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THE TEICHMÜLLER AND RIEMANN MODULI STACKS

by Laurent Meersseman

To Alberto Verjovsky on his 70th birthday.

Abstract. —The aim of this paper is to study the structure of the Teichmüller and Riemann
moduli spaces, viewed as stacks over the category of complex analytic spaces, for higher-
dimensional manifolds. We show that both stacks are analytic in the sense that they are iso-
morphic to the stackification of a smooth analytic groupoid. We then show how to construct
explicitly such an atlas as a sort of generalized holonomy groupoid. This is achieved under the
sole condition that the dimension of the automorphism group of each structure is bounded by
a fixed integer. All this can be seen as an answer to Question 1.8 of [48].

Résumé (Les champs de modules de Teichmüller et de Riemann). —Le but de cet article est
d’étudier la structure des espaces de modules de Teichmüller et de Riemann de variétés de
dimension plus grande que 1, considérés comme des champs sur la catégorie des espaces analy-
tiques complexes. Nous montrons que ces deux champs sont analytiques, c’est-à-dire isomorphes
à la champification d’un groupoïde analytique lisse. Nous donnons ensuite une construction ex-
plicite d’atlas comme groupoïde d’holonomie généralisé. Ces résultats sont valables dès que la
dimension du groupe d’automorphismes de chaque structure est bornée par un entier fixé. On
peut voir ce travail comme une réponse à la question 1.8 de [48].

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
2. Definitions of the Teichmüller and Riemann stacks and statement of the main

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
3. The structure of I and Kuranishi’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
4. The Kuranishi stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
5. Connectedness properties of I and the graph of f -homotopy. . . . . . . . . . . . . . . . . 903
6. The TG foliated structure of I and its holonomy groupoid. . . . . . . . . . . . . . . . . . . 910
7. The rigidified case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913
8. The set of partial foliated structures of I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

2010 Mathematics Subject Classification. — 32G05, 58H05, 14D23.
Keywords. — Teichmüller space, deformations of complex structures, analytic groupoids, stacks and
moduli problems.

This is part of project Marie Curie 271141 DEFFOL.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


880 L. Meersseman

9. The Teichmüller groupoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
10. The Riemann moduli groupoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
11. The structure of the Teichmüller and the Riemann moduli stacks. . . . . . . . . . . . 929
12. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
13. Final Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943

1. Introduction

Let X be a smooth oriented compact surface. The Riemann moduli space M s(X) is
defined as the set of Riemann surfaces C∞-diffeomorphic to X up to biholomorphism.
Thus each point of M s(X) encodes a complex structure on X and two different points
correspond to two non-biholomorphic complex structures.

In the same way, the Teichmüller space T s(X) is roughly defined as the set of
Riemann surfaces diffeomorphic to X up to biholomorphism C∞-isotopic to the iden-
tity (see Section 2.1).

The theory of Teichmüller spaces is a cornerstone in complex variables and Riemann
surfaces. Originated by Riemann himself and followed by the fundamental works of
Teichmüller, Ahlfors and Bers, it has moreover implications in many branches of
mathematics as algebraic geometry, hyperbolic geometry, complex dynamics, discrete
groups, ...

Perhaps the most basic property of T s(X) is that it has a natural structure of a
complex manifold.

Moreover, the mapping class group of X acts on T s(X) and the resulting quotient
is a complex orbifold. This refined quotient coincides with M s(X), which thus acquires
a natural structure of a complex orbifold.

Let now X be a smooth oriented compact manifold of even dimension 2n strictly
greater than 2. The Teichmüller and Riemann moduli spaces can still be defined in
the same way, replacing above “Riemann surfaces” with “complex manifolds”.

Although the literature about these higher dimensional Teichmüller and Riemann
moduli spaces is much less developed than that about surfaces, it has grown signifi-
cantly in the last years and these spaces play an increasing role in complex geometry.
Catanese’s guide to deformations and moduli [8] as well as [9] gives some general local
properties of T s(X) and contains many results on the Teichmüller space of minimal
surfaces of general type. And in the special case of hyperkähler manifolds, the Teich-
müller space is used by Verbitsky in a prominent way in his proof of a global Torelli
theorem [47] and also to showing some important results on these manifolds [49].

However, the main difference with the case of surfaces is that T s(X) and M s(X)

are just topological spaces and do not have any good geometric structure. Only for
special classes such as the class of hyperkähler manifolds, an analytic structure is
known on T s(X), but even in this case, it is not Hausdorff at all points. Perhaps the
most dramatic example is given by X being S2 × S2. Then M s(X), as a set, can be
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The Teichmüller and Riemann moduli stacks 881

identified with N, a point a ∈ N corresponding to the Hirzebruch surface F2a (and each
connected component of T s(X) can be identified with Z, a and −a encoding the same
surface, see Examples 5.14 and 12.6). But, as a topological space, it is endowed with
a non-Hausdorff topology. No two points are separated, as a consequence of the fact
that F2a can be deformed onto any F2b with b < a by an arbitrary small deformation.
Equivalently, this comes from the fact that the dimension of the automorphism group
of Hirzebruch surfaces jumps.

Indeed, in presence of this jumping phenomenon, T s(X) and M s(X) are not
even locally Hausdorff hence not locally isomorphic to an analytic space (cf. Example
12.3). This explains why the classical approach developed in the fundamental works
of Kodaira-Spencer and Kuranishi is based on the following principles.

(i) In higher dimension the global point of view must be abandoned for the local
point of view;

(ii) and the Teichmüller space replaced with the Kuranishi space which must be
thought of as the best possible approximation in the analytic category for a local
moduli space of complex structures.

We emphasize that the Kuranishi space is in general not locally homeomorphic to
the Teichmüller space (cf. Remark 4.9), hence Kodaira-Spencer’s reduction is far from
being simply a reduction to the local case.

Nevertheless, putting on T s(X) and M s(X) a global analytic structure in some
sense is the only way to go beyond the classical local deformation theory. As we cannot
expect a structure of analytic space, even a non-Hausdorff one, we have to view these
quotient spaces as stacks. The aim of this paper is to develop this point of view.
We turn the topological spaces T s(X) and M s(X) into stacks T (X) and M (X)

over the category of finite-dimensional analytic spaces. The question now becomes to
showing that, as stacks, T (X) and M (X) are analytic. This can also be seen as an
answer to Question 1.8 of [48]. Since we work with arbitrary complex structures and
not only with projective ones, we have to work with analytic stacks and not algebraic
ones.

For surfaces of fixed genus g > 1, the classical setting coincide with the stack
setting. Both stacks T (X) and M (X) are analytic and can be fully recovered from
T s(X) and M s(X). In particular, the complex structure on T s(X), respectively the
complex orbifold structure on M s(X) are equivalent to the analytic structures on the
corresponding stack. The case of genus 1 is somewhat more complicated because of
the translations.(1) Here, the stack structure contains strictly more information than
the classical spaces T s(X) = H and M s(X) = H/PSL2(Z) since it also encodes
the translation group of each complex torus, but once again both stacks are analytic
and their analytic structure comes from the complex structure on the corresponding
spaces.

(1)To avoid this problem, it is customary to use marked complex tori, that is, elliptic curves.
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882 L. Meersseman

The main results of this paper show that, in any dimension, both the Teichmüller
and the Riemann moduli stacks are analytic stacks. The only condition needed for
this result to hold is that the dimension of the automorphism group of all structures
of T (X) (or M (X)) is bounded by a fixed integer.(2) This is nevertheless a mild
restriction since we may easily decompose them into strata where this dimension is
bounded. We emphasize that X can be any compact manifold and that we consider
all complex structures and not only projective or Kähler ones.

It is also worth highlighting that, rather than considering all the complex structures
on X, we may restrict ourselves to an open subset of it. Since Kählerianity is an
open property by a famous theorem of Kodaira-Spencer [42, Th. 4.6], our results
also apply to the set of Kähler structures on X modulo biholomorphism or modulo
biholomorphism C∞-isotopic to the identity. Moreover, since the full set of complex
structures is known for very few X, in many examples, it is interesting to restrict to
an open subset.

We postpone the precise statements of the main theorems 2.13 and 2.14 as well
as the strategy of proof to Section 2 after defining precisely the involved notions.
Let us just say that we will follow the same strategy that can be used for Riemann
surfaces. Firstly, we define T (X) and M (X) as stacks of families of complex manifolds
diffeomorphic to X in Section 2.3. This is the easy part. Secondly, we build an atlas
with good analytic properties to show they are analytic in the sense of Section 2.4.
This is the difficult part which takes the rest of the paper.

We hope that this paper will serve as a source of motivation for studying global
moduli problems in complex analytic geometry and their interplay with analytic
stacks. From the one hand, every abstract result on these stacks might apply to mod-
uli problems and increase our knowledge of complex manifolds. From the other hand,
examples of Teichmüller stacks are an unending source of examples of analytic stacks,
showing all the complexity and richness of their structure, far from finite dimensional
group actions and leaf spaces.

Acknowledgements. — I enjoyed the warm atmosphere of the CRM at Bellaterra dur-
ing the preparation of this work. I would like to thank Ernesto Lupercio for explaining
me the basics of groupoids and their interest in moduli theory; Alain Genestier for
suggesting the construction of Section 9 and for stimulating discussions about stacks;
Allen Hatcher and Daniel Ruberman for answering some questions about the map-
ping class group of 4-manifolds; Fabrizio Catanese for discussions about the rigidified
hypothesis of Section 7; Serge Cantat for pointing out a result of Liebermann on au-
tomorphisms of Kähler manifolds; and Etienne Mann for clarifying some aspects of
algebraic stacks. Finally many thanks to the referees whose accurate comments gave
rise to a greatly improved version of the paper.

(2)which is always the case for surfaces.
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2. Definitions of the Teichmüller and Riemann stacks and statement of
the main results

2.1. The Teichmüller and Riemann spaces. — Let us first review the precise defini-
tions of Teichmüller and Riemann moduli spaces as well as of their topology. Let X
be a smooth (i.e., C∞) oriented compact connected manifold of even dimension. As-
sume that it admits complex structures. As done in the introduction, we can formally
define its moduli space as the set of complex manifolds diffeomorphic to X up to
biholomorphisms. In short,

(2.1) M s(X) = {Y complex manifold | Y 'so X}/ ∼,

where X 'so Y means that there exists a C∞-diffeomorphism from Y to X preserving
the orientations and where Y ∼ Y ′ if they are biholomorphic.

Thanks to the Newlander-Nirenberg theorem [44], a structure of a complex man-
ifold on X is equivalent to an integrable complex operator J on X, that is, a C∞
bundle operator J on the tangent bundle TX such that

(2.2) J2 = − Id and [T 0,1, T 0,1] ⊂ T 0,1

for

(2.3) T 0,1 = {v + iJv | v ∈ TX ⊗ C}

the subbundle of the complexified tangent bundle TX ⊗ C formed by the eigenvec-
tors of J with eigenvalue −i. Here of course, J has been linearly extended to the
complexified tangent bundle. We may thus rewrite (2.1) as

(2.4) M s(X) = {J o.p. integrable complex operator on X}/ ∼,

where o.p. means orientation preserving, i.e., the orientation induced on X by J

coincides with that of X.
Now, it is easy to check that (X,J) and (X,J ′) are biholomorphic if and only if

there exists a diffeomorphism f of X whose differential df satisfies

(2.5) J ′ = (df)−1 ◦ J ◦ df.

In other words, setting

(2.6) I = {J : TX −→ TX | J2 ≡ − Id, J o.p., [T 1,0, T 1,0] ⊂ T 1,0}

and denoting J · f the right hand side of (2.5), we see that (2.5) defines a right action
of the diffeomorphism group Diff(X) onto I . Since our operators are o.p., this is
even in fact an action of Diff+(X), the group of diffeomorphisms of X that preserve
the orientation.

So we end with

(2.7) M s(X) := I
/

Diff+(X)

and we are in position to define the Teichmüller space of X as

(2.8) T s(X) := I
/

Diff0(X),

J.É.P. — M., 2019, tome 6



884 L. Meersseman

where Diff0(X) is the group of diffeomorphisms C∞-isotopic to the identity, that is,
the connected component of the identity in Diff+(X).

Alternatively, if we define the mapping class group as the group

(2.9) MC (X) := Diff+(X)
/

Diff0(X)

we have

(2.10) M s(X) = T s(X)
/
MC (X).

It is important to notice that (2.7) and (2.8) define topological spaces and not only sets
as (2.1). Indeed, we endow I and Diff(X) with the topology of C∞ convergence: a se-
quence of operators/functions tends to zero if it converges to zero for every Ck-norm
with k > 0 on every compact set, cf. [20]. And we endow (2.7), (2.8) and (2.9) with
the quotient topology. Observe that MC (X) is a discrete topological group, since
every diffeomorphism close enough to the identity is isotopic to the identity.(3)

Moreover, let E denote the set of C∞ o.p. almost complex operators, that is

(2.11) E = {J : TX −→ TX | J2 ≡ − Id, J o.p.}.

It is easy to prove that the action of Diff+(X) on E is continuous and preserves I .
We will see in Section 3.1 that each diffeomorphism acts as a complex analytic iso-
morphism of E , once E and I are endowed with suitable complex Hilbert structures.

Some notations to conclude this section. We denote by E0, respectively I0, a con-
nected component of E , respectively I . Points of E will be denoted generically by J .
For a topological space T , we denote by π0(T ) the set of connected components of T .
The previous topology being countable, π0(E ) is a countable set.

Remark 2.1. — In the first version of this paper, we took for X an unoriented smooth
compact manifold and considered I as the set of all integrable complex operators,
regardless of orientation. Then T s(X) was defined as in (2.8), and in (2.7), the full
diffeomorphism group Diff(X) replaced the oriented diffeomorphism group. This does
not change substantially these two sets, and our results apply to this setting. In fact,
the main drawback of forgetting the orientation is that the notion of Teichmüller
space does not coincide with the classical one for surfaces. Especially, the unoriented
Teichmüller space of a compact surface has two connected components, corresponding
to the two possible orientations.

More generally, if X admits a diffeomorphism reversing orientation, then the un-
oriented Teichmüller space has twice more connected components as the classical
one. However, the two Riemann spaces coincide. Finally, if X does not admit any
orientation reversing diffeomorphism, then the unoriented Teichmüller and Riemann
spaces are the disjoint union of the classical ones for both orientations. Notice that,
in this last case, changing the orientation may completely change the Teichmüller and
Riemann spaces. It is even possible that they become empty. For example, let X be

(3)This classical fact can be proved using the Fréchet chart introduced in (3.1).
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the oriented C∞ manifold underlying P2 and let X be equal to X with the orienta-
tion reversed (which is sometimes denoted by P2, although it may be very confusing
since it is not a complex manifold). We claim that X does not admit any almost
complex structure compatible with its orientation. Assume the contrary and let J be
a compatible almost complex structure on X. Then Wu’s formula applies and yields

τ(X) =
1

3
(c21(X, J)− 2c2(X, J)).

Now the Chern numbers c21 and c2 do not depend on the almost-complex structure.
They are indeed (unoriented) topological invariants so are equal to those of P2. Hence
c21 = 9 and c2 = 3. Then, X has signature 1, so X has signature −1. These numbers
do not satisfy the above formula and the claim is proved. As a consequence, the
Teichmüller and Riemann spaces of X are empty. Note that the Riemann space of X
is reduced to a point by Yau’s theorem; and since every automorphism of P2 is isotopic
to the identity, so is the Teichmüller space of P2.

2.2. Stacks. — Before getting into the definition of the Teichmüller and Riemann
moduli stacks, let us define precisely the notion of stacks we will use.

First, a warning. We insist on the fact that we work exclusively in the C-analytic
context, since we deal with arbitrary compact complex manifolds. This forces us to
adapt and sometimes to transform the definitions of stacks coming from algebraic
geometry. Also, since the literature on stacks over the category of analytic spaces is
very scarce, we shall keep the required facts from stack theory to a minimum and give
complete proofs even of some routine facts (for example in Proposition 2.2).

Moreover, our construction of atlas (see Section 2.4) is inspired from the construc-
tion of the étale holonomy groupoid of a foliation. So for the atlas point of view,
we stick to the literature in foliation theory and Lie groupoids, especially [40]. The
conventions are somewhat different from those of algebraic geometry and we have to
adapt ourselves to these differences. Especially, we will not make use of the notion of
representability of the diagonal, see Section 2.4.

We will only consider stacks over the analytic site defined as follows. Let (Ana)

denote the category of finite-dimensional C-analytic spaces. We include analytic
spaces that are everywhere non-reduced in (Ana). We consider it as a site for the
Euclidean topology: our families of coverings are just standard topological open
coverings. We emphasize that we will not use other coverings as étale or analytic
ones.

In this paper, a stack p : S → (Ana) is a stack in groupoids over the site (Ana)

in the sense of [46, Def. 8.5.1]. In brief, a functor p : S → (Ana) is a stack if
(i) p : S → (Ana) is a category fibered in groupoids, i.e., the fibers of p are

groupoids, pull-backs exist and are unique up to unique isomorphisms,
(ii) isomorphisms form a sheaf, i.e., one can glue a compatible collection of isomor-

phisms defined over an open covering of an analytic space S into a single isomorphism
over S → S,
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886 L. Meersseman

(iii) every descent data is effective, i.e., one can glue objects defined on an open
covering of an analytic space S into a single object over S by means of a cocycle of
morphisms.

2.3. The Teichmüller and Riemann moduli stacks. — We are now in position to
define the Teichmüller and Riemann moduli stacks, which are the main protagonists
of this paper. In fact, we will define such stacks over any open set of I .

Let V be an open set of I . Define the following category M (X,V ) over (Ana).
Objects are (X,V )-families

(2.12) π : X −→ B,

that is:
(i) B ∈ (Ana) and X ∈ (Ana),
(ii) π is a smooth and proper morphism with fibers all diffeomorphic to X,
(iii) each fiber Xb := π−1(b) can be encoded as (X, J) with J ∈ V .

Recall that smooth means flat with smooth fibers. Hence, the fibers are complex
manifolds, say of dimension n, and for any x ∈ X , there exist a neighborhood U , a
neighborhood W of 0 in Cn and an isomorphism φ of U onto the product π(U)×W
such that the following diagram commutes

(2.13)
U π(U)×W

π(U)

φ

π 1st proj.

In other words, a (X,V )-family is nothing else than an analytic deformation of com-
plex structures of X such that the structure of each fiber is isomorphic to a point of
V ⊂ I . Of course, if V sat denotes the image of V through the action of Diff+(X),
then M (X,V ) and M (X,V sat) are equal. However, it is interesting to have this flex-
ibility, for example we will often take for V a connected component of I , even if it
is not saturated.

Morphisms are Cartesian diagrams

(2.14)
X X ′

B B′

F

π π′

f

between (X,V )-families. Observe that the pull-back of a (X,V )-family is a (X,V )-
family.

We equip M (X,V ) with a morphism p : M (X,V )→ (Ana) which sends a (X,V )-
family X → B onto its base B, and a morphism (2.14) onto the base morphism
B → B′.

We now pass to the construction of T (X,V ), which is more delicate. Consider X

and B as real analytic spaces, and π as a real analytic flat morphism, hence consider
real analytic trivializations (2.13). Then, using the fact that the first cohomology
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group of every fiber with values in the sheaf of germs of real analytic vector fields is
zero, we may apply the proof by power series methods of [42, Th. 3.2] to conclude that
the restriction X|Bα of X over some sufficiently small open set Bα ⊂ B is locally
isomorphic to a product, that is, that we have bundle real analytic trivializations(4)

(2.15)
X|Bα Bα ×X

Bα

'

π 1st proj.

In particular, such a trivialization induces real analytic isomorphisms between the
complex manifold π−1(b) and the real analytic X ×{b} for every b ∈ Bα and we may
thus transfer the complex structure along the fibers of π to a real analytic family
Jα = (Jb)b∈Bα of complex operators of X. Thus, the real analytic fiber preserving
isomorphism

(2.16) X|Bα ' (X ×Bα,Jα)

becomes holomorphic on the fibers, see [7, Th. 4.5], [38, §2.3] and [13, Prop. 1]. Over an
intersection Bα ∩Bβ , two trivializations (2.16) are glued using a family (φt)t∈Bα∩Bβ
of diffeomorphisms of X whose differential commute with Jα and Jβ . As a conse-
quence, X is diffeomorphically a bundle over B with fiber X and structural group
Diff+(X). In particular, once such an identification with a bundle is fixed, it makes
sense to speak of the structural group of X , and to make a reduction of the struc-
tural group to some subgroup H of Diff+(X). And it makes also sense to speak of
H-isomorphism of the family X , that is, isomorphism of X such that, in each fiber,
the induced diffeomorphism of X is in H.

