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THE EXT ALGEBRA OF A QUANTIZED CYCLE

by Damien Calaque & Julien Grivaux

Abstract. — Given a quantized cycle (X,σ) in Y , we give a categorical Lie-theoretic inter-
pretation of a geometric condition, discovered by Shilin Yu, that involves the second formal
neighbourhood of X in Y . If this condition (that we call tameness) is satisfied, we prove that
the derived Ext algebra RHomOY

(OX ,OX) is isomorphic to the universal enveloping algebra
of the shifted normal bundle NX/Y [−1] endowed with a specific Lie structure, strengthening an
earlier result of Căldăraru, Tu, and the first author. This approach enables us to get some con-
ceptual proofs of many important results in the theory: in the case of the diagonal embedding,
we recover former results of Kapranov, Markarian, and Ramadoss about (a) the Lie structure
on the shifted tangent bundle TX [−1] (b) the corresponding universal enveloping algebra (c)
the calculation of Kapranov’s big Chern classes. We also give a new Lie-theoretic proof of Yu’s
result for the explicit calculation of the quantized cycle class in the tame case: it is the Duflo
element of the Lie algebra object NX/Y [−1].

Résumé (L’algèbre des Ext d’un cycle quantifié). — Étant donné un cycle quantifié (X,σ)
dans Y , nous donnons une interprétation d’une condition découverte pas Shilin Yu en termes
de théorie de Lie catégorique. Cette condition, que nous appelons modération géométrique, met
en jeu le second voisinage infinitésimal de X dans Y . Sous cette hypothèse de modération, nous
démontrons que l’algèbre des Ext RHomOY

(OX ,OX) est isomorphe à l’algèbre enveloppante
du fibré normal décalé NX/Y [−1], que l’on munit d’une structure de Lie catégorique bien
particulière, renforçant un résultat précédent de Căldăraru, Tu et du premier auteur. Cette
approche permet de fournir des démonstrations conceptuelles de plusieurs résultats majeurs
du sujet : dans le cas du plongement diagonal, nous retrouvons en particulier des résultats de
Kapranov, Markarian et Ramadoss à propos (a) de la structure de Lie sur le tangent décalé
TX [−1] (b) de l’algèbre enveloppante correspondante (c) du calcul des « big Chern classes » de
Kapranov. Nous donnons également une nouvelle démonstration purement algébrique (basée
sur les structures de Lie catégoriques) d’un résultat de Yu à propos du calcul explicite de la
classe de cycle quantifiée dans le cas modéré : il s’agit de l’élément de Duflo de l’objet en algèbre
de Lie NX/Y [−1].
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1. Introduction

1.1. The diagonal embedding case. — Let X be a complex manifold or a smooth
algebraic variety over a field of characteristic zero. Thanks to the celebrated re-
sult of Hochschild, Kostant and Rosenberg (cf. [14]), the Hochschild homology and
cohomology groups of the structural sheaf OX are given by HHi(OX) = ΩiX and
HHi(OX) = ΛiTX . These isomorphisms can be upgraded at the level of derived cate-
gories, and are called (geometric) HKR isomorphisms. For more history on this topic,
we refer the reader to the paper [12], as well as references therein. In the present
paper, we will be especially interested in the geometric HKR isomorphism involving
Hochschild cohomology: this isomorphism is an additive sheaf isomorphism between
the sheaf of polyvector fields S(TX [−1]) =

⊕
i>0 ΛiTX [−i] and the derived Hom

sheaf of the diagonal p1∗RHomOX×X
(OX ,OX). Here we view X as the diagonal in-

side X×X (which is the geometric counterpart of looking at an algebra as a bimodule
over itself) and p1 is the first projection.

Both members of this isomorphism have multiplicative structure: the wedge prod-
uct on polyvector fields, and the Yoneda product on the derived Hom complex. Taking
the cohomology on both sides, for any non-negative integer p, the corresponding iso-
morphism between the algebras

⊕p
i=0 Hp−i(X,ΛiTX) and ExtiX×X(OX ,OX) is not

multiplicative in general (contrarily to the homological geometric HKR). It has been
conjectured by Kontsevich [17] and later proved by Van den Bergh and the first au-
thor [4] that one can use the square root of the Todd class Td (X) on

⊕
i Hi(X,ΩiX)

of the tangent sheaf TX to “twist” the global cohomological HKR isomorphism in
order to get an isomorphism of algebras.

The Todd class of X is also intimately related to the geometry of the diagonal of X
in another way: it is the correction term appearing on the Grothendieck-Riemann-
Roch theorem, so thanks to the Lefschetz formalism it can be interpreted as a restric-
tion of the Grothendieck cycle class to the diagonal itself. This has been hinted in
the pioneering work of Toledo-Tong (see [23, §6]), and formalized using HKR isomor-
phisms in an unpublished manuscript of Kashiwara around 1992. Kashiwara’s account
can be found in [11], where the second author proves in fact that the Todd class is
the Euler class of OX , proving a conjecture of Kashiwara–Schapira [16].
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The above results can be re-interpreted very naturally in Lie-theoretic terms after
the works of Kapranov [15] and Markarian [20]:

– The shifted tangent sheaf TX [−1] is a Lie algebra object in the derived category
Db(X).

– Thanks to results of Markarian [20] and Ramadoss [21], the universal enveloping
algebra of this Lie algebra object is indeed the derived Hom sheaf, and that the geo-
metric HKR isomorphism can be re-interpreted as the Poincaré-Birkhoff-Witt (PBW)
isomorphism.

– Every element F in Db(X) is naturally a representation of TX [−1], and via the
PBW isomorphism the character of this representation (which is a central function
on U(TX [−1])) can be identified with the Chern character of F .

– The Todd class becomes the derivative of the multiplication map in the universal
enveloping algebra, and is therefore the Duflo element of TX [−1].

– The isomorphism HKR◦ι√
Td (X)

from [17, 4] can be seen as a Duflo isomorphism
(see [9]) for the Lie algebra object TX [−1].
We refer to [6], [5] for further analogies between Lie theory and algebraic geometry.

1.2. More general embeddings: tame quantized cycles. — In the present paper, we
are interested in the more general situation where we replace the diagonal embedding
∆X ↪→ X×X by an arbitrary closed immersion X ↪→ Y , where X is a smooth closed
subscheme of an ambient smooth scheme Y .

In [1], Arinkin and Căldăraru gave a necessary and sufficient condition for an ad-
ditive generalized geometric HKR isomorphism to exist between RHomOY

(OX ,OX)

and S(NX/Y [−1]): the condition is that NX/Y extends to a locally free sheaf on the
first infinitesimal neighborhood of X in Y . The Lie theoretic interpretation of the
first order neighborhood and of the above geometric condition has been given in [5]
by Căldăraru, Tu, and the first author.

Earlier on, in Kashiwara’s 1992 unpublished manuscript, a more restrictive condi-
tion is introduced: Kashiwara deals with subschemes with split conormal sequence,
which means that the map from X to its first infinitesimal neighborhood in Y admits
a global retraction (in this case, any locally free sheaf on X extends at order one
in Y ). On the Lie side, this corresponds to pairs h ⊂ g that split as h-modules, these
are usually called reductive pairs. In [12], the second author developed Kashiwara’s
construction in this framework. The data of a subscheme X of Y together with such
a retraction σ is called a quantized cycle, and to such a cycle it is possible to asso-
ciate geometric HKR isomorphisms, as well as a quantized cycle class qσ(X) living in⊕

i>0 Hi(X,ΛiN∗X/Y ) that generalizes the Todd class in the diagonal case. Recently,
answering a question raised by the second author in the article [12], Yu has shown
in [24] the following result: given a quantized cycle (X,σ) in Y such that σ∗NX/Y

extends to a locally free sheaf on the second infinitesimal neighborhood of X in Y ,
– The quantized cycle class qσ(X) class is completely determined by the geometry

of the second infinitesimal neighborhood of X in Y .
– It can be expressed by an explicit formula similar to that of the usual Todd class.
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Yu’s proof is based on direct calculation using the dg Dolbeault complex as well as
homological perturbation theory. In this paper we provide a Lie theoretic explanation
of Yu’s results. We introduce the notion of tame quantized cycle corresponding to
Yu’s condition: a quantized cycle (X,σ) is tame if σ∗NX/Y extends to a locally free
sheaf at the second order. We can list all the conditions that can be investigated on
the cycle X (each condition being more restrictive than the previous one), and the
corresponding conditions for Lie algebra pairs:

cycles X ⊂ Y Lie pairs h ⊂ g

N∗X/Y extends at the first order delicate condition, cf. [6]

X admits a retraction at the first order in Y g = h⊕m

i.e., X can be quantized as h-modules

X is a tame quantized cycle [πh([m,m]),m] = 0

X admits a retraction at the second order in Y g = hom

If one of the two last conditions is satisfied, the object NX/Y [−1] is naturally a Lie
object in Db(X), but this is no longer the case if we drop the tameness assumption.
In full generality (that is, without any specific quantization conditions), the algebraic
structure of NX/Y [−1] has been investigated in [6]: it is a derived Lie algebroid, whose
anchor map is given by the extension class of the normal exact sequence of the pair
(X,Y ). Hence, our setting can be understood as the weaker universal hypotheses
for which this derived Lie algebroid is a true Lie object in the symmetric monoidal
category Db(X).

1.3. The principal results. — The two main geometric results we prove in this pa-
per deal with tame quantized cycle. The first result is the explicit computation of the
enveloping algebra of the Lie algebra object NX/Y [−1]. To state the result we intro-
duce the following notation: we have two natural endofunctors HomOY

(?,OX) and
HomOY

(OX , ?) of the category of sheaves of OX -modules. We denote their respective
derived functors by RHom`

OY
(?,OX) and RHomr

OY
(OX , ?).

Theorem A. — Let (X,σ) be a tame quantized cycle in Y . The class α defines a Lie
coalgebra structure on N∗X/Y [1], hence a Lie algebra structure on NX/Y [−1]. Besides,
the objects RHom`

OY
(OX ,OX) and RHomr

OY
(OX ,OX) are naturally algebra objects

in the derived category Db(X), and there are commutative diagrams

σ∗RHomOS
(OX ,OX) //

HKR

��

RHom`
OY

(OX ,OX)

HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])
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and
σ∗RHomOS

(OX ,OX) //

dual HKR

��

RHomr
OY

(OX ,OX)

dual HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

where all horizontal arrows are algebra morphisms, and all vertical arrows are iso-
morphisms.

At first glance, this result looks similar to the main result of [6], which says that in
full generality, the universal enveloping algebra of the Lie algebroid NX/Y [−1] is the
object RHomOY

(OX ,OX), considered as an element of Db
∆X

(X × X).(1) The main
subtlety here lies in the fact that if the Lie algebroid structure of NX/Y [−1] is in fact
a true Lie structure in Db(X), the universal enveloping algebras of NX/Y [−1] as a Lie
algebra object or as a derived Lie algebroid are not the same; they don’t even live in
the same categories. In the setting of [6], RHomOY

(OX ,OX) is naturally an algebra
object in Db

∆X
(X×X). In our setting, it is not at all obvious that RHom`

OY
(OX ,OX)

and RHomr
OY

(OX ,OX) carry natural multiplicative structures. This is where the
tameness condition becomes crucial.

The second result we prove is in fact originally due to Shilin Yu [24], although
our proof is completely different and Lie-theoretic. Yu’s original statement is slightly
different, because the Lie algebra structure on NX/Y [−1] is not considered at all in
his paper. The statement is the following:

Theorem B. — Let (X,σ) be a tame quantized cycle in Y . Then the quantized cycle
class of (X,σ) defined in [12] is the Duflo element of the Lie algebra object NX/Y [−1].

The proofs of these two results combine two different types of ingredients: purely
geometrical considerations linked to the geometry of formal neighborhoods (mainly
the two first ones) of a subscheme, as well as the use of abstract results on Lie algebra
objects on symmetric monoidal categories.

1.4. Plan of the paper. — The paper is organized as follows:
– Section 2 is devoted to some recollection about Lie algebra objects in a categorical

setting. We claim no originality for this material which seems to be well-known among
experts in representations theory, but we could not locate the desired results in the
form we needed in the literature. For instance, most references are written down for
abelian categories while we work in the more general Karoubian framework. The proof
of the categorical PBW, which seems to be folklore among people in representation
theory, is given using an operadic method in the appendix.

(1)This means considered as a kernel supported in the diagonal.

J.É.P. — M., 2019, tome 6



36 D. Calaque & J. Grivaux

– Section 3 deals with three different topics. Section 3.1 gives universal formulas
for the multiplication map U(g)⊗ g→ U(g) via the PBW isomorphism. The proof is
again provided in the appendix using the operadic method. In Section 3.2, we define
an algebraic condition that characterizes uniquely the Duflo element of a Lie object
in a symmetric monoidal category. Up to our knowledge, this result is new in this
degree of generality (in the case g = TX [−1], this is [20, Lem. 4]). This will be the
key ingredient to our Lie-theoretic proof of Yu’s result. In Section 3.3, we introduce
the “tame condition” for pairs of Lie algebras, which is a Lie theoretic analog of Yu’s
condition.

– Section 4 recollects previous results on (first and second order) infinitesimal
neighborhoods, HKR isomorphisms and quantized cycles. This is where we state the
geometric tameness condition, a-k-a Yu’s condition.

– In Section 5 we explain that the geometric tameness condition coincides with
the Lie-theoretic tameness condition for the pair

(
TX [−1],TY [−1]|X

)
of Lie algebra

objects in Db(X). We get in particular that in the tame case, NX/Y [−1] is a Lie algebra
object in Db(X) and we describe its universal enveloping algebra in geometric terms.
Using the Lie-theoretic results of Sections 2 and 3, we are able to give enlightening
and simple proofs of results of Ramadoss about Kapranov big Chern classes (diagonal
case), and Yu’s formula for the quantized cycle class.

– In Section 6 we use the above to get a description of the Ext algebra of a tame
quantized cycle. We show in particular that it is completely determined by the second
order infinitesimal neighborhood of X in Y .

– We conclude the paper with a few perspectives in Section 7.

2. Universal enveloping algebras and the categorical PBW theorem

2.1. Preliminary results of linear algebra

2.1.1. Partially antisymmetric tensors. — Let k be a field of characteristic zero and
let C be a k-linear symmetric monoidal category that is Karoubian (i.e., every idem-
potent splits(2)) and such that countable direct sums exist and commute with the
product. We can assume without loss of generality that C is a strict monoidal cat-
egory (i.e., it is harmless to drop the parenthesizations of iterated tensor products
from the notation). For any non-negative integer n, the symmetric group Sn acts
naturally on V ⊗n, where V is an object of C . Let πn be the element (n!)−1

∑
g∈Sn

g,
considered as an idempotent element of the group algebra k[Sn]. It induces a natural
idempotent(3) on V ⊗n, whose kernel is denoted by Λ̃nV and whose image is denoted
by SnV . We therefore have a decomposition

V ⊗n = SnV ⊕ Λ̃nV.

