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TENSOR PRODUCTS AND ¢-CHARACTERS OF
HL-MODULES AND MONOIDAL CATEGORIFICATIONS

BY MartHEUSs BriTo & Vyiavanthi CHARI

Asstract. — We study certain monoidal subcategories (introduced by David Hernandez and
Bernard Leclerc) of finite-dimensional representations of a quantum affine algebra of type A.
We classify the set of prime representations in these subcategories and give necessary and
sufficient conditions for a tensor product of two prime representations to be irreducible. In the
case of a reducible tensor product we describe the prime decomposition of the simple factors.
As a consequence we prove that these subcategories are monoidal categorifications of a cluster
algebra of type A with coefficients.

Résumi (Produits tensoriels et g-caractéres de HL-modules et catégorifications monoidales)

Dans ce travail, nous étudions certaines sous-catégories monoidales (introduites par David
Hernandez et Bernard Leclerc) de représentations de dimension finie d’une algebre affine de
type A. Nous classifions ’ensemble des représentations premiéres de ces sous-catégories, et
donnons des conditions nécessaires et suffisantes pour que le produit tensoriel des deux repré-
sentations premiéres soit irréductible. Dans le cas ou le produit tensoriel est réductible, nous
décrivons une factorisation en modules premiers des facteurs simples. En conséquence, nous
prouvons que ces sous-catégories monoidales sont des catégorifications monoidales d’algebres
amassées de type A avec coefficients.
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INTRODUCTTION

The study of the category .# finite-dimensional representations of a quantum affine
algebra goes back nearly thirty years and continues to be of significant interest. The
irreducible objects in this category are indexed by elements of a free abelian monoid
(denoted 21) with generators w; , where i varies over the index set for the simple
roots and a varies over non-zero elements of the field of rational functions in a vari-
able g. The category is not semisimple and there are many interesting indecomposable
objects in it. In recent years, there has been a new insight in the study of .# coming
from connections with cluster algebras through the work of [19], [18], [21] and also
from KLR algebras through the work of [20].

The category % is a monoidal tensor category and an interesting feature is that a
tensor product of generic simple objects is simple. An obviously related notion is that
of a prime simple object; this is one which cannot be written in a non-trivial way as a
tensor product of objects of .#. An open and very difficult question is the following:
classify prime simple objects in % and describe the factorization of an arbitrary simple
object as a tensor product of primes. The answer to this question for sl, was given
in [8] where it was also proved that the factorization was unique. In higher rank the
question along with that of uniqueness remains unanswered. However, in [16] and [17]
an important result was established which greatly simplifies the problem by reducing
it to following: give a necessary and sufficient condition for the tensor product of a
pair of prime simple objects to be simple.

In this paper we focus on this question for certain subcategories of .# associated
with quantum affine sl,, 1. These subcategories were introduced by David Hernandez
and Bernard Leclerc ([19], [18]) and the definition has its roots in the theory of cluster
algebras. The remarkable insight was that prime representations were analogous to
cluster variables and the irreducibility of a tensor product of prime objects was analo-
gous to the idea of two elements belonging to the same cluster. The role of the quiver
in the theory of cluster algebras is played by the height function; a height function
(of type A,) is a function & : [1,n] — Z satisfying the condition |£(7) —&(i + 1)] =1
for 1 < ¢ < n — 1. Define 3”2' to be the submonoid of &% generated by elements
w; qe+1 and let F¢ be the full subcategory of .7 consisting of objects whose Jordan-
Holder constituents are indexed by elements of 3”2' . It was proved in [18] that . is a
monoidal tensor category and we let J#(%¢) be the Grothendieck ring of Z¢. In the
case when ¢ is the bipartite height function, i.e., £(i—1) = &(i+1) for2<i <n—2or
the monotonic function £(7) = ¢ they showed that (%) is isomorphic to a cluster
algebra with coefficients of type A.

In this paper we prove the result for all height functions of type A by representa-
tion theoretic methods. We define a subset Pr¢ of 3”; such that the corresponding
irreducible representations (which we call HL-modules) are prime. Working entirely
in #¢ we show that the HL-modules are precisely all the prime objects in this cate-
gory. To do this, we establish necessary and sufficient conditions for a tensor product
of HL-modules to be irreducible. In the case when the tensor product is reducible we
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Tenxsor PRODUCTS AND @-CHARACTERS OF HL-MoDULES 583

describe the Jordan-Holder constituents and their factorization as a tensor product
of HL-modules.

The connection with cluster algebras is then made as follows. We define a quiver Q¢
associated with &; since we are working in the general case the quiver we use is a
mutation of the quivers in [19] and [18]. This mutation allows us to map a non-frozen
variable in the initial seed of the cluster algebra to the class of the irreducible module
corresponding to either w; ¢(;)41 Or w; ¢(;)—1. The first mutation at any element of the
initial seed is easily described; however is not necessarily of the form w; ¢(;41. Our
tensor product formulas now allow us to prove the existence of an algebra isomorphism
between the cluster algebra with n frozen variables and % (.%¢). The isomorphism
maps a cluster variable to an HL-module and we identify this module explicitly. We
also show that the isomorphism maps cluster monomials to simple tensor products
of HL-modules. As a consequence of this result we give an alternative proof for the
product of a pair of cluster variables to be a cluster monomial; equivalently we give an
alternative proof of the criterion for a pair of roots to be compatible. In Proposition 2.5
we give a closed formula for a cluster variable in terms of the original seed. In terms of
representation theory this can be interpreted as giving a g-character formula for the
prime representations in %¢. It is useful to remark here that other explicit formulas for
cluster variables can be found in the literature see for instance, [2], [4], [11], [14]. Not
all these papers deal with frozen variables and even those that do impose conditions on
the frozen variables which are not satisfied by the quivers considered in this paper. The
role of the frozen variable in the connection with representation theory is important
and motivates our formulas.

The paper is organized as follows. In Section 1 we recall the definition of the
height function ¢ and introduce the associated quiver Q¢. We then state and prove
our main result modulo the key Propositions 1.5, 1.6 and 1.7. In Section 2 we prove
Proposition 1.5 which gives a recursive formula for a cluster variable. This is done by
a simple analysis of the quiver obtained by mutating at successive nodes. The answer
we obtain is in a form which is well adapted to the representation theory of quantum
affine algebras and can be viewed as an analog of Pieri’s rule in classical representation
theory. We then solve the recursion to give a closed formula for the cluster variable
in terms of the initial cluster which includes the frozen variables. In Sections 3, 4
and 5 we provide sufficient and necessary conditions, for the tensor product of two
HL-modules to be irreducible. We also analyze the Jordan-Holder series of a reducible
tensor product of HL-modules. The proof of Propositions 1.6 and 1.7 can be found in
Section 4.

Acknowledgements. MB is grateful to the Department of Mathematics, UCR, for
their hospitality during a visit when part of this research was carried out. He also
thanks David Hernandez for supporting his visit to Paris 7 and many helpful discus-
sions. VC thanks David Hernandez, Bernard Leclerc and Salvatore Stella for helpful
conversations. The authors are grateful to the referees for several helpful comments
and references.
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584 M. Brito & V. Crart

1. THE MAIN RESULTS

Throughout the paper we denote by C, Z, Z and N the set of complex numbers,
integers, non-negative and positive integers respectively. For ¢, € Z, with i < j we
let [, 4] = {i,i+1,...,7}. Given a commutative ring A we denote by A[q] (resp. A(q))
the ring (resp. quotient field) of polynomials in an indeterminate g with coefficients
in A.

1.1. Tue cLusTER ALGEBRA &7 (®,Q¢). — Let £ : [1,n] — Z be a height function;
namely a function which satisfies the conditions

@) —¢i-1[=1,  2<i<n

It will be convenient to extend £ to [0,n + 1] by setting £(0) = £(2) and &(n — 1) =
&n+1).

Remark. — Although trivial, it is useful to note that

{6 +1),806 -} <{E6) + 1,£(1) — 1}

and that the inclusion can be strict.

For i € [1,n — 2], let is € [i,n], %o > ¢ be minimal such that £(i,) = £(ic + 2)
and set (n — 1) = (n — 1) and n, = n. Let Q¢ be a quiver with 2n vertices labeled
{1,...,n,1',...,n'} and with the set of edges given as follows:

— there are no edges between the primed vertices; in other words the vertices
{1',...,n'} are frozen,
—ifl<j<n—1and &(5) =&(j + 1)+ 1, the edges at j are:

0j,jo

G-—Dée——i 1-5,, G+1

JrJo
Tl—%m
J’ (G +1)
and the reverse orientations if £(j) = £(j + 1) — 1, where 0; ;, is the Kronecker delta
function and we adopt the convention that a labeled edge exists iff the label is one,

— at the vertex n we have edges (n — 1) - n —n’ if {(n —1) = &(n) + 1 and the
reverse orientation otherwise.

Clearly j is a sink or source of Q¢ (where we ignore the frozen vertices) iff j = 1 or
j=jo. For 1 <j <1, set j, =0 and for j > 1, let j, be the maximal sink or source
of Q¢ satisfying j, < j.

Fix a set ® = {x1,...,%n, f1,..., fn} of algebraically independent variables and
let o7 (x,Q¢) be the cluster algebra (with coefficients) with initial seed (&, Q¢). The
definition of a cluster algebra is recalled briefly in Section 2.1; for the rest of this
section we shall freely use the language of cluster algebras. Since the principal unfrozen
part of Q¢ is a quiver of type A,,, the set of non-frozen cluster variables in 7 (x, Q)¢)
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are indexed by the set ®>_; of almost positive roots of a root system of type A,.
In other words if we let {o; : 1 < @ < n}, be a set of simple roots for A, and set
o5 =0+ -+ o, 1 <i<j<n, then

Q1 ={—a;, a;;:1<i<j<n},
and the cluster variables are denoted
{z; = z[—ay], z[asj], fi: 1<i<j<n}

Moreover, the cluster variable z[a; ;] is obtained by applying the sequence ,i+1, ..., j
of mutations at the original cluster.

1.2, Tue carecory F¢. — Let ﬁq be the quantum loop algebra over C(q) associ-
ated to sl,11 and let % be the monoidal tensor category whose objects are finite-
dimensional representations of ﬁq. Given a height function € : [1,n] — Z we take @gr
to be the free abelian monoid with generators {w;¢;)+1 @ ¢ € [1,n]}. It is known
that 92‘ is the index set for a (sub)-family of isomorphism classes of irreducible ob-
jects of F. We define .Z¢ to be the full subcategory of % consisting of objects all
of whose Jordan-Holder constituents are indexed by elements of 9’; . It was proved
in [18] that .%¢ is a monoidal category and we let J#(%¢) be the corresponding
Grothendieck ring. For w € 9;’ let [w] € J#5(Fe) be the isomorphism class of the
corresponding object in .

Remark. — It is important to keep in mind that the assignment w — [w] is not a
morphism of monoids ?2' — JHo(Fe), i.e., [w][w'] is not always equal to [ww’]. One of
the goals of this paper is to determine a necessary and sufficient condition for equality
to hold.
For i € [1,n] set

JFi=wigi)y+1wigm)—1-

Ifl1<i<j<n,letis <---<ir_y bean ordered enumeration of the subset
{fpri<p<y, &p-1)=¢&p+D}
i1 =1, i, = j and define an element w(i,j) € 9; by:
UJ(Z,]) = Wij,a; " 'wik,akv
where a1 = §(0) £1if €(i+1) =£(¢) F1 and ap, = E(ip,) £ 1 if £(i) = E(im — 1) £ 1,
for m > 2. Set,
Pre = {wi,g(i)il, w(i,j):1<i<j<n, i#j}.

Clearly the set Pr¢ has the same cardinality as the set of unfrozen cluster variables
in o (x,Q¢).

Recall that an object of .% is said to be prime if it cannot be written in a non-trivial
way as a tensor product of objects of .%. The following is a special case of the main
result of [6].
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586 M. Brito & V. CHani

Lemwa. The irreducible object of F¢ associated to an element
wePreU{f,:1<i<n}
s prime. O

1.3. Maix Tueorem. Recall that by definition n = n, and (n—1) = (n—1), which
in particular implies that n, =n — 1. For k > 1, set

(11) k= (k+1)(17§k7k0)+(k},+1)5k7]%.
Tueorem 1. — Let & : [1,n] — Z be a height function. The assignment

() = [""i,g(iJrl)]a o(fi) = [l
extends to an isomorphism of rings v : o/ (x,Q¢) — Ho(Fe) such that for 1 < i <
k<n

7

(1.2) vz, ]) = [wigarn+2], §(0) =&@E+1) £1,
(1.3) W(zlaig]) = [w(i, k)], k # i,
(1.4) Ufpzla]) = [fpw] pe[lin], a€ sy, [w]=(z]a]).