We define T (X,V ) as the category whose objects are (X,V )-families with a mark-
ing

(2.17)
X E

B

'

π

with E → B a bundle with fiber X and structural group reduced to Diff0(X) and
whose morphisms are Cartesian diagrams (2.14) such that the canonical isomorphism
between X and f∗X ′ induces a Diff0(X)-isomorphism of the markings.

Alternatively, one may use Diff0(X)-framings, that is, C∞-isotopy classes of maps

(2.18)
X π−1(b) X

b B

'
i

π π

Here, b is any point of B and isotopies are C∞-maps I from X × [0, 1] to X such
that π ◦ I(X × {t}) is a point for all t ∈ [0, 1]. In particular, we may replace b by

(4)In the diagram (2.15), we endow the compact C∞-manifold X with its real analytic structure.
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any other point using an isotopy. Set It := I(−, t). Since X → B is diffeomorphic to
a Diff0(X)-bundle, then, given an isotopy I with π ◦ I(X × {0}) = π ◦ I(X × {1}),
the diffeomorphism I−1

1 ◦ I0 of X belongs to Diff0(X). In other words, the framing
induces in that case a coherent identification of the fibers with X up to an element
of Diff0(X).

This forms a category over (Ana) and a subcategory of M (X,V ). In general, it
contains strictly less objects, since some (X,V )-families do not admit C∞-markings.
It comes equipped with the same morphism p : T (X,V )→ (Ana).

Proposition 2.2. — Let V be an open subset of I . Then both p : M (X,V )→ (Ana)

and p : T (X,V )→ (Ana) are stacks.

Proof. — It is straightforward but we sketch it for sake of completeness. First, the nat-
ural morphism p : M (X,V )→ (Ana) is obviously a category fibered in groupoids. The
fiber over S ∈ (Ana) is the groupoid formed by (X,V )-families over S as objects and
isomorphisms of families as morphisms. Then, given two (X,V )-families π : X → S

and π′ : X ′ → S and an open covering (Sα) of S, any collection of isomorphisms fα
from the restriction of X to π−1(Sα) onto the restriction of X ′ to (π′)−1(Sα) such
that fα and fβ are equal on the intersections π−1(Sα ∩ Sβ) obviously glue to give an
isomorphism of families between X and X ′. So isomorphisms form a sheaf. Finally,
starting from a collection πα : Xα → Sα of (X,V )-families and from a cocycle fαβ of
isomorphisms of families between π−1

α (Sα ∩ Sβ) and π−1
β (Sα ∩ Sβ), then

X :=
⊔

Xα/ ≡,

where ≡ is the equivalence relation given by the cocycle (fαβ), is a (X,V )-family
over S. Every descent data is effective. The proof for p : T (X,V )→ (Ana) is similar.

�

Convention 2.3. — Since we exclusively work over the site (Ana), we will sim-
ply denote by M (X,V ), resp. T (X,V ) the stack p : M (X,V ) → (Ana), resp.
p : T (X,V )→ (Ana).

Given J ∈ I , recall that (X, J) is a complex manifold diffeomorphic to X by use
of the Newlander-Nirenberg theorem. Observe the following result.

Lemma 2.4. — The points of M (X,V ) are classes of biholomorphisms of complex
manifolds (X, J) with J ∈ V .

And the points of T (X,V ) are classes of biholomorphisms C∞ isotopic to the
identity of complex manifolds (X, J) with J ∈ V .

Proof. — This just means that, given J ∈ V , the fiber of M (X,V ) → (Ana) over
the point J is the groupoid with (X,J) as single object and with biholomorphisms of
(X, J) as isomorphisms; and the fiber of T (X,V ) → (Ana) over the point J is the
groupoid with (X,J) as single object and with biholomorphisms of (X,J) smoothly
isotopic to the identity as isomorphisms. And this is immediate from the definitions
of these two stacks. �
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We may thus define the following stacks.

Definition 2.5. — We call Riemann moduli stack the stack M (X,I ). The stack
M (X,V ) is the Riemann moduli stack for complex structures belonging to V .

By abuse of notation, we simply denote by M (X) the Riemann moduli stack.
Because of Lemma 2.4, this must be thought of as the stack version of (2.1) and
(2.7), whereas M (X,V ) is the stack version of V/Diff+(X). In the same way,

Definition 2.6. — We call Teichmüller stack the stack T (X,I ). The stack T (X,V )

is the Teichmüller stack for complex structures belonging to V .

By abuse of notation, we simply denote by T (X) the Teichmüller stack. Because
of Lemma 2.4, this must be thought of as the stack version of (2.8), whereas T (X,V )

is the stack version of V/Diff0(X).

2.4. Groupoids and atlases. — We want to prove that T (X) and M (X) are analytic
stacks and not only stacks over the analytic site. We observe that there is no standard
definition of analytic stacks, so we have to forge this notion. Of course, it should be
closely related to that of algebraic stacks.

So, let us make a detour to algebraic geometry to see how things happen there and
how we can adapt them to our analytic world. Assume that we are given a stack S

in groupoids as before but over an algebraic site, for example the site (Aff ) of affine
schemes over C with étale coverings, and say we want to prove that S → (Aff ) is an
algebraic stack. Lemma 2.4 shows that the isotropy group of a point of either T (X)

or M (X) is a complex Lie group and may thus be far from being finite, so wee need
to look at Artin stacks and not at Deligne-Mumford stacks.

Standard definitions of algebraic stacks (Artin stacks), see for example [46,
Def. 86.12.1] or [3, Def. 15.9], ask for representability of the diagonal by algebraic
spaces and existence of a surjective, smooth morphism U → S from a scheme U onto
the stack,(5) called atlas of the stack. From the atlas, one constructs the groupoid
U ×S U ⇒ U with source and target maps s and t fitting in the following Cartesian
diagram

(2.19)
U ×S U U

U X

t

s

Then, the condition on the diagonal ensures that U → S is itself representable and
so that the set of morphisms U ×S U has also a structure of algebraic space; since it
is smooth, the morphisms s and t are smooth.

So in short, an algebraic stack admits a presentation by a groupoid with set of
objects and set of morphisms being schemes (or at least algebraic spaces) and source

(5)Some additional technical properties of the diagonal as separability or quasi-compactness may
be required, but this is not important in this discussion.
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and target maps being smooth morphisms. Such a groupoid is called a smooth alge-
braic groupoid.(6)

Now, starting from such a groupoid, there exists a process called stackification
that associates to it a stack. If we stackify U ×S U ⇒ U , we recover the stack
S → (Aff ) up to isomorphism [3, Prop. 15.19].(7) Hence the stack is completely
encoded in this groupoid and one can develop a dictionary between properties of the
stack and properties of an atlas.

Especially, if we go in the other direction, the stackification of a smooth algebraic
groupoid is an algebraic stack, [3, Prop. 15.18]. Moreover, any atlas of this stack is
Morita equivalent to the initial smooth algebraic groupoid.

It is of course possible to adapt the definition of algebraic stack to the analytic
context, but as mentioned in the warning given in Section 2.2, we do not follow
this way. Indeed, we do not know if the diagonal of T (X) and M (X) is always
representable (see however Section 13). We rather exploit the other way round, that
is, defining analyticity of the stack on the atlas and not directly on the stack. The
drawback of this approach is that it gives limitations for using classical results of the
general theory of stacks over a site, but, as recalled above, we do not take these results
as granted.

We first need a notion of analytic groupoid. Under mild assumptions, an algebraic
space admits an analytification [21, Ch. I, 5.17ff], so the following definition is natural.

Definition 2.7. — A groupoid G1 ⇒ G0 is analytic if
(i) the set of objects G0 and the set of morphisms G1 belong to (Ana), that is, are

finite-dimensional complex analytic spaces,
(ii) and all the structure maps are analytic morphisms.

Then, we define smoothness.

Definition 2.8. — An analytic groupoid is smooth, if both source and target maps
are smooth morphisms.

Here smoothness refers to smoothness of morphisms in analytic/algebraic geome-
try, not to differentiability. The notion of smooth analytic groupoid is close to that of
a complex Lie groupoid. Recall that the set of objects and the set of morphisms of a
complex Lie groupoid are complex manifolds and the source and target maps are holo-
morphic surjective submersions. So both notions are not equal, but a smooth analytic
groupoid is the exact singular counterpart of a complex Lie groupoid, cf. [40, §5].

Remark 2.9. — In the same way, we define an étale analytic groupoid as an analytic
groupoid whose source and target maps are étale.

(6)Here again, there may be additional technical requirements on the structure maps.
(7)The process of going from groupoids to stacks is also described in [31, §3.4.3].
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Remark 2.10. — In the setting of Lie groupoids and foliation theory, the space of
morphisms is possibly non-Hausdorff, since such phenomena occur when constructing
holonomy groupoids of finite-dimensional C∞ foliations. For example, the holonomy
groupoid of the Reeb foliation of the sphere S3 is non-Hausdorff. In classical foliation
theory, this is linked to the existence of so-called vanishing cycles. We refer to [40,
§5.2] for more details.

Even if our construction is inspired in that of holonomy groupoids of foliations, all
the groupoids we construct will be proved to be Hausdorff. We note that in previous
versions of this work, we authorized non-Hausdorff groupoids since at that time we
did not succeed in proving our groupoids are Hausdorff.

Now, we have to understand what means to admit an atlas. As stated in the
warning, we shall keep the required facts to a minimum. So we use the stackification
process and we say that a stack over (Ana) admits an analytic groupoid as atlas
(or presentation) if the stackification of this groupoid by torsors, as explained in [3,
Chs. 3& 4], is isomorphic to the initial stack. In that case, the stack can be fully
recovered from the atlas through this long process of stackification.

Definition 2.11. — We call a stack étale analytic (respectively Artin analytic or
simply analytic) if it admits a presentation by an étale (respectively smooth) analytic
groupoid; Deligne-Mumford analytic if it is étale with finite stabilizers.

To finish with this section, let us give some additional definitions we will use in the
paper.

We take as definition of Morita equivalence of analytic groupoids that given in
[40, §5.4], with the obvious adaptations to the groupoids we use (e.g. replace C∞
map with C-analytic map, submersion with smooth morphism, ...). It follows from
carefully adapting [3] to the analytic context that two smooth atlases of the same
analytic stack are Morita equivalent.

Analytic groupoids are in particular topological (i.e., with sets of objects/morphisms
being topological maps and structure maps being continuous) so that it makes sense
to localize them on an open covering of the set of objects. Starting with G1 ⇒ G0

localization on an open cover (Uα) of G0 just means that we replace G0 with
⊔
Uα;

so an object is now labeled (α, x) with x ∈ Uα; and a morphism is labeled (α, β,m)

with m ∈ G1 a morphism whose source is taken in Uα and target in Uβ , cf. [19]. An
analytic groupoid and its localization on any open covering are Morita equivalent.

The geometric quotient associated to an analytic groupoid is the topological space
obtained by taking the quotient of the set of objects by the equivalence relation
defined by the set of morphisms. Two Morita equivalent groupoids have homeomor-
phic geometric quotients. Connected components of the groupoid refer to connected
components of the geometric quotient.

2.5. Statement of the main results. — Let J ∈ I and set

(2.20) XJ := (X, J).
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Remark 2.12. — To avoid cumbersome notations, we write X0 for XJ0 , and Xα for
XJα , ...

Let ΘJ be the sheaf of germs of holomorphic vector fields on XJ . For i > 0, we
consider the function

(2.21) J ∈ I 7−→ hi(J) := dimHi(XJ ,ΘJ).

Since XJ is compact, these cohomology groups are finite-dimensional. Set

(2.22) I (k) = {J ∈ I | h0(J) 6 k} and I0(k) = I0 ∩I (k).

The sets I (k) and I0(k) are open sets of I , see (5.5).

Theorem 2.13. — Let V be an open set of I (for example, V is a connected compo-
nent of I ). For all k, define I (k) as in (2.22). Then,

(i) for all k, the stack T (X,V ∩I (k)) is Artin analytic;
(ii) assume that the function h0 is bounded on V , resp. on I ; then the stack

T (X,V ), resp. T (X), is Artin analytic.

Theorem 2.14. — Let V be an open set of I (for example, V is a connected compo-
nent of I ). For all k, define I (k) as in (2.22). Then,

(i) for all k, the stack M (X,V ∩I (k)) is Artin analytic;
(ii) assume that the function h0 is bounded on V , resp. on I ; then the stack

M (X,V ), resp. M (X), is Artin analytic.

Both theorems will be proved in Section 11 as easy consequences of the more precise
theorems 11.1 and 11.10.

2.6. Strategy of proof and organization of the paper. — Given V ⊂ I , we want
to construct smooth analytic groupoids whose stackification over the analytic site
(Ana) is T (X,V ), resp. M (X,V ).

To do this, we first leave the world of stacks and get back to the definition of
T s(X), resp. M s(X) as quotient space of I by the action of the diffeomorphism
group Diff+(X), resp. Diff0(X). We look for smooth analytic groupoids that en-
code these quotient spaces. Sections 3 to 9 are needed to complete this quest. Such
groupoids must share two properties. From the one hand, their geometric quotient
must be homeomorphic to the corresponding topological quotient space. From the
other hand, their analytic structure must reflect the fact that the corresponding quo-
tient space, though a topological space, comes from an analytic construction.

In the literature, there are two classical situations where a quotient space Q is
naturally encoded by a smooth analytic groupoid. Firstly, if Q is the quotient of a
finite-dimensional complex manifold/analytic space Z by the action of a complex Lie
group G. In this case, one considers the translation groupoid G×Z ⇒ Z with source
map given by the projection and target map given by the action. Secondly, if Q is the
leaf space of a holomorphic foliation of a finite-dimensional complex manifold. In this
second case, one considers the étale holonomy groupoid which is an étale analytic
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groupoid in the sense of Remark 2.9, so is in particular a smooth analytic groupoid.
The construction of such a groupoid is not canonical, since it depends on the choice
of a set of local transverses to the foliation, but any two étale holonomy groupoids
are Morita equivalent, [40, §5].

At first sight, we are closer to the first situation. Of course, as presented in
Section 2.1, we just have continuous actions. But, following the classical work of
Douady [12], one can turn these actions into analytic actions in an infinite-dimensional
setting. For sake of clarity, we give a complete treatment of this in Section 3.1. How-
ever, infinite-dimensionality of the spaces is problematic. To overcome this, we make
use of Kodaira-Spencer and Kuranishi theory.(8) We review Kuranishi’s theorem in
Douady’s version in Section 3.2. It shows that, for V ⊂ I small enough, all complex
structures belonging to V are encoded in a family over a finite-dimensional analytic
space, so that T (X,V ), resp. M (X,V ), must be thought of as being locally of finite
dimension.(9) Unfortunately, if this explains why infinite-dimensionality here is “fake”,
this forces us to make use of local models and to forget about T s(X), resp. M s(X)

as being global quotients. In particular, there is no way to get a translation groupoid
as atlas.

The main idea of the paper is that, very roughly speaking, the action of Diff+(X),
resp. Diff0(X) foliates I so that T s(X), resp. M s(X) are leaf spaces. The leaves
of the foliation are infinite-dimensional, but the local transverse sections—and so
the leaf spaces—are finite-dimensional. Using Section 3, this foliation is holomorphic.
Indeed, we interpret Kuranishi’s theorem 3.4 as giving foliated charts of I with
local transverse section identified with the Kuranishi space. So we can adapt to our
situation the construction of the étale holonomy groupoid.

Nevertheless, this picture is too much simplistic. A local transverse section to a
foliation meets transversally the leaves, so the intersection of a leaf with it is at most
a discrete subset. However, there are Kuranishi spaces which contains a positive-
dimensional subspace encoding a single complex structure, this is the jumping phe-
nomenon induced by automorphisms recalled in Section 1. In a more geometric formu-
lation, this means that Kuranishi spaces are not local transverse sections, since they
not always meet a leaf (i.e., an orbit of the diffeomorphism group in I ) transversally
but sometimes in a positive-dimensional subspace.

In Section 4, we investigate this problem. In short, at a point of I with no non-
zero holomorphic vector fields, the Kuranishi space is really a local transversal to
the action of the diffeomorphism group. Otherwise, each automorphism obtained as
time 1 flow of a holomorphic vector field defines naturally a local automorphism of
the Kuranishi space, which identifies points encoding the same complex structure.

(8)Since we deal with arbitrary complex structures, one has to use as a starting point the classical
deformation theory of Kodaira-Spencer and cannot use period mappings and Hodge Theory.

(9)Hence the only “infinite-dimensional” problem that may occur—and really occurs indeed, see
example 12.6—is that this dimension may be unbounded. This explains the mild condition that we
put in Theorems 2.13 and 2.14.
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So a local transversal is not given by the Kuranishi space but by its quotient by this
“action” of the automorphism group of the base point. This is neither a manifold nor
an analytic space but we show in Proposition 4.6 that it may be encoded as a smooth
analytic groupoid. We call its stackification over (Ana) the Kuranishi stack. A more
realistic picture is thus to saying that the Kuranishi stack is a local transverse to the
action of the diffeomorphism group.

The next step is to take care of the global geometry of the action of the diffeo-
morphism groups onto I . We begin with giving some general properties of I in
Section 5, putting emphasis on connectedness properties, and introducing a graph,
called the graph of f -homotopy. This section has its own interest and can be read
independently of the rest of the paper. Then we turn to the main problem left, that
is, understanding the foliated structure of I as well as the geometry of the orbits, and
the precise intersection of an orbit and a Kuranishi space. In other words, we look for
additional identifications to be done in the Kuranishi space, which are not yet encoded
in the Kuranishi stack and have to be encoded in a holonomy groupoid. Recall that
we are guided by the following fact: the geometric quotient of the holonomy groupoid
must be T s(X). The foliated structure of I is introduced in Section 6. The technical
core of the paper is constituted by Sections 8 and 9, where we perform the construc-
tion of the analogue for the holonomy groupoid. We call it the Teichmüller groupoid.
To smooth the difficulties of the construction, a sketch of it is given in Section 6 and
a very simple case is treated in Section 7.

We emphasize that the Teichmüller stack has no reason to be locally isomorphic
to the Kuranishi stack, in the same way as the leaf space of a foliation is in general
not locally isomorphic to a local transversal. The difference sits in the additional
holonomy morphisms that come from the global geometry of the foliated structure
of I , see Remark 4.9.

The main problem behind this atlas construction is to understand how to glue
analytically the bunch of Kuranishi spaces, in other words how to keep track of all
identifications to be done not only on a single Kuranishi space but also between
different ones and finish with a groupoid which is analytic and at the same time
whose geometric quotient is T s(X).

At the end of the journey, we show Theorem 11.1, stating that the Teichmüller
groupoid is an analytic smooth presentation of the Teichmüller stack. Analogous con-
struction and statement for the Riemann moduli stack are done in Sections 10 and 11.
Complete examples are given in Section 12 and final comments in Section 13.

To sum up, the relationships between the Teichmüller space T s(X), the Teich-
müller stack T (X)→ (Ana) and the Teichmüller groupoid TU for U a regular atlas
of I go as follows:

– The geometric quotient of TU is homeomorphic to T s(X), see Corollary 11.6.
– The stackification of TU over the site (Ana) is isomorphic to T (X) → (Ana),

see Theorem 11.1.
Especially, both properties are independent of the choice of the regular atlas.
Changing U gives Morita equivalent Teichmüller groupoid, see Corollary 11.2.
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Similar statements hold for the Riemann case, see Corollary 11.14, Theorem 11.10,
and Corollary 11.11.

