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COMPRESSION EFFECTS IN HETEROGENEOUS MEDIA

by Didier Bresch, Šárka Nečasová & Charlotte Perrin

Abstract. — We study in this paper compression effects in heterogeneous media with maximal
packing constraint. Starting from compressible Brinkman equations, where maximal packing
is encoded in a singular pressure and a singular bulk viscosity, we show that the global weak
solutions converge (up to a subsequence) to global weak solutions of the two-phase compress-
ible/incompressible Brinkman equations with respect to a parameter ε which measures effects
close to the maximal packing value. Depending on the importance of the bulk viscosity with
respect to the pressure in the dense regimes, memory effects are activated or not at the limit
in the congested (incompressible) domain.

Résumé (Effets de compression en milieux hétérogènes). — Nous étudions dans cet article
des effets de compression dans des milieux hétérogènes soumis à une contrainte d’entassement
maximal. Partant des équations de Brinkman compressibles où la contrainte maximale est
prise en compte au sein d’une pression et d’une viscosité de volume toutes deux singulières,
nous montrons que les solutions faibles globales convergent (à une sous-suite près) vers des
solutions faibles globales d’un modèle biphasique de type compressible/incompressible quand le
paramètre ε, mesurant l’intensité de la résistance à la compression au voisinage de l’entassement
maximal, tend vers 0. En fonction de la prédominance relative de la viscosité de volume par
rapport à la pression dans les régimes denses, nous mettons en évidence l’activation d’effets de
mémoire à la limite dans le domaine congestionné (incompressible).
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Introduction

We analyze in this paper macroscopic models for heterogeneous media like mix-
tures, suspensions or crowds, in dense regimes. These regimes exhibit interesting be-
haviors such as transition phases with congestion (also called jamming for granular
flows) and non-local (in time and/or in space) effects which are both due to a phys-
ical packing constraint, that is the finite size of the microscopic components. At the
macroscopic scale this packing constraint corresponds to a maximal density constraint
ρ 6 ρ∗. A very challenging issue in physics and mathematics is then to model and
analyze the change of behavior in congested domains ρ = ρ∗ and close to a transition
phase ρ∗ − ε < ρ < ρ∗.

Two different approaches are generally considered in the literature to model conges-
tion phenomena at the macroscopic level. The first one, usually called hard approach,
consists in coupling compressible dynamics in the free domain {ρ < ρ∗}, with incom-
pressible dynamics in the congested domain {ρ = ρ∗}. Associated to the incompress-
ibility constraint on the velocity field, an additional potential (seen as the Lagrange
multiplier) is activated in the congested regions. The second one which, by opposition,
is called soft approach, prevents the apparition of congested phases by introducing in
the compressible dynamics repulsive forces which become singular as ρ approaches ρ∗.
These repulsive effects can be describe either in the pressure (constraint on the fluid at
equilibrium) or in the bulk viscosity coefficient, which represents the resistance of the
material to a compression. The interested reader is referred on these two approaches
to [26] and Section 2 below for additional references. An intuitive link can be made
between the two approaches: if the scope of action of the repulsive forces tends to 0,
one expects that the soft congestion model degenerates towards a hard congestion
model. We give in the Section 2 below some conjectures on this singular limit and
recent results that have been obtained in this direction. In particular, one interesting
conjecture made initially by Lefebvre-Lepot and Maury in [22] is that a singular bulk
viscosity would degenerate in the singular limit towards a (incompressible) pressure
and would activate memory effects in the limit congested domain.

We want to investigate rigorously the link between soft and hard systems, by
showing how the choice of the constitutive laws, the pressure and the bulk viscosity
as functions of the density in the soft models, impacts the behavior of the limit hard
system in congested regions assuming a constant shear viscosity. More precisely, the
main objective of this paper is to characterize the respective effects of singular pressure
and bulk viscosity close to the maximal density constraint in order to understand
when memory and pressure effects are activated on the limit hard congestion system.
To that end, we consider the following three-dimensional soft congestion system (based
on compressible Brinkman equations) in (0, T )× T3:{

∂tρε + div(ρεuε) = 0,(1a)
∇pε(ρε)−∇(λε(ρε) div uε)− 2 div(µD(uε)) + ruε = f,(1b)

where ρε is the density, satisfying the constraint
(2) 0 6 ρε < 1 a.e. (t, x) ∈ [0, T ]× T3,
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and uε is the velocity vector field in the material. The coefficients pε and λε are
respectively the pressure law and the bulk viscosity coefficient, defined in this paper as

(3) pε(ρε) = ε
( ρε

1− ρε

)γ
, λε(ρε) = ε

( ρε
1− ρε

)β
with γ, β > 1,

while the shear viscosity is assumed to be constant: µ > 0. Finally, ruε with r > 0

represents the drag and the right-hand term, f , is a given external force. Initially
ρε|t=0 = ρε0 with

(4)
0 6 ρ0ε 6 1−Rε < 1 and Rε −→ 0 when ε −→ 0,

1

|T3|

∫
T3

ρ0ε(x) dx 6M0 < 1.

Let us encode the effect of the singular bulk viscosity through the following PDE
equation that may be obtained from the mass equation

∂t(Λε(ρε)) + div(Λε(ρε)uε) = −λε(ρε) div uε,

where

(5) Λε(ρε) = ρε

∫ ρε

0

λε(τ)/τ2 dτ = ρε

[ 1

β − 1
ε(1+γ−β)/γ(pε(ρε))

(β−1)/γ
]
.

The main objective now is to understand the asymptotic regime which may be
obtained by letting ε go to zero. This corresponds to the limit towards the hard
approach explained previously. Let us assume that (ρε, uε, pε(ρε),Λε(ρε)) tends to
(ρ, u, p,Λ). Then we get the following system in (0, T )× T3:

∂tρ+ div(ρu) = 0,(6a)
∇p−∇Π− 2 div(µD(u)) + ru = f,(6b)
0 6 ρ 6 1 and p > 0,(6c)

where

(7) Π = −(∂tΛ + div(Λu)) with Λ > 0.

We also get the following limit initial data

(8) ρ|t=0 = ρ0 ∈ [0, 1], Λ|t=0 = Λ0 in T3.

It remains now to close the limit system by deriving two constraints. One of these
constraints will result from Equality (5) depending on the sign of 1 +γ−β appearing
explicitly in the power of ε. For the last constraint, different scenarios will be obtained
using one of the two following relations

(9) (1− ρε) pε(ρε) = ε1/γρε(pε(ρε))
(γ−1)/γ ,

or

(10) (1− ρε) Λε(ρε) = c(β)ε1/(β−1)ρβ/(β−1)ε (Λε(ρε))
(β−2)/(β−1).

More precisely, passing to the limit in (5) and (9)–(10), we find the following
relations in addition to the system (6)–(8):

J.É.P. — M., 2019, tome 6



436 D. Bresch, S. Nečasová & C. Perrin

– If 1 + γ − β = 0 (memory and pressure effect):

(11) ρp = (β − 1)Λ and (1− ρ) Λ = 0.

– If 1 + γ − β < 0 (memory but no pressure effect):

(12) p = 0 and (1− ρ) Λ = 0.

– If 1 + γ − β > 0 (pressure but no memory effect):

(13) Λ = 0 and (1− ρ) p = 0.

Observe that this formal analysis could be generalized to more general pressure and
bulk viscosity laws than (3), to take into account different (singular) possible behaviors
close to the maximal constraint. The key argument relies here in the comparison
between the pressure pε and the coefficient Λε in the vicinity of the maximum density.
Let us emphasize the fact that there is no consensus in physics around the order of
singularity of these laws (see for instance [2] or [9]).

Note that it is well known that the compressibility of a fluid may be encoded in the
pressure and in the bulk viscosity. Indeed, incompressible systems may be obtained
by letting the Mach number Ma, which appears in the dimensionless Navier-Stokes
equations in front of the pressure (1/Ma2)∇p(ρ), go to zero (see for instance the
works of Desjardins et al. [13], Lions, Masmoudi [24], Feireisl, Novotný [19]). But the
incompressible equations can be also obtain from a large bulk viscosity limit: if in
the bulk viscosity term ∇(λ0 div u) one lets λ0 go to +∞ then, formally, div u should
tend to 0. This result has been recently proved by Danchin and Mucha in [10].

In our paper, the main novelty is to consider both singular pressure and singular
bulk viscosity depending on the density which will encode incompressibility of the
material at the maximal packing value ρ∗ = 1, assuming the shear viscosity to be
constant. Below this maximal packing value, the material remains compressible. It is
also interesting from the physical point of view to consider density dependent shear
viscosities µ(ρ), this case has been treated in the two papers [33, 34]. The results are
presented in the section state of the art (subsection II-ii). It has to be noted that the
mathematical tools and difficulties are in that case completely different from those
used in the present paper. Historically, studies on compressible Navier-Stokes system
with (non-singular) density dependent bulk viscosity λ(ρ) and constant shear viscosity
µ > 0, start from the beautiful paper [38] by Kazhikov and Waigant where they
prove global existence of strong solutions in two dimensions with periodic boundary
conditions and with no vacuum state if initially no vacuum exists. In their paper,
the pressure is assumed p(ρ) = aργ , µ > 0 and λ(ρ) = ρβ with β > 3. Following
this result, Perepelitsa proved in [32] the global existence of a weak solution with
uniform lower and upper bounds on the density when the initial density is away from
vacuum. Finally, the hypothesis on the coefficient β has been recently relaxed with
possible vacuum state in [20] and bounded domains have been considered in [15].
It would be interesting to investigate the problem for singular bulk viscosity and
singular pressure laws for the 3D compressible Navier-Stokes equations but this is not
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the main objective of our paper. We focus here on 3D Brinkman equations where the
total acceleration of the fluid is neglected. A typical application we have in mind is
the modeling of flows in porous media. Brinkman equations are a classical extension
of the Darcy equation:

u = −∇p+ f,

with additional viscous terms, here ∇(λ div u)+2 div(µD(u)). In their incompressible
version, these equations have been rigorously derived by Allaire in [1] by homogeniza-
tion techniques from Navier-Stokes equations in a perforated domain. His result has
been then extended by Desvillettes et al. [14] and Mecherbet, Hillairet [28]. The
recent study [29] provides some new analysis and numerical results on these equa-
tions in the incompressible case. These equations in the compressible setting may also
apply in biology in tissue growth modeling or in petroleum problem occurring in com-
pressible porous matrix. The interested reader is referred to the study of Perthame,
Vauchelet [37], Nasser El Dine et al. [29], [30], or Énault [16] and the references therein.
From a mathematical point of view, of course, it could be interesting to study the
compressible Navier-Stokes equations with singular pressure and bulk viscosity. Both
the estimates on the effective flux and the compactness arguments are then of course
much more tricky to handle due to the additional acceleration term. In view of the
applications we have in mind, this case is beyond the scope of our paper.

