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COMMENSURATING ACTIONS OF BIRATIONAL GROUPS

AND GROUPS OF PSEUDO-AUTOMORPHISMS

by Serge Cantat & Yves de Cornulier

Abstract. — Pseudo-automorphisms are birational transformations acting as regular automor-
phisms in codimension 1. We import ideas from geometric group theory to prove that a group
of birational transformations that satisfies a fixed point property on cat(0) cubical complexes,
for example a discrete group with Kazhdan Property (T), is birationally conjugate to a group
acting by pseudo-automorphisms on some non-empty Zariski-open subset. We apply this argu-
ment to classify groups of birational transformations of surfaces with this fixed point property
up to birational conjugacy.

Résumé (Actions commensurantes de groupes birationnels et groupes de pseudo-automorphis-
mes)

Les pseudo-automorphismes sont les transformations birationnelles qui sont régulières en
codimension 1. On emploie des idées de théorie géométrique des groupes pour obtenir qu’un
groupe de transformations birationnelles satisfaisant une propriété de point fixe sur les com-
plexes cubiques CAT(0), par exemple un groupe ayant la propriété (T) de Kazhdan, est bi-
rationnellement conjugué à un groupe agissant par pseudo-automorphismes sur un ouvert de
Zariski non vide. On utilise cet argument pour classifier, modulo conjugaison birationnelle, les
groupes de transformations birationnelles de surfaces avec cette propriété de point fixe.
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768 S. Cantat & Y. de Cornulier

1. Introduction

1.1. Birational transformations and pseudo-automorphisms. — Let X be a quasi-
projective variety, over an algebraically closed field k. Denote by Bir(X) the group
of birational transformations of X and by Aut(X) the subgroup of (regular) auto-
morphisms of X. For the affine space of dimension n, automorphisms are invertible
transformations f : Ank → Ank such that both f and f−1 are defined by polynomial
formulas in affine coordinates:

f(x1, . . . , xn) = (f1, . . . , fn), f−1(x1, . . . , xn) = (g1, . . . , gn)

with fi, gi ∈ k[x1, . . . , xn]. Similarly, birational transformations of Ank are given by
rational formulas, i.e., fi, gi ∈ k(x1, . . . , xn).

Birational transformations may contract hypersurfaces. Pseudo-automorphisms are
birational transformations that act as automorphisms in codimension 1. Precisely,
a birational transformation f : X 99K X is a pseudo-automorphism if there exist
Zariski-open subsets U and V inX such thatXrU andXrV have codimension > 2

and f induces an isomorphism from U to V . The pseudo-automorphisms of X form
a group, which we denote by Psaut(X). For instance, all birational transformations
of Calabi-Yau manifolds are pseudo-automorphisms; and there are examples of such
manifolds for which Psaut(X) is infinite while Aut(X) is trivial (see [12]). Pseudo-
automorphisms are studied in Section 2.

Definition 1.1. — Let Γ ⊂ Bir(X) be a group of birational transformations of an
irreducible projective variety X. We say that Γ is pseudo-regularizable if there exists
a triple (Y,U , ϕ) where

(1) Y is a projective variety and ϕ : Y 99K X is a birational map;
(2) U is a dense Zariski open subset of Y ;
(3) ϕ−1 ◦ Γ ◦ ϕ yields an action of Γ by pseudo-automorphisms on U .

More generally if α : Γ → Bir(X) is a homomorphism, we say that it is pseudo-
regularizable if α(Γ) is pseudo-regularizable.

One goal of this article is to use rigidity properties of commensurating actions,
a purely group-theoretic concept, to show that many group actions are pseudo-
regularizable. In particular, we exhibit a class of groups for which all actions by
birational transformations on projective varieties are pseudo-regularizable.

1.2. Property (FW). — The class of groups we shall be mainly interested in is char-
acterized by a fixed point property appearing in several related situations, for instance
for actions on cat(0) cubical complexes. Here, we adopt the viewpoint of commensu-
rated subsets. Let Γ be a group, and Γ× S → S an action of Γ on a set S. Let A be
a subset of S. One says that Γ commensurates A if the symmetric difference

γ(A)4A = (γ(A) rA) ∪ (Ar γ(A))

is finite for every element γ of Γ. One says that Γ transfixes A if there is a subset B
of S such that A4B is finite and B is Γ-invariant: γ(B) = B, for every γ in Γ.
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Commensurating actions of birational groups 769

A group Γ has Property (FW) if, given any action of Γ on any set S, all commensu-
rated subsets of S are transfixed. For instance, the cyclic group (Z,+) acts on itself by
translation; this action commensurates Z+ but does not transfix it, hence Z does not
have Property (FW). More generally, Property (FW) is not satisfied by non-trivial
free groups. To get examples with Property (FW), recall that a countable group Γ has
Kazhdan’s Property (T) if every affine isometric action of Γ on a Hilbert space fixes a
point: Property (T) implies (FW), so that all lattices in higher rank simple Lie groups
have Property (FW), for instance SLm(Z) when m > 3 (see [14] and Section 3.2). The
group SL2(Z[

√
5]) also has Property (FW) without satisfying Property (T) (see [14]).

Property (FW) is discussed in Section 3. Let us mention that among its various
characterizations, one is: every combinatorial action of Γ on a cat(0) cube complex
fixes some cube. Another, for Γ finitely generated, is that all its infinite connected
Schreier graphs are one-ended (see [14]).

1.3. Pseudo-regularizations. — Let X be a projective variety. The group Bir(X)

does not really act on X, because there are indeterminacy points; it does not act on
the set of hypersurfaces either, because some of them may be contracted. As we shall
see, one can introduce the set H̃yp(X) of all irreducible and reduced hypersurfaces in
all birational modelsX ′ 99K X (up to a natural identification). Then, there is a natural
action of the group Bir(X) on this set, given by strict transforms of hypersurfaces.
Indeed, one rigorous construction of this action naturally follows from the action on
the set of divisorial valuations. Since this action commensurates the subset Hyp(X)

of hypersurfaces of X, this construction leads to the following result.

Theorem 1. — Let X be a projective variety over an algebraically closed field. Let Γ

be a subgroup of Bir(X). If Γ has Property (FW), then Γ is pseudo-regularizable.

There is also a relative version of Property (FW) for pairs of groups Λ 6 Γ, which
leads to a similar pseudo-regularization theorem for the subgroup Λ: this is discussed
in Section 5.4, with applications to distorted birational transformations.

Remark 1.2. — Theorem 1 provides a triple (Y,U , ϕ) such that ϕ conjugates Γ to a
group of pseudo-automorphisms on the open subset U ⊂ Y . There are two extreme
cases for the pair (Y,U ) depending on the size of the boundary YrU . If this boundary
is empty, Γ acts by pseudo-automorphisms on a projective variety Y . If it is ample,
its complement U is an affine variety; if U is smooth (or locally factorial) then Γ

actually acts by regular automorphisms on U (see Section 2.4). Thus, in the study
of groups of birational transformations, pseudo-automorphisms of projective varieties
and regular automorphisms of affine varieties deserve specific attention.

1.4. Classification in dimension 2. — In dimension 2, pseudo-automorphisms do not
differ much from automorphisms; for instance, Psaut(X) coincides with Aut(X) if X
is a smooth projective surface. Thus, for groups with Property (FW), Theorem 1 can
be used to reduce the study of birational transformations to the study of automor-
phisms of quasi-projective surfaces. Combining results of Danilov and Gizatullin on
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770 S. Cantat & Y. de Cornulier

automorphisms of affine surfaces with a theorem of Farley and Hughes on groups of
piecewise affine transformations of the circle, we prove the following theorem.

Theorem 2. — Let X be a smooth, projective, and irreducible surface, over an alge-
braically closed field. Let Γ be an infinite subgroup of Bir(X). If Γ has Property (FW),
there is a birational map ϕ : Y 99K X such that

(1) Y is the projective plane P2, a Hirzebruch surface Fm with m > 1, or the
product of a curve C by the projective line P1. If the characteristic of the field is
positive, Y is the projective plane P2

k.
(2) The subgroup ϕ−1 ◦ Γ ◦ ϕ is contained in Aut(Y ).

Remark 1.3. — There is an infinite subgroup of Aut(Y ) with Property (FW) for all
surfaces Y of Assertion (1). Namely, if the algebraically closed field k has characteristic
zero, Aut(Y ) contains PGL2(k) or the quotient of GL2(k) by a central cyclic subgroup
in case Y is a Hirzebruch surface. Thus, there is a morphism SL2(Z[

√
5]) → Aut(Y )

with finite kernel and, as mentioned in Section 1.2, SL2(Z[
√

5]) has Property (FW). In
characteristic p > 0, the only case is that of P2

k, whose automorphism group contains
the group PSL3(Fp[t]), which has Kazhdan’s Property (T).

Remark 1.4. — The group Aut(Y ) has finitely many connected components for all sur-
faces Y of Assertion (1) in Theorem 2. Thus, changing Γ into a finite index subgroup,
one gets a subgroup of Aut(Y )0; here Aut(Y )0 denotes the connected component of
the identity: this is an algebraic group, acting algebraically on Y .

Example 1.5. — Groups with Kazhdan Property (T) satisfy Property (FW) (see
Section 3). Also, if Y is a Hirzebruch surface or a product C×P1 for some curve C, then
Aut(Y ) does not contain any group with Property (T), because the group PGL2(k)

does not contain such a group. Thus, Theorem 2 extends [10, Th.A], at least in the
projective case, and the present article offers a new proof of that result. Theorem 2
can also be applied to the group SL2(Z[

√
d]) when the integer d > 2 is not a perfect

square: every action of this group on a projective surface by birational transformations
is conjugate to an action by regular automorphisms on P2

k, the product of a curve C by
the projective line P1

k, or a Hirzebruch surface. Theorem 9.1 provides a more precise
result, based on Theorem 2 and Margulis’ superrigidity theorem.

Remark 1.6. — Let X be a normal projective variety. One can ask whether Bir(X)

transfixes Hyp(X), or equivalently is pseudo-regularizable (see Theorem 5.4). For sur-
faces, this holds precisely when X is not birationally equivalent to the product of the
projective line with a curve. See Section 6.1 for more precise results.

Acknowledgements. — This work benefited from interesting discussions with Jérémy
Blanc, Vincent Guirardel, and Christian Urech. We are grateful to the referees, for
pointing out a gap in a proof and suggesting many improvements.
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2. Pseudo-automorphisms

This preliminary section introduces useful notation for birational transformations
and pseudo-automorphisms, and presents a few basic results.

2.1. Birational transformations. — Let X and Y be two irreducible and reduced
algebraic varieties over an algebraically closed field k. Let f : X 99K Y be a birational
map. Choose dense Zariski open subsets U ⊂ X and V ⊂ Y such that f induces an
isomorphism fU,V : U → V . Then the graph Gf of f is defined as the Zariski closure
of {(x, fU,V (x)) : x ∈ U} in X×Y ; it does not depend on the choice of U and V . The
graph Gf is an irreducible variety; both projections

u : Gf −→ X and v : Gf −→ Y

are birational morphisms and f = v ◦ u−1.
We shall denote by Ind(f) the indeterminacy set of the birational map f .

Theorem 2.1 ([28, Th. 2.17]). — Let f : X 99K Y be a rational map, with X a normal
variety and Y a projective variety. Then the indeterminacy set of f has codimension
> 2.

Example 2.2. — The transformation of the affine plane (x, y) 7→ (x, y/x) is birational,
and its indeterminacy locus is the line {x = 0}: this set of codimension 1 is “mapped to
infinity”. If the affine plane is compactified by the projective plane, the transformation
becomes [x : y : z] 7→ [x2 : yz : xz], with two indeterminacy points.

The total transform of a closed subset Z ⊂ X is denoted by f∗(Z); by definition,
f∗(Z) = v(u−1(Z)). If Z is irreducible and is not contained in Ind(f), we denote by
f◦(Z) its strict transform, defined as the Zariski closure of f(Z r Ind(f)). We say
that an irreducible hypersurface W ⊂ X is contracted if it is not contained in the
indeterminacy set and the codimension of its strict transform is larger than 1; the
exceptional divisor of f is the union of all contracted hypersurfaces.

We say that f is a local isomorphism near a point x ∈ X if there are open subsets
U ⊂ X and V ⊂ Y such that U contains x and f induces an isomorphism from U to V .
The exceptional set of f is the subset of X along which f is not a local isomorphism;
this set is Zariski closed, and is made of three parts: the indeterminacy locus, the
exceptional divisor, and a residual part of codimension > 2.

2.2. Pseudo-isomorphisms. — A birational map f : X 99K Y is a pseudo-isomor-
phism if one can find Zariski open subsets U ⊂ X and V ⊂ Y such that

(i) f realizes a regular isomorphism from U to V and
(ii) X r U and Y r V have codimension > 2.
Pseudo-isomorphisms from X to itself are called pseudo-automorphisms (see § 1.2).

The set of pseudo-automorphisms of X is a subgroup Psaut(X) of Bir(X).

Example 2.3. — Start with the standard birational involution σn : Pnk 99K Pnk which
is defined in homogeneous coordinates by σn[x0 : · · · : xn] = [x−1

0 : · · · : x−1
n ]. Blow-up

the (n + 1) vertices of the simplex ∆n = {[x0 : · · · : xn];
∏
xi = 0}; this provides a
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772 S. Cantat & Y. de Cornulier

smooth rational variety Xn together with a birational morphism π : Xn → Pnk. Then,
π−1 ◦ σn ◦ π is a pseudo-automorphism of Xn, and is an automorphism if n 6 2.

Proposition 2.4. — Let f : X 99K Y be a birational map between two (irreducible,
reduced) normal algebraic varieties. Then, the following properties are equivalent:

(1) The birational maps f and f−1 do not contract any hypersurface, and their
indeterminacy sets have codimension > 2 in X and Y respectively.

(2) The birational map f is a pseudo-isomorphism from X to Y .

Proof. — Denote by g the inverse of f . The second assertion implies the first because
any hypersurface intersects the complement of every closed subset of codimension > 2.
Let us prove that the first assertion implies the second. Let U0 ⊂ X (resp. V0 ⊂ Y )
be the complement of the singular locus of X (resp. Y ) and the indeterminacy locus
of f (resp. g). Let U be the pre-image of V0 by the birational map fU0

: U0 99K V0;
the complement of U in U0, and therefore in X too, has codimension > 2 because
the codimension of Y r V0 is at least 2 and f does not contract any hypersurface.
Define V ⊂ V0 to be the pre-image of U by g (restricted to V0); the codimension of
Y rV is also > 2. Then, the restriction fU : U 99K V is a regular isomorphism, with
inverse gV : V 99K U . �

Example 2.5. — Let X be a smooth projective variety with trivial canonical bun-
dle KX . Let Ω be a non-vanishing section of KX , and let f be a birational trans-
formation of X. Then, f∗Ω extends from X r Ind(f) to X and determines a new
section of KX ; this section does not vanish identically because f is dominant, hence
it does not vanish at all because KX is trivial. As a consequence, f does not con-
tract any hypersurface, because otherwise f∗Ω would vanish along this hypersurface.
Since X is projective, the codimension of Ind(f) is > 2 (Theorem 2.1). Thus, f is a
pseudo-automorphism of X, and Bir(X) = Psaut(X). We refer to [12, 19] for families
of Calabi-Yau varieties with an infinite group of pseudo-automorphisms.

