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CORRIGENDUM TO

“HEIGHT GRADED RELATIVE HYPERBOLICITY AND

QUASICONVEXITY”

by François Dahmani & Mahan Mj

Abstract. — There is an unfortunate mistake in the statement and the proof of Proposition 5.1
of [DM17]. This affects one direction of the implications of the main theorem. A correction is
given, that states that given a quasi-convex subgroup of a hyperbolic (or relatively hyper-
bolic) group, the graded relative hyperbolic structure holds with respect to saturations of i-fold
intersections, that are stabilizers of limit sets of i-fold intersections.

Résumé (Correction à « Hauteur, hyperbolicité relative graduée, et quasiconvexité »)
Une malencontreuse erreur entache la preuve, et l’énoncé, de la Proposition 5.1 de l’article

mentionné en titre. Celle-ci affecte un sens d’implication du théorème principal. Nous en don-
nons ici une correction, qui indique que, étant donné un sous-groupe quasi-convexe d’un groupe
hyperbolique, ou relativement hyperbolique, la collection des saturations des intersections mul-
tiples (et non pas des intersections multiples elles-mêmes) fournit une structure relativement
hyperbolique graduée.
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There is an unfortunate mistake in the statement and the proof of Proposition 5.1
of [DM17]. This affects one direction of the implications of the main theorem 6.4 (also
visible as 1.4). This also affects 5.2, 5.3, 5.4, and 5.5 that are essentially the different
specific cases of the statement of 6.4. Unless explicitly mentioned the references to
theorem numbers, etc. refer to [DM17]. We explain the problem, and give a correction.
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1. Main modifications and corrections

Proposition 5.1 of [DM17] must be replaced by Proposition 3 below.
The conclusions of Propositions 5.2, 5.3, 5.4 and 5.5 should be changed to:

(G, {H}, d) have the saturated (geometric) graded relative hyperbolicity (as defined
below in Section 3).

Subsequently, in the conclusions of Theorems 1.4 and 6.4, the graded relative hy-
perbolicity should be changed to saturated graded relative hyperbolicity as stated in
Section 6 below.

2. Setting of Proposition 5.1

Recall the setting of Proposition 5.1. Let G be a group, d a word metric on G with
respect to some generating set (not necessarily finite), such that (G, d) is hyperbolic.
Let H be a subgroup of G. Assume that H has finite geometric height (Definition 4.1)
and uniform qi intersection property (Definition 3.9).

The original version of Proposition 5.1 then asserted that (G, {H}, d) had the
geometric graded relative hyperbolicity property. This is false in general. We propose
here a correction of the statement and of the argument, which uses a natural operation,
the saturation of a quasiconvex subgroup.

In order to guide the reader, we first discuss an example given by D.Osin, in the
vocabulary of [DM17]. Consider a free group F with basis {a, b} and H = 〈a2〉. The
height of H in F is two: it is at least two since aH 6= H but aHa−1 = H, and it is at
most two since 〈a〉 is malnormal in F . The two-fold intersections of essentially distinct
conjugates of H are the conjugates of H. Any three-fold intersection is trivial, hence
the metric d3 is the word metric on F over {a, b}. However this metric is not relatively
hyperbolic with respect to the two-fold intersections (i.e. the conjugates of H) as was
incorrectly promised by Proposition 5.1, because H has two cosets that remain at
bounded distance of one another. It is nonetheless relatively hyperbolic with respect
to the conjugates of the stabilizer of the limit set of H (which is 〈a〉, and is its own
normalizer). This last statement can be generalized to the setting of Proposition 5.1,
and is the purpose of this corrigendum.

3. Definition of saturation

Let (G, d) be a group with a hyperbolic word metric (over a possibly infinite gen-
erating set), let ∂(G, d) be its Gromov boundary. If A is a quasi-convex subgroup of
infinite diameter for d, its limit set ΛA in ∂(G, d) is the intersection of A, the closure
of A in G ∪ ∂(G, d), with ∂(G, d). It is a closed A-invariant subset of ∂(G, d). Since
for all g ∈ G, the coset gA remains at bounded distance to the subgroup gAg−1, the
limit set of gAg−1 is the intersection of gA with ∂(G, d), and so is the translate by g
of ΛA. In particular, if g normalizes A it preserves its limit set.
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Let us also remark that if A is quasi-convex and of infinite diameter, its limit set
contains at least two points. To see this, we argue that we may find a hyperbolic isom-
etry of (G, d) in A (which is sufficient to provide two different points in the limit set).
Assume that there are only non-hyperbolic isometries in A. Recall Gromov’s classi-
fication of actions on hyperbolic spaces (in particular [Gro87, Lem. 8.1.A]): either A
is bounded, or ΛA is a single point at infinity, fixed by A, and all sequences in A

whose distance to 1 goes to infinity converge to this point. The first case is excluded
by assumption on the diameter of A.