The paper will be organized as follows: We will first present the main existence and
convergence results, then we will review mathematical studies that have been realized
recently around the subject of congestion problems. In the second section, we present
important mathematical properties linked to the system under consideration and the
truncated system we first study. Passing to the limit with respect to the parameter
of the truncation, δ, we get the global existence of weak solutions for the original
system (1) at ε fixed. It will be then possible to pass to the limit with respect to
ε to recover the hard congestion system (6)–(7) with two additional relations which
will be, depending on the parameters γ and β, given by (11) or (12) or (13). We will
divide the study in two sections depending on the sign of γ − β which correspond
to the dominant pressure regime γ > β (Section 4) or dominant bulk regime β > γ

(Section 5).

1. Main results

We first prove in the paper the existence of global weak solutions to the soft
congestion system (1) when the pressure and the bulk viscosity are defined by (3).
For simplicity, we assume in addition that

(14) f ∈ L2
(
0, T ; (Lq(T3))3

)
with q > 3.

Let us first give our definition of global weak solutions of (1)–(4) and (6)–(8).

Definition 1.1 (Weak solutions of the soft congestion system)
A pair (ρε, uε) is called a global (bounded energy renormalized) weak solution to

(1)–(4) if for any T > 0, the following properties hold.
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438 D. Bresch, S. Nečasová & C. Perrin

– ρε ∈ C ([0, T ];Lq(T3)) ∩ L∞((0, T )× T3) for all q ∈ [1,+∞);
– uε ∈ L2(0, T ; (H1(T3))3);
– 0 6 ρε(t, x) < 1 a.e. in (0, T )× T3;
– (ρε, uε) satisfies (1a)–(1b) in the weak sense:∫ T

0

∫
T3

ρε∂tφ+

∫ T

0

∫
T3

ρεuε · ∇φ

=

∫
T3

ρε(T )φ(T )−
∫
T3

ρ0εφ(0) ∀φ ∈ C 1([0, T ]× T3);

−
∫ T

0

∫
T3

pε(ρε) divψ +

∫ T

0

∫
T3

(2µ+ λε(ρε)) div uε divψ

+

∫ T

0

∫
T3

µ curluε · curlψ + r

∫ T

0

∫
T3

uε · ψ =

∫
T3

f · ψ ∀ψ ∈ C 1([0, T ]× T3).

– The renormalized continuity equation holds

∂tb(ρε) + div(b(ρε)uε) +
(
b′+(ρε)ρε − b(ρε)

)
div uε = 0 in D ′((0, T )× T3),

for any b ∈ C ([0,+∞)), piecewise C 1, where b′+ denotes the right derivative of b.
– The energy inequality holds

sup
t∈[0,T ]

∫
T3

Hε(ρε) +

∫ T

0

∫
T3

( 3
2µ+ λε(ρε))(div uε)

2 +
µ

2

∫ T

0

∫
T3

|curl(uε)|2

+ r

∫ T

0

∫
T3

|uε|2 6
∫
T3

Hε(ρ
0
ε) +

1 + C

2µ
‖f‖2L2

t,x
.

with C the constant linked to Poincaré-Wirtinger inequality

‖g −
〈
g
〉
‖2L2(T3) 6 C‖∇g‖

2
L2(T3),

and where
Hε(ρ) =

ε

γ − 1
· ργ

(1− ρ)γ−1
.

Definition 1.2 (Weak solutions of the hard congestion system)
We say that (ρ, u, p,Λ) is a global weak solution to (6)–(8) if for any T > 0, it

satisfies
– the following regularities

ρ ∈ C ([0, T ];Lq(T3)) ∩ L∞((0, T )× T3) for all q ∈ [1,+∞)

u ∈ L2(0, T ; (H1(T3))3),

p ∈M+((0, T )× T3) and Λ ∈ L∞(0, T ;L2(T3));

– 0 6 ρ(t, x) 6 1 a.e. in (0, T )× T3;
– (ρ, u, p,Λ) satisfies equations (6)–(7) in the sense of distributions.

We prove in this paper the following existence results
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Theorem 1.3. — Let ρ0ε satisfying condition (4). Assume in addition that
– if 1 < β < γ

(15)
∫
T3

ε

(1− ρ0ε)γ−1
6 E0 < +∞;

– if 1 < γ 6 β

(16)
∫
T3

(
Λε(ρ

0
ε)
)2
6 Λ0 < +∞.

Then there exist global (bounded energy renormalized) weak solutions of (1)–(4) at ε
fixed.

The next result justifies the formal derivation of system (6)–(8) respectively with
relations (11) if γ = β− 1, with relations (12) if γ < β− 1, relations (13) if γ > β− 1.
More precisely

Theorem 1.4. — As ε→ 0, there exists a subsequence (ρε, uε) of global weak solutions
of (1)–(4) such that (ρε, uε, p(ρε),Λε(ρε)) converges weakly to (ρ, u, p,Λ) a global weak
solution of the hard congestion system (6)–(8) satisfying two algebraic relations which
encode the competition between the singular pressure and bulk viscosity, namely

(I) Memory effect in the congested domain (γ 6 β − 1):
– For γ < β − 1 (no pressure effect):

p = 0, (1− ρ)Λ = 0 a.e.

– For γ = β − 1 (pressure effect):

ρp = (β − 1)Λ, (1− ρ)Λ = 0 a.e.

(II) No memory effect in the congested domain (pressure effect) (γ > β − 1):

Λ = 0 a.e., spt p ⊂ {ρ = 1}.

Remark 1. — Our system can be seen as a “semi-stationary” version of the com-
pressible Navier-Stokes equations with the additional friction term ru. If there is no
friction in the equations, namely r = 0, then in the periodic case, the velocity u is
defined by Equation (1b) up to a constant. Therefore, we would need to impose an
additional constraint on the velocity, e.g.∫

T3

udx = 0.

Integrating in space the momentum equation (1b), we would also need the “compat-
ibility relation” ∫

T3

f dx = 0.

Provided these additional constraints, our two results remain unchanged.

J.É.P. — M., 2019, tome 6
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Incompressible dynamics in the congested domain. — In addition to the limit equa-
tions (6)–(8), one could have add the incompressibility condition div u = 0 on the
congested sets {ρ = 1}. More precisely, we have the following lemma.

Lemma 1.5 ([25, Lem. 2.1]). — Let u ∈ L2(0, T ; (H1(T))3) and ρ ∈ L2((0, T ) × T3)

such that

∂tρ+ div(ρu) = 0 in (0, T )× Ω, ρ(0) = ρ0,

then the following two assertions are equivalent

(i) div u = 0 a.e on {ρ > 1} and 0 6 ρ0 6 1,
(ii) 0 6 ρ(t, x) 6 1 a.e. (t, x).

Remark 2. — An important issue concerning the limit systems that we obtain is the
regularity of the limit pressure p. Through our approximation procedure, the limit
pressure p, if it is not 0, is a priori a non-negative measure. If one is able to prove
that p ∈ L1((0, T ) × T3), it is thus possible to give a sense a.e. to the product ρp at
the limit and then to the “exclusion constraint”

(1− ρ)p = 0,

which is another way to express the activation of the pressure in the congested zones
(see the system (17) written below). In fact, this is less the justification the exclusion
constraint than the regularity of the pressure which is crucial in the mathematical
understanding of partially congested flows.

2. Historical remarks

For reader’s convenience, we present below the context of this study and give
some historical remarks concerning limits from soft approaches to hard approaches
for congestion problems.

I Derivation from compressible Euler equations. — A first generic hard congestion
model is derived in [5] by Bouchut et al. from one-dimensional two-phase gas/liquid
flows. The equations read

∂tρ+ ∂x(ρu) = 0,(17a)
∂t(ρu) + ∂x(ρu2) + ∂xp = 0,(17b)
0 6 ρ 6 1, (1− ρ)p = 0, p > 0,(17c)

in which the constraint (1−ρ)p = 0, sometimes called “exclusion constraint”, expresses
the activation of the pressure p in the congested phase where ρ = 1. The pressure
ensures that the maximal density constraint ρ∗ = 1 is not exceeded. This system
has been then studied theoretically by Berthelin in [3, 4] who constructs global weak
solutions by means of an approximation with sticky blocks (see [27] for an associated
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numerical method). Degond et al. approximate numerically in [11, 12] the solutions
of (17) with an appropriate discretization of the soft congestion system

∂tρ+ ∂x(ρu) = 0,(18a)
∂t(ρu) + ∂x(ρu2) + ∂xpε(ρ) = 0,(18b)

pε(ρ) = ε
( ρ

1− ρ

)γ
, γ > 1.(18c)

Although the rigorous derivation of Equations (17) from (18) (i.e., the limit ε → 0

in (18)) has not been proved theoretically, the authors obtain satisfactory numerical
results thanks to smart treatment of the singular pressure pε for small ε. Let us also
mention on the subject the study [8] which addresses the issue of the creation of
congested zones in 1D and highlights the multi-scale nature of the problem.

II Derivation from compressible Navier-Stokes equations

II (i) Compressible Navier-Stokes equations with constant viscosities. — The first justifi-
cation of the link between a soft congestion system and a hard congestion system is
given in [7] for the one-dimensional case. In [35], the existence of global weak solutions
to the multi-dimensional viscous equations

∂tρ+ div(ρu) = 0,(19a)
∂t(ρu) + div(ρu⊗ u) +∇pε(ρ)−∇(λ div u)− 2 div(µD(u)) = 0,(19b)

pε(ρ) = ε
( ρ

1− ρ

)γ
, γ > 3, 2µ+ λ > 0,(19c)

is first proved for a fixed ε > 0. Then, the authors show the weak convergence of
these solutions as ε→ 0 toward global weak solutions of the viscous hard congestion
system 

∂tρ+ div(ρu) = 0,(20a)
∂t(ρu) + div(ρu⊗ u) +∇p−∇(λ div u)− 2 div(µD(u)) = 0,(20b)
0 6 ρ 6 1, (1− ρ)p = 0, p > 0.(20c)

Remark 3. — Note that the condition γ > 3 was assumed in [35] to prove the existence
of global weak solutions to (19). Precisely, it was used to prove the equi-integrability
of the approximate truncated pressure pε,δ(ρε,δ) as δ → 0 (see details of the truncation
process in the next Section). It is possible in fact to improve the bound on γ and show
the existence for γ > 5/2 as it has been done by Feireisl et al. in [18].