2.3. Projective varieties

2.3.1. Smooth varieties. — Assume that X and Y are smooth. The Jacobian determi-
nant Jac(f)(x) is defined in local coordinates as the determinant of the differential dfx;
the rational function Jac(f) depends on the chosen coordinates (on X and Y ), but
its zero locus does not. The zeroes of Jac(f) form a hypersurface of X r Ind(f); the
zero locus of Jac(f) will be defined as the Zariski closure of this hypersurface in X.

Proposition 2.6. — Let f : X 99K Y be a birational transformation between two
smooth varieties. Assume that Ind(f) and Ind(f−1) have codimension > 2. The fol-
lowing properties are equivalent.

(1) The Jacobian determinants of f and f−1 do not vanish.
(2) For every q ∈ X r Ind(f), f is an isomorphism from a neighborhood of q to a

neighborhood of f(q), and the same holds for f−1.
(3) The birational map f is a pseudo-isomorphism from X to Y .

J.É.P. — M., 2019, tome 6
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Proof. — Denote by g the inverse of f . If the Jacobian determinant of f vanishes
at some point of X r Ind(f), then it vanishes along a hypersurface V ⊂ X. If (1)
is satisfied, then f does not contract any positive dimensional subset of X r Ind(f):
f is a quasi-finite map from X r Ind(f) to its image, and so is g. Zariski’s main
theorem implies that f realizes an isomorphism from X r Ind(f) to Y r Ind(g) (see
[37, Prop. 8.57]). Thus, (1) implies (2) and (3). Since (3) implies (1), this concludes
the proof. �

Proposition 2.7 (see [7]). — Let f : X 99K Y be a pseudo-isomorphism between two
smooth projective varieties. Then

(1) the total transform of Ind(f) by f is equal to Ind(f−1);
(2) f has no isolated indeterminacy point;
(3) if dim(X) = 2, then f is a regular isomorphism.

Proof. — Since X and Y are projective, Ind(f) and Ind(f−1) have codimension > 2:
we can apply Propositions 2.4 and 2.6. Let p ∈ X be an indeterminacy point of the
pseudo-isomorphism f : X 99K Y . Then f−1 contracts a subset C ⊂ Y of positive
dimension on p. Since f and f−1 are local isomorphisms on the complement of their
indeterminacy sets, C is contained in Ind(f−1). The total transform of a point q ∈ C
by f−1 is a connected subset of X that contains p and has dimension > 1. This
set Dq is contained in Ind(f) because f is a local isomorphism on the complement
of Ind(f); since p ∈ Dq ⊂ Ind(f), p is not an isolated indeterminacy point. This
proves Assertions (1) and (2). The third assertion follows from the second one because
indeterminacy sets of birational transformations of projective surfaces are finite sets.

�

2.3.2. Divisors and Néron-Severi group. — Let W be a hypersurface of X, and let
f : X 99K Y be a pseudo-isomorphism. The divisorial part of the total transform
f∗(W ) coincides with the strict transform f◦(W ). Indeed, f∗(W ) and f◦(W ) coincide
on the open subset of Y on which f−1 is a local isomorphism, and this open subset
has codimension > 2.

Recall that the Néron-Severi group NS(X) is the free abelian group of codimen-
sion 1 cycles modulo cycles which are numerically equivalent to 0. Its rank is finite
and is called the Picard number of X.

Theorem 2.8. — The action of pseudo-isomorphisms on Néron-Severi groups is func-
torial: (g ◦ f)∗ = g∗ ◦ f∗ for all pairs of pseudo-isomorphisms f : X 99K Y and
g : Y 99K Z. If X is a normal projective variety, the group Psaut(X) acts linearly
on the Néron-Severi group NS(X); this provides a morphism

Psaut(X) −→ GL(NS(X)).

The kernel of this morphism is contained in Aut(X) and contains Aut(X)0 as a finite
index subgroup.

J.É.P. — M., 2019, tome 6



774 S. Cantat & Y. de Cornulier

As a consequence, ifX is projective the group Psaut(X) is an extension of a discrete
linear subgroup of GL(NS(X)) by an algebraic group.

Proof. — The first statement follows from the equality f∗ = f◦ on divisors. The
second follows from the first.

For the last assertion, we shall need the following fact: if f : X 99K Y is a pseudo-
isomorphism between normal projective varieties such that f∗(HX) = HY for some
pair of very ample divisors HX and HY on X and Y , then, f is an isomorphism
(see [29, Exer. 5.6] and [36]). Indeed, (f−1)∗ = (f−1)◦ maps the linear system |HY |
bijectively onto |HX |; if f had an indeterminacy point, there would be a curve in its
graph whose first projection would be a point q ∈ X and second projection would be
a curve C ⊂ Y : since all members of |HY | intersect C, all members of |HX | should
contain q, in contradiction with the very ampleness of HX .

We can now study the kernel K of the representation Psaut(X) → GL(NS(X)).
Fix an embedding X ⊂ Pmk and denote by HX the polarization given by hyperplane
sections. For every f in K, f∗(HX) is very ample because its class in NS(X) coincides
with the class of HX . Thus, by what has just been proven, f∗ is an automorphism.
To conclude, note that Aut(X)0 has finite index in the kernel of the action of Aut(X)

on NS(X): see [35, Th. 6 in §11] and its extension to arbitrary projective varieties in
[23, p. 268]; and see [31, Prop. 2.2] for compact Kähler manifold. �

2.4. Affine varieties. — The group Psaut(Ank) coincides with the group Aut(Ank) of
polynomial automorphisms of the affine space Ank: this is a special case of the following
proposition.

Proposition 2.9. — Let Z be an affine variety. If Z is locally factorial, the group
Psaut(Z) coincides with the group Aut(Z).

Proof. — Fix an embedding Z → Amk . Rational functions on Z are restrictions of
rational functions on Amk . Thus, every birational transformation f : Z 99K Z is given
by rational formulas f(x1, . . . , xm) = (f1, . . . , fm) where each fi is a rational function.
To show that f is an automorphism, we only need to prove that fi is in the local ring
OZ,x for every index i and every point x ∈ Z. Otherwise

fi =
pi
qi
,

where pi and qi are relatively prime elements of the local ring OZ,x, and qi is not
invertible. Fix an irreducible factor h of qi, and an open neighborhood U of x on
which pi, qi and h are defined. The hypersurfaces WU (pi) = {z ∈ U : pi(z) = 0}
and WU (h) = {z ∈ U : h(z) = 0} have no common components, hence the latter
would be mapped to infinity by f , and f would not be a pseudo-automorphism. This
contradiction shows that all fi are regular and f is an automorphism. �

Example 2.10. — Consider the affine quadric cone Q ⊂ A3 defined by the equation
z2 = x2 + y2; the origin is a singular point of Q, and it is not factorial at that point,
because the relation z2 = (x+iy)(x−iy) shows that z2 can be factorized in two distinct
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Commensurating actions of birational groups 775

ways. Now, consider the affine variety Z = Q×A1 ⊂ A4, with coordinates (x, y, z, t).
The map f(x, y, z, t) = (x, y, z, t+z/(x+ iy)) is a birational transformation of Z. The
indeterminacy sets of f and f−1 coincide with the vertical line {(0, 0, 0)} ×A1 and f
and f−1 do not contract any hypersurface, hence f is a pseudo-automorphism. But f
is not an automorphism.

3. Groups with Property (FW)

3.1. Commensurated subsets and cardinal definite length functions (see [14])

Let G be a group, and G×S → S an action of G on a set S. Let A be a subset of S.
As in the introduction, one says that G commensurates A if the symmetric difference
A4gA is finite for every element g ∈ G. One says that G transfixes A if there is a
subset B of S such that A4B is finite and B is G-invariant: gB = B for every g in G.
If A is transfixed, then it is commensurated. Actually, A is transfixed if and only if
the function g 7→ #(A4gA) is bounded on G.

A group G has Property (FW) if, given any action of G on a set S, all commen-
surated subsets of S are automatically transfixed. More generally, if H is a subgroup
of G, then (G,H) has relative Property (FW) if every commensurating action of G is
transfixing in restriction to H. This means that, if G acts on a set S and commen-
surates a subset A, then H transfixes automatically A. The case H = G is Property
(FW) for G.

We refer to [14] for a detailed study of Property (FW). The next paragraphs present
the two main sources of examples for groups with Property (FW) or its relative
version, namely Property (T) and distorted subgroups.

Remark 3.1. — Property (FW) should be thought of as a rigidity property. To illus-
trate this idea, consider a group K with Property (PW); by definition, this means
that K admits a commensurating action on a set S, with a commensurating subset C
such that the function g 7→ #(C4gC) has finite fibers. If G is a group with Property
(FW), then, every homomorphism G→ K has finite image.

3.2. Property (FW) and Property (T) (see [14]). — One can rephrase Property (FW)
as follows: G has Property (FW) if and only if every isometric action on an “integral
Hilbert space” `2(X,Z) has bounded orbits, for any discrete set X.

A group has Property (FH) if all its isometric actions on Hilbert spaces have fixed
points. More generally, a pair (G,H) of a group G and a subgroup H ⊂ G has relative
Property (FH) if every isometric G-action on a Hilbert space has an H-fixed point.
Thus, the relative Property (FH) implies the relative Property (FW).

By a theorem of Delorme and Guichardet, Property (FH) is equivalent to
Kazhdan’s Property (T) for countable groups; this is the viewpoint we used to
describe Property (T) in the introduction (see [24] for other equivalent definitions).
Thus, Property (T) implies Property (FW). Kazhdan’s Property (T) is satisfied
by lattices in semisimple Lie groups all of whose simple factors have Property (T),
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for instance if all simple factors have real rank > 2. For example, SL3(Z) satisfies
Property (T).

Property (FW) is actually conjectured to hold for all irreducible lattices in semi-
simple Lie groups of real rank > 2, such as SL2(R)k for k > 2. (here, irreducible
means that the projection of the lattice modulo every simple factor is dense.) This
is known in the case of a semisimple Lie group admitting at least one noncompact
simple factor with Kazhdan’s Property (T), for instance in SO(2, 3)×SO(1, 4), which
admits irreducible lattices (see [13]).

3.3. Distortion. — Let G be a group. An element g of G is distorted in G if there
exists a finite subset Σ of G generating a subgroup 〈Σ〉 containing g, such that
limn→∞

1
n |g

n|Σ = 0; here, |g|Σ is the length of g with respect to the set Σ. If G
is finitely generated, this condition holds for some Σ if and only if it holds for every
finite generating subset of G. For example, every finite order element is distorted.

Example 3.2. — Let K be a field. The distorted elements of SLn(K) are exactly the
virtually unipotent elements, that is, those elements whose eigenvalues are all roots
of unity; in positive characteristic, these are elements of finite order. By results of
Lubotzky, Mozes, and Raghunathan (see [34, 33]), the same characterization holds
in SLn(Z) when n > 3; it also holds in SLn(Z[

√
d]) when n > 2 and d > 2 is not a

perfect square. In contrast, in SL2(Z), every element of infinite order is undistorted.

Lemma 3.3 (see [14]). — Let G be a group, and H a finitely generated abelian sub-
group of G consisting of distorted elements. Then, the pair (G,H) has relative Prop-
erty (FW).

This lemma provides many examples. For instance, if G is any finitely generated
nilpotent group and G′ is its derived subgroup, then (G,G′) has relative Property
(FH); this result is due to Houghton, in a more general formulation encompassing
polycyclic groups (see [14]). Bounded generation by distorted unipotent elements can
also be used to obtain nontrivial examples of groups with Property (FW), including
the above examples SLn(Z) for n > 3, and SLn(Z[

√
d]). The case of SL2(Z[

√
d]) is

particularly interesting because it does not have Property (T).

3.4. Subgroups of PGL2(k) with Property (FW). — If a group G acts on a tree T
by graph automorphisms, then G acts on the set E of directed edges of T (T is
non-oriented, so each edge gives rise to a pair of opposite directed edges). Let Ev
be the set of directed edges pointing towards a vertex v. Then Ev4Ew is the set
of directed edges lying in the segment between v and w; it is finite of cardinality
2d(v, w), where d is the graph distance. The group G commensurates Ev for every v,
and #(Ev4gEv) = 2d(v, gv). Consequently, if G has Property (FW), then it has
Property (FA) meaning that every action of G on a tree has bounded orbits. Combined
with [14, Prop. 5.B.1], this argument leads to the following lemma.
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Lemma 3.4 (See [14]). — Let G be a group with Property (FW), then all finite index
subgroups of G have Property (FW), and hence have Property (FA). Conversely, if a
finite index subgroup of G has Property (FW), then so does G.

On the other hand, Property (FA) is not stable by taking finite index subgroups.

Lemma 3.5. — Let k be an algebraically closed field and Λ be a subgroup of GL2(k).
(1) Λ has a finite orbit on the projective line if and only if it is virtually solvable,

if and only if its Zariski closure does not contain SL2.
(2) Assume that all finite index subgroups of Λ have Property (FA) (e.g., Λ has

Property FW). If the action of Λ on the projective line preserves a non-empty, finite
set, then Λ is finite.

The proof of the first assertion is standard and omitted. The second assertion
follows directly from the first one.

In what follows, we denote by Z ⊂ Q the ring of algebraic integers (in some fixed
algebraic closure Q of Q).

Theorem 3.6 (Bass [3]). — Let k be an algebraically closed field.
(1) If k has positive characteristic, then GL2(k) has no infinite subgroup with Prop-

erty (FA).
(2) Suppose that k has characteristic zero and that Γ ⊂ GL2(k) is a countable

subgroup with Property (FA), and is not virtually abelian. Then Γ acts irreducibly
on k2, and is conjugate to a subgroup of GL2(Z). If moreover Γ ⊂ GL2(K) for some
subfield K ⊂ k containing Q, then we can choose the conjugating matrix to belong to
GL2(K).

On the proof. — According to [39, §6, Th. 15], a countable group with Property (FA)
is finitely generated. Thus, if Γ ⊂ GL2(k) has Property (FA) it is contained in GL2(K)

for some finitely generated subfield K ⊂ k (choose K to be the subfield generated
by entries of a finite generating subset of Γ). Then, the first statement follows from
[3, Cor. 6.6].

Now, assume that the characteristic of k is 0. Since a group with Property (FA)
has no infinite cyclic quotient, and is not a non-trivial amalgam, [3, Th. 6.5] can be
applied, giving the first assertion of (3.6) (see also the first Theorem in [4]). For
the last assertion, we have Γ ∪ BΓB−1 ⊂ GL2(K) for some B ∈ GL2(k) such that
BΓB−1 ⊂ GL2(Z); we claim that this implies that B ∈ k∗ GL2(K). First, since Γ

is absolutely irreducible, this implies that BM2(K)B−1 ⊂ M2(K). The conclusion
follows from Lemma 3.7 below, which can be of independent interest. �

Lemma 3.7. — Let K ⊂ L be fields. Then the normalizer {B ∈ GL2(L) :

BM2(K)B−1 ⊂M2(K)} is reduced to L∗ GL2(K) = {λA : λ ∈ L∗, A ∈ GL2(K)}.