In the second case, consider two sequences of elements in A, an and a′n such that
the distance d(an, a

′
n) goes to infinity, and both converging to this point. By quasicon-

vexity, there is M such that for all n, there is a M -quasi-geodesic in A between them.
After multiplication by an element of A (near the midpoint of this quasigeodesic)
we may assume that it passes uniformly close to 1 and that d(1, an) and d(1, a′n) go
to infinity. By Gromov’s lemma [Gro87, Lem. 8.1.A], as recalled, the two sequences
still converge to this unique point in the limit set, and therefore the Gromov product
(an · a′n)1 goes to infinity. But this contradicts that we have an M -quasigeodesic in A
between an and a′n that passes uniformly close to 1.

If A has infinite diameter, we define the saturation of A, denoted As, to be the
stabilizer of the limit set ΛA of A in ∂(G, d). If A is a finite subgroup of G, we
define As to be As = A.

In the special case where (G, d) is a relatively hyperbolic group, with the relative
metric, we also consider the case where A is infinite, of bounded diameter for d. In such
case, it is classical that A is necessarily contained in a parabolic subgroup (see for
instance [DG18, Lem. 2.3]), and its saturation As is the (unique) maximal parabolic
subgroup containing A. In all three cases, A is a subgroup of As.

We refrain from defining the saturation of an infinite bounded subgroup of (G, d)

in general, since apart from the relatively hyperbolic case, we will use this notion for
convex cocompact subgroups of Mapping Class Groups and Out(Fn), which are never
both infinite and bounded for the curve complex metric or the free factor complex
metric.

Let us observe the following.

Lemma 1. — Let (G, d) be a group with a hyperbolic word metric. If a subgroup A is
quasi-convex, of infinite diameter in (G, d), then its saturation As is its own normal-
izer, contains A and remains at bounded distance from A in (G, d).

If (G, d) is relatively hyperbolic, and A is an infinite bounded subgroup, the same
conclusion holds.

Proof. — The second assertion is actually a classical fact of relative hyperbolicity
(as we mentioned, A is then parabolic, and by definition, its saturation is the unique
maximal parabolic subgroup containing A, which is its own normalizer inG, by [Osi06,
Th. 1.4]). We focus on the proof of the first assertion. By our choices of definitions, A
is a subgroup of As.
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We prove that As remains at bounded distance from A. Assume that a sequence of
elements αn of As diverges from A in (G, d). By multiplying on the left by elements
of A (which does not change its distance to A), we may assume that the distance to A
is realized by d(1, αn). By quasi-convexity of A, there is M such that the Gromov
product (αn · ξ)1 remains bounded by M , for all ξ in ΛA. Since As preserves ΛA, for
all such ξ, αnξ ∈ ΛA, and therefore, any (δ)-quasigeodesic ray from αn to αnξ must
fellow-travel the segment [αn, 1] for at least d(1, αn) −M − 20δ. Translating this to
the base point 1, it means that the quasigeodesic rays from 1 to any point in ΛA

must fellow travel the same segment [1, α−1n ] for such a length. Therefore for all ξ, ξ′
in ΛA, the Gromov product (ξ · ξ′)1 is at least d(1, αn) −M − 10δ. Letting n go to
infinity yields that ΛA is a single point, a contradiction with our previous observation
on limit sets.

As a consequence, the limit set of As cannot be larger than that of A, and therefore
ΛAs = ΛA.

As was noticed earlier, any element in the normalizer of As has to preserve ΛAs.
Hence by definition of As, and the last equality ΛAs = ΛA, it has to be in As. �

Let us define the saturated (geometric) graded relative hyperbolicity property, as a
variation of Definition 4.3, as follows. Note that only the second condition is changed
compared to the original definition 4.3.

Let G be a group, d the word metric with respect to some (not necessarily finite)
generating set and H a finite collection of subgroups. Let Hi be the collection of all
i-fold conjugates of H . Let (Hi)0 be a choice of conjugacy representatives and CH i

the set of left cosets of elements of (Hi)0.
Let also SH i be the collection of saturations of the groups in Hi for the metric d.

Let (SH i)0 be a choice of conjugacy representatives of these groups, and CSH i

the family of left cosets of (SH i)0. Let dsi be the metric on G obtained from d by
electrifying the elements of CSH i. Let CSH N be the graded family (CSH i)i∈N. We
say that (G, d) has saturated (geometric) graded relative hyperbolicity with respect
to CSH N if

(1) H has (geometric) height n for some n ∈ N, and for each i there are finitely
many orbits of i-fold intersections,

(2) for all i, CSH i coarsely hyperbolically embeds in (G, dsi ),
(3) there is Di such that all items of CH i are Di-coarsely path connected in (G, d).
We say that (G, d) has saturated graded relative hyperbolicity with respect to

CSH N if (2) and (3) are true, and (1) is true for the algebraic height.