Remark 4. — Originally, Lions and Masmoudi in [25] have obtained the same viscous
system from the compressible Navier-Stokes equations with constant viscosities and
pressure p(ρ) = aργn letting γn → +∞. The same limit has been used by Perthame
et al. [36] for tumor growth modeling on the basis of the porous medium equation
instead of Navier-Stokes equations (see the study of Vauchelet and Zatorska [39] in
the case of Navier-Stokes equations with additional source term in the mass equation).
In this context the singular limit leads to the Hele-Shaw equations, this problem is
sometimes called in the literature “mesa problem”.
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II (ii) Compressible Navier-Stokes equation with singular density dependent viscosities

In the modeling of immersed granular flows this type of singular limit has enabled
to prove in [33] the link between the suspension regime and the granular regime
which was an open conjecture in physics (see [2]). Precisely, global weak solutions to
the following suspension model

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇pε(ρ)−∇(λε(ρ) div u)

− 2 div(µε(ρ) D(u)) + rρ|u|u = 0,

are proved to exist at ε > 0 fixed for singular viscosities and pressure such that

µε(ρ) = µ0(ρ+ pε(ρ)), pε(ρ) = ε
( ρ

1− ρ

)γ
, γ > 1,

and λε satisfying a specific relation with the shear viscosity (and thus with the pres-
sure), namely

(21) λε(ρ) = 2(ρµ′ε(ρ)− µε(ρ)).

Under these hypothesis, the solutions are shown to converge to global weak solutions of

∂tρ+ div(ρu) = 0,(22a)
∂t(ρu) + div(ρu⊗ u) +∇p+∇Π(22b)

− 2µ0 div((ρ+ p) D(u)) + rρ|u|u = 0,

∂tp+ u · ∇p =
Π

2µ0
,(22c)

0 6 ρ 6 1, (1− ρ)p = 0, p > 0,(22d)

where the pressures p and Π are respectively the weak limits of pε(ρε) and
λε(ρε) div uε. The important difference between (22) and (20) is the activation
of an additional equation (22c) linking the two pressures p and Π. It results from the
relation (21) that is imposed at ε fixed. Indeed, the conservation of mass and (21)
yield (at least formally)

∂tµε(ρε) + div(µε(ρε)uε) = −1

2
λε(ρε) div uε,

which gives at the limit (22c) due to the incompressibility constraint div u = 0 that is
satisfied in the congested domain. From a modeling point of view, Equation (22c) ex-
presses some memory effects in the congested regions, effects that were first identified
by Lefebvre-Lepot and Maury in a macroscopic 1D model for “viscous contact” [22]
(see also [21] for a microscopic approach). From a mathematical point of view, this
equation is necessary to close the system and relates Π, which can be seen as the
Lagrange multiplier associated to the constraint div u = 0 in the congested domain,
and p called adhesion potential which characterizes the memory effects. This is thus
the singularity of bulk viscosity λε which is responsible for the activation of memory
effects in (22).
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In the present paper, we characterize precisely the respective effects of pressure
and bulk viscosity. At the limit on the hard congestion system, we cover in particular
the two cases introduced in [35] and [34] where pressure effects or memory effects are
activated.

3. Structural properties and approximate system

This section is divided into three parts. After introducing some important quan-
tities, such as the effective flux, and deriving crucial properties linking the pressure
and the bulk viscosity, we present an approximate truncated system which formally
degenerates to our original singular system (1) as the cut-off parameter tends to 0.
The last part details how we can construct global weak solutions to the truncated
system.

Structural properties, effective flux. — Let F be the viscous effective flux defined as

F = (2µ+ λ(ρ)) div u− p(ρ),

and the function ν defined from the viscosity coefficients

(23) ν(ρ) =
1

2µ+ λ(ρ)
.

We prove the following Lemma.

Lemma 3.1. — Let (ρ, u) satisfying in the weak sense the equations{
∂tρ+ div(ρu) = 0,

∇p(ρ)−∇(λ(ρ) div u)− 2 div(µD(u)) + ru = f,

and denote
S := (−∆)−1 div

(
f − ru

)
,

where (−∆)−1 is the inverse operator of the Laplacian. More precisely, if for a periodic
function g such that

〈
g
〉

= 0, where
〈
g
〉

:= (|T3|)−1
∫
T3 g(x) dx, h = (−∆)−1g is the

unique periodic solution of

−∆h = g in T3,
〈
h
〉

= 0.

Then the following relations hold〈
λ(ρ) div u

〉
=
〈
p(ρ)

〉
−
∫
T3 (p(ρ) + S)ν(ρ)∫

T3 ν(ρ)
,(24)

F = S −
〈
(p(ρ) + S) ν(ρ)

〉〈
ν(ρ)

〉 .(25)

Proof. — Observe first that integration in space of the momentum equation yields

r

∫
T3

u =

∫
T3

f.

Applying the div operator to (1b) we obtain

∆F = div(f − ru).
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Then
F =

〈
F
〉

+ S,

i.e.,

(26) (2µ+ λ(ρ)) div u− p(ρ) = S +
〈
λ(ρ) div u− p(ρ)

〉
.

Let us now characterize the mean value of the effective flux in terms of the density:
rewriting this equation as

div u = ν(ρ)
(
S +

〈
λ(ρ) div u− p(ρ)

〉
+ p(ρ)

)
and integrating in space, we arrive at (24). Replacing this expression in (26), we finally
get (25). �

Approximate system. — We introduce now a cut-off parameter δ 6 δ0 ∈ (0, 1) in order
to truncate the singular laws pε and νε. Namely, we define the truncated laws

pε,δ(ρ) =

{
εργ/(1− ρ)γ if ρ 6 1− δ,
εργ/δγ if ρ > 1− δ,

(27)

and λε,δ(ρ)q =

{
ερβ/(1− ρ)β if ρ 6 1− δ,
ερβ/δβ if ρ > 1− δ,

(28)

and consider the associated system{
∂tρε,δ + div(ρε,δuε,δ) = 0,(29a)
∇pε,δ(ρε,δ)−∇(λε,δ(ρε,δ) div uε,δ)− 2 div(µD(uε,δ)) + ruε,δ,= f(29b)

with initial density
ρε,δ|t=0 = ρ0ε.

Let us first give some properties related to νε,δ(ρε,δ).

Lemma 3.2. — Assume that ρ0ε satisfies (4). There exist C1, C2 > 0 which do not
depend on δ or ε such that

‖νε,δ(ρε,δ)‖L∞t,x 6 C1,

∫
T3

νε,δ(ρε,δ) > C2.

Proof. — By definition of νε,δ (23), we directly get

νε,δ =
1

2µ+ λε,δ
6

1

2µ
< +∞.

Under the assumption on the initial mass (4)2 (which does not depend on δ or ε), we
have

M0|T3| >
∫
T3

ρε,δ >
∫
T3

ρε,δ 1{ρε,δ>(1+M0)/2} >
1 +M0

2
meas{ρε,δ > (1 +M0)/2}.

Now, since M0 < (1 +M0)/2, it follows that

meas
{
ρε,δ > (1 +M0)/2

}
6

2M0

1 +M0
|T3| < |T3|,
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and

meas
{
ρε,δ < (1 +M0)/2

}
> K > 0,

with K = 1− 2M0/(1 +M0) independent of δ and ε. Then,∫
T3

νε,δ(ρε,δ) =

∫
T3

1

2µ+ λε,δ(ρε,δ)

>
∫
T3

1

2µ+ ερβε,δ/(1− ρε,δ)β
1{ρε,δ<(1+M0)/2}

>
∫
T3

1

2µ+ ε ((1 +M0)/(1−M0))
β
1{ρε,δ<(1+M0)/2}

>
K

2µ+ ((1 +M0)/(1−M0))
β
,

where we have used the fact that λε,δ(ρε,δ) is bounded (uniformly in δ and ε) when
ρε,δ is far from the singularity. �

Lemma 3.3. — Let us assume uε,δ ∈ L2(0, T, (H1(T3))3) and f ∈ L2((0, T ) × T3).
Then, we get for all (p, q) ∈ [1,+∞)2:

pε,δ(ρε,δ) ∈ Lp(0, T ;Lq(T3)) =⇒ λε,δ(ρε,δ) div uε,δ ∈ Lmin (2,p)(0, T ;Lmin(2,q)(T3)).

Proof. — We come back to the formula

λε,δ(ρε,δ) div uε,δ = −2µdiv uε,δ + pε,δ(ρε,δ) + Sε,δ −
〈
(pε,δ(ρε,δ) + Sε,δ) νε,δ(ρε,δ)

〉〈
νε,δ(ρε,δ)

〉 .

It suffices now to use previous Lemma 3.2 to conclude. �

Existence of global solutions to the approximate system. — The next theorem states that
one can construct global weak solutions to the truncated system at δ > 0 fixed.

Theorem 3.4. — Let 0 < δ < δ0 = 1−Rε and ρ0ε,δ = ρ0ε satisfying (4). Let us assume
f ∈ L2(0, T ;Lq(T3)) with q > 3. Then, for all T ∈ (0,+∞), there exists a global weak
solution (ρε,δ, uε,δ) to the truncated system (29a)–(29b), i.e.,

(1) uε,δ ∈ L2(0, T ; (H1(T3))3), ρε,δ ∈ C ([0, T ];Lq(T3)) ∩ L∞((0, T ) × T3) for all
q ∈ [1,+∞);

(2) (ρε,δ, uε,δ) satisfies (29a)–(29b) in the weak sense:

∫ T

0

∫
T3

ρε,δ∂tφ+

∫ T

0

∫
T3

ρε,δuε,δ · ∇φ

=

∫
T3

ρε(T )φ(T )−
∫
T3

ρ0εφ(0) ∀φ ∈ C 1([0, T ]× T3);
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(30) −
∫ T

0

∫
T3

pε,δ(ρε,δ) divψ +

∫ T

0

∫
T3

(2µ+ λε,δ(ρε,δ)) div uε,δ divψ

+

∫ T

0

∫
T3

µ curluε,δ · curlψ + r

∫ T

0

∫
T3

uε,δ · ψ

=

∫
T3

f · ψ ∀ψ ∈ C 1([0, T ]× T3);

(3) the renormalized continuity equation holds

(31) ∂tb(ρε,δ) + div(b(ρε,δ)uε,δ) +
(
b′+(ρε,δ)ρε,δ − b(ρε,δ)

)
div uε,δ = 0

in D ′((0, T )× T3),

for any b ∈ C 0([0,+∞)), piecewise C 1, where b′+ denotes the right derivative of b;
(4) the energy inequality holds

(32) sup
t∈[0,T ]

∫
T3

Hε,δ(ρε,δ) +

∫ T

0

∫
T3

(
3

2
µ+ λε,δ(ρε,δ))(div uε,δ)

2

+
µ

2

∫ T

0

∫
T3

|curl(uε,δ)|2 + r

∫ T

0

∫
T3

|uε,δ|2 6
∫
T3

Hε,δ(ρ
0
ε) +

1 + C

2µ
‖f‖2L2

t,x

where

(33) Hε,δ(ρ) =


ε

γ − 1
· ργ

(1− ρ)γ−1
if ρ 6 1− δ,

ε

γ − 1
· ρ

γ

δγ
− ε

(γ − 1)δγ
(1− δ)γρ if ρ > 1− δ.