(2)Therefore, every multiple of a projector has a kernel and an image; we will repeatedly use this
property.

(3)Abusing notation, we will denote by the same symbol an element of k[Sn] and the induced
endomorphism of V ⊗n in C .
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Assume that n is at least two and let

Ψn :
n−1⊕
i=1

(
V ⊗i−1 ⊗ Λ2V ⊗ V ⊗n−i−1

)
−→ V ⊗n

be the map obtained by embedding each Λ2V := Λ̃2V in V ⊗2. We can provide a
concrete description of Λ̃nV via the map Ψn:

Lemma 2.1. — The image of Ψn exits and is canonically isomorphic to Λ̃nV .

Proof. — For i in J1, n−1K, let τi be the transposition in the group Sn that switches i
and i + 1. We first observe that (1 + τi)πn = πn(1 + τi) = πn. Hence the kernel of
1 + τi acting on V ⊗n is a (split) sub-object of the kernel of πn acting on V ⊗n:

V ⊗(i−1) ⊗ Λ2V ⊗ V ⊗(n−i−1) ⊂ Λ̃nV.

In other words, the map Ψn factors through Λ̃nV . In order to conclude, it is then
sufficient to prove that

⊕n−1
i=1

(
V ⊗i−1 ⊗ Λ2V ⊗ V ⊗n−i−1

)
→ Λ̃nV admits a section.

We claim that the right ideal in k[Sn] generated by 1 − τi (1 6 i 6 n − 1) contains
all elements 1 − τ for arbitrary τ in Sn. Indeed, for any elements g1, . . . , gd in the
group algebra k[Sn], we have

1−
∏d
i=1 gi = (1−

∏d−1
i=1 gi)gd + (1− gd).

The claim follows again from the fact that the τi generate Sn. As a corollary, 1− π
sits in this ideal, so that we can choose elements (ai)16i6n−1 in the group algebra
such that

n−1∑
i=1

(1− τi) ai = 1− πn.

As a consequence, we get that the map

Φn :=

n−1∏
i=1

(1− τi) ai : V ⊗n −→
n−1⊕
i=1

V ⊗n

factors through
⊕n−1

i=1

(
V ⊗i−1 ⊗ Λ2V ⊗ V ⊗n−i−1

)
and Ψn ◦Φn is the projection onto

the direct factor Λ̃nV in V ⊗n. �

Example 2.2. — The simplest nontrivial case is n = 3. In this case we can take for
instance {

6a1 = 31 + τ2 + τ2τ1,

3a2 = 1 + τ1.

2.1.2. Jacobi identity. — Let us consider a morphism α : V ⊗2 → V in C which van-
ishes on S2V (i.e., such that α ◦ τ1 = −α).

Proposition 2.3. — The pair (V, α) is a Lie algebra object if and only if there exists

β : Λ̃3V −→ V

such that β ◦Ψ3 = (α ◦ (α⊗ id), α ◦ (id⊗ α)).

J.É.P. — M., 2019, tome 6



38 D. Calaque & J. Grivaux

Proof. — Let u = α ◦ (α⊗ id). The Jacobi identity is equivalent to the identity

u− u ◦ τ2 + u ◦ τ2τ1 = 0.

Remark now that α ◦ (id ⊗ α) = −u ◦ τ2τ1, and that u ◦ τ1 = −u. We now pre-
compose (u,−u ◦ τ2τ1) with the right inverse of Ψ3 given by Lemma 2.1. This gives
a morphism β : Λ̃3V → V . Example 2.2 and a short calculation provide the following
explicit formula:

β =
1

3
(3u− u ◦ τ2 − u ◦ τ2τ1).

This morphism β is the only possible candidate to fulfill the desired condition β◦Ψ3 =

(u,−u ◦ τ2τ1). Then we observe thatβ|Λ2V⊗V = u,

β|V⊗Λ2V = −u ◦ τ2τ1 +
2

3
(2u+ u ◦ τ2τ1).

Hence β ◦Ψ3 = (u,−u ◦ τ2τ1) if and only if 2u+ u ◦ τ2τ1 vanishes on V ⊗ Λ2V . This
condition is clearly implied by the Jacobi identity, but it is in fact equivalent to it.
Indeed, 2u+ u ◦ τ2τ1 vanishes on V ⊗Λ2V if and only if (2u+ u ◦ τ2τ1) ◦ (1− τ2) = 0,
and

(2u+ u ◦ τ2τ1) ◦ (1− τ2) = 2u+ u ◦ τ2τ1 − 2u ◦ τ2 − u ◦ τ2τ1τ2
= 2u+ u ◦ τ2τ1 − 2u ◦ τ2 + u ◦ τ2τ1
= 2(u− u ◦ τ2 + u ◦ τ2τ1). �

2.2. Algebras satisfying the PBW isomorphism

2.2.1. The morphisms ckp. — Let V be an object in C and let A be a unital augmented
algebra object in C together with an algebra morphism ∆: T(V ) → A . From now
on, we require

Assumption A.1. — The composition ∆+ : S(V )→ T(V )→ A is an isomorphism.(4)

Here,
– T(V ) :=

⊕
n>0 V

⊗n is equipped with the concatenation product,
– S(V ) :=

⊕
n>0 SnV ,

– the map S(V )→ T(V ) is the direct sum of direct factor embeddings SnV ⊂ V ⊗n.
Note that A carries a split increasing filtration: FpA := ∆+

(⊕p
i=0 SiV

)
. Moreover,

∆ is a filtered morphism for the obvious degree filtration on T(V ). We now consider the
restriction ∆p of the filtered morphism ∆−1

+ ◦∆ on each homogeneous component V ⊗p;
it decomposes as follows:

∆p := ∆−1
+ ◦∆|V ⊗p =

p∑
k=0

ckp,

(4)Only as objects of C , not as algebras.
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where ckp ∈ HomC (V ⊗p,SkV ). Since A is augmented, c0p vanishes. We further make
the following

Assumption A.2. — For any non-negative integer p the morphism V ⊗p → GrpA '
SpV is the canonical projection πp.

Note that this morphism is nothing but ∆p followed by the projection onto SpV .
This second assumption on A ensures that the restriction of ckp to SpV is zero if
k 6 p − 1, and cpp is the canonical projection πp from V ⊗p to SpV . In particular, if
1 6 k 6 p− 1, then ckp lives naturally in HomC (Λ̃pV,SkV ).

2.2.2. The Lie bracket. — We define α = c12 : Λ2V → V . Since A is augmented, we
can identify F1A with 1⊕ V (via ∆+), where 1 is the monoidal unit of C .

Lemma 2.4. — Let m : A ⊗2 → A be the associative product. Then the morphism
V ⊗2 → A defined by

m ◦∆⊗2
|V ◦ (1− τ1)

factors through ∆+(V ) ⊂ F1A , and coincides with 2∆+ ◦ α.

Proof. — As ∆ is an algebra morphism, we have that

m◦∆⊗2
|V ◦ (1−τ1) = ∆|V ⊗2 ◦ (1−τ1) = ∆+ ◦ (c12 +π2)◦ (1−τ1) = 2∆+ ◦ c12 = 2∆+ ◦α.

We are done. �

Corollary 2.5. — The morphism α defines a Lie structure on V .

2.2.3. Induction formulas for ckp. — We can now provide explicit induction formu-
las for the morphisms ckp. Recall that for 0 6 k 6 p− 1, we consider ckp as an element
of HomC (Λ̃pV,SkV ).

Proposition 2.6. — Given a pair (V,A ) as above, the coefficients ckp are determined
as follows:c

p
p = πp : V ⊗p → SpV.

ckp ◦Ψp = {ckp−1 ◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i−1)}16i6p−1 if 1 6 k 6 p− 1.

Recall here that α = c12.

Proof. — For 1 6 i 6 p− 1 we have

∆|V ⊗p ◦ 1

2
(1− τi) = m(2) ◦∆|V ⊗i−1 ⊗

(
∆|V ⊗2 ◦ 1

2
(1− τ1)

)
⊗∆|V ⊗p−i−1

= m(2) ◦∆|V ⊗i−1 ⊗ (∆ ◦ α)⊗∆|V ⊗p−i−1 (by Lemma 2.4)
= ∆|V ⊗p−1 ◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i−1),

where m(2) := m ◦ (m ⊗ id). Applying ∆−1
+ followed by the projection on the direct

factor SkV we get

ckp ◦
1

2
(1− τi) = ckp−1 ◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i−1).
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Hence both members of the induction relation agree on V ⊗i−1 ⊗ Λ2V ⊗ V ⊗p−i−1 for
1 6 i 6 p− 1. �

2.3. Universal algebras in the categorical setting

2.3.1. Reverse PBW theorem. — We can now prove our first main result: assuming
that the algebra A satisfies the PBW theorem (i.e., Assumptions A.1 and A.2), we
prove that it is the universal enveloping algebra of V endowed with the Lie bracket 2c12.

Proposition 2.7 (Reverse categorical PBW). — If A satisfies Assumptions A.1 and
A.2 of Section 2.2.1, then A is a universal enveloping algebra of the Lie algebra
(V, 2α).

Proof. — For any associative algebra object B in C , with product mB : B⊗2 → B,
we denote by BLie = (B,µB) the Lie algebra object which is B endowed with the
Lie bracket µB = mB ◦ (1 − τ1). Lemma 2.4 tells us that the direct factor inclusion
(∆+)|V : V ↪→ A is a morphism of Lie algebra objects from (V, 2α) to ALie in C .

Assume now to be given a morphism f : V → B. By the universal property of the
tensor algebra, it defines an algebra morphism f̃ : T(V )→ B.

Lemma 2.8. — If f is a Lie algebra morphism (from (V, 2α) to BLie) then f̃ factors
through a unique morphism g : A → B.

Proof of the Lemma. — It is sufficient to prove that f̃ = f̃ ◦ s ◦∆, where s is a section
of ∆. Indeed, the only possible choice is g = f̃ ◦ s. Here we use the section s given by
∆−1

+ : A → S(V ) ⊂ T(V ).
We will prove by induction on p that f̃|V ⊗p = f̃ ◦ ∆−1

+ ◦ ∆|V ⊗p . Note that this
identity is obviously satisfied when restricted to SpV ⊂ V ⊗p. The only thing left to
prove is thus that f̃|Λ̃pV = f̃ ◦ s ◦∆|Λ̃pV .

– For p ∈ {0, 1} the result is obvious.
– For p = 2, we have

f̃|Λ2V =
1

2
µB ◦ (f ⊗ f)|Λ2V = f ◦ α = f ◦ c12 = f̃ ◦∆−1

+ ◦∆|Λ2V .

– Let us now assume that the required equality holds for a given p > 2. We compute

f̃ ◦ s ◦∆|V ⊗i−1⊗Λ2V⊗V ⊗p−i = f̃ ◦
( p∑
k=1

ckp+1

)
|V ⊗i−1⊗Λ2V⊗V ⊗p−i

= f̃ ◦
( p∑
k=1

ckp

)
◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i) (by Proposition 2.6)

= f̃ ◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i) (by induction).

Finally one can prove that

f̃|V ⊗i−1⊗Λ2V⊗V ⊗p−i = f̃ ◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i)

in the same way as for the case when p = 2. �
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End of the proof of Proposition 2.7. — In order to conclude one has to prove that g is
indeed a morphism of algebras:

g ◦m = f̃ ◦ s ◦m = f̃ ◦ s ◦m ◦ (∆ ◦ s)⊗2

= f̃ ◦ s ◦∆ ◦m ◦ s⊗2 = f̃ ◦m ◦ s⊗2

= m ◦ (f̃ ◦ s)⊗2 = m ◦ g⊗2. �

2.3.2. Categorical PBW theorem. — In this section, we will give the definitive form of
the categorical PBW theorem. This results relies heavily on the following fact, that
we will prove in the appendix:

Theorem 2.9. — There exists an algebra A that satisfies Assumptions A.1 and A.2.

Remark 2.10. — In [8, Lem. 1.3.7.5], the authors provide an explicit multiplication
law m? on S(V ) in the case when C is the category of graded vector spaces (or more
generally any abelian category), and prove that it is associative. Then the algebra
A = (S(V ),m?) satisfies all required properties. Their proof should carry on as well
for a general C , but the formulas defining m? are daunting to write down in the
categorical setting. This is why we provide an operadic approach in the appendix
(the result is written down in Section A.5).

Theorem 2.11 (Categorical PBW). — Let V be an object of C and α be an element
of HomC (V,Λ2V ).

– The system of equations

(1)


ckp ∈ HomC (Λ̃pV,SkV ) for 1 6 k 6 p− 1,

cpp = πp : V ⊗p → SpV

ckp ◦Ψp = {ckp−1 ◦ (idV ⊗i−1 ⊗ α⊗ idV ⊗p−i−1)}16i6p−1 if 1 6 k 6 p− 1,

has a solution (ckp)16k6p if and only if α is a Lie bracket on V . If it exists, this solution
is unique.

– Given a Lie algebra object (V, α) in C , let (ckp)16k6p be coefficients satisfying (1).
If we define a product m? on S(V ) by the formula

(m?)|SpV⊗SqV :=

(p+q∑
k=1

ckp+q

)
|SpV⊗SqV

,

then m? is associative and A = (S(V ),m?) is a universal enveloping algebra of
(V, 2α). Besides, the PBW theorem holds.

Proof. — Assume that α is a Lie bracket. Theorem 2.9 gives an algebra A satisfying
Assumptions A.1 and A.2 of Section 2.2.1. Hence Proposition 2.6 provides the exis-
tence of the ckp. Uniqueness is clear. Conversely, if the equations (1) are satisfied, then
we have

c13 ◦Ψ3 = (α ◦ (α⊗ id), α ◦ (id⊗ α)).

Thanks to Proposition 2.3, α satisfies the Jacobi identity.
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Now assume that α is a Lie bracket, and let A be an algebra satisfying Assumptions
A.1 and A.2 of Section 2.2.1. Then we can transport the algebra structure on S(V )

via the isomorphism ∆+: we have

(m?)|SpV⊗SqV = ∆−1
+ ◦m ◦ (∆|SpV ⊗∆|SqV )

= ∆−1
+ ◦∆|SpV⊗SqV

=

(p+q∑
k=1

ckp+q

)
|SpV⊗SqV

.

This gives the result. �

3. Distinguished elements in the universal enveloping algebra

3.1. The derivative of the multiplication map

3.1.1. The Todd series. — We borrow the notation from the previous section: (V, α)

is a Lie algebra object in C and m? is the associative product on S(V ) from Theorem
2.11. Our aim is to give a closed formula for the restriction ϕ of m? to S(V ) ⊗ V ⊂
S(V )⊗ S(V ).