Afterward, we can reformulate what is done in this paper with an algebraic geome-
ter’s eye. Having defined our stacks over the analytic site in Section 2.3, we show in
Section 6 that there exists a morphism from a disjoint union of analytic spaces (to
be more precise of Kuranishi spaces) onto the stacks T (X,V ) and M (X,V ). Under
a mild condition on V , the dimension of these analytic spaces is bounded so this
disjoint union is itself an analytic space, say A(V ). The morphism A(V )→ T (X,V ),
resp. A(V ) →M (X,V ) are the atlas candidates. As explained in Section 2.4, we do
not prove representability of the diagonal, but work on the groupoid

A(V )×T (X,V ) A(V ), resp. A(V )×M (X,V ) A(V ).

All the geometric considerations of Sections 3 to 9 are employed to compute this fiber
product. We then finish with an analytic groupoid A(V ) ×T (X,V ) A(V ) ⇒ A(V ),
resp. A(V )×M (X,V ) A(V )⇒ A(V ).(10) We prove them to be smooth and check that
their stackification are T (X,V ), resp. M (X,V ).

3. The structure of I and Kuranishi’s theorem

In this section, we review the analytic structure of I and Kuranishi’s theorem in
Douady’s setting. Standard references are [12], [13] for infinite-dimensional analytic
spaces and Douady’s formulation of Kuranishi’s theorem; [27], [29] for the original
approach; [20, §I.4] for Fréchet manifolds, [30] for Hilbert manifolds.

3.1. Fréchet and Hilbert structures. — Recall the definitions (2.11), resp. (2.6) of
the space E of almost complex operators onX, resp. the space I of complex operators
on X which are compatible with the orientation. We saw in Section 2.1 that they are
topological spaces. We want to turn them into complex analytic objects.

Almost complex structures J on X are in (1, 1)-correspondence with C∞ subbun-
dle T of TX ⊗ C such that

T ⊕ T = TX ⊗ C.
Given J ∈ E , define T as the subbundle (2.3) formed by the eigenvectors of J with
eigenvalue −i. Given T , define J as the multiplication by −i on T .

If J ′ is sufficiently close to J in the C∞ topology, then the corresponding T ′ is
close to T and can be considered as the graph of a linear mapping ω from T to T ,
that is, we have

T ′ = {v + ω(v) | v ∈ T}
and we obtain in this way a homeomorphism from a neighborhood of J in E onto
a neighborhood of 0 in the Fréchet space of C∞ sections of the bundle HomC(T, T ).
We use this homeomorphism as a chart of E . Changes of charts are smooth Fréchet
mappings and we obtain in this way an atlas of Fréchet manifold on E . This is indeed

(10)Once again, we have to make use of the condition stated in Theorem 11.1, resp. 11.10 to
ensure that the fiber product has bounded dimension.

J.É.P. — M., 2019, tome 6



896 L. Meersseman

the restriction to E of the structure of Fréchet manifold of the grassmannian bundle
of n-complex vector subspaces of TX ⊗ C.

In the same way, the diffeomorphism group Diff+(X) and its connected compo-
nent Diff0(X) are Fréchet Lie groups [33], that is, Fréchet manifolds such that group
inversion and multiplication are smooth mappings. At a point f , a Fréchet chart is
given by

(3.1) ξ ∈W ⊂ Γ(f∗TX) 7−→ f ◦ exp(ξ) ∈ Diff0(X),

where W is a neighborhood of the zero section and where exp denote the exponential
associated to a Riemannian metric on X; that is, exp(ξ) is the C∞ map from X to X
which sends x ∈ X onto the time 1 point of the unique geodesic starting at time 0

from x with tangent vector ξ(x). If ξ is small enough, then exp(ξ) is a diffeomorphism.
Fréchet manifolds is not an easy setting for doing differential calculus. Fortunately,

more can be said. Replacing C∞ operators, resp. C∞ functions with Sobolev L2
` op-

erators, resp. L2
`+1 functions (for ` big(11)), then the previous charts extend to give

a structure of Hilbert manifold on E` and on Diff+
`+1(X) and Diff0

`+1(X). However,
note that they are not Hilbert Lie group, cf. [39].

We have more. In Banach and Hilbert spaces, we can do complex analysis, cf. [12].
The charts of E` are modeled onto a complex Hilbert space and the changes of charts
are analytic so E` is a complex Hilbert manifold. The situation is more subtle for the
diffeomorphism groups but we can endow them with a structure of complex Hilbert
manifolds. In fact, given Z a complex manifold, the space L2

`+1(X,Z) of L2
`+1 maps

from the C∞ manifold X to Z is a complex Hilbert manifold, with tangent space
at f being the complex Hilbert space Γ`+1(f∗TZ) of L2

`+1 sections of the bundle
f∗TZ → X. In particular, pick J ∈ I . Then L2

`+1(X,XJ) is a complex Hilbert
manifold, and so are the open subsets Diff+

`+1(X) and Diff0
`+1(X). More precisely, for

any J ∈ I , a complex chart for Diff0
`+1(X) at f is given by the map

(3.2) eJ : ξ ∈W ⊂ A0
`+1 7−→ f ◦ exp(ξ + ξ) ∈ Diff0

`+1(X),

where A0
`+1 is the C-vector space of (1, 0)-vector fields of XJ of class L2

`+1 and W a
neighborhood of 0.

The subtle point to be noticed here is that the above complex chart (3.2) depends
on the choice of a complex structure on X. Indeed, the changes of charts depend
on A0

`+1 and thus on J . The subscript J in eJ recalls this dependence. Nevertheless,
in the sequel, we feel free to drop this subscript to avoid cumbersome notations.

Remark 3.1. — If we restrict (3.2) to A0 and to Diff0(X), that is, to C∞ vector
fields and operators, then we obtained a Fréchet chart for Diff0(X) at f , compare
with (3.1).

(11)We assume ` big enough so that L2
` complex operator are regular enough to apply the

Newlander-Nirenberg theorem.
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In [12], the theory of Banach analytic spaces is developed and applied to our
situation. It is enough to say here that a ringed space locally isomorphic to the zero
set Z of some finite collection of analytic functions on a Banach or Hilbert space E
equipped with the quotient of the sheaf of analytic functions on E by the ideal of
functions vanishing on Z as structure sheaf is a Banach/Hilbert analytic space.

Fix J ∈ I and consider a chart Γ`(HomC(T, T )) of E` based at J . The subset I`

of E` is locally defined in charts as

(3.3) {ω ∈ Γ`(HomC(T, T )) | ∂ω + [ω, ω] = 0}

for the ∂ operator sending an element of Γ`(HomC(T, T )), that is, a (0, 1)-form on XJ

with values in T , onto a (0, 2)-form on XJ with values in T , and [−,−] being the
Frölicher-Niejenhuis bracket, see [27] or [42, Ch. 4.1].(12) From (3.3), we infer that I`
is a Hilbert analytic space.

Let us focus now on the action of Diff+
`+1(X) and Diff0

`+1(X) onto E`. Both pre-
serve I`. We would like to say that this action is analytic but here we have to keep in
mind that the complex structure on these groups depends on the choice of the com-
plex structure on X. The correct statement uses smooth morphisms. Let X → B be
a smooth morphism (that is flat with smooth schematic fibers at closed points, e.g. a
family with fiber diffeomorphic to X). The space L2

`+1(X,X ) of L2
`+1 maps from X

to a fiber of X (and thus the space Diff0
`+1(X,X ) as open subset of L2

`+1(X,X ))
can be endowed with a structure of a complex Hilbert analytic space such that the
natural projection onto B is smooth(13) with fiber over J equal to L2

`+1(X,XJ), i.e.,
every point has a neighborhood which is isomorphic to an open set in the product
B × L2

`+1(X,XJ) and a trivialization as (2.13), see [13]. Moreover, the map

(3.4) (f, J) := (f : X −→ XJ) ∈ Diff0
`+1(X,X ) 7−→ J · f ∈ I`

is analytic.
One can go a step further and define the tautological family X → I` where X

is defined as the product I ×X endowed with the tautological complex operator J

along the fibers, that is,

(3.5) for (J, x) ∈ I ×X and v ∈ TxX, J(J,x)(v) := Jxv.

Then X → I` is a smooth morphism as well as L2
`+1(X,X ) and Diff0

`+1(X,X ).
Moreover, the map (3.4) is still analytic but with X being the tautological family
this time.

Convention 3.2. — Notice that E` resp. Diff+
`+1(X) or Γ`+1(TXJ) are L2

` resp. L2
`+1

completions of E resp. Diff+(X) or Γ(TXJ), which form an open and dense subset
of their completions. Moreover, the Fréchet charts of E resp. Diff+(X), extend to
Hilbert charts of E` resp. Diff+

`+1(X), cf. Remark 3.1.

(12)Sometimes an additional normalization constant appears in front of the bracket in (3.3).
(13)simple in the language of [13].
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We shall say that a map between two such Fréchet manifolds is analytic if it extends
as an analytic map of their completions for every ` big enough. A smooth bijection is
an isomorphism if it extends as an analytic isomorphism of the completions.

We shall also say that a subset of a Fréchet manifold is an analytic space if it is
the restriction of an Hilbert analytic space defined in the completions. For example,
I is an analytic space with this definition, since it is the restriction to the Fréchet
manifold E of the Hilbert analytic subspace I` of E`.

3.2. The Kuranishi space and theorem. — We denote by Aut(XJ) the group of au-
tomorphisms of XJ . The connected component of the identity Aut0(XJ) in Aut(XJ)

is tangent to H0(XJ ,ΘJ). We define

(3.6) Aut1(XJ) := Aut(XJ) ∩Diff0(X).

Remark 3.3. — Be careful that (3.6) is not equal to Aut0(XJ), cf. Section 7 and [36].

Let J0 ∈ I . Recall (3.2). Kuranishi’s theorem [26], [27], [29] gives a finite dimen-
sional local model for I and the action of Diff0(X), namely

Theorem 3.4 (Kuranishi, 1962). — For any choice of a closed complex vector space L0

such that

(3.7) A0 = L0 ⊕H0(X0,Θ0)

there exists a connected open neighborhood U0 of J0 in I , a finite-dimensional analytic
subspace K0 of U0 containing J0 and an analytic isomorphism (onto its image)

(3.8) Φ0 : U0 −→ K0 × L0

such that
(i) the inverse map is given by

(3.9) (J, v) ∈ Φ0(U0) 7−→ J · eJ0(v),

(ii) the composition of the maps

(3.10) K0 ↪−→ U0
Φ0−−−→ K0 × L0

1st projection−−−−−−−−−−−−→ K0

is the identity.

Remark 3.5. — Indeed, Kuranishi always uses the L2-orthogonal complement of the
space H0(X0,Θ0) as L0. However, it is easy to see that everything works with any
other closed complement, cf. [38].

Remark 3.6. — We emphasize that we make use of Convention 3.2. Saying that (3.8)
is an analytic isomorphism means that its natural extension to Sobolev structures
in I` is an analytic isomorphism of Hilbert analytic spaces. Theorem 3.4 is proved
using the inverse function theorem. To do that, one extends E to operators of Sobolev
class L2

` (with ` big), so that E becomes a Hilbert manifold. Then one may use the
classical inverse function theorem for Banach spaces to obtain the isomorphism (3.8).
Finally, because K0 is tangent to the kernel of a strongly elliptic differential operator,
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then it only consists of C∞ operators and the isomorphism (3.8) is still valid when
restricting to C∞ operators, see [12], [27] and [29] for more details.

Following [38], we call such a pair (U0, L0) a Kuranishi domain based at J0. Recall
that U0 is an open neighborhood of J0 in I on which the isomorphism Φ0 is defined.
We make the following assumption

Hypothesis 3.7. — The image of Φ0 is contained in a product K0 ×W0 with W0 ⊂
W ∩ L0 an open and connected neighborhood of 0 in L0.

Moreover, we call Ξ0 the natural retraction map

(3.11) Ξ0 : U0
Φ0−−−→ K0 ×W0

1st projection−−−−−−−−−−−−→ K0

and Υ0 the other projection

(3.12) Υ0 : U0
Φ0−−−→ K0 ×W0

2nd projection−−−−−−−−−−−−−→W0.

Given J ∈ I , we denote by KJ the Kuranishi space of XJ . We use the same conven-
tion for K as that stated for X in Remark 2.12.

Remark 3.8. — It is a classical fact that the germ of KJ at J is unique up to isomor-
phism. However, in this paper, we consider KJ as an analytic subspace of I , not as
a germ. By abuse of terminology, we nevertheless speak of the Kuranishi space.

4. The Kuranishi stack

In this Section, we show that each 1-parameter subgroup of the automorphism
group Aut0(X0) of X0 acts on the Kuranishi space K0 of X0. The orbits are points
of K0 that all encode the same complex structure. We shall construct a Kuranishi
stack which is roughly speaking the quotient of K0 by all these actions.

4.1. Automorphisms and the Kuranishi stack. — Let J0 ∈ I and let (U0, L0) be a
Kuranishi domain based at J0 with associated Kuranishi space K0. The complex Lie
group Aut1(X0) (respectively Aut(X0)) is the isotropy group at J0 for the action of
Diff0(X) (respectively Diff+(X)) on I . We focus on the connected component of the
identity Aut0(X0) in this isotropy group. It acts on I , and so locally on U0. This
action induces a local action of each 1-parameter subgroup on K0. In other words,
let now f be an element of Aut0(X0). There exists some maximal open set Uf ⊂ K0

such that

(4.1) Holf : J ∈ Uf ⊂ K0 7−→ Jf := Ξ0(J · f) ∈ K0

is a well defined analytic map. Observe that Holf fixes J0. We want to encode all
these maps (4.1) in an analytic groupoid

(4.2) A0 ⇒ K0.
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Remark 4.1. — Although it is the case in many examples, the groupoid (4.2) will not
in general describe a local G-action, cf. [1]. This comes from the fact that there is no
reason for J(g ◦ h) to equal (Jg)h. In particular, there is no reason for the isotropy
groups of the groupoid to be subgroups of Aut0(X0). They are just submanifolds.
Hence we will need some work to define it precisely.

We start with the following lemma. We recall that W0 is the neighborhood of 0

in L0 appearing in Hypothesis 3.7.

Lemma 4.2
(i) If W0 is small enough, then there exist an open and connected neighborhood T0

of the identity in Aut0(X0) and an open and connected neighborhood D0 of the identity
in Diff0(X) such that

(4.3) (ξ, g) ∈W0 × T0 7−→ g ◦ e(ξ) ∈ D0

is an isomorphism.
(ii) Set D0 =

⋃
g∈Aut0(X0) gD0. Then (4.3) extends as an isomorphism

(4.4) (ξ, g) ∈W0 ×Aut0(X0) 7−→ g ◦ e(ξ) ∈ D0.

Proof. — Pass to vector fields and diffeomorphisms of Sobolev class L2
` for some big `

and extend the map. Since T consists of holomorphic elements, this map is of class
C∞ and a simple computation shows that its differential at (0, Id) is an isomorphism.
Hence we may apply the local inverse theorem and get the result for this Sobolev
class. To finish with point (i), it is enough to remark that, since g is holomorphic,
g ◦ e(ξ) is of class C∞ if and only ξ is.

This also proves that (4.4) is a local isomorphism at each point. Indeed, for g0 ∈
Aut0(X0), the map (ξ, g) ∈ W0 × g0T0 7→ g0g ◦ e(ξ) ∈ g0D0 is an isomorphism by
point (i). Since it is clearly surjective, we just have to check injectivity. Assume that

g ◦ e(ξ) = g′ ◦ e(ξ′) with ξ ∈W0, ξ
′ ∈W0, g ∈ Aut0(X0), g′ ∈ Aut0(X0).

Making this diffeomorphism act on J0, we obtain

(4.5) J0 · e(ξ) = J0 · (g ◦ e(ξ)) = J0 · (g ◦ e(ξ′)) = J0 · e(ξ′)

hence applying Υ0 to (4.5) yields ξ = ξ′ and thus g = g′. �

Remark 4.3. — Note the order in (4.3). If we consider the map (ξ, g) 7→ e(ξ) ◦ g,
the above proof does not apply. Indeed, this last map is not C1 for vector fields and
diffeomorphisms of Sobolev class L2

` , cf. [20, Ex. I.4.4.5].

Recall that we fix a Kuranishi domain (U0, L0) based at J0 at the beginning of the
section. We say that (J, F ) is (U0,D0)-admissible if J belongs to K0 and F is a finite
composition of diffeomorphisms F1, . . . , Fk of D0 such that Ji+1 := Ji · Fi belongs
to U0 for i between 1 and k and with the convention J1 := J .

In particular, we have J ·F ∈ U0, so replacing F with F ◦e(Υ0(J ·F )) if necessary, we
obtain a new (U0,D0)-admissible pair such that J ·F belongs to K0. In the same way,
replacing F1 with F1 ◦e(Υ0(J ·F1)), then F2 with (e(Υ0(J ·F1)))−1 ◦F2 ◦e(Υ0(J ·F2))
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and so on, we may assume that every Ji belongs to K0. In the sequel, we always
assume that an (U0,D0)-admissible pair has this property.

Now define

(4.6) A0 = {(J, F ) ∈ Diff0(X,K0) | (J, F ) is (U0,D0)-admissible},

where Diff0(X,K0) denotes the set of C∞ diffeomorphisms from X to a fiber of
the Kuranishi family K0 → K0. Here by (J, F ) ∈ Diff0(X,K0), we mean that we
consider F as a diffeomorphism from X to the complex manifold XJ . We also consider
the two maps from U0 to K0

(4.7) α(J, F ) = J and β(J, F ) = J · F.

Remark 4.4. — We will realize A0 as an analytic subspace of Diff0(X,K0). We em-
phasize that the complex structure on Diff0(X,K0) ' Diff0(X)×K0 is not a product
structure, cf. Section 3.1. As a consequence, we will show in the proof of Lemma 4.6
that A0 is locally modeled onto K0 × Aut0(X0) but is not realized in general as an
open submanifold of it (cf. Remark 4.1). For example, if X0 is an elliptic curve Eτ
and K0 is a neighborhood of τ in the upper half-plane H, then A0 is diffeomorphic
to Aut0(X0) ×K0 that is to Eτ ×K0 but, as a complex manifold, A0 is in fact the
universal family over K0, that is, the family whose fiber over τ ′ ∈ H is Eτ ′ (cf. [43]).

From remark 4.4 and the proof of Lemma 4.2, we have indeed:

Lemma 4.5. — If W0 is small enough, the map (4.3), resp. (4.4), extends as an ana-
lytic isomorphism from W0 × T0, resp. W0 ×Aut0(X0), to Diff0(X,X0).

Then we set

(4.8) m((J, F ), (J · F, F ′)) = (J, F ◦ F ′), i(J, F ) = (J · F, F−1)

and n(J) = (J, Id). We have

Proposition 4.6. — The groupoid A0 ⇒ K0 endowed with structure maps described
in (4.7) and (4.8) is a smooth analytic groupoid.

Proof. — Pass to Sobolev structures. The space A0 is an analytic subspace of
Diff0

`(X,K0) as an open subset of the set of (J, F ) in Diff0
`(X,K0) such that J · F

satisfies the analytic equations defining K0 as an analytic subspace of I`−1 and thus
of E`−1. Also, α is just the restriction to this analytic subspace of the projection of
L2
`(X,K0) onto K0, hence is analytic. And β is given by the action (J, F ) 7→ J · F

hence is also analytic by (3.4).
Let now (J, F ) belong to A0. Let A be a neighborhood of (J, F ) in A0 such that

F−1 ◦F ′ belongs to D0 for all points (J ′, F ′) of A. Consider the following composition
of analytic maps

(J ′, F ′) ∈ A 7−→ (J ′, χ) ∈K0 ×W `

7−→(J ′, f ′, ξ′) ∈ K0 ×Aut0(X0)×W `
0

7−→ (J ′, f ′) ∈ K0 ×Aut0(X0).

(4.9)

J.É.P. — M., 2019, tome 6



902 L. Meersseman

The first one is the restriction of the inverse of the chart F ◦ e to A, hence satisfies
F ′ = F ◦e(χ); the second one is given by Lemmas 4.2 and 4.5, hence e(χ) = f ′ ◦e(ξ′);
and the third one is just the projection. The first two maps are obviously analytic
isomorphisms onto their image. For the third one, its inverse is given by the formula

(4.10) (J ′, f ′) 7−→ (J ′, f ′,Υ0(J ′ · (F ◦ f ′))).