Note that defining Λε,δ as

Λε,δ(ρ) =


ε

β − 1
· ρβ

(1− ρ)β−1
if ρ 6 1− δ,

ε

β − 1
· ρ

β

δβ
− ε

(β − 1)δβ
(1− δ)βρ if ρ > 1− δ,

we get the following renormalized continuity equation in D ′((0, T )× T3)

(34) ∂tΛε,δ(ρε,δ) + div(Λε,δ(ρε,δ)uε,δ) = −λε,δ(ρε,δ) div uε,δ.

The existence of global weak solutions to the approximate system, namely Theo-
rem 3.4, follows from a standard procedure. For reader’s convenience, since our main
goal is the study of the singular systems, we just present the idea of the proof. The
analysis is in fact very similar to the classical case with constant bulk viscosity treated
in [23, Chap. 8.2]. We construct exactly in the same way the solutions by solving first
the system for a regular initial data ρ0 via a fixed point argument. Then, for a gen-
eral initial density ρ0 ∈ L∞(T3), we regularize ρ0 and prove that we can pass to the
limit with respect to the parameter of the regularization. Compactness arguments are
needed to identify the limit quantities and in particular we need to prove the strong
convergence of the sequence of densities. The arguments to justify this strong con-
vergence are non-standard, and different from the case with a constant bulk viscosity
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term, but we justify in details this point in Section 4.1.2 for the limit δ → 0. We refer
to [23] for more details.

Now we have our global weak solutions (ρε,δ, uε,δ), we want to pass to the limit with
respect to δ (at ε fixed) to get global existence of weak solutions for the compressible
singular systems. It will be then possible to pass to the limit with respect to ε to get
the congestion systems.
We will divide the study in two sections depending on the sign of γ−β. First, we treat
the dominant pressure regime γ > β (Section 4), then the dominant bulk viscosity
regime β > γ (Section 5).

4. Dominant pressure regime γ > β > 1

4.1. Existence of weak solutions at ε fixed

4.1.1. Uniform estimates with respect to δ. — First of all, observe that if we consider δ
small enough, namely δ < 1−Rε (ε is fixed), we ensure that initially

Hε,δ(ρ
0
ε,δ) = Hε(ρ

0
ε) is bounded in L1(T3).

Thanks to Theorem 3.4, the solutions (ρε,δ, uε,δ) satisfy the energy estimate (32),
so that (uε,δ)δ is bounded in L2(0, T ; (H1(T3))3) and (Hε,δ(ρε,δ))δ is bounded in
L∞(0, T ;L1(T3)). In particular, the control of the internal energy Hε,δ leads easily to
a control of the density

(ρε,δ)δ is bounded in L∞(0, T ;Lγ(T3)).

In the following lemma, we improve the control of the density by using the singularity
of Hε,δ with respect to δ for large values of the density.

Lemma 4.1. — Let (ρε,δ, uε,δ) be a global weak solution of the compressible Brinkman
system. Then
(35) sup

t∈[0,T ]

meas
{
x ∈ T3, ρε,δ(t, x) > 1− δ

}
6 C(ε) δγ−1.

Proof. — The energy Hε,δ being defined as (33), recalling that γ > 1, we have

(36) C > sup
t∈[0,T ]

∫
T3

Hε,δ(ρε,δ) >
∫
T3

Hε,δ(ρε,δ)1{ρε,δ>1−δ}

> C
∫
T3

ε

δγ
[
(ργ−1ε,δ − (1− δ)γ−1) + (1− δ)γ−1δ

]
ρε,δ 1{ρε,δ>1−δ}

> C
∫
T3

ε

δγ−1
[
(1− δ)γ

]
1{ρε,δ>1−δ},

which ends the proof. �

Lemma 4.2. — Let (ρε,δ, uε,δ) be a global weak of the compressible Brinkman sys-
tem (29) with γ > β > 1. Then

‖Λε,δ(ρε,δ)‖L1((0,T )×T3) + ‖pε,δ(ρε,δ)‖L1((0,T )×T3)

+ ‖λε,δ(ρε,δ) div uε,δ‖L1((0,T )×T3) + ‖λε,δ(ρε,δ)‖Lγ/β((0,T )×T3) 6 Cε,

where Cε does not depend on δ.
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Proof. Integrating in space (34) and using (24), we have

d

dt

∫
T3

Λε,δ(ρε,δ) +

∫
T3

pε,δ(ρε,δ) = |T3|
∫
T3

(
Sε,δ + pε,δ(ρε,δ)

)
νε,δ(ρε,δ)∫

T3 νε,δ(ρε,δ)
.

Using Lemma 3.2, we can bound the right-hand side

(37) d

dt

∫
T3

Λε,δ(ρε,δ)+

∫
T3

pε,δ(ρε,δ) 6
C1|T3|
C2

‖Sε,δ‖L1+
|T3|
C2

∫
T3

pε,δ(ρε,δ)νε,δ(ρε,δ),

where

‖Sε,δ‖L1 = ‖(−∆)−1 div
(
f − ruε,δ

)
‖L1 6 C

(
‖f‖L2(0,T ;Lq(T3)) + ‖uε,δ‖L2H1

)
,

and

pε,δ(ρε,δ)νε,δ(ρε,δ) =
pε,δ(ρε,δ)

2µ+ λε,δ(ρε,δ)

6
pε,δ(ρε,δ)

2µ
1{ρε,δ<M0} +

pε,δ(ρε,δ)

λε,δ(ρε,δ)
1{M06ρε,δ<1−δ} +

pε,δ(ρε,δ)

λε,δ(ρε,δ)
1{ρε,δ>1−δ}.

The first term of the right-hand side is bounded since ρε,δ is far from 1. For the two
other terms, which become singular as δ → 0, we ensure that

pε,δ(ρε,δ)

λε,δ(ρε,δ)
1{M06ρε,δ<1−δ} 6

C

(1− ρε,δ)γ−β
1{M06ρε,δ<1−δ}

6 C(ε)Hε,δ(ρε,δ)1{M06ρε,δ<1−δ},

pε,δ(ρε,δ)

λε,δ(ρε,δ)
1{ρε,δ>1−δ} 6 C

ργ−βε,δ

δγ−β
1{ρε,δ>1−δ}

6 C(ε)
[
Hε,δ(ρε,δ) + ρ

]
1{ρε,δ>1−δ}

since β ∈ (1, γ) and thus 0 < γ−β < γ−1 (recall Definition (33) of Hε,δ). Using now
the control of Hε,δ and the fact that the total mass is constant, we deduce (ε is fixed
here)

d

dt

∫
T3

Λε,δ(ρε,δ) +

∫
T3

pε,δ(ρε,δ) 6 C(ε).

To conclude, let us observe that, using that β < γ and the initial conditions (4)
and (15), we have ∫

T3

Λε,δ(ρε,δ(0, ·)) =

∫
T3

Λε(ρ
0
ε) 6 C.

Hence, we get from integration in time of (37) that(
pε,δ(ρε,δ)

)
δ
is bounded in L1

(
(0, T )× T3

)
.

Coming back to Lemma 3.3, we obtain(
λε,δ(ρε,δ) div uε,δ

)
δ
bounded in L1

(
(0, T )× T3

)
.

Note that from the pressure estimate, since γ > β, we deduce that(
λε,δ(ρε,δ)

)
δ
is bounded in Lγ/β

(
(0, T )× T3

)
.
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These controls on the pressure and the bulk viscosity can now be used to prove a
maximal bound on the density.

Proposition 4.3. — The density ρε,δ is bounded in L∞((0, T ) × T3) uniformly with
respect to the cut-off parameter δ.

Proof. — Using the renormalized continuity equation (31) with b(ρ) = ρm and m ∈
(1,+∞), we get

∂tρ
m
ε,δ + div(uε,δρ

m
ε,δ) = (1−m) ρmε,δ div uε,δ in D ′((0, T )× T3)

and therefore
d

dt

∫
T3

ρmε,δ = (1−m)

∫
T3

ρmε,δ div uε,δ.

Using (26) to replace div uε,δ, we get

d

dt

∫
T3

ρmε,δ + (m− 1)

∫
T3

ρmε,δνε,δ(ρε,δ)pε,δ(ρε,δ) = (1−m)

∫
T3

ρmε,δνε,δ(ρε,δ)Sε,δ

+ (1−m)

∫
T3

ρmε,δνε,δ(ρε,δ)

|T3|

∫
T3

(
(λε,δ)(ρε,δ) div uε,δ − pε,δ(ρε,δ)

)
.

Now, thanks to (14) (q > 3), we ensure that

‖Sε,δ‖L∞x = ‖(−∆)−1 div(f − ruε,δ)‖L∞x 6 C
(
‖f‖Lqx + ‖uε,δ‖L6

x

)
and therefore (we recall that ‖νε,δ‖L∞t,x 6 C1)

d

dt

∫
T3

ρmε,δ 6 2C1m
(
‖Sε,δ‖L∞x + ‖λε,δ(ρε,δ) div uε,δ‖L1

x
+ ‖pε,δ(ρε,δ)‖L1

x

)∫
T3

ρmε,δ.

This gives (∫
T3

ρmε,δ(t)

)1/m

6

(∫
T3

ρmε,δ(0)

)1/m

exp(C) ∀ t > 0,

with

C = 2C1 exp
(
‖Sε,δ‖L1

tL
∞
x

+ ‖(λε,δ)(ρε,δ) div uε,δ‖L1
t,x

+ ‖pε,δ(ρε,δ)‖L1
t,x

)
.

Hence, passing to the limit with respect to m and recalling that 0 6 ρε,δ(0) = ρ0ε < 1,
we get the uniform upper bound:

‖ρε,δ‖L∞t,x 6 C. �

We now improve a little bit the estimate on the pressure. This will ensure that the
weak limit of the pressure is more regular than a measure.

Lemma 4.4. — The sequence (pε,δ(ρε,δ))δ is bounded in L1+θ
(
(0, T )× T3

)
.

Proof. — Let us consider in (30) the test function

ψ = ∇∆−1
(
(Hε,δ(ρε,δ))

α −
〈
(Hε,δ(ρε,δ))

α
〉)

with α =
γ − β
γ − 1

∈ (0, 1).
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We have∫ T

0

∫
T3

pε,δ(ρε,δ)
[(
Hε,δ(ρε,δ)

)α − 〈(Hε,δ(ρε,δ))
α
〉]

=

∫ T

0

∫
T3

(
2µ+ λε,δ(ρε,δ)

)
div uε,δ

[(
Hε,δ(ρε,δ)

)α − 〈(Hε,δ(ρε,δ))
α
〉]

−
∫ T

0

∫
T3

(
f − ruε,δ

)
· ψ

and using the controls resulting from the energy inequality, we obtain∫ T

0

∫
T3

pε,δ(ρε,δ)
[(
Hε,δ(ρε,δ)

)α − 〈(Hε,δ(ρε,δ))
α
〉]

6 C +

∫ T

0

∫
T3

(
Hε,δ(ρε,δ)

)α
λε,δ(ρε,δ) |div(uε,δ)|.