Proof. — Write

B =

(
b1 b2
b3 b4

)
.

J.É.P. — M., 2019, tome 6



778 S. Cantat & Y. de Cornulier

Since BAB−1 ∈ M2(K) for the three elementary matrices A ∈ {E11, E12, E21}, we
deduce by a plain computation that bibj/bkb` ∈ K for all 1 6 i, j, k, ` 6 4 such that
bkb` 6= 0. In particular, for all indices i and j such that bi and bj are nonzero, the
quotient bi/bj = bibj/b

2
j belongs to K. It follows that B ∈ L∗ GL2(K). �

Corollary 3.8. — Let k be an algebraically closed field. Let C be a projective curve
over k, and let k(C) be the field of rational functions on the curve C. Let Γ be an
infinite subgroup of PGL2(k(C)). If Γ has Property (FA), then

(1) the field k has characteristic 0;
(2) there is an element of PGL2(k(C)) that conjugates Γ to a subgroup of

PGL2(Z) ⊂ PGL2(k(C)). �

4. Divisorial valuations, hypersurfaces, and the action of Bir(X)

The group of birational transformations Bir(X) acts on the function field k(X),
hence also on the set of valuations of k(X). The subset of divisorial valuations is
invariant, and the centers of those valuations correspond to irreducible hypersurfaces
in various models of X. In this way, we obtain a natural action of Bir(X) on (reduced,
irreducible) hypersurfaces in all models of X; this section presents this classical con-
struction (we refer to [41, Chap.VI] and [40] for detailed references).

4.1. Divisorial valuations. — Consider a projective variety X over an algebraically
closed field k and let k(X) be its function field. A discrete, rank 1, valuation v on
k(X) is a function on the multiplicative group k(X)∗ with values in the cyclic group Z

such that
(i) v(ϕψ) = v(ϕ) + v(ψ) and v(ϕ+ ψ) > min(v(ϕ), v(ψ)), ∀ϕ, ψ ∈ k(X)∗,
(ii) v vanishes on the set of constant functions k ⊂ k(X),
(iii) v(k(X)) = Z (we assume that the value group is equal to Z in this article).

Its valuation ring is the subring Rv ⊂ k(X) defined by Rv = v−1(Z+), where Z+ is
the set of non-negative integers. This ring contains a unique maximal ideal, namely
mv = v−1(Z∗+), where Z∗+ is the set of positive integers. The residue field is the
quotient field k(X)v = Rv/mv; if its transcendence degree is equal to dim(X) − 1,
then v is said to be a divisorial valuation (see [41, §VI.14], [40, §10]). We shall denote
by DV(X) the set of divisorial valuations on k(X).

Any birational map f : X 99K X ′ determines an isomorphism of function fields and
transports divisorial valuations to divisorial valuations: if v is a divisorial valuation
on k(X), then f(v)(ϕ) := v(ϕ ◦ f) defines a divisorial valuation on k(X ′). Indeed,
the group of values is not modified by this action, and the residue fields k(X)v and
k(X)f(v) are isomorphic. In this way, Bir(X) acts on DV(X).

4.2. Hypersurfaces. — We now work with normal and projective varieties; we shall
use that their singular loci, and the indeterminacy loci of birational maps have codi-
mension > 2 (in particular, the strict transform of any hypersurface is well defined).

J.É.P. — M., 2019, tome 6



Commensurating actions of birational groups 779

Let π : Y → X be a birational morphism between normal projective varieties.
Let E be a reduced, irreducible, hypersurface in Y . Since Y is normal, it is smooth at
the generic point of E; thus, if ϕ is an element of k(X)∗, we can define the order of
vanishing vE(ϕ) of ϕ along E: vE(ϕ) = a > 0 if ϕ◦π vanishes at order a along E, and
vE(ϕ) = −a if ϕ ◦ π has a pole of order a along E. Then, vE is a divisorial valuation,
with residue field isomorphic to k(E). One says that vE is the geometric valuation
associated to E (or more precisely to (π,E)). A theorem of Zariski asserts that every
divisorial valuation is geometric (see [41, §VI.14] or [40, §10]). Thus, one may define
the set H̃yp(X) of irreducible hypersurfaces in all (normal) models of X as the set
of divisorial valuations DV(X). Any reduced and irreducible hypersurface E in any
model Y → X determines such a point E ∈ H̃yp(X); two divisors E and E′ in two
models π : Y → X and π′ : Y ′ → X correspond to the same point in H̃yp(X) if and
only if the two valuations vE and vE′ coincide, if and only if E is the strict transform
of E′ by the birational map π−1 ◦ π′ : Y ′ 99K Y . The action of Bir(X) on valuations
becomes an action by permutations on H̃yp(X), which we denote by

(4.1) f• : E ∈ H̃yp(X) 7−→ f•(E);

it satisfies f(vf•(E)) = vE . If E is a reduced and irreducible hypersurface in the model
π : Y → X, there is a birational morphism π′ : Y ′ → X such that π′−1 ◦f ◦π does not
contract E; then, the strict transform of E by π′−1 ◦ f ◦ π is a reduced, irreducible
hypersurface E′ in Y ′ that represents the point f•(E) in H̃yp(X).

More generally, if f : X 99K X ′ is a birational map between normal projective
varieties, we obtain a bijection f• : H̃yp(X)→ H̃yp(X ′).

4.3. The subset Hyp(X). — Let Hyp(X) ⊂ H̃yp(X) be the subset of all reduced,
irreducible hypersurfaces of the normal variety X. Recall that a hypersurface is con-
tracted by a birational map if its strict transform is a subset of codimension > 1.
Given a birational map f : X 99K X ′ between normal projective varieties, define

exc(f) = #
{
S ∈ Hyp(X) : f contracts S

}
.

This is the number of contracted hypersurfaces S ∈ Hyp(X) by f . In the following
proposition, f◦ denotes the strict transform and f• the action on H̃yp(X).

Proposition 4.1. — Let f : X 99K X ′ be a birational transformation between normal
irreducible projective varieties. Let S be an element of Hyp(X).

(1) If S ∈ (f−1)◦ Hyp(X ′), then f•(S) = f◦(S) ∈ Hyp(X ′).
(2) If S /∈ (f−1)◦ Hyp(X ′), then f◦(S) has codimension > 2 (i.e., v contracts S),

and f•(S) is an element of H̃yp(X ′) r Hyp(X ′).
(3) The symmetric difference f•(Hyp(X))4Hyp(X ′) contains exc(f) + exc(f−1)

elements.

Proof. — Let U be the complement of Ind(f) in X ′. Since, by Theorem 2.1, Ind(f)

has codimension > 2, no S ∈ Hyp(X) is contained in Ind(f). Let us prove (1). This is
clear when f is a birational morphism. To deal with the general case, write f = g◦h−1
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where h : Y → X and g : Y → X ′ are birational morphisms from a normal variety Y .
Since h is a birational morphism, h•(S) = h◦(S) ⊂ Hyp(Y ); since S is not contracted
by f , g•(h◦(S)) = g◦(h

◦(S)) ∈ Hyp(X ′). Thus, f•(S) = g•(h
•(S)) coincides with the

strict transform f◦(S) ∈ Hyp(X ′).
Now let us prove (2), assuming thus that S /∈ (f−1)◦ Hyp(X ′). Let S′′ ∈ Hyp(Y )

be the hypersurface (h−1)•(S) = (h−1)◦(S). Then h(S′′) = S. If g◦(S′′) is a hypersur-
face S′, then (f−1)◦(S

′) = S, contradicting S /∈ (f−1)◦ Hyp(X ′). Thus, g contracts S′′
onto a subset S′ ⊂ X ′ of codimension > 2. Since S′ = f◦(S), assertion (2) is proved.

Assertion (3) follows from the previous two assertions. �

Example 4.2. — Let g be a birational transformation of Pnk of degree d, meaning
that g is defined by n + 1 homogeneous polynomials of degree d without common
factor of positive degree, or equivalently that g∗(H) ' dH where H is any hyperplane
of Pnk. The exceptional set of g has degree (n+1)(d−1); thus, excPn

k
(g) 6 (n+1)(d−1).

More generally, if H is a polarization of X, then excX(g) is bounded from above by
a function that depends only on the degree degH(g) := (g∗H) ·Hdim(X)−1.

Theorem 4.3. — Let X be a normal projective variety. The group Bir(X) acts faith-
fully by permutations on the set H̃yp(X) via the homomorphism g 7→ g• from Bir(X) to
Perm(H̃yp(X)). This action commensurates the subset Hyp(X) of H̃yp(X): for every
g ∈ Bir(X), |g•(Hyp(X))4Hyp(X)| = exc(g) + exc(g−1).

It remains only to prove that the homomorphism f ∈ Bir(X) 7→ f• ∈ Perm(H̃yp(X))

is injective. An element of its kernel satisfies f◦(W ) = W for every hypersurface W
of X. Embedding X in some projective space Pmk , every point of X(k) is the intersec-
tion of finitely many irreducible hyperplane sections of X: since all these sections are
fixed by f , every point is fixed by f , and f is the identity.

4.4. Products of varieties. — Let X and Y be irreducible, normal projective vari-
eties. Consider the embedding of Bir(X) into Bir(X×Y ) given by the action f ·(x, y) =

(f(x), y) for f ∈ Bir(X). The injection jY of Hyp(X) into Hyp(X × Y ) given by
jY (S) = S × Y extends to an injection of H̃yp(X) into H̃yp(X × Y ); this inclusion is
Bir(X)-equivariant. The following result will be applied to Corollary 5.7.

Proposition 4.4. — Let a group Γ act on X by birational transformations. Then Γ

transfixes Hyp(X) in H̃yp(X) if and only if it transfixes Hyp(X × Y ) in H̃yp(X × Y ).
More precisely, the subset Hyp(X × Y ) r jY (Hyp(X)) is Bir(X)-invariant.

Proof. — The reverse implication is immediate. The direct one follows from the latter
statement, which we now prove. The projection of a hypersurface S ∈ Hyp(X × Y ) r
jY (Hyp(X)) on X is surjective. For f ∈ Bir(X), f induces an isomorphism between
dense open subsets U and V of X, and hence between U×Y and V ×Y ; in particular,
f does not contract S. This shows that f stabilizes Hyp(X × Y ) r jY (Hyp(X)). �
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5. Pseudo-regularization of birational transformations

In this section, the action of Bir(X) on H̃yp(X) is used to characterize and study
groups of birational transformations that are pseudo-regularizable, in the sense of
Definition 1.1. As before, k is an algebraically closed field.

5.1. An example. — Consider the birational transformation f(x, y) = (x + 1, xy) of
P1
k × P1

k. The vertical curves Ci = {x = −i}, i ∈ Z+, are exceptional curves for the
cyclic group Γ = 〈f〉: each of these curves is contracted by an element of Γ onto a
point, namely f i+1

◦ (Ci) = (1, 0). Let ϕ : Y 99K P1
k×P1

k be a birational map, and let U

be a non-empty open subset of Y . Consider the subgroup ΓY := ϕ−1 ◦Γ◦ϕ of Bir(Y ).
If i is large enough, ϕ−1

◦ (Ci) is an irreducible curve C ′i ⊂ Y , and these curves C ′i
are pairwise distinct, so that most of them intersect U . For positive integers m,
f i+m maps Ci onto (m, 0), and (m, 0) is not an indeterminacy point of ϕ−1 if m is
large. Thus, ϕ−1◦fm◦ϕ contracts C ′i, and ϕ−1◦fm◦ϕ is not a pseudo-automorphism
of U . This argument proves the following lemma.

Lemma 5.1. — Let X be the surface P1
k×P1

k. Let f : X 99K X be defined by f(x, y) =

(x+1, xy), and let Γ be the subgroup generated by f `, for some ` > 1. Then the cyclic
group Γ is not pseudo-regularizable.

This shows that Theorem 1 requires an assumption on Γ. More generally, a sub-
group Γ ⊂ Bir(X) cannot be pseudo-regularized if

(a) Γ contracts a family of hypersurfaces Wi ⊂ X whose union is Zariski dense
(b) the union of all strict transforms f◦(Wi), for f ∈ Γ contracting Wi, is a subset

of X whose Zariski closure has codimension at most 1.

5.2. Characterization of pseudo-isomorphisms. — Recall that f• denotes the bijec-
tion H̃yp(X)→ H̃yp(X ′) which is induced by a birational map f : X 99K X ′. Also, for
any nonempty open subset U ⊂ X, we define Hyp(U) = {H ∈ Hyp(X) : H ∩U 6= ∅};
its complement in Hyp(X) is finite.

Proposition 5.2. — Let f : X 99K X ′ be a birational map between normal projective
varieties. Let U ⊂ X and U ′ ⊂ X ′ be two dense open subsets. Then, f induces a
pseudo-isomorphism U 99K U ′ if and only if f•(Hyp(U)) = Hyp(U ′).

Proof. — If f restricts to a pseudo-isomorphism U 99K U ′, then f maps every hyper-
surface of U to a hypersurface of U ′ by strict transform. And (f−1)◦ is an inverse for
f◦ : Hyp(U)→ Hyp(U ′). Thus, f•(Hyp(U)) = f◦(Hyp(U) = Hyp(U ′).

Now, assume that f•(Hyp(U)) = Hyp(U ′). Since X and X ′ are normal, Ind(f) and
Ind(f−1) have codimension > 2 (Theorem 2.1).

Let fU,U ′ be the birational map from U to U ′ which is induced by f . The inde-
terminacy set of fU,U ′ is contained in the union of the set Ind(f) ∩ U and the set of
points x ∈ U r Ind(f) which are mapped by f in the complement of U ′; this second
part of Ind(fU,U ′) has codimension 2, because otherwise there would be an irreducible
hypersurface W in U which would be mapped in X ′ r U ′, contradicting the equality
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f•(Hyp(U)) = Hyp(U ′). Thus, the indeterminacy set of fU,U ′ has codimension > 2.
Changing f in its inverse f−1, we see that the indeterminacy set of f−1

U ′,U : U ′ 99K U ′

has codimension > 2 too.
If fU,U ′ contracted an irreducible hypersurface W ⊂ U onto a subset of U ′ of

codimension > 2, then f•(W ) would not be contained in Hyp(U ′) (it would correspond
to an element of H̃yp(X ′)rHyp(X ′) by Proposition 4.1). Thus, fU,U ′ satisfies the first
property of Proposition 2.4 and, therefore, is a pseudo-isomorphism. �

5.3. Characterization of pseudo-regularization. — Let X be a (reduced, irre-
ducible) normal projective variety. Let Γ be a subgroup of Bir(X). Assume that the
action of Γ on H̃yp(X) fixes (globally) a subset A ⊂ H̃yp(X) such that

|A4Hyp(X)| < +∞.

