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HODGE IDEALS FOR Q-DIVISORS:
BIRATIONAL APPROACH
BY Mircea MustaTA & Minnea Popa
Asstract. — We develop the theory of Hodge ideals for Q-divisors by means of log resolutions,

extending our previous work on reduced hypersurfaces. We prove local (non-)triviality criteria
and a global vanishing theorem, as well as other analogues of standard results from the theory
of multiplier ideals, and we derive a new local vanishing theorem. The connection with the
V-filtration is analyzed in a sequel.

Risumi: (Idéaux de Hodge pour des Q-diviseurs : approche birationnelle)

Nous développons la théorie des idéaux de Hodge pour les Q-diviseurs a 1’aide de log réso-
lutions, généralisant notre précédent travail sur les hypersurfaces réduites. Nous obtenons des
critéres de (non) trivialité locale et un théoréme d’annulation global, ainsi que d’autres ana-
logues de résultats standard de la théorie des idéaux multiplicateurs, et nous en déduisons un
nouveau théoréme d’annulation local. Nous analysons la relation avec la V-filtration dans un
autre article.
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A. INTRODUCTION

In this paper we continue the study of Hodge ideals initiated in [MP16], [MP18b],
by considering an analogous theory for arbitrary Q-divisors. The emphasis here is on a
birational definition and study of Hodge ideals, while the companion paper [MP18a] is
devoted to a study based on their connection with the V-filtration, inspired by [Sail6].
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284 M. Mustati & M. Pora

Both approaches turn out to provide crucial information towards a complete under-
standing of these objects.

Let X be a smooth complex variety. If D is reduced divisor on X, the Hodge ideals
I (D), with k > 0, are defined in terms of the Hodge filtration on the Zx-module
Ox (xD) of functions with poles of arbitrary order along D. Indeed, this Zx-module
underlies a mixed Hodge module on X, and therefore comes with a Hodge filtration
F,0x(xD), which satisfies

Fkﬁx(*D):Ik(D)®ﬁx((k+1)D) for allk}()

See [MP16] for details, and for an extensive study of the ideals I} (D).

Our goal here is to provide a similar construction and study in the general case.
A natural device for dealing with the fact that fractional divisors are not directly
related to Hodge theory is to use new objects derived from covering constructions.
Let D be an arbitrary effective Q-divisor on X. Locally, we can write D = aH, for
some o € Qsg and H = div(h), the divisor of a nonzero regular function; we also
denote by Z the support of D. A well-known construction associates to this data a
twisted version of the localization Z-module above, namely

M(h™Y) = Ox(xZ)h™ 7,

that is the rank 1 free Ox (xZ)-module with generator the symbol h~%, on which a
derivation D of Ox acts by

D(wh™¢) = (D(w) — aw@)h*a.

It turns out that this Zx-module can be endowed with a natural filtration Fy.# (h~%),
with k£ > 0, which makes it a filtered direct summand of a Z-module underlying a
mixed Hodge module on X; see Section 2. This plays a role analogous to the Hodge fil-
tration, and just as in the reduced case one can show that Fj,.# (h~*) C Ox(kZ)h™ .
This is done in Section 3 and Section 4, by first analyzing the case when Z is a smooth
divisor (in this case, if [D] = Z, then the inclusion is in fact an equality). It is there-
fore natural to define the k-th Hodge ideal of D by the formula

Fk%(hia) = Ik(D) Reox ﬁx(kZ)hia.

Similarly to [MP16], one of our main goals here is to study Hodge ideals of
Q-divisors by means of log resolutions. To this end, let f: Y — X be a log resolution
of the pair (X, D) that is an isomorphism over U = X \ Z, and denote g = ho f.
There is a filtered isomorphism

(M (™), F) =~ fr(M(g*),F).

Denoting G = f*D and E = Supp(G), so that E is a simple normal crossing divisor,
it turns out that there exists a complex on Y:

Co_a(=[G]): 0— Oy (—[G]) ®ay Dy — Oy(—[G]) ®a, N (log E) @6, Py
— = Oy (—[G]) ®gy wy (E) ®e, Py — 0,
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which is placed in degrees —n, ..., 0, whose differential is described in Section 6. This
complex has a natural filtration given, for & > 0, by subcomplexes

Fk,nC;fa(—l_G]) =0— ﬁy(—[G])@Fk,n@y —>ﬁy(—[GW)@Q;(]OgE)@Fk,nle.@Y
== Oy (—[G]) @wy (E) ® F,Zy — 0.