In particular v maps cluster variable to a prime object of F¢. Moreover, if 1,B2 €
O are such that z[f1]z[B2] is a cluster monomial then

[w1w2] = [wl][wﬂa [“J@] = L(x[ﬂs])v s=1,2.

Cororrary. — The homomorphism v sends a cluster monomial to the equivalence
class of an irreducible object of F¢. In particular any irreducible prime object is of
the form [w], w € Pre U{f, : 1 < i < n} and F¢ is a monoidal categorification of
o (x,§).

Proof of Corollary. — Let x[B1]---z[B,] be a cluster monomial for some f,..., 05, €
O _; and set [w;] = (x[B;]) for 1 < i < 7. Then the pairs z[5;]z[8,], 1 < j#p<r
are cluster monomials and hence using the Theorem 1 we have ¢(z[3;]z[5p]) = [w;jwy)]
for 1 < j # p < r. It follows from the main result of [16] (see Section 3 of this paper
for the statement) that ¢(z[31] - x[B;]) = w1 w,] and the first assertion of the
corollary is established. Suppose that [w] is an irreducible object of .Z¢. Then ¢~ [w]
is a sum of cluster monomials. Hence [w] can be written as a linear combination of
elements [7r] where each 7 is a product of elements from PrcU{f, : 1 <i < n}. Since
irreducible modules are a basis J# (%) it follows that [w] is a product of elements
from Pre U{f, : 1 < i< n} and the corollary is established. O

Remark. — Suppose that € satisfies £(i—1) = £(i+1) for all 1 < i < n or that £(j) =
E(i)+(j—1) for all 1 < i < § < n. In these two cases the existence of « was established
in [19],[18] by very different methods. As was noted in [18] the categories %, are not
necessarily equivalent for different height functions.
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1.4. In Theorem 3 of this paper we give conditions for the equality [w7'] = [7][7']
when 7,7’ € Pr¢ to hold in J(%¢). The translation to the language of cluster
algebra gives the conditions for describing when two roots are compatible. Thus our
theorem gives a proof of the following assertion (compare with the description in [18,
§10.2.3] where a similar description in the case of the bipartite height function).
Assume that i < j, k < £ and ¢ < k. If j # 4, the roots oy j, ¢ are compatible iff:
—k:iork>j+17
—Jj=Joand j,+1< k<,
-0 # ke and
— either j =/,
~ori<k<j<liand#{k<m<j—1:m=m,} €2Z, +1,
—ori<k<l<jand #lk<m<l—1:m=m,} €2Z,.

The roots «; ;, and oy ¢ with ¢ < k are compatible iff :
k.2k—-1, or (k—1),2i or (#k,andi=k.

The roots —a; and aj ¢ are in the same cluster iff either k£ > ¢ or £ < 1.

In Theorem 4 we write down the Jordan-Holder series for a reducible tensor product
of objects. This amounts to writing down all the non-trivial exchange relations for
cluster variables including the frozen variables and is not hard to do using the analysis

above.

1.5. — The proof of the theorem involves three principal steps. For 1 < j < n, set

dj = 6j,j, = 0¢(j).e(j+2)-

The first step is the following proposition which gives a recursive formula for the
cluster variables. We adopt the convention that o, = a,, m <.

Prorosition. — For 1 <i < j < n we have
[ ] fiw z+1l+f+1 Lj— 1$§l+17
wjwla ) = £ o joale Y + fi” xfﬂ((@.,j. + G g ) f
+ (1 =dip5, — 5z‘,j.)ff.j'”$[ai,j.—1])-

The proof of this proposition is in Section 2 where we also give a closed formula
for x]cy ;] as a Laurent polynomial in the variables {z1,...,2n, f1,..., fo}

1.6. The second step in the proof of the theorem is the following. We adopt the
convention that we take w; ¢(;41)42 if £(i) = {(i + 1) + 1 and we take w; ¢(i11)—2 if

§i) =€(i+1) - 1.
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588 M. Brito & V. CHani

Prorosition. The following equalities hold in Jo(Fe) for 1 <i<j < n.
(i) We have

[wie(irn)][w(iyi + 1] ¥ w; e(ir1)42]
= [fi] wirrearn) ™4 + [Fin) ™ “lwirrern)? Wicrewm)-
(i) Ifj. <i<j then

[wj e [w(, )]0 [wi g41)e0] e
= 157 w5 wigrn e Y wisegan] Y

+ [fj+1}17dj FARED [wj+1,£(j+2)}dj [%—1,5(1’)]17&

ije

(iii) If i < j, choose z € {£(i) + 1,&(i) — 1} so that w;jw(i,j.) € 92’ and set
k= (4.)e. Then,

[wj,g(jﬂ)] [w(i, )]
= 115 wpinegen]t 0 Wi T D00 e g ]P0 oee

1l T )0 wiea)] Y Wi Ja = D) 0 rediet fw; ] ne i,

The proof of this proposition can be found in Section 4.

1.7. — Proposition 1.5 and Proposition 1.6 are enough to establish the existence of ¢
and to identify the image of a cluster variable. The third step needed to establish the
theorem is to show that + maps a cluster monomial to the isomorphism class of an
irreducible representation. To do this we will need the following result.

Prorosirion. — Let w,w’ € Pre. Then either [w][w'] = [ww'] or [w][w'] = [w1]+[w2]
where [w1] and [ws] are the images under v of cluster monomials.

A much more precise statement can be found in Theorem 3 and Theorem 4 in
Sections 3 and 4. In the rest of this section we assume Proposition 1.5, Proposition
1.6, Proposition 1.7 and prove Theorem 1.

1.8. ExisteEnce or ¢. — Recall [1] that an element of .7 (x, Q¢) is said to be a standard
monomial if it is a monomial in the elements {x;,z[a;] : ¢ € [1,n]} and does not
involve any product of the form x;x[c;], ¢ € [1,n]. It was proved in [1] that standard
monomials are a Z[f; : i € I]-basis of & (x,&).

On the other hand consider the quotient of the polynomial ring (with integer
coefficients) in variables X;, X[a;], F;, © € [1,n] subject to the first relation in Propo-
sition 1.5. It is not hard to show that this ring is the Z[F; : ¢ € I] span of monomials
in X;, X[a;], ¢ € [1,n] which do not involve products of X;X[a;] for any i € [1,n].
It follows that o7 (&, Q¢) is is isomorphic to this quotient (compare with [19, Lem. 4.4]).
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Using Proposition 1.6(i) we have

[wi, een][w(iy i+ D] [w; g 1y42]™
= [fllwitrea+n)] ™% + [Fird) ™ “lwireirn] “wiorem)-
It is now immediate that the assignment
v — [Wigarn) i = Foo o 2la] — [wignee)’ o lw(i i+ 1)1 00

defines a homomorphism of rings ¢ : &7 (x, Q¢) — JHo(Fe).

1.9. Tue eLemenTs o(z[a]), o € P> _. The formulas given in (1.2) and (1.3) can
be rewritten as follows:
(1.5) e(wfais]) = [wli,d + D' [wigipayzals s [w(i, jo + 1)]BE000) G >

We shall prove this reformulation by induction on j —i. Observe that induction begins
when j = i by definition. For the inductive step apply ¢ to both sides of the second
equation in Proposition 1.5. We will show that the right hand side of this equation
is the same as the right hand side of the equation in Proposition 1.6(ii), (iii). Hence
the left hand sides must match up. The inductive step is immediate once we observe
that #5(Z¢) has no zero divisors.

To prove that the right hand sides are the same, suppose first that j, < ¢ (in particu-
lar j, =4, or j, = i). Applying ¢ to both sides of the second equation in Proposition 1.5
gives
wjeenli(zlais]) = £9 el o)) wiiegro) ™Y

+ F T e wioe)
The second term on the right hand side of the preceding equation is equal to the
second term on the right hand side of the equation in Proposition 1.6(ii). To see that
the first terms match up we use the inductive hypothesis for ¢(z[a; ;—1]) and see that

1-4

ije

it suffices to prove that

1

. o o 5 . dj_
[wigirnzal 7t = ([Wie(rz2) 000 [w(i, (G — 1), + 1)) Pie0-0e) 770
If dj_; = 0, then the preceding equality is obviously true. Since
djii=1= (-1)=0-1le=jo=i = i.=(—-1).

and the equality follows.
If i < j,, then the result follows if we prove that,

L(-'L'[ai,jfl]) = [w(l'7j>]1—dj—1 ([wi,z]ék,i. [w(z,k; + 1)]1—519,1'.)03171 :
Ui gu1]) = (W0, J)] e ([wi 0wk [w (i, ky + )] eke) Dot

where we recall that k = (j,).. If d;_1 = 0 the first equality follows from the definition
and the inductive hypothesis and if d;_; = 1 then (j — 1) = j, and so (j — 1), = k.
The first equality again follows from the inductive hypothesis. The second equality is
deduced in the same way from the inductive hypothesis.
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1.10. We prove now that ¢ is an isomorphism. Let {wy,...,w,} which are dual to
the simple roots of A,, and P be their Z -span. It is convenient to set wp = wp4+1 = 0.
Let < be the usual partial order on P* given by u < X iff A — pu is in the Z, -span of
{0417 N ,an}.

Define a morphism of monoids wt : @‘”‘ — P* by setting wtw; , = w;. Since F¢
is a tensor category it is well-known that the following holds in J#(F¢); for w =
Wiy ay * Wig,ax € 9;

(1.6)  [wirar] (Wi an] = [w] + Z r(w,m)[w], for some r(w,w) € Zy.

weygr
wt w<wt w

A straightforward induction on wtw shows that J£ (%) is generated as a ring
by the elements [w;¢;y+1]. By Section 1.9 we see that «({z[—a], z[ai,]}) =
{[wie(i)+1]; [wie(iy—1]} and hence it follows that ¢ is surjective.
We prove that ¢ is injective. Set
Wte i = Wi g(ir1), Wte fi = fy, wtez[oy] = 7, such that  o(z]ay]) = [].
Extend wty in the obvious way to the basis of & (x, §); if
Lz

m =z aPrafog)™ - zlag]
is a standard monomial in & (x,¢) and f = f{*--- frr € Z[fEY, ..., fF'] then
ri Se(i.ei+n+1, Oe(.e(i+1—1  1—d; i
Wt fm = H Firwi e ( i, elir1)+2 “igtir1) -2 Yy, 5(i+2)) :

Levva. — Let m,m/’ be standard monomials in o (x,Q¢) and f, f' be monomials
in {fi 1 €[1,n]}. Then

wtpfm=wty f'm <= f=Ff andm=m'.
Proof. — Write
ﬁ?l...xfbﬂrl‘[al]ml ...x[an}m"7 f:f{l-.. 2

and let m/', f' be defined similarly with p; replaced by p’ etc. If p; > 0 then m; = 0
and using the fact that 3”2' is a free abelian monoid we have

m=2x

’ !’
m0e(1),6(2)+1, ,M10¢(1),6(2)—1
il £(2) fl C"’1 c@%1, e(2)+2 Y1, ¢(2)-2 .

Since f1 = wy g1)41Wie1)—1, We get
ri+pr =7y +p), ri=mi+r].

If m{ # 0 then p} = 0 and we have 1 > 7} and 7 > r; which is absurd. Hence

m) = 0 and so } = r; and p; = p;. Writing m = z¥'my and m’ = 2P'm/ we see
1 1 1 1 1 My

that m; and m/ are both standard monomials and

’ ’
wte f3 o frrma = Whe f? o fat .