In other words, A is obtained from Hyp(X) by removing finitely many hypersur-
faces Wi ∈ Hyp(X) and adding finitely many hypersurfaces W ′j ∈ H̃yp(X) r Hyp(X).
Each W ′j comes from an irreducible hypersurface in some model πj : Xj → X, and
there is a model π : Y → X that covers all of them (i.e., π ◦ π−1

j is a morphism
from Y to Xj for every j). Then, π◦(A) is a subset of Hyp(Y ). Changing X into Y ,
A into π◦(A), and Γ into π−1 ◦ Γ ◦ π, we may assume that

(1) A = Hyp(X) r {E1, . . . , E`} where the Ei are ` distinct irreducible hypersur-
faces of X,

(2) the action of Γ on H̃yp(X) fixes the set A.
In what follows, we denote by U the Zariski open subset Xr∪iEi and by ∂X the set
X rU = E1 ∪ · · · ∪E`, considered as the boundary of the compactification X of U .

Lemma 5.3. — The group Γ acts by pseudo-automorphisms on the open subset U .
If U is smooth (or locally factorial) and there is an ample divisor D whose support
coincides with ∂X, then Γ acts by automorphisms on U .

In this statement, we say that the support of a divisor D coincides with ∂X if
D =

∑
i aiEi with ai > 0 for every 1 6 i 6 `.

Proof. — Since A = Hyp(U ) is Γ-invariant, Proposition 5.2 shows that Γ acts by
pseudo-automorphisms on U . Since D is an ample divisor, some positive multiplemD
is very ample, and the complete linear system |mD| provides an embedding of X in
a projective space. The divisor mD corresponds to a hyperplane section of X in this
embedding, and the open subset U is an affine variety because the support of D is
equal to ∂X. Proposition 2.9 concludes the proof of the lemma. �

By Theorem 4.3, every subgroup of Bir(X) acts on H̃yp(X) and commensu-
rates Hyp(X). If Γ transfixes Hyp(X), there is an invariant subset A of H̃yp(X)

for which A4Hyp(X) is finite. Thus, one gets the following characterization of
pseudo-regularizability (the converse being immediate).
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Theorem 5.4. — Let X be a normal projective variety over an algebraically closed
field k. Let Γ be a subgroup of Bir(X). Then Γ transfixes the subset Hyp(X) of H̃yp(X)

if and only if Γ is pseudo-regularizable. More precisely, if Γ transfixes Hyp(X), then
there is a birational morphism π : Y → X and a dense open subset U ⊂ Y such that
π−1 ◦ Γ ◦ π acts by pseudo-automorphisms on U .

This theorem applies directly when Γ ⊂ Bir(X) has property (FW) because Theo-
rem 4.3 shows that Γ commensurates Hyp(X). This proves Theorem 1.

Remark 5.5. — Assuming char(k) = 0, we may apply the resolution of singulari-
ties and work in the category of smooth varieties. As explained in Remark 1.2 and
Lemma 5.3, there are two extreme cases, corresponding to an empty or an ample
boundary B = ∪iEi. If U = Y , Γ acts by pseudo-automorphisms on the projec-
tive model Y . As explained in Theorem 2.8, Psaut(Y ) is an extension of a subgroup
of GL(NS(Y )) by an algebraic group which contains Aut(Y )0 as a finite index sub-
group. If U is affine, Γ acts by automorphisms on U . The group Aut(U ) may be
huge (U could be the affine space), but there are techniques to study groups of au-
tomorphisms that are not available for birational transformations; for instance Γ is
residually finite and virtually torsion-free if Γ is a group of automorphisms generated
by finitely many elements (see [5]).

5.4. Distorted elements. — Theorem 5.4 may be applied when Γ has Property
(FW), or for pairs (Λ,Γ) with relative Property (FW). Here is one application:

Corollary 5.6. — Let X be an irreducible projective variety. Let Γ be a distorted
cyclic subgroup of Bir(X). Then Γ is pseudo-regularizable.

The contraposition is useful to show that some elements of Bir(X) are undistorted.
Let us state it in a strong “stable” way.

Corollary 5.7. — Let X be a normal irreducible projective variety and let f be an
element of Bir(X) such that the cyclic group 〈f〉 does not transfix Hyp(X) (i.e., f
is not pseudo-regularizable). Then 〈f〉 is undistorted in Bir(X); more generally the
cyclic subgroup 〈f × IdY 〉 is undistorted in Bir(X ×Y ) for every irreducible projective
variety Y .

The latter consequence indeed follows from Proposition 4.4. This can be applied
to various examples, such as those in Example 6.9.

6. Illustrating results

6.1. Surfaces whose birational group is transfixing. — If X is a projective curve,
Bir(X) always transfixes Hyp(X), since it acts by automorphisms on a smooth model
of X. We now consider the same problem for surfaces.

Proposition 6.1. — Let X be a normal irreducible variety of positive dimension over
an algebraically closed field k. Then Bir(X × P1) does not transfix Hyp(X × P1).
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Proof. — We can suppose that X is affine and work in the model X × A1. For ϕ a
nonzero regular function on X, define a regular self-map f of X × A1 by f(x, t) =

(x, ϕ(x)t). Denoting by Z(ϕ) the zero set of ϕ, we remark that f induces an automor-
phism of the open subset (X r Z(ϕ)) × A1. In particular, it induces a permutation
of Hyp((X r Z(ϕ)) × A1). Set M = Hyp(X × A1). Since f contracts the comple-
ment Z(ϕ)× A1 to the subset Z(ϕ)× {0}, which has codimension > 2, its action on
H̃yp(X × A1) maps the codimension 1 components of Z(ϕ) × A1 outside M . There-
fore M r f−1(M) is the set of irreducible components of Z(ϕ) × A1. Its cardinal is
equal to the number of irreducible components of Z(ϕ). When ϕ varies, this number
is unbounded; hence, Bir(X × A1) does not transfix Hyp(X × A1). �

Varieties which are birational to the product of a variety and the projective line are
said to be ruled. Proposition 6.1 states that Bir(Y ) does not transfix Hyp(Y ) when Y
is ruled and of dimension > 2. The converse holds for surfaces:

Theorem 6.2. — Let k be an algebraically closed field. Let X be an irreducible normal
projective surface over k. The following are equivalent:

(1) Bir(X) does not transfix Hyp(X);
(2) the Kodaira dimension of X is −∞;
(3) X is ruled;
(4) there is no projective surface Y that is birationally equivalent to X and satisfies

Bir(Y ) = Aut(Y ).

Proof. — The equivalence between (2) and (3) is classical (see [2] and [1, 32]). The
group Aut(Y ) fixes Hyp(Y ) ⊂ H̃yp(Y ), hence (1) implies (4). If the Kodaira dimension
of X is > 0, then X has a unique minimal model X0, and Bir(X0) = Aut(X0). Thus,
(4) implies (2). Finally, Proposition 6.1 shows that (3) implies (1). �

Theorem 6.3. — Let X be an irreducible projective surface over an algebraically closed
field k. The following are equivalent:

(1) some finitely generated subgroup of Bir(X) does not transfix Hyp(X);
(2) some cyclic subgroup of Bir(X) does not transfix Hyp(X);
(3)

– k has characteristic 0, and X is birationally equivalent to the product of
the projective line with a curve of genus 0 or 1, or

– k has positive characteristic, and X is a rational surface.

Example 6.4. — Let k be an algebraically closed field that is not algebraic over a finite
field. Let t be an element of infinite order in the multiplicative group k∗. Then the bira-
tional transformation g of P2

k given, in affine coordinates, by (x, y) 7→ (tx+ 1, xy) does
not transfix Hyp(P2

k). Indeed, it is easy to show that the hypersurface C = {x = 0}
satisfies, for n ∈ Z, fn• (C) ∈ Hyp(P2

k) if and only if n 6 0.

Example 6.5. — Example 6.4 works under a small restriction on k. Here is an exam-
ple over an arbitrary algebraically closed field k. Let L and L′ be two lines in P2

k
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intersecting transversally at a point q. Let f be a birational transformation of P2
k that

contracts L′ onto q and fixes L. For instance, in affine coordinates, the monomial map
(x, y) 7→ (x, xy) contracts the y-axis onto the origin, and fixes the x-axis. Assume that
there is an open neighborhood U of q such that f does not contract any curve in U

except the line L′. Let C be an irreducible curve that intersects L and L′ transversally
at q. Then, for every n > 1, the strict transform fn◦ (C) is an irreducible curve, and
its order of tangency with L goes to infinity with n. Thus, the degree of fn◦ (C) goes
to infinity, and the fn◦ (C) form an infinite sequence in Hyp(P2

k).
Now, assume that C is contracted by f−1 onto a point p, p /∈ Ind(f), and p is fixed

by f−1. Then, for every m > 1, f−m• (C) is not in Hyp(P2
k). This shows that the orbit

of C under the action of f• intersects Hyp(P2
k) and its complement H̃yp(P2

k)rHyp(P2
k)

on the infinite sets {fn◦ (C) : n > 1} and {f−m• (C) : m > 1}. In particular, f does
not transfix Hyp(P2

k).
Since such maps exist over every algebraically closed field k, this example shows

that property (2) of Theorem 6.3 is satisfied for every rational surface X.

Proof. — Trivially (2) implies (1). Suppose that (3) holds and let us prove (2). The
case X = P1 × P1 is already covered by Lemma 5.1 in characteristic zero, and by the
previous example in positive characteristic. The case X = C × P1 in characteristic
zero, where C is an elliptic curve, is similar. To see it, fix a point t0 ∈ C and a rational
function ϕ on C that vanishes at t0. Then, since k has characteristic zero, one can
find a translation s of C of infinite order such that the orbit {sn(t0) : n ∈ Z} does
not contain any other zero or pole of ϕ (here we use that the characteristic of k is 0).
Consider the birational transformation f ∈ Bir(X) given by f(t, x) = (s(t), ϕ(t)x).
Let H be the hypersurface {t0} × C. Then for n ∈ Z, we have (f•)

nH ∈ Hyp(X) if
and only if n 6 0. Hence the action of the cyclic group 〈f〉 does not transfix Hyp(X).

Let us now prove that (1) implies (3). Applying Theorem 6.2, and changing X to
a birationally equivalent surface if necessary, we assume that X = C × P1 for some
(smooth irreducible) curve C. We may now assume that the genus of C is > 2, or > 1

in positive characteristic, and we have to show that every finitely generated group Γ

of Bir(X) transfixes Hyp(X). Since the genus of C is > 1, the group Bir(X) preserves
the fibration X → C; this gives a surjective homomorphism Bir(X) → Aut(C). Now
let us fully use the assumption on C: if its genus is > 2, then Aut(C) is finite; if its
genus is 1 and k has positive characteristic, then Aut(C) is locally finite (every finitely
generated subgroup is finite), and in particular the projection of Γ on Aut(C) has a
finite image. Thus the kernel of this homomorphism intersects Γ in a finite index
subgroup Γ0. It now suffices to show that Γ0 transfixes Hyp(X). Every f ∈ Γ0 has
the form f(t, x) = (t, ϕt(x)) for some rational map t 7→ ϕt from C to PGL2; define
Uf ⊂ C as the open and dense subset on which ϕγ is regular: by definition, f restricts
to an automorphism of Uf ×P1. Let S be a finite generating subset of Γ0, and let US
be the intersection of the open subsets Ug, for g ∈ S. Then Γ0 acts by automorphisms
on US × P1 and its action on Hyp(X) fixes the subset Hyp(US). Hence Γ transfixes
Hyp(X). �
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It would be interesting to obtain characterizations of the same properties in di-
mension 3 (see Question 10.2).

6.2. Transfixing Jonquières twists. — Let X be an irreducible normal projective
surface and π a morphism onto a smooth projective curve C with connected rational
fibers. Let Birπ(X) be the subgroup of Bir(X) permuting the fibers of π. Since C
is a smooth projective curve, the group Bir(C) coincides with Aut(C) and we get a
canonical homomorphism rC : Birπ(X)→ Aut(C).

The main examples to keep in mind are provided by P1 × P1, Hirzebruch surfaces,
and C × P1 for some genus 1 curve C, π being the first projection.

Let Hypπ(X) denote the set of irreducible curves which are contained in fibers of π,
and define H̃ypπ(X) = Hypπ(X)t (H̃yp(X)rHyp(X)), so that H̃yp(X) = H̃ypπ(X)t
(Hyp(X)rHypπ(X)). An irreducible curve H ⊂ X is an element of Hyp(X)rHypπ(X)

if and only if its projection π(H) coincides with C; this curves are said to be transverse
to π.

Proposition 6.6. — The decomposition H̃yp(X) = H̃ypπ(X) t (Hyp(X) r Hypπ(X))

is Birπ(X)-invariant.

Proof. — Let H ⊂ X be an irreducible curve which is transverse to π. Since Birπ(X)

acts by automorphisms on C, H can not be contracted by any element of Birπ(X);
more precisely, for every g ∈ Birπ(X), g•(H) is an element of Hyp(X) which is trans-
verse to π. Thus the set of transverse curves is Birπ(X)-invariant. �

This proposition and the proof of Theorem 6.3 lead to the following corollary.

Corollary 6.7. — Let G be a subgroup of Birπ(X). If π maps the set of indeterminacy
points of the elements of G into a finite subset of C, then G transfixes Hyp(X).

In the case of cyclic subgroups, we establish a converse under the mild assumption
of algebraic stability. Recall that a birational transformation f of a smooth projective
surface is algebraically stable if the forward orbit of Ind(f−1) does not intersect Ind(f).
By [16], given any birational transformation f of a surface X, there is a birational
morphism u : Y → X, with Y a smooth projective surface, such that fY := u−1 ◦f ◦u
is algebraically stable. If π : X → C is a fibration, as above, and f is in Birπ(X),
then fY preserves the fibration π ◦ u. Thus, we may always assume that X is smooth
and f is algebraically stable after a birational conjugacy.

Proposition 6.8. — Let X be a smooth projective surface, and π : X → C a rational
fibration. If f ∈ Birπ(X) is algebraically stable, then f transfixes Hyp(X) if, and only
if the orbit of π(Ind(f)) under the action of rC(f) is finite. �

For X = P1×P1, the reader can check (e.g., conjugating a suitable automorphism)
that the proposition fails without the algebraic stability assumption.

J.É.P. — M., 2019, tome 6



Commensurating actions of birational groups 787

Proof. — Denote by A ⊂ Aut(C) the subgroup generated by rC(f). Consider a fiber
F ' P1 which is contracted to a point q by f . Then, there is a unique indeterminacy
point p of f on F . If the orbit of π(q) under the action of A is infinite, the orbit of q
under the action of f is infinite too. Set qn = fn−1(q) for n > 1 (so that q1 = q); this
sequence of points is well defined because f is algebraically stable: for every n > 1,
f is a local isomorphism from a neighborhood of qn to a neighborhood of qn+1. Then,
the image of F in H̃yp(X) under the action of fn is an element of H̃yp(X)rHyp(X):
it is obtained by a finite number of blow-ups above qn. Since the points qn form an
infinite set, the images of F form an infinite subset of H̃yp(X) r Hyp(X). Together
with the previous corollary, this argument proves the proposition. �

Example 6.9. — Consider X = P1 × P1, with π(x, y) = x (using affine coordinates).
Start with fa(x, y) = (ax, xy), for some non-zero parameter a ∈ k. The action of
rC(fa) on C = P1 fixes the images 0 and ∞ of the indeterminacy points of fa. Thus,
fa transfixes H̃yp(X) by Corollary 6.7. Now, consider ga(x, y) = (ax, (x+ 1)y). Then,
the orbit of −1 under multiplication by a is finite if and only if a is a root of unity;
thus, if a is not a root of unity, ga does not transfix Hyp(X). Section 5.1 provides
more examples of that kind.