Since α < 1 and Hε,δ(ρε,δ) is bounded in L∞(0, T ;L1(T3)), we control∣∣∣∣∫ T

0

∫
T3

pε,δ(ρε,δ)
〈
(Hε,δ(ρε,δ))

α
〉∣∣∣∣ 6 ‖Hε,δ(ρε,δ)‖αL∞L1‖pε,δ(ρε,δ)‖L1L1

and we get then∫ T

0

∫
T3

pε,δ(ρε,δ)
(
Hε,δ(ρε,δ)

)α
6 C + ‖Hε,δ(ρε,δ)‖αL∞L1‖pε,δ(ρε,δ)‖L1L1

+

∫ T

0

∫
T3

(
Hε,δ(ρε,δ)

)α
λε,δ(ρε,δ) |div(uε,δ)|

6 C +

∫ T

0

∫
T3

(
Hε,δ(ρε,δ)

)2α
λε,δ(ρε,δ)1{ρε,δ>M0}.

In the right-hand side we have(
Hε,δ(ρε,δ)

)2α
λε,δ(ρε,δ)1{ρε,δ>M0}

6
1

(γ − 1)2α
ε2α+1

(1− ρε,δ)2α(γ−1)+β
ρ2αγ+βε,δ 1{ρε,δ>M0}

6
1

(γ − 1)α
(Hε,δ(ρε,δ))

α
pε,δ(ρε,δ) ε

α
ρ
(α−1)γ+β
ε,δ

(1− ρε,δ)α(γ−1)+β−γ
1{ρε,δ>M0}.

For α = (γ − β)/(γ − 1), we have

(α− 1)γ + β =
γ − β
γ − 1

> 0, α(γ − 1) + β − γ = 0.

So, using the L∞ bound on ρε,δ, we obtain(
Hε,δ(ρε,δ)

)2α
λε,δ(ρε,δ)1{ρε,δ>M0} < Cεα (Hε,δ(ρε,δ))

α
pε,δ(ρε,δ)1{ρε,δ>M0},

with ε < ε0 small enough, so that this term is absorbed in the left-hand side of the
previous inequality. Finally

(Hε,δ(ρε,δ))
α
pε,δ(ρε,δ) is bounded in L1

(
(0, T )× T3

)
.
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The previous bound allows us to show that (pε,δ(ρε,δ))δ is even bounded in
L1+θ((0, T ) × T3) for some θ > 0. Indeed, we have for ρε,δ > 1 − δ (see (36)
and the expression of pε,δ(ρε,δ) given in (27)):

Hε,δ(ρε,δ)1{ρε,δ>1−δ} > C
ε

δγ

[
(ργ−1ε,δ − (1− δ)γ−1) + (1− δ)γ−1δ

]
ρε,δ 1{ρε,δ>1−δ}

> C
ε

δγ
(1− δ)γ−1δρε,δ 1{ρε,δ>1−δ}

> C
ε1−1/γ

δγ−1
δ
(
pε,δ(ρε,δ)

)1/γ
1{ρε,δ>1−δ}.

Observing that

δ
(
pε,δ(ρε,δ)

)1/γ
1{ρε,δ>1−δ} > ε

1/γ(1− δ) > ε1/γ(1− δ0),

and introducing η = min(1, γ − 1), we get that

Hε,δ(ρε,δ)1{ρε,δ>1−δ} > C
ε1−1/γ

δγ−1
[
δ
(
pε,δ(ρε,δ)

)1/γ]1−η[
δ
(
pε,δ(ρε,δ)

)1/γ]η
1{ρε,δ>1−δ}

> C
ε1−η/γ(1− δ0)1−η

δγ−1−η
(
pε,δ(ρε,δ)

)η/γ
1{ρε,δ>1−δ}.

Hence

(Hε,δ(ρε,δ))
αpε,δ(ρε,δ) 1{ρε,δ>1−δ} > Cε,δ0,η

1

δα(γ−1−η)
(pε,δ(ρε,δ))

1+αη/γ 1{ρε,δ>1−δ}.

On the set {ρε,δ 6 M0} the pressure is of course bounded, so it remains to consider
the set {M0 < ρε,δ < 1− δ} on which we have

Hε,δ(ρε,δ)1{ρε,δ<1−δ} =
ε

γ − 1

ργε,δ
(1− ρε,δ)γ

1{M0<ρε,δ<1−δ}

=
ε1/γ

γ − 1
ρε,δ
(
pε,δ(ρε,δ)

)(γ−1)/γ
1{M0<ρε,δ<1−δ}

> Cε,M0

(
pε,δ(ρε,δ)

)(γ−1)/γ
1{M0<ρε,δ<1−δ}.

We obtain again a control of the pressure (we recall that γ > 1)

(Hε,δ(ρε,δ))
αpε,δ(ρε,δ) 1{M0<ρε,δ<1−δ} > Cε (pε,δ(ρε,δ))

1+α(γ−1)/γ 1{M0<ρε,δ<1−δ}.

This concludes the proof of Lemma 4.4. �

4.1.2. Limit δ → 0

First convergence results. — Thanks to the estimates we have just derived, there exists
a limit density ρε such that

ρε,δ −−⇀ ρε weakly-* in L∞
(
(0, T )× T3

)
and, passing to the limit δ → 0 in (35) we get

(38) 0 6 ρε(t, x) < 1 a.e. (t, x) ∈ [0, T ]× T3.

In addition, there exists a limit velocity uε such that

uε,δ −−⇀ uε weakly in L2(0, T ; (H1(T3))3)
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and, due to the continuity equation, we have

ρε,δ → ρε in Cweak([0, T ], Lr(T3)) ∀ r ∈ [1,+∞).

To identify the weak limit of the nonlinear term ρε,δuε,δ, we use the next compensated
compactness Lemma.

Lemma 4.5 ([23, Lem. 5.1]). — Let (gn), (hn) be two sequences converging respec-
tively to g, h in Lr1(0, T ;Lq1(T3)) and Lr2(0, T ;Lq2(T3)) where 1 6 r1, r2 6 ∞ and
1/r1 + 1/r2 = 1/q1 + 1/q2. Assume in addition that

(1) (∂tgn)n is bounded in L1(0, T ;W−m,1(T3)) for some m independent of n;
(2) ‖hn‖L1

tH
s
x
is bounded for some s > 0.

Then gnhn converges to gh weakly in D ′((0, T )× T3).

We apply the result to gδ = ρε,δ, hδ = uε,δ: we ensure the control of ∂tρε,δ
in L2

(
0, T ;H−1(T3)

)
from the continuity equation, while (∇uε,δ)δ is bounded in

L2
(
(0, T )× T3

)
thanks to the energy inequality. Hence

ρε,δuε,δ −−⇀ ρεuε weakly-* in L∞(0, T ;L6(T3)).

With the estimates on the pressure we deduce

pε,δ(ρε,δ) −−⇀ pε(ρ) weakly in L1
(
(0, T )× T3

)
,

where h denotes the weak limit of the sequence (hδ)δ. Our next goal is to get the
strong convergence of the density ρε,δ in order to identify the limit of the pressure
and the bulk viscosity which are non-linear functions of the density.

Convergence a.e. of the density. — Thanks to the bounds on ρε,δ, uε,δ, we can pass to
the limit in the sense of distributions in the renormalized continuity equation

∂tρ
2
ε,δ + div

(
ρ2ε,δuε,δ

)
= −ρ2ε,δ div uε,δ,

which reads at the limit

∂tρ2ε + div
(
ρ2εuε

)
= −ρ2ε div uε.

On the other hand, the limit density ρε ∈ L∞((0, T )× T3) satisfies the renormalized
continuity equation

∂tρ
2
ε + div

(
ρ2εuε

)
= −ρ2ε div uε.

Defining Ψ := ρ2ε − ρ2ε > 0, we have then

∂tΨ + div(Ψu) = ρ2ε div uε − ρ2ε div uε in D ′.

By replacing div uε by its expression in terms of effective flux and pressure, the pre-
vious equation can be rewritten as

(39) ∂tΨ + div(Ψu) = ρ2ε νε(ρε)Fε − ρ2ενε(ρε)Fε + ρ2ε pε(ρ)νε(ρε)− ρ2εpε(ρ)νε(ρε).
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Remark 5. — In the classical case of constant bulk and shear viscosities µ0, λ0, the
previous equation writes

∂tΨ + div(Ψu) =
1

2µ0 + λ0
[
ρ2ε Fε − ρ2εFε + ρ2ε p(ρ)− ρ2εp(ρ)

]
,

and one can prove some weak compactness property of the effective flux (see [23,
Chap. 5] or [31]). This property ensures that

ρ2ε Fε = ρ2εFε,

so that
∂tΨ + div(Ψu) =

1

2µ0 + λ0
(
ρ2ε p(ρ)− ρ2εp(ρ)

)
.

In the usual case where the pressure is a monotone (increasing) function, independent
of the parameter δ, then (see [31, Lem. 3.35])

(40) ρ2ε p(ρ) 6 ρ2εp(ρ)

and
∂tΨ + div(Ψu) 6 0.

We conclude by integrating over space
d

dt

∫
T3

Ψ 6 0.

Recall that by the convexity of the functional s 7→ s2 we have Ψ > 0. Hence, if initially
Ψ(0, ·) = 0, we obtain

Ψ = 0 a.e. (t, x).

This ensures the strong convergence of (ρδ)δ. Note finally that this calculation has
been extended by Feireisl in [17] to non-monotone pressure that are increasing only
from a critical density. In this case, one controls the part where the pressure is non-
monotone in such way that a Gronwall inequality can be applied to recover at the end
Ψ = 0 a.e. We will see below that we will have to use with such kind of arguments
to prove the strong convergence of the density in case of density dependent bulk
viscosities. We refer the reader to [6] for recent developments on more general non-
monotone pressures.

Our study is original in two ways: first, we have here to deal with a density depen-
dent bulk viscosity, secondly, the pressure (as well as the bulk viscosity) depends on
the parameter of approximation δ. We begin with proving some similar weak com-
pactness properties satisfied by the effective flux.

Proposition 4.6. — We ensure the two following properties( ρ2Fε
2µ+ λε(ρ)

)
=
( ρ2

2µ+ λε(ρ)

)
Fε in D ′,(41)

( Fε
2µ+ λε(ρ)

)
=
( 1

2µ+ λε(ρ)

)
Fε in D ′,(42)

where g denotes the weak limit of the sequence (gδ).
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Proof. — The proof of these properties follows again from Lemma 4.5 with hε,δ = Fε,δ
and g1ε,δ = ρ2ε,δνε,δ(ρε,δ), g2ε,δ = νε,δ(ρε,δ). Let us check that we control the time
derivative of g1ε,δ and g2ε,δ that satisfy the renormalized continuity equations

(43) ∂tg
i
ε,δ(ρε,δ) + div

(
giε,δ(ρε,δ)uε,δ

)
+
(

(giε,δ)
′
+(ρε,δ) ρε,δ − giε,δ(ρε,δ)

)
div uε,δ = 0

with

(g1ε,δ)
′
+(ρ) =

2ρ

2µ+ λε,δ(ρ)
−

(λε,δ)
′
+(ρ)

(2µ+ λε,δ(ρ))2
, (g2ε,δ)

′
+(ρ) = −

(λε,δ)
′
+(ρ)

(2µ+ λε,δ(ρ))2
.