– On S(V ) we have an associative and commutative product m0 defined as the
composition

S(V )⊗2 ⊂ T(V )⊗2 −→ T(V ) −→−→ S(V ).

– We write τp,q for the transposition (p, q) in the symmetric group, as well as for
the corresponding action on V ⊗n.

– We consider the morphism ω(V, µ) : SnV ⊗ V → Sn−1V ⊗ V defined as

(2) ω(V, µ) := (idV ⊗n−1 ⊗ µ) ◦
n∑
i=1

τi,n = n (idV ⊗n−1 ⊗ µ),

where µ := 2α. We leave it as an exercise to check that the image of ω(V, µ) indeed
factors through Sn−1V ⊗ V ⊂ V ⊗n. We often simply write ω as the choice of (V, µ)

is clear from the context.
– We consider the morphism $V : SnV ⊗ V → Sn−1V ⊗ Λ2V ⊂ V ⊗n+1 defined as

the restriction of ωT(V )Lie
to SnV ⊗ V . In other words, since τi,n = id on SnV ⊗ V ,

$V = (1− τn) ◦
n∑
i=1

τi,n = n (1− τn).

We often simply write $ as the choice of V is clear from the context.

Theorem 3.1. — The map ϕ = m?|S(V )⊗V is the composition of ω/(1− exp(−ω))

with the multiplication morphism m0 of the symmetric algebra S(V ).

For the proof, we refer the reader to the appendix (more specifically to Sec-
tion A.6). In the classical case of ordinary Lie algebras, this was proven originally
in [2, §6 Th. III]. We also refer the reader to [21, §5.2.1].
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3.1.2. Linear algebra computations. — All along this subsection, we assume that V
is a dualizable object in C and we denote by V ∗ its dual:(5) in particular, we have a
coevaluation map ε : 1C → V ∗ ⊗ V and an evaluation map δ : V ⊗ V ∗ → 1C that
satisfy the “snake” identity

(δ ⊗ idV ) ◦ (idV ⊗ ε) = idV .

– One easily shows that the restriction of idV ⊗n−1⊗δ to V ⊗n⊗V ∗ to SnV ⊗V ∗ fac-
tors through Sn−1V . As a consequence, the direct factor inclusion SnV → Sn−1V ⊗ V
can be re-written as the restriction of

(idV ⊗n−1 ⊗ δ ⊗ idV ) ◦ (idV ⊗n ⊗ ε)

to SnV . Therefore(6) ω : SnV ⊗ V → Sn−1V ⊗ V equals n times(
idV ⊗n−1 ⊗

(
µ ◦ (δ ⊗ idV ⊗2)

))
◦ (idV ⊗n ⊗ ε⊗ idV ),

which also equals(
idV ⊗n−1 ⊗

(
(δ ⊗ idV ) ◦ (idV⊗V ∗ ⊗ µ)

))
◦ (idV ⊗n ⊗ ε⊗ idV ).

– We have an adjunction between the functor V ⊗− and the functor V ∗ ⊗−: for
any two objects Y,Z in C ,

HomC (V ⊗ Y,Z) ∼= HomC (Y, V ∗ ⊗ Z),

where the bijection is given by sending φ ∈ HomC (V ⊗ Y, Z) to φ∗ := (idV ∗ ⊗ φ) ◦
(ε⊗ idY ). The inverse bijection sends ψ ∈ HomC (Y, V ∗ ⊗Z) to (δ⊗ idZ) ◦ (idV ⊗ψ).
For instance, the element µ∗ in HomC (V, V ∗⊗V ) is understood as the adjoint action,
and we have

(3) ω = n× idV ⊗n−1 ⊗
(
(δ ⊗ idV ) ◦ (idV ⊗ µ∗)

)
.

– We also have an adjunction in the reverse way between the functor − ⊗ V and
the functor −⊗ V ∗:

HomC (Y ⊗ V ∗, Z) ∼= HomC (Y,Z ⊗ V ),

where the bijection is given by sending φ ∈ HomC (Y ⊗ V ∗, Z) to φ∗ := (φ ⊗ idV ) ◦
(idY ⊗ ε).

– Taking into account that Sp(V ∗) is canonically isomorphic to Sp(V )∗, we get
a canonical “contraction map” element cp ∈ HomC (SnV ⊗ SpV ∗,Sn−pV ) given as
n!/(n− p)! times the adjoint to the direct factor inclusion SnV ↪→ Sn−pV ⊗ SpV .
More explicitly, on SnV ⊗ SpV ∗

cp =
n!

(n− p)!
× (idV ⊗n−p ⊗ δ) ◦ · · · ◦ (idV ⊗n−1 ⊗ δ ⊗ id(V ∗)⊗p−1).

(5)The category being symmetric monoidal, every left dual is a right dual as well, so that we
allow ourselves to simply speak about duals.

(6)The morphism ω has been defined at the beginning of Section 3.1.
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– Notice that cp = c1 ◦ (c1 ⊗ idV ∗) ◦ · · · ◦ (c1 ⊗ id(V ∗)⊗p−1). One the other hand,
using (3), we obtain that ω equals (c1 ⊗ idV ) ◦ (idV ⊗n ⊗ µ∗) and thus

(4) ω◦p = (c1 ⊗ idV ) ◦ (idV ⊗n−p+1 ⊗ µ∗) ◦ · · · ◦ (c1 ⊗ idV ) ◦ (idV ⊗n ⊗ µ∗).

We now introduce a convenient notation. Let X,Y, Z be three objects in C and let
(A,mA) be an associative algebra object in C . We then have a k-linear associative
composition product

− • − : HomC (Y,A⊗ Z)×HomC (X,A⊗ Y ) −→ HomC (X,A⊗ Z)

defined as follows: for every φ : Y → A⊗ Z and every ψ : X → A⊗ Y we set

φ • ψ := (mA ⊗ idZ) ◦ (idA ⊗ φ) ◦ ψ.

In particular, if X = Y = Z then we get that • turns HomC (Y,A⊗Y ) into a k-linear
associative algebra. We are interested in the case (A,mA) = (S(V ∗),m0).

Lemma 3.2. — Let φ ∈ HomC (Y,SpV ∗ ⊗ Z) and ψ ∈ HomC (X,SqV ∗ ⊗ Y ). Then

(cp ⊗ idZ) ◦ (cq ⊗ φ) ◦ (idSnV ⊗ ψ) = (cp+q ⊗ idZ) ◦ (idSnV ⊗ (φ • ψ)),

as morphisms from SnV ⊗X to Sn−p−qV ⊗ Z.

Proof. — First of all, in view of the expression for cp in terms of c1’s, it is sufficient
to prove the lemma for p = 1. Then, in view of the definition of the product •, we
have that the r.h.s.

(c1+q ⊗ idZ) ◦ (idSnV ⊗ (φ • ψ))

equals

(c1+q ⊗ idZ) ◦ (idSnV ⊗m0 ⊗ idZ) ◦ (idSnV⊗SqV ∗ ⊗ φ) ◦ (idSnV ⊗ ψ).

Hence it is sufficient to show the following identity

(c1 ⊗ idZ) ◦ (cq ⊗ φ) = (c1+q ⊗ idV ∗⊗Z) ◦ (idSnV ⊗m0 ⊗ idZ) ◦ (idSnV⊗SqV ∗ ⊗ φ)

in HomC (SnV ⊗ SqV ∗ ⊗ Y,Sn−qV ⊗ Z). Then observe that, from the very definition
c1+q, we have

c1+q ◦ (idSnV ⊗m0) = c1 ◦ (cq ⊗ idV ∗)

in HomC (SnV ⊗ SqV ∗ ⊗ V ∗,Sn−qV ). As a consequence, it is sufficient to have that

cq ⊗ φ = (cq ⊗ idV ∗⊗Z) ◦ (idSnV⊗SqV ∗ ⊗ φ),

which is obvious. �

Corollary 3.3. — If we consider µ∗ in HomC (V, V ∗ ⊗ V ), we have

ω◦p = (cp ⊗ idV ) ◦
(
idSnV ◦ (µ∗)•p

)
.

Proof. — Setting Y = V , we get a family of maps (µ∗)•p ∈ HomC (V,SpV ∗ ⊗ V ).
Lemma 3.2 gives the result. �

Lemma 3.4. — For every p > 1, (µ∗)•p • ε = 0.
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Proof. — First observe that it is sufficient to prove it for p = 1 (using the associativity
of •). Then note that since µ : Λ2V → V then

(idV ∗ ⊗ µ∗) ◦ ε = (µ∗)∗

lies in HomC (1C ,∧2V ∗ ⊗ V ). Therefore,

µ∗•ε = (τ1⊗idV )◦(µ∗•ε) =
(
(m0◦τ1)⊗idV

)
⊗(µ∗)∗ = −(m0⊗idV

)
⊗(µ∗)∗ = −µ∗•ε.

As a consequence, µ∗ • ε = 0, and we are done. �

3.1.3. The trace identity. — For every two objects Y,Z in C one has a linear map

Tr : HomC (Y ⊗ V,Z ⊗ V ) −→ HomC (Y,Z)

defined as follows:

Tr(φ) = (idZ ⊗ δ) ◦ (φ⊗ idV ∗) ◦ (idY ⊗ ε),

where ε is given by ε followed by the symmetry morphism V ∗ ⊗ V → V ⊗ V ∗.

Proposition 3.5. — For every p, we have that

c1 ◦
(
(m0 ◦ ω◦p)⊗ idV ∗

)
◦ (idSnV ⊗ ε) = cp ◦ (idSnV ⊗ Tr((µ∗)•p)).

Proof. — Using the fact that c1 defines an action of V ∗ on S(V ) by derivations, we
get that the r.h.s. is

m0 ◦
(
(c1 ⊗ idV ) ◦ (ω◦p)∗ + Tr(ω◦p)

)
.

Then observe that we have

m0 ◦ (c1 ⊗ idV ) ◦ (ω◦p)∗ = (cp+1 ⊗ id) ◦ (id⊗ (µ∗)•p • ε) = 0.

Finally,
m0 ◦ Tr(ω◦p) = Tr(ω◦p) = cp ◦ (idSnV ⊗ Tr((µ∗)•p)).

We are done. �

3.2. The Lie-theoretic cycle class

3.2.1. The Duflo element. — We borrow the notation from the previous paragraphs
and introduce the Duflo element d =

∑+∞
n=0 dn ∈

∏
n HomC (1C ,S

nV ∗):

d := det
( µ∗

1− exp(−µ∗)

)
.

This has to be understood as a formal expression in terms of the “invariant polyno-
mials” νk := Tr

(
(µ∗)•k

)
that live in HomC (1C ,S

kV ∗). For instance,

d = 1 +
ν1

2
+
(3ν•21 − ν2

24

)
+
ν•31 − ν1 • ν2

48
+ · · ·

For any N > 0, we have a formal power series expansion
N∏
n=1

xi
1− exp(−xi)

=
∑
i>0

Pi(y1, y2, . . . , yi),
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where yi =
∑N
n=0 x

i
n, and Pi is a polynomial independent fromN , and of total degree i

if each variable yk has degree k. For instance,

P0 = 1

P1(y1) =
y1

2

P2(y1, y2) =
3y2

1 − y2

24

P3(y1, y2, y3) =
y3

1 − y1y2

48
.

Then for any p > 0, we have

dp = Pp(ν1, . . . , νp).

3.2.2. Torsion morphisms. — Let ` ∈ N and let a be a morphism from an arbitrary
object X to S6`V , and let (an)06n6` be the graded components of a.

Definition 3.6. — We say that such a morphism a is an `-torsion morphism if
m? ◦ (a⊗ idV ) factors through S`+1V ⊂ S6`+1V .

Our main result is:

Theorem 3.7. — If a is an `-torsion morphism, then a = c(d ⊗ a`), where c(d ⊗ −)

means
∑
p cp(dp ⊗−), the sum being in fact automatically finite.

Remark that this theorem tells nothing about the existence of `-torsion morphisms.

Proof. — Thanks to Theorem 3.1, a is an `-torsion morphism if and only if the system
of equations

(5)
∑̀
i=0

Bi
i!

{
m0 ◦ ω◦i

}
(a`−k+i ⊗ idV ) = 0

holds for 1 6 k 6 `. Each condition corresponds to the vanishing of the ` − k + 1st

graded piece of the element m? ◦ (a⊗ idV ). Thanks to Proposition 3.5, we get

ka`−k +

k∑
i=1

(−1)i
Bi
i!
× ci(a`−k+i ⊗ νi) = 0.

Let us explain how it works on the first terms.
– For k = 1, the first equation is

a`−1 −
1

2
c1(a` ⊗ ν1) = 0,

so
a`−1 = c1

(
a` ⊗

ν1

2

)
.
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– For k = 2, the second equation is

2a`−2 −
1

2
c1(a`−1 ⊗ ν1) +

1

12
c2(a` ⊗ ν2) = 0

and we get

a`−2 =
1

4
c1(a`−1 ⊗ ν1)− 1

24
c2(a` ⊗ ν2)

=
1

8
c2(a` ⊗ ν•21 )− 1

24
c2(a` ⊗ ν2)

= c2

(
a` ⊗

3ν•21 − ν2

24

)
.

– For k = 3, the third equation is

3a`−3 −
1

2
c1(a`−2 ⊗ ν1) +

1

12
c2(a`−1 ⊗ ν2) = 0.

Hence

a`−3 =
1

3

(
1

2
c1

(
c2

(1

8
a` ⊗ ν•21 −

1

24
ar ⊗ ν2

)
⊗ ν1

)
− 1

12
c2

(
c1

(1

2
a` ⊗ ν1

))
⊗ ν2

)
= c3

(
a` ⊗

ν•31 − ν1 • ν2

48

)
.

To conclude, it suffices to prove the induction relation

kPk(y1 . . . , yk) +

k∑
i=1

(−1)i
Bi
i!
× yiPk−i(y1 . . . , yk−i) = 0

involving the polynomials Pi. For this, we fix the variables x1, . . . , xk, and put yi =∑k
n=0 x

i
n. Since y0 = k, the identity is equivalent to

k∑
i=0

(−1)i
Bi
i!
× yiPk−i(y1 . . . , yk−i) = 0.

The left-hand side is the homogeneous term of degree k (in the variables xi) in the
product ∑

i>0

(−1)i
Bi
i!
yi ×

∑
i>0

Pi(y1, . . . , yi),

which is
k∑
p=1

xp
exp(xp)− 1

×
k∏
q=1

xq
1− exp(−xq)

·

Let φ(x) = x/(1− exp(−x))· Then φ(−x)φ(x) = φ(x)−xφ′(x) so that for any p with
1 6 p 6 k, the homogeneous coefficient of degree k in

xp
exp(xp)− 1

×
k∏
q=1

xq
1− exp(−xq)

is ∑
α1+···+αk=k

Bα1

α1!
× · · · ×

Bαp−1

αp−1!
×
Bαp

(1− αp)
αp!

