identity:

(B.2) Hs
p←q ◦Hu

q←p = Φ−kp ◦Hs
p←Tkq ◦ Φ2k

T−kq ◦H
u
T−kq←p ◦ Φ−kp .

In particular, taking k = 1, by triviality of local holonomies (5.13) we obtain:

Hs
p←q ◦Hu

q←p = A−1
0 ◦ id ◦A1A0 ◦ id ◦A−1

0

= A−1
0 A1.

Using that A0 preserves Euclidean norm, applying the extremal Riemannian norm
to (B.2):

‖A1‖eucl = ‖A−1
0 A1‖eucl = ‖Hs

p←q ◦Hu
q←p‖

6 ‖Φ−kp ‖︸ ︷︷ ︸
=1

‖Hs
p←Tkq‖︸ ︷︷ ︸
→1

‖Φ2k
T−kq‖︸ ︷︷ ︸
61

‖Hu
T−kq←p‖︸ ︷︷ ︸
→1

‖Φ−kp ‖︸ ︷︷ ︸
=1

.
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Taking k → ∞ we obtain that ‖A1‖eucl 6 1. This is a contradiction: actually
‖A1‖eucl = 0.8

√
2 > 1 (see Figure B.1). �

Figure B.1. The unit balls with respect the two norms and their
images under A1.

Let us comment on other properties of our example. We claim that there are
perturbations Φ̃ of Φ for which the measure δp ceases to be Lyapunov-maximizing; so
the “locking property” (verrouillage) is not satisfied. Indeed, let k � 1 be an integer,
let m := 4k + 2, and let Ã0 be rotation matrix of angle π/2− π/4m. Then:

Ãm0 A1 =

(
−0.8

√
2 0

0 −0.1
√

2

)
.

Consider the associated one-step cocycle F̃ , and the associated automorphism Φ̃.
Then the probability measure µ̃ supported on the orbit of the periodic point

p̃ := (. . . , 1. , 0, . . . , 0︸ ︷︷ ︸
m

, 1, 0, . . . , 0︸ ︷︷ ︸
m

, . . . ), i.e., p̃n = 1 iff m+ 1 divides n,

has Lyapunov exponent

χ1(Φ̃, µ̃) =
log(0.8

√
2)

m+ 1
> 0 = χ1(Φ̃, δp),

showing that δp was “unlocked”. Therefore the argument of the proof of Proposi-
tion B.5 does not apply to the perturbation Φ̃, and it is possible that these perturba-
tions Φ̃ admit Riemannian extremal norms (though there is no obvious candidate).
So the main property of our example Φ, namely not to possess Riemannian extremal
norms, may be fragile. Going beyond this specific example, we ask:

Question B.6. — Let T : X → X be a hyperbolic automorphism. Let E be a
2-dimensional θ-Hölder vector bundle over X. Let B ⊂ Autθ(E, T ) be the set of
fiber-bunched irreducible automorphisms, endowed with the θ-Hölder topology. Let
R ⊂ B be the subset of automorphisms that admit a Riemannian extremal norm.
Is R dense in B? Is the interior of R dense in B?
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