Recall that

(λε,δ)
′
+(ρ) =

{
εβρβ−1/(1− ρ)β+1 if ρ < 1− δ,
εβρβ−1/δβ if ρ > 1− δ,

hence
(λε,δ)

′
+(ρ)

(2µ+ λε,δ(ρ))2
6 C 1{ρε,δ<M0} +

(λε,δ)
′
+(ρ)

(λε,δ(ρ))2
1{M06ρε,δ<1−δ}

+
(λε,δ)

′
+(ρ)

(λε,δ(ρ))2
1{ρε,δ>1−δ}

6 C +
C

ε
(1− ρε,δ)β−1 1{M06ρε,δ<1−δ} +

C

ε
δβ 1{ρε,δ>1−δ}

6 C(ε).

(44)

As a consequence, the giε,δ and (giε,δ)
′ are bounded in L2

(
(0, T )×T3

)
uniformly with

respect to δ (but not uniformly in ε, cf. Remark 6). By a Cauchy-Schwarz inequality∥∥((giε,δ)′+(ρε,δ) ρε,δ − giε,δ(ρε,δ)
)

div uε,δ
∥∥
L1L1

6 ‖(giε,δ)′+(ρε,δ) ρε,δ − giε,δ(ρε,δ)‖L2L2 ‖div uε,δ‖L2L2 6 C

and, coming back to Equation (43), we get

∂tg
1
ε,δ, ∂tg

2
ε,δ bounded in L2(0, T ;W−1,1(T3)).

On the other hand, we have

hε,δ = Sε,δ +
〈
λε,δ(ρε,δ) div uε,δ − pε,δ

〉
,

which is bounded in L1(0, T ;H1(T3)) since

‖∇Sε,δ‖L2L2 6 C
(
‖f‖L2Lq + ‖uε,δ‖L2H1

)
.

Applying Lemma 4.5, we arrive finally at (41)–(42). �

Thanks to these properties, Equation (39) rewrites

∂tΨ + div(Ψu) = ρ2ε νε(ρε)Fε − ρ2ενε(ρε)Fε + ρ2ε pε(ρ)νε(ρε)− ρ2εpε(ρ)νε(ρε)

= Fε
(
ρ2ε νε(ρε)− ρ2ενε(ρε)

)
+ ρ2ε pε(ρ)νε(ρε)− ρ2εpε(ρ)νε(ρε).
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Let bε,δ(s) := pε,δ(s)νε,δ(s) = pε,δ(s)/(2µ+ λε,δ(s)). As we said before, our consti-
tutive laws depend on the parameter δ which prevents us from writing directly (40)
on bε,δ. Nevertheless, for all δ < δ0, bε,δ0(·) 6 bε,δ(·) then

ρ2ε

( pε(ρε)

2µ+ λε(ρε)

)
− lim inf

δ→0

ρ2ε,δ pε,δ(ρε,δ)

2µ+ λε,δ(ρε,δ)

6 ρ2ε
( pε(ρε)

2µ+ λε(ρε)

)
− lim inf

δ→0

ρ2ε,δ pε,δ0(ρε,δ)

2µ+ λε,δ0(ρε,δ)
.

Since moreover γ > β, the function bε,δ0 is increasing for any δ0 > 0 and it follows
that (see for instance [31, Lem. 3.35])

ρ2ε

( pε(ρε)

2µ+ λε(ρε)

)
− lim inf

δ→0

ρ2ε,δ pε,δ(ρε,δ)

2µ+ λε,δ(ρε,δ)

6 ρ2ε

[( pε(ρε)

2µ+ λε(ρε)

)
−
( pε,δ0(ρε)

2µ+ λε,δ0(ρε)

)]
= 0,

where the last equality holds due to the strong convergence in L1
(
(0, T ) × T3

)
of

bε,δ0(ρ) to bε(ρ) as δ0 → 0 (this follows from the equi-integrability of the singular
pressure and then from the equi-integrability of bδ). We get then by integration in
space

d

dt

∫
T3

Ψ 6
∫
T3

|Fε|
∣∣ρ2ε νε(ρε)− ρ2ενε(ρε)∣∣

with ∣∣ρ2ενε,δ(ρε,δ)− ρ2ε,δνε,δ(ρε,δ)∣∣ = νε,δ(ρε,δ)
∣∣ρ2ε − ρ2ε,δ∣∣ 6 C ∣∣ρ2ε − ρ2ε,δ∣∣

thanks to Lemma 3.2. Letting δ → 0 we get∫
T3

|Fε|
∣∣ρ2ε νε(ρε)− ρ2ενε(ρε)∣∣ 6 C ∫

T3

|Fε|
∣∣ρ2ε − ρ2ε∣∣

6 C
∫
T3

|Fε|
(
ρ2ε − ρ2ε

)
= C

∫
T3

|Fε|Ψ.

Since |Fε| ∈ L1(0, T ;L∞(T3)) and since
∫
T3

Ψ(0, ·) = 0 (the initial data does not

depend on δ), we conclude by Gronwall’s Lemma that

Ψ = 0 a.e.

As a consequence, there exists a subsequence (still denoted ρε,δ) such that

ρε,δ −→ ρε strongly in Lq
(
(0, T )× T3

)
∀ q ∈ [1,+∞).

Limit of the singular laws. — From the strong convergence of ρε,δ and the fact that
ρε < 1 a.e. (see (38)) the following convergences hold

pε,δ(ρε,δ) −→ pε(ρε) strongly in L1
(
(0, T )× T3

)
,√

λε,δ(ρε,δ) −→
√
λε(ρε) strongly in L2γ/β

(
(0, T )× T3

)
.
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Limit in the weak formulation of the equations. — We can now pass to the limit in the
weak formulation of the mass and momentum equations. The only delicate term to
deal with is the bulk viscosity term λε,δ(ρε,δ) div uε,δ. We use the strong convergence of√
λε,δ(ρε,δ) towards

√
λε(ρε) in L2

(
(0, T )×T3

)
combined with the weak convergence

in L2
(
(0, T )× T3

)
of div uε,δ to get√

λε,δ(ρε,δ) div uε,δ −→
√
λε(ρε) div uε weakly in L1((0, T )× T3).

Since
√
λε,δ(ρε,δ) div uε,δ also converges weakly in L2((0, T ) × T3) (from the energy

estimate), we deduce that the previous convergence holds in L2((0, T ) × T3). Using
once again the strong convergence of

√
λε,δ(ρε,δ) we obtain the weak convergence of

the whole bulk viscosity term

λε,δ(ρε,δ) div uε,δ =
√
λε,δ(ρε,δ)

√
λε,δ(ρε,δ) div uε,δ −−⇀ λε(ρε) div uε

in L1((0, T )× T3).

Finally, the limit (ρε, uε) is a global weak solution of the system
∂tρε + div(ρεuε) = 0,

∇pε(ρε)−∇(λε(ρε) div uε)− 2 div(µD(uε)) + ruε = f,

0 6 ρε < 1 a.e. (0, T )× T3.

In addition, we have the energy inequality

(45) sup
t∈[0,T ]

∫
T3

Hε(ρε) +

∫ T

0

∫
T3

( 3
2µ+ λε(ρε)) |div uε|2 +

µ

2

∫ T

0

∫
T3

|curluε|2

+ r

∫ T

0

∫
T3

|uε|2 6
∫
T3

Hε(ρ
0
ε) +

1 + C

2µ
‖f‖2L2(0,T ;Lq(T3)),

where
Hε(ρ) =

ε

γ − 1

ργ

(1− ρ)γ−1
.

4.2. Congestion limit ε→ 0

4.2.1. Uniform estimates in ε. — From the energy estimate (45), we deduce the con-
trols of different quantities uniformly with respect to the parameter ε(

Hε(ρε)
)
ε
is bounded in L∞(0, T ;L1(T3)),(

uε
)
ε
is bounded in L2

(
0, T ; (H1(T3))2

)
,(√

λε(ρε) div uε
)
ε
is bounded in L2

(
(0, T )× T3

)
.

Control of the pressure

Lemma 4.7. — Let (ρε, uε) be a global weak solution to (1) with γ > β > 1. Then,
there exists a constant C > 0 independent of ε such that

‖pε(ρε)‖L1((0,T )×T3) 6 C.
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Proof. — Let us consider in the weak formulation of the momentum equation the test
function

ψ = ∇∆−1(ρε −
〈
ρε
〉
).

The resulting equation writes∫ T

0

∫
T3

pε(ρε)
(
ρε −

〈
ρε
〉)

=

∫ T

0

∫
T3

(
2µ+ λε(ρε)

)
div(uε)

(
ρε −

〈
ρε
〉)
−
∫ T

0

∫
T3

(f − ruε) · ψ.

Using the controls resulting from the energy inequality and the maximal bound on
the density ρε, we get then∫ T

0

∫
T3

pε(ρε)
(
ρε −

〈
ρε
〉)

6 C(‖ψ‖H1) +

∫ T

0

∫
T3

√
(2µ+ λε(ρε))

√
(2µ+ λε(ρε)) |div(uε)|

6 C +
1

2η

∫ T

0

∫
T3

(2µ+ λε(ρε)) |div(uε)|2 +
η

2

∫ T

0

∫
T3

(2µ+ λε(ρε))

6 C +
η

2

∫ T

0

∫
T3

λε(ρε)

for some η > 0 determined below. The integrals of the singular terms can be split
into two parts depending on the value of ρε. Recall that

〈
ρε
〉

=
〈
ρ0ε
〉
is far from 1

uniformly in ε (cf. (4)), and the functions pε(ρε), λε(ρε) are bounded on the domain
{ρε < (1 +

〈
ρε
〉
)/2}. Therefore:∫ T

0

∫
T3

pε(ρε)
(
ρε −

〈
ρε
〉)

1{ρε>(1+〈ρε〉)/2}

6 C −
∫ T

0

∫
T3

pε(ρε)
(
ρε −

〈
ρε
〉)

1{ρε<(1+〈ρε〉)/2}

+
1

2

∫ T

0

∫
T3

λε(ρε)1{ρε<(1+〈ρε〉)/2} +
η

2

∫ T

0

∫
T3

λε(ρε)1{ρε>(1+〈ρε〉)/2}

6 C +
η

2

∫ T

0

∫
T3

λε(ρε)1{ρε>(1+〈ρε〉)/2}.

Since β < γ, we have in addition that

λε(ρε)1{ρε>(1+〈ρε〉)/2} =
(1 +

〈
ρε
〉

1−
〈
ρε
〉)β−γε( ρε,δ

1− ρε,δ

)γ
1{ρε>(1+〈ρε〉)/2}

6 pε(ρε)1{ρε>(1+〈ρε〉)/2}.