×
Bαp+1

αp+1!
× · · · × Bαk

αk!
·
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Taking the sum in p, we get∑
α1+···+αk=k

(
Bα1

α1!
× · · · × Bαk

αk!
×

k∑
p=1

(1− αp)
)
,

which is zero. �

3.3. Tameness for pairs of Lie algebras

3.3.1. Setting. — Assume to be given a triplet (g, h, n), where g is a Lie algebra, h
is a Lie subalgebra of g, and g = h ⊕ n as h-modules. This makes perfect sense in
any abstract k-linear symmetric monoidal category C . We denote by µg and µh the
Lie brackets on g and h respectively; and by πh and πn the two projections from g

to h and n respectively. We also define α and β in HomC (n⊗2, n) and HomC (n⊗2, h)

respectively by the formulas α = πn ◦ µg|n⊗2 and β = πh ◦ µg|n⊗2 .

Definition 3.8. — The triplet (g, h, n) is called tame if the morphism

µg ◦ (β ⊗ idn) : n⊗3 −→ g

vanishes.

Lemma 3.9. — Given a tame triplet (g, h, n), the morphism α defines a Lie struc-
ture on n. Besides, n becomes a Lie object in the symmetric monoidal category of
h-modules.

Proof. — We claim that we have πn ◦ (µg ◦ (µg|n⊗2 ⊗ idn)) = α ◦ (α⊗ idn). Indeed,

πn ◦ µg ◦ (µg|n⊗2 ⊗ idn) = πn ◦ µg ◦ (α⊗ idn) + πn ◦ µg ◦ (β ⊗ idn)︸ ︷︷ ︸
0= πn ◦ µg ◦ (α⊗ idn)

= α ◦ (α⊗ idn).

Using this, the Jacobi identity for (g, µg) restricted to n⊗3 at the source, and projected
to n at the target, gives the Jacobi identity for (n, α). �

3.3.2. The enveloping algebra U(n). — Since n is a Lie algebra object in the category
of h-modules in C , the algebra object U(n) is naturally endowed with an action by
derivation of h. This action is simply induced by the adjoint action of h on the tensor
algebra T(n). We define a morphism g⊗U(n)→ U(n) componentwise as follows:

– The morphism p : n⊗U(n)→ U(n) is the multiplication in U(n).
– The morphism q : h⊗U(n)→ U(n) is the action of h on U(n).

Lemma 3.10. — Given a tame triplet (g, h, n), the above morphism endows U(n) with
a g-module structure.

Proof. — For any elements x and y in C , be denote by τ the symmetry isomorphism
x⊗ y ∼→ y ⊗ x. We check componentwise (that is, on n⊗ n, n⊗ h and on h⊗ h) that
the map (p, q) defines a g-action.
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– We have on n⊗ n⊗U(n)

p ◦ (idn ⊗ p)− p ◦ (idn ⊗ p) ◦ (τ ⊗ idU(n))− p ◦ (α ◦ idU(n))︸ ︷︷ ︸
0 since n acts on U(n)

− q ◦ (β ◦ idU(n))︸ ︷︷ ︸
0 by tameness

= 0.

– Since h acts by derivation on U(n), we have on n⊗ h⊗U(n) the equality

q ◦ ((idh ⊗ p) ◦ (τ ⊗ idU(n))) = q ◦ (µg ◦ idU(n)) + p ◦ (idn ⊗ q),

that is

p ◦ (idn ⊗ q)− q ◦ (idh ⊗ p) ◦ (τ ⊗ idU(n))− q ◦ (µg ◦ idU(n)) = 0.

– Lastly, on h⊗ h⊗U(n), we have

q ◦ (idh ⊗ q)− q ◦ (idh ⊗ q) ◦ (τ ⊗ idU(n))− q ◦ (µg ◦ idU(n)) = 0

since h acts on U(n). �

3.3.3. The induced representation. — The aim of this section is to prove the following
theorem:

Theorem 3.11. — Given a tame triplet (g, h, n), the induced g-module Indg
h 1C of the

trivial h-module 1C exists, and is naturally isomorphic to the g-module U(n).(7)

Proof. — The proof goes in several steps. We want to prove that U(n) satisfies the
universal property of the induced representation, that is, that for any g-module V ,
Homh(1C , V ) ' Homg(U(g), V ).

First, we claim that the induced representation Ind g
0 1C exists and is isomorphic

to U(g). This means that HomC (1C , V ) ' Homg(U(g), V ). The morphism is obtained
by attaching to each ϕ in HomC (1C , V ) the map

U(g) ' U(g)⊗ 1C
id ⊗ ϕ−−−−−−−→ U(g)⊗ V −→ V.

Its inverse if simply the precomposition with the map 1C → U(g). Let us consider
the following diagram:

1C

""

//

��

V

U(n)

U(g)

KS

FN

The vertical arrow is simply given by the left action of U(g) on the unit element
element 1 of U(n). Here the dashed arrow is a morphism in C , the plain arrows are

(7)The g-module structure on U(n) has been introduced in Section 3.3.2.
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morphism of h-modules and the double arrows are morphisms of g-modules. We have
a diagram of morphism spaces

HomC (1C , V )
∼ // Homg(U(g), V )

Homh(1C , V )

� ?

OO

Homg(U(n), V )oo

OO

We now claim the following:
– The map U(g) → U(n) admits a section, in particular it has a kernel N in the

category C .
– The map U(g) ⊗ h → U(g) factors through the kernel N, and the induced map

U(g)⊗ h→ N is an isomorphism.
To prove the two claims, we make heavy use of the categorical PBW theorem (The-
orem 2.11). If we endow U(n) and U(g) with their natural filtrations, then the ac-
tion of g on U(n) is of degree 1 with respect to this filtration. The induced map
g ⊗ GrpU(n) → Grp+1U(n) is simply given by the projection g → n followed by
the multiplication map n ⊗ Spn → Sp+1n. Therefore, we see that the natural map
U(g) → U(n) is a filtered map of degree zero, and that the induced graded map
S(g)→ S(n) is induced by the projection from g to n. We can now consider the map

δ : U(n) ' S(n) ↪−→ T(n) −→ T(g) −→ U(g).

Then the composite map U(n)
δ→ U(g)→ U(n) is an isomorphism, since the associated

graded map is the identity, and the filtration splits (as objects of C ).
Let us prove the second claim. First we remark that the composite map

h ↪−→ g
· 1−−−−→ U(n)

vanishes. This gives the factorization of the map U(g) ⊗ h → U(g) by N. We can
endow N with the filtration induced by U(g). Since for each non-negative integer p
the morphism FpU(g)→ FpU(n) admits a section, the natural map from GrpN to the
kernel of GrpU(g)→ GrpU(n) is an isomorphism. Thus, using the PBW isomorphism,
we have a commutative diagram

Grp−1U(g)⊗ h //

o

��

GrpN

o
��

Ker (GrpU(g)→ GrpU(n))

o
��

Sp−1g⊗ h Sp−1g⊗ h

Hence the map U(g) ⊗ h → N is a degree one map whose associated graded map is
an isomorphism. Therefore it is an isomorphism.
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We now come back to the main proof. The only thing that remains to prove is that
the composite morphism

Homh(1C , V ) −→ HomC (1C , V ) ' Homg(U(g), V )

factors through Homg(U(n), V ). This is equivalent to prove that the composition

Homh(1C , V ) −→ HomC (1C , V ) ' Homg(U(g), V ) −→ Homg(U(g)⊗ h, V )

vanishes. The image of a map ϕ is the morphism

U(g)⊗ h −→ U(g) ' U(g)⊗ 1C

idU(g) ⊗ ϕ
−−−−−−−−−−→ U(g)⊗ V −→ V,

which can also be written as the composition

U(g)⊗ h ' U(g)⊗ h⊗ 1C

idU(g)⊗ h ⊗ ϕ
−−−−−−−−−−−−→ U(g)⊗ V −→ V.

Now we have a commutative diagram

h⊗ 1C

idh ⊗ ϕ
//

zero map
��

h⊗ V

��

1C
ϕ

// V

which enables us to finish the proof. �

Remark now that we have a priori two algebra structures on the algebra U(n)h: the
first one is the natural one induced by the algebra structure on U(n), and the second
one is obtained using Frobenius duality, Theorem 3.11, and the natural composition
on Homg(U(n),U(n)):

U(n)h = Homh(1C ,ResghU(n)) ' Homg(Indg
h1C ,U(n)) ' Homg(U(n),U(n)).

These two structures are in fact compatible, this is the content of the following:

Theorem 3.12. — Given a tame triple (g, h, n), the natural isomorphism U(n)h '
Homg(U(n),U(n)) is an anti-morphism of algebra objects.

Proof. — Let us first observe that the above isomorphism

f : U(n)h
∼−−−→ Homg(U(n),U(n))

can be described as follows: for every P ∈ U(n)h = Homh(1C ,ResghU(n)),

f(P ) = a ◦ (δ ⊗ P ) = m ◦ (id⊗ P ),

where δ : U(n) ↪→ U(g) is as in Section 3.3.2, a : U(g)⊗U(n)→ U(n) is the g-module
structure of U(n), and m is the multiplication on U(n). Hence we have that

f(m(P ⊗Q)) = m ◦
(
id⊗m(P ⊗Q)

)
= m ◦

(
m(id⊗ P )⊗Q

)
= f(Q) ◦ f(P ). �
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4. Generalities on formal neighborhoods

4.1. Sheaves on split square zero extensions

4.1.1. Theta morphisms. — In this section, we study some properties related to
sheaves on a trivial first order thickening of a smooth scheme. Let us fix the setting:
X is a smooth k-scheme, V is a locally free sheaf on X, and S is the (split) first order
thickening of X by V ; that is OS = V ⊕ OX and V is a square zero ideal in OS . We
denote by j : X → S and σ : S → X the natural morphisms. Let F be an element of
D−(X). Then the exact sequence

(6) 0 −→ V ⊗F −→ σ∗F −→ F −→ 0

defines a morphism ΘF : F → V ⊗F [1] in D−(S).

Proposition 4.1. — The following properties are valid:
(i) For any ϕ : F → G in D−(X), we have

ΘG ◦ ϕ = (idV ⊗ ϕ) ◦ΘF .

(ii) For any F in D−(X), we have

ΘF = ΘOX

L
⊗OS

idσ∗F .

(iii) For any F in D−(X), the composition

F
atS(F )
−−−−−−−→ Ω1

S

L
⊗OS

F [1] −→ Ω1
S ⊗OS

F [1] ' V ⊗F [1]⊕ Ω1
X ⊗F [1]

is the pair (ΘF , atX(F )).
(iv) The morphism σ∗ΘF vanishes.

Proof. — (i), (ii) and (iv) are straightforward. For (iii), ΘF is a special occurrence
of a residual Atiyah morphism, and we apply [13, Prop. 4.9]. �

4.1.2. Infinitesimal HKR isomorphism. — In this section, we describe the infinitesimal
cohomological HKR isomorphism attached to a split square-zero extension of a smooth
scheme.

For any non-negative integer p, we define a morphism ∆p : OX → Tp(V [1]) in the
derived category Db(S) as follows: ∆0 = id and ∆p = −ΘTp−1(V [1]) ◦∆p−1 for p > 1.

Proposition 4.2. — For any vector bundles E1 and E2 on X, there is a canonical
isomorphism

T(V [−1])
L
⊗RHom(E1,E2) '

⊕
p∈N

RHom(V ⊗p ⊗ E1,E2)[−p]

−→
⊕
p∈N

σ∗RHomOS
(V ⊗p[p]⊗ E1,E2)

−→
⊕
p∈N

σ∗RHomOS
(E1,E2)

obtained by precomposing by ∆p⊗idσ∗E1
. Besides, this isomorphism is compatible with

the Yoneda product for the pair (E1,E2).
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Proof. — The first part of the proof is well-known and follows from the existence of
a canonical locally OS-free resolution of V on S (see [1]). The compatibility with the
Yoneda product follows from routine calculations using Proposition 4.1. �

It is also possible to derive the internal Hom with respect to the second variable
instead of the first one: this gives the infinitesimal counterpart of Kashiwara’s dual
HKR isomorphism (see [12]). To do so, we replace the morphism ∆1 by the dual
Atiyah morphism ∆′1 : V ∗[−1]→ OX , which is obtained by the composition

V ∗[−1]
idV ∗[−1] ⊗∆1
−−−−−−−−−−−−→ V ∗[−1]⊗ V [1]

ev−−−→ OX .

Then for any integer p we construct the morphism ∆′p : Tp(V ∗[−1]) → OX , as well
as the symmetric components ∆′+p : Sp(V ∗[−1]) → OX and ∆′−p : Λ̃p(V ∗[−1]) → OX
as we did before. Then the dual infinitesimal HKR isomorphism takes the following
form:

Proposition 4.3. — For any vector bundles E1 and E2 on X, there is a canonical
isomorphism

T(V [−1])
L
⊗RHom(E1,E2) '

⊕
p∈N

RHom(E1, (V
∗)⊗p ⊗ E2)[−p]

−→
⊕
p∈N

σ∗RHomOS
(E1, (V

∗)⊗p[−p]⊗ E2)

−→
⊕
p∈N

σ∗RHomOS
(E1,E2)

obtained by postcomposing by ∆′p ⊗ idσ∗E2
. Besides, this isomorphism is compatible

with the Yoneda product for the pair (E1,E2).

Remark 4.4. — The object σ∗RHomOS
(OX ,OX) is a ring object in D+(X). Propo-

sitions 4.2 and 4.3 give two a priori different isomorphisms between this ring object
and TV ∗[−1]. In the next Lemma, we will provide an identity relating ∆p and ∆′p
that shows that these two isomorphisms are in fact the same.

Lemma 4.5. — Let W be any element in Db(X), let W ∗ = RHomOX
(W ,OX) be

the (naive) derived dual of W , and let ϕ be in HomDb(X)(W ,TkV ∗[−k]). Then the
following diagram

W
ϕ

//

idW ⊗∆k
��

TkV ∗[−k]

∆′k
��

W ⊗ TkV [k]
ϕ⊗ idTkV [k]

// TkV ∗[−k]⊗ TkV [k] // OX

commutes in Db(X). In particular, the composition

OX
co− ev−−−−−−−→ W ∗ ⊗W

idW ∗ ⊗ (∆′k ◦ ϕ)
−−−−−−−−−−−−−−→ W ∗
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is ϕ ◦∆k, where we implicitly use the isomorphism

HomDb(X)(W ,TkV ∗[−k]) ' HomDb(X)(T
kV [k],W ∗).