Extending [MP16, Prop. 3.1], we show in Proposition 6.1 and Proposition 7.1 that
there is a filtered quasi-isomorphism

(Co-a(=[G1), F) = (A:(97), F),
where ., (g~ ) is the filtered right Zy-module associated to .#(g—*). Thus one can
use (C;_a (—=[G1), F) as a concrete representative for computing the filtered Z-module
pushforward of (///T (g, F ), hence for computing the ideals It(D). More precisely,
we have

Rf.F)_, (Cgf.l(—[G-D Ry @yﬁx) ~h wx(kZ) ®¢y 11(D).

See Theorem 8.1 for a complete picture regarding this push-forward operation.

This fact, together with special properties of the filtration on Z-modules underlying
mixed Hodge modules, leads to our main results on Hodge ideals, which are collected
in the following;:

Turorem A. In the set-up above, the Hodge ideals Iy (D) satisfy:

(i) Io(D) is the multiplier ideal . ((1 — £)D), so in particular Io(D) = Ox if and
only if the pair (X, D) is log canonical; see Section 9.

(ii) If Z has simple normal crossings, then

Ii(D) = In(Z) ® Ox(Z — [DY]),
while I}, (Z) can be computed explicitly as in [MP16, Prop. 8.2]; see Section 7. In par-

ticular, if Z is smooth, then I;,(D) = Ox(Z — [D]) for all k; cf. also Corollary 11.12.
(iii) The Hodge filtration is generated at level n — 1, where n = dim X, i.e.,

E9x - (In(D) ® Ox (kZ)h™) = Iyt (D) @ Ox ((k+ ) Z)h ™

for all K > n — 1 and £ > 0; see Section 10.

(iv) There are non-triviality criteria for It (D) at a point € D in terms of the
multiplicity of D at z; see Section 11.

(v) If X is projective, I (D) satisfy a vanishing theorem analogous to Nadel Van-
ishing for multiplier ideals; see Section 12.

(vi) If Y is a smooth divisor in X such that Z|y is reduced, then Iy (D) satisfy

Iy (Dly) C Ix(D) - Oy,

with equality when Y is general; see Section 13 for a more general statement.

(vii) If X — T is a smooth family with a section s: T — X, and D is a rela-
tive divisor on X that satisfies a suitable condition (see Section 14 for the precise
statement) then

{teT| (D) g m,}

is an open subset of T', for each g > 1.

JEP. — M., 2019, tome 6



286 M. Mustati & M. Pora

(viii) If Dy and Do are Q-divisors with supports Z; and Zs, such that Z; + Z is
also reduced, then the subadditivity property

I(D1 + Ds) C Ii(D1) - I(D2)

holds; see Section 15 for a more general statement.

For comparison, the list of properties of Hodge ideals in the case when D is reduced
is summarized in [Pop19, §4]. While much of the story carries over to the setting of
Q-divisors — besides of course the connection with the classical Hodge theory of the
complement U = X \ D, which only makes sense in the reduced case — there are a few
significant points where the picture becomes more intricate. For instance, the bounds
for the generation level of the Hodge filtration can become worse. Moreover, we do
not know whether the inclusions I(D) C I;_1(D) continue to hold for arbitrary
Q-divisors. New phenomena appear as well: unlike in the case of multiplier ideals,
for rational numbers a; < ag, usually the ideals (a1 Z) and Ij(azZ) cannot be
compared for k > 1; see for instance Example 10.5.

It turns out however that most of these issues disappear if one works modulo the
ideal of the hypersurface, at least for rational multiples of a reduced divisor. This,
as well as other basic facts, is addressed in the sequel [MP18a], which studies Hodge
ideals from a somewhat different point of view, namely by comparing them to the
(microlocal) V-filtration induced on &x by h. This is inspired by the work of Saito
[Sail6] in the reduced case. In the statement below we summarize some of these
properties, which complement the results in Theorem A, but which we do not know
how to obtain with the methods of this paper.