7. Birational transformations of surfaces I

From now on, we work in dimension 2. We shall repeatedly use two specific features
of surfaces. First, the resolution of singularities is available in all characteristics, so
that we can always assume the varieties to be smooth. Hence X, Y , and Z will
be smooth projective surfaces over the algebraically closed field k. Second, smooth
rational curves of self-intersection −1, also called exceptional curves of the first kind or
(−1)-curves, can be blown down onto a smooth point. And if a curve is contracted by
a birational morphism π : Y → X, then the contraction can be down by successively
contracting (−1)-curves.

7.1. Regularization. — In this section, we refine Theorem 5.4, in order to apply
results of Danilov and Gizatullin. Recall that a curve C in a smooth surface Y has
normal crossings if each of its singularities is a simple node with two transverse
tangents. In the complex case, this means that C is locally analytically equivalent
to {xy = 0} (two branches intersecting transversally) in an analytic neighborhood of
each of its singularities.

Theorem 7.1. — Let X be a smooth projective surface, defined over an algebraically
closed field k. Let Γ be a subgroup of Bir(X) that transfixes the subset Hyp(X) of
H̃yp(X). There exists a smooth projective surface Z, a birational map ϕ : Z 99K X
and a dense open subset U ⊂ Z such that, writing the boundary ∂Z := Z r U as
a finite union of irreducible components Ei ⊂ Z, 1 6 i 6 `, the following properties
hold:

(1) The boundary ∂Z is a curve with normal crossings.
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(2) The subgroup ΓZ := ϕ−1 ◦ Γ ◦ ϕ ⊂ Bir(Z) acts by automorphisms on the open
subset U .

(3) For all i ∈ {1, . . . , `} and g ∈ ΓZ , the strict transform of Ei under the action
of g on Z is contained in ∂Z: either g◦(Ei) is a point of ∂Z or g◦(Ei) is an irreducible
component Ej of ∂Z.

(4) For all i ∈ {1, . . . , `}, there exists an element g ∈ ΓZ that contracts Ei to a
point g◦(Ei) ∈ ∂Z. In particular, Ei is a rational curve.

(5) The pair (Z,U ) is minimal for the previous properties, in the following sense:
if one contracts a smooth curve of self-intersection −1 in ∂Z, then the boundary stops
to be a normal crossing divisor.

Before starting the proof, note that the boundary ∂Z may a priori contain an
irreducible rational curve E with a node.

Proof. — We apply Theorem 5.4, and get a smooth surface Y0, a birational morphism
ϕ0 : Y0 → X, and an open subset U0 of Y0 such that Γ0 := ϕ−1

0 ◦Γ◦ϕ0 acts by pseudo-
automorphisms on U0 and ∂Y0 := Y0 r U0 is a curve. The action of Γ0 on U0 is not
yet by automorphisms; we shall progressively modify the triple (Y0,U0, ϕ0) to obtain
a surface Z with properties (1) to (5).

Step 1. — First, we blow-up the singularities of the curve ∂Y0 which are not simple
nodes to get a boundary that is a normal crossing divisor. This replaces the surface Y0

by a new one, still denoted Y0. This modification adds new components to the bound-
ary ∂Y0 but does not change the fact that Γ0 acts by pseudo-automorphisms on U0.
Let `0 be the number of irreducible components of Y0 r U0.

Step 2. — Consider a point q in U0, and assume that there is an irreducible compo-
nent Ei of ∂Y0 that is contracted to q by an element g ∈ Γ0; fix such a g, and denote
by D the union of the irreducible components Ej such that g◦(Ej) = q. By con-
struction, g is a pseudo-automorphism of U0. The curve D does not intersect the
indeterminacy set of g, since otherwise there would be a curve C containing q that
is contracted by g−1. And D is a connected component of ∂Y0, because otherwise g
maps one of the irreducible components of ∂Y0 to a curve that intersects U0. Thus,
there are open neighborhoods W of D and W ′ of q such that W ∩ ∂Y0 = D and g

realizes an isomorphism from W r D to W ′ r {q}, contracting D onto the smooth
point q ∈ Y0. In particular, W can be contracted onto a smooth point (by a succession
of contractions of exceptional curves of the first kind). As a consequence, there is a
birational morphism π1 : Y0 → Y1 such that

(1) Y1 is smooth;
(2) π1 contracts D onto a point q1 ∈ Y1;
(3) π1 is an isomorphism from Y0 rD to Y1 r {q1}.

In particular, π1(U0) is an open subset of Y1 and U1 = π1(U0) ∪ {q1} is an open
neighborhood of q1 in Y1.
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Then, Γ1 := π1 ◦ Γ0 ◦ π−1
1 acts birationally on Y1, and by pseudo-automorphisms

on U1. The boundary ∂Y1 = Y1rU1 contains `1 irreducible components, with `1 < `0
(the difference is the number of components of D), and is a normal crossing divisor
because D is a connected component of ∂Y0.

Repeating this process, we construct a sequence of surfaces πk : Yk−1 → Yk and
open subsets πk(Uk−1) ⊂ Uk ⊂ Yk such that the number of irreducible components
of ∂Yk = Yk r Uk decreases. After a finite number of steps (at most `0), we may
assume that Γk ⊂ Bir(Yk) does not contract any boundary curve onto a point of the
open subset Uk. On such a model, Γk acts by automorphisms on Uk.

We fix such a model, which we denote by the letters Y , U , ∂Y , ϕ. The new
birational map ϕ : Y 99K X is the composition of ϕ0 with the inverse of the morphism
Y0 → Yk. On such a model, properties (1) and (2) are satisfied. Moreover, (3) follows
from (2). We now modify Y further to get property (4).

Step 3. — Assume that the irreducible component Ei ⊂ Y rU is not contracted by Γ.
Let F be the orbit of Ei: F = ∪g∈Γg◦(Ei); by property (3), this curve is contained
in the boundary ∂Y of the open subset U . Let ∂Y r F denote the Zariski closure
of ∂Y r F , and set

U ′ = U ∪ (F r ∂Y r F ).

The group Γ also acts by pseudo-automorphisms on U ′. This operation decreases the
number ` of irreducible components of the boundary. Thus, combining steps 2 and 3
finitely many times, we reach a model that satisfies Properties (1) to (4). We continue
to denote it by Y .

Step 4. — If the boundary ∂Y contains a smooth (rational) curve Ei of self-intersec-
tion −1, it can be blown down to a smooth point q by a birational morphism
π : Y → Y ′; the open subset U is not affected, but the boundary ∂Y ′ has one com-
ponent less. If Ei was a connected component of ∂Y , then U ′ = π(U ) ∪ {q} is a
neighborhood of q and one replaces U by U ′, as in step 2. Now, two cases may
happen. If the boundary ∂Y ′ ceases to be a normal crossing divisor, we come back
to Y and do not apply this surgery. If ∂Y ′ has normal crossings, we replace Y by
this new model. In a finite number of steps, looking successively at all (−1)-curves
and iterating the process, we reach a new surface Z on which all five properties are
satisfied. �

Remark 7.2. — One may also remove property (5) and replace property (1) by
(1’) The Ei are rational curves, and none of them is a smooth rational curve with

self-intersection −1.
But doing so, we may lose the normal crossing property. To get property (1’), apply
the theorem and argue as in step 4.

7.2. Constraints on the boundary. — We now work on the new surface Z given by
Theorem 7.1. Thus, Z is the surface, Γ the subgroup of Bir(Z), U the open subset
on which Γ acts by automorphisms, and ∂Z the boundary of U .
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Proposition 7.3 (Gizatullin, [20, §4]). — There are four possibilities for the geometry
of the boundary ∂Z = Z r U .

(1) ∂Z is empty.
(2) ∂Z is a cycle of rational curves.
(3) ∂Z is a chain of ` rational curves and if ` = 1 it is a smooth rational curve of

positive self intersection.
(4) ∂Z is the disjoint union of finitely many smooth rational curves of self-

intersection 0.
Moreover, in cases (2) and (3), the open subset U is the blow-up of an affine surface.

Thus, there are four possibilities for ∂Z, which we study successively. We shall start
with (1) and (4) in Sections 7.3 and 7.4. Then case (3) is dealt with in Section 7.5.
Case (2) is more involved: it is treated in Section 8.

Before that, let us explain how Proposition 7.3 follows from [20, §5]. First, we
describe the precise meaning of the statement, and then we explain how the original
results of [20] apply to our situation.

The boundary and its dual graph. — Consider the dual graph GZ of the boundary ∂Z.
The vertices of GZ are in one to one correspondence with the irreducible compo-
nents Ei of ∂Z. The edges correspond to singularities of ∂Z: each singular point q
gives rise to an edge connecting the components Ei that determine the two local
branches of ∂Z at q. When the two branches correspond to the same irreducible
component, one gets a loop of the graph GZ .

We say that ∂Z is a chain of rational curves if the dual graph is of type A`: ` is
the number of components, and the graph is linear, with ` vertices. Chains are also
called zigzags by Danilov and Gizatullin.

We say that ∂Z is a cycle if the dual graph is isomorphic to a regular polygon
with ` vertices. There are two special cases: when ∂Z is reduced to one component,
this curve is a rational curve with one singular point and the dual graph is a loop (one
vertex, one edge); when ∂Z is made of two components, these components intersect
in two distinct points, and the dual graph is made of two vertices with two edges
between them. For ` = 3, 4, . . . , the graph is a triangle, a square, etc.

Gizatullin’s original statement. — To describe Gizatullin’s article, let us introduce
some vocabulary. Let S be a projective surface, and C ⊂ S be a curve; C is a union
of irreducible components, which may have singularities. Assume that S is smooth
in a neighborhood of C. Let S0 be the complement of C in S, and let ι : S0 → S be
the natural embedding of S0 in S. Then, S is a completion of S0: this completion
is marked by the embedding ι : S0 → S, and its boundary is the curve C. Follow-
ing [20] and [21, 22], we only consider completions of S0 by curves (i.e., S r ι(S0) is
of pure dimension 1), and we always assume S to be smooth in a neighborhood of the
boundary. Such a completion is

(i) simple if the boundary C has normal crossings;
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(ii) minimal if it is simple and minimal for this property: if Ci ⊂ C is an exceptional
curve of the first kind then, contracting Ci, the image of C is not a normal crossing
divisor anymore. Equivalently, Ci intersects at least three other components of C.
Equivalently, if ι′ : S0 → S′ is another simple completion, and π : S → S′ is a birational
morphism such that π ◦ ι = ι′, then π is an isomorphism.

If S is a completion of S0, one can blow-up boundary points to obtain a simple
completion, and then blow-down some of the boundary components Ci to reach a
minimal completion.

Now, consider the group of automorphisms of the open surface S0. This group
Aut(S0) acts by birational transformations on S. An irreducible component Ei of
the boundary C is contracted if there is an element g of Aut(S0) that contracts Ei:
g◦(Ei) is a point of C. Let E be the union of the contracted components. In [20,
Cor. 4 & Prop. 5 of §5], Gizatullin proves that E satisfies one of the four properties
stated in Proposition 7.3; moreover, in cases (2) and (3), E contains an irreducible
component Ei with E2

i > 0; note that (4) contains the case of a unique rational curve
of self-intersection 0 (a different choice is made in [20]).

Thus, Proposition 7.3 follows from the properties of the pair (Z,U ,Γ): the open
subset U plays the role of S0, and Z is the completion S; the boundary ∂Z is the
curve C: it is a normal crossing divisor, and it is minimal by construction. Since every
component of ∂Z is contracted by at least one element of Γ ⊂ Aut(U ), ∂Z coincides
with Gizatullin’s curve E. The only thing we have to prove is the last sentence of
Proposition 7.3, concerning the structure of the open subset U ; thus, we assume that
we are in cases (2) or (3) of Proposition 7.3.

First, let us show that E = ∂Z supports an effective divisor D such that D2 > 0

and D · F > 0 for every irreducible curve. If ∂Z is irreducible, then it is a curve
of positive self intersection (by convention in case (3), and by [20, Cor. 4 in §4]).
Thus, we may assume that ∂Z is a chain or a loop of length ` > 2. To construct D,
fix an irreducible component E0 of ∂Z with E2

0 > 0; as said above such a curve
exists by Gizatullin’s results ([20, Cor. 4 of §5]). Assume that ∂Z is a cycle, and list
cyclically the other irreducible components: E1, E2, . . . , up to Em, with E1 and Em
intersecting E0 (and m = ` − 1). If m = 1, we set D = a0E0 + E1; then D · E0 = 2

and D · E1 = 2a0 + E2
1 are positive if a0 is large enough. If m > 2, we consider

D1 = a1E0 + E1. Then D1 · E0 = 1 and D1 · E1 = a1 + E2
1 are both positive if a1 is

large enough; moreover, D1 · E2 = 1 and D1 · Em = a1 if m > 3, or D1 · E2 = a1 + 1

if m = 2. Then, set D2 = a2D1 + E2, . . . , up to Dm = amDm−1 + Em. If the aj
are large enough, all intersections Dm ·Ej are positive, for all 0 6 j 6 m. We choose
such a sequence of integers ai, and set D = Dm. Then D intersects every irreducible
curve F non-negatively and D2 > 0. Thus, D is big and nef (see [30, §2.2]). A similar
proof applies when ∂Z is a zigzag. Let [D]⊥ be the subspace of NS(X) spanned by
classes of irreducible curves F with D · F = 0.

Now, consider the linear system |mD| for a large divisible integer m > 0, and
decompose it into a mobile part |Mm| and a fixed part |Rm|, where Mm and Rm are
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effective divisors with
mD = Mm +Rm.

Note that the irreducible curves F with [F ] ∈ [D]⊥ are characterized by the property
F ·Mm = 0 = F ·Rm. By definition, |Mm| has only finitely many base points. Thus,
changing m into some large multiple if necessary, and applying Fujita-Zariski theorem
(see [30, 2.1.32, p. 132]), we may assume that

(i) Mm is big (because so is D);
(ii) Mm is nef (because Mm is mobile);
(iii) Mm is free of base point (by Fujita-Zariski theorem).