Proof. — The first point follows directly from Proposition 4.1(i). The second point
follows from the fact that for any A , B in Db(X), the isomorphism

HomDb(X)(A ,B) ' HomDb(X)(B
∗,A ∗)

makes the diagram
A

co− ev
//

��

B ⊗B∗ ⊗A

��

B ⊗A ∗ ⊗A

ev
��

B // B

commute. Details are left to the reader. �

4.1.3. Torsion and Atiyah class. — For any locally free sheaf E on S, let E = j∗E .
The exact sequence

0 −→ V ⊗ E −→ σ∗ E −→ E −→ 0

defines a morphism τE : E → V ⊗ E [1] in the derived category Db(X), we call it the
torsion of E . It is easy to see that the vector bundle E is entirely determined by the
pair (E , τE ). In particular, τE vanishes if and only if E is isomorphic to σ∗E

Proposition 4.6. — For any locally free sheaf E on S, the components of the mor-
phism

E
Lj∗ atS(E )
−−−−−−−−−−→ Lj∗(Ω1

S ⊗ E [1]) −→ j∗(Ω1
S ⊗ E [1]) ' V ⊗ E [1]⊕ Ω1

X ⊗ E [1]

are τE and atX(E ).

Proof. — There is a natural morphism j∗P1
S(E )→ P1

X(E ) making the diagram
0 // j∗Ω1

S ⊗ E //

��

j∗P1
S(E )

��

// E

��

// 0

0 // Ω1
X ⊗ E // P1

X(E ) // E // 0

commutative. On the other hand, j∗P1
S(E )/(Ω1

X ⊗ E ) is the cokernel of the map

V ⊗ E −→ (V ⊗ E )⊕ E

which is the identity of the first factor and the natural inclusion on the second one.
Hence it is isomorphic to σ∗E (by taking the difference of the two factors). This gives
a commutative diagram

0 // j∗Ω1
S ⊗ E //

��

j∗P1
S(E )

��

// E

��

// 0

0 // V ⊗ E // σ∗ E // E // 0

and the result follows. �
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4.2. Sheaves on a second order thickening

4.2.1. Setting and cohomological invariants. — As before, let us fix a pair (X,V )

where V is a locally free sheaf on X, and let S be the split first order thickening
of X by V . We are interested by ring spaces W which underlying topological space X
satisfying the following conditions:

(7)
{

OW is locally isomorphic to OX ⊕ V ⊕ S2V .

There exists a map S →W which is locally the quotient by S2V .

Let k : X →W be the composite map, and let us denote by 〈V 〉 the ideal sheaf of X
in W , which is a sheaf of OS-modules. We can attach to W two cohomology classes:

– The class α in Ext1(V ,S2V ) is the extension class of the exact sequence

0 −→ S2V −→ σ∗〈V 〉 −→ V −→ 0.

– The class β in Ext1(Ω1
X ,S

2V ) is the obstruction of lifting σ to W . To see how
this class is defined, it suffices to remark that the sheaf of retractions of k induc-
ing σ on S is an affine bundle directed by the vector bundle Der(OX ,S2V ), which is
Hom(Ω1

X ,S
2V ).

Lemma 4.7. — The map W → (α, β) is a bijection between isomorphism classes of
ring spaces W satisfying (7) and Ext1(V ,S2V )⊕ Ext1(Ω1

X ,S
2V ).

Proof. — The subsheaf of the sheaf of automorphisms of the ringed space

{X,OX ⊕ V ⊕ S2V }

that induce the identity morphism after taking the quotient by the square zero ideal
S2V is isomorphic to Der(OX ,S2V )⊕Hom(V ,S2V ), a pair (D,ϕ) corresponding to
the automorphism given by the 3× 3 matrixid 0 0

0 id 0

D ϕ id

 .

This gives the required result. �

4.2.2. The second order HKR class. — Let E be a locally free sheaf on X. The functor
that associates to any open set of U the set of locally OW -free extensions of σ∗E
to W is an abelian gerbe, whose automorphism sheaf is Hom(E ,S2V ⊗ E ). Hence
this gerbe is classified by a cohomology class in Ext2(E ,S2V ⊗ E ).

Definition 4.8. — For any locally free sheaf E on X, the class of the gerbe of locally
free extensions of σ∗E onW is called the second order HKR class of E , and is denoted
by γσ(E ).

Remark 4.9. — The terminology is justified as follows: in [1], the authors introduce
the HKR class of a vector bundle on X in the case S is not globally split, it measures
the obstruction to lift the bundle from X to S. Here, we are defining the same kind
of obstruction classes when S is trivial, but W is not.
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As in [1], the class γσ(E ) can be computed explicitly:

Proposition 4.10. — For any locally free sheaf E on X, the class γσ(E ) is obtained
(up to a nonzero scalar) as the composition

E
atX(E )
−−−−−−−→ Ω1

X ⊗ E [1]
β ⊗ idE−−−−−−−−→ S2V ⊗ E [2].

Proof. — For the first HKR class, this is [1, Prop. 2.11]. We present an alternative
and somehow more down to earth proof. Let us assume that the map X →W admits
two retractions β1 and β2, and let D = β1 − β2 be the corresponding element in
Hom(Ω1

X ,V ). Assume also that E admits a regular connexion ∇ on X. We claim
that the map Ξ: β∗1E → β∗2E defined by

Ξ(f ⊗ s) = f ⊗ s+ f(D ⊗ idE )(∇s)

is a well-defined isomorphism. Since HomOW
(β∗1E , β∗2E ) ' HomOX

(E , β1∗β
∗
2E ), it

suffices to show that Ξ(1⊗ gs) = β∗1(g) · Ξ(s) for any section g of OX . We compute:

Ξ(1⊗ gs) = 1⊗ gs+ (D ⊗ idE )(g∇s+ dg ⊗ s)
= β2(g)⊗ s+ g(D ⊗ idE )(∇s) +D(dg)⊗ s
= β1(g)⊗ s+ g(D ⊗ idE )(∇s) +D(dg)⊗ s
= β1(g) · (s+ (D ⊗ idE )(∇s))
= β∗1(g) · Ξ(s).

Let us now fix a covering (Ui)i∈I of X, and assume that on each Ui, there is a
retraction βi of the map X → W and E admits a regular connexion ∇i. We put
Dij = βi − βj . Then we have isomorphisms

Ξi : β∗i E|Uij

∼→ β∗j E|Uij
depending on ∇i,

Ξj : β∗j E|Ujk

∼→ β∗kE|Ujk
depending on ∇j ,

Ξk : β∗kE|Uki

∼→ β∗i E|Uki
depending on ∇k.

The composition Ξk|Uijk
◦ Ξj|Uijk

◦ Ξi|Uijk
yields an automorphism of β∗i E|Uijk

, which
corresponds to the element

λ = (Dij ⊗ idE ) ◦ ∇i + (Djk ⊗ idE ) ◦ ∇j + (Dki ⊗ idE ) ◦ ∇k

of Γ(Uijk,Hom(E ,S2V ⊗ E )). This element is a C̆hech representative of the class of
the gerbe of locally free extensions of σ∗E on W . If cij = (Dij ⊗ idE ) ◦ (∇i − ∇j),
then (cij) defines a 1-cochain with values in Hom(E ,S2V ⊗ E ) and we have

λ = cij + cjk + (Dij ⊗ idE ) ◦ (∇j −∇k) =
2

3
(cij + cjk + cki)

+
1

3

(
(Dij ⊗ idE ) ◦ (∇j −∇k) + (Djk⊗ idE ) ◦ (∇k −∇i) + (Dkj ⊗ idE ) ◦ (∇i−∇j)

)
,

which can be split us to some nonzero constant factors as the sum of the boundary
of the cochain (cij)i,j and the Yoneda product of the 1-cocycles (∇i − ∇j)i,j and
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(Dij ⊗ idE )i,j that represent atX(E ) and β⊗ idE respectively. This gives the required
formula. �

4.3. Quantized cycles

4.3.1. Setting, and tameness condition. — Let Y be a smooth k-scheme, and let X be
a smooth and closed subscheme of Y . We denote by i : X ↪→ Y the injection of X
in Y .

Let S denote the first formal neighbourhood of X in Y . Let us assume that the
closed immersion j : X ↪→ S admits a retraction σ : S → X (that is, S is a globally
trivial square zero extension ofX by N∗X/Y ); this is equivalent to say that the conormal
sequence of the pair (X,Y ) splits. In this case, we say that (X,σ) is a quantized cycle
in Y (see [12]).

Assume that (X,σ) is a quantized cycle, let W be the second formal neighborhood
of X in Y , and let k : X ↪→ W be the corresponding inclusion. According to Lem-
ma 4.7, the ringed space W is entirely encoded by two classes α and β introduced in
the previous section; α is the extension class of the exact sequence

0 −→ σ∗
I 2
X

I 3
X

−→ σ∗
IX

I 3
X

−→ σ∗
IX

I 2
X

−→ 0

that lives in Ext2(N∗X/Y ,S
2N∗X/Y ), and β in the class in Ext1(Ω1

X ,S
2N∗X/Y ) that

measures the obstruction to the existence of a retraction of k that extends σ.

Definition 4.11. — A (X,σ) quantized cycle (X,σ) is tame if the locally free sheaf
σ∗N∗X/Y on S extends to a locally free sheaf on W .

Remark 4.12. — If k admits a retraction q : W → X such that q|S = σ, that is,
if β vanishes, then (X,σ) is automatically tame: the locally free sheaf q∗N∗X/Y on W
extends σ∗N∗X/Y . In this case, we say that (X,σ) is 2-split.

4.3.2. Restriction of the Atiyah class. — The aim of this section is to describe another
intrinsic description of the classes α and β.

Proposition 4.13. — The torsion of the locally free sheaf (Ω1
Y )|S is the morphism

N∗X/Y ⊕ Ω1
X −→ N∗X/Y ⊗ (N∗X/Y ⊕ Ω1

X) [1]

given by the 2× 2 matrix
(
α β
0 0

)
.

Proof. — The locally free sheaf (Ω1
Y )|S depends only on the second formal neigh-

bourhood W of X in Y . Let us consider an automorphism of the trivial ringed space
OX ⊕ N∗X/Y ⊕ S2N∗X/Y given by a pair (d, ϕ), where d is a derivation from OX to
S2N∗X/Y and ϕ is a linear morphism from N∗X/Y to S2N∗X/Y . Assume that we are in
the local situation, so that we can take coordinates:X = U ⊂ kn and Y = U×V where
V ⊂ kr. Then we can represent the morphisms d and ϕ by sequences of regular maps
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(Zki,j(x))16k6n,16i,j6r and (Λ`i,j(x))16i,j,`6r that are symmetric in the indices (i, j).
The automorphism of W can be lifted to an automorphism of Y given by the formula

(x, t) 7−→
(
{xk +

∑
i,j

Zki,j(x)titj)}16k6n, {t` +
∑
i,j

Λ`i,j(x)titj)}16`6r
)
.

The result follows by computing the pullback of the forms dxk, tidxk, dtj , tidtj restric-
ted to S by the above automorphism. �

Corollary 4.14. — The composition

N∗X/Y⊕Ω1
X ' Ω1

Y |X
Li∗atY (Ω1

Y )
−−−−−−−−−−−→ S2Ω1

Y |X [1] ' S2N∗X/Y [1]⊕Ω1
X⊗N∗X/Y [1]⊕S2Ω1

X [1]

is given by the matrix  α β

atX(N∗X/Y ) 0

0 atX(Ω1
X)

 .

Proof. — This is obtained by putting together Proposition 4.6 and Proposition 4.13,
together with the functoriality of the Atiyah class. �

4.3.3. Quantized HKR isomorphism. — As noticed in [1], the composition

(8) S(NX/Y [−1]) −→ T(NX/Y [−1]) ' RHomOS
(OX ,OX)

−→ RHomOY
(OX ,OX)

is an isomorphism in D+(Y ), where the first map is the antisymmetrization map. For
quantized cycles, it is also possible to produce a left resolution of the sheaf OX (the
Atiyah-Kashiwara resolution) that computes directly RHomOY

(OX ,OX), this con-
struction is done in [12]. Both constructions are in fact compatible (see [12, Th. 4.13]).
Let us now give the corresponding HKR isomorphism. For any non-negative integer p,
we decompose the morphism ∆p as the sum ∆−p +∆+

p according to the decomposition

Tp(N∗X/Y [1]) ' Λ̃p(N∗X/Y [1])⊕ Sp(N∗X/Y [1]).

For any sheaf F on X, the functor HomOY
( ? ,F ) : Mod(OY ) → Mod(OY ) factors

through a functor

Hom`
OY

( ? ,F ) : Mod(OY ) −→ Mod(OX).

Proposition 4.15. — For any locally free sheaves E1, E2 on X, there is a canonical
isomorphism

RHom`
OY

(E1,E2)

'
⊕
p∈N

RHom(ΛpN∗X/Y ⊗ E1,E2)[−p] ' S(NX/Y [−1])
L
⊗RHom(E1,E2)

in Db(X) obtained by precomposing with ∆+
p ⊗ idσ∗E1

.

We also give Kashiwara’s dual version:
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Proposition 4.16. — For any locally free sheaves E1, E2 on X, there is a canonical
isomorphism

RHomr
OY

(E1,E2)

'
⊕
p∈N

RHom(E1,Λ
pNX/Y ⊗ E2)[−p] ' S(NX/Y [−1])

L
⊗RHom(E1,E2)

in Db(X) obtained by postcomposing by ∆′+p ⊗ idσ∗E2
.

5. Tame quantized cycles

5.1. Structure constants

5.1.1. Definition. — We fix a quantized cycle (X,σ) in Y . By Proposition 4.15, there
exist unique coefficients (c′kp )06k6p such that:

– Each ckp belongs to Hom (Sk(N∗X/Y [1]),Tp(N∗X/Y [1])), that is,

Extp−k(ΛkN∗X/Y ,T
pN∗X/Y ).

– The relation ∆p =
∑p
k=0 c

k
p ◦∆+

k holds in Db(Y ).
Similarly, using Proposition 4.16, we can define dual coefficients: there exist unique
coefficients (c′kp )06k6p such that:

– Each c′kp belongs to Hom (Tp(NX/Y [−1]),Sk(NX/Y [−1])), that is,

Extp−k(TpNX/Y ,Λ
kNX/Y ).

– The relation ∆′p =
∑p
k=0 ∆′+k ◦ c′kp holds in Db(Y ).

Lemma 5.1. — Via the isomorphism

Extp−k(TpNX/Y ,Λ
kNX/Y ) ' Extp−k(ΛkN∗X/Y ,T

pN∗X/Y ),

the coefficients c′kp and ckp are equal.