4. Uniform qi intersection property passes to saturations

Recall that uniform qi intersection property was defined in Definition 3.9. Let us
first notice the following, that essentially states that this property passes to satura-
tions.
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Lemma 2. — Assume that (G, d) is hyperbolic. If H has uniform qi intersection prop-
erty in (G, d) and if CSH N is obtained as in the definition above, then for all i there
exists Cs

i such that each element of CSH i is quasi-convex in (G, d), and such that if
A0, B0 are in (SH i)0 and if ΠB0

(gA0) has diameter larger than Cs
i for the metric d,

then gA0g
−1 ∩B0 has diameter larger than Cs

i for d.

Proof. — We first prove the uniform quasi-convexity of elements of (SH i)0. The
groups in (Hi)0 are uniformly quasi-convex in (G, d), by the first point of Defini-
tion 3.9. Each group As in (SH i)0 has a subgroup A in (Hi)0 which is co-bounded
in As (for the metric of (G, d)). By hyperbolicity of (G, d) any geodesic between two
points of As is close to a geodesic between two points of A, which itself remains at
bounded distance from A hence from As. This proves the first point.

For the second point, assume the contrary: for all Ci we can find As, Bs in (SH i)0
and g (all depending on Ci) such that ΠBs(gAs) has diameter larger than Ci for the
metric d, but gAsg

−1∩Bs has diameter smaller than Ci for d. Consider elements A,B
in (Hi)0 of which As and Bs are the saturations. Of course gAg−1 ∩B has diameter
smaller than Ci for d. On the other hand, we can see that the diameter of ΠB(gA)

must go to infinity with Ci. Indeed, take pairs of points a0, a1 in gAs and b0, b1 in Bs

realizing the shortest point projection of a0, a1 respectively, and such that d(b0, b1)

is larger than Ci. Then, we may find a′0, a′1 in gA close to a0, a1 (say at distance at
most D), and consider their shortest point projection on B, say b′0, b′1. Approximate
the octagon (b0, a0, a

′
0, b
′
0, b
′
1, a
′
1, a1, b1) by a tree, by hyperbolicity. Because both B

and Bs are quasi-convex (with uniform constant over (SH i)0), the Gromov products
of the consecutive sides at the vertices b0, b1, b′0, b′1 are uniformly bounded. One can
then deduce that the central subsegment of [b0, b1] of length at least Ci minus a
universal constant, remains close to [b′0, b

′
1]. Thus, the diameter of ΠB(gA) is larger

than this quantity.
By uniform qi-intersection property for Hi, we then have a contradiction. �

5. Correction to Proposition 5.1

Then we can show a correct version of Proposition 5.1.

Proposition 3. — Let G be either a relatively hyperbolic group with a relative word
metric d, or a Mapping class group with a word metric d equivariantly quasi-isometric
to the curve complex, or Out(Fn) with a word metric d equivariantly quasi-isometric
to the free factor complex.

Let H be a subgroup of G. If {H} has finite (geometric) height for d and has
the uniform qi-intersection property, then (G, {H}, d) has the saturated (geometric)
graded relative hyperbolicity property with respect to CSH N.

Proof. — By Lemma 2, the elements CSH i also are Cs
1 -quasi convex in (G, d) for

some uniform constant Cs
1 . By Proposition 2.11, all the elements of CSH i are uni-

formly quasi-convex in (G, di+1).
We now need to show that the elements of CSH i are mutually cobounded for dsi+1

(a property which fails in general for C Hn).
J.É.P. — M., 2019, tome 6
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Assume, by contradiction, that the elements (cosets) of CSH i are not mutually
co-bounded for the metric dsi+1. For allD there exist two essentially different cosets As

(which can be assumed in (SH i)0) and gBs (for Bs ∈ (SH i)0 as well), that have
projection larger than D on one another for the metric dsi+1. Recall that essentially
different means that either As 6= Bs or g /∈ Bs.

By Lemma 2, for D large enough, As ∩ gBsg
−1 has diameter larger than D− 2Cn

for dsi+1.
By definition of saturation, As and Bs are either bounded, or equal the stabilizers

of their respective limit sets ΛAs,ΛBs in the hyperbolic metric d.
In the case where both As and Bs are bounded, yet infinite (or even of sufficiently

large cardinality), then we are in the relatively hyperbolic case, and these groups
must be parabolic, and as saturations, they are equal to maximal parabolic group
containing A and B. Their intersection cannot be larger than a universal constant
for d, contrary to our assumption.