Tueorem B ([MP18a]). — Let D = aZ, where Z is a reduced divisor and o € Q.
Then the following hold:

(1) Ik(D) + ﬁx(—Z) - kal(D) + ﬁx(—Z) for all k.

(2) If a € (0,1], then I(D) = Ox <= k < &z — «a, where ayz is the negative of
the largest root of the reduced Bernstein-Sato polynomial of Z.

(3) If I,_1 (D) = Ox (we say that (X, D) is (k—1)-log canonical), then I} (D) C
I (D).

(4) Fixing k, there exists a finite set of rational numbers 0 = ¢y < ¢; < -+ < ¢5 <
¢s+1 = 1 such that for each 0 < ¢ < s and each « € (¢;, ¢;+1] we have

In(aZ) - Oz = Ii(c;41Z) - Oz = constant
and such that

Ik(ci+1Z> . ﬁz _g Ik(CiZ) . ﬁz.

Going back to the description of Hodge ideals by means of log resolutions, the
strictness of the Hodge filtration for the push-forwards of (summands of) mixed Hodge
modules leads to the following local Nakano-type vanishing result for Q-divisors:

JEP — M., 2019, lome 6
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Cororrary C. Let D be an effective Q-divisor on a smooth variety X of dimen-
sion n, and let f: Y — X be a log resolution of (X, D) that is an isomorphism over
X ~ Supp(D). If E = (f*D)yed, then

R1f. (O} (log E) ®6, Oy(—=[f*D])) =0 forp+q>n.

Note that for p = n this is the local vanishing for multiplier ideals [Laz04, Th. 9.4.1],
since E—[f*D] = —[(1—e¢)f*D] for 0 < ¢ < 1. In general, the statement extends the
case of reduced D in [Sai07, Cor. 3] (cf. also [Sail6, §A.5]). Unlike [MP16, Th.32.1]
regarding that case, at the moment we are unable to prove this corollary via more
elementary methods.

A different series of applications, given in [MP18a], uses the results proved in
this paper together with the relationship between Hodge ideals of Q-divisors and
the V-filtration, in order to describe the behavior of the invariant ay described in
Theorem B (called the minimal exponent of Z). For instance, the triviality criterion
proved here as Proposition 11.2 leads to a lower bound [MP18a, Cor. D] for az in terms
of invariants on a log resolution, addressing a question of Lichtin and Koll4ar. Moreover,
the results in Theorem A (vi) and (vii), and Corollary 11.11, lead to effective bounds
and to restriction and semicontinuity statements for az, in analogy with well-known
properties of log canonical thresholds; for details see [MP18a, §6].

B. HobcGE 1DEALS vIA LOG RESOLUTIONS, AND FIRST PROPERTIES

Let X be a smooth complex algebraic variety. Given an effective Q-divisor D on X,
our goal is to attach to D ideal sheaves I}(D) for k > 0; when D is a reduced divisor,
these will coincide with the Hodge ideals in [MP16].

1. A srier rREVIEW OF HODGE MODULES. A key ingredient for the definition of our
invariants is Saito’s theory of mixed Hodge modules. In what follows, we give a brief
presentation of the relevant objects, and recall a few facts that we will need. For
details, we refer to [Sai90].

Given a smooth n-dimensional complex algebraic variety X, we denote by Zx
the sheaf of differential operators on X. This carries the increasing filtration F,Zx
by order of differential operators. A left or right Z-module is a left, respectively
right, Zx-module, which is quasi-coherent as an &'x-module. There is an equivalence
between the categories of left and right Z-modules, which at the level of &x-modules
is given by

M— N =M Rp, wx and N — Homeg,(wx, N ).
For example, this equivalence maps the left Z-module Ox to the right Z-module wx.
For a thorough introduction to the theory of Z-modules, we refer to [HTTO08].
A filtered left (or right) 2-module is a Z-module ., together with an increasing

filtration F' = F,.# that is compatible with the order filtration on Zx and which
is good, in a sense to be defined momentarily. A morphism of filtered Z-modules is

JE.P. — M., 2019, tome 6
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required to be compatible with the filtrations. The equivalence between left and right
Z-modules extends to the categories of filtered modules, with the convention that

prn(% ®ﬁx UJX) = FP% ®ﬁX wx-

A filtration F,.# on a coherent Z-module .# is good if the corresponding graded
object grf’ A = @, FyM |Fy_1.4# is locally finitely generated over grl’ Zx. We
note that every coherent Z-module admits a good filtration, but this is far from
being unique.