Then, the linear system |Mm| gives a birational morphism (see [30, 2.1.27, p. 129])

ϕ : Z −→ Z ′ ⊂ PN

onto a normal, projective surface Z ′ such that Mm coincides with the pullback of a
hyperplane section H of Z ′. In particular, H1(Z, dMm) = 0 for large values of d. Now,
let us show that Rm = 0 for some adequate choice of mD. If not, some curve Ej of the
boundary ∂Z appears as a component of Rm but not as a component of Mm; since
∂Z = Support(D) is connected, we can choose such an Ej that intersects Mm in at
least one point. Thus, (dMm + ajEj) · Ej > 0 for any aj and every large d. Consider
the exact sequence of sheaves O(dMm)→ O(dMm+Ej)→ OEj

((dMm+Ej)|Ej
), and

the associated long exact sequence in cohomology. By the vanishing of H1(Z, dMm)

we get

H0(Z, dMm) −→ H0(Z, dMm + Ej) −→ H0(Ej , dMm + Ej) −→ 0.

If Ej were part of the base locus of the linear system |dMm + Ej |, then the second
arrow in this sequence would vanish, so that H0(Ej , dMm +Ej) = 0. But this would
be a contradiction because Ej is a rational curve and dMm + Ej has positive degree
on Ej . Thus, Ej is not in the base locus of |dMm +Ej |: we may now assume Rm = 0.
From this, we deduce that an irreducible curve C ⊂ Z is contracted by ϕ if and only if
C ·Mm = 0, if and only if [C] ∈ [D]⊥, if and only if C does not intersect the boundary
curve ∂Z; and that ϕ induces a birational morphism from Zr∂Z to the affine surface
Z ′ rH. This concludes the proof of the proposition.

7.3. Projective surfaces and automorphisms. — In this section, we (almost always)
assume that Γ acts by regular automorphisms on a projective surface X. This corre-
sponds to case (1) in Proposition 7.3. Our goal is the special case of Theorem 2 which
is stated below as Theorem 7.8. We shall assume that Γ has property (FW) in some
of the statements (this was not a hypothesis in Theorem 7.1). We may, and shall,
assume that X is smooth. We refer to [2, 6, 25] for the classification of surfaces and
the main notions attached to them.

7.3.1. Action on the Néron-Severi group. — The intersection form is a non-degenerate
quadratic form qX on the Néron-Severi group NS(X), and Hodge index theorem
asserts that its signature is (1, ρ(X) − 1), where ρ(X) denotes the Picard number,
i.e., the rank of the lattice NS(X) ' Zρ.
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The action of Aut(X) on the Néron-Severi group NS(X) provides a linear repre-
sentation preserving the intersection form qX . This gives a homomorphism

Aut(X) −→ O(NS(X); qX).

Fix an ample class a in NS(X) and consider the hyperboloid

HX = {u ∈ NS(X)⊗Z R : qX(u, u) = 1 and qX(u, a) > 0}.

This set is one of the two connected components of {u : qX(u, u) = 1}. With the
riemannian metric induced by (−qX), it is a copy of the hyperbolic space of dimension
ρ(X)− 1; the group Aut(X) acts by isometries on this space (see [11]).

Proposition 7.4. — Let X be a smooth projective surface. Let Γ be a subgroup of
Aut(X). If Γ has Property (FW), then its action on NS(X) fixes a very ample class,
the image of Γ in O(NS(X); qX) is finite, and a finite index subgroup of Γ is contained
in Aut(X)0.

Proof. — The image Γ∗ of Γ is contained in the arithmetic group O(NS(X); qX). The
Néron-Severi group NS(X) is a lattice Zρ and qX is defined over Z. If ρ is odd, one
can change NS(X) into a (ρ+ 1)-dimensional lattice NS(X)⊕Ze and change qX into
the quadratic form defined by q(u+me) = qX(u)−m2 for all u+me in NS(X)⊕Ze.
After such a change, Γ∗ embeds into the orthogonal group O(Zr; q) for some even
r ∈ {ρ, ρ+ 1} and some integral quadratic form of signature (1, r− 1). It is proved by
Bergeron, Haglund, and Wise that such a lattice acts properly on some cat(0) cube
complex (see Theorem 6.1 and the paragraph before Theorem 6.2 in [9]; see [8] for
the case of uniform lattices). But if a group with Property (FW) acts by isometries
on such a complex, it has a fixed point (see [14]). Thus, by properness of the action,
the image Γ∗ of Γ in O(NS(X); qX) is finite.

The kernel K ⊂ Aut(X) of the action on NS(X) contains Aut(X)0 as a finite index
subgroup. Thus, if Γ has Property (FW), it contains a finite index subgroup that is
contained in Aut(X)0 (see Theorem 2.8). �

7.3.2. Non-rational surfaces. — Here, the surface X is not rational. The following
proposition classifies subgroups of Bir(X) with Property (FW); in particular, such a
group is finite if the Kodaira dimension of X is non-negative (resp. if the characteristic
of k is positive). Recall that Z ⊂ Q is the ring of algebraic integers.

Proposition 7.5. — Let X be a smooth, projective, and non-rational surface, over
the algebraically closed field k. Let Γ be an infinite subgroup of Bir(X) with Prop-
erty (FW). Then k has characteristic 0, and there is a birational map ϕ : X 99K C×P1

k

that conjugates Γ to a subgroup of Aut(C×P1
k). Moreover, there is a finite index sub-

group Γ0 of Γ such that ϕ ◦ Γ0 ◦ ϕ−1, is a subgroup of PGL2(Z), acting on C × P1
k by

linear projective transformations on the second factor.

Proof. — Assume, first, that the Kodaira dimension of X is non-negative. Let
π : X → X0 be the projection ofX on its (unique) minimal model (see [25, Th.V.5.8]).
The group Bir(X0) coincides with Aut(X0); thus, after conjugacy by π, Γ becomes a
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subgroup of Aut(X0), and Proposition 7.4 provides a finite index subgroup Γ0 6 Γ

that is contained in Aut(X0)0. Note that Γ0 inherits Property (FW) from Γ.
If the Kodaira dimension of X is equal to 2, the group Aut(X0)0 is trivial; hence

Γ0 = {IdX0
} and Γ is finite. If the Kodaira dimension is equal to 1, Aut(X0)0 is either

trivial, or isomorphic to an elliptic curve, acting by translations on the fibers of the
Kodaira-Iitaka fibration of X0 (this occurs, for instance, when X0 is the product of
an elliptic curve with a curve of higher genus). If the Kodaira dimension is 0, then
Aut(X0)0 is also an abelian group (it is an abelian variety of dimension 6 2). Since
abelian groups with Property (FW) are finite, the group Γ0 is finite, and so is Γ.

We may now assume that the Kodaira dimension kod(X) is negative. Since X is not
rational, then X is birationally equivalent to a product S = C×P1

k, where C is a curve
of genus g(C) > 1. Denote by k(C) the field of rational functions on the curve C. The
semi-direct product Aut(C)nPGL2(k(C)) acts on S by birational transformations of
the form

(x, y) ∈ C × P1
k 7−→

(
f(x),

a(x)y + b(x)

c(x)y + d(x)

)
;

here f is an automorphism of C, and a, b, c, and d are elements of k(C) such that
ad − bc is not identically 0. Moreover, Bir(S) coincides with this group Aut(C) n
PGL2(k(C)) because the first projection π : S → C is equivariant under the action of
Bir(S) (this follows from the fact that every rational map P1

k → C is constant).
Since g(C) > 1, Aut(C) is virtually abelian. Property (FW) implies that there is

a finite index, normal subgroup Γ0 6 Γ that is contained in PGL2(k(C)). By Corol-
lary 3.8, every subgroup of PGL2(k(C)) with Property (FW) is conjugate to a sub-
group of PGL2(Z) or a finite group if the characteristic of the field k is positive.

We may assume now that the characteristic of k is 0 and that Γ0 ⊂ PGL2(Z) is
infinite. Consider an element g of Γ; it acts as a birational transformation on the
surface S = C × P1

k, and it normalizes Γ0:

g ◦ Γ0 = Γ0 ◦ g.

Since Γ0 acts by automorphisms on S, the finite set Ind(g) is Γ0-invariant. But a
subgroup of PGL2(k) with Property (FW) preserving a non-empty, finite subset of
P1(k) is a finite group (by Lemma 3.5(2)). Thus, Ind(g) must be empty. This shows
that Γ is contained in Aut(S). �

7.3.3. Rational surfaces. — Now, we assume that X is a smooth rational surface,
that Γ 6 Bir(X) is an infinite subgroup with Property (FW), and that Γ contains a
finite index, normal subgroup Γ0 that is contained in Aut(X)0. Recall that a smooth
surface Y is minimal if it does not contain any smooth rational curve of the first
kind, i.e., with self-intersection −1. Every exceptional curve of the first kind in X

is determined by its class in NS(X) and is therefore invariant under the action of
Aut(X)0. The following lemma is obtained by contracting such (−1)-curves one by one.

J.É.P. — M., 2019, tome 6



Commensurating actions of birational groups 795

Lemma 7.6. — There is a birational morphism π : X → Y onto a minimal rational
surface Y that is equivariant under the action of Γ0; Y does not contain any excep-
tional curve of the first kind and Γ0 becomes a subgroup of Aut(Y )0.

Let us recall the classification of minimal rational surfaces and describe their groups
of automorphisms. First, we have the projective plane P2

k, with Aut(P2
k) = PGL3(k)

acting by linear projective transformations. Then comes the quadric P1
k × P1

k, with
Aut(P1

k × P1
k)0 = PGL2(k) × PGL2(k) acting by linear projective transformations on

each factor; the group of automorphisms of the quadric is the semi-direct product of
PGL2(k)×PGL2(k) with the group of order 2 generated by the permutation of the two
factors, η(x, y) = (y, x). Then, for each integer m > 1, the Hirzebruch surface Fm is
the projectivization of the rank 2 bundle O⊕O(m) over P1

k; it may be characterized as
the unique ruled surface Z → P1

k with a section C of self-intersection −m. Its group of
automorphisms is connected and preserves the ruling. This provides a homomorphism
Aut(Fm)→ PGL2(k) that describes the action on the base of the ruling, and it turns
out that this homomorphism is surjective. If we choose coordinates for which the
section C intersects each fiber at infinity, the kernel Jm of this homomorphism acts
by transformations of type

(x, y) 7−→ (x, αy + β(x)),

where β(x) is a polynomial function of degree 6 m. In particular, Jm is solvable.
In other words, Aut(Fm) is isomorphic to the group

(GL2(k)/µm) nWm,

where Wm is the linear representation of GL2(k) on homogeneous polynomials of
degreem in two variables, and µm is the kernel of this representation: it is the subgroup
of GL2(k) given by scalar multiplications by roots of unity of order dividing m.

Lemma 7.7. — Given the above conjugacy π : X → Y , the subgroup π ◦ Γ ◦ π−1 of
Bir(Y ) is contained in Aut(Y ).

Proof. — Assume that the surface Y is the quadric P1
k × P1

k. Then, according to
Theorem 3.6, Γ0 is conjugate to a subgroup of PGL2(Z)×PGL2(Z). If g is an element
of Γ, its indeterminacy locus is a finite subset Ind(g) of P1

k × P1
k that is invariant

under the action of Γ0, because g normalizes Γ0. Since Γ0 is infinite and has Property
(FW), this set Ind(g) is empty (Lemma 3.5). Thus, Γ is contained in Aut(P1

k × P1
k).

The same argument applies for Hirzebruch surfaces. Indeed, Γ0 is an infinite sub-
group of Aut(Fm) with Property (FW). Thus, up to conjugacy, its projection in
PGL2(k) is contained in PGL2(Z). If it were finite, a finite index subgroup of Γ0

would be contained in the solvable group Jm, and would therefore be finite too by
Property (FW); this would contradict |Γ0| =∞. Thus, the projection of Γ0 in PGL(Z)

is infinite. If g is an element of Γ, Ind(g) is a finite, Γ0-invariant subset, and by looking
at the projection of this set in P1

k one deduces that it is empty (Lemma 3.5). This
proves that Γ is contained in Aut(Fm).
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Let us now assume that Y is the projective plane. Fix an element g of Γ, and assume
that g is not an automorphism of Y = P2; the indeterminacy and exceptional sets of g
are Γ0 invariant. Consider an irreducible curve C in the exceptional set of g, together
with an indeterminacy point q of g on C. Changing Γ0 in a finite index subgroup,
we may assume that Γ0 fixes C and q; in particular, Γ0 fixes q, and permutes the
tangent lines of C through q. But the algebraic subgroup of PGL3(k) preserving a
point q and a line through q does not contain any infinite group with Property (FW)
(Lemma 3.5). Thus, again, Γ is contained in Aut(P2

k). �

7.3.4. Conclusion, in Case (1). — Putting everything together, we obtain the following
particular case of Theorem 2.

Theorem 7.8. — Let X be a smooth projective surface over an algebraically closed
field k. Let Γ be an infinite subgroup of Bir(X) with Property (FW). If a finite index
subgroup of Γ is contained in Aut(X), there is a birational morphism ϕ : X → Y that
conjugates Γ to a subgroup ΓY of Aut(Y ), with Y in the following list:

(1) Y is the product of a curve C by P1
k, the field k has characteristic 0, and a

finite index subgroup Γ′Y of ΓY is contained in PGL2(Z), acting by linear projective
transformations on the second factor;

(2) Y is P1
k×P1

k, the field k has characteristic 0, and ΓY is contained in PGL2(Z)×
PGL2(Z);

(3) Y is a Hirzebruch surface Fm and k has characteristic 0;
(4) Y is the projective plane P2

k.
In particular, Y = P2

k if the characteristic of k is positive.

Remark 7.9. — Denote by ϕ : X → Y the birational morphism given by the theorem.
Changing Γ in a finite index subgroup, we may assume that it acts by automorphisms
on both X and Y .

If Y = C × P1, then ϕ is in fact an isomorphism. To prove this fact, denote
by ψ the inverse of ϕ. The indeterminacy set Ind(ψ) is ΓY invariant because both Γ

and ΓY act by automorphisms. From Lemma 3.5, applied to Γ′Y ⊂ PGL2(k), we deduce
that Ind(ψ) is empty and ψ is an isomorphism. The same argument implies that the
conjugacy is an isomorphism if Y = P1

k × P1
k or a Hirzebruch surface Fm, m > 1.

Now, if Y is P2
k, ϕ is not always an isomorphism. For instance, SL2(C) acts on P2

k

with a fixed point, and one may blow up this point to get a new surface with an
action of groups with Property (FW). But this is the only possible example, i.e., X is
either P2

k, or a single blow-up of P2
k (because Γ ⊂ PGL3(C) can not preserve more

than one base point for ϕ−1 without loosing Property (FW)).

7.4. Invariant fibrations. — We now assume that Γ has Property (FW) and acts by
automorphisms on U ⊂ X, and that the boundary ∂X = XrU is the union of ` > 1

pairwise disjoint rational curves Ei; each of them has self-intersection E2
i = 0 and is

contracted by at least one element of Γ. This corresponds to the fourth possibility
in Gizatullin’s Proposition 7.3. Since Ei · Ej = 0, the Hodge index theorem implies
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that the classes ei = [Ei] span a unique line in NS(X), and that [Ei] intersects non-
negatively every curve.