In the case As and Bs are unbounded, we first observe that in that metric,
ΛAs ∩ ΛgBsg

−1 = Λ(As ∩ gBsg
−1);

for proving this we distinguish whether G is a relatively hyperbolic group or not. This
is a result of Yang [Yan12, Th. 1.1] for relatively hyperbolic groups.

For a convex cocompact subgroup of a Mapping Class Group, (respectively of
Out(Fn)), this observation can be derived from the fellow traveling property of a thick
part of Teichmüller space (Rafi [Raf14]) (respectively Dowdall-Taylor [DT18, DT17]),
and that the weak hull of the group remains in a thick part. We sketch an argument
for Mapping Class Groups. If ξ is limit of (an) (sequence in As) and of (gbng

−1)

(in gBsg
−1), then after possible re-indexing of subsequences, and choosing a base

point x0 in Teichmüller space, anx0 and gbng−1x0 remain at bounded distance. Thus
infinitely often, a−1i aj = gb−1i bjg

−1, hence the intersection accumulates on ξ.
Now, taking A and B in Hi of which As, Bs are the saturations, ΛAs = ΛA, and

ΛgBsg
−1 = ΛgBg−1. Therefore, the saturation of (A∩gBg−1) contains As∩gBsg

−1,
hence it has diameter larger than D − 2Cn for dsi+1.

It follows that (A∩gBg−1) is not an essential (i+1)-fold intersection of conjugates
of H. Writing A and B as i-fold intersection themselves as A = X1 ∩ · · · ∩ Xi, and
gBg−1 = Y1 ∩ · · · ∩Yi, then A∩ gBg−1 = X1 ∩ · · · ∩Xi ∩Y1 ∩ · · · ∩Yi, which can only
contain i essentially distinct conjugates. We must conclude that after permutation of
indices, Xj = Yj for all j, and that gBg−1 = A. Therefore, at the level of saturations,
gBsg

−1 = As. Since As, Bs are in (SH i)0 which is a set of conjugacy representatives,
we have that As = Bs. And therefore g normalizes Bs.

This is precisely where the mistake was: had we taken B in (Hi)0, we could not
have concluded that g ∈ B. But now, Bs ∈ (SH i)0, which consists of saturated
subgroups, which are equal to their own normalizers. Thus, indeed, we can conclude
that g ∈ Bs. This contradicts our original choice that As and gBs are essentially
different.

The end of the proof is now the use of Proposition 2.10, and 2.23, as in the original
version of [DM17]. �
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6. Conclusion

We can proceed and correct statements 5.2 to 5.5. In each of them only the con-
clusion is changed to: (G, {H}, d) have the saturated geometric graded relative hyper-
bolicity.

The syntactical modification of the proof is straightforward, using the corrected
proposition above in place of Proposition 5.1.

The main results Theorems 1.4 and 6.4 need to be corrected as follows.

Theorem 4
(1) Let G be a hyperbolic group and d the word metric with respect to a finite

generating set S.
– If a subgroup H is quasiconvex then (G, {H}) has saturated graded geomet-

ric relative hyperbolicity.
– If (G, {H}) has graded geometric relative hyperbolicity, then H is quasicon-

vex.
(2) Let G be a finitely generated group, hyperbolic relative to P, S a finite relative

generating set, and d the word metric with respect to S ∪P.
– If a subgroup H is relatively quasiconvex then (G, {H}, d) has saturated

graded geometric relative hyperbolicity.
– If (G, {H}, d) has graded geometric relative hyperbolicity, then H is rela-

tively quasiconvex.
(3) Let G be a mapping class group Mod(S) and d the metric obtained by elec-

trifying the subgraphs corresponding to sub mapping class groups so that (G, d) is
quasi-isometric to the curve complex CC(S).

– If a subgroup H is convex cocompact in Mod(S) then (G, {H}, d) has sat-
urated graded geometric relative hyperbolicity.

– If (G, {H}, d) has graded geometric relative hyperbolicity and the action
of H on the curve complex is uniformly proper, then H is convex cocompact in
Mod(S).

(4) Let G be Out(Fn) and d the metric obtained by electrifying the subgroups corre-
sponding to subgroups that stabilize proper free factors so that (G, d) is quasi-isometric
to the free factor complex Fn.

– If a subgroup H is convex cocompact in Out(Fn), then (G, {H}, d) has
saturated graded geometric relative hyperbolicity.

– If (G, {H}, d) has graded geometric relative hyperbolicity and the action
of H on the free factor complex is uniformly proper, then H is convex cocompact
in Out(Fn).

Proof. — The forward implications of quasiconvexity to graded geometric relative
hyperbolicity in the first 3 cases are proved by the corrections above of Propositions
5.2, 5.3, 5.4, and 5.5. and case 4 by the correction of Proposition 5.4.

Reverse implications are those of Theorem 6.4, their proof is unchanged. �
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