An obvious iteration of the preceding argument proves the lemma. |
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Suppose that
L (Z cnsf(s)mr) =0,

where m, varies over standard monomials in o/ (x, Q¢), and f(s) varies over monomi-
als in f;, i € [1,n] and ¢, s € Z with only finitely many being non-zero. Assume for a
contradiction that ¢, s # 0 for some r, s and let A be a maximal element (with respect
to the partial order on P*) of the set {wt(wty f(s)m,) : ¢, s # 0}. Using (1.6) we get

0= Z crs[wte f(s)my,] + Z nelw], ne €Z.
wt(wte f(s)m,. )=\ wtw}A
Since the elements [w], w € @g are linearly independent elements of J£)(.%¢) we get
Z cr,s[WtE .f(s)mr] =0.
wh(wte F(5)m) =X

By Lemma 1.10 the elements [wty(f(s)m,.)] are all distinct and hence also linearly
independent. This forces ¢, s = 0 contradicting our assumption and proves that ¢ is

injective.
1.11. Tue eLements o(2[B1]2z[B2]). — We now prove the final assertion of the theorem.
Write [ws] = ¢([z]Bs]), s = 1,2 and let w = wiws. Assuming that [w] # [wi][ws]

we shall prove that xz[a]z[f] is not a cluster monomial. By Proposition 1.7 we can
write [wi][ws] as the non-trivial sum of elements which are images under ¢ of cluster
monomials. Since cluster monomials are linearly independent and ¢ is an isomorphism
we see that z[f;1]z[B2] is not a cluster monomial and the proof of the main theorem
is complete.

2. Proor or ProprosiTion 1.5 AND A ¢-CHARACTER FORMULA.

In this section we prove Proposition 1.5 which is a recursive formula for a cluster
variable. We also solve this recursions and give a closed formula for the cluster variable
in terms of the initial cluster and the frozen variables. In view of Section 1.9 this
formula can also be viewed as giving the g-character of [w], w € Pr¢ in terms of the
local Weyl modules and Kirillov-Reshetikhin modules.

2.1. — We briefly recall the definition (see [13]) of a cluster algebra. Let @ be a
quiver with (n + m)-vertices labeled {1,...,n,1’,...,m’} and assume that the set of
edges has no loops or 2-cycles. A mutation of () at a vertex ¢ is the quiver obtained
by performing the following three operations.

— reverse all edges at i,

— given edges j — ¢ — k add a new edge j — k,

— remove any two cycles that may have been created.
We shall assume that mutation is never allowed at the vertices labeled {1,...,m'};
these are called the frozen vertices. Suppose that @ = {x1,...,2n, f1,..., fm} is an
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algebraically independent set and let Q(x) be the field of rational functions in these
variables. The set @ is called the initial cluster and (x, @) is called the initial seed.
Corresponding to a mutation of ) at a vertex i define a new cluster

w/:{xlla"wxrln?flw'wfm}

by
oy =wy, j#4 wwi= [ £ [ w+ I] & I =
3 j—i 37—t 3 i—k 3 i—k
in Q in Q in Q in @

The new cluster again consists of algebraically independent elements and we have a
new seed (x’,Q’) where Q' is the mutation of @ at i. Iterating this process defines
a collection of new clusters and new seeds. An element of a given cluster is called
a cluster variable. A cluster monomial is a product of cluster variables all belonging
to the same cluster. The associated cluster algebra is the Z subring (of the field of
rational function Q(z)) generated by all the cluster variables.

2.2, Tue Quiver Q¢li, j]. Given 1 < i< n—1set Q¢ = Q¢li,j] if j < i and let
Q¢4, 1] be obtained by mutating Q¢ at . Assume that we have defined Q¢[¢, j —1] for
J > let Q¢[i, j] be the quiver defined by mutating Q¢[i,j — 1] at j.

Proposition 1.5 is a simple inspection when j = 4 and if j > 4 then it is a con-
sequence of the discussion in Section 2.1, the following lemma and an induction on
j—i.

Lemwa. Suppose that j > i and that we have an arrow (j — 1) — j in Q¢. In
Qc¢li, j — 1] we have the following edges at the vertex j:

max{i — 1,7, —

where a; = 1-— 512,]'. and bj = min{l, (1 - 5j.,i.)dj.—1 + (5]‘.71'}.

Proof. We proceed by induction on j—i. To see that induction begins when j = i+1
notice that

d; =1 :>Z:(Z+1). :>(Zi+1:0, bi+1:1,
dz:0:>2,:(2—|—1). — a,-+1:1, bi+1:0-
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On the other hand, in Q¢[¢,¢] which is the mutation of Q¢ at ¢, an inspection shows
that the edges at i + 1 are given as follows:

1—diy
1+—— (i +1) disr (i+2), d,=1,
A

7! (i+1) (i+2)
/_\ 1—di+1

— %

(i—1) i+—(i+1) d: (i+2), di=0,
1+1
(i+2)

and it follows that induction begins. For the inductive step we assume that the result
holds for the edges at j < n in Q¢[¢,j — 1] for and prove that it holds for the node

J+1in Q¢li, j].

Case 1. — If dj = 1 then j is a sink of Q¢ by assumption and so we have an edge
(j +1) = j in Q¢. Hence by the inductive hypothesis the edges at j and (j + 1) in
Qeli, j — 1] are

/\ dj+1
—
3 ‘ S

max{i — 1, j, —

max{i, ju ) i G (+2).
Mutating at j we see that the edges at (j + 1) are

/\ dj+1
— 3

G=D——i——0G+D_1_q,, (+2).

e

J’ (G+1) (+2)
The inductive step follows since d; =1 = (j + 1), = j and so

max{i—l, (j-l—l).—l} =7-1, max{@ (j—‘rl),}/ = j/, ajy1=1= dj, bj+1 =daj_1.
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Case 2. If d; = 0 or equivalently j, # j then in Q)¢ we have an edge j — j+ 1. By
the induction hypothesis, the edges at j and (j + 1) in Q¢[¢,j — 1] are

aj

//\) 1- dﬂ+1
j 1

max{i— 1,7, — 1} G-—-D+=xj—0U+1 dj1 (j+2) .
dj_
J

max{i, j, }' (j+1) (j+2)

Mutating at j we obtain

a;
. . . . /N .
maX{z—l,],—l} j%(j—i_l) dj+1 (.7+2)
bj
1—djp
max{4, j, }’ (+2)

The inductive step follows from the fact that d; =0 = (j +1). = j. < j and so
max{i —1,(j + 1), — 1} = max{i — 1,5, — 1}, max{i,(j +1),} = max{i, 7.},
and
aji1=aj, bjy1=bj, dj=0.
The proof of the lemma is complete. |
2.3. Tue ser I'; ;. — We continue to set dp, = 0 m, for 1 <m < n. For 4,5 € [1,n]
define sets I'; ; as follows: I'; ; = {0} if j < @ and if ¢ < j then I'; ; is the subset of

ZTHQ consisting of elements € = (g;,...,¢;41) satisfying the following conditions:
for r,m €[4, j] with »r < m and o, () =&, + -+ - + €, we have

(2.1) gjr1 = L+ (dj — 1)omax{i,ju+1},5(€)s

(2.2) Umax{i,j.Jrl},j(s) <1,

(2.3) io(8) S 1< oig4a(e) i do <,

(2.4) Um-&-l,(m-i-l)o( ) 1< omq, (m—&-l)o—i-l( g), if io<m=ms<j,.

Clearly, €,, € {0,1} for i < m < j+ 1. For i < j let
Uiy ={e€lij: Omaxtijer1}i(€) = 1}, T9; ={e €T : Omax(ijut1},5(€) = 0.
The condition in (2.2) shows that
L;; =T, ury,.
We shall use the following freely:

(2.5) dp-1=0 <<= (m—1),=m,, dp-1=1 <= m,=m—1.
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LemMmA. For j > i the assignments

(e’:‘i,...,é‘j) — (Ei,...,é‘j,dj),

(€iyevvgje) — (€ +6ijey--1€5.,0,...,0,1),
define bijections tj_1 : I'; j_1 — F}’j and tj,—1 : T 5,1 — F?’j respectively.
Proof. — For the first assertion of the lemma we must prove that
= (g,...,65) €lij1 <= e=(&,...,¢5,d;) € F}J.
Clearly we have 0., () = 0 (€) for all i <m < r < j. Using (2.5) we see that

(*) gy =1+ (dj—1 — 1)Omax{i,(j—1)et1},j-1(€) <> Omax{ijot+1},5(€) = 1.

It follows that € satisfies (2.1) if € € T} ;. Tt also proves that e satisfies (2.1) and (2.2)
if £ € Ty 1. To see that & satisfies (2.2) if e € '} ; we note that this is clear if
(j —1)e = j, and if j, = j — 1 it follows from the fact that e satisfies (2.4) with
m=(j—-1),.

Tt is obvious that € satisfies (2.3) (resp. (2.4)) if € € F}yj; it is also obvious that &
satisfies these inequalities if € € T'; j_; as long as i, < j—1 (resp. io < m < (j—1).)).
If ic = j then d; = 1 and j, = ¢, < ¢. Using (%) and the fact that we have already
proved that e satisfies (2.1) we get

Omax{ije+1},j(€) = 1 < MaX Oraxfi je+1},j41(€) = 2,

proving that (2.3) holds for e. If (j — 1), < m = m, < j, then we must have
m=(j—1).,and j. =7 — 1= (m+1),. It follows that d;_; =1, ¢; = 1 and so we
have
T(i-1at1,j-1(8) = 0G-1)at1,j-1(€) S 1= &5 < 0(j-1),41,5(€);
proving that e satisfies (2.4). The proof of the first assertion is complete.
We prove the second assertion of the lemma; note that if € € F?,j then we must
have €, = 0 for j, +1 < m < j and hence by (2.1) we also have €11 = 1. Since

jo<i = Tij,1={0} and TP, ={(di,.,...,0,1)},

the result is trivially true in this case. We assume from now on that j, > ¢ (in
particular j, > i,) and let

€= (g...,€5.) e=(g,...,€,,0,...,0,1).

Suppose that € € T'; ;,_1. It is obvious that e satisfies (2.1) and (2.2) and (2.3) and
for i, <m < (j,—1), that e satisfies (2.4). If (j, — 1), < m = m,, < j, — 1 then either
m = (j,—1), or m = j,—1. In the first case the first inequality in (2.4) for € is just (2.2)
for € while the second inequality follows from (2.1) for €. If m = m, = j,—1, then (2.1)
forces €;, = 1 and hence we have ¢, <1 < ¢, + €;j,41. This proves that (2.4) holds
for e and so e € TY ;.
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Next we assume that e € T ; and prove that € € T; j, _1. To prove that (2.1) holds
for it suffices to observe that if j, = is (resp. (j.)o = io) then (2.3) (resp. (2.4))
for € gives

Omax{i,(je)e+1},je (e) = Omax{i,(je)e+1},je (e) =1
If dj,—1 =1 then (j.). = j. — 1 and so the preceding equality is €;, = 1 as needed. If
d;j,—1 =0 then (j, — 1), = (j.). and again the preceding equality is a reformulation
of (2.1) for €. The fact that € satisfies (2.2) follows by using (2.3) for € if (j,), < io
and using (2.4) for € otherwise. It is clear that (2.3) and (2.4) hold for € since they are
the same as the corresponding ones for € and the proof of the lemma is complete. [

24, Taesers T ;. For i < j define a map
pij Doy — ZU™D 0 p, (e, .. eiq1) = (€, .. 1 Ei41)s
as follows:
- €;+1 =(1- dj)anlax{i,j.+1},j(€) +d;(1 - Urrlax{i,j.+1},j(€))7

— if iy = M4 OF Ormax{i,(me)e+1},ms = 1 then,

ro_ {(dm — 1)Em+1 - dm7 Umax{i,m.+l},m(5) = 07

Em

dm - (Em + Eerl) ) 0max{i,m.+1},m(s) = 17

—if m, =4 and Omaxfi,(me)e+1,me}(€) = 0 then €, = dypy (1 — €ng1).

It is easily seen that e7, € {—1,0,1} for i <m < j. For i < j let I ; be the image
of pij and set I'; ; = {0} if i > j.

Lemma, — Let1<i<j<n.
(i) Ifg = (Ei, e ,€j> € Fz}jfl then
pi]‘_l(g) = (E;, o ,8;-) — pij(Lj_l(g)) = (8;, c.. ,6;_1, -1+ E;, 1-— dj)
(11) Ifg = (Ei, NN ,8]‘.) S Fi,j.—l then
Piie1(8) = (1) = Pigltsa 1 (B) = (o070, -1, d))
Proof. — Let € = (&i,...,¢5,d;) = t; j—1(€) and let p;;(e) = (¢}, ..., ;). Since
Um,r(g) = Um,r(f‘:)v m < T < g,
it is clear from the definition that e/, = ¢!/ if m < j — 1.