We note that the composition in (4.9) is independent of ` and that A0 is locally mod-
eled on the product of a neighborhood of a point in K0 with some open neighborhood
of the identity in Aut0(X0).

Moreover, it shows that α is a smooth morphism, since it is given by the projection
map

(4.11) (J ′, f ′) ∈ C ⊂ K0 ×Aut0(X0) 7−→ J ′ ∈ K0

in the chart given by (4.9) (C is the image of this chart). This also shows that the
anchor map n is analytic as it is locally given by the section J 7→ (J, Id) to (4.11) for
F = Id.

Now, observe that L2
`(X,XJ) and L2

`(X,XJ·F ) are isomorphic Banach manifolds.
Moreover, composition in L2

`(X,XJ) is not analytic (cf. Remark 4.3) but it is when
restricted to finite-dimensional complex submanifolds/subspaces containing only C∞
structures. These two observations show that the multiplication is analytic. In the
same way the inverse map of the groupoid is analytic. Finally, since the source map
is smooth and the inverse map is analytic, this implies that the target map is also
smooth. �

Definition 4.7. — The Kuranishi stack associated to K0 is the stackification of (4.2).

Proposition 4.8. — The geometric quotient of the Kuranishi stack is homeomorphic
to the topological space U0/ ∼, for U0 defined as in (3.8) and J ∼ J ′ is the equivalence
relation generated by J ′ = J ·F for F in the neighborhood D0 of Aut0(X0) in Diff0(X)

of Lemma 4.2.

This is a direct consequence of (4.6) (compare with [28]).

Remark 4.9. — However, the geometric quotient of the Kuranishi stack has no rea-
son to be homeomorphic to the topological space U0/ ∼ for J ∼ J ′ the equivalence
relation generated by J ′ = J · f for f ∈ Diff0(X), because there may exist f with J
and J ·f in U0 but such that (J, f) is not (U0,D0)-admissible. Rephrasing this impor-
tant remark, the Teichmüller stack is not locally isomorphic to the Kuranishi stack,
cf. Remark 11.8.

Remark 4.10. — In many cases, the groupoid (4.2) is a translation groupoid, although
its structure is much more complicated in general. For that reason, in previous versions
of this paper, we denote it abusively by Aut0(X0)×K0 ⇒ K0.
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We now want to link the structure of (4.2) with the foliated structure of K0

described in [35]. Recall that the leaf through a point J1 is the maximal connected
subset of K0 all of whose points encode J1 up to isotopy. We have

Proposition 4.11. — The space of connected components of the classes of ∼ in U0 is
homeomorphic to the leaf space of K0 by its foliated structure.

Proof. — Let J2 be in the leaf through J1. Then there exists an isotopy (ft) such
that

for all 0 6 t 6 1 J1 · ft ∈ K0, f0 ≡ Id, J1 · f1 = J2.

So (J1, ft) is (U0,D0)-admissible for all t and J2 belongs to the connected component
containing J1 of the equivalence class of J1. The converse is obvious. �

5. Connectedness properties of I and the graph of f-homotopy

Observe that Kuranishi’s theorem 3.4 implies that I is locally C∞-pathwise con-
nected in E . Therefore, the following results hold.

Proposition 5.1
(i) There are at most a countable number of connected components of I in each E0.
(ii) Every connected component of I is C∞-pathwise connected.

Corollary 5.2. — The Teichmüller and Riemann spaces have at most a countable
number of connected components. Moreover,

(i) the natural projection map from I onto T s(X) induces a bijection

(5.1) π0(I )
1 : 1−−−−→ π0(T s(X)),

(ii) the mapping class group MC (X) acts on both π0(I ) and π0(T s(X)),
(iii) passing to the quotient by the mapping class group MC (X), the bijection (5.1)

descends as a bijection

(5.2) π0(I )/MC (X)
1 : 1−−−−→ π0(T s(X))/MC (X)

1 : 1−−−−→ π0(M s(X)).

Proof. — Just use Proposition 5.1 and the fact that Diff0(X) leaves the components
of I invariant. �

For further use, we let

(5.3) [φ] ∈MC (X) 7−→ [I0 · φ] ∈ π0(I )

denote the map given by the action of the mapping class group onto a fixed compo-
nent I0.

Remark 5.3. — For surfaces, the number of connected components of M s(X), that
is, the number of connected components of I up to the action of the mapping class
group, is finite as soon as it contains a projective manifold [14]. However, it may be
more than one, see [10]. In dimension 3, there are examples of manifolds with M s(X),

J.É.P. — M., 2019, tome 6



904 L. Meersseman

henceforth I having infinitely many connected components, as S1×S4n−1 for n > 1,
see [41], or the product of a K3 surface with S2, see [32].

In the above examples, we note that E also has infinitely many connected compo-
nents. Indeed each connected component of E contains exactly one connected com-
ponent of I . This leads to the following problem:

Problem 5.4. — Find a C∞ compact manifold X with E connected and I having
an infinite number of connected components.

Probably, S1 × S4n−3 for n > 1 give such an example. In particular, it is proved
in [41] that E has a single connected component. And the structures of [4] should
give the countably many connected components of I . Since they have pairwise not
biholomorphic universal covers, this should give the countably many connected com-
ponents of I and even of M s(X). But proving this is the case seems to be out of
reach for the moment. Observe that the first step in showing this result would be to
establish that any deformation in the large of a Hopf manifold is a Hopf manifold,
which is still an open problem as far as we know.

The case of surfaces is somewhat different, see Remark 5.19.

Recall that Kodaira and Spencer defined in [24] the notion of c-homotopy. Taking
into account Kuranishi’s theorem, it turns out that we may equivalently define it by
saying that J1 ∈ I and J2 ∈ I are c-homotopic if there exists a smooth path in I

joining them. That is if they belong to the same connected component I0. Recall
(2.21). Similarly, we define f -homotopy.

Definition 5.5. — Let J1 and J2 be two points of the same I0. Then we say that
they are f -homotopic if there exists a smooth path in I0 joining them such that the
function h0 is constant along it.

Recall also that, if K denotes the Kuranishi space of some J0, then for any c ∈ N,
the sets

(5.4) Kc = {J ∈ K | h0(J) > c}

are analytic subspaces of K, cf. [18]. Using Kuranishi’s theorem, we immediately
obtain that the sets

(5.5) I c = {J ∈ I | h0(J) > c}

are analytic subspaces(14) of I . Observe that I c is the union of all f -homotopy
classes whose h0 is greater than or equal to c.

The analyticity of (5.4) comes indeed from the fact that the function h0 is upper
semi-continuous for the Zariski topology, see [18]. But this also implies

Proposition 5.6. — There are at most a countable number of f -homotopy classes in
each I0.

(14)Recall Convention 3.2.
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Define a weighted and directed graph as follows. Each f -homotopy class F of I

corresponds to a vertex with weight equal to h0(J) for J ∈ F . Two vertices F1

and F2 are related by an oriented edge if there exists a smooth path c in I such that
(i) the structure c(0) belongs to F1,
(ii) for t > 0, the structure c(t) belongs to the class F2.

Observe that the edge is directed from the highest weight to the lowest weight.

Definition 5.7. — The previous graph is called the graph of f -homotopy of I .

Proposition 5.8. — The graph of f -homotopy has the following properties:
(i) It has at most a countable number of connected components. Moreover, there is

a 1 : 1 correspondence between these connected components and the connected compo-
nents of I .

(ii) It has at most a countable number of vertices.
(iii) Each vertex is attached to at most a countable number of edges.
(iv) There is no directed loop.
(v) Every directed path is finite.

Proof. — Items (i), (ii) and (iii) come from Proposition 5.1, Proposition 5.6 and
the definitions; items (iv) and (v) come from the fact that the weights are strictly
decreasing along an edge. �

The group MC (X) acts on the graph of f -homotopy. We detail in the following
proposition some trivial properties of this action.

Proposition 5.9. — The action of MC (X) onto the graph of f -homotopy
(i) sends a connected component onto a connected component,
(ii) sends a vertex to a vertex of same weight,
(iii) respects the number and the orientation of the edges attached to a vertex.

Hence, the existence of diffeomorphisms acting non trivially on the graph implies
strong symmetry properties of the graph. Indeed, if some f sends a connected com-
ponent of I onto a different one, then these two connected components of I must
be completely isomorphic.

Example 5.10 (Hopf surfaces). — Let X = S3 × S1. By classical results of Kodaira
[22], [2], every complex surface diffeomorphic to X is a (primary) Hopf surface. There
is only one connected component of complex structures up to action of the mapping
class group, since any Hopf surface is c-homotopic to any other one, see [51]. The
mapping class group of X is a non trivial group.(15) Indeed, observe that it contains
at least the elements

f(z, w) = (z, w) and g(z, w) = (z, P (z) · w)

(15) It was pointed out to me by A. Hatcher that no mapping class group of a closed 4-manifold
seems to be known.
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for (z, w) ∈ S1 × S3 ⊂ C × C2 and P a homotopically non trivial loop in SO4, since
both have non trivial action in homology. Even without knowing the mapping class
group, we can characterize its action on I . Following [51, p. 24], we separate Hopf
surfaces into five classes namely classes IV, III, IIa, IIb and IIc.

Lemma 5.11. — Let f be a diffeomorphism of X. Assume that f leaves a connected
component of I invariant. Then f is C∞-isotopic to the identity.

Proof. — Let J0 represent a Hopf surface of type IIc, that is, associated to a con-
tracting diagonal matrix

(5.6)
(
λ1 0

0 λ2

)
with 0 < |λ1| < |λ2| < 1.

Assume that J0 · f belongs to the same connected component as J0. Then there
exists a c-homotopy of Hopf surfaces X → [0, 1] with endpoints X0 and XJ0·f : just
take the tautological family above a smooth path in I joining J0 to J0 · f . By
[38, Th. 8.1], there exists an analytic space K encoding the complex structures in a
neighborhood of the path and obtained by gluing together a finite number of Kuranishi
spaces of Hopf surfaces (up to taking the product with some vector space) such that
the family π maps onto a smooth path into K. Using the description of the Kuranishi
spaces of Hopf surfaces in [51, Th. 2], it is easy to check that

(i) K is a manifold,
(ii) the points of K encoding the type IIa Hopf surfaces belongs to a submanifold

of complex codimension at least 1.
Hence, by transversality, we may replace the initial path defining the c-homotopy with
a new path and a thus a new c-homotopy with same endpoints and such that all sur-
faces along this path are linear, that is, not of type IIa. Such a family is locally and thus
globally since the base is an interval isomorphic to the quotient of C2 r {(0, 0)} × [0, 1]

by the action generated by
(Z, t) 7−→ (A(t) · Z, t)

for A a smooth map from [0, 1] into GL2(C) which is equal to (5.6) at 0. In particular,
this means that A(1) is conjugated to (5.6) by, say, M . Hence the map

(5.7) Z ∈ C2 r {(0, 0)} 7−→M · Z ∈ C2 r {(0, 0)}

induces a biholomorphism between X0 and XJ0·f , which is smoothly isotopic to the
identity. Composing f with the inverse of this biholomorphism, this gives an auto-
morphism of X0 which corresponds to the same element of the mapping class group
as f .

Since every automorphism of every Hopf surface is isotopic to the identity (cf. [51,
p. 24] where all the automorphism groups are described), we are done. �

From Lemma 5.11, we deduce that I decomposes into several identical connected
components that are exchanged by action of the mapping class group. In particular,
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Corollary 5.12. — The map (5.3) is a 1 : 1 correspondence between the mapping
class group of X and the set of connected components of I .

Proof. — Since all Hopf surfaces are c-homotopic, (5.3) is surjective. And it is injective
by Lemma 5.11. �

Let us focus on one of the connected components. It corresponds to a graph with
an infinite number of vertices: one of weight 4 (class IV), one of weight 3 for each value
of p > 1 (class III of weight p) and one of weight 2 (classes IIa, IIb and IIc together).
There is an edge joining 4 to 2 and one joining 3 to 2 for each value of p. There is
no edge from 4 to any vertex 3 because it is not possible to deform a Hopf surface
of class IV onto one of class III without crossing the f -homotopy class of weight 2.
In the same way, there is no edge between two different vertices of weight 3, because
every c-homotopy from a Hopf surface of type III with weight p to a Hopf surface of
type III with weight q 6= p must pass through type II Hopf surfaces.

In Figure 5.1, we draw the graph in a synthetic way. The vertex 3p encodes indeed
the uncountable set of vertices of weight 3 labeled by p > 1. The single edge from 3

to 2 remembers all the edges from vertices 3 of label p onto the vertex 2.

Figure 5.1. A component of the graph of f -homotopy for Hopf surfaces.

Remark 5.13. — Using the five classes of Hopf surfaces, one obtains a graph of small
deformations which is more precise and complicated than the graph of f -homotopy,
see [51, p. 31]. The graph of f -homotopy must be considered as a very rough decom-
position of I .

Example 5.14 (Hirzebruch surfaces). — Consider X = S2 × S2. It admits complex
structures of even Hirzebruch surfaces F2a. By [15], this exhausts the set of complex
surfaces diffeomorphic to X. Then there is only one connected component of complex
structures up to action of the mapping class group. The mapping class group is not
known (cf. footnote 15) but contains at least four elements generated by

f(x, y) = (a(x), a(y)) and g(x, y) = (y, x).

where a is the antipodal map of S2. Analogously to Lemma 5.11 and Corollary 5.12,
we have

Lemma 5.15. — Let φ be a diffeomorphism of X. Assume that φ leaves a connected
component of I invariant. Then φ is C∞-isotopic either to g or to the identity.

Proof. — Let J0 represent P1×P1. Assume that J0 ·φ belongs to the same connected
component as J0. Then there exists a c-homotopy of Hirzebruch surfaces π : X → [0, 1]
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with endpoints X0 and XJ0·φ: just take the tautological family above a smooth path
in I joining J0 to J0 · f . By [38, Th. 8.1], there exists an analytic space K encoding
the complex structures on a neighborhood of the path and obtained by gluing together
a finite number of Kuranishi spaces of Hirzebruch surfaces (up to taking the product
with some vector space) such that the family π maps onto a smooth path into K.
Using the description of the Kuranishi spaces of Hirzebruch surfaces in [7, p. 21] (see
also Example 12.6), it is easy to check that

(i) K is a manifold,
(ii) the points of K encoding F2a for a > 0 belongs to a submanifold of complex

codimension at least 1.
Hence, we may replace the initial path defining the c-homotopy with a new path and
a thus a new c-homotopy with same endpoints and such that all surfaces along this
path are biholomorphic to P1 × P1. By Fischer-Grauert’s theorem (see [34] for the
version we use), such a deformation is locally trivial, hence trivial since the base is an
interval, i.e., there exists a smooth isotopy of biholomorphisms

(5.8) ψt : P1 × P1 −→ π−1(t) (t ∈ [0, 1]).

In particular, ψ1 ◦ ψ−1
0 induces a biholomorphism between X0 and XJ0·φ, which is

smoothly isotopic to the identity. Composing its inverse with φ, this gives an auto-
morphism of X0, that is, of P1 × P1, which corresponds to the same element of the
mapping class group as φ. Comparing with the automorphism group of P1×P1 yields
the result. �

Corollary 5.16. — The map (5.3) is surjective with kernel {[Id], [g]}.

Proof. — Since all Hirzebruch surfaces are c-homotopic, (5.3) is surjective. Lemma
5.15 gives the kernel. �

Now, fix a connected component I0. We want to describe it more precisely. Observe
that g corresponds to an automorphism of P1 × P1, but not of the other Hirzebruch
surfaces since every automorphism of F2a is isotopic to the identity for a > 0. Recall
that the dimension of the group of automorphism of F2a is 2a+5 for a > 0, [42, p. 44].
This implies

Lemma 5.17. — We have:
(i) The subset I0(F0) of I0 consisting of structures biholomorphic to P1 × P1 is

open and connected.
(ii) The closed set I0 r I0(F0) has exactly two connected components.
(iii) The diffeomorphism g acts on I0 by fixing globally I0(F0); and by exchanging

the two components of I0 r I0(F0).
(iv) Fix a connected component I1 of I0 r I0(F0). Then the set of points I2

encoding F2 in I1 is open and connected and its complement is connected.
(v) By induction, for a > 1, the set of points Ia encoding F2a in Ia−1 is open

and connected and its complement is connected.

J.É.P. — M., 2019, tome 6



The Teichmüller and Riemann moduli stacks 909

Proof. — Observe that I0(F0) is equal to I0(7), recall (2.22). Hence it is open. Also
we have already observed in the proof of Lemma 5.15 that two c-homotopic structures
both encoding P1 × P1 are c-homotopic through a path all of whose points encode
P1 × P1. This proves (i).

To prove (ii) and (iii), we need a variation of Lemma 5.15. Let J0 represent F2.
Call I1 the connected component of J0 in I0 r I0(F0). Assume that J0 · φ belongs
to I1. Then there exists a smooth family of Hirzebruch surfaces π : X → [0, 1] with
endpoints X0 and XJ0·φ and all of whose point are distinct from P1 × P1. Using [38,
Th. 8.1] and the description of the Kuranishi spaces of Hirzebruch surfaces in [7, p. 21]
(see also Example 12.6), it is easy to check that we may assume that all surfaces along
this path are biholomorphic to F2. Arguing as in the proof of Lemma 5.15, we deduce
that φ must be smoothly isotopic to the identity, since every automorphism of F2 has
this property. Since we already know that g fixes globally I0, this means that J0 and
J0 · g belongs to two distinct connected components of I0 r I0(F0) in I0.

Assume now that J1 is another point of I0 encoding F2. Then there exists φ ∈
Diff+(X) such that J1 equals J0 · φ. By Corollary 5.16, φ is either isotopic to the
identity or to g. In the first case, J1 belongs to also to I1. In the second case,
it belongs to I1 · g. Hence, there are exactly two connected components exchanged
by g, and items (ii) and (iii) are proved.

Finally, similar arguments prove(iv) and (v). �

In other words, the associated graph of f -homotopy has several connected compo-
nents and each connected component has two branches joined on the vertex corre-
sponding to P1×P1. Finally, each branch has a countable number of vertices, namely
one vertex for each value of a ∈ N. It has weight 2a + 5, except for F0 which has
weight 6. Given any a > b, there exists an edge from a to b, because it is possible
to deform F2a onto F2b, cf. [7] or [42]. In particular, every vertex is attached to a
countable number of edges. Similar picture is valid for the odd Hirzebruch surfaces.

Figure 5.2. One of the two branches of a component of the graph of
f -homotopy for Hirzebruch surfaces.

Remark 5.18. — Observe that the action of the mapping class group on I may take
strongly different forms, depending on the C∞-manifold X. For S3× S1, Lemma 5.11
shows that it only permutes the connected components of I . For S2 × S2, some of
the elements of the mapping class group permute the connected components of I

but we also have by Lemma 5.17 an involution which fixes each component of I .
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Note that this involution is isotopic to an automorphism of P1 × P1. The case of
elliptic curves shows a different phenomenon. There is a single connected component of
complex structures which is fixed by every element of the mapping class group SL2(Z).
Some of them are isotopic to an automorphism of an elliptic curve, for example the
multiplication by i; but most of them are not, cf. Example 12.1.

Remark 5.19. — Observe that in Examples 5.10 and 5.14, the Riemann moduli space
M s(X) is connected because of Lemmas 5.11 and 5.15 (cf. Remark 5.3). However,
we do not know if T s(X) has a finite number of connected components, because it
is not known if the mapping class group of S1 × S3, respectively S2 × S2, is finite or
not.(16) For example, notice that some blow ups of connected sums of P2s have infinite
mapping class group, see [45].

6. The TG foliated structure of I and its holonomy groupoid

Let I0 be a connected component of I . The connected group Diff0(X) fixes I0

and we want to show that the action of Diff0(X) induces a foliated structure on I .
Let us review a very classical situation when a group action induces a foliation.

Assume that a finite-dimensional complex Lie group G acts analytically onto a finite-
dimensional complex manifold M . Assume that the action is locally free, that is,
given any x ∈ M , there exists some neighborhood U of the identity in G such that
the following property is true for any g ∈ G

x · g = x =⇒ g 6∈ U.