Now, with η = (1−M0)/2,

1−
〈
ρε
〉

2

∫ T

0

∫
T3

pε(ρε)1{ρε>(1+〈ρε〉)/2} 6 C +
1−M0

4

∫ T

0

∫
T3

pε(ρε)1{ρε>(1+〈ρε〉)/2},
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and recalling that we have

1−
〈
ρε
〉

2
=

1−
〈
ρ0ε
〉

2
>

1−M0

2

due our assumption (4)2, we control the integral of the pressure on {ρε > (1 + 〈ρε〉)/2}

1−M0

4

∫ T

0

∫
T3

pε(ρε)1{ρε>(1+〈ρε〉)/2} 6 C.

Finally, since the pressure is bounded on {ρε < (1 + 〈ρε〉)/2} (far from the singular-
ity), we get (

pε(ρε)
)
ε
bounded in L1

(
(0, T )× T3

)
which ends the proof. �

4.2.2. Limit ε→ 0. — With the previous uniform bounds we deduce that there exist
a limit density ρ and a limit velocity u such that

ρε −−⇀ ρ weakly-* in L∞
(
(0, T )× T3

)
, ρ(t, x) 6 1 a.e.,

uε −−⇀ u weakly in L2(0, T ; (H1(T3))3),

and we pass to the limit in the nonlinear term ρεuε thanks to the compensated-
compactness lemma 4.5:

ρεuε −−⇀ ρu weakly-* in L∞(0, T ;L6(T3)).

The boundedness of (pε(ρε))ε in L1
(
(0, T )× T3

)
yields

pε(ρε) −→ p weakly in M+

(
(0, T )× T3

)
.

On the other hand, we have

λε(ρε) 6 Cε1{ρε6M0} + Cε1−β/γ
(
pε(ρε)

)β/γ
1{ρε>M0}

with β < γ, so that λε(ρε) converges strongly to 0 in Lγ/β((0, T ) × T3). Hence,√
λε(ρε) converges strongly to 0 in L2

(
(0, T )× T3

)
and

λε(ρε) div uε −−⇀ λε div u = 0 in D ′.

Finally, it remains for us to prove that spt p ⊂ {ρ = 1}. First, let us assume that there
exists a set A ⊂ {ρ < 1} with non-zero measure such that limε→0 ρε(t, x) = 1 for
(t, x) ∈ A. Then, since ρε converges weakly to ρ in Lq((0, T )×T3) for all q ∈ [1,+∞),
we have ∫ T

0

∫
T3

ρε 1A −→
∫ T

0

∫
T3

ρ1A,

which leads to a contradiction since∫ T

0

∫
T3

ρε 1A −→ |A| while
∫ T

0

∫
T3

ρ1A < |A|.
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Hence, there does not exist such A. Let us assume now that there exists a set B ⊂
{ρ < 1} such that p(t, x) > 0 for (t, x) ∈ B. Then, the weak convergence of pε(ρε)
to p gives, for any Ψ ∈ C∞c (B), Ψ > 0,∫ T

0

∫
T3

pε(ρε)Ψ −→
〈
p,Ψ

〉
> 0.

In view of the definition of pε, we infer that there exists a subset A ⊂ B with non-
zero measure such that limε→0 ρε(t, x) = 1 for (t, x) ∈ A (otherwise we would have
pε(ρε)→ 0 a.e. on B). By the previous argument such a set A does not exist, and we
conclude that |B| = 0. Therefore

(46) p = 0 a.e. on {ρ < 1}.

The limit system reads in this case
∂tρ+ div(ρu) = 0,

∇p− 2 div(µD(u)) + ru = f,

0 6 ρ 6 1, spt p ⊂ {ρ = 1}, p > 0,

where the memory effects are never activated.

Remark 6. — Note that, unlike the previous limit δ → 0, we do not ensure the strong
convergence of (ρε)ε to ρ. The problem relies in the lack of uniform estimates (see
Equation (44)) which prevents the derivation of the weak compactness properties
on Fε. Nevertheless, as explained before, we are able to identify the weak limit of the
nonlinear term ρεuε, and to pass to the limit in the mass and momentum equations
without the strong convergence of (ρε)ε.

5. Dominant bulk viscosity regime 1 < γ 6 β

Let us now consider the case where β > γ. If the approach proceeds formally in the
same way as before (regularization of the system by truncation of the singular laws
and study of the behavior as ε→ 0), we have here to adapt the arguments to get the
appropriate uniform controls in δ and ε. For that purpose, we shall distinguish in the
estimates three cases: γ < β− 1, γ = β− 1 and β− 1 6 γ < β that correspond to the
sub-cases presented in Theorem 1.4. In these three cases, we are not able to control
the bulk viscosity coefficient λε from the pressure pε. Nevertheless, we will see that
Equation (26) enables to pass to the limit ε → 0 in the two cases γ ∈ (β − 1, β] (no
memory effects at the limit), γ 6 β − 1 (memory effects).

5.1. Case β − 1 < γ 6 β, γ > 1

5.1.1. Existence of weak solutions at ε fixed. — We consider the same regularized sys-
tem (29) with the truncated pressure (27) and bulk viscosity (28) as in the previous
section. Recall that we ensure from Lemma 3.2 the following properties on ν:

∃ C1, C2 > 0 s.t. ‖νε,δ(ρε,δ)‖L∞t,x 6 C1,

∫
T3

νε,δ(ρε,δ) > C2.
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Lemma 5.1. — Let (ρε,δ, uε,δ) be a global weak solution of the compressible Brinkman
system (29) with γ 6 β. Then,

‖Λε,δ(ρε,δ)‖L1((0,T )×T3)+‖pε,δ(ρε,δ)‖L1((0,T )×T3)+‖λε,δ(ρε,δ) div uε,δ‖L1((0,T )×T3) 6 C,

where C does not depend on δ or ε.

Proof. — Starting again from the equation on Λε,δ (34), using (24) to replace
λε,δ div uε,δ, and integrating in space we have

d

dt

∫
T3

Λε,δ(ρε,δ) +

∫
T3

pε,δ(ρε,δ) 6 C
(
‖Sε,δ‖L1 +

∫
T3

pε,δ(ρε,δ)νε,δ(ρε,δ)1{ρε,δ6M0}

+

∫
T3

pε,δ(ρε,δ)νε,δ(ρε,δ)1{M0<ρε,δ}

)
6 C + C

∫
T3

1{ρε,δ6M0} +

∫
T3

C

(1− ρε,δ)γ−β
1{M0<ρε,δ61−δ} +

∫
T3

C

δγ−β
1{ρε,δ>1−δ},

for some constant C independent of δ, ε. Now, since γ < β, we can bound uniformly
in δ, ε the right-hand side and therefore(

Λε,δ(ρε,δ)
)
δ
is bounded in L∞

(
0, T ;L1(T3)

)
,(

pε,δ(ρε,δ)
)
δ
is bounded in L1

(
(0, T )× T3

)
.

We have as a byproduct (see Lemma 3.3)(
λε,δ(ρε,δ) div uε,δ

)
δ
bounded in L1

(
(0, T )× T3

)
. �

Uniform upper bound on the density. — Proposition 4.3 still holds in the case γ < β:
there exists C which does not depend on δ such that

(47) ‖ρε,δ‖L∞t,x 6 ρ <∞.

Lemma 5.2. — For any t ∈ [0, T ], we have

(48) meas
{
x ∈ T3, ρε,δ(t, x) > 1− δ

}
6 C(ε) δβ−1.

Proof. — Since initially we assume (16), we can mimic the proof of (35) by using Λε,δ
instead of Hε,δ:

C > sup
t∈[0,T ]

∫
T3

Λε,δ(ρε,δ) >
∫
T3

Λε,δ(ρε,δ)1{ρε,δ>1−δ}

> C
∫
T3

ε

δβ
[
(ρβ−1ε,δ − (1− δ)β−1) + (1− δ)β−1δ

]
ρε,δ 1{ρε,δ>1−δ}

> C
∫
T3

ε

δβ−1
[
(1− δ)β

]
1{ρε,δ>1−δ}. �

As explained in the previous section, passing to the limit in the weak formulation
of the equations requires additional estimates on the singular laws.
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Lemma 5.3. — Let (ρε,δ, uε,δ) be a global weak solution of the compressible Brinkman
system (29) with γ ∈ (β − 1, β]. If initially (16) is satisfied, then there exist two
constants C1 > 0 independent of δ, ε, and C2

ε > 0 independent of δ, such that

‖Λε,δ(ρε,δ)‖L∞(0,T ;L2(T3)) 6 C
1,

‖pε,δ(ρε,δ)‖L1+(β−1)/γ((0,T )×T3) + ‖λε,δ(ρε,δ)‖L(β+γ−1)/β((0,T )×T3) 6 C
2
ε .

Proof. — Taking b(s) =
(
Λε,δ

)
(s)2 in (31) we get

∂t
(
Λε,δ(ρε,δ)

)2
+ div

((
Λε,δ(ρε,δ)

)2
uε,δ

)
= −

[
ρε,δ(Λε,δ)

′
+(ρε,δ)Λε,δ(ρε,δ) + Λε,δ(ρε,δ)λε,δ(ρε,δ)

]
div uε,δ

= −
[ρε,δ(Λε,δ)′+(ρε,δ)

λε,δ(ρε,δ)
+ 1
]
Λε,δ(ρε,δ)λε,δ(ρε,δ) div uε,δ,

(49)

where

(Λε,δ)
′
+(ρ) =


ε

(1− ρ)β
(β − ρ)ρβ−1

β − 1
if ρ < 1− δ,

ε

δβ
βρβ−1 − (1− δ)β

β − 1
if ρ > 1− δ,

which is such that

0 6
ρε,δ (Λε,δ)

′
+(ρε,δ)

λε,δ(ρε,δ)
6

β

β − 1
.

Recall now that

λε,δ(ρε,δ) div uε,δ = pε,δ(ρε,δ) + S − 2µ div uε,δ

+
1

|T3|

∫
T3

(
λε,δ(ρε,δ) div uε,δ − pε,δ(ρε,δ)

)
that we can replace in (49). Integrating next in space, we obtain (recall thatβ > 1)
d

dt

∫
T3

(
Λε,δ(ρε,δ)

)2
+

∫
T3

Λε,δ(ρε,δ) pε,δ(ρε,δ)

6
2β − 1

β − 1

∫
T3

Λε,δ(ρε,δ) |Sε,δ|+ 2µ
2β − 1

β − 1

∫
T3

Λε,δ(ρε,δ) |div uε,δ|

+
2β − 1

β − 1

1

|T3|

(∫
T3

Λε,δ(ρε,δ)

) ∣∣∣∣(∫
T3

(
λε,δ(ρε,δ) div uε,δ − pε,δ(ρε,δ)

))∣∣∣∣
= I1 + I2 + I3.