By Lemma 2.3 we have € € I'} ; and hence omax(i j.+1},;(€) = 1. It is immediate
from the definition of p;; that €//,; = 1 — d;. We now prove that €7 = —1 4+ ¢; using
the definition of ¢’; this is equivalent to proving

€ = =14 (1 = dj—1)Tmax{i,(j-1)e+1}.j—1(€)
(2.6) +djm1(1 = Omax(i,i-1)u+1,},5-1(€))
= =14 (1 = dj-1)0maxfi jo+1},j-1(8) + dj=1(1 = Tmax(i,Go)a+1}.40 (€))-
If jo > i and Owax{i,(jo)e+1}.j. () = O then by (2.4) we have ¢;,41 = 1 and so
0jo+1,j—1(€) = 1. This means that the right hand side of (2.6) is zero. Since by
definition €7 = d;(1 — d;) = 0 the result is proved in this case.
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If i, = j, then d;j_; = 0 and since Oax{i,j,+1},;(€) = 1 it follows that the right
hand side of (2.6) is —¢’; which is precisely the value of €7 in this case.

Suppose that omax{i,(jo)e+1},j. (€) = 1 and that j, > 1. Thls means that the second
term on the right hand side of (2.6) is zero. Since Omax(s,j,+1},;(€) = 1 by definition
we have €] = —¢;. Recalling that ¢; = 1+ (dj—1 — 1)0max{i,j—1)s +1},j—1 We see that
the right hand side of (2.6) is also —&’;. The proof of part (i) is now complete.

We prove part (ii). Let

€=1ij,-1(€) € F?,j, pij(e) = (5/ila ‘e a€;/+1)~
Since oy (€) = o () for all m < 7 < j, — 1 it is clear from the definition that
el =el it m<j, — 1. Since d,, =0 if j, + 1 < m < j — 1 a simple inspection also
shows that
Efrlrz:o» Jo—'—]-gmg]_lv j+1 d

It remains to prove that €’/ = ¢’ and that &7 = —1.
If j. =i, thene = {0}, I'; j,_1 = {0} and € = (0, ...,0,1). By definition p; ;(e) =
(O7 —1,d;) and we are done in this case. If ¢ = j, then I'; ;,_1 = {0} and
(1 0 ,1). and one checks easily that ¢, = 0. On the other hand, by definition

"

el =d; — (‘5m. +¢€;41) = 0. The fact that 5;’ = —1 is a straightforward checking from
the definition.

Suppose that j, > 4. Since €, 1 = 0 we have oyax{i,j,+1},;(€) = 0 and by using
(2.4) that oymax{i,(jo)e+1} .5, (€) = 1. Since ;4.1 = 1 it follows by definition that e} = —1
as needed.

Finally, to show &/ =€’ , we write m = j, and see that we must prove

€m = (1 = dm—1)Omax{i,(m—1)u+1},m—1(€)

@) + dim—1(1 = Omax{i,(m—1)e+1},m—1(E))

=(1- dmfl)‘jmaX{i,m.+1},m—1(E) +dm-1(1 - Omax{i,(me)e+1},me (e))

=1 —dn-1)(1—¢em) +dn1(l— Omax{i,(me)e+1},me (€))-

If Omax{i,(me)e+1},me(€)) = 1 then g = 1 — &, by definition. By (2.4) we have

em = 1if dy—1 =1 and hence (1 —e,,) = (1 —dpm—1)(1 — &) and (2.7) is proved.

If Omax{i,(me)e+1},me (€) = 0 then by definition &;;, = 1. Hence we must prove that
l=01—=dn-1)1—¢em) +dn-1.

If d,,—1 = 1 this is clear from the preceding computation. If d,,, 1 = 0 then m,+1 <m
and (2.4) forces e,,,+1 = 1; in particular it follows that €, = 0 and (2.7) and is

completely proved. O
2.5
ProrosrTIon. For1 <1< j<n we have
az,] - Z f 7_77
ecl'; ;
where . (1 a)
€ € a+1 __ f€ €j €j+1
m;; = &;_ 1153 x x]+17 z] fzz"f f )

with € = (g4,...,€j41) andpm-( )= (€l s€h41)-
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Proof. The proof of the proposition proceeds by an induction on j — 4. To see that
induction begins recall from Proposition 1.5 that

zloy] = 04, (fizy Yo wiaa; 1) +(1- 51‘71‘0)(90;1 (fizis1 + Tic1fig1))-
Since
i=i, = iy ={(1,1),(0,1)}, T7;={(-10),(-1,1)}
and
i#io = iy ={(0,1),(1,0)}, Ti;={(-1,0),(-1,1)}
we see that induction begins. For the inductive step, Proposition 1.5 asserts that
1—d;

di_
zjxlog ;| = f;7 wlog )Ty’

1-d; d; e 1—8; 1, dju_
+fin’ %+1((5i.,j. + 05 ) f w7+ (1= 6ia e — g £ lx[ai,j.—lD-

Let € = (&,...,¢;) € I'; j—1. By Lemmas 2.3 and 2.4 we have

d; 1-d; —1 ~
,sz,] = z] 1f1,,]f - 193]+1 JCJ ) €:Li,j—1(€)a

once we notice that (1 —d;_1)e; + d;—1 = ¢;. Hence using the inductive hypothesis

we get
dj_
fj] lx[ai’jfl] ]+1 x] Z flej E,J
eerl'!
ij
Similarly, let € = (5i7"'7€max{i,j.+1}) S F'J._l and € = Li,j.—l(g)~ Then Ej+1 =

1 —d; by definition and 1 —¢; =1 —§; 5, if j, < ¢ and we get

1-46; —1_dj . .
J i 7. ije
€ re _ {f]-l—l f7 Liq ‘Tj x]—i—l? Je <
6,9 4,5 T z 1—d; pde—1_ & —1_d; . .
Gl BTy e, i<

The inductive step follows from the inductive hypothesis and the fact that I'; ; =
I‘g ;U 1"}7 e O

3. IRREDUCIBLE TENSOR PRODUCTS.

In this section we give a sufficient condition (see Section 3.6) for the equality
[71][me] = [m17s] to hold when 71,7y € Pre. We shall see in later sections that
the conditions are necessary as well. We shall often need to work in the monoidal
category F¢ rather than its Grothendieck ring; by abuse of notation we shall use the
symbol [w] to also denote an irreducible module in %, with label w. To emphasize
that we are working in the category we shall write [w] ® [w'] for the tensor product
of the corresponding objects.
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3.1. We collect some well-known facts on the category .#¢. An object of % is
said to be £-highest weight with highest weight w if it has [w] as its unique irreducible
quotient. Clearly any quotient of an ¢-highest weight module is also ¢-highest weight
with the same irreducible quotient. Given w1, ws € @2‘ the module [wyws] occurs in
the Jordan-Holder series of [w1]® [w2] with multiplicity one. In particular if [w1]® [ws]
is an ¢-highest weight module then [w;ws] is its unique irreducible quotient and hence
[w1] ® [wo] is irreducible iff [w1] ® [wa] & [wa] ® [w1] = [wiws)].
The following results from [16], [17] play an important role in this section.

Turorem 2. Let wy € 5”2' for 1 < s < r. Then [w1] ® -+ ® [ws] is L-highest
weight if every pair [ws] ® [wp] with 1 < s < p < r is {-highest weight. Moreover if
[Ws] ® [wp] = [wewp] for alll < s < p <1 then
[wi1] ® - ® [wy] 2wy -+ w,]. O
3.2, — Given wjq,wjp € 9;' it was shown in [5] that the module [w; ] ® [w;s] is
{-highest weight (resp. irreducible) if
(b—a)¢ {2p+2—1i—j:max{i,j} <p+ 1< min{n+1,i+ j},

(resp. £(b—a)¢{2p+2—i—j:max{i,j} <p+1<min{n+1,i+j}).
The next proposition is a simple calculation using the preceding criterion and the fact
that |£(j) — €(0)| < |7 — 4| for all 4,5 € [1,n].

Proposition. — Let wiq,wjp € P . Then [wia] @ [wjp] (resp. [wjp] @ [wia]) is
L-highest weight if a = &(i) + 1 (resp. a = £(i) — 1). Moreover,

wiawjp ¢ Pre U{f;} = [wia] @ [wjp] = [wiaw;ipl- 0
3.3. — Let &* be the height function defined by £* (i) = £(n+ 1 —4). The assignment

Wi ()£l — Wntl—it*(n+1—i)+1

extends to an isomorphism 9+ = @g&, and if w = wj, 4, - Wipa, € @; we set
* +
W' = Wntl—dga " Watl—ig,ar € yg*'

It was proved in [7] that if [w;] ® [ws] and [w}] ® [wi] are both £-highest weight then
they are both irreducible with the converse being trivially true.

Say that an ordered triple of elements (w1, ws,ws) from @g is ¢-admissible if:

— [ws] ® [ws] is irreducible for s = 1,2,

— either [w1] ® [wa] or [ws] ® [wi] is f-highest weight.

Levva. — If (wi,wa,ws) is E-admissible and (w3, ws, w3) is £ -admissible then
[w1w2] X [wg} = [w1w2w3].

Proof. — Suppose that (w1, ws,ws) is {-admissible and that [w1]®[w2] is (-highest
weight. Then Theorem 2 shows that the modules [w1|®[ws|®ws] and [w3]®[w1]®[ws]
are -highest weight. Hence the corresponding quotients [wyws]Rws] and [w3]® [wiws]
are (-highest weight. Working with £* we see similarly that [wiw}]® [w3] and
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[wi]®@[wiws] are f-highest weight. The irreducibility of the four quotient modules
follows from the discussion preceding the statement of the lemma. O

3.4. Recall the map wt : 322' — P7 given by extending wtw; , = w; to a mor-
phism of monoids; for 7 € ,@; with wtw =Y | riw;, set

htm = Zri, min7 = min{i € I : r; # 0}, maxw = max{i € [ : r; # 0}.
i=1
If # € Pre and b € {£(4) + 1,£(j) — 1}, j € [1,n] are such that w;éw € Pr¢ then
j € {min7m, maxm}.

Prorosition. — Let £ be an arbitrary height function and let w,w’ € Pre.

(i) Suppose that ww' € Pre and write w = wiw; , with wy € Pre and w; ,w’ €
Pre. If a = £(i) + 1 then [w] ® [W'] is L-highest weight and otherwise [w'] ® [w] is
{-highest weight.

(ii) If i = maxw < j = minw’ and |£(i) — &(5)| # j — 4, then the module [w] ® [w']
is irreducible.

Proof. — The proof of both parts is by an induction on p = ht w + ht w’ with Propo-
sition 3.2 showing that induction begins when p = 2. For the inductive step, assume
that we have proved both parts for p’ < p and also assume without loss of generality
that ht w’ > 2.

For part (i) write

w =w;w’, with w” €Pr¢, ww;, € Prg

and observe that if k& € {minw”, maxw’} then [£(i) — &(k)| # |k — i|. The induc-
tive hypothesis applies to the pairs (w;;,w”) and to (w,w;); hence either both of
[wjb] @ [w'] and [w; ] ® [w] or both of [w”’] ® [w; ] and [w] ® [w, ] are ¢(-highest
weight. The inductive hypothesis from part (ii) applies to the pair (w,w”) and so
[w] ® [w”] is irreducible. It follows from Theorem 2 that the module [w; ] ® [w"] ® [w]
is £-highest weight (or [w] ® [w”] ® [w; ] is (-highest weight). Hence the quotient
[w'] ® [w] (or [w] ® [w']) is ¢-highest weight and the inductive step for (i) is proved.
For part (ii) we continue to write w’ = w;w’” and observe that the inductive
hypothesis applies to the pairs (w,w;;) and (w,w”) and gives that [w] ® [w; ] and
[w] ® [w”] are irreducible. Since the inductive step has been proved for part (i) it
applies to the pair (w;;,w”) and so we see that (w”,wjp,w) is &-admissible. The
conditions of the proposition obviously hold for £ iff they hold for £*; hence it follows
from Lemma 3.3 that [w] ® [w'] is irreducible. O

3.5. — The next proposition is essential to prove our main result.
ProposiTion. Suppose that 1 < j1 < jo < j3 < ja < n are such that
€(Js) = €(s+1)| = o1 — Js

forall 1 < s < 3.
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(i) Let j1 < j2 and wj, o € Pre. The module [w(j1, j2)] @ [wj,.a] ts irreducible if

w(j1,J2)Wjs.a E {w(i1,73), Fawii ey}
An analogous statement holds if jo < j3 and wj, o € Pre.
(ii) Let j1 < ja < j3. The following modules are irreducible :
- [w(jl,]2)] by [w(jlva)L
= [win 2)l @ [w(i2, j3)] if (2 — 1) = €(J2 + 1).
(iii) Assume that j1 < jo < js < ja. Then the following are irreducible:
= lw(ir, ja)] @ [w(ia, s)] if 1€(4a) — £(n)l = Ja — Ju,
= [w(in, g2)l ® [w(is, ja)] if w(ir, jo)w(Js, ja) # w1, ja)-
Proof. — Part (i) was proved in [18] if |£(j3) — £(j1)| = Js — 71- I |€(J3) — €(j1)| #
Js — jiwriting w(j1, j2) = Wj; a;Wj,,a,, OUr assumptions force,
Je# 3z £U2—1)=£802+1), wja,Wjsa# w(j2,j3)
Proposition 3.2 now shows that (wj, a,,Wj,,4,Wjs,a) I8 & {-admissible triple. It also
proves that (Wn41—j; a1 Wnt1—js,a0) Wnti—js,a) i £ -admissible and the hence Lem-
ma 3.3 gives the result. The proof of the analogous statement for w;, , is entirely
similar.