Then the orbits of theG-action foliates holomorphicallyM [6, §2.1]. The proof exhibits
a foliated atlas. In fact, let e denote the neutral element of G and G its Lie algebra.
Each point x ∈ M has a neighborhood W homeomorphic to a neighborhood V of
(e, 0) in the product of G with some Cp; if we denote this homeomorphism by φ,
then φ sends the intersection of a G-orbit with W onto a plaque V ∩ (G × {Cst.});
and φ−1 sends V ∩ ({e} × Cp) onto a local transverse, that is, a submanifold which
meets transversally the orbits. Moreover, the changes of charts are holomorphic and
foliated, which means that they preserve the plaques. The leaves are the orbits. They
acquire a structure of complex manifold and immersed submanifolds of M . Observe
that the isotropy groups of a locally free action are discrete.

In our situation, the isotropy groups are not discrete, except for the following case.

Proposition 6.1. — Assume that the function h0 is identically zero on the connected
component I0. Then,

(i) the action of Diff0(X) onto I0 is locally free,
(ii) the orbits of the Diff0(X) action onto I0 induces a holomorphic foliation of I0.

(16)I owe this information to Daniel Ruberman.
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Here, by inducing a foliation of I0, we mean: every point J of I0 has a neighbor-
hood which is locally isomorphic(17) to the product of a Fréchet manifold with the
Kuranishi space of XJ and whose local transverse section at a point J is given by the
Kuranishi space of XJ ; the orbits are Fréchet manifolds and submanifolds of I0 in
the weak sense that there exists an injective analytic immersion of each leaf in I0;
they are locally sent to the plaques; the changes of charts are analytic and foliated.

Remark 6.2. — Be careful that we use the word “foliation” in an extended sense.
Firstly the leaves are infinite-dimensional and secondly the transverse sections are
singular spaces and are not all isomorphic. We should rather talk of “lamination” but
we prefer to reserve this terminology for foliated spaces transversely modeled onto a
continuous space, e.g. a Cantor set.

Proof. — Pass to Sobolev classes. The condition that the function h0 is zero on the
whole I and thus on (I`)0 by upper semi-continuity implies that, in Theorem 3.4,
we may take L0 to be the full A0

`+1. This complex vector space is, as a real vector
space, the space of vector fields Γ`+1(TX). Its complex structure a priori depends
on the base point J , but it is easy to check that all A0

`+1 are isomorphic as complex
vector spaces, [38, Lem. 7.1]. Hence the isomorphisms (3.8) form an analytic foliated
atlas of (I`)0: the plaques representing the local orbits of Diff0

`+1(X) are preserved
by the changes of charts, cf. [38, §6]. The plaques are Hilbert manifolds modeled onto
A0
`+1 and analytically embedded in (I`)0. Since the changes of charts are analytic

and foliated, plaques of the same orbit are gluing together to give a Hilbert manifold
structure on the corresponding orbit, and an analytic immersion into (I`)0. At a
point J , any germ of transverse section is isomorphic to the Kuranishi space of XJ .
Recalling Convention 3.2 and Remark 3.1, we obtain (ii). Finally the action is locally
free by (3.9), so (i) is also proved. �

In the general case, we think of Kuranishi theorem 3.4 as describing a foliated
structure on I with analytic orbits and which is no more transversally modeled onto
an analytic space as in Proposition 6.1 but on the Kuranishi stack of Section 4.1. In
previous versions of this paper, we formalize this structure as a TG foliation, but the
definition we gave is not completely satisfactory. There are several technical issues
with it and solving them is unrelated to our results, so we prefer replacing it with the
notion of TG foliated structure which is a purely transverse notion.

Definition 6.3. — By TG foliated structure of I , we mean a collection of Kuranishi
stacks associated to a collection of Kuranishi domains which cover the whole space I .

We think of it as a collection of local transversals to the Diff0(X)-action.

(17)Recall Convention 3.2.
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Remark 6.4. — TG stands for transversely in groupoids. It highlights the fact that the
local transversals are not manifolds or analytic spaces but stacks, and thus encoded
in a groupoid.

We now want to define and encode the holonomy of these local transversals. Let
us first review how it works for a classical foliation.

So, let F be a foliation of some complex manifold. We may associate to it a
holonomy groupoid as follows ([40, §5.2] and [19]). We choose a set of local transverse
sections. Objects of the groupoid are points of the disjoint union of these local sections.
Morphisms are generated by holonomy morphisms, obtained by following the leaves
from a transverse section to another one, identifying holonomy morphisms having
the same germ. It is an étale analytic groupoid, which encodes analytically the leaf
space of the foliation: its geometric quotient is homeomorphic to the leaf space and
its analytic structure reflects the analyticity of the initial foliation.

Having proved in Proposition 6.1 that the action of Diff0(X) induces a foliation
of each connected component of I when h0 is equal to zero, and considering in the
general case the TG foliated structure of I , we would like to associate to this TG
foliated structure a holonomy groupoid. As in the classical case, it should be analytic;
and its geometric quotient should be isomorphic to the leaf space. Later on, we will
show that is also a presentation of the Teichmüller stack.

However, this is much more involved than in the classical case. The problem is
that now the transverse sections are modeled onto groupoids (4.2), so that holonomy
morphisms are stacks morphisms between Kuranishi stacks. Hence, if we just follow
the same strategy, instead of building a groupoid, we end with a disjoint union of
stacks and a set of local stack morphisms. It is certainly possible to turn this collection
into a nice categorical structure. However, we will not follow this path since we are
interested in obtaining a presentation of the Teichmüller stack. The crucial point is to
lift holonomy morphisms between Kuranishi stacks to morphisms between Kuranishi
spaces. This lifting process will be done in four steps, in Sections 8, 9 and 11.

Firstly in Section 8, we construct partial foliations of I0. Partial here means that
they are not defined on the whole I0 but on an open subset. We take a countable
collection of such foliations whose domains of definition cover I0. Basically, the trans-
verse structure of these foliations at some point J is modeled onto the Kuranishi space
of the corresponding complex manifold XJ . However, the jumps in the dimension of
the automorphism group cause serious problems here, and we start doing the con-
struction in the neighborhood of a f -homotopy class, where equidimensionality is
fulfilled. Then we extend it to the whole I0, but to achieve that, we are forced to fat
the smallest Kuranishi spaces to finish with all transversals of the same dimension.
This fattening process was already used in [38].

Secondly, from this set of partial foliations, we define regular atlases for this multi-
foliation and simple holonomy germs as the classical holonomy germs of each partial
foliation. The main point is that we allow, under certain circumstances, composition
of holonomy germs coming from two different foliations. The peculiarities of a regular
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atlas are useful in this process. We encode all the holonomy data related to a regular
atlas in a groupoid. This is however not the good groupoid to consider, especially be-
cause changing of regular atlas does not produce a Morita equivalent groupoid. All this
is done in Sections 9.1, 9.2 and 9.3. This preliminary work is essentially notational
and technical, but is important to achieve the construction.

Thirdly, building on the previous sections, we construct in Section 9.4 the holonomy
groupoid of the TG foliated structure of I0. We call it the Teichmüller groupoid.
Its objects are points of a disjoint union of transverse sections of partial foliations
covering I0. Its morphisms are composition of the simple holonomy germs and of
morphisms of type (4.1) on its Kuranishi space, up to an equivalence relation.

Fourthly, and last, we prove that the Teichmüller groupoid is an analytic smooth
groupoid and a presentation of the Teichmüller stack in Theorem 11.1, which implies
Theorem 2.13. Basically there are two points to check. From the one hand, it must be
shown that composition of simple holonomy germs and local automorphisms describes
the full action of Diff0(X) onto I0. This is done in Lemma 11.4. As a consequence,
its geometric quotient is homeomorphic to T s(X,I0). From the other hand, it must
be shown that the source and target maps are smooth morphisms. This is essentially
an adaptation of the arguments involved in the proof of Lemma 4.6. Analogously, we
prove Theorem 11.10, which implies Theorem 2.14.

Before developing all this construction, we consider in the next section the rigidified
case, in which the TG foliated structure comes from a foliation, and the Teichmüller
groupoid an ordinary holonomy groupoid. This can be seen as a toy model for the
general construction and will serve to fixing some notations and conventions.

7. The rigidified case

Recall (3.6) and

Definition 7.1 (see [8, Def. 12]). — A compact complex manifold XJ is rigidified if
Aut1(XJ) is equal to the identity. More generally, we say that a subset V of I is
rigidified if XJ is rigidified for all J ∈ V .

In that case, the map

(7.1) f ∈ Diff0(X) 7−→ J · f ∈ I

is injective. Moreover, the following holds.

Proposition 7.2. — Assume that all structures of some connected component I0 are
rigidified. Then, the action of Diff0(X) onto I is free and defines a foliation of I0

whose leaves are Fréchet manifolds modeled onto the vector space of smooth sections
of TX and with local transversal K0 at J0.

Proof. — Freeness is immediate from (7.1). The foliation is that of Proposition 6.1.
�
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In the case of Proposition 7.2, the Teichmüller groupoid is just the standard holo-
nomy groupoid of the foliation. We give now a complete treatment of this case, which
serves as a toy model for Section 9. We cover I0 by a collection (Uα)α∈A of open sub-
sets. We assume that each chart Uα is a Kuranishi domain satisfying hypothesis 3.7
associated to the following retraction map (the composition is the identity, cf. (3.10))

(7.2) Kα ↪−→ Uα
Ξα−−−→ Kα.

We denote by Jα the base point of the Kuranishi space Kα. Observe that the index
set may be assumed to be countable, due to Proposition 5.2 and the countability of
the involved topologies.

Take two points x ∈ Kα and y ∈ Kβ belonging to the same leaf and choose a path
of foliated charts joining x to y. A holonomy germ from x to y is a germ of analytic
isomorphism between the pointed spaces (Kα, x) and (Kβ , y), which is obtained by
identifying along the path of foliated charts points belonging to the same leaf, see [40,
§2.1] or [6].

They can be encoded in a holonomy groupoid [40, §5.2] or [19] as follows. Objects
are points of the disjoint union of transversals

(7.3)
⊔
α∈A

Kα.

We denote by (x, α) a point of Kα. To encode the morphisms, we first notice that on
each non-empty intersection Uα∩Uβ , there exists a unique isomorphism φα,β between
some open subset Kα,β of Kα and some open subset Kβ,α of Kβ . It is obtained by
following the leaves of the foliation from Kα till meeting Kβ (when this occurs). It
satisfies the commutative diagram

(7.4)
Uα ∩ Uβ Uα ∩ Uβ

Kα,β Kβ,α

Ξα

Id

Ξβ
'
φα,β

Remark 7.3. — It happens that Kuranishi spaces are everywhere non-reduced. Hence
a morphism between Kuranishi spaces is not completely determined by its values, the
values of its differential must also be prescribed. The previous definition of φα,β by fol-
lowing the leaves just determines its values. However, since Ξα and Ξβ are smooth mor-
phisms by Kuranishi’s theorem 3.4, hence locally trivializable on the source, cf. (2.13),
it is also uniquely defined in the non-reduced case.

We now look at the groupoid of germs generated by the φα,β , cf. [19, 1.2]. In other
words, we now let (α1, . . . , αn) be a collection of indices such that each Uαi ∩ Uαi+1

is non-empty and define
(7.5) φα1,...,αn := φαn−1,αn ◦ · · · ◦ φα1,α2

.

This composition is defined on some open subset of Kα1
that we denote by Kα1,...,αn ;

and it ranges in some open subset of Kαn , that we denote by Kαn,...,α1
. Then we
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represent all holonomy maps as points of

(7.6)
⊔
n>1

( ⊔
(α1,...,αn)∈Bn

Kα1,...,αn

)
.

Here (α1, . . . , αn) ∈ Bn if each Uαi ∩Uαi+1
is non-empty. A point x in some Kα1,...,αn

represents the germ at x of the map φα1,...,αn , the case n = 1 encoding the identity
germs. We denote such a point by the (n+ 1)-uple (x, α1, . . . , αn).

Consider the groupoid whose objects are given in (7.3), and morphisms are
given in (7.6). Observe that both sets are C-analytic spaces. The source map
sends (x, α1, . . . , αn) onto (x, α1) and the target map sends it to (φα1,...,αn(x), αn).
Both are obviously étale analytic maps, since the source map is just the inclusion
Kα1,...,αn ⊂ Kα1 on the component Kα1,...,αn ;(18) and the target map on the same
component is the composition of the isomorphism φα1,...,αn from Kα1,...,αn onto
Kαn,...,α1

with the inclusion Kαn,...,α1
⊂ Kαn . Multiplication is given by composition

of holonomy germs.
However, we are not finished yet. The previous groupoid is not the holonomy

groupoid of the foliation. We must still identify identical germs. It may happen for
example that such a composition φα1,...,αn is the identity. So we take the quotient of
(7.6) by the following equivalence relation

(7.7) (x, α) ∼ (x′, α′) ⇐⇒

{
x = x′, α1 = α′1, αn = α′n′

and
(
φα1,...,αn

)
x′
≡
(
φα′1,...,α′n′

)
x
,

that is, if they have same source, same target, and are equal as germs. Hence, the set
of morphisms is

(7.8)
⊔
n>1

( ⊔
(α1,...,αn)∈Bn

Kα1,...,αn

) /
∼ .

Definition 7.4. — Assume that I0 is rigidified. We call Teichmüller groupoid of I0

the groupoid whose objects are given by (7.3), whose morphisms are given in (7.8),
and whose source, target maps and multiplication are defined as above.

We define in the same way the Teichmüller groupoid of V , an open subset of I .
We emphasize that this definition is valid only if V is rigidified. The general definition
of Teichmüller groupoid will be given in Section 9.

Proposition 7.5. — The Teichmüller groupoid of a rigidified subset V of I is an
analytic étale groupoid.

Proof. — From the above discussion, we just have to prove that (7.8) is still an
analytic space and that the projection map from (7.6) onto (7.8) is étale.

Observe that two distinct points of the same component Kα1,...,αn of (7.6) cannot
be equivalent. Therefore, the natural projection map from (7.6) onto (7.8) is étale and
we just have to show that (7.8) is Hausdorff to finish with the proof.

(18)This component has no reason to be connected.
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This comes from a standard argument, cf. [5, Prop. 3.2]. Consider two equivalent
convergent sequences (xp, αp) and (xp, α

′
p). We may assume that all αp, resp. α′p, are

the same, say α, resp. α′. Assume that (xp) converges to x. Then this means that(
φ−1
α1,...,αn ◦ φα′1,...,α′n

)
xp
≡ Idxp , i.e., the germ of this morphism is the identity at

every point xp. By analyticity, this implies that it is also the identity at the limit
point x. �

Remark 7.6. — The construction above depends on a choice of a foliated atlas. How-
ever, it is easy to show that it is independent of this choice up to Morita equivalence.
This can of course be deduced afterward from general arguments, since we will show
in Theorem 11.1 that its stackification is isomorphic to the stack T (X,I0), which
does not depend on a foliated atlas. It can also be proved directly as follows. Start
with a foliated atlas and construct the associated Teichmüller groupoid. Take a finer
foliated atlas. Then the associated Teichmüller groupoid is just the localization of the
first one over the new atlas, hence both are weakly equivalent [19]. Start now with two
different foliated atlases and their associated Teichmüller groupoid. Since the union
of the atlases is a common refinement of both of them, the two groupoids are Morita
equivalent.

Remark 7.7. — Assume that for all structures J in I0, we have Aut0(XJ) equal to
the identity. Then Proposition 6.1 still applies and the action of Diff0(X) still defines
a foliation of I0. So we can still define a holonomy groupoid as above. Moreover
the geometric quotient of the Teichmüller stack equals the leaf space, that is, the
geometric quotient of this holonomy groupoid. Nevertheless, they may be different as
stacks, because there may exist a non trivial element in Aut1(XJ) that fixes I0. Such
an element is encoded in the Teichmüller groupoid we construct in Section 9 but not
in the holonomy groupoid constructed in this section, cf. Remark 9.15. This explains
why we assume that I0 is rigidified in Definition 7.4.

For many compact complex manifolds X0, there is no difference between Aut0(X0)

and Aut1(X0), cf. [8]. We gave an example ofX0 with Aut0(X0) and Aut1(X0) distinct
in [36]. The dimension of Aut0(X0) is positive so this leads to the following problem.

Problem 7.8. — Find a compact complex manifold X0 with Aut0(X0) being reduced
to the identity but which is not rigidified.

If X0 is Kähler, then a result of Liebermann implies that Aut0(X0) has finite index
in Aut1(X0).(19) In the non-Kähler case, however, there should even exist examples
with infinite “complex mapping class group” Aut1(X0)/Aut0(X0).

8. The set of partial foliated structures of I

In this section, we associate to the TG foliated structure of a connected compo-
nent I0 of I a collection of standard foliations of open sets of I0 covering it. In

(19)I owe this information to S. Cantat.
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Section 9.2, we will associate to these partial foliations their holonomy germs. This
is a crucial step in defining the morphisms of the Teichmüller groupoid. The main
problem here is that the dimension of the Kuranishi spaces may vary inside I0.
To overcome this difficulty, we proceed in two steps. It turns out that the dimension
we have really to care about in this problem is the dimension of the automorphism
group. Hence we first work in the neighborhood of a f -homotopy class, so that we may
assume equidimension of the automorphism groups involved in the choice of foliated
atlases. Then, we treat the general case. We have to fat the Kuranishi spaces with
small automorphism group, following a process already used in [38]. This supposes
the function h0 to be bounded on I0.

8.1. The set of partial foliated structures of a neighborhood of a f-homotopy
class. — Let F be a f -homotopy class in I . Let V be a connected neighborhood
of F in I0. Let G(Σ(TX)) be the grassmannian of closed vector subspaces of Σ(TX)

of codimension h0(F ). For each L ∈ G(Σ(TX)), define

(8.1) FL = {J ∈ F | L⊕ ReH0(XJ ,ΘJ) = Σ(TX)}.

Definition 8.1. — We say that L is F -admissible if FL is not empty.

Assume that L is F -admissible and let J0 ∈ FL. Then, using the isomorphism

(8.2) ξ ∈ A0 7−→ ξ + ξ ∈ Σ(TX)

(where A0 is the space of (1, 0)-vectors for the structure J0), we see that the choice
of an F -admissible L is equivalent to the choice of a closed subspace L0 of A0 satis-
fying (3.7) and

(8.3) ReL0 = L.

In the sequel, we will denote by the same symbol L a closed subspace of A0 and its
real part in Σ(TX). No confusion should arise from this abuse of notation. Observe
that all such L are complex isomorphic, cf. [38, Lem. 7.1].

So, once chosen such an L, we may apply Theorem 3.4 at J0 with L. We define VL as
the maximal open subset of V covered by Kuranishi domains modeled on L and based
at points of FL. We can interpret it as follows. Theorem 3.4 endows each Kuranishi
domain with a trivial local foliation by copies of L and leaf space K0.

Now, let us put this interpretation in a global setting. It tells us that we may
cover VL by Kuranishi domains modeled on the same L. Hence L defines a foliation
of VL by leaves locally isomorphic to a neighborhood of 0 in L, see [38, Th. 7.2].(20)

Definition 8.2. — We call this foliation the L-foliation of V (even if it is only defined
on VL).

(20)The assumption of compactness in this theorem is only used to prove that there exists a
common L modeling all the Kuranishi domains. Since we assume the existence of such a common L,
the proof applies.
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In the case where VL is equal to V , which is equivalent to saying that L is a common
complement to all H0(XJ ,ΘJ) for J ∈ F , then we obtain a global foliation of V .

Nevertheless, it is not possible in general to assume this hypothesis. Hence we
shall replace this foliated structure by a collection of partial foliations encoded in a
groupoid.

Definition 8.3. — A set L of F -admissible elements of G(Σ(TX)) such that

(8.4)
⋃

L∈L

VL = V

is called a covering family of V .

Choose L a covering family of F . Observe that we may assume L to be countable
by Proposition 5.1. To L is associated a covering set of partial foliations of V , defined
as the set of all L-foliations of V for L ∈ L . It is useful to encode it in a groupoid as
follows.

For each L ∈ L , choose an atlas

(8.5) UL = (Uα)α∈AL

of VL by L-foliated charts satisfying hypothesis 3.7. Define

(8.6) A =
⊔

L∈L

AL and U = (UL)L∈L .