We now come to the key objects in Saito’s theory, the mired Hodge modules from
[Sai90]. Such an object is given by the data M = (4, F, &, p, W), where:

(i) (A, F) is a filtered Z-module, with .Z a holonomic left (or right) Z-module,
with regular singularities; F' is the Hodge filtration of .# .

(ii) & is a perverse sheaf of Q-vector spaces on X.

(iii) ¢ is an isomorphism between P¢c = & ®q C and DR(Z), i.e., the perverse
sheaf corresponding to .# via the Riemann-Hilbert correspondence.

(iv) W is a finite, increasing filtration on (4, F, &, ¢), the weight filtration of the
mixed Hodge module.

For a such an object to be a mixed Hodge module, it has to satisfy a complicated
set of conditions of an inductive nature, which we do not discuss here. The main
reference for the basic definitions and results of this theory is [Sai90]; see also [Sail7]
for an introduction.

Given a mixed Hodge module (.#, F, &, p, W), we say that the filtered Z-module
(A, F) is a Hodge 2-module (or that it underlies a mixed Hodge module). In fact,
this is the only piece of information that we will be concerned with in this article. The
basic example of a mixed Hodge module is Q%[n], the trivial one. In this case, the
filtered Z-module is the structure sheaf &y, with the filtration such that grg Ox =0
for all p # 0. The corresponding perverse sheaf is Qx[n] and the weight filtration is
such that ngV Ox =0 for p # n.

The mixed Hodge modules on X form an Abelian category, denoted MHM(X).
Morphisms in this category are strict with respect to both the Hodge and the weight
filtration. The corresponding bounded derived category is denoted D’ (MHM(X ))

Mixed Hodge modules satisfy Grothendieck’s 6 operations formalism. The relevant
fact for us is that to every morphism f: X — Y of smooth complex algebraic varieties
we have a corresponding push-forward functor f,: D° (MHM(X)) — D’ (MHM(Y))
(this is denoted by f, in [Sai90]). Moreover, if g: Y — Z is another such morphism,
we have a functorial isomorphism (go f)4 ~ g4 o f4.

Regarding the push-forward functor for mixed Hodge modules, we note that on the
level of Z-modules, it coincides with the usual Z-module push-forward. Moreover, if
f: X =Y is proper and if we denote by FM(Zx) the category of filtered Z-modules
on X (here it is convenient to work with right Z-modules), then Saito defined in
[Sai88] a functor

f+: DY(FM(2x)) — D" (FM(Zy)).

JEP — M., 2019, lome 6



HoDGE IDEALS FOR Q-T)IV]SORSZ BIRATIONAL APPROACTH 28()

This is compatible with the usual direct image functor for right Z-modules and it
is used to define the push-forward between the derived categories of mixed Hodge
modules at the level of filtered complexes. With a slight abuse of notation, if (.#, F)
underlies a mixed Hodge module M on X and if f: X — Y is an arbitrary morphism,
then we write fi (.#, F) for the object in D*(FM(%y)) underlying f, M.

An important feature of the push-forward of Hodge Z-modules with respect to
proper morphisms is strictness. This says that if f: X — Y is proper and (#, F)
underlies a mixed Hodge module on X, then f,(.Z,F) is strict as an object in
Db(FM(Qy)) (and moreover, each H'f, (.# , F) underlies a Hodge Zy-module). This
means that the natural mapping

(1.1) sz* (Fk(% Q%@X @X_)y)) — le*(% Q%@X Dx—y)

is injective for every i,k € Z. Taking Fy,H'f, (#, F) to be the image of this map, we
get the filtration on H'f, (.4, F).