The first two assertions in part (ii) were proved in [18]. Suppose that jo < j3 and

£(jo — 1) = &(j2 + 1) and write
w(j1,J2) = Wjia1Wisazs W(J2:3) = Wy a: Wi as-
Then
a1 =€) £1 < a2 =¢(j2) F1, a3 =£&03) £ 1.
Assuming that a1 = £(j1) + 1 we use Proposition 3.4, Theorem 2 and part (i) of this
proposition to see that
[wjs,as] @ [Wa,00] @ [W (i1, J2)]

is ¢-highest weight and hence so is the quotient [w(jo,j3)] ® [w(j1,42)]. Similarly,
working with

[wjhal] ® [wjzyaz] ® [w(.727.73)]1

we see that [w(j1, j2)]®[w(j2, j3)] is £-highest weight. Repeating the argument with £*
proves the irreducibility and proves the third assertion of part (ii).

The first assertion in (iii) was proved in [18]. If |£(j4) — &£(j1)| # ja — j1 then either
£z —1) =&@2+1) or {(js — 1) = £(js + 1). Write

w(j1,J2) = Wi1,a1%Wjs,az) w(js, ja) = Wis,a3Wja,aq-
and observe that since jo < j3 and w(j1, j2)w(Js, ja) # w(j1,ja) we get
(a1, a2) = (§(j1) F 1,£(j2) £1) <= (a3, a4) = (§(j3) £ 1,£(ja) F 1)

If §(js —1) = §(s + 1) then [£(js) — £(j2)| # (ja — j2). Using parts (i) and (ii)
of the current proposition and Proposition 3.4 we see that (wj, a4, Wi,,a4, @(J1,J2))
is &-admissible. If £(jo — 1) = £(j2 + 1) then an identical argument shows that
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(W) a1 Wis.ans W(J3, ja)) is &-admissible. Since the analogous equalities hold for £*
Lemma 3.3 now proves the irreducibility of [w(j1,52)] ® [w(Js, ja)]- O

3.6. In the rest of the section we shall prove the following theorem.

Turorem 3
(a) For all w € Pre and k € [1,n] we have [w][f;] = [7f].
(b) Let w1, 7o € Pre. The equality [m172) = [m1][m2] holds in JG(Fe) if one of
the following conditions is satisfied:
(i) w17 ¢ Pre and maxws < min, for some s,m € [1,2],
(ii) there exists 1 <i<n anda € {£(i)+1,£(¢) — 1} such that wi_);ﬂ's € Pr;
fors=1,2,
(iii) there exists s,m € {1,2} such that
(a) either minmy < i = minm,, < j = maxms < mMaxw, and
ht w(i, j) is odd,
(b) or minmwy, < ¢ = minw,, < j = maxw, < maxw, and
htw(i, j) is even.

3.7. Proor or Tureorem 3. — Notice that the hypotheses of the theorem hold for
the pair (71, 72) if and only if they hold for the pair (7], 73) of elements in Pre..
In particular, if we show that the conditions imply that we can write w7 = wiws so
that (w1, ws, 2) is -admissible, then the triple (wf, w}, w3) is £*-admissible. Lemma
3.3 then proves that [m1] ® [mr2] is irreducible. A similar comment applies to the pair
( o 7). This observation will be frequently used without further mention in the proof
of the theorem.

We proceed by induction on ht 7. If w = w; , and |£(¢) — £(k)| = |k — 4| the result
was proved in [18]. If |£(i) — £(k)| # |k — 4| then Proposition 3.4 shows that the triple
(Wi e(k)+1) Ph,e(k)—1> Wi,a) 18 {-admissible, proving that [w; .] ® [f}] is irreducible. If
ht7 > 1, write m = ww; o with ¢ = max7 and w € Pr¢. The inductive hypothesis
and Proposition 3.4 show that the triple (w, w; o, f},) is {&-admissible and the inductive
step is proved.

All three assertions in part (b) are proved by an induction on p = ht w1 + ht 7s.
Proposition 3.5 shows that induction begins when p < 3. It also shows that the results
hold when ht w1, = ht w9 = 2. Hence for the inductive step we assume that the results
hold for all p’ such that 3 < p’ < p and that either ht 7wy > 2 or ht wo > 2.

To prove the inductive step for (i), assume without loss of generality that ht w; > 2
and write T = WiWw;, 4, Wj,,a, With w1 € Pr¢ such that one of the following holds:

max 7 < minmy, maxw) < j1 < jo =maxwy; and &(j; — 1) =£(j1 + 1),

maxme < min7y, minw; = j; < jo < minw; and &(jo — 1) =£(j2 + 1).

It follows that wq 7y ¢ Pre and since w7y ¢ Pre we also have wj, o, Wj, 0,72 ¢ Pre.
Hence [Wj, 0, Wjy.a5] ® [2] and [w1] ® [72] are irreducible by the inductive hypothe-
sis. Proposition 3.4 shows that either [w1] ® [Wj; 0, Wjs.as] OF (Wit a1 Wia.as] ® [wi1] 18
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C-highest weight, proving that the triple (w1,wj, a1 Wj,,as,72) is {-admissible. The
proof of the inductive step for (i) is complete.

To prove the inductive step for (ii), notice that the conditions on 71 and 7y
imply that one of the following holds: maxw; = minme = ¢ and £(i — 1) =
£(t+ 1) or minry; = minmy = ¢ or maxmw; = maxws = 4. Assume first that
max 7y = minmy = ¢. If htm; > 3, write w1 = wy w1 with maxw, = i; otherwise
ht 7wy > 3 write w2 = wy, (w2 and minwy = 4. In the first case, Proposition 3.4 and the
inductive hypothesis show that the triple (wy ., w1, 72) is {-admissible while in the
second case we get that (wy ¢, w2, 1) is {-admissible. In either case the irreducibility
of [m1] ® [mq] follows from Lemma 3.3. If min7; = minr,, assume without loss of
generality that ht 7r; < ht 7, and let £ = max . Write 7y = ww’ with w,w’ € Pr¢
satisfying:

minw = min7;, maxw < k, minw’ > k and minw’ =k if £(k — 1) = £(k +1).

The inductive hypothesis applies to (71, w), it also applies to (my,w’) if &(k — 1) =
&(k + 1) and otherwise mw’ ¢ Pr¢ and part (b)(i) applies and shows that the corre-
sponding tensor products are irreducible. Since Proposition 3.4 applies to (w,w’), we
have now shown that (w,w’, 1) is {-admissible and the inductive step is proved in
this case

Finally, we prove the inductive step for (iii). This amounts to proving the following:
if 1 <41 < iz < iz < iy < n then the tensor product [w(iy,is)] ® [w(iz,iq)] is
irreducible if ht w(is,i3) is odd and [w(i1,i4)] ® [w(i2,i3)] is irreducible if ht w(is, i3)
is even. It is simple to see that p = ht w(iq,i3)+ht w(ie, i4) = ht w(i1,44) +ht w(ia, is).
Since Proposition 3.5 shows that the result holds when p = 4 it means that it holds
when ht w(iy,i4) = 2. Hence for the inductive step we may assume ht w(iy,i4) > 3.

Suppose that ht w(is,i3) = 2. Using Proposition 3.4, the inductive hypothesis and
parts (b)(i),(ii) of this theorem we see that one of the following holds:

— there exists i1 < m < iz and iy > p > i3 such that w(iy,is) = w(i1,m)w(p,is)
and (w(i1,m), w(p, i), w(iz,3)) is {-admissible,

— there exists b € {&(ia) + 1,€(i4) — 1} with w(i1,i4) = w(iy,i2)wi,p and
(w(i1,92), Wi, b, w(iz,i3)) is {-admissible,

— there exists a € {&(i1) + 1,&(41) — 1} with w(i1,i4) = w4, qw(is,i4) and
(w(is,i4),wiy a0, w(i2,13)) is &-admissible.

In all cases the irreducibility of [w(i1,44)] ® [w(i2,43)] is proved.

Suppose that ht w(iz,3) >3 and let {2 <p <is be minimal such that |{(p) —&(i2)| =
p — i with £&(p — 1) = &(p + 1). Similarly, let is < m < i3 be maximal so that
|€(i5) — &(m)| = i3 —m and {(m — 1) = &{(m + 1). Then Proposition 3.4, parts (b)(i)
and (b)(ii) and the inductive hypothesis show that one of the following holds:

—if £(ia — 1) = &(i2 + 1), then

htw(iz,iz) odd = (w(i1,i2),w(p,i3),w(iz,i4)) is &-admissible,

ht w(ia, i) even = (w(iy,i2),w(p,14),w(i2,i3)) is E-admissible,
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—if (i3 — 1) = £(i5 + 1), then
htw(iz,iz) odd = (w(iz,m),w(i3,44), w(i1,43)) is {-admissible
htw(iz,iz) even = w(i1,m),w(i3,4),w(i2,%3)) is £-admissible,

(i) £ € — 1) for j = 2,3,

If p = m, there exists b € C(g)* such that wi;lbw(ig,u) € Pr¢ and the triple

(w(iz,p), Wiy b, w(i1,143)) is £-admissible.

If p # m, let p < p’ < m be minimum such that £(p’ — 1) = &(p’ + 1). Then

- (w(ia,p),w(p’,is),w(i1,i3)) is E&-admissible if ht w(is, i3) is odd

— and otherwise (w(iz,p),w(p’,i3),w(i1,14)) is &-admissible.

In all cases the inductive step follows and the proof of the theorem is complete.
4. IpentrTies N o (F)

In this section we establish Proposition 1.6 and Proposition 1.7.

4.1. We will need the converse of Theorem 3(b). The most elementary case is the
following well-known result. Namely, let ¢ < j satisfy £(i) — £(j) = £(j — ©); then the
following equality holds in % (Z¢):
1) wigpallwjenTi] = wichzwiemm] + wicrewllwiteg)-
Given ™ = ww; o € Pr¢ with w € Prg, set

T = WWw 1), P =maxT, 'T=w;¢;w, @ =minT.
In the remaining cases the converse is most conveniently stated as follows.

Turorem 4
(i) Suppose that w1mwe € Pre and maxw; < minay. Then

(4.2) [r1][m2] = [mima] + [m][ /7).
(ii) Suppose that w(m,p) € Pre and for m < i < p, write

w(mvl) = W1Wj q, W(Z,p) = Wi pwa.

If a # b then
(+) [w(m, p)][wie] = [wm, )]ws] + [w][w(i, p),
(+4) fw(m, p)][wis] = [wr]lw(i, p)] + [w(m, i) [ws]
If a = b then

o [w(m, p)l[wi.ar] = [wi][fi]lwe] + [w(m, i)][w(i,p)],
{a,a"} = {£(0) + 1,£(1) — 1},
(1) [w(m, p)llwi.a] = [w(m, i)][w(i,p)] + [wi][fi][ w2].

Finally if m1 = wiw; ¢ and o = w; pwo are in Prg with max ™ = minmy and a # b
then

(4.3) [ma]wa] = [wrl[f][ws] + [w1]['72].
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(iii) Assume that i1 < is < i3 < i4 and write
Ww(i1,lp) = WiWiy.a, W(i2,13) = Wiy pWWiy e, W(i3,14) = Wiy awa.
Then (—1)P4@(2:5)) ([w(iy, i3)][w(in,14)] — [w(i1,i4)][w(iz,i3)]) is equal to
i3

[wll]éa,b [w(iy, i2)/)]1_6a’b ( H [fs]5s<s_1),s(s+1)> [/wﬂéc,d lw(is, i4))]1_6c,d.

S:ig

From now on we freely use (often without mention) the results of Theorem 3. We
deduce Proposition 1.6 and Proposition 1.7 before proving Theorem 4.