Once again, we may assume that A is countable, due to the countability of the
involved topologies. Then define the groupoid GU as follows. Objects are points of
the disjoint union

(8.7)
⊔
α∈A

Uα,

hence are encoded by pairs (x, α).
We insist on seeing each Uα as an L-foliated Fréchet space. We use the notation

(8.8) L ∈ α

to denote the vector space L associated to α. In Section 9, we will enlarge our index
set A and the interest of this strange notation should be clarified. Set now

(8.9) B =
⊔

L∈L

BL =
⊔

L∈L

{(α, β) ∈ A2 | α 6= β, L ∈ α and L ∈ β}.

Morphisms are points

(8.10)
⊔
α∈A

Uα
⊔

(α,β)∈B
Uα ∩ Uβ

encoded by triples (x, α, β).
Once again, we insist on seeing each Uα ∩ Uβ as an L-foliated Fréchet space. Note

that there is no morphism between a point in an L-foliated chart and the same point
in an L′-foliated chart.
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8.2. The general case. — We now deal with the definition of a covering set of partial
foliations and its encoding in a groupoid for all points of I0 with bounded function h0.

Let a ∈ N. Recall (2.22). Recall that I (a) is open. We assume that it is connected,
replacing it with a connected component otherwise. Given a closed subspace L of
Σ(TX) of codimension a, define

(8.11) FL = {J ∈ I0(a) | L ∩ ReH0(XJ ,ΘJ) = {0}}.

This is an extension of (8.1). We may go on with this generalization.

Definition 8.4. — We say that L is a-admissible if FL is not empty.

Analogously to what happens in Section 8.1, the choice of an a-admissible L is
equivalent to the choice of a closed subspace L0 of A0 satisfying

(8.12) L0 ∩H0(XJ ,ΘJ) = {0} and ReL0 = L.

As in Section 8.1, we denote both L and L0 by the same symbol L. Although this L
is not a complement of H0(XJ ,ΘJ), we may run the proof of Kuranishi’s theorem
after adding some finite-dimensional subspace HL such that

(8.13) L⊕HL ⊕H0(XJ ,ΘJ) = A0.

Remark 8.5. — We assume that HL contains only C∞ elements, so that we may use
the same HL for all Sobolev classes. This is always possible by perturbing a little
a basis of HL since C∞ diffeomorphisms are dense in L2

` diffeomorphisms for ` big
enough.

We thus obtain an isomorphism between a neighborhood U of J in I and a product
(cf. [38, Th. 7.2])

(8.14) U
Φ := (Ξ,Υ)
−−−−−−−−−−→ (KJ ×HL)× L.

whose inverse is given by

(8.15) (J, ξ, ξ′) ∈ Φ(U) ∩ (KJ ×HL × L) 7−→ (J · e(ξ)) · e(ξ′).

Setting

(8.16) K := Φ(U) ⊂ KJ ×HL,

we obtain a sequence analogous to (7.2)

(8.17) K ↪−→ U
Ξ−−→ K.

This is our new definition of Kuranishi domains and charts. We replace hypothesis
(3.7) with the following one.

Hypothesis 8.6. — The image of Φ is contained in a product

K × (W ′ ∩ L) = KJ × (W ′ ∩HL)× (W ′ ∩ L)

with W ′ ⊂W an open and connected neighborhood of 0 in A0.
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Let U be a covering of I0(a) by Kuranishi domains satisfying hypothesis 8.6.
Set V = I0(a). We define VL as the maximal open subset of V covered by Kuranishi
domains satisfying hypothesis 8.6, modeled on L and based at points of I0(a). We may
then define the sets of objects and morphisms of the groupoid GU of partial foliations
of V exactly as in Section 8.1. The structure maps are the obvious ones (cf. the proof
of Proposition 8.9).

Remark 8.7. — Recall that the local transversal section at some point J0 is not always
its Kuranishi space K0. It is if and only if h0(J0) is equal to a. More generally, it is
the product of K0 with an open neighborhood of 0 in Ca−h0(J0).

Remark 8.8. — Observe that, if the function h0 is bounded on a connected compo-
nent I0 by some integer a, then I0(a) is equal to I0.

8.3. Properties of the groupoid of partial foliated structures. — The following
Proposition shows that the groupoid of partial foliated structures really describes an
intrinsic geometric structure.

Proposition 8.9
(I) The groupoid GU is a foliated Fréchet étale groupoid, that is,

(i) Both the set of objects and that of morphisms are foliated Fréchet mani-
folds.

(ii) The source, target, composition, inverse and anchor maps are analytic
and respects the foliations.

(iii) The source and target maps are local foliated isomorphisms.
(II) The foliated Fréchet groupoid GU is independent of U up to foliated analytic

Morita equivalence.

Proof. — This is completely standard, since this groupoid is very close to the Lie
groupoid obtained by localization of a smooth manifold over an atlas, see [17, §7.1.3].
Starting with (I), then (Ii) is obvious from (8.7) and (8.10); the source map σ and
the target map τ are given by the following foliation preserving inclusions

(8.18) Uα
σ←−− Uα ∩ Uβ

τ−−→ Uβ

proving (Iiii) and part of (Iii). Composition is given by

(8.19) (x, α, β)× (x, β, γ) 7−→ (x, α, γ)

provided that
L ∈ α ∩ β ∩ γ

(the notation should be clear from (8.8)). Assume for simplicity that α, β and γ are
pairwise distinct. This is indeed a foliation preserving analytic map from

{(φ, ψ) morphisms of GU | τ(φ) = σ(ψ)},
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that is,

(8.20)
⊔

(α,β,β,γ)∈tBL2

Uα ∩ Uβ ∩ Uγ

onto (8.10). Other cases are treated similarly. This finishes the proof of (Iii), hence
of (I).

As for (II), start from choosing two coverings U and V of V . The crucial point is
contained in I: these groupoids are étale. From that, it is enough to observe that both
the localization of GU over V and the localization of GV over U are equal to the
groupoid GU ∩V (see [19] for the equivalence with the classical definition of Morita
equivalence). �

To finish this section, we note that GU encodes all the possible foliations of open
sets of V associated to Kuranishi domains. Indeed we have

Proposition 8.10. — The full subgroupoid of GU obtained by restriction to a fixed
L ∈ L is the localization over some atlas VL, hence is Morita equivalent to the largest
subdomain of V foliated by L.

9. The Teichmüller groupoid

In this section, we construct for the TG foliated structure of I0 the analogue for
the holonomy groupoid. We call it the Teichmüller groupoid. This will be done in
several steps. In Section 9.1, we first give a sort of foliated atlas of I0 with good
properties. We call it a regular atlas. We then define in Section 9.2 the holonomy
germs associated to the set of partial foliations. In Section 9.3, we encode these simple
holonomy morphisms in a groupoid KU . This is however not the right analogue for
the holonomy groupoid, since it does not take into account the isotropy groups of the
transverse structure of the TG foliated structure. From the regular atlas, we finally
build in Section 9.4 the Teichmüller groupoid.

9.1. Regular atlases. — We need to construct on V an equidimensional atlas from
the atlas U of KU . Besides, we need this atlas to reflect the partial foliated structure
of I0 to be able to define properly the holonomy germs.

As in Section 8, we fix L and we define (8.5) and (8.6) as well as GU .
We assume that each chart Uα is a Kuranishi domain satisfying hypothesis 8.6,

based at Jα and associated to the following retraction map (the composition is the
identity, cf. (8.17))

(9.1) Kα ↪−→ Uα
Ξα−−−→ Kα.

Recall Remark 8.7.
The set of holonomy germs of GU is constructed from the union of all holonomy

groupoids when L varies. But in order to mix these holonomies, we first add some
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charts with common transversal for different foliations. More precisely, for every pair
(L,L′) in L 2 with

(9.2) VL ∩ VL′ 6= ∅,

we enlarge the index set A to include new indices α and new charts

(9.3) Kα

Ξα,L←−−−−− Uα,L and Uα,L′
Ξα,L′−−−−−→ Kα

which cover (9.2). We emphasize that the same analytic set Kα is used as leaf space
for both the L and the L′-foliations. This is possible due to the uniqueness properties
in Kuranishi’s theorem 3.4.

In the same way, for any value of n > 3, we enlarge the index set A to include new
indices and charts

(9.4) Uα,Li
Ξα,Li−−−−−→ Kα

for i = 1, . . . , n, covering

(9.5) VL1
∩ . . . ∩ VLn 6= ∅.

Once again, we insist on the fact that Kα is a common leaf space for every Li-foliation
restricted to Uα,Li . We use the notation

(9.6) Li ∈ α for all i = 1, . . . , n

as a natural extension of (8.8).

All new charts are supposed to satisfy hypothesis 8.6.

Definition 9.1. — We call regular atlas of V such a foliated atlas U .

Remark 9.2. — It is important to notice that the new covering U is constructed
from the covering U of GU but has strictly more charts because of (9.4) and (9.3).
Moreover, this (extended) covering cannot be used to construct some GU , since each
chart of GU has to be explicitly associated to a unique L ∈ L . However, to avoid
cumbersome notations, we use the same symbol for both coverings.

We have now to pay attention to the fact that Kα is no more the Kuranishi space
of Jα, but its product with some open set in HL ' Ca−h0(Jα), cf. (8.14). Hence the
groupoid (4.2) of Section 4.1 is not the good one to consider. This can be easily fixed
by fattening also the group Aut0(X0). Recall (8.13) and Remark 8.5.

The following generalization of Lemmas 4.2 and 4.5 is straightforward to prove.

Lemma 9.3
(i) If W ′ ⊂ W is small enough, then there exist an open and connected neighbor-

hood Tα of the identity in Aut0(Xα) and an open and connected neighborhood Dα,L

of the identity in Diff0(X) such that

(9.7) (ξ, ξ′, g) ∈W ′ ∩HL ∩W ′ ∩ L× Tα 7−→ g ◦ e(ξ) ◦ e(ξ′) ∈ Dα,L

is an isomorphism.
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(ii) Set Dα,L =
⋃
g∈Aut0(Xα) gDα,L. Then (9.7) extends as an isomorphism

(9.8) (ξ, ξ′, g) ∈W ′ ∩HL ∩W ′ ∩ L×Aut0(Xα) 7−→ g ◦ e(ξ) ◦ e(ξ′) ∈ Dα,L.

Now define

(9.9) Gα := {g ◦ e(ξ) | (g, ξ) ∈ Aut0(Xα)× (HL ∩W ′)}.

Remark 9.4. — Be careful that Gα is not a group, just a fattening of Aut0(Xα).

We let g ∈ Gα act on Kα exactly as in (4.1), that is

(9.10) xg := Ξα,L(x · g)

and form the corresponding groupoid Aα,L ⇒ Kα as in Section 4.1. Notice that (9.10)
depends on a choice of L.

9.2. Simple holonomy morphisms. — In this subsection, we associate to the partial
foliations of I0 their holonomy germs. The main point is how to mix the holonomies
of the different foliations. We refer to Section 7 for comparison.

We start with a regular atlas U . On each intersection Uα ∩ Uβ with

(9.11) α ∩ β 6= ∅

and for every choice of Li in (9.11), we define the holonomy isomorphism φα,β,Li
between some open subset Kα,β,Li of Kα and some open subset Kβ,α,Li of Kβ as in
Section 7. Recall the commutative diagram (7.4). We then look at the groupoid of
germs generated by the germs of φα,β,L. In other words, we now let

(9.12) β = β1, . . . , βn and L = L1, . . . , Ln

be collections of n elements for any value of n and define

(9.13) φα,β,L := φβn−1,βn,Ln ◦ · · · ◦ φα,β1,L1
.

Here, we assume by convention that both n appearing in (9.12) are the same, allowing
repetitions if necessary. This composition is defined on some open subset of Kα that
we still denote by Kα,β,L; and it ranges in some open subset of Kβn , that we denote
by Kβ,α,L where

(9.14) β = (βn, . . . , β1) and L = (Ln, . . . , L1).

Note that

(9.15) φβn,γ,L′ ◦ φα,β,L ≡ φα,β,γ,L,L′

where this composition is defined, and that

(9.16) φβ,α,L = (φα,β,L)−1.

Definition 9.5. — We call simple holonomy morphisms of GU the morphisms (9.13).
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9.3. A first approximation of the Teichmüller groupoid. — We may encode the
simple holonomy morphisms in a groupoid KU as follows, compare with the con-
struction of the standard holonomy groupoid in Section 7. It is a first approximation
of the Teichmüller groupoid, but which does not see the automorphism groups. Objects
are points of the disjoint union

(9.17)
⊔
α∈A

Kα

hence encoded by pairs as in (8.7). Morphisms encode germs of holonomy maps. They
are defined only between a source object (x, α) and a target object (y, γ) such that

(9.18) y = φα,β,L(x)

for some collections β (with βn = γ) and L. We have first all identity germs, repre-
sented by a copy of (9.17) in the set of morphisms. Then, consider the maps (9.18)
for which β—and then L—has length one. They are encoded as

(9.19)
⊔

(α,β,L)∈B
Kα,β,L.

To be precise, a point x in some Kα,β,L represents the germ at x of the map φα,β,L.
Here

(9.20) (α, β, L) ∈ B ⇐⇒ L ∈ α ∩ β and Uα,L ∩ Uβ,L 6= ∅.

Then we represent all holonomy maps as points of

(9.21)
⊔
n>0

( ⊔
(α,β,L)∈Cn

Kα,β,L

)
for

(9.22) Cn :=

{
(α, β, L) ∈ An+1 × (L )n

such that (α, β1, L1) ∈ B, . . . , (βn−1, βn, Ln) ∈ B

}
.

As previously, a point x in some Kα,β,L represents the germ at x of the map φα,β,L,
the case n = 0 encoding the identity germs.

However, we are not finished. We must still identify identical germs. So we take
the quotient of (9.21) by the following equivalence relation

(9.23) (x, α, β, L) ∼ (x′, α′, β′, L′) ⇐⇒

{
x = x′, α = α′, βn = β′n′

and
(
φα′,β′,L′

)
x′
≡
(
φα,β,L

)
x
,

that is, if they have same source, same target, and are equal as germs. Hence, the set
of morphisms is

(9.24)
⊔
n>0

( ⊔
(α,β,L)∈Cn

Kα,β,L

) /
∼ .

We have (cf. Proposition 7.5):

Proposition 9.6. — The groupoid KU is an analytic étale groupoid.
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However, and contrary to the case of Section 7 and Remark 7.6, KU and KV

are not always Morita equivalent. This is due to the fact that we mix holonomies
of different foliations. Indeed, this is not the good holonomy groupoid to consider,
because it does not take into account the fattenings Gα of the automorphism groups,
although their elements act on the Kuranishi spaces.

Proof. — This is quite standard, because KU is basically just a union of holonomy
groupoids (cf. [19]). The set of objects is obviously an analytic space by (9.17), as
well as the set defined in (9.21), that is, the set of holonomy morphisms before taking
the quotient by the equivalence relation (9.23). Observe that two distinct points of
the same component Kα,β,L of (9.24) cannot be equivalent. Therefore, the natural
projection map from (9.21) onto (9.24) is étale. Now (9.24) is Hausdorff using the
same argument as in the proof of Proposition 7.5.

For α, β and L fixed, the source map is the inclusion

(9.25) σ : Kα,β,L −→ Kα

and the target map is given by φα,β,L, that is

(9.26) τ : Kα,β,L

φα,β,L−−−−−−→ Kβn .

Composition at the level of (9.21) is given by

(9.27) (x, α, β, L)× (y = φα,β,L(x), βn, γ, L
′) 7−→ (x, α, β, γ, L, L′),

thanks to (9.15). And it descends on (9.24) as the composition of germs. This is
analytic as a map from

(9.28) Kα,β,L ∩ φ−1
α,β,L(Kβn,γ,L′) = Kα,β,L ∩ φβ,α,L(Kβn,γ,L′)

onto Kα,β,γ,L,L′ in both cases. �

To finish this section, we want to clarify the relationships between KU and the
holonomy groupoids of the L-foliations. Here it is important to take special care to
Remark 9.2. To avoid confusions, we will index the connected components of the
objects of GU by

⊔
AL; and those of KU by A. We insist on the fact that these two

sets are different since we added extra indices to construct KU . With that difference
on mind, we have immediately

Proposition 9.7. — Let L ∈ L . The holonomy groupoid of the L-foliation is given
by the full subgroupoid of KU over tα∈ALKα.

In particular, if L contains a single element, we have Morita equivalence,
cf. Section 7.

Corollary 9.8. — Assume that L contains a single element L, which is equivalent
to saying that L is a common complement of all H0(XJ ,ΘJ) for J ∈ F . Then KU

is the holonomy groupoid of the L-foliation and it is independent of the covering up
to Morita equivalence.
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Remark 9.9. — Especially, Corollary 9.8 applies to the case where h0(F ) is zero, i.e.,
the automorphism group of all structures of F is discrete. But it also applies to the
case of complex tori, since the continuous part of their automorphism group is given
by translations and since the associated Lie algebra is independent of the complex
structure (as subalgebra of the algebra of smooth vector fields).

9.4. The Teichmüller groupoid. — As in the previous subsections, we start from a
regular atlas U of V . Here V is I0(a), or more generally any open subset of I such
that V ⊂ I0(a). We assume that V is equal to its saturation

(9.29) V sat :=
⋃

f∈Diff0(X)

V · f.

Hence, given x in V , its complete Diff0(X)-orbit is in V .
For simplicity, we build a new regular atlas from the first one by adding new charts

as follows. Each time that Uα,L ∩ Uβ,L 6= ∅, we add a covering of Uα,L ∩ Uβ,L by
charts satisfying hypothesis 8.6. As a consequence, this new regular atlas (that we
still denote U ) satisfies the following condition.

Hypothesis 9.10. — Every simple holonomy germ is a composition of germs of mor-
phisms φα,β,L with Uα,L ⊂ Uβ,L or Uβ,L ⊂ Uα,L.

We call adjacent two charts Uα,L and Uβ,L such that Uα,L ⊂ Uβ,L or Uβ,L ⊂ Uα,L.
And we call elementary holonomy germ a holonomy germ φα,β,L between adjacent
charts. So given

(9.30) y ∈ Kα,β,L and y1 := φα,β,L(y) ∈ Kβ,α,L

with φα,β,L elementary, (8.14) implies that there exists a unique ξ1 in L such that

(9.31) y1 = y · e(ξ1).

Hence we have:

Lemma 9.11. — Let (α, β, L) = (α, β1, . . . , βn, L1, . . . , Ln) be a path of adjacent
charts. To any x in Kα,β,L, is associated a canonical element in Diff0(X), say
Φ(x,α,β,L), such that

(9.32) x · Φ(x,α,β,L) = φα,β,L(x).

Remark 9.12. — The meaning of “canonical” should be clear from the proof.

Remark 9.13. — We emphasize that (9.32) is a pointwise identity. Changing x but
keeping (α, β, L) fixed gives a different element in Diff0(X), as suggested by the
notations. Hence, from the one hand, (9.32) is far from being verified by a unique
element of Diff0(X). And from the other hand, a diffeomorphism Φ(x,α,β,L) has no
reason to send a neighborhood of x in Kα onto a neighborhood of φα,β,L(x) in Kβn .
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Proof. — If β has length one, we just define Φ(x,α,β,L) as the map e(ξ1) given by (9.30)
and (9.31). Otherwise φα,β,L has a canonical decomposition (9.13) into length one ele-
ments. Each element φβi−1,βi,Li of this decomposition (we take β0 = α as a convention)
gives rise to an element Φ(xi−1,βi−1,βi,Li) where x0 = x and xi = φβi−1,βi,Li(xi−1) since
we started from a path of adjacent charts. And we just set

(9.33) Φ(x,α,β,L) := Φ(x,α,β1,L1) ◦ · · · ◦ Φ(xn−1,βn−1,βn,Ln),

which obviously satisfies (9.32). �

Remark 9.14. — Be careful that composition of holonomy germs is contravariant and
composition of elements Φ(x,α,β,L) is covariant.

Recall the map (9.10). Keep in mind that we need to choose some L ∈ α to define it.
For each α ∈ A, and each L ∈ α, we denote by Aα,L ⇒ Kα the corresponding
Kuranishi stack whose geometric quotient is described in Proposition 4.8.