Proof. — We take the relation ∆′p =
∑p
k=0 ∆′+k ◦ c′kp , take the tensor product by

idTpNX/Y [−p], and precompose with the co-evaluation map

OX −→ idTpNX/Y [−p] ⊗ idTpN∗
X/Y

[p].

Applying Lemma 4.5 with W = TpNX/Y [−p], we get ∆p=
∑p
k=0 c

′k
p ◦∆+

k , so c′kp =cpk.
�

Lemma 5.2. — Let p > 1.
(i) The coefficient c0p vanish.
(ii) If 1 6 k 6 p − 1, the Sp(N∗X/Y [1]) component of ckp vanishes, so ckp factors

through Λ̃p(N∗X/Y [1]).
(iii) The coefficient cpp is the canonical inclusion of Sp(N∗X/Y [1]) in Tp(N∗X/Y [1]).
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Proof. — For (i), we apply σ∗ to the relation defining the ckp and use Proposition
4.1(iv). To prove (ii), let πp be the projection from T p(N∗X/Y [1]) to Sp(N∗X/Y [1]).
Then

∆+
p =

p∑
k=0

πp ◦ ckp ◦∆+
k

so, thanks to Proposition 4.15, πp ◦ ckp = 0 if 0 6 k 6 p− 1. For (iii), this is a purely
local question, and we can use the Koszul complex as in [12]. �

5.1.2. The decomposition lemma. — Let us first compute the first nontrivial structure
constant:

Proposition 5.3. — The morphism ∆−2 − α ◦∆1 vanishes in Db(W ). In particular,
c12 = α.

Proof. — Let us consider the exact sequence

(9) 0 −→ I 2
X

I 3
X

−→ IX

I 3
X

−→ IX

I 2
X

−→ 0.

It defines a morphism f from N∗X/Y to S2N∗X/Y [1] in Db(S). Applying Proposition 4.2,
f can be written as u + v ◦ ΘN∗

X/Y
where u is in Ext1(N∗X/Y ,S

2N∗X/Y ) and v is in
Hom(T2N∗X/Y ,S

2N∗X/Y ). The morphism u is the image under σ∗ of (9), so it is α.
The morphism v can be computed locally, it is the the natural symmetrization map
from T2N∗X/Y to S2N∗X/Y . Let us now consider the diagram

0

��

0 //
I 2
X

I 3
X

//

��

IX

I 3
X

//

��

IX

I 2
X

//

��

0

0 //
I 2
X

I 3
X

//
OY
I 3
X

//
OY
I 2
X

//

��

0

OY
IX

��

0

It gives a commutative diagram

OX
ΘOX // N∗X/Y [1]

f
//

��

S2N∗X/Y [2]

OS [1] // S2 N∗X/Y [2]

J.É.P. — M., 2019, tome 6



The Ext algebra of a quantized cycle 61

in Db(W ). Since the composite arrow from OX to OS [1] vanishes, the morphism
f ◦ ΘOX

also vanishes. But f ◦ ΘOX
= (u + v ◦ ΘN∗

X/Y
) ◦ ΘOX

= α ◦∆1 −∆−2 . This
gives the result. �

As a corollary, we get our key technical result:

Proposition 5.4 (Decomposition lemma). — Assume that the quantized cycle (X,σ)

is tame. For any non-negative integer i, we can write

ΘTi+1N∗
X/Y
◦ΘTiN∗

X/Y
= Ai − (α⊗ idTiN∗

X/Y
) ◦ΘTiN∗

X/Y
+ Ri

in the derived category Db(S), where Ai factors through Λ2N∗X/Y ⊗TiN∗X/Y [2], and Ri

vanishes in the derived category Db(W ).

Proof. — Denote by µ the natural map from S to W , and let S be a locally free
extension of σ∗N∗X/Y on W . Then

ΘTi+1N∗
X/Y
◦ΘTiN∗

X/Y
= ∆2

L
⊗OS

idσ∗TiN∗
X/Y

= ∆+
2

L
⊗OS

idσ∗TiN∗
X/Y

+ (α ◦∆1)
L
⊗OS

idσ∗TiN∗
X/Y

+ (∆−2 − α ◦∆1)
L
⊗OS

idσ∗TiN∗
X/Y

.

We claim that (∆−2 − α ◦∆1)
L
⊗OS

idσ∗TiN∗
X/Y

vanishes in Db(W ). Indeed,

µ∗

(
(∆−2 − α ◦∆1)

L
⊗OS

idσ∗TiN∗
X/Y

)
= µ∗

(
(∆−2 − α ◦∆1)

L
⊗OS

Lµ∗idTiS

)
= µ∗

(
∆−2 − α ◦∆1

) L
⊗OW

idTiS . �

Remark 5.5. — Proposition 5.4 is false in general when the quantized cycle (X,σ) is
not tame: the morphism (∆−2 − α ◦∆1)

L
⊗OS

idσ∗TiN∗
X/Y

can be nonzero in Db(W ).

For p > 1, let

Ψp : Tp(N∗X/Y [1]) −→
p−1⊕
i=1

Ti−1(N∗X/Y [1])⊗ Λ2(N∗X/Y [1])⊗ Tp−i−1(N∗X/Y [1])

be the map obtained by (graded) antisymmetrization of two consecutive factors. We
also denote by χp,i the components of Ψp.

Corollary 5.6. — Assume to be given a tame cycle (X,σ) in Y . Then

Ψp ◦ ckp = {(idTi−1N∗
X/Y
⊗ α⊗ idTp−i−1N∗

X/Y
) ◦ ckp−1}16i6p−1 if 1 6 k 6 p− 1.

Proof. — Using Proposition 5.4, we have in Db(S)

∆p = (−1)p ΘTp−1N∗
X/Y
◦ · · · ◦ (ΘTi+1N∗

X/Y
◦ΘTiN∗

X/Y
) ◦ · · · ◦ΘOX

= (idTp−i−1N∗
X/Y
⊗ α⊗ idTiN∗

X/Y
) ◦∆p−1

+ (−1)p ΘTp−1N∗
X/Y
◦ · · · ◦ (Ui + Ri) ◦ · · · ◦ΘOX

.
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It implies that in Db(W ),
χp,i ◦∆p = (idTp−i−1N∗

X/Y
⊗ α⊗ idTiN∗

X/Y
) ◦∆p−1

=

p−1∑
k=1

(idTp−i−1N∗
X/Y
⊗ α⊗ idTiN∗

X/Y
) ◦ ckp−1 ◦∆+

k .

On the other hand
χp,i ◦∆p =

p−1∑
k=1

χp,i ◦ ckp ◦∆+
k .

We conclude using Proposition 4.15. �

Corollary 5.7. — If (X,σ) is tame, ∆p =
∑p
k=1 c

k
p ◦∆+

k in Db(W ).

Proof. — We argue by induction on p. For p = 2, this is Proposition 5.3. Assume that
the property holds at the order p− 1. The morphism ∆p−

∑p
k=1 c

k
p ◦∆+

k takes values
in Λ̃p(N∗X/Y [1]). Hence it suffices to prove that Ψp ◦ (∆p−

∑p
k=1 c

k
p ◦∆+

k ) vanishes in
Db(W ). Using the notation of the preceding proof,

χp,i ◦ (∆p −
p∑
k=1

ckp ◦∆+
k ) = (idTp−i−1N∗

X/Y
⊗α⊗ idTiN∗

X/Y
) ◦
(

∆p−1 −
p−1∑
k=1

ckp−1 ◦∆+
k

)
in Db(W ). Then we use the induction hypothesis. �

5.1.3. Main result. — We can come to our main result.

Theorem 5.8. — Let (X,σ) be a tame quantized cycle in Y . The class α defines a Lie
coalgebra structure on N∗X/Y [1], hence a Lie algebra structure on NX/Y [−1]. Besides,
the objects RHom`

OY
(OX ,OX) and RHomr

OY
(OX ,OX) are naturally algebra objects

in the derived category Db(X), and there are commutative diagrams

σ∗RHomOS
(OX ,OX) //

HKR

��

RHom`
OY

(OX ,OX)

HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

and
σ∗RHomOS

(OX ,OX) //

dual HKR

��

RHomr
OY

(OX ,OX)

dual HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

where all horizontal arrows are algebra morphisms.
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Strategy of proof. — Let us first discuss the statement, as well as the main points
involved in the proof.

– The object RHomOY
(OX ,OX) is always an algebra object in the category

Db(Y ), but this structure doesn’t always come in full generality from an algebra ob-
ject structure on RHomr

OY
(OX ,OX) or on RHom`

OY
(OX ,OX) in D+(X). Indeed,

if RHom`
OY

(OX ,OX) has such an algebra structure, the natural morphism

NX/Y [−1] −→ RHom`
OY

(N∗X/Y [1],OX) −→ RHom`
OY

(OX ,OX)

obtained by precomposition with ∆1 yields a morphism

T(NX/Y [−1]) −→ RHom`
OY

(OX ,OX),

and the composite morphism

S(NX/Y [−1]) ↪−→ T(NX/Y [−1]) −→ RHom`
OY

(OX ,OX)

is an isomorphism in D+(X), which is not always the case.
– Assuming that we have an algebra structure on RHomr

OY
(OX ,OX) and on

RHom`
OY

(OX ,OX) making the top row of each diagram in Theorem 5.8 multiplica-
tive, the statement follows directly from Proposition 5.3 and the reverse PBW the-
orem (that is, Proposition 2.7), without using the tameness condition at all: indeed,
Condition A.1 is (8), and Condition A.2 is Lemma 5.2.

Therefore, the main difficulty lies in the construction of this algebra structure
on RHomr

OY
(OX ,OX) and on RHom`

OY
(OX ,OX). We will provide three different

proofs corresponding to different geometric contexts:

Case A:∞-split. — Assume thatX admits a global retract in Y that lifts σ. This is the
easiest case, but it covers the case of the diagonal injection and is therefore sufficient
to prove the results of Kapranov, Markarian and Ramadoss that are presented in the
next section. The reader only interested in this can skip the two other cases.

Case B: 2-split. — Assume that X admits a retract at order two that lifts σ (that is,
β = 0). In this case, we can adapt the former proof to the second formal neighborhood,
using the second corollary of the decomposition lemma (Corollary 5.7).

Case C: tame. — The general case: (X,σ) is tame. This requires the first corollary of
the decomposition lemma (Corollary 5.6) as well as the full strength of the categorical
PBW theorem (Theorem 2.11). �

Proof of Theorem 5.8. — We follow the aforementioned plan of proof, and discuss suc-
cessively the three cases A, B and C. We recall the following notation:

X
j

//

k
  

i

��

S
σ

tt

��

Y Woo
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Case A. — Let f : Y → X a retraction of X in Y . There is a natural morphism of
algebra objects

jS/Y ∗RHomOS
(OX ,OX) −→ RHomOY

(OX ,OX)

in D+(Y ), which gives a morphism of algebra objects

(10) f∗jS/Y ∗RHomOS
(OX ,OX) −→ f∗RHomOY

(OX ,OX)

since f∗ is monoidal. Now it suffices to remark that

f∗RHomOY
(OX ,OX) ' f∗i∗RHom`

OY
(OX ,OX) ' RHom`

OY
(OX ,OX),

so that RHom`
OY

(OX ,OX) inherits naturally from an algebra structure and the
morphism (10) becomes an algebra morphism

σ∗RHomOS
(OX ,OX) −→ RHom`

OY
(OX ,OX).

The same trick works for the functor RHomr. This settles Case A.

Case B. — Let us consider the map p : σ∗RHomOS
(OX ,OX)→ RHom`

OX
(OX ,OX).

It admits a section, given by the composition

RHom`
OX

(OX ,OX) ' S(N∗X/Y [1]) ↪−→ T(NX/Y [−1]) ' σ∗RHomOS
(OX ,OX).

Hence p admits a kernel K , which can be explicitly described as follows: K is iso-
morphic to Λ̃(NX/Y [−1]), and the (split) embedding of K in σ∗RHomOS

(OX ,OX)

is obtained by applying σ∗ to the composition⊕
p>0

j∗Λ̃
p(NX/Y [−1]) −→

⊕
p>0

RHomOS
(Λ̃p(N∗X/Y [1]),OX) −→ RHomOS

(OX ,OX).

The last map is obtained componentwise by precomposing with ∆p −
∑p
k=1 c

k
p∆+

k ,
which is a morphism in HomDb(S)(OX , Λ̃

p(N∗X/Y [1]). Assume now that there exists a
retraction q : W → X that extends the first order retraction σ. Then the composition

K −→ σ∗RHomOS
(OX ,OX) −→ q∗RHomOW

(OX ,OX)

is obtained by applying q∗ to the map⊕
p>0

jX/W∗ Λ̃p(NX/Y [−1]) −→
⊕
p>0

RHomOW
(Λ̃p(N∗X/Y [1]),OX)

−→ RHomOW
(OX ,OX).

But this map is identically zero since, according to Corollary 5.7, ∆p −
∑p
k=1 c

k
p∆+

k

vanishes in the derived category Db(W ). We can now conclude: the map

σ∗RHomOS
(OX ,OX) −→ q∗RHomOW

(OX ,OX)

is a morphism of algebra objects and K is a split sub-object that maps to zero, so
that the composition

K
L
⊗OX

σ∗RHomOS
(OX ,OX) −→ σ∗RHomOS

(OX ,OX)

−→ q∗RHomOW
(OX ,OX)
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is zero. It follows that the composition

K
L
⊗OX

σ∗RHomOS
(OX ,OX) −→ σ∗RHomOS

(OX ,OX) −→ RHom`
OY

(OX ,OX)

is zero. Therefore, in the decomposition

σ∗RHomOS
(OX ,OX) ' K ⊕RHom`

OY
(OX ,OX),

the object K is an ideal object, so that RHom`
OY

(OX ,OX) inherits a natural algebra
structure, for which p is a multiplicative morphism. This finishes the proof. Again,
the whole proof works in the same way for the functor RHomr

OY
.

Case C. — If we consider α as a morphism from Λ2(N∗X/Y [1]) to N∗X/Y [1] in the oppo-
site category of Db(X), we notice that the induction relations provided by Corollary
5.6 are exactly the same as the ones proved in Proposition 2.6 (this is why we took
the same notation ckp). Hence (N∗X/Y [1], α) is a Lie algebra object in the opposite
derived category of X. Now according to the second part of the categorical PBW
theorem (Theorem 2.11), we can define an algebra structure on S(N∗X/Y [1]) using the
coefficients ckp and there is a natural multiplicative morphism from T(N∗X/Y [1]) to
S(N∗X/Y [1]) endowed with this structure. To conclude, it suffices to notice that the
following diagram

σ∗RHomOS
(OX ,OX) //

o
��

RHom`
OY

(OX ,OX)

o
��

T(N∗X/Y [1]) // S(N∗X/Y [1])

is commutative, which is nothing but the fact that the “geometric” coefficients ckp are
the same as the “algebraic” coefficients ckp, that is, Corollary 5.6. �

5.2. The results of Kapranov, Markarian, Ramadoss and Yu. — In this section, we
provide a new light on the foundational result in this theory: the construction of the
Lie algebra structure on TX [−1], due to Kapranov [15] and Markarian [20], and the
computation of its universal enveloping algebra, due to Markarian [20], and Ramadoss
[22]. Then we prove Ramadoss formula [21] that computes the big Chern classes of a
vector bundle introduced by Kapranov in [15].