From Section 7.3.2, we may, and do assume that X is a rational surface. In par-
ticular, the Euler characteristic of the structural sheaf is equal to 1: χ(OX) = 1, and
Riemann-Roch formula gives

h0(X,E1)− h1(X,E1) + h2(X,E1) =
E2

1 −KX · E1

2
+ 1.

The genus formula implies KX · E1 = −2, and Serre duality shows that h2(X,E1) =

h0(X,KX − E1) = 0 because otherwise −2 = (KX − E1) · E1 would be non-negative
(because E1 intersects non-negatively every curve). From this, we obtain

h0(X,E1) = h1(X,E1) + 2 > 2.

If F is a member of the complete linear system |E1|, then F · E1 = E1 · E1 = 0,
and F is disjoint from the smooth irreducible curve E1. Thus, |E1| is base point free,
and |E1| determines a fibration π : X → B onto a curve B; in fact B = P1

k because X
is a rational surface, and H0(X,E1) = 2 because O(E1) is the pull back of an ample
line bundle on B (see [30, Th. 2.1.27]). The curve E1, as well as the Ei for i > 2, are
fibers of π.

If f is an automorphism of U and F ⊂ U is a fiber of π, then f(F ) is a (complete)
rational curve. Its projection π(f(F )) is contained in the affine curve P1

k r
⋃
i π(Ei)

and must therefore be reduced to a point. Thus, f(F ) is a fiber of π and f preserves
the fibration. This proves the following lemma.

Lemma 7.10. — There is a fibration π : X → P1
k such that

(1) every component Ei of ∂X is a fiber of π, and U = π−1(V ) for an open subset
V ⊂ P1

k;
(2) the general fiber of π is a smooth rational curve;
(3) Γ permutes the fibers of π: there is a morphism ρ : Γ → PGL2(k) such that

π ◦ f = ρ(f) ◦ π for every f ∈ Γ.

The open subset V ( P1
k is invariant under the action of ρ(Γ); hence ρ(Γ) is

finite by Property (FW) and Lemma 3.5. Let Γ0 be the kernel of this morphism. Let
ϕ : X 99K P1

k × P1
k be a birational map that conjugates the fibration π to the first

projection τ : P1
k×P1

k → P1
k. Then, Γ0 is conjugate to a subgroup of PGL2(k(x)) acting

on P1
k×P1

k by linear projective transformations of the fibers of τ . From Corollary 3.8,
a new conjugacy by an element of PGL2(k(x)) changes Γ0 in an infinite subgroup of
PGL2(Z). Then, as in Sections 7.3.2 and 7.3.3 we conclude that Γ becomes a subgroup
of PGL2(Z)× PGL2(Z), with a finite projection on the first factor.

Proposition 7.11. — Let Γ be an infinite group with Property (FW), with Γ ⊂
Aut(U ), and U ⊂ Z as in case (4) of Proposition 7.3. There exists a birational
map ψ : Z 99K P1

k × P1
k that conjugates Γ to a subgroup of PGL2(Z)× PGL2(Z), with

a finite projection on the first factor.
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7.5. Completions by zigzags. — Two cases remain to be studied: ∂Z can be a chain
of rational curves (a zigzag in Gizatullin’s terminology) or a cycle of rational curves
(a loop in Gizatullin’s terminology). Cycles are considered in Section 8. In this section,
we rely on difficult results of Danilov and Gizatullin to treat the case of chains of
rational curves (i.e., case (3) in Proposition 7.3). Thus, in this section

(i) ∂X is a chain of smooth rational curves Ei
(ii) U = X r ∂X is an affine surface (singularities are allowed)
(iii) every irreducible component Ei is contracted to a point of ∂X by at least one

element of Γ ⊂ Aut(U ) ⊂ Bir(X).
In [21, 22], Danilov and Gizatullin introduce a set of “standard completions” of the

affine surface U . As in Section 7.2, a completion (or more precisely a “marked comple-
tion”) is an embedding ι : U → Y into a complete surface such that ∂Y = Y rι(U ) is
a curve (this boundary curve may be reducible). Danilov and Gizatullin only consider
completions for which ∂Y is a chain of smooth rational curves and Y is smooth in
a neighborhood of ∂Y ; the surface X provides such a completion. Two completions
ι : U → Y and ι′ : U → Y ′ are isomorphic if the birational map ι′ ◦ ι−1 : Y → Y ′

is an isomorphism; in particular, the boundary curves are identified by this isomor-
phism. The group Aut(U ) acts by pre-composition on the set of isomorphism classes
of (marked) completions.

Among all possible completions, Danilov and Gizatullin distinguish a class of “stan-
dard (marked) completions”, for which we refer to [21] for a definition. There are
elementary links (corresponding to certain birational mappings Y 99K Y ′) between
standard completions, and one can construct a graph ∆U whose vertices are standard
completions; there is an edge between two completions if one can pass from one to
the other by an elementary link.

Example 7.12. — A completion ism-standard, for somem ∈ Z, if the boundary curve
∂Y is a chain of n+ 1 consecutive rational curves E0, E1, . . . , En (n > 1) such that

E2
0 = 0, E2

1 = −m, and E2
i = −2 if i > 2.

Blowing-up the intersection point q = E0∩E1, one creates a new chain starting by E′0
with (E′0)2 = −1; blowing down E′0, one creates a new (m+ 1)-standard completion.
This is one of the elementary links.

Standard completions are defined by constraints on the self-intersections of the
components Ei. Thus, the action of Aut(U ) on completions permutes the standard
completions; this action determines a homomorphism from Aut(U ) to the group of
isometries (or automorphisms) of the graph ∆U (see [21]):

Aut(U ) −→ Iso(∆U ).

Theorem 7.13 (Danilov and Gizatullin, [21, 22]). — The graph ∆U of all isomorphism
classes of standard completions of U is a tree. The group Aut(U ) acts by isometries of
this tree. The stabilizer of a vertex ι : U → Y is the subgroup G(ι) of automorphisms
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of the complete surface Y that fix the curve ∂Y . This group is an algebraic subgroup
of Aut(Y ).

The last property means that G(ι) is an algebraic group that acts algebraically
on Y . It coincides with the subgroup of Aut(Y ) fixing the boundary ∂Y ; the fact that
it is algebraic follows from the existence of a G(ι)-invariant, big and nef divisor which
is supported on ∂Y (see the last sentence of Proposition 7.3). The crucial assertion in
this theorem is that ∆U is a simplicial tree (typically, infinitely many edges emanate
from each vertex). There are sufficiently many links to assure connectedness, but not
too many in order to prevent the existence of cycles in the graph ∆U .

Corollary 7.14. — If Γ is a subgroup of Aut(U ) that has the fixed point property on
trees, then Γ is contained in G(ι) ⊂ Aut(Y ) for some completion ι : U → Y .

If Γ has Property (FW), it has Property (FA) (see Section 3.4). Thus, if it acts
by automorphisms on U , Γ is conjugate to the subgroup G(ι) of Aut(Y ), for some
zigzag-completion ι : U → Y . Theorem 7.8 of Section 7.3.3 implies that the action
of Γ on the initial surface X is conjugate to a regular action on P2

k, P1
k×P1

k or Fm, for
some Hirzebruch surface Fm. This action preserves a curve, namely the image of the
zigzag into the surface Y . The following examples list all possibilities, and conclude
the proof of Theorem 2 in the case of zigzags (i.e., case (3) in Proposition 7.3).

Example 7.15. — Consider the projective plane P2
k, together with an infinite subgroup

Γ ⊂ Aut(P2
k) that preserves a curve C and has Property (FW). Then, C must be a

smooth rational curve: either a line, or a smooth conic. Indeed, if the genus of C
is positive, or if C is rational but is not smooth, then the action of Γ on C factors
through a finite quotient of Γ (see Lemma 3.5); but then the image of Γ in Aut(P2

k)

would be virtually solvable, hence finite by Property (FW). Now, if C is the line “at
infinity”, then Γ acts by affine transformations on the affine plane P2

k rC. If C is the
conic x2 + y2 + z2 = 0, Γ becomes a subgroup of PO3(k).

Example 7.16. — When Γ is a subgroup of Aut(P1
k × P1

k) that preserves a curve C
and has Property (FW), then C must be a smooth curve because Γ has no finite orbit
(Lemma 3.5). Similarly, the two projections C → P1

k being equivariant with respect to
the morphisms Γ→ PGL2(k), they have no ramification points. Thus, C is a smooth
rational curve, and its projections onto each factor are isomorphisms. In particular,
the action of Γ on C and on each factor are conjugate. These conjugacies show that Γ

is conjugate to a diagonal embedding

γ ∈ Γ 7−→ (ρ(γ), ρ(γ)) ∈ PGL2(k)× PGL2(k).

Example 7.17. — Similarly, the group SL2(k) acts on the Hirzebruch surface Fm,
preserving the zero section of the fibration π : Fm → P1

k. This gives examples of
groups with Property (FW) acting on Fm and preserving a big and nef curve C.
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Starting with one of the above examples, one can blow-up points on the invariant
curve C, and then contract C, to get examples of zigzag completions Y on which Γ

acts and contracts the boundary ∂Y .

8. Birational transformations of surfaces II

In this section, U is a (normal, singular) affine surface with a completion X by
a cycle of ` rational curves. Every irreducible component Ei of the boundary ∂X =

X r U is contracted by at least one automorphism of U . Our goal is to classify
subgroups Γ of Aut(U ) ⊂ Bir(X) that are infinite and have Property (FW): in fact,
we shall show that no such group exists. This ends the proof of Theorem 2 since the
other possibilities of Proposition 7.3 have been dealt with in the previous section.

Remark 8.1. — The proof is based on the fact that Aut(U ) acts in a piecewise
PGL(2,Z) way on a circle whose rational points correspond to divisors at infinity
in various compactifications of U . To describe this action, our presentation is similar
to the one in [26]. Another equivalent, more precise, but slightly longer route is to
consider the set of valuations on the ring of regular functions on U which are centered
on ∂X. The circle we are looking for corresponds to a certain set of valuations with
log-discrepancy 0; this approach is described in a particular case in [15]; to study
the log-discrepancy in our context, one could refer to [17] (in order to construct a
regular 2-form on U with poles exactly along ∂X after compactification). Also, we
use both Farey and dyadic partitions of the circle because the Farey viewpoint is used
by algebraic geometers, while dyadic partitions are often used in group theory (see
[38, §1.5]); these are just two equivalent viewpoints.

Example 8.2. — Let (A1
k)∗ denote the complement of the origin in the affine

line A1
k; it is isomorphic to the multiplicative group Gm over k. The surface

(A1
k)∗ × (A1

k)∗ is an open subset in P2
k whose boundary is the triangle of coordinate

lines {[x : y : z] : xyz = 0}. Thus, the boundary is a cycle of length ` = 3. The group of
automorphisms of (A1

k)∗×(A1
k)∗ is the semi-direct product GL2(Z)n(Gm(k)×Gm(k));

it does not contain any infinite group with Property (FW).

8.1. Resolution of indeterminacies. — Let us order cyclically the irreducible com-
ponents Ei of ∂X, so that Ei ∩ Ej 6= ∅ if and only if i − j = ±1(mod `). Blowing
up finitely many singularities of ∂X, we may assume that ` = 2m for some integer
m > 1; in particular, every curve Ei is smooth. (With such a modification, one may a
priori create irreducible components of ∂X that are not contracted by the group Γ.)

Lemma 8.3. — Let f be an automorphism of U and let fX be the birational extension
of f to the surface X. Then

(1) every indeterminacy point of fX is a singular point of ∂X, i.e., one of the
intersection points Ei ∩ Ei+1;

(2) indeterminacies of fX are resolved by inserting chains of rational curves.
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Property (2) means that there exists a resolution of the indeterminacies of fX ,
given by two birational morphisms ε : Y → X and π : Y → X with f ◦ ε = π, such
that π−1(∂X) = ε−1(∂X) is a cycle of rational curves. Some of the singularities of ∂X
have been blown-up into chains of rational curves to construct Y .

ε π

f

Figure 8.1. A blow-up sequence creating two (red) branches. No
branch of this type appears for minimal resolution.

Proof. — Consider a minimal resolution of the indeterminacies of fX . It is given by
a finite sequence of blow-ups of the base points of fX , producing a surface Y and two
birational morphisms ε : Y → X and π : Y → X such that fX = π ◦ ε−1. Since the
indeterminacy points of fX are contained in ∂X, all necessary blow-ups are centered
on ∂X.

The total transform F = ε∗(∂X) is a union of rational curves: it is made of a cycle,
together with branches emanating from it. One of the assertions (1) and (2) fails if
and only if F is not a cycle; in that case, there is at least one branch.

Each branch is a tree of smooth rational curves, which may be blown-down onto
a smooth point; indeed, these branches come from smooth points of the main cycle
that have been blown-up finitely many times. Thus, there is a birational morphism
η : Y → Y0 onto a smooth surface Y0 that contracts the branches (and nothing more).

The morphism π maps F onto the cycle ∂X, so that all branches of F are contracted
by π. Thus, both ε and π induce (regular) birational morphisms ε0 : Y0 → X and
π0 : Y0 → X. This contradicts the minimality of the resolution. �

Let us introduce a family of surfaces

πk : Xk −→ X.
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First, X1 = X and π1 is the identity map. Then, X2 is obtained by blowing-up the `
singularities of ∂X1; X2 is a compactification of U by a cycle ∂X2 of 2` = 2m+1

smooth rational curves. Then, X3 is obtained by blowing up the singularities of ∂X2,
and so on. In particular, ∂Xk is a cycle of 2k−1` = 2m+k−1 curves.

Denote by Dk the dual graph of ∂Xk: vertices of Dk correspond to irreducible
components Ei of ∂Xk and edges to intersection points Ei∩Ej . A simple blow-up (of
a singular point) modifies both ∂Xk and Dk locally as follows

Figure 8.2. Blowing-up one point.

The group Aut(U ) acts on H̃yp(X) and Lemma 8.3 shows that its action stabilizes
the subset B of H̃yp(X) defined as

B =
{
C ∈ H̃yp(X) : ∃ k > 1, C is an irreducible component of ∂Xk

}
.

In what follows, we shall parametrize B in two distinct ways by rational numbers.

8.2. Farey and dyadic parametrizations. — Consider an edge of the graph D1, and
identify this edge with the unit interval [0, 1]. Its endpoints correspond to two adjacent
components Ei and Ei+1 of ∂X1, and the edge corresponds to their intersection q.
Blowing-up q creates a new vertex (see Figure 8.2). The edge is replaced by two
adjacent edges of D2 with a common vertex corresponding to the exceptional divisor
and the other vertices corresponding to (the strict transforms of) Ei and Ei+1; we
may identify this part of D2 with the segment [0, 1], the three vertices with {0, 1/2, 1},
and the two edges with [0, 1/2] and [1/2, 1].

Subsequent blow-ups may be organized in two different ways by using either a
dyadic or a Farey algorithm (see Figure 8.3).