By a Cauchy-Schwarz inequality, we have

I1 + I2 6 C(‖Sε,δ‖2L2 + ‖div uε,δ‖2L2) +

∫
T3

(
Λε,δ(ρε,δ)

)2
while, due to the previous estimates,∫ T

0

I3 6 C‖Λε,δ(ρε,δ)‖L∞L1

(
‖λε,δ(ρε,δ) div uε,δ‖L1L1 + ‖pε,δ(ρε,δ)‖L1L1

)
.
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We conclude then with a Gronwall inequality (recall that initially we assume (16))
and get

sup
t∈[0,T ]

∫
T3

(
Λε,δ(ρε,δ)

)2
+

∫
T3

Λε,δ(ρε,δ)pε,δ(ρε,δ) 6 C + C

∫
T3

(
Λε,δ(ρ

0
ε)
)2
.

With the control of Λε,δ(ρε,δ)pε,δ(ρε,δ) in L1
(
(0, T )× T3

)
, we deduce that∥∥∥ 1

(1− ρε,δ)γ+β−1
1{ρε,δ61−δ}

∥∥∥
L1
6 C(ε),

and ∥∥∥ργ+β−1ε,δ

δγ+β−1
1{ρε,δ>1−δ}

∥∥∥
L1
6 C(ε),

since (see Lemma 5.2 and (47))

Λε,δ(ρε,δ)1{ρε,δ>1−δ} >
ε(1− δ)β

δβ−1
and ‖ρε,δ‖L∞ 6 C.

Hence, (
pε,δ(ρε,δ)

)
δ
is bounded in L1+(β−1)/γ((0, T )× T3),(

λε,δ(ρε,δ)
)
δ
is bounded in L(γ+β−1)/β((0, T )× T3).(50)

We emphasize the fact that these controls are not uniform in ε. This is due to the
fact that the pressure pε and the bulk viscosity λε are “more singular” than Λε close
to 1 (since γ, β > β − 1). �

Remark 7. — We assumed in this case that γ > 1 which enables, thanks to (50), to
bound λε,δ(ρε,δ) in L1((0, T )× T3).

Limit δ → 0. — We can pass to the limit in the weak formulation of the equation
except in the non-linear terms. As in the previous section, we need to prove the strong
convergence of ρε,δ. Note first that the results of Proposition 4.6 still hold:( ρ2Fε

2µ+ λε(ρ)

)
=
( ρ2

2µ+ λε(ρ)

)
Fε in D ′,( Fε

2µ+ λε(ρ)

)
=
( 1

2µ+ λε(ρ)

)
Fε in D ′.

Hence, for Ψ = ρ2ε − ρ2ε > 0,

∂tΨ + div(Ψu) = Fε
(
ρ2ε νε(ρε)− ρ2ενε(ρε)

)
+ ρ2ε pε(ρε)νε(ρε)− ρ2εpε(ρε)νε(ρε).

where, in this case, the function s 7→ bε,δ(s) = pε,δ(s)νε,δ(s) is non-monotone. In fact
it is not a problem, because bε,δ is now bounded and we can then treat it as the first
part of the right-hand side. We obtain similarly:

d

dt

∫
T3

Ψ(t, ·) 6 C
∫
T3

(|Fε|+ 1)Ψ(t, ·),

J.É.P. — M., 2019, tome 6



Compression effects in heterogeneous media 463

with |Fε| ∈ L1(0, T ;L∞(T3)) which yields again Ψ = 0 by Gronwall’s inequality.
The strong convergence of the density is thus preserved in this case. In addition, due
to (48), we ensure that the limit density satisfies

(51) 0 6 ρε < 1 a.e.

We can then pass to the limit in all the terms of the equations. In particular, for
the bulk viscosity term, the strong convergence of ρε,δ and (51) imply that λε,δ(ρε,δ)
converges strongly to λε(ρε) in L(γ+β−1)/β((0, T )×T3). As in the previous section we
deduce that

λε,δ(ρε,δ) div uε,δ =
√
λε,δ(ρε,δ)

√
λε,δ(ρε,δ) div uε,δ

converges weakly to λε(ρε) div uε in Lq((0, T )× T3) for some q > 1.
Finally, we pass to the limit in (34) (recall Λε,δ(ρε,δ) is bounded in L∞(0, T ;L2(T3))

so that Λε,δ(ρε,δ)uε,δ is bounded in L2(0, T ; (L3/2(T3))3)):

(52) ∂tΛε(ρε) + div
(
Λε(ρε)uε

)
= −λε(ρε) div uε.

5.1.2. Limit ε→ 0. — At this stage, we control uniformly(
ρε
)
ε

in L∞((0, T )× T3),(
uε
)
ε

in L2(0, T ; (H1(T3))3),(
Λε(ρε)

)
ε

in L∞(0, T ;L2(T3)),(
pε(ρε)

)
ε

in L1((0, T )× T3),(
λε(ρε) div uε

)
ε

in L1((0, T )× T3).

Therefore
pε(ρε) −→ p in M+((0, T )× T3)

and
λε(ρε) div uε −→ Π in M ((0, T )× T3).

On the other hand

Λε(ρε) 6 Cε1{ρε6M0} + Cε1−(β−1)/γ
(
pε(ρε)

)(β−1)/γ
1{ρε>M0},

with γ > β − 1, so that Λε(ρε) converges strongly to 0 in Lγ/β−1((0, T ) × T3) (and
thus in L2(0, T ;L6/5(T3))). Passing to the limit in (52), we have then

Π = 0.

As a consequence, we conclude that the triple (ρ, u, p) is a global weak solution of
∂tρ+ div(ρu) = 0,

∇p− 2 div(µD(u)) + ru = f,

0 6 ρ 6 1, spt p ⊂ {ρ = 1}, p > 0.

5.2. Case 1 < γ < β − 1. — In this case, we expect the activation of the memory
effects in the limit ε→ 0.
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5.2.1. Existence of weak solutions at ε fixed. — First we observe that Lemma 5.1 still
holds in this case, so that(

Λε,δ(ρε,δ)
)
δ
is bounded in L∞

(
0, T ;L1(T3)

)
and, since γ < β − 1,(

pε,δ(ρε,δ)
)
δ
is bounded in L∞(0, T ;L(β−1)/γ(T3)).

With this control of the pressure and the energy estimate, we deduce from Lemma 3.3
that (

λε,δ(ρε,δ) div uε,δ
)
δ
is bounded in L2

(
0, T ;Lmin{2,(β−1)/γ}(T3)

)
.

Uniform upper bound on the density. — The same arguments as before show that
‖ρε,δ‖L∞t,x 6 ρ <∞,

and
meas

{
x ∈ T3, ρε,δ(t, x) > 1− δ

}
6 C(ε) δβ−1.

Additional integrability on Λε,δ

Lemma 5.4. — Let (ρε,δ, uε,δ) be a global weak solution of the compressible Brinkman
system (29) with 1 < γ < β − 1. If initially ‖Λε(ρ0ε)‖L2 6 C, then there exist C1 > 0

independent of δ, ε, and C2
ε > 0 independent of δ, such that

‖Λε,δ(ρε,δ)‖L∞L2 + ‖pε,δ(ρε,δ)‖L∞L2(β−1)/γ 6 C1,

‖λε,δ(ρε,δ)‖L∞L2(β−1)/β 6 C2
ε .

Proof. — We can reproduce exactly the same estimate on
(
Λε,δ(ρε,δ)

)2 by taking
b(s) =

(
Λε,δ

)
(s)2 in (31). We obtain

sup
t∈[0,T ]

∫
T3

(
Λε,δ(ρε,δ)

)2
+

∫
T3

Λε,δ(ρε,δ)pε,δ(ρε,δ) 6 C + C

∫
T3

(
Λε,δ(ρ

0
ε)
)2
.

Hence (
Λε,δ(ρε,δ)

)
δ
is bounded in L∞(0, T ;L2(T3)),

and consequently(
pε,δ(ρε,δ)

)
δ
is bounded in L∞(0, T ;L2(β−1)/γ(T3)),(

λε,δ(ρε,δ)
)
δ
is bounded in L∞(0, T ;L2(β−1)/β(T3)).

This latter control on λε(ρε) being not uniform in ε. �

Remark 8. — We assumed in this case that 1 < γ < β − 1, so that β > 2 and
2(β − 1)

β
> 1.

The bulk viscosity coefficient
(
λε,δ(ρε,δ)

)
δ
is then bounded in L1((0, T )× T3).

Limit δ → 0.We can pass to the limit in the weak formulation of the equations exactly
in the same way as before. We show first the strong convergence of the density and
use then the control of

√
λε,δ(ρε,δ) in L2

(
(0, T )×T3

)
to identify the limit of the bulk

viscosity term:

λε,δ(ρε,δ) div uε,δ −→ λε(ρε) div uε weakly in L1((0, T )× T3).

J.É.P. — M., 2019, tome 6



Compression effects in heterogeneous media 465

5.2.2. Limit ε→ 0. — Thanks to the uniform controls of the singular quantities, we
ensure the following convergences

Λε(ρε) −→ Λ weakly-* in L∞(0, T ;L2(T3)),

λε(ρε) div uε −→ Π weakly in M ((0, T )× T3).

Invoking similar arguments as those used to obtain (46), we can get

spt Λ ⊂ {ρ = 1},

or, written differently (the product ρΛ making sense almost everywhere):

(1− ρ)Λ = 0.

On the other hand, we have γ < β − 1, which yields

pε(ρε) −→ 0 strongly in L1((0, T )× T3).

Compared to the previous case, the limit Λ is not 0 and we close the system by passing
to the limit in

∂tΛε(ρε) + div(Λε(ρε)uε) = −λε(ρε) div uε.

Here, (Λε)ε is controlled in L∞(0, T ;L2(T3)) and ‖∂tΛε‖L1(W−1,1) 6 C, while (uε)ε is
bounded in L2(0, T ; (H1(T3))3). We can then pass to the limit in the product Λε(ρε)uε
thanks to Lemma 4.5 and get the limit equation

∂tΛ + div(Λu) = −Π in D ′.

We have thus justified the activation of memory effects in the congestion limit. The
tuple (ρ, u, π,Λ) is finally a global weak solution of

∂tρ+ div(ρu) = 0,

−∇Π− 2 div(µD(u)) + ru = f,

∂tΛ + div(Λu) = −Π,

0 6 ρ 6 1, (1− ρ)Λ = 0, Λ > 0.

5.3. Case 1 < γ = β − 1. — The estimates remain mostly unchanged compared
to the previous case γ < β − 1. Nevertheless, in the limit ε → 0, we do not have
the convergence of pε(ρε) to 0 anymore and pε(ρε) converges now to p = (β − 1)Λ.
The limit system then writes

∂tρ+ div(ρu) = 0,

(β − 1)∇Λ−∇Π− 2 div(µD(u)) + ru = f,

∂tΛ + div(Λu) = −Π,

0 6 ρ 6 1, (1− ρ)Λ = 0, Λ > 0.
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