5.2.1. The Lie algebra TX [−1]. — Given a smooth scheme/manifold X, we consider
the special case of the quantized cycle (∆X ,pr1) in the product X ×X.

Theorem 5.9 ([15], [20], [22])
– The object (Ω1

X [1], atΩ1
X [1]) is a Lie coalgebra in Db(X).

– The ring object pr1∗RHomOX×X
(OX ,OX) is isomorphic to U(TX [−1]).

– The map pr1∗RHomOX
(OX ,OX)→ pr1∗RHomOX×X

(OX ,OX) identifies with
the natural projection map T(TX [−1])→ U(TX [−1]).
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Proof. — The only thing we must prove is that α identifies with the Atiyah class
of Ω1

X , which is well-known: this follows from looking at the diagram

0

��

0

��

pr1∗
I 2

∆X

I 3
∆X

//

��

pr1∗

(I∆X

I 2
∆X

⊗ pr∗2Ω1
X

)
��

pr1∗
I∆X

I 3
∆X

//

��

pr1∗

(OX×X
I 2

∆X

⊗ pr∗2Ω1
X

)
��

pr1∗
I∆X

I 2
∆X

//

��

pr1∗

(OX×X
I∆X

⊗ pr∗2Ω1
X

)
��

0 0

where the horizontal maps are given by differentiation with respect to the second
variable (so that they are all linear). The bottom horizontal map is the isomorphism
given by the quantization pr1, and the top horizontal map is the symmetrization
morphism. �

Remark 5.10. — Any object F in Db(X) defines a representation of the Lie algebra
TX [−1], which is obtained by the chain of morphisms

TX [−1]⊗F
id⊗ atF−−−−−−−−→ TX [−1]⊗ Ω1

X [1]⊗F
ev ⊗ id−−−−−−−→ F .

For any F , G in Db(X) viewed as representations of TX [−1], the naturality of Atiyah
classes implies that

HomRep(TX [−1])(F ,G ) = HomDb(X)(F ,G ).

In other words, Db(X) embeds as a full subcategory of Rep (TX [−1]).

Theorem 5.9 enables us to give a Lie-theoretic interpretation of the tameness con-
dition (Definition 4.11) for quantized cycles. Recall that if (X,σ) is a quantized cycle,
then σ induces a splitting of the normal sequence.

Theorem 5.11. — The triplet (TX[−1],TY [−1]|X ,NX/Y [−1]) is a reductive pair of
Lie objects, as defined in Section 3.3. Besides, this pair is tame in the sense of Def-
inition 3.8 if and only if (X,σ) is tame in the sense of Definition 4.11. In this case,
the dual of α defines a Lie structure on NX/Y [−1].

Proof. — We switch from Lie algebras objects to Lie coalgebras objects, so that we see
Ω1
Y |X [1] as a Lie coalgebra in Db(X). This Lie coalgebra is described by Corollary 4.14:
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first, the diagram

Ω1
Y |X [1] //

��

Ω1
Y |X [1]⊗ Ω1

Y |X [1] // Ω1
X [1]⊗ Ω1

X [1]

Ω1
X [1] // Ω1

X [1]⊗ Ω1
X [1]

commutes, so the morphism Ω1
Y |X → Ω1

X is a morphism of Lie coalgebras objects.
Next, the tameness of the pair (in the sense of Definition 3.8) can be made explicit
as follows: if consider the morphism

Ω1
X [1] −→ Ω1

Y |X [1] −→ Ω1
Y |X [1]⊗ Ω1

Y |X [1] −→ N∗X/Y [1]⊗N∗X/Y [1],

tameness means the vanishing of the composite morphism

N∗X/Y [1] −→ Ω1
X [1]⊗N∗X/Y [1] −→ (N∗X/Y [1]⊗N∗X/Y [1])⊗N∗X/Y [1].

The first morphism is the class β, and the second one is (β ⊗ idN∗
X/Y

[1]) ◦ atN∗
X/Y

[1].
Thanks to Proposition 4.10, this is γσ(N∗X/Y ), and we are done. For the last point,
we remark that the composition

N∗X/Y [1] −→ Ω1
Y |X [1] −→ Ω1

Y |X [1]⊗ Ω1
Y |X [1] −→ N∗X/Y [1]⊗N∗X/Y [1]

is exactly α. �

5.2.2. Big Chern classes. — Let us recall that for any vector bundle E on X, the big
Chern classes ĉp(E) of E live in Hp(X,TpΩ1

X), they are obtained by composing the
morphisms atE , idΩ1

X
⊗atE , . . . , idΩp−1

X
⊗atE and then taking the trace on E (without

antisymmetrizing on the factor TpΩ1
X).

Theorem 5.12. — For any vector bundle E on X, we have

ĉp(E) =

k∑
p=1

ckp(X) ◦ ck(E),

where ckp are the universal elements in Extp−k(ΩkX ,T
⊗p
X ) associated to the Lie algebra

TX [−1].

Proof. — On X ×X, we have ∆p =
∑p
k=1 c

k
p ◦∆+

k . This gives

pr2∗(∆p ⊗ idpr∗1E) =

p∑
k=1

(ckp ⊗ idE) ◦ pr2∗(∆
+
k ⊗ idpr∗1E).

The result follows by taking the trace on E. �

Remark 5.13. — As explained in [21], the total Chern class of a vector bundle E can
be interpreted in terms of the representation of the Lie algebra TX [−1]. Indeed E

defines a representation of TX [−1], with is (the dual of) the Atiyah class of E, hence
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a map from U(TX [−1]) to End (E). Its trace defines a map from U(TX [−1]) to OX ,
which is exactly

∑
p cp(E) via the isomorphism

HomDb(X)(U(TX [−1]),OX) '
⊕
p

Hp(X,ΩpX).

5.2.3. The quantized cycle class. — Let us recall the definition of the quantized cy-
cle class introduced in [12]. For any quantized cycle (X,σ) in Y , we consider the
composition

(11) ωX/Y ' RHomr(OX ,OY ) −→ RHomr
OY

(OX ,OX) ' S(NX/Y [−1]),

where the last isomorphism is the dual HKR isomorphism. Let d be the codimension
of X in Y .

Proposition 5.14. — Assume that (X,σ) is tame. Then the morphism (11) is a
d-torsion morphism for the Lie algebra NX/Y [−1].

Proof. — We must prove that the composition

NX/Y [−1]⊗ ωX/Y −→ NX/Y [−1]⊗ S(NX/Y [−1])

' NX/Y [−1]⊗U(NX/Y [−1]) −→ U(NX/Y [−1])

vanishes, where the last map is given the multiplication in the algebra U(NX/Y [−1]).
We can rewrite this map (using duality) as a morphism from U(NX/Y [−1]) to
N∗X/Y [1]⊗U(NX/Y [−1]), and the question reduces to the vanishing of the map

ωX/Y −→ S(NX/Y [−1]) ' U(NX/Y [−1]) −→ N∗X/Y [1]⊗U(NX/Y [−1]).

Using Theorem 5.8, we have a commutative diagram

RHomr
OY

(OX ,OX)
∆1◦ //

o
��

RHomr
OY

(OX ,N∗X/Y [1])

o
��

U(NX/Y [−1]) // N∗X/Y [1]⊗U(NX/Y [−1])

Hence the morphism we want to look at is (modulo isomorphism on the target) the
composition

ωX/Y ' RHomr(OX ,OY ) −→ RHomr(OX ,OX) −→ RHomr(OX ,N
∗
X/Y [1]).

We can factor the first arrow through RHomr(OX ,OS), and the composition

RHomr(OX ,OS) −→ RHomr(OX ,OX) −→ RHomr(OX ,N
∗
X/Y [1])

vanishes, since it is obtained by composing two successive arrows of a distinguished
triangle. �

Theorem 5.15 ([24]). — Let (X,σ) be a tame quantized cycle in Y . Via the isomor-
phism

RHomDb(Y )(ωX/Y ,S(NX/Y [1])) ' H0(X,S(N∗X/Y [1])) ' S(N∗X/Y [1])NX/Y [−1],

the image of the morphism (11) is the Duflo element of NX/Y [−1].
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Proof. — Thanks to Proposition 5.14 and Theorem 3.7, the morphism (11) is obtained
by contracting the morphism

ωX/Y ' Sd(NX/Y [−1]) −→ S(NX/Y [−1])

by the Duflo element of NX/Y [−1]. This gives the result. �

6. The Ext algebras

6.1. Definitions. — Let (X,Y, σ) be a fixed quantized cycle. For any k, we denote
by X(k)

Y is the kth formal neighborhood of X in Y .

Definition 6.1. — A
(k)
X/Y is the algebra

⊕∞
n=0 Extn

X
(k)
Y

(OX ,OX), the algebra struc-
ture being given by the Yoneda product.

For any k, there are natural algebra morphisms

A
(0)
X/Y ↪−→ A

(1)
X/Y −→ A

(2)
X/Y −→ · · · −→ A

(k)
X/Y −→ · · · −→ A

(∞)
X/Y .

Note that all the algebras A
(k)
X/Y are naturally graded by the integer n, we call this

grading the degree grading. Thanks to Proposition 4.15, the algebra A
(1)
X/Y is canon-

ically isomorphic (as an algebra) to the algebra
∞⊕
n=0

n⊕
p=0

Extn−p(TpN∗X/Y ,OX)

via the map that attaches to any ϕ in Extn−p(TpN∗X/Y ,OX) the element ϕ ◦ ∆p.
As a corollary, the algebra A

(1)
X/Y carries another natural grading given by the inte-

ger p, which is completely different from the degree grading; we call this grading the
Lie grading. Elements of depth zero correspond to the sub-algebra A

(0)
X/Y .

Using the sequence (8), the composition
∞⊕
n=0

n⊕
p=0

Extn−p(ΛpN∗X/Y ,OX) −→
∞⊕
n=0

n⊕
p=0

Extn−p(TpN∗X/Y ,OX) ' A
(1)
X/Y −→ A

(∞)
X/Y

is an isomorphism of k-vector spaces. Hence the map A
(1)
X/Y → A

(∞)
X/Y is surjective,

and there is an isomorphism

A
(∞)
X/Y '

∞⊕
n=0

n⊕
p=0

Extn−p(ΛpN∗X/Y ,OX).

of k-vector spaces obtained by attaching to any ϕ in Extn−p(ΛpN∗X/Y ,OX) the push
forward of the element ϕ ◦∆−p from S to Y . The integer p defines a grading on A

(∞)
X/Y

but it no longer respects the algebra structure, however the corresponding ascending
filtration does. We call this filtration the Lie filtration.
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6.2. Enrichment. — For any scheme (or complex manifold) Z, the category Db(Z)

is enriched over Db(k) in the following way:

Db(Z)(F ,G ) := RΓ(X,RHomDb(Z)(F ,G )).

Remark 6.2
– The enrichment is symmetric monoidal. In particular, the tensor product functor

is an enriched functor.
– As k is a field, we can replace Db(k) by the equivalent category kZ. Through

this equivalence we have

Db(Z)(F ,G ) '
⊕
n∈Z

HomDb(Z)(F ,G [n]).

– The Ext algebras admit a very simple description using this formalism, they are
given by the formula

A
(k)
X/Y = Db

(
X

(k)
Y

)
(OX ,OX).

Let E an object in Db(Z), which we view as a module over the Lie algebra
object TX [−1] using the Atiyah class. There are two possible definitions of the
V -invariants EV of E:

– The standard one: EV := HomDb(Z)(OZ , E), where OZ is equipped with the
trivial TX [−1]-module structure.

– The enriched one: EV := Db(Z)(OZ , E).
Below we always use the enriched version.

6.3. Structure theorem. — If (X,σ) is tame, we can explicitly describe the Ext
algebra A

(∞)
X/Y . We have an exact sequence

0 −→ TX [−1] −→ (TY [−1])|X −→ NX/Y [−1] −→ 0.

Recall that NX/Y [−1] is naturally endowed with a Lie structure (given by α).

Theorem 6.3. — Assume that (X,σ) is a tame quantized cycle in Y . Then, using the
corresponding Lie structure on NX/Y [−1], the algebra A

(∞)
X/Y is naturally isomorphic

to U(NX/Y [−1])TX [−1]. Besides, there is a commutative diagram

A
(1)
X/Y

//

��

A
(∞)
X/Y

��(
T(NX/Y [−1])

)TX [−1]
//
(
U(NX/Y [−1])

)TX [−1]

Proof. — We have already proved that there is an isomorphism of algebra ob-
jects between RHom`

OY
(OX ,OX) and U(NX/Y [−1]). Applying the derived global

section functor we get an isomorphism of graded algebras between A
(∞)
X/Y and

RΓ
(
X,U(NX/Y [−1])

)
. Finally, observe that the TX [−1]-module structure of

U(NX/Y [−1]) ∼= S(NX/Y [−1])
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is given by the Atiyah class of S(NX/Y [−1]). Therefore the algebra

RΓ
(
X,U(NX/Y [−1])

)
is indeed U(NX/Y [−1])TX [−1]. �

6.4. The algebra A
(2)
X/Y . — In this section, we describe completely the image of

A
(1)
X/Y in A

(2)
X/Y for tame quantized cycles. The result, which seems quite surprising

at first sight, runs as follows:

Theorem 6.4. — Assume that (X,σ) is tame in Y . The surjective morphism from
A

(2)
X/Y to A

(∞)
X/Y admits a canonical section.

Proof. — Let RX/Y be the kernel of the map A
(1)
X/Y → A

(∞)
X/Y . The kernel of the map

A
(1)
X/Y → A

(2)
X/Y is a subalgebra of RX/Y , and we must prove that any element of

RX/Y maps to zero in A
(2)
X/Y . Elements of RX/Y are of the form

∑
p>0

αp ◦ (∆p −
p∑
k=1

ckp ◦∆+
k )

for αp in Ext∗(
⊗p

N∗X/Y ,OX). Hence the result follows directly from Corollary 5.7.
�

7. Conclusion and perspectives

7.1. State of the art in the tame case. — In this article we introduced a tameness
condition for a quantized cycle (X,σ) in Y . Under this assumption we proved that
the shifted normal sheaf NX/Y [−1] is endowed with a Lie bracket and that the sheaf
of derived OY -linear endomorphisms of OX is isomorphic to the universal enveloping
algebra of NX/Y [−1]. Using this, we were able to:

– Describe explicitly the Ext algebra Ext•Y (OX ,OX), giving simple and conceptual
proofs in the diagonal case of results of Ramadoss and Kapranov.