The push-forward with respect to open embeddings is more subtle. For example,
suppose that Z is an effective divisor on the smooth variety X and j: U = X\ Z — X
is the corresponding open immersion. Recall that &'x (xZ) is the push-forward j.0y;
on a suitable affine open neighborhood V' of a given point in X, this is given by
localizing Ox (V) at an equation defining Z NV in V. Ox(xZ) has a natural left
Z2-module structure induced by the canonical Z-module structure on Ox. In fact, as
such we have Ox (xZ) ~ j Oy (in general, for a Yy-module .#, the Z-module push-
forward jy.# agrees with j..#, with the induced Zx-module structure). We thus
see that Ox(xZ) carries a canonical filtration such that the corresponding filtered
2-module underlies j Qg [n]. This filtration is the one that leads to the Hodge ideals
studied in [MP16].

2. FILTERED Z-MODULES ASSOCIATED TO Q-DIVISORS. Let X be a smooth complex
algebraic variety, with dim(X) = n. The ideals we associate to effective Q-divisors
on X arise from certain Hodge Z-modules. The Z-modules themselves have been
extensively studied: these are the Z-modules attached to rational powers of functions
on X. We proceed to recall their definition.

Consider a nonzero h € Ox(X) and 8 € Q. We denote by Z the reduced divisor
on X with the same support as H = div(h) and let j: U = X \ Supp(Z) — X be
the inclusion map. We consider the left Zx-module .# (h”), which is a rank 1 free
Ox (xZ)-module with generator the symbol A, on which a derivation D of Oy acts by

D(wh?) := (D(w) +w %%h))hﬁ

We will denote the corresponding right Zx-module by .#,.(h?). This can be described
as hfgwx(*Z)7 an Ox-module isomorphic to wx (*Z), and such that if 1,...,z, are
local coordinates, then

(hﬁwdx1~~-dxn)8i:—h5<aw b oh

oz, T Vh om

)dml~~dxn

for every ¢ with 1 <7 < n.
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Remark 2.1. When § € Z, we have a canonical isomorphism of left Zx-modules
(2.1) M(WP) ~ Ox(xZ), whP — w- R,

where on the localization Ox(xZ) we consider the natural Zx-module structure in-
duced from Ox. Note that Ox (xZ) is also the Z-module push-forward ji Oy .

Remark 2.2 For every positive integer m, we have a canonical isomorphism of left
P x-modules

A (WP) =t (K™)P/™), wh? — w(h™)B/m.

Remark 2.3. We can define, more generally, left Z-modules .# (hf1 - hPr), for
nonzero regular functions hy,...,h, € Ox(X) and rational numbers f1,..., 5,. If ¢
are positive integers such that ;/¢; = 3 for all i and if h = [, hf"7 then we have an
isomorphism of left Zx-modules

MW hEry = (hP).
Remark 2.4. — If r is an integer, then we have an isomorphism of left Zx-modules
M) — (W), whP — (wh™")R" TP,

Let now D be an effective Q-divisor on X. We denote by Z the reduced divisor
with the same support as D. As above, we put U = X \ Z and let j: U < X be the
inclusion map. We first assume that we can write D = « - div(h) for some nonzero
h € 0x(X) and a € Q¢ (this is of course always the case locally). To this data we
can associate the Zx-module . (h~%); later it will be more convenient to consider
equivalently (according to Remark 2.4) the Zx-module . (h'~%). This depends on
the choice of h; however, if we replace h by h™ and « by a/m, for some positive
integer m, the Z-module does not change (see Remark 2.2). In particular, we may
always assume that o = 1/¢, for a positive integer /.

Remark 2.5. Suppose that D’ is a Q-divisor with the same support as D and
such that D — D’ = div(u), for some u € Ox(X). Suppose that we can write D’ =
(1/0) - div(h') for some h' € Ox(X) and some positive integer £. In this case we
can also write D = (1/¢) - div(h), where h = u’h’/, and we have an isomorphism of
P x-modules

(2.2) ///(h_l/e) N %(h/*1/4)7 gh—l/e — gu_1h/71/£.