4.2. Proor or Prorosition 1.6. — The proposition is obviously a special case of
equation (4.1) and Theorem 4(i),(ii). However the translation from the formulation
in this section to the one in Section 1 which is adapted to cluster algebras needs
some clarification, which we provide for the readers convenience. We recall that d; =

O¢(5).£(j+2) = 0o
For part (i) of Proposition 1.6 we take
w —d;, ,di — —d;
T = Wig(i+1)s Ty = w(i,i+ 1)1 Wig(i1)E2 = ""ié(i+1)i2“"3+1,£(i+2)7
where the second formula for 7o uses the fact that (i +2) =G+ 1) F1 =¢£(4) F2
if d; = 0. Theorem 3 gives

—d; —d; _ —d; i
[mime] = [fillwitreiva) 4 [wi+1,§(i>w§+1,g(i+2)] = [fi]' [‘-‘%‘H,g(i)]d )
Using either (4.1) or (4.3) we get
[m1][ma] = [Fillwitrearn) ™" + wicrem] i)' ™ wipree)™
as needed.
For Proposition 1.6(ii), using the definition of j we can rewrite its left hand side as
[w (@, 7)1 70 [wi g (1) 2]
. —d 8. . o \dy
= [w(i g+ DI ([wigrn el ™" [wigo + 1))
It is easiest to verify the four cases given by d; € {0,1} and ¢;, ; € {0,1} separately.
If d; = 1 the left hand side of Proposition 1.6(ii) is [mr][m2], where
1-6i,54 ;o Sije — 3ije
T = Wie(i+1), T2 = wi,&(i+1)i2w(l7 P4 1)%0e = Wi g(i+1)£2% 41 e(i42)F2
and the right hand side is
[F515 (@ DI wigrnyza] P+ (£ (@i el [wisnem] 00
Since 0j,; = 0= j, <i < j—1=dj1 =0, and w(i,j) = Wi e(i+1)+2Wje(j+1)

we see that the right hand side of Proposition 1.6(ii) is precisely the right hand side
of (4.1) and we are done. Otherwise

0j,,; =1 andeither j,=75—-1 or j,<j—1

In the first case dj_1 = 1 and i + 1 = j and so the result follows from (4.3); in
the second case we have ¢ +1 < j and d;j—; = 0. Since 7 = j, = i, we also have
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£(i) = &(¢ + 2) which implies that w(i,i + 1)wj¢j+1) = w(i,J), The result follows
from Theorem 4(i).
If dj = 0 then the left hand side of Proposition 1.6 is [mr;][m2], where

. dj_
T =Wie()+1, T2 = w( ]+ 1) = Wj g(i41) 22w (1) 52 Wi+1,6(+2)
and the right hand side of Proposition 1.6 is
s

iJje

[0 fwli DY wigen 22] P (W) eao] + [F ) lF170 [wicrew]
If di_y = 1then i = j — 1 = j, and the result follows from (f) in Theorem 4(ii).
If d;_1 = 0, then the result follows from equation () in Theorem 4(ii).

The proof of part (iii) is a similar detailed analysis. Note that [w(i,j)] =

[w(i,j, + D)% [w(i,j+ 1)]~%. If dj = 1, we take

T = Wig(+1), T2 = w (i j. +1)
and use Theorem 4(i) if j, +1 < j and (4.3) if j, +1 = j. If d; = 0 we take
T = Wie(r), w2 = w(ij+1).
Note that w(i,j. + 1)wjej+1) = w(i,j) € Pre if j, +1 < j and that if we write
k= (j.). then
it . 61
ToW; e(j+1) = {(wi2<i+1>i2w(%k + D)) fiwiiegae), di-r =1,
3,605 T
w(i, jo + Dwjpre(+2), dj-1 =0

An application of Theorem 4 as in the other cases completes the proof. O

4.3. Proor or Prorosition 1.7. — Let w,w’ € Pr¢ be such that [ww'] = [w][w'].
By Section 1.9 we can choose a, 8 € ®»_; such that

w] = uzla]), (] = u(x[B]).

We claim that z[a]z[5] is a cluster monomial. If not, we can write

zlalz[B] = mizx[ylz[n] + maz[ylzn’],

where my,mg € Zxo[f; : ¢ € I] and 7,7, 1,7 are in ®»_;. Applying ¢ to both sides
of the equation we get

ww'] = [w][w'] = w(z[a]z]]) = imi)uz[y])e(zn]) + cime)u(zl ez n]).
Since t(my),t(m2) € Zxo[f; : ¢ € I], this means that we can write [ww’] as a non-
trivial linear combination of elements {[7] : 7w € 3”; } which is absurd.

Suppose now that 7,7’ € Prg are such that [rw][n’] # [w7’]. Theorem 3 and
Theorem 4 imply that [w7'] = [f][eo1] and [7][n'] — [77'] = [f'][w2], where f
and f’ are products of f;, and [c;] is a product of elements [e;] = [w?] - [w%j]
with w) € Pre, 1 < s < pj, j = 1,2. By the previous discussion it follows that such
products are the images of cluster monomials. Hence the inverse image under ¢ of
[][7'] is & positive linear combination of certain cluster monomials; in particular the
inverse image is not a cluster monomial and the proof is complete. O
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4.4. In the rest of the paper we prove Theorem 4. The crucial step is the following
proposition whose proof we postpone to the next section.

Prorosition. — Let w; o, be elements of Pr¢ with i < minw = j ori > maxw =k
and w; o € Pre. Let b,c € C(q) be such that w;;ﬂ' and w,;iﬂ' are elements of Pre.
We have

[wial[7] = [wiam] = [wimrell'w), @ <7,

(Wi al[m] = [wi 7] = [Wir1e0)][7], @ > k.

4.5. Proor or Turorem 4(i). — We need the following consequence of Proposi-
tion 4.4.
Lemva. — Let wiq,wipm € Pre and assume that a # b and minw > ¢

(resp. maxm < i). Then
(Wi allwipm] = [£il[7] + [wi1e0))[Witre0)T),
(resp. [wio][wipnm] = [fi][7] + [wit1e0)]lwi-1e0)7])-
Proof. — Proceed by induction on ht w;pm. If htw; ym = 1 then the result is well-

known (see for instance [15]). Assume that we have proved the result if ht w; 7 < 7.
Write ™ = wy, cw with m = min 7 and note that

a=E80)Fl <= b=§(()x]l <= £(G+1)x£1=¢(4) and c =¢&(m) F L.

It follows that the pair (w;i1,¢(i), Wm,cw) satisfies the conditions of Proposition 4.4 if
i+ 1 # m and the inductive hypothesis of this lemma if i + 1 = m, and so we have

(*) (Wit [wWm,cw] = [Wit1e0)Wm,ew] + [Wial[Wimi1,emyw]-

The inductive hypothesis and Proposition 4.4 also give

[wial[wib][7] = [Wia] ([wipT] + [wWim1,e() [WWmt1,em)])
= ([fJ + [wi—l,g(i)][wi-i-l,g(i)]) (]
= [fllm] + [wicr e (Wi g0ywm,ew] + [wial[Wmi1,gmyw])-

Equating the first and third terms on the right hand side and using (*) gives

[fillm] + [wic1e][Wirt,e(ywWm,cw] = [wia][wipm],

which establishes the inductive step. O

The proof of Theorem 4(i) proceeds by an induction on ht 71 with Proposition 4.4,
showing that induction begins when ht7w; = 1. For the inductive step, recall that
T = Wi ewi and Ty = w;ws with maxm; = ¢ < j = minm,. Since w7y € Pry,
we see that Proposition 4.4 applies to the pairs (w1,w; ), (W;q, 72) and also to the
pairs (wit1,¢(:), T2) and (w1,w;_1¢¢y) if i +1# jand i —1# minw;. Ifi +1 =5
(resp. i —1 = minw; ) then Lemma 4.5 applies to (w;41,¢(), T2) (resp.(w1, w;_1.¢()))-
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Together with the inductive hypothesis which applies to (w1, w; o72) we get the fol-
lowing series of equalities:
[m1][ma] + (Wi (Wi 1,e 2] + [wi e[ 72])

= ([m1 + [Willwis1,e)]) (2] = [wi][wia] (2]

= [w1] ([wi,ama] + [wi—1,5(i)“/7l'2])

= [mimo] + [Wh][wi1,eym2] + [wWiwimie() ][ m2] + [wil[ws g1 ['m2].
Equating the first and the fifth terms gives the inductive step since £(i —1) = £(i+1)
and part (i) is proved.

4.6. Proor or TarEorREM 4(ii). Suppose that a # b which means that £(i — 1) #
£(i+1) and hence w(m,p) = wiws. We prove equation (xx), the proof of (x) being an
obvious modification. Using Theorem 3(b)(i) gives that [w(m,p)w; ] = [wi1][w(i,p)]
and we have to prove that

[w(m, p)llwis] = [willw (i, p)] = [w(m, i)']['w,].
For this we calculate [w1]]w; p][w2] in two ways by using Proposition 4.4 on (w; p, ws)
and part (i) of the theorem on (wy,ws). This gives

[wil[wip][wa] = [willw(i,p)] + [wi][wi1,¢0)][ w2]
= [wip][w(m,p)] + [wip] [w)][ wa].

Equating we see that we must prove that
(4.4 forlloscr.0] — [tllwia] = r0i100] = [eolm, i)
This follows since Proposition 4.4 applies if minw; < i—1 (and Lemma 4.5 if min w; =
i — 1) to the pair (w1, w;_1¢())-

If a = b then £(i—1) = £(i+1) and hence Theorem 3 shows that [w(m, )][w(i,p)] =
[w(m, p)w; o] and [w(m,p)w; /] = [w1][f;][w2]. To prove (1) we use part (i) of the
theorem on the pair (w1, w(7,p)) and Lemma 4.5 on the pair (w; o, w(%,p)) to get

forllwia (i, p)] = rwllwlm,p)] + sl (i,p)]
= [w][fi][w2] + [willwi—1¢0) ][ w(i, p)].
Equating the right hand sides and using (4.4) gives the result. The proof of (f})
is similar; we calculate [w; q][w1][w(i,p)] in two ways by using Proposition 4.4 on
(wia,w1) and part (i) of the theorem on (wi,w(7,p)). This gives
[wi,al[wi][w(i, p)] = [w(m, i)][w(i, p)] + [Wi][wis1em)][w (i p)]
= [wiallw(m, p)] + [wi ] [w|][w(i, p)].
We then observe that w;q ¢;wa € Pre if £(i) # £(1 4+ 2) and w1 w2 = fi10,
with w’ € Prg, if {(¢ + 1) = £(¢ + 3). Then we can apply the results proved above of
part (ii) of this theorem to the pair (w;i; ¢@),w(7,p)), and hence either by (*x) or

by (1) we get
[wit1e@))w(i,p)] = [widllwiy1emws] + [wa][f]
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Equation (1) now follows by a substitution, recalling that ['w(i,p)] = [wit1¢@)wals
by definition.

Finally we prove (4.3). If ht w; = 1 or ht wo = 1 this was proved in Lemma 4.5.
Hence we may assume that w1 = w(m, i) and w3 = w(i, p) for some m < i < p. Since
a # b we use Theorem 3 to see that [w(m,i)w(i,p)] = [f;][w(m, p)] and we prove that

(4.5) [w(m, i)][w(i, p)] — [£illw(m,p)] = [w(m,i)'][w(i,p)].
For this, we note that wijws = w(m,p) and hence, using part (i) of the theorem to
the pair (w1, ws2) and Proposition 4.4 or Lemma 4.5 to the pairs (w1,w;_1¢¢;)) and
(wi,q,w(i,p)) we get
[fil([w(m, p)] + [Wi]['w2]) + ([w(m, )] + [w)][wis]) [w(i, p)]

= [wi][fi]lwa] + [willwi—1,e)][@(i, p)] = [wi][wi.a][w(i, p)]

= [w(m, i)][w(i, p)] + [Wi][wit1e)][w(i, p)].
Equating the first and last terms we see that (4.5) follows if we prove that

7 lfwt] + il (i, p)] = i gl )
But this follows from the cases of part (ii) of this theorem proved above. This com-
pletes the proof of part (ii).
4.7. Proor or Turorem 4(iii). We proceed by induction on N = htw(iy,i3) +
ht w(iz,i4) with [18] showing that induction begins when N = 4. Recall that
W(i17i2) = Wi1Wiy,,a, w(ig, Zg) = Wiy pWWis ¢, W(ig,i4) = Wiz dW2.