– Identify the quantized cycle class with the Duflo element of the Lie algebra object
NX/Y [−1], recovering and reinterpreting in Lie algebraic terms a result of Yu.

7.2. Beyond the tame case. — At first sight, the diagonal cycle X ↪→ X ×X admits
two distinguished quantizations (i.e., first order retractions): the two projections pr1

and pr2. However, since the space of quantizations of a cycle is an affine space, this
gives a whole line of quantizations, namely tpr1 + (1− t)pr2 for t in the base field k.

In general these quantizations are never tame except for t = 0 or t = 1, that is,
for the two projections. However, the value t = 1/2 is special since the corresponding
quantized cycle fits in a very interesting family of quantized cycles: every fixed-point
locus X = Y ι of an involution ι of Y defines naturally a quantized cycle. In our former
example, Y = X × X and ι(x, x′) = (x′, x). In Lie algebraic terms this corresponds
to symmetric pairs. We will study further on this case in future work.
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7.3. Link with Duflo’s conjecture for symmetric pairs. — If g is a finite-dimen-
sional Lie algebra (over a characteristic zero field) then Duflo’s theorem [9] states
that the composition

S(g)

√
dg y−−−−−−→ S(g)

PBW−−−−−→ U(g)

induces an isomorphism of algebras between the algebra of invariants(8) S(g)g and
the center Z

(
U(g)

)
of U(g). Here, dg is the Duflo element of g in Ŝ(g∗) introduced in

Section 3.2.1. This theorem is believed to be true in any reasonable categorical context,
that is, for any dualizable Lie algebra object in a symmetric monoidal category with
the hypotheses we put to get the categorical PBW theorem. However, this goal is
out of reach in full generality (aside from the abelian case due to Kontsevich), even
though it has been achieved in the enriched(9) monoidal category Db(X) for the Lie
algebra object TX [−1] in [4]. For historical considerations around Duflo’s theorem
and its geometric counterpart, we refer the reader to the monograph [7].

Duflo’s theorem has a conjectural extension for reductive pairs (see [10]), which
runs as follows: given such a pair (g, h), there should be an isomorphism of algebras

ZP

{( S(g)

S(g)hρ

)h}
' Z

{( U(g)

U(g)h

)h}
.

where the notation is explained below:
– ρ is half the character of the h-representation g/h.
– hρ = {h+ ρ(h)|h ∈ h} ⊂ S(g).
– (S(g)/S(g)hρ)

h is naturally a Poisson algebra.(10)

– ZP denotes the Poisson center.
It is interesting to understand its geometrization. To do this, we consider the reductive
pair (TY [−1]|X ,TX [−1]) attached to a quantized cycle. Of course, in a categorical
context, (U(g)/U(g)h)

h has to be understood as Homg

(
Indg

h 1C , Indg
h 1C

)
.

In the tame case, the results of Sections 3.3.3 and 6.3 play a crucial role. Indeed,
combining Theorem 3.11 and Theorem 3.12, the left hand side of Duflo’s conjecture
is U(NX/Y [−1])TX [−1] endowed with the opposite algebra structure. Thanks to The-
orem 6.3, it is the center of A∞X/Y .

Appendix. Operadic proof of the categorical PBW

In this appendix we sketch a proof of the following folklore result: the PBW theorem
holds in any Karoubian symmetric monoidal category in which countable sums exist
and such that the monoidal product preserves these in each variable. We also describe
the multiplication by elements of degree one in the universal enveloping algebra. The
proof makes use of linear operads, for which we recommend the reference [19].

(8)This algebra is sometimes called the algebra of Casimirs of g.
(9)See Section 6.2.
(10)It is the algebra of regular functions on the reduction along the coisotropic subspace

{λ ∈ g∗ | λ|h = ρ} in the linear Poisson space g∗.
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Notation A.1. — For a set V of variables and a given bijection x : {1, . . . , k} → V

we will allow ourselves to write a k-ary operation m in variable notation:
m = M ((x(1), . . . , x(k)) .

In this notation the symmetric group action reads m · σ = M (x(σ(1)), . . . , x(σ(k))),
and the operad composition is expressed in terms of substitution: given another op-
eration n = N

(
y(1), . . . , y(`)

)
written in variable notation, the partial composition

m ◦i n is
m ◦i n = M (x(1), . . . , x(i− 1), N (y(1), . . . , y(`)) , x(i+ 1), . . . , x(k)) .

A.1. Symmetric multibraces. — Let us denote by SMB the operad of symmetric
multibrace algebras from [18, §4.5]: it is the operad generated by operations mp,q

(where p, q > 1) of arity p+ q, such that:
(a) mp,q is (p, q)-symmetric: mp,q · σ = mp,q if σ ∈ Sp ×Sq.
(b) The operations mp,q = Mp,q(x1, . . . , xp, y1, . . . , yq) satisfy the relation SR

from [18, Prop. 4.3].
Here and below, we use the convention that mp,0 (resp. m0,q) is the identity operation
if p = 1 (resp. q = 1) and 0 otherwise.

A.2. Interpretation in terms of bialgebra structure. — Let C be a symmetric
monoidal k-linear category that is Karoubian and with arbitrary countable sums.
This is sufficient for S(V ) to exist, given any object V . Observe that S(V ) carries a
coaugmented cocommutative coassociative counital coalgebra structure:

– The coproduct ∇ : S(V )→ S(V )⊗ S(V ) given as follows: on Sn(V ),

∇ =

n∑
p=0

(
n

p

)
∇p,n−p,

where ∇p,q is the inclusion Sn(V ) ↪→ Sp(V )⊗ Sq(V ).
– The counit ε : S(V )→ 1C is the projection onto the direct factor S0(V ) = 1C .
– The coaugmentation 1 : 1C → S(V ) is the direct factor inclusion of S0(V ) = 1C .
– We will also need the reduced coproduct ∇ := ∇− (id⊗ 1 + 1⊗ id).

On Sn(V ), the iterated reduced coproduct ∇(k) is the sum, over all (k + 1)-tuples
(n0, . . . , nk) such that n0 + · · ·+ nk = n, of

(
n

n1,...,nk

)
times the inclusions

Sn(V ) ↪−→ Sn0(V )⊗ · · · ⊗ Snk(V ).

In particular, on Sn(V ), the following properties hold:

– If k = n then ∇(n) is n! times the inclusion of Sn(V ) in V ⊗n.
– If k > n then ∇(k)

= 0.
It has been proven in [18, §4] that an SMB-algebra structure on V is the same as

an associative product m on S(V ) such that m is a coaugmented counital coalgebra
morphism: ∇◦m = m⊗2 ◦ (23) ◦∇⊗2 and ε ◦m = ε⊗ ε. Indeed, being a coaugmented
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counital coalgebra morphism imposes, by cofreeness of S(V ), that m is completely
determined by the structure maps mp,q defined as the composition

Sp(V )⊗ Sq(V )
m−−−→ S(V ) −→−→ S1(V ) = V.

Associativity of m is equivalent to condition (b) on the structure maps mp,q.

A.3. A morphism of operads Lie → SMB. — Recall that the Lie operad is the
linear operad generated by a skew-symmetric binary operation obeying the Jacobi
identity. In arity n, Lie(n) consists of (linear combinations of) Lie monomials in
x1, . . . , xn in which every xi appears exactly once.(11) Hence the generating operation
is [x1, x2] ∈ Lie(2).

There is an obvious morphism of operads f : Lie → SMB sending [x1, x2] to
(m1,1 −m1,1 · (12))/2, so that any symmetric multibrace algebra is naturally a Lie
algebra.

A.4. A morphism of operads SMB → Lie. — In this section, we construct a less
obvious morphism of operads SMB → Lie.

We use the classical PBW theorem for Lie algebras over a field of characteristic
zero, and apply it to the case of the free Lie k-algebra Liep+q in p + q generators
x1, . . . , xp, y1, . . . , yq. We have an algebra structure ∗ on the cocommutative coalgebra
S(Liep+q) ' U(Liep+q) that is defined via the exponential formula exp(u) ∗ exp(v) =

exp (bch(u, v)), where bch(u, v) is the Baker–Campbell-Hausdorff series, which is a
Lie series in two variables.

This product is easily seen to be compatible with the coproduct,(12) leading to a
symmetric multibrace algebra structure on Liep+q. One can check from the exponen-
tial formula for the product that the output expression Mp,q(x1 . . . xp, y1 . . . yq) is the
part inside bch(x1 + · · · + xp, y1 + · · · + yq) consisting in monomials where every xi
and every yj appears exactly once,(13) and thus lies in Lie(p + q). It is almost tau-
tological(14) that sending mp,q in SMB(p+ q) to Mp,q(x1 . . . xp, y1 . . . yq) in Liep+q
indeed defines a morphism of operads g : SMB → Lie. One can check that g ◦ f is
the identity.

A.5. The categorical PBW theorem. — Form the above we get that every Lie alge-
bra object (V, α) in a symmetric monoidal category inherits a symmetric brace algebra
structure. In other words, there is an associative unital product m? : S(V )⊗2 → S(V )

that is a morphism of coaugmented counital coalgebra. From the compatibility with

(11)In other words, the free Lie k-algebra Lien in n variables x1, . . . , xn carries an obvious
Zn
+-grading, and Lie(n) = Lie(1,...,1)

n . The operadic structure is given by substitution.
(12)This is the classical statement that U(g) is a bi-algebra, see for instance [3, Chap. 2 §1.4

Prop. 7].
(13)In other words, Mp,q(x1 . . . xp, y1 . . . yq) = bch(x1 + · · ·+ xp, y1 + · · ·+ yq)(1,...,1).
(14)More precisely, taking the multi-degree (1, . . . , 1) part of

bch
(
bch(x1+· · ·+xp, y1+· · ·+yq), z1+· · ·+zr

)
= bch

(
x1+· · ·+xp, bch(y1+· · ·+yq , z1+· · ·+zr)

)
precisely gives the relation (SRpqr) from [18, Prop. 4.3].
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the coproduct, the counit, and the coaugmentation, it follows immediately that m?

satisfies the following properties:
– m? is filtered: m? restricted to S6i(V )⊗S6j(V ) factors through S6i+j(V )⊂S(V ).
– m? is a deformation ofm0: on Si(V )⊗Sj(V ),m?−m0 factors through S<i+j(V ) ⊂

S(V ).
– On V ⊗2, m? −m? · (12) = α.

The first property follows from the fact that S6k(V ) is the kernel of ∇(k+1), and that
the multiplication m? is a morphism of coalgebras. The second property follows from
the fact that ∇(i+j) is (i + j)! times the inclusion Si+j(V ) ⊂ V ⊗i+j . Only the third
property uses the morphism SMB → Lie: it follows from the fact that m1,1 is sent
to [x1, x2].

A.6. The derivative of the multiplication map. — Our aim in this section is to
prove that the restriction ϕ of the product m? to S(V ) ⊗ V ⊂ S(V ) ⊗ S(V ) is equal
to ψ := m0 ◦ ω/(1− exp(−ω)), where ω is defined at the beginning of Section 3.1.1.
Our strategy runs as follows:

Step 1. — Show that ψ is compatible with the coproduct:(15)

∇ ◦ ψ ?
= ψ⊗2 ◦ (23) ◦ ∇⊗2

= ψ⊗2 ◦ (23) ◦ (∇⊗ (id⊗ 1 + 1⊗ id)) (∇|V = id⊗ 1 + 1⊗ id)

= (id + (12)) (id⊗ ψ) ◦ (∇⊗ id) (∇ = (12)∇).

Step 2. — Using the first step, one gets that the morphism ψ is completely determined
by its structure maps ψp,1 : Sp(V ) ⊗ V → V . To end the proof one shall show that
ψp,1 = ϕp,1.

Proof of Step 1. — To prove that ψ is compatible with the coproduct, it is sufficient
to prove that so are all the qk := m0 ◦ ω◦k; that is
(12) ∇ ◦ qk

?
= (id + (12))(id⊗ qk) ◦ (∇⊗ id).

On the one hand, on Sn(V )⊗ V we have by definition

(id + (12))(id⊗ qk) ◦ (∇⊗ id) = (id + (12))(id⊗m0) ◦ (id⊗ ω◦k) ◦ (∇⊗ id).

On the other hand, on Sn(V )⊗ V we also have:

∇ ◦ qk = ∇ ◦m0 ◦ ω◦k

= m⊗2
0 ◦ (23) ◦ ∇⊗2 ◦ ω◦k

= (id + (12)) ◦ (id⊗m0) ◦ (∇⊗ id) ◦ ω◦k.

Hence, to prove the desired identity (12) it is sufficient to prove that

(∇⊗ id) ◦ ω◦k = (id⊗ ω◦k) ◦ (∇⊗ id).

(15)Such an identity somehow makes ψ into a “family of coderivations” (parametrized by V ).
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We now compute the two sides of the above identity, starting with the left-hand-one:

(∇⊗ id)◦ω◦k = n(n−1) · · · (n−k+1)
∑

p+q′=n−k

(
n− k
p

)
∇p,q′ ◦ (id⊗ α) · · · (id⊗ α)︸ ︷︷ ︸

k times

.

The right-hand-side reads:

(id⊗ ω◦k) ◦ (∇⊗id) =
∑

p+q=n

q(q − 1) · · · (q − k + 1)

(
n

p

)
(id⊗ α) · · · (id⊗ α)︸ ︷︷ ︸

k times

◦∇p,q

=
∑

p+q=n

q(q − 1) · · · (q − k + 1)

(
n

p

)
∇p,q−k ◦ (id⊗ α) · · · (id⊗ α)︸ ︷︷ ︸

k times

.

We finally conclude by identifying coefficients (fixing p and q, and having q′ = q− k):

n(n− 1) · · · (n− k + 1)

(
n− k
p

)
=

n!(n− k)!

(n− k)!p!(q − k)!
=

n!

p!(q − k)!

=
q!n!

(q − k)!p!q!
= q(q − 1) · · · (q − k + 1)

(
n

p

)
. �

Proof of Step 2. — Observe that we have the following identity in Liep+1:

Mp,1(x1, . . . , xp, y) = bch(x1 + · · ·+ xn, y)(1,...,1)

= (−1)p
Bp
p!

∑
σ∈Sp

[
xσ(1), . . . , [xσ(p), y] . . .

]
.

Hence we get that

ϕp,1 = (−1)p
Bp
p!
ω◦p = ψp,1. �
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