Our first goal is to show that .#(h~%) is canonically a filtered Zx-module. Let £
be a positive integer such that o € Z. Consider the finite étale map p: V' — U, where
V = Spec Oy [y]/(y* — h~*). Note that this fits in a Cartesian diagram

Vv— W

(23) pJ
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in which
W = Spec Ox|z]/ (2" — h'®),
such that the map V — W pulls z back to y~! = y*~1ht®.

Lemwva 2.6. We have an isomorphism of left Px-modules
-1 ,
(2.4) J+p4+Ov =~ @O//l(h_m),

with the convention that the first summand is Ox (xZ).

Proof. — Since p is finite étale, it follows that we have a canonical isomorphism
T: p* Py ~ Dy, and for every Py -module .4 we have py # ~ p..# , with the action
of Iy induced via the isomorphism 7.

By mapping gy’ to gh~%®, where ¢ is a section of Ox and 0 < i < £ — 1, we obtain
an isomorphism of &'x-modules as in (2.4). In order to see that this is an isomorphism
of Zx-modules, consider a local derivation D of ¢x and note that since y* = A=,
by identifying D with its pull-back to V' we have

B e . D)
D(y') = iy"" ' D(y) = —iay’ ——,
which via our map corresponds to D(h~%). This implies the assertion. g

It follows from the lemma that the right-hand side of (2.4) is the Z-module cor-
responding to the mixed Hodge module push-forward (j o p)Q#[n]. In particular, it
carries a canonical structure of filtered Z-module.

Remark 2.7. — Let us see what happens if we replace £ by a multiple mf. Let
pe: Ve = U and ppe: Ve — U be the corresponding étale covers. Note that

Vine = Spec Oy [yl /(y*™ — h=™*)

decomposes as a disjoint union of m copies of V4, and thus we have an isomorphism
of filtered Zx-modules (and a corresponding isomorphism of mixed Hodge modules)

(2.5) G4 (Pme)+ O,y = (34 (p0) 4 Ov,) "

If 7 is a primitive root of 1 of order ¢m, and if on each side of (2.5) we consider the
decompositions (2.4), then the isomorphism maps

—i sy —cl —d
h 1 — (nzsh cla | h a)ogsgm_lv
where we write t = fc+d, with 0 <c<m—-1land0<d</{—1.

We can interpret the isomorphism in (2.4) in terms of a suitable pg-action, where piy
is the group of ¢-th roots of 1 in C*. Note that we have a natural action of s on W
such that via the corresponding action on &y, an element A € py maps z° to Az
If we let pp act trivially on X, then ¢ is an equivariant morphism (in fact, ¢ is the
quotient morphism with respect to the pg-action). It is clear that ¢=!(Z) is fixed
by the py-action and we have an induced pe-action on W\ ¢=(Z) = V. This in
turn induces a pg-action on jypy Oy and the isomorphism in (2.4) corresponds to

JEP. — M., 2019, tome 6



202 M. Mustati & M. Pora

the isotypic decomposition of j.p, Oy, such that every A\ € u, acts on .#(h™%) by
multiplication with A%

Lemvia 2.8. — The filtration on jypy Oy is preserved by the pg-action. Therefore we
have an induced filtration on each .#(h™'") such that (2.4) is an isomorphism of
filtered 2-modules.

Proof. — One way to see this is by using a suitable equivariant resolution of W.
Let W’ be the disjoint union of the irreducible components of W and ¢': W/ — W
the canonical morphism. It is clear that the pg-action on W induces an action on W’
such that ¢’ is equivariant. Since V is contained in the smooth locus of W, it has an
open immersion into W’. We use equivariant resolution of singularities to construct
a py-equivariant morphism ¢: Y — W’ that is an isomorphism over V' and such that
(goq op)*(Z) is a divisor with simple normal crossings. Let g = qo ¢’ o . If E is the
reduced, effective divisor supported on g~!(Z), then we have an isomorphism of fil-
tered Z-modules (induced by a corresponding isomorphism of mixed Hodge modules)

(2.6) J4+p+Ov = g1+ Ov = g1 Oy (xE),
where j: Y ~ Supp(E) < Y is the inclusion map.