Set

i3

(Fisisl = H [ ,)0mnnstern)

SiiQ
and note that w(iq,i4) = wi%bwwf;ﬁwg.
Case 1: a =borc=d. — Suppose that a = b; the proof is similar when ¢ = d. Then

wiw(is,is) € Pre for s = 3,4. Hence (4.2) gives

[wi]lw(iz, ia)][w iz, i3)] = ([w(i1,ia)] + [wi][ @ (iz,i4)]) [w(iz, i3)]

= ([w(i1,is)] + [wi]['w iz, 13)])) [w(i2, ia)]-
The result follows if we prove that
[w(iz,is)][w(iz, ia)] — [w(iz, is)][w(iz, i3)]
= (g, e i, )]
Note that we have the following possibilities for the pair (‘w(ig, i3),’ w(ia,i4)):
(w(iz + Lig), wliz + 1ia)), (Fi,aw(m,is), £i, 1 (w(m,ia)),

Oc,d S . - \1—6,
(fiy+1Wis.eo fi2+1w7:3,gw2)» (Figr1 (Figprwa)’twliz + 1, Z4)1 ).
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In the first case, ht w(is,i3) = ht w(ia + 1,43), ht w(is,i3) < ht w(iy,i3) the inductive
hypothesis applies to i2 < i3 +1 < i3 < i4 and gives the result. In the second case
the inductive hypothesis applies to io < m < i3 < i4 and gives the result. In the third
case we use equations (x) and (1) of Theorem 4(ii) to get the result. In the fourth
case we use Theorem 4(i) if ¢ = d and (4.3) if ¢ # d.

Case2. — Assume that a # b and ¢ # d. Since N > 5 we may assume without loss
of generality that ht w(iq,i3) > 3. If ht w(iy,ia) > 3 let i < j < 19 be minimal with
E(j—1) =& +1). We choose z € C(g)* so that w(i1,i2)w; , € Pre and calculate

[wiy 2] (Jw(d, 14)][w iz, i3)] — [w(F,43)][w(iz,%4)]) in two ways to get two expressions
for it; the first one by using the inductive hypothesis which shows that it is equal to

(—1)M =) [, [w (i i2) 1[Fiy.0,) (i, ia)]
and the second one by using Theorem 4(i) on the pairs (w;, -, w(4,is)), s = 3,4, which
gives that it is equal to

[w(i1,ia)|[w(ig, i3)] — [w(i1, i3)][w(iz,14)]
+ (Wi, —1,e i) ([w(J, 1) [w iz, 33)] — [w (], 43)][w(i2, ia)]-

Hence the inductive step follows if we prove that

([wiy 2llw(G,i2)'] = [w(in, i2)']) [£,,5,)[ w(is, )]
= (=)<t o)) ([w (i, ia)][w(iz, i3)] — [w (G, is)] [w(ia, ia)]).
This is proved by noting that
w(j,i2) = w(j,is — 1)(1_53.,,&,1)(1_55(1.2)’5(1.2),2)(wélﬂij,irl)fi271)5§(i2)75(i2),27

where w1 = w3w;, _1¢(i,)+2 if (i2) = {(ia — 2) and considering the different cases.
In each case, Theorem 4(i) applies to the left hand side while the induction hypothesis
or Theorem 4(ii) applies to the right hand side and gives the answer. As an example,
suppose that j =iz — 1 and {(iz —2) = §(i2). Then w(j,i2)" = f; and the minimality
of j shows that w(iy,iz) = w;, - f; and hence the left hand side is zero. On the right
hand side, since £(ig — 1) # £(i2 + 1) by assumption, we get 'w(j,i5) = w(is, is) and
so the right hand side is zero as well. We omit the details in the other cases.
Finally suppose that j > is and let ' € C(g) be such that

{0,0} = {&(i2) + 1,&(i2) — 1};
we have the following series of equalities.
([wlin, )] + [wiy -1, e[ @Gy ia)]) [w(iz, 3)] + [w(in, i2) ][ w (5, i3)] [w(4, ia)]
([wirallw(iz, i3)] + [wlin, i2) ][ w (i i3)]) [w (7. ia)]
[wiy ] [w(in, i3)] [w (], 4)]
= ([wliz,i0)] + [wi, 1,62 [ @ (5, 14)]) [w (i1, 3)]
= [w(ia, ia)][w(i1, i3)] + [w(d,ia)] ([w (i1, i2) Nw (5, 33)] + [wi, —1.60) | [w(i2, 73)]),
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where the first and third equality follow from applying (4.2) to the pairs (w;, o, w(j,4))
and (wi, pr,w(j,44)), respectively, and the second and fourth equality follow bus-
ing (%), (¥*) of Theorem 4(ii) to (wi,pr,w(i1,43)) and (w;,—1,¢(iy), w(i1,3)). The
inductive step follows by establishing

(4.6)  (=nteeleRf, L lwlis )] = w(, i)l w (i, ia)] = [@(.is)][w (i, ia)].

The calculations are similar to the ones done so far and we omit further details. 0O

5. Proor or ProrosiTion 4.4

In this section we prove Proposition 4.4 when ¢ < j; the proof in the case i > k is
identical. We recall the statement of the proposition for the readers convenience.
Prorosition. — Suppose that w;aw;pw € Pre withi < j < minw and set ™ = w; pw.
We have

[wiol[7] = [wiam] = [wim1 el [wjs1e0)@]-

We make some preliminary remarks about the proof. Recall from Lemma 1.2 that
for all w € Pr¢ the module [w] is prime, i.e., that it cannot be written as a tensor
product of non-trivial finite-dimensional representations of U,. It follows that the
module [w; ,7] is a proper subquotient of [w; 4] ® [7].

We claim that [w; 1 ¢(;)] ® [wjt1,¢(;)w] is irreducible. The condition w; w;w €
Pr; forces £(j — 1) = &(j + 1) and hence

JHl<minw = w1 ¢;)Wjt1,e()w ¢ Pre,
and the claim follows from Theorem 3(b)(i). Otherwise, we have
JHl=minw = wjii ¢ w=Ff;w, ' cPrsU{l},
Theorem 3(a) gives
Wit1e(H@'] = W] @ [fi1], Wicte@] @ [Fj1] = Wic1e@) F i1l
while by (b)(i),

[wi—1e0)] ® W] = [wiz1e0)@'].
An application of Theorem 2 now proves the claim in this case.
In the first part of this section we shall show that [w;_; ¢(;)] ® [Wj11 ;W] is also
a subquotient of [w; ] ® [w; pw]; in particular,

dim(w; o] dim[w; pw] > dim[w; (w;pw] 4 dim[w; 1 ¢y] dim[w; g ¢yw].

The proposition clearly follows if we prove the reverse inequality. This is done by using
a presentation of the graded limit of the modules 7], @ € Pr¢ given in [3] along with
some additional results in the representation theory of current algebras.
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5.1. The proof of the next result is an elementary application of g-character theory
for quantum affine algebras.

Levva. — The module [w;_1 ¢)wjt1,¢()w] occurs in the Jordan-Holder series of
Wil ® w0

Proof. — Tt suffices to show that there exists an £-highest weight vector with £-highest
weight w; 1 ¢()Wjt1,¢()w i [wia] ® [7] (vesp. [7] @ [wiq]) if a = £(i) + 1 (resp. a =
£)—1).

But this is true by a routine argument using g-characters. Namely one observes
that the element w;_; ¢(j)w;t1,¢(j)w is an f-weight of [w; 4] ® [m] but not of [w; ,7].
It is then elementary to see that the corresponding eigenvector is necessarily highest
weight. We omit the details. (|

5.2. — We need some standard notation from the theory of simple Lie algebras. Thus,
b denotes a Cartan subalgebra of sl,, 1, {a; : 1 < i < n} a set of simple roots for
(slyy1,h) and R = {a; ; ;== a; + -+ a; : 1 <1 < j < n} the corresponding set of
positive roots. Fix a Chevalley basis xfj, 1<i<j<n,and h;, 1 <j < n, for sl4q.
Set xjij :xji and h; ; =h;+---+h; forall 1 <i<j<n.

As in the earlier sections Pt will be the set of dominant integral weights corre-
sponding to a set {w; : 1 < i < n} of fundamental weights and we set

Pr(1)={rePT:Ah) <1, 1<i<n).

For A € Pt let V(\) be an irreducible finite dimensional sl,,; with highest weight \.

Let ¢ be an indeterminate and C[t] the corresponding polynomial ring with com-
plex coeflicients. Denote by sl,1[t] the Lie algebra with underlying vector space
sl,+1 ® C[t] and commutator given by

[a®f7b®g]: [a’7b]®fgu a7b€5[n+17 fvgec[t]

Then sl,,41[t] and its universal enveloping algebra admit a natural Z,-grading given
by declaring a monomial (a; ® t™)---(a, ® t") to have grade ry + --- + r,, where
as € sl and rg € Zy for 1 < s < p.

~

5.3. — We shall be interested in the category of Z-graded modules for sl 1[t].
An object of this category is a module V for sl,,;1[t] which admits a compatible
Z-grading, i.e.,
V=@Vis], (xt")V[s]CVr+s|, zecsly1, reZ;.
SEZ

For any p € Z we let 7,V be the graded module which given by shifting the grades
up by p and leaving the action of sl,,11[t] unchanged. The morphisms between graded
modules are sl,11[t]- maps of grade zero. A sl,,.1-module M will be regarded as an
object (denoted ev{ M) of this category by placing M in degree zero and requiring
that

(a@t")ym =6,0am, a€slyy, meM, reZ;.
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For A\ € P, the local Weyl module Wi, (A) is the sl, 11 [t]-module generated by an
element wy with graded defining relations:

(5.1) (z7 @ Dwy =0, (h@t ) wy =G0\ R)wy, (z; @ D) ) Hly, =0,

where 1 < i < n and r € Z;. Define a grading on Wi,.(\) by requiring grwy = 0.
It is straightforward to see that

I/Vloc(wi) gﬁ[n+1 V(wl)ﬂ ]- < Z < n.

In general Wi,.(\) has a unique graded irreducible quotient which is isomorphic to
evy V(A). It is obtained by imposing the additional relation (z, ® t)wy = 0 for all
a € RT.

5.4. — Given p € PT(1), set
min g = min{i : p(h;) =1},
RY(p) ={aiy; € RT:1<i<j<n, phi) =1 = p(hy) and p(hi;) = 2}

Given A = 2)\g + A1 € P* with \g € PT and A\; € P*(1), and 0 < 4 < min )y, define
M (w;, A) to be the graded sl,,1[t]-module generated by an element m; » of grade zero
satisfying the graded relations in (5.1) and

(52) (.T; X t(>‘0+)‘1+wi)(hp))mi7>\ =0= (CE; ® t/\o(ho‘)+1)mi7)\,
1<p<n, a€R"(\).
Clearly M(w;, A) is a graded quotient of Wiee(A) and
M(0,ws) Zs1,, 1 1) Wioe(Wi) Zsr,4, Vi (wi).

If \; # 0 and i1 = min Ay, then RT(\; +w;) = RT (A1) U{,} and it is simple
to check that the assignment m; x — mo 1w, gives rise to the following short exact

n+1

sequence of sl, 1 [t]-modules

(5.3) 0 — U(g[t])(z;; @ t*Puid ¥ ym, \ —5 M(w;, A) — M (0, A+ w;) — 0.

1,11

The modules M (0, \), A € PT are examples of level two Demazure modules; the latter
have been studied extensively and are usually denoted as D(2,A) in the literature.
We now state a result which relates modules for the quantum affine algebra which
are defined over C(¢) and modules for sl,,4+1[t] which are defined over C. Denote by
dimg(q) V' the dimension of a module V' for the quantum affine algebra and by dim M
the dimension over C of a module M for sl,,41[t].

Part (i) of the following result was proved in [9, Th. 1] and parts (ii) and (iii) were
proved in [3, Th.1].

TaeEorREM D
(i) Let pw € Pt (1), v1,v € PT withv — vy € PT. Then

dim M (0, 2v) dim M (0, ) = dim M (0, 2v + p)
= dim M (0, 2v1) dim M (0,2(v — v1) + ).
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(ii) Let & : I — Z be an arbitrary height function and w € Pre. We have
dim M (0, wt ) = dimg(g)[7].
(iii) For all 1 < p < n we have dim M (0, 2w,) = dimgq)[f,]- O
COROLLARY. Let wjpw € Pre with j < k = minw. We have
dimg gy [wjt1,e()w] = dim M (0,w;j 1 + wtw).