In the dyadic algorithm, the vertices are labeled by dyadic numbers m/2k. The
vertices of Dk+1 coming from an initial edge [0, 1] of D1 are the 2k + 1 points
{n/2k : 0 6 n 6 2k} of the segment [0, 1]. We denote by Dyad(k) the set of dyadic
numbers n/2k ∈ [0, 1]; thus, Dyad(k) ⊂ Dyad(k + 1). We say that an interval [a, b]

is a standard dyadic interval if a and b are two consecutive numbers in Dyad(k) for
some k.

In the Farey algorithm, the vertices correspond to rational numbers p/q. Adjacent
vertices of Dk coming from the initial segment [0, 1] correspond to pairs of rational
numbers (p/q, r/s) with ps−qr = ±1; two adjacent vertices of Dk give birth to a new,
middle vertex in Dk+1: this middle vertex is (p+ r)/(q+ s) (in the dyadic algorithm,
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the middle vertex is the “usual” euclidean middle). We shall say that an interval [a, b]

is a standard Farey interval if a = p/q and b = r/s with ps− qr = −1. We denote by
Far(k) the finite set of rational numbers p/q ∈ [0, 1] that is given by the k-th step of
Farey algorithm; thus, Far(0) = {0, 1} and Far(k) is a set of 2k + 1 rational numbers
p/q with 0 6 p 6 q. (One can check that 1 6 q 6 Fib(k+2), with Fib(k) the k-th term
in the Fibonacci sequence Fib(0) = 0, Fib(1) = 1, Fib(m+1) = Fib(m)+Fib(m−1).)

0/1

0/1

0/1

0/1

1/4 2/5 3/5 3/4

1/1

1/1

1/1

1/1

1/2

1/2

1/21/3

1/3 1/3

1/3

1/1

1/1

1/1

1/1

0/1

0/1

0/1

0/1

1/2

1/2

1/2

1/4

1/4

1/8

3/4

3/4

3/8 5/8 7/8

Figure 8.3. On the left, the Farey algorithm. On the right, the dyadic
one. Here k = 0 (top), to k = 3 (bottom).

By construction, the graph D1 has ` = 2m edges. The edges of D1 are in one-
to-one correspondence with the singularities qj of ∂X1. Each edge determines a
subset Bj of B; the elements of Bj are the curves C ⊂ ∂Xk (k > 1) such that
πk(C) contains the singularity qj determined by the edge. Using the dyadic algorithm
(resp. Farey algorithm), the elements of Bj are in one-to-one correspondence with
dyadic (resp. rational) numbers in [0, 1]. Gluing these segments cyclically one gets
a circle S1, together with a nested sequence of subdivisions in `, 2`, . . . , 2k−1`, . . .
intervals; each interval is a standard dyadic (or Farey) interval of one of the initial
edges.

Since there are ` = 2m initial edges, we may identify the graph D1 with the circle
S1 = R/Z = [0, 1]/0'1 and the initial vertices with the dyadic numbers in Dyad(m)

modulo 1 (resp. the elements of Far(m) modulo 1). The vertices of Dk are in one to
one correspondence with the dyadic numbers in Dyad(k +m− 1).

Remark 8.4
(a) By construction, the interval [p/q, r/s] ⊂ [0, 1] is a standard Farey interval if

and only if ps − qr = −1, iff it is delimited by two adjacent elements of Far(m) for
some m.

(b) If h : [x, y] → [x′, y′] is a homeomorphism between two standard Farey inter-
vals mapping rational numbers to rational numbers and standard Farey intervals to
standard Farey intervals, then h is the restriction to [x, y] of a unique linear projective
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transformation with integer coefficients:

h(t) =
at+ b

ct+ d
, for some element

(
a b

c d

)
of PGL2(Z).

(c) Similarly, if h is a homeomorphism mapping standard dyadic intervals to in-
tervals of the same type, then h is the restriction of an affine dyadic map

h(t) = 2mt+
u

2n
, with m,n ∈ Z.

In what follows, we denote by GFar the group of self-homeomorphisms of S1 = R/Z

that are piecewise PGL2(Z) mapping with respect to a finite decomposition of the
circle in standard Farey intervals [p/q, r/s]. In other words, if f is an element of
GFar, there are two partitions of the circle into consecutive intervals Ii and Ji such
that the Ii are intervals with rational endpoints, h maps Ii to Ji, and the restriction
f : Ii → Ji is the restriction of an element of PGL2(Z) (see [38, §1.5.1]).

Theorem 8.5. — Let U be an affine surface with a compactification U ⊂ X such that
∂X := X r U is a cycle of smooth rational curves. In the Farey parametrization of
the set B ⊂ H̃yp(X) of boundary curves, the group Aut(U ) acts on B as a subgroup
of GFar.

Remark 8.6. — There is a unique orientation preserving self-homeomorphism of the
circle that maps Dyad(k) to Far(k) for every k. This self-homeomorphism conjugates
GFar to the group GDya of self-homeomorphisms of the circle that are piecewise affine
with respect to a dyadic decomposition of the circle, with slopes in ±2Z, and with
translation parts in Z[1/2]. Using the parametrization of B by dyadic numbers, the
image of Aut(U ) becomes a subgroup of GDya.

Proof. — Lemma 8.3 is the main ingredient. Consider the action of the group Aut(U )

on the set B. Let f be an element of Aut(U ) ⊂ Bir(X). Consider an irreducible curve
E ∈ B, and denote by F its image: F = f•(E) is an element of B by Lemma 8.3. There
are integers k and l such that E ⊂ ∂Xk and F ⊂ ∂Xl. Replacing Xk by a higher blow-
up Xm → X, we may assume that flm := π−1

l ◦ f ◦ πm is regular on a neighborhood
of the curve E (Lemma 8.3). Let qk be one of the two singularities of ∂Xm that are
contained in E, and let E′ be the second irreducible component of ∂Xm containing q.
If E′ is blown down by flm, its image is one of the two singularities of ∂Xl contained
in F (by Lemma 8.3). Consider the smallest integer n > l such that ∂Xn contains the
strict transform F ′ = f•(E

′); in Xn, the curve F ′ is adjacent to the strict transform
of F (still denoted F ), and f is a local isomorphism from a neighborhood of q in Xm

to a neighborhood of q′ := F ∩ F ′ in Xn.
Now, if one blows-up q, the exceptional divisor D is mapped by f• to the excep-

tional divisor D′ obtained by a simple blow-up of q: f lifts to a local isomorphism
from a neighborhood of D to a neighborhood of D′, the action from D to D′ be-
ing given by the differential dfq. The curve D contains two singularities of ∂Xm+1,
which can be blown-up too: again, f lifts to a local isomorphism if one blow-ups the
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singularities of ∂Xn+1∩D′. We can repeat this process indefinitely. Let us now phrase
this remark differently. The point q determines an edge of Dm, hence a standard Farey
interval I(q). The point q′ determines an edge of Dn, hence another standard Farey in-
terval I(q′). Then, the points of B that are parametrized by rational numbers in I(q)

are mapped by f• to rational numbers in I(q′) and this map respects the Farey order:
if we identify I(q) and I(q′) to [0, 1], f• is the restriction of a monotone map that
sends Far(k) to Far(k) for every k. Thus, on I(q), f• is the restriction of a linear
projective transformation with integer coefficients (see Remark 8.4-(b)). This shows
that f• is an element of GFar. �

8.3. Conclusion. — Consider the group GDya
∗ of self-homeomorphisms of the circle

S1 = R/Z that are piecewise affine with respect to a finite partition of R/Z into
dyadic intervals [xi, xi+1[ with xi in Z[1/2]/Z for every i, and satisfy h(t) = 2mit+ai
with mi ∈ Z and ai ∈ Z[1/2] for every i. This group is known as the Thompson
group of the circle, and is isomorphic to the group GFar

∗ of orientation-preserving
self-homeomorphisms in GFar (defined in Section 8.2).

Theorem 8.7 (Farley, Hughes [18, 27]). — Every subgroup of the Thompson group
GDya

∗ (and hence of GFar
∗) with Property (FW) is a finite cyclic group.

Indeed fixing a gap in an earlier construction of Farley [18](1), Hughes proved
[27] that GFar has Property PW, in the sense that it admits a commensurating ac-
tion whose associated length function is a proper map (see also Navas’ book [38]).
This implies the conclusion, because every finite group of orientation-preserving self-
homeomorphisms of the circle is cyclic.

Thus, if Γ is a subgroup of Aut(U ) with Property (FW), it contains a finite index
subgroup Γ0 that acts trivially on the set B ⊂ H̃yp(X). This means that Γ0 extends
as a group of automorphisms of X fixing the boundary ∂X. Since ∂X supports a big
and nef divisor, Γ0 contains a finite index subgroup Γ1 that is contained in Aut(X)0.

Note that Γ1 has Property (FW) because it is a finite index subgroup of Γ. It pre-
serves every irreducible component of the boundary curve ∂X, as well as its singu-
larities. As such, it must act trivially on ∂X. When we apply Theorem 7.8 to Γ1, the
conjugacy ϕ : X → Y can not contract ∂X, because the boundary supports an ample
divisor. Thus, Γ1 is conjugate to a subgroup of Aut(Y ) that fixes a curve pointwise.
This is not possible if Γ1 is infinite (see Theorem 7.8 and the remarks following it).

We conclude that Γ is finite in case (2) of Proposition 7.3.

9. Birational actions of SL2(Z[
√
d])

We develop here Example 1.5. If k is an algebraically closed field of characteristic 0,
therefore containing Q, we denote by σ1 and σ2 the distinct embeddings of Q(

√
d)

into k. Let j1 and j2 be the resulting embeddings of SL2(Z[
√
d]) into SL2(k), and

j = j1 × j2 the compound embedding into G = SL2(k)× SL2(k).

(1)The gap in Farley’s argument lies in Prop. 2.3 and Th. 2.4 of [18].
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Theorem 9.1. — Let Γ be a finite index subgroup of SL2(Z[
√
d]). Let X be an irre-

ducible projective surface over an algebraically closed field k. Let α : Γ → Bir(X) be
a homomorphism with infinite image. Then k has characteristic zero, and there exist
a finite index subgroup Γ0 of Γ and a birational map ϕ : Y 99K X such that

(1) Y is the projective plane P2, a Hirzebruch surface Fm, or C × P1 for some
curve C;

(2) ϕ−1α(Γ)ϕ ⊂ Aut(Y );
(3) there is a unique algebraic homomorphism β : G→ Aut(Y ) such that β(j(γ)) =

ϕ−1α(γ)ϕ for every γ ∈ Γ0.

To prove this result, assume first that k has positive characteristic. Theorem 2
ensures that Y is the projective plane, and the Γ-action is given by a homomorphism
into PGL3(k). Then remark that every homomorphism τ : Γ → GLn(k) has finite
image; indeed, it is well-known that GLn(k) has no infinite order distorted element:
elements of infinite order have some transcendental eigenvalue and the conclusion
easily follows. Since Γ has an exponentially distorted cyclic subgroup, the kernel of τ
is infinite, and by the Margulis normal subgroup theorem the image of τ is finite.

Now, assume that the characteristic of k is 0. From Theorem 2, Assertions (1)
and (2) are satisfied. If Y is P2, P1 × P1, or a Hirzebruch surface Fm, then Aut(Y )

is a linear algebraic group. If Y is a product C × P1, with g(C) > 1, the projection
onto C gives a Γ-equivariant morphism; since g(C) > 1, the automorphism group of C
is virtually abelian, and a finite index subgroup Γ1 of Γ acts trivially on C. Thus,
the action of Γ1 on Y preserves the projection onto P1 and acts via an embedding
into the linear algebraic group Aut(P1) = PGL2(k). Then, the proof of Theorem 9.1
follows from the next lemma.

Lemma 9.2. — Let k be a field containing Q(
√
d). Consider the compound embedding j

of SL2(Z[
√
d]) into G = SL2(k) × SL2(k). For every linear algebraic group H and

homomorphism f : SL2(Z[
√
d]) → H(k), there exists a unique homomorphism f̃ :

G → H of k-algebraic groups such that the homomorphisms f and f̃ ◦ j coincide on
some finite index subgroup of Γ.

Sketch of proof. — The uniqueness is a consequence of the Zariski density of the im-
age of j. Let us prove the existence. The Zariski density allows to reduce to the case
when H = SLn. In the case k = R, one first remarks that the image of SL2(Z[

√
d])

in SLn(R) is not contained in a compact group because SL2(Z[
√
d]) contains expo-

nentially distorted elements. Then, Margulis’ superrigidity and the fact that every
continuous real representation of SL2(R) is algebraic prove the lemma. The case of
fields containingR immediately follows, and in turn it follows for subfields of overfields
of R (as soon as they contain Q(

√
d)). �
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10. Open problems

Question 10.1. — Let Γ be a group with Property (FW). Is every birational
action of Γ regularizable ? Here regularizable is defined in the same way as pseudo-
regularizable, but assuming that the action on U is by automorphisms (instead of
pseudo-automorphisms).

A particular case is given by Calabi-Yau varieties (simply connected complex pro-
jective manifolds X with trivial canonical bundle and hd,0(X) = 0 for all d such that
0 < d < dim(X)). For such a variety, Bir(X) coincides with Psaut(X). One can then
ask (1) whether every subgroup Γ of Psaut(X) with property (FW) is regularizable on
some birational model Y of X (without restricting the action to a dense open subset),
and (2) what are the possibilities for such a group Γ.

Question 10.2. — For which irreducible projective varieties X

(1) Bir(X) does not transfix Hyp(X)?
(2) some finitely generated subgroup of Bir(X) does not transfix Hyp(X)?
(3) some cyclic subgroup of Bir(X) does not transfix Hyp(X).

We have the implications: X is ruled ⇒ (3) ⇒ (2) ⇒ (1). In dimension 2, we
have: ruled ⇔ (1) ⇒/ (2) ⇔ (3) (see Section 6.1). It would be interesting to find
counterexamples to these equivalences in higher dimension, and settle each of the
problems raised in Question 10.2 in dimension 3.

The group of affine transformations of A3
C contains SL3(C), and this group contains

many subgroups with Property (FW). For surfaces, Theorem 2 shows that groups of
birational transformations with Property (FW) are contained in algebraic groups, up
to conjugacy. The following question asks whether this type of theorem may hold for
Aut(A3

C).

Question 10.3. — Does there exist an infinite subgroup of Aut(A3
C) with Prop-

erty (FW) that is not conjugate to a group of affine transformations of A3
C ?

Recall that a length function ` on a group G is a function ` : G → R+ such that
`(g) = 0 if and only if g is the neutral element, `(g) = `(g−1), and `(gh) 6 `(g) + `(h)

for every pair of elements g and h in G. A length function is quasi-geodesic if there
exists M > 0 such that for every n > 1 and every g ∈ G with `(g) 6 n, there exist
1 = g0, g1, . . . , gn = g in G such that `(g−1

i−1gi) 6M for all i. Equivalently G, endowed
with the distance (g, h) 7→ `(g−1h), is quasi-isometric to a connected graph.

Question 10.4. — Given an irreducible variety X, is the length function

g ∈ Bir(X) 7−→ |Hyp(X)4gHyp(X)|

quasi-geodesic? In particular, what about X = P2 and the Cremona group Bir(P2)?
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