We can deduce the assertion in the lemma from an explicit computation of the
filtration on jyp4 Oy via the isomorphism (2.6), as follows. First, since we deal with
2-module push-forward, it is more convenient to work with right Z-modules. We will
thus compute g;wy (xE), where wy (xE) is the filtered right Z-module corresponding
to Oy (xE).

Since E is a simple normal crossing divisor, wy (xE) has a resolution by a com-
plex C* of filtered right Zy-modules

0—C"—... —C"—0,
where C? = Q" (log E) ®g, Py, with the filtration given by
F_nC' = Q" (log E) ®¢y FitiPy .
For a description of the maps in this complex, see the beginning of Section 6 below;

a proof of the fact that it resolves wy (*F) is given in [MP16, Prop. 3.1]. We can thus
compute Frgiwy (xE) as the image of the injective map

R, (Fi(C* @9y Dy x)) — Rg.(C* @, Dy x) = grwy (+E).

Since g is equivariant and the action of py on Y induces an action on E (in fact, it
fixes E), the above description implies that each Fpgywy (*F) is preserved by the
Le-action. g

Remark 2.9. We note that the filtration on j; py Oy induces the canonical filtration
on the first summand Ox(xZ). Indeed, on U we have a morphism of mixed Hodge
modules Qff [n] — p+ Q¥ [n]. Applying j+ and only considering the underlying filtered
2-modules, we obtain a morphism j; 0y — j4p4 Oy, which is an isomorphism onto
the first summand.
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Derinrrion 2.10. Given o > 0, choose £ > 2 such that fa € Z. In this case A4 (h™%)
appears as the second summand in the decomposition (2.4). We define the filtration

Fy At (h™) for k>0

to be the filtration induced from the canonical filtration on jipi Oy . It is straightfor-
ward to see, using the discussion in Remark 2.7 that this filtration does not change
if we replace ¢ by a multiple; therefore it is independent of £. Moreover, we note that
if o is an integer, using the same Remark 2.7, the isomorphism .# (h™%) ~ Ox(xZ)
is an isomorphism of filtered Z-modules.

In this definition, a priori different covers have to be considered for each of the
summands .# (h~'). However, we have:

Levva 2.11. With the filtration defined above, the isomorphism (2.4) is an iso-
morphism of filtered 2-modules.

Proof. — By Lemma 2.8, we only need to show that for every ¢ with 0 < i < ¢ —1,
the filtration induced on . (h~'*) by that on jp, Oy coincides with the one given
in the above definition. For ¢ = 0 this follows from Remark 2.9. If ¢ > 0, consider the
cover used to define the filtration on . (h~'), namely

p': V' = Spec Oyly]/(y* — i) — U.

Note that we have a finite morphism : V' — V' of varieties over U, that pulls-
back y to y’. We have a canonical morphism of mixed Hodge modules Q¥ [n] —
¥4 Q¥ [n]. Applying jp/, and passing to the underlying filtered Z-modules, we obtain
a morphism of filtered Z-modules j,p/ Ov: — jip4 Oy that is the identity on the
summand .7 (h~*). This proves our claim. 0

Remark 2.12. It is clear from definition that for every a > 0 and every positive
integer m, the isomorphism

M (W) — A ((R™)™), gh™ s (™)~
is an isomorphism of filtered Z-modules.

Remark 2.13. — In the setting of Remark 2.5, the isomorphism (2.2) is an isomor-
phism of filtered Zx-modules. This is clear if £ = 1, hence we assume ¢ > 2. Let
p: V= U and p': V' — U be the canonical projections, where

V = Spec Oylyl/(y* —h) and V' = Specyly]/(y* —1').

We have an isomorphism ¢: V' — V of schemes over U, where ¢*(y) = uy. This
induces an isomorphism of filtered Zx-modules

J4+P4+Ov ~ jiply Oy,

which via the identifications given by Lemma 2.6 is the direct sum
-1 e 1 iy
@) = @A)
i=0 i=0

of the isomorphisms (2.2). For ¢ = 1, we obtain our assertion.
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A special case of the above remark implies that for every « > 0 the isomorphism
M) — A (), gh™® — (gh)h~ 1

is an isomorphism of filtered Z-modules. We use this to put a structure of filtered
Z-module on .# (h?) for every B € Q, such that for every » € Z, we have an isomor-
phism of filtered Z-modules

M) — AM(hP7T),  ghP — (gh")hP~.
For example, we have have an isomorphism of filtered Z-modules . (h°) ~ Ox (xZ).