Let us define the Teichmüller groupoid TU as follows. Objects are points

(9.34) (x, α) ∈
⊔
α∈A

Kα

exactly as for KU . But we will enlarge the set of morphisms to take into account the
automorphism groups. We proceed as in Section 9.3.

First, we set Tα,L := Aα,L. Then, we set, for each path (α, β, L) of adjacent charts,

(9.35) Tα,β,L := Aα,L1
×φ◦t,s Aβ1,L2

×φ◦t,s · · · ×φ◦t,s Aβn−1,Ln ×φ◦t,Id Kβn .

Here the φ in the fibered product Aβi×φ◦t,sAβi+1
stands for φβi,βi+1,Li+1

. An element
of Tα,β,L is of the form

(9.36)
(

(x, g1), (φα,β1,L1
(x · g1), g2), (φβ1,β2,L2

((φα,β1,L1
(x · g1)) · g2, g3), . . .

)
.

We denote it by (x, α, β, L, g) with g = (g1, . . . , gn). We consider thus the space

(9.37)
⊔
n>0

( ⊔
(α,β,L)∈Cadj

n

Tα,β,L

)
,

where Cadj
n is defined as the subset of adjacent elements of (9.22) for n > 1 and Cadj

0

is just the set of (α,L) with L ∈ α.
However, as in Section 9.3, we still have to take the quotient of (9.37) by an

appropriate equivalence relation to obtain the set of morphisms. The crucial remark to
do that is to notice that there is a natural map Ψ from (9.37) into Diff0(X,

⊔
α∈A Kα)

which sends an element (x, α, β, L, g) onto

(9.38) g1 ◦ Φ(x·g1,α,β1,L1) ◦ g2 ◦ Φ((φα,β1,L1
(x·g1))·g2,β1,β2,L2) ◦ · · ·

This allows us to identify two such morphisms with same source and target if they
correspond to the same element of Diff0(X). To be precise, we define

(9.39)
(x, α, β, L, g)

∼
(x′, α′, β′, L′, g′)

 ⇐⇒

x = x′, α = α′, βn = β′n′

and
Ψ(x, α, β, L, g) = Ψ(x, α, β′, L′, g′).
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Morphisms are now defined as points

(9.40) (x, α, β, L, g) ∈
⊔
n>0

( ⊔
(α,β,L)∈Cn

Tα,β,L

)/
∼ .

Remark 9.15. — There is a subtle point here we want to emphasize. Equivalence
(9.39) is an equivalence of elements in Diff0(X), whereas equivalence (9.23) is an equiv-
alence of holonomy maps, the relation between these two type of maps being stated in
Lemma 9.11. In other words, (9.23) concerns the geometric orbits of Diff0(X) in I0,
whereas (9.39) concerns the parametrization of the geometric orbits by Diff0(X).
In particular, if an element of Diff0(X) is an automorphism for an open neighborhood
of structures in I0, then it appears as a morphism of (9.40) but not as a morphism
of (9.24).

10. The Riemann moduli groupoid

In this short section, we adapt the construction of Section 9 to obtain a groupoid
that describes the action of the full diffeomorphism group Diff+(X) onto I0. Fix V as
before. Thanks to (2.7), we just have to add the action of the mapping class group (2.9)
on the Teichmüller groupoid. To do that, we assume that V is equal to its saturation

(10.1) V sat :=
⋃

f∈Diff+(X)

V · f.

To cover V with Kuranishi charts, we proceed as follows. We first choose some
regular atlas of V with Kuranishi charts satisfying Hypothesis 9.10. Then we choose
some fi in Diff+(X) for every class of MC (X). Call J the set of indices and set
fJ = (fi)i∈J . We assume that (fi)

−1 belongs to fJ for all i. But we cannot in
general assume that fJ is stable under composition. This would imply that we realize
the mapping class group of X as a subgroup of Diff+(X), which is not always possible.

For any Uα,L, we define Uα,L · f and Kα · f (well defined since Kα is included
in Uα,L), so that the sequence

(10.2) Kα · f ↪−→ Uα,L · f
(·f) ◦ Ξα,L ◦ (·f−1)
−−−−−−−−−−−−−−−−→ Kα · f

is a Kuranishi chart based at Jα · f .
Then we may perform the constructions of Section 9. The Riemann moduli

groupoidMU is now defined as the translation groupoid of the action of the mapping
class group onto TU . More precisely, it is obtained as follows. We define the set of
objects as in (9.34). As for the morphisms, we start with

(10.3)
⊔
n>0

⊔
Rα,β,L,I ,

where

(10.4) Rα,β,L,I = {(x, α, β, L, g, I) ∈ Tα,β,L,×J n}
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and we follow the same strategy as in Section 9. The new map Ψ, say X sends an
element (x, α, β, L, g) onto the element X(x, α, β, L, g) defined as

(10.5) g1 ◦ Φ(x·g1,α,β1,L1) ◦ fi1 ◦ g2 ◦ Φ((φα,β1,L1
(x·g1))·g2,β1,β2,L2) ◦ fi2 · · ·

of Diff+(X,
⊔
α∈A Kα) (compare with (9.38)).

As in Section 9, we take the quotient of (10.3) by the equivalence relation of
representing the same diffeomorphism through (10.5), cf. (9.39). And we define the
set of morphisms as this quotient.

11. The structure of the Teichmüller and the Riemann moduli stacks

In this section, building on the previous sections, we prove the main results of this
paper.

11.1. The structure of the Teichmüller stack. — The aim of this subsection is
to prove Theorem 2.13. In fact, we will prove the following statement, from which
Theorem 2.13 easily follows.

Theorem 11.1. — Let V be an open set of I . Assume that the function h0 is bounded
on V . Let U be a regular atlas of V . Then, the Teichmüller groupoid TU is a smooth
analytic atlas of the Teichmüller stack T (X,V ).

Following the general properties recalled in Section 2.4, we immediately obtain the

Corollary 11.2. — Assume the hypotheses of Theorem 11.1. Let V be another regular
atlas of V . Then the Teichmüller groupoids TU and TV are Morita equivalent.

In the general case, we have

Corollary 11.3. — Let V be an open set of I . Then, the Teichmüller stack T (X,V )

is the direct limit of Artin analytic stacks.

Proof of Corollary 11.3.. — For every nonnegative integer a, we define I (a) as in
(2.22). We consider the Teichmüller stack T (X,V ) as the direct limit of stacks

(11.1) T (X,V ∩I (0)) ↪−→ · · · ↪−→ T (X,V ∩I (a)) ↪−→ · · ·

Applying then Theorem 2.13 replacing V with V ∩I (a) for every a yields the result.
�

The manifold S2 × S2 gives such an example, cf. Example 12.6. We begin with
showing that the set of morphisms of TU completely describes the action of Diff0(X).

Lemma 11.4
(i) Let x ∈ Kα an object. Then the set of x-isomorphisms is Aut1(Xx).
(ii) Let x ∈ Kα and y ∈ Kβ. Then the set of morphisms from x to y is the set

(11.2) {f ∈ Diff0(X) | x · f = y}.

J.É.P. — M., 2019, tome 6



930 L. Meersseman

Proof
(ii) Let x ∈ Kα be an object. It is only connected through a morphism to a point y

in some Kα̃ which belongs to the same orbit of Diff0(X). Let now y ∈ Kα̃ such that

(11.3) y = x · f

for some f in Diff0(X). Choose also an isotopy

(11.4) yt = x · ft
from x to y. To this isotopy is associated a sequence t0 = 0 < t1 < ... < tn−1 < tn = 1

and a path of adjacent charts (α = β0, β, L) (with α̃ = βn) such that yt belongs to
Uβi,Li+1

for ti 6 t 6 ti+1. Choose ti−1 < Ti < ti for all 0 < i < n such that

(11.5) yTi ∈ Uβi−1,Li ∩ Uβi,Li+1
.

We may modify locally f around each time Ti in such a way that yTi belongs to Kβi

but still yt belongs to Uβi,Li+1
for ti 6 t 6 ti+1. Indeed, setting ξ = Υβi,Li+1

(yTi),
we have by definition that yTi · e(ξ) belongs to Kβi . It is thus enough to take a bump
function bi with support around Ti such that b(Ti) = 1 and yt · e(bi(t)ξ) stays in
Uβi,Li+1 for ti 6 t 6 ti+1.

Decompose now f as f1 ◦ · · · ◦ fn with f1 := fT1
, then f2 = f−1

T1
◦ fT2

and so on.
We claim that f1 belongs to set of morphisms of the Teichmüller groupoid between
yT0

= y0 = x ∈ Kα and yT1
∈ Kβ1

. Indeed, setting

(11.6) ut := ft ◦ e(Υβ0,L1
(yt)) 0 6 t 6 T1,

we see that

(11.7) zt = yT0 · u(t) ∈ Kβ0 for all 0 6 t 6 T1.

Now, we deduce easily from (11.7) and (11.6) that uT1
belongs to set of morphisms of

the Teichmüller groupoid. Indeed, we can write uT1
as a finite composition of elements

of Dα,L sending a point of Kα to another point of Kα, so uT1 is a morphism of Aα,L.
Moreover, e(Υβ0,L1(yT1)) is also an element of Dα,L, hence f1 being a composition

of elements of Dα,L is also a morphism of Aα,L. The same line of arguments proves
that fi is a morphism of Aβi,Li+1

for all i, hence, by composition, we are done.
(i) Just apply (ii) to the case x = y. �

Remark 11.5. — Notice from the proof of Lemma 11.2 that an element of Aut1(X)

which is not in Aut0(X) decomposes into a non trivial combination of holonomy maps
and automorphisms of Aut0(X).

We obtain as an obvious corollary:

Corollary 11.6. — Assume that the function h0 is bounded on I . Let U be a regular
atlas of I . Then, the geometric quotient of the Teichmüller groupoid TU is T s(X).

More generally, let V be an open set of I . Assume that the function h0 is bounded
on V . Let U be a regular atlas of V . Then, the geometric quotient of the Teichmüller
groupoid TU is homeomorphic to the quotient space of V sat by the action (2.5) of
Diff0(X).
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We are now in position to prove Theorem 11.1.

Proof of the main theorem 11.1. — Let us start proving that the Teichmüller groupoid
is smooth analytic. First, the set of objects is a countable union of analytic spaces
by (9.34). To prove that the set of morphisms is an analytic space and the the source
map a smooth morphism, we proceed as in the proof of Proposition 4.6. Recall
that the map Ψ gives a continuous injection from the set of morphisms (9.40) to
Diff0(X,

⊔
α∈A Kα). Hence it is Hausdorff. Besides, the map Ψ realizes (9.40) as an

analytic subspace of Diff0(X,
⊔
α∈A Kα). Thanks to Lemma 11.4, it is the set of el-

ements (x, f) in Diff0(X,
⊔
α∈A Kα) such that x · f belongs to the disjoint union of

the Kα.
Then, if (x,Ψ(x, α, β, L, g)) is a morphism, every morphism (x′, F ′) close to it can

be written as (x′,Ψ(x, α, β, L, g) ◦ h ◦ e(ξ)), with h ◦ e(ξ) ∈ Dβn,Ln and

(11.8) ξ = Υβn,Ln(x′ · (Ψ(x, α, β, L, g) ◦ h)),

so we have local isomorphisms (compare with (4.9))

(11.9) (x′, F ′) 7−→ (x′, h) ∈ Kα ×Aut0(Xβn).

In charts (11.9), the source map is just the projection (x′, F ′) 7→ x′ so is analytic and
a smooth morphism.

Multiplication, resp. inverse is given by composition, resp. inverse, of diffeomor-
phisms in Diff0(X,

⊔
α∈A Kα). The target map is given by action of the diffeomor-

phisms. Recall that the action is analytic and that composition, resp. inverse, when
restricted to finite dimensional analytic subspaces containing only C∞ elements, are
also analytic, cf. Proposition 4.6 and its proof. The anchor map is obviously analytic.

We prove now that the stackification of the Teichmüller groupoid is T (X,V ).
Let U be a regular atlas of V . We assume (9.10). An object over S in the stackification
of TU is given by an open covering (Sa) of S, a collection of maps

(11.10) fa : Sa −→ Kα

(α depends on a) and a collection of gluings

(11.11) hab = (fab, gab) : Sa ∩ Sb −→ Ψ(Tα,β,L) ⊂ Diff0(X,
⊔
α∈A

Kα)

satisfying a compatibility condition as well as the usual cocycle condition. More pre-
cisely, the compatibility condition is that, given x in Sa ∩ Sb, we have

(11.12) σ(hab(x)) = fab(x) = fa(x)

and

(11.13) τ(hab(x)) = (fab(x)) · gab(x) = fb(x).

We will show that this is exactly the data we need to construct a (X,V )-family X .
Set

(11.14) Kα := (Kα ×X,Jα),
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where the operator Jα along the fiber {J}×X is tautologically defined as J . We use
the C∞-marking given by the trivialization Kα × X. This defines a (X,V )-family
over Sa, cf. [29].

The main point is that gab lifts canonically to an isomorphism between the restric-
tion of Kα over fa(Sa ∩ Sb) and the restriction of Kβ over fb(Sa ∩ Sb). Define the
canonical lifting of (11.13) as

(11.15) Xab(x, y) :=
(
(fab(x)) · gab(x), (gab(x))(y)

)
for

(11.16) x ∈ Sa ∩ Sb and y ∈ X.

Observe that the cocycle condition just means that the maps (gab(x)) verify the
cocycle condition in Diff0(X). Hence the C∞-markings coincide on the intersections.
Now, define X as

(11.17) X =
⊔
a
f∗a (Kα)/ ∼

where ∼ is the equivalence relation

(11.18) (x, y, a) ∼ (x′, y′, b) ⇐⇒ (x′, y′) = Xab(fa(x), y).

This defines a (X,V )-family thanks to the cocycle condition. Hence, every locally
trivial torsor associated to TU is a (X,V )-family.

Let S ∈ (Ana) and S′ ∈ (Ana). Let g : S → S′ be a morphism. Let (fa, Sa, hab),
respectively (f ′a′ , S

′
a′ , h

′
a′b′) be an object over S, respectively S′ (we use (11.10), (11.11)

and so on). A morphism between them and over g is given by a collection of maps Faa′
from Sa to the set of morphisms of TU such that

(i) for all x ∈ Sa, we have σ(Faa′(x)) = fa(x) and τ(Faa′(x)) = f ′a′ ◦ g(x),
(ii) Fbb′ ◦ hab = h′a′b′ ◦ Faa′ .

It is straightforward, although awkward, to check that (i) shows that Faa′ induces
local Cartesian diagrams

(11.19)
f∗aKα (f ′α)∗Kα′

Sa S′a′
g

that is, local morphisms between the families associated to the descent data; and
that (ii) implies that these local morphisms commute with the gluing (11.18), hence
define a global morphism of (X,V )-families.

All this shows the existence of a functor over (Ana) from the stackification of TU to
T (X,V ). But Kuranishi’s theorem shows that any (X,V )-family is locally isomorphic
to a pull-back family f∗aKα. Hence we may choose a covering of the base and a
collection of maps fa as in (11.10), with associated gluing maps (11.11) satisfying
(11.12) and (11.13) so that it is isomorphic to some family (11.17). Moreover, the

J.É.P. — M., 2019, tome 6



The Teichmüller and Riemann moduli stacks 933

local isomorphisms are uniquely defined, hence it is isomorphic to some family (11.17)
up to unique isomorphism.

Moreover, because of Lemma 11.13, morphisms between two objects of the stackifi-
cation of TU coincide with morphisms between them as objects of T (X,V ). Therefore
the functor is fully faithful and the two stacks are indeed isomorphic. This finishes
the proof. �

We notice the following corollary:

Corollary 11.7. — The Teichmüller groupoid TU is an étale analytic presentation
of the Teichmüller stack T (X,V ) if and only if the function h0 is identically zero
on V .

Moreover, if all structures in V are rigidified, then the Teichmüller groupoid TU

is Morita equivalent to that of Definition 7.4.

Proof. — Use Theorem 11.1 and the fact that the isotropy group of a point J is
Aut1(XJ) by Lemma 11.4. �

Remark 11.8. — It is important to compare the local structure of the Teichmüller
stack at some point J with its Kuranishi space KJ , or better with its Kuranishi stack
AJ ⇒ KJ . The rigidified case is of special interest and amounts to asking if the
Teichmüller stack of X is locally isomorphic at J to the analytic space KJ , cf. [8].

Catanese shows in [8, Th. 45], that, for a minimal surface S of general type, if
Aut(S) is a trivial group, or if S is rigidified with ample canonical bundle, then the
Teichmüller space is locally homeomorphic to the Kuranishi space. He also shows in
[8, Prop. 15] that the same result holds for Kähler manifolds with trivial canonical
bundle. This is used by Verbitsky in [47], see Example 12.2.

This question is equivalent to asking if there can be non trivial simple holonomy
morphisms. In particular, when all the structures of a connected component I0

are rigidified, a positive answer means that the holonomy groupoid of the Diff0(X)-
foliation of I0 is trivial, hence that the foliation itself is trivial.

This seems however too much to expect in general and suggests the following

Problem 11.9. — Find a compact C∞ manifold X with a connected component I0

of rigidified structures and with a non-trivial Teichmüller groupoid.

To begin with, it would be very interesting to have an example of an oriented
smooth manifold X such that T (X) is the leaf space of an irrational foliation of a
complex torus.

11.2. The structure of the Riemann moduli stack. — Analogously, we will prove
Theorem 2.14. It is obtained as an easy consequence of the more precise

Theorem 11.10. — Let V be an open subset of I . Assume that the function h0 is
bounded on V . Let U be a regular atlas of V . Then, the Riemann groupoid MU is a
smooth analytic atlas of the Riemann moduli stack M (X,V ).
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Note the

Corollary 11.11. — Assume the hypotheses of Theorem 11.1. Let V be another reg-
ular atlas of V . Then the Riemann groupoids MU and RV are Morita equivalent.

In the general case,

Corollary 11.12. — Let V be an open subset of I . Then, the Riemann moduli stack
M (X,V ) is the direct limit of Artin analytic stacks.

The proof of Corollary 11.12 is similar to that of Corollary 11.3. The proof of
Theorem 11.10 follows that of Theorem 11.1. As in the previous section, we first
notice that

Lemma 11.13. — Pick x and y in the set of objects. Then, the set of morphisms
joining x to y is

(11.20) {f ∈ Diff+(X) | y = x · f}.

Proof. — Let f belong to (11.20). Then, there exists i ∈J such that f ◦ fi belongs
to Diff0(X). By Lemma 11.2, we know that f ◦ fi belongs to the set of morphisms
joining x to y · fi. Hence f = f ◦ fi ◦ f−1

i belongs to the set of morphisms joining x
to y. �

As an immediate consequence,

Corollary 11.14. — Assume that the function h0 is bounded on I . Let U be a
regular atlas of I . Then, the geometric quotient of the Riemann groupoid MU is
M s(X).

More generally, let V be an open set of I . Assume that the function h0 is bounded
on V . Let U be a regular atlas of V . Then, the geometric quotient of the Riemann
groupoid MU is homeomorphic to the quotient space of V sat by the action (2.5) of
Diff+(X).

Finally, the proof that the stackification of the Riemann groupoid is isomorphic
to M (X,V ) is completely analogous to the corresponding proof for the Teichmüller
groupoid. We only have to consider in (11.11) that gab has two components (g1

ab, g
2
ab),

the second one being in Γ and to add the right action of g2
ab in (11.13), (11.15).

Notice also the obvious Corollary.

Corollary 11.15
(i) The groupoid MU is independent of L up to Morita equivalence.
(ii) The groupoid TU is independent of L up to Morita equivalence.

Proof. — Since both stackifications are completely independent of L by Theorems
11.10 and 11.1, we have directly the results. �
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Remark 11.16. — In the classical case of Riemann surfaces, the Teichmüller space is
nicer than the Riemann moduli space, since the first one is a manifold whereas the
second one is an orbifold. There is no such difference between the Teichmüller stack
and the Riemann moduli stack. Both have similar structures of Artin analytic stacks.
However, the Teichmüller groupoid has a much more natural geometric interpretation
as the holonomy groupoid of the TG foliated structure of I . The Riemann moduli
stack is built from this holonomy groupoid and from the action of the mapping class
group. Hence, for quite different reasons than for surfaces, the Teichmüller stack is
nicer than the Riemann moduli stack.