Proof. — 1f j +1 # k then wj ;1 ¢jyw € Pr¢ and the corollary is immediate from
Theorem 5(ii). Suppose that j +1 = k. If w; ;1 ¢jyw = f;; then the assertion of the
corollary is just Theorem 5(iii). Otherwise

wittew = fiw, W €Pre, witw' =wtw —wji.
Theorem 3(a) gives [w;y1¢(jyw] = [f;41]lw']. Together with parts (ii) and (iii) of
Theorem 5 we get
dime(g) [wjs1,¢(yw] = dimegg) [f 1] dime ) [w]
= dim M (0, 2w;41) dim M (0, wt w — w;11).

Now, using part (i) of the theorem we see that the right hand side is equal to
dim M (0, w;j4+1 + wtw) and the corollary is established. O

Along with Section 5.1 we have now established the following inequality. Let
Wi owjpw € Pre with 4 < j < minw. Then

(5.4) dim M (w;,0)dim M (0, w; + wtw) > dim M (0, wt w + w; + w;)
+ dim M (0, w;—1) dim M (0, w; 11 + wtw),

and Proposition 5 follows if we prove that the preceding inequality is actually an
equality. This is done in the rest of the section.

5.5. — We deduce a consequence of the preceding discussion.
LEMMA. Let \g € PY, M\ € PT(1), A\=2Xo+ X1 and 1 <i < iy =min\;. Then
dim M (w;, 0) dim M (0, \)

> dimM(O, A+ wi) + dim M(O, wifl) dimM(07wi1+1 + A= wi1>.

Proof. — By Theorem 5(i) we see that for p € {A\, X+ w;, A + wi, 11 — w;, } we can
write

dim M (0, 1) = dim M (0, 2Ag) dim M (0, & — 2Xg).
Hence the lemma follows if we prove that
dim M (w;, 0) dim M (0, A1)
> dim M (0, A\ 4+ w;) + dim M (0, w;—1) dim M (0, w;, 11 + A1 — wiy ).
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Comparing this with (5.4), we see that it suffices to prove that we can find a height
function £ such that there exists an element w; ,m € Pr¢ with Ay = wt@. Writing
M =wi, + - F+w;, take £ : I — Z, such that

gm)y=m, 1<m<iy, &(in+4) = E(in) + (1", 1< <n—iy,

and E(ij41) = €(15) = (1) (G401 —45), 1<j<k-L

If k = 1 then w; ;_1w;, i, +1 € Pre and otherwise w; ;_1w(i1,4) € Pre and the lemma
is proved. O
5.6. — Given a module V for sl,41[t] and z € C, denote by V# the sl,,41[t]-module

with underlying vector space V and action given by
(@thw=(z@ ({t+2)")w, z€sl,11, r€Zs, weV.

Suppose that Vi, Vs are cyclic finite-dimensional sl 1[t]-modules with cyclic vec-
tors v and vy respectively. It was proved in [12] that if 21, 25 are distincet complex num-
bers, then the tensor product V™! @ V5 is a cyclic sl,, 41 [t]-module generated by v1 @vs.
Further, this module admits a filtration by the non-negative integers: the r-th filtered
piece of Vi** ® V52 is spanned by elements of the form (y; @°1) -+ - (Y @ %™ ) (v1 @ v2)
where m > 0, y1,...,Ym € Slp11, S1,.--,8m € Z4 and s; + -+ + Sy, < r. The asso-
ciated graded space is called a fusion product and is denoted Vi x V52, It admits a
canonical sl,, 11 [t]-module structure and is generated by the image of v; ® vy and

dim (Vi « V5?) = dim V4 dim Va.

Provosition. — Let \g € Pt, Ay € PT(1), A = 2Xo + A1, 1 € ¢ < min); and
21 # 22 € C. There exists a surjective map of sl,41[t]-modules

M(wi, A) — M0, A) « M*2(0,w;),  my;x — Mo x * Mo, -
In particular, dim M (w;, \) > dim M (0, \) dim M (0, w;).
Proof. — The proposition follows if we prove that the element m := mg x * Mg,
(which generates M*1(0, \) * M*2(0,w;)) satisfies the same relations as m; . We first
prove that m satisfies the three relations in (5.1). The first relation in that equation is
true in the tensor product M#*1(0, \)® M*2(0, w;) and hence hold in the fusion product

as well. For the second relation, we use the definition of M*1(0,\) and M*2(0,w;) to
see that

(h® (t —21)")(mox @ mow,)
= ((h®@t")mox) @ Mo, + Mo @ (h & (t+ 22 — 21)" )Mo w,

where the action on the right hand side is in M (0, A) ® M (0,w;). If r = 0 the relation
holds in the tensor product and we are done. If > 1, the first term on the right hand
side is zero and the second term is w;(h)(z2 — 21)" (Mo x ® Mo ., ). Hence

(h @ (t—21)")(mox ®mow,) € Ulsl,y1[t])[0],

JEP. — M., 2019, tome 6



616 M. Brito & V. CHani

and so in the associated graded space we get
(ht"ym=(h®({t—2)")m=0, r>1.
The third relation in (5.1) is immediate from the finite-dimensional representation
theory of sl, 1. Next, a straightforward calculation gives
(z, @ (t — 21) QoA E0) (3 — ) @ilhe)) (mg \ @ mo,) =0, 1<p<n,
and
(25 ® (t = 2) 00 (t = 2)) (mo © o) = 0, @€ RE(Ay).
This means that in the fusion product we have
(xp_ R t(ko-‘r)q)(hp)-ﬁ-o.u(hp))m _ 0’ 1 < p < n,
and
(z; @t ") ym =0, o e RT(\),
which proves that m satisfies the relations in (5.2). This completes the proof of the
proposition. g
5.7. We deduce some additional relations satisfied by m; . Note that by the second
relation in (5.1) we get, for a € RT, r € Z,
(zEZ@t)mix =0 = (ha®tP)(zZ @t )miy =0 = (zZ@t"P)m; =0, pcZ,.
Together with the first relation in (5.2) we have by a simple induction on k — j that
forall 1 <j<k<n,
(55) (Z‘;k (9 tr)mw\ =0, if r> (/\0 + A+ wi)(hj7k).
Since (z @ trohi)Fym, \ =0, 1 < j < n, a simple calculation (see [10] for instance)
shows that
0= (x;r ® t)QAo(hj)(xj* ® 1)2)\0(hj)+2mi’)\ - ({E; ® t)\O(hj))2mi7)\.
If aj ) € RT(A1) then by using the preceding two relations we get
0= (‘rj_Jrl,k ® t)\o(hj+1,k)+1)(xj— ® t)\O(hj))2mi7A

= (2, @ M) (7 @ o) ym, 5.

(5.6)

Prorosition. — Suppose that A = 2Xg + Ay with Ay € PT(1) and let ¢ < i3 = min A.
There exists a right exact sequence of sl 11[t]-modules

M(wi—1, A —wi, +wip+1) — M(wi, A) — M (0, + w;) — 0.
Proof. — Set
s= Ao+ A)(hisy), min(A —w;,) =19,
A2 = A —wiy +wiy 41 = 2(A0 + 05y 11,0,Win +1) + A1 — wiy + (1= 8iy 41,6, ) Wiy 1
In view of the short exact sequence in (5.3) it suffices to prove that the assignment

Mi_1xy — (CL’ ®ts)mi,)\

i,i1
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extends to a well-defined morphism M (w;_1, A2) — M (w;, A) of g[t]-modules. In other
words it is enough to check that the element m = (z;; ®@t*)m; ) satisfies the defining
relations of M (w;—1,A2). This is a tedious but straightforward checking. The first
thing to check is that m satisfies the defining relations of Wiye(A2 + w;—1). For this,
we observe that for 1 < j < n,

(z7 @ Dym = [(z] @ 1), (z;,;, @°)]m;x
= (A(Sj,z‘(x;rl,il ®17) + B(Sj,il(xiiirl ®1°))mi,

for some A, B € C. It follows from (5.5) that the right hand side is zero once we note
that

5= (Ao + A1) (hig,) = max{(Ao + A1)(hit1.i,), (Ao +A1)(hisi—1)}-
For the second relation in (5.1) we observe
(h ® t'f') [h ® tT’ z 21 ® t ]mi,)\ = _(6T70)\ - a’i,il)(h‘)( z 1 ® t6+r)m1 A

If r > 1 then s+7r > (Ag+ A1 +w;)(h; 4, ) and hence the right hand side is zero by (5.5).
The final relation in (5.1) holds by the standard representation theory of sl, 1. Next,
we check that m satisfies the relations in (5.2). We first show that

(x, @t™")m =0, rp= Ao+ A1 —wi;, +wi,+1+wi—1)(hy), 1<p<n
If p € {i,i1} this follows from (5.6). Assume that p ¢ {i,41}. Then
T @)z, @t)mi, p¢{i— 14 +1},

( 521
T, g, t”“lm , p=1i—1,

(z, @t™)m ( . o Jmix, P . ‘
(xp711+1 ®t 11+1)m1 As p:?/l+1 <Z2a

(255,10 @ 1%, 25, 4,1 @0 miy, p=i1+1 =i

Ifpé¢ {i—1,i1+1} then Tp = Mo+ M1 +wi)(h ) and ( ®trp)mz)\ =0.Ifp=i—1,

then

S+1ri_1= (/\0 + Al)(hi,il) + (/\0 + A+ wi_l)(hi_l) = ()\0 + A+ wi)(hi_l,il)

and (5.5) gives (z;_

1—1,71

@ t5T"i-1)m; x = 0. If p = i3 + 1 and iy + 1 # iz a similar
argument shows that (z;; ., ® t5t7ia+1)ym,; y = 0. If p =143 + 1 = i, then one checks
( 1,01 —1 ®t )ml A= 0= ( 21,01+1 ® t”1+1)mi’)\'

In all cases the first relation in (5.2) is now established. The second relation in (5.2)
follows if we prove that

(z, @ tPoFontniwin ) (he) by (37 @ )m; \ =0,
[ RS R+()\1 — Wi, + (]. — 26h+1,i2)wi1+1).
If il +1= ig, then
RY (M —wiy + (1= 264, 41,6,)wiy 1) € BT (M) — {ai, iy 41}
and if i1 + 1 < iy then
RT (A —wiy + (1= 263, 41,5 )wiy+1) = (BT (M) — {60 }) U{ @iy 41,0, )
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If @ # iy +1,4, then (x4 @ 7,254, @] = 0, for each r € Z and hence we get
(wg @) (ar @ 1% )my s = (2, @ °)(x; @ DT m, 5 =0,

iyt
If & = @, 41,4, then i3 + 1 < iy and so by the defining relations of M (w;, A) we have

(z; .. ® t>‘°(hi1’i2)+1)m¢7A =0=(x;

No(hiiy—1)+1 _
i1,i2 -1 1 ohiiy-1) Jmix =0,

and so

(T, @ rohin) 2y, \ = 0.

)

It follows that
(2], 41,4, @ OPILRIT N (@7 @ £ )m = A(ay,, ® 0MeR) )m, =0, A€C,

i,il 7:77;2
which completes the proof of (5.2) and so also of the proposition. O
5.8. — The proof of Proposition 5 is completed in the course of establishing the
following claim: for A = 2\g + A\; € P* and i < min )1, we have
(5.7) dim M (w;, A) = dim M (w;, 0) dim M (0, \).

The claim is proved by an induction on . Induction begins at ¢ = 0 when there is
nothing to prove since M (0,0) = C. Otherwise, using Proposition 5.7 we have

dll’nM((JJ“)\) < dimM(wi,l,)\ — Wy, +0Ji1+1) + dlmM(O,)\ +OJ1)

The following equality is clear if ¢ = 1, and otherwise holds by the inductive hypoth-
esis:

dimM(wi_l, A — Wiy + wi1+1) = dim M(O, wi_l) lel]\J(O7 A — Wiy + w1'1+1)7
and hence
dim M (w;, A) < dim M (0, w;—1) dim M (0, A — w;;, + wi; +1) + dim M (0, A 4+ w;).

By Proposition 5.6 we have dim M (w;,0) dim M (0, ) < dim M (w;, A) and hence we
get

dim M (w;,0) dim M (0, A) < dim M (w;—1) dim M (0, A—w;, +w;, +1)+dim M (0, A+w;).

Lemma 5.5 now shows that all the inequalities are actually equalities and the proof
of the inductive step is complete. Notice that we have also proved that the inequality
in (5.4) is an equality and so the proof of Proposition 5 is also complete. ]
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