12. Examples

Example 12.1 (Tori). — Consider firstly the one-dimensional case. So letX be S1×S1.
Then I is connected and, as geometric quotients, T s(X) is the upper half plane H,
and M s(X) is the orbifold obtained as the quotient of H by the classical action (12.5)
of SL2(Z).

However, these are not the Teichmüller and Riemann stacks of X, but of X with a
fixed point, that is, they are the Teichmüller and Riemann stacks of X for structures
of elliptic curves.

To describe the stacks T (X) and M (X), we must incorporate the action of the
translations. This can be done as follows. Consider the quotient X of C×H by the
group generated by

(12.1) (z, τ) 7−→ (z + 1, τ) and (z, τ) 7−→ (z + τ, τ).

Then

(12.2) [z, τ ] ∈X 7−→ π[z, τ ] := τ ∈ H

is a universal family for all 1-dimensional tori, cf. [42, p. 18–19]. Then, we may take
as Teichmüller groupoid, the groupoid

(12.3) T (X) = [X ⇒ H] ,

where the source and target maps are both equal to the projection map π of (12.2) and
where composition is just addition. This must be understood as follows. The common
fibers at a point τ is the elliptic curve Eτ which must be thought of as the translation
group of π−1(τ). Observe that even if we are considering tori, the family X has
a natural section, namely the image of {0} × H through (12.1), allowing a natural
identification between π−1(τ) and its translation group. The fact that the source and
target maps coincide reflects the stability of the translation groups as explained in
Remark 9.9.

To describe the Riemann groupoid, we now just have to add the SL2(Z) action.
Given

(12.4) A =

(
p q

r s

)
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an element of SL2(Z), recall that

(12.5) A · τ =
pτ + q

rτ + s
.

Just set now

(12.6) M (X) = [SL2(Z)×X ⇒ H] ,

where the source map is π, the target map is given by the SL2(Z) action, and com-
position follows the rule

(12.7) (B, [b]A·τ , A · τ) ◦ (A, [a]τ , τ) = (BA, [a+ b(rτ + s)]τ , τ)

for A defined in (12.4) and [z]τ meaning the class of z ∈ C modulo Z⊕ Zτ .
Let us treat now the higher dimensional case. It follows exactly the same pattern.

A universal family is described in [23, §5.2]. One replaces H with

(12.8) Hn := {T ∈ Mn(C) | det ImT > 0}

and one takes the quotient Xn of Hn × Cn by the action generated by

(12.9) (T, z) 7−→ (T, z + ei) and (T, z) 7−→ (T, z + Ti),

where (ei) is the canonical basis of Cn and (Ti) the rows of T . Then the Teichmüller
stack can be presented as

(12.10) T (X) = [Xn ⇒Hn] ,

where the source and target maps are both equal to the projection map and where
composition is just addition. Finally, given

(12.11) A =

(
P Q

R S

)
an element of SL2n(Z) decomposed into blocks of size n× n, recall that

(12.12) A · T = (PT +Q)(RT + S)−1

is the action of SL2n(Z) onto Hn identifying biholomorphic complex tori. Just set
now
(12.13) M (X) = [SL2n(Z)×Xn ⇒Hn] ,

where the source map is the projection, the target map is (12.12), and composition
follows the rule
(12.14) (B, [b]A·T , A · T ) ◦ (A, [a]T , T ) = (BA, [a+ b(RT + S)]T , T ).

The geometric quotients are Hn as Teichmüller space and the quotient of Hn by
the action (12.12) as Riemann space. Notice however that this is far from being an
orbifold, cf. [23, §5.2] and [49].

Example 12.2 (Hyperkähler manifolds). — We make the connection between our gen-
eral results and the beautiful description of the Teichmüller space for simple hyper-
kähler manifolds in [47], to which we refer for further details. Let X be any oriented
smooth compact manifold admitting hyperkähler structures. We restrict I to the
open set of complex structures of hyperkähler type. The corresponding Teichmüller
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space may have an infinite number of connected components see [25] and [50]. It
follows from [8, Prop. 15] and the injectivity of the local period map that T s(X) is
locally homeomorphic to the Kuranishi space, hence acquires local structures of ana-
lytic space. By Bogomolov-Tian-Todorov theorem, the Kuranishi space is a manifold,
so the leaf space is indeed locally a complex manifold.

This is however not enough to imply Hausdorffness; but it forces the inseparable
points to lie on a subset of measure zero. And it finally gives T s(X) the structure of
a non-Hausdorff complex manifold.

Moreover, we consider only simple hyperkähler structures, that is, simply connected
ones. This implies that the first cohomology group with values in the structure sheaf
is zero. So is the group of global (n−1) holomorphic forms by Serre duality. Hence, by
pairing, these simple hyperkähler manifolds do not admit any non zero holomorphic
vector field.

In our setting, all this means that T s(X) is the leaf space of a single L-foliation,
and this foliation has no holonomy, i.e., there is no non-trivial holonomy germs. Hence
the stack T (X) is étale, see Corollary 11.7, and, taking into account Remark 7.7, is
isomorphic to the stackification of the holonomy groupoid constructed in Section 9.3
up to a finite morphism.(21)

Notice that in this particular case, Verbitsky shows in Theorem 1.15 that the in-
separability condition is an equivalence relation and that the quotient of T s(X) by
this equivalence relation is a Hausdorff complex manifold that he calls the birational
Teichmüller space (taking into account that, following a result by Huybrechts, insep-
arable points correspond to birational hyperkähler manifolds).

Finally, the action of the mapping class group on T s(X) can be very complicated,
see [49].

Example 12.3 (Hopf surfaces). — We go back to the Hopf surfaces of Example 5.10.
We assume the reader to be acquainted with deformation theory of primary Hopf
surfaces as detailed in [51]. We consider a connected component I0 of I . Looking at
the f -homotopy graph of Figure 5.1, we see that it is enough to use Kuranishi spaces
of type IV and type III Hopf surfaces. It follows from [51] and Lemma 5.11 that

(i) we have T (X,I0) = M (X),
(ii) we have Aut(XJ) = Aut1(XJ) = Aut0(XJ) for all structures J .

All type IV can be described as a single Kuranishi family constructed as follows,
cf. [51] and [11]. Define

(12.15) U :=

{
A ∈ GL2(C) such that

{
(i) 0 < |λ1| 6 |λ2| < 1

(ii) λ1 = λp2 =⇒ p = 1

}
for λ1 and λ2 the eigenvalues of A. Set

(12.16) XU :=
(
C2 r {(0, 0)} × U

)/〈
(Z,A) 7−→ (A · Z,A)

〉
(21)We do not know if any simple hyperkähler manifold is rigidified. In case it is, recall that T (X)

is isomorphic to the stackification of the holonomy groupoid.
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Then XU → U is a versal family for every Hopf surface of type IV, which is moreover
complete for every surface of type IIb and of type IIc. Let p > 1 and define

(12.17) Vp :=

{
(λ1, λ2, α) ∈ C3 with

{
(i) 0 < |λ1| < |λ2| < 1

(ii) λ1 = λq2 =⇒ q = p

}
.

Set

(12.18) XVp :=
(
C2 r {(0, 0)} × Vp

)/〈
(z, w,A) 7−→ (λ1z + αwp, λ2w,A)

〉
for A = (λ1, λ2, α). Then XVp → Vp is a versal family for every Hopf surface of
type III with weight p, which is moreover complete for every surface of type IIa with
weight p and of type IIc. Incorporating the automorphism groups, we define

(12.19) TIV :=
(
GL2(C)× U

)/
〈(M,A) 7−→ (MA,A)〉

and consider the groupoid

(12.20) TIV ⇒ U

where the source map is the projection onto the second factor of (12.19); the target
map is the conjugation of the second factor by the first one; and the composition
follows the rule

(12.21) [N,MAM−1] ◦ [M,A] = [NM,A].

Then (12.20) is a Teichmüller groupoid for a neighborhood of the f -homotopy class IV
including all types IV, IIb and IIc Hopf surfaces. In the same way, let

(12.22) Gp = {(z, w) 7−→ (az + bwp, dw) | ad 6= 0}

and define

(12.23) TIIIp :=
(
Gp × Vp

)/
〈(M,A) 7−→ (MA,A)〉

with the convention that, given A = (λ1, λ2, α) and givenM with coefficients (a, b, d),
then

(12.24) MA :=
(
(z, w) 7−→ (aλ1z + (aα+ bλp2)wp, dλ2w)

)
.

Consider the groupoid

(12.25) TIIIp ⇒ Vp,

where the source map is the projection onto the second factor of (12.23); the target
map is the conjugation of the second factor by the first one using (12.24); and the
composition is given by composition in Gp. Then (12.25) is a Teichmüller groupoid
for a neighborhood of the f -homotopy class III of weight p including all type III of
weight p, IIb of weight p and IIc Hopf surfaces.

To finish with, we consider the disjoint union of groupoid (12.20) and of groupoids
(12.25) for all p > 1. We need to add the holonomy morphisms between these
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groupoids. In this case, it is not even necessary to fat the spaces, since we have
natural identifications

(12.26)
(
(λ1, λ2, 0) ∈ Vp such that λ1 6= λp2

)
∼
(
λ1 0

0 λ2

)
∈ U (p > 1).

So we take as presentation of TI0
(X) the groupoid whose objects are

(12.27) U
⊔
p>1

Vp

and whose morphisms are generated by morphisms of (12.20) and (12.25) for all p > 1

from the one hand, and by identifications (12.26) from the other hand. To be more
precise, set

(12.28) Wp := {(λ1, λ2, 0) ∈ Vp such that λ1 6= λp2} (p > 1)

and define the supplementary set of morphisms as

(12.29) TIIIpIV :=
({
M =

(
a 0
0 d

)}
×Wp

) /
〈(M,A) 7−→ (MA,A)〉

with source map being the second projection and target map being conjugation of the
second factor by the first one composed with identification (12.26). Hence the set of
morphisms is generated from

(12.30) TIV

⊔
p>1

TIIIp

⊔
p>1

TIIIpIV

using the process explained in Section 9. Recall that T (X,I0) is equal to M (X),
hence this gives also a presentation of M (X).

Finally, we give a model for the geometric quotient T s(X,I0). Consider the map

(12.31) A ∈ GL2(C) 7−→ φ(A) := (detA,TrA) ∈ C∗ × C.

Then φ(U) coincides with the quotient space of U by the conjugation action of GL2(C)

except for matrices with a single eigenvalue.
From this, it is easy to check that the geometric quotient can be constructed as

follows.
– Start with the domain

(12.32) D = φ({A ∈ GL2(C) | 0 < |λ1| 6 |λ2| < 1}) ⊂ C∗ × C,

that is, with the image by φ of the set of invertible matrices with both eigenvalues
having absolute value strictly less than one.

– Double asymmetrically the points of the analytic subspace

(12.33) {(1/4t2, t) | 0 < |t| < 2} ⊂ D

making D non-Hausdorff along (12.33). This encodes the fact that above such a point
(for φ), there are two distinct GL2(C)-orbits and not a single one. Note that these
points correspond to type IV Hopf surfaces.
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– For each value of p > 1, double asymmetrically the points of the analytic subspace

(12.34) {(tp+1, t+ tp) | 0 < |t| < 1} ⊂ D

making D non-Hausdorff along (12.34). This encodes the jumping phenomenon of
type III Hopf surfaces of weight p.

By doubling asymmetrically the points along some subset C, we mean that we
replace the subset C by C tC with the following topology. The second component is
endowed with the topology of C ⊂ D. But given any point P in the first component
of C t C, then every neighborhood of P contains also the corresponding point Q in
the other component. Hence, P and Q are not separated, however they do not play
the same role and the situation is not symmetric.

Remark 12.4. — Let C∗ act by homotheties onto C. Then the geometric quotient
contains exactly two non-separated points and is obtained from a single point by
doubling it asymmetrically. Hence, we can obtain the previous geometric quotient as
follows. Consider

(12.35) {(φ(t, s), w) ∈ D × C | w 6= 0⇒ s = tp for some p > 0}

and take its quotient by C∗ acting by homotheties on the C-factor.

We thus finish with a domain in C∗ × C non-Hausdorff along a countable set of
analytic curves. At each point corresponding to a type IV or a type III Hopf surface,
this space is not locally Hausdorff, hence not locally isomorphic to a analytic space.

Remark 12.5. — Spaces obtained by doubling asymmetrically the points along some
subset C are not locally Hausdorff along C since every neighborhood of a point P
of C contains also the double Q of this point. In particular, any sequence of points
converging onto P also converges onto Q. This is completely different from the non-
Hausdorff spaces obtained as leaf spaces of a foliation with no holonomy (cf. the
Teichmüller space of simple Hyperkähler manifolds, see [47] and Example 12.2). In this
last case, given two inseparable points P and Q, we can find neighborhoods of P
(respectively Q) that do not contain Q (respectively P ). In particular, we can find
sequences of points converging to P and not converging to Q (and vice versa). Such
spaces are locally Hausdorff.

Finally, we refer to [16] for description of a more accurate atlas for Hopf surfaces
(see also [37]).

Example 12.6 (Hirzebruch surfaces). — We go back to the Hirzebruch surfaces of
Example 5.14. Let a > 0. To describe M (X,I (a)), we see from Figure 5.2 that
it is enough to use a single Kuranishi space, that of F2a. It is equal to C2a−1 and
decomposes as a sequence of algebraic cones (cf. [7, p. 21]). To be more precise, for
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any k > 0, define the algebraic cone

(12.36) Tk :=

{
v ∈ C2a−1

∣∣∣∣ rank
 v1 . . . vk+1

...
...

v2a−k−1 . . . v2a−1

 6 k}

of dimension min(2a−1, 2k). For any b 6 a, a point x of C2a−1 encodes the surface F2b

if and only if

(12.37) x ∈ Ta−b r Ta−b−1.

Let Aa be the corresponding Kuranishi stack. Taking into account that

(12.38) h0(F2b) = 2b+ 5 for b > 0 and h0(F0) = 6,

one may check that Aut(F2a) acts transitively on each cone (this follows directly from
Proposition 4.11). However, Aa is not a translation groupoid at least for a = 2 [1].

Now, we have to take care of the action of the mapping class group, computed in
Lemma 5.15 and Corollary 5.16. We can focus on a single connected component of
structures, since they are all identified. Hence, we only have to encode the action of
the switching map g of (5.17). This amounts to consider two copies of

(12.39) Aa ⇒ C2a−1

and to add the following morphisms: first a holonomy morphism sending a point

(12.40) z ∈ Ta r Ta−1 = C2a−1 r Ta−1

belonging to the first copy of C2a−1 to the same point in the second copy. Notice
that, because of (12.37), such a point encodes P1 × P1. This holonomy morphism is
not defined on the points encoding the other Hirzebruch surfaces. This reflects the
fact, explained in Lemma 5.15, that the set of P1 × P1 in a connected component
of structures is connected whereas that of the other Hirzebruch surfaces has two
connected components. Then we add the action of g, which switches the two copies
of C2a−1.

Geometrically, we end with a single copy of C2a−1, but with two (non-separated)
copies of the cone Ta−1. In other words, adapting the vocabulary of Example 12.3, we
double symmetrically the points of C2a−1 along the cone Ta−1. The automorphism
group of F2a acts as previously described and the automorphism g of P1 × P1 fixes
C2a−1 but exchanges the two copies of the cone.

More formally, the set of objects of an atlas of M (X,I (a)) is

(12.41) C2a−1⊔C2a−1

and the set of morphisms is generated from

(12.42)
Aa

⊔
Aa

⊔
Aa⊔

{m ∈ Aa | s(m) 6∈ Ta−1}.

In (12.42), we denote by s the source morphism of (12.39) and we note that the fourth
component is an analytic subspace of Aa since s is a smooth morphism. Note also
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that the condition s(m) 6∈ Ta−1 is equivalent to t(m) 6∈ Ta−1 with t the target map.
The fourth component corresponds to the holonomy morphism (12.40) and the third
one to g. Source, target and composition can easily be described and we omit the
details (cf. the more complicated Example 12.3).

This describes completely M (X,I (a)) but also T (X,I (a)∩I0). In this last case,
perform exactly the same construction, but forget about the g-identification, that is,
drop the fourth component of (12.42). The geometric quotients M s(X) (respectively
M s(X,I (a))) and T s(X,I0) (respectively T s(X,I (a) ∩I0)) are respectively

– N (respectively {0, . . . , a}) with b ∈ N encoding F2b and with open sets given by
{0}, {0, 1}, {0, 1, 2} and so on and

– Z (respectively {−a, . . . , a}) with ±b encoding F2b and with open sets generated
by {0}, {0, 1}, {0, 1, 2} and so on from the one hand, {−1, 0}, {−2,−1, 0} and so on
from the other hand.

13. Final Comments

Representability. — It is natural to ask whether the diagonal of an analytic stack
in the sense of Definition 2.11 is representable by analytic spaces. This is prob-
ably true under some mild additional hypotheses by adapting the proofs of [3,
Props. 15.5& 15.18] to the analytic context. Nevertheless, representability is a quite
subtle notion and one has to check this carefully. To the best of our knowledge, this
has not been done explicitly. We hope to clarify this point in the future.

Changing site. — We can rephrase the end of Section 3.1 near equation (3.5), by say-
ing that the translation groupoid Diff0

`+1(X,X ) ⇒ I` has the following properties.
Both the set of objects and the set of morphisms are Hilbert analytic spaces and
the source and target maps (which are the projection map from the one hand and
action (3.4) from the other hand) are smooth analytic maps. One can show that the
other structure maps (multiplication, inversion and anchor map) are analytic. So we
finally obtain a groupoid which have all the properties of a smooth analytic groupoid
as defined in Section 2.4, except that both the set of objects and the set of morphisms
are infinite dimensional.

We could of course change our analytic site (Ana) for a site (Han) of Hilbert ana-
lytic spaces and at the same time modify Definition 2.7 of analytic groupoid asking for
both the set of objects and the set of morphisms to belong to (Han); and define (X,V )

families and marked (X,V ) families over Hilbert analytic bases to extend the func-
tors T (X,V ) and M (X,V ) over the site (Han). Probably this is possible and would
lead to the result that T (X)→ (Han), resp. M (X)→ (Han), are stackification over
the infinite-dimensional analytic site (Han) of the groupoid Diff0

`+1(X,X ) ⇒ I`,
resp. Diff+

`+1(X,X ) ⇒ I`. However, there are at least two good reasons for not
doing that. On the one hand, the aim of this paper is introduce new tools for un-
derstanding moduli problems in analytic geometry. So we want to make use of these
tools. A theory of analytic stacks over finite-dimensional analytic spaces has still to
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be developed, but, due to the proximity of the definitions as discussed in Section 2.2,
we can rely on the theory of algebraic stacks to do it; whereas analytic stacks over
infinite-dimensional analytic spaces seem far from any known land. On the other hand,
we already argue in Section 2.6 (cf. note 9) that both stacks are locally of finite di-
mension. So such an Hilbert atlas would not reflect at all the properties of our stacks.
In conclusion, we have to work over (Ana).

Changing site II. — In Examples 12.6 and 12.3, the obtained groupoid is a complex
Lie groupoid since both the set of objects and of morphisms are complex manifolds and
not (singular) analytic spaces. When considering the construction of the Teichmüller
groupoid, one easily sees that this will happen each time that all Kuranishi spaces
covering I are complex manifolds. In this special case, it is natural to change the site
(Ana) for the site (Man) of complex manifolds with Euclidean coverings. The whole
construction works and will give that the stacks T (X) → (Man) and M (X) →
(Man) are analytic in the sense that the stackification of the Teichmüller/Riemann
groupoid over (Man) is isomorphic to it. In this special case, T (X) → (Man) and
T (X)→ (Ana) have probably exactly the same properties and changing site should
have no effect, since any family over a singular basis is locally the pull-back of a family
over a non-singular basis, and thus is contained as an object of T (X)→ (Man). But
once again, changing site is a subtle phenomenon and this point has to be clarified.
Of course, if one of the Kuranishi spaces is singular, changing (Ana) for (Man) means
losing information, since T (X) → (Man) will not contain all families with singular
basis.
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