Remark 2.14. — Suppose that h,h € Ox(X) are nonzero, and o, @ € Qs are such
that we have the equality of Q-divisors

a-div(h) =@ - div(h).

Let ¢ be a positive integer such that lo, f@ € Z. In this case there is g € 0% (X)

such that h* = gﬁm. Suppose now that there exists G € Ox(X) such that G¢ = g.
(For example, this holds after pulling-back to the étale cover Spec Ox[2]/(z* — g).)
In this case we have an isomorphism of filtered Zx-modules

O M) — (")
given by
d(wh™*) = wG™'h .

Indeed, this follows from the definition of the filtrations and the isomorphism of
schemes over U

p: Spec Oulyl/(y' — ") — Spec Oulyl/(y" — ")

that pulls-back y to G~1y.

Remark 2.15. — It is clear that the filtration on . (h~%) is compatible with restric-
tion to open subsets. More generally, it is compatible with smooth pullback, as follows.
Suppose that h € Ox(X) is nonzero and o € Q. If ¢: ¥ — X is a smooth morphism
and g = h o @, then there is an isomorphism of Zy-modules

AM(g~) = o M (h™7),
such that for every k we have
Fk.///(g_a) ~ @*Fk%(h_a).

Indeed, choose ¢ > 2 such that fa € Z and consider the Cartesian diagram

v, LY Ny

@pjjy

%4

)
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where j and p are as in Lemma 2.6 and jy and py are the corresponding morphisms
for Y and g. Note that we have a base-change theorem that gives

(2.7) 0 QU 0] ~ (v )+ (py)+ ' QY 1]

(see [Sai90, (4.4.3)]). Moreover, since ¢ is smooth, if d = dim(Y") — dim(X), then
for every filtered Z-module (#,F) underlying a mixed Hodge module M, the
filtered Z-module underlying ©'M is (p*.#, F)[d], where Fy(p*.#) = @*(Fy.4)
(see [Sai88, 3.5]). This also applies to ¢; in particular, we have 'Qff [n] ~ Q¥f [n+2d].
By decomposing both sides of (2.7) with respect to the pg-action, we obtain our
assertion.

3. THE CASE OF SMOOTH DIVISORS. Our goal now is to describe the filtrations intro-
duced in the previous section when Z is a smooth divisor. We will then use this to
define Hodge ideals for arbitrary Q-divisors. The key result in the smooth case is the
following:

Lemva 3.1, — Let
1:Y = Spec C[t] — X = Spec C|[z]

be the map given by V*(z) = t*. If Z is the divisor on'Y defined by t, then we have
an isomorphism of filtered Px -modules

/-1
¢+ﬁY(*Z) = G%%Ja
]:

where M; ~ Dx | Dx(Opx — j/l) and FyM; is generated over Ox by the classes of
1,0z,...,0%. Moreover, if we consider on'Y the ug-action such that every \ € i
maps t to At, then .#; is the component of Y Oy (xZ) on which every A € g acts by
multiplication with M.

Proof. — As usual, it is easier to do the computation for the filtered right 2-module
wy (*Z) corresponding to Oy (xZ). Note that this is filtered quasi-isomorphic to the
complex

A 00— Dy L wy(2) ®py Dy — 0,
placed in degrees —1 and 0, where w(1) = (dt/t) ® tdy; see e.g. [MP16, Prop.3.1].

Since % is finite, the functor ¥, is exact on quasi-coherent Oy-modules, hence
Yywy (xZ) is computed by the 0-th cohomology of the complex

B* =9 (A" ®9y Dy x),

with the obvious induced filtration. The definition of w immediately implies that
w® lg,_ . is injective. Note that dt/t = (1/¢)dz/z and t0; = Lx0,.

In order to describe the complex B*, note that any element of B! can be uniquely
written as Zf;é t1P;, with P; € Px. Similarly, any element in B can be uniquely
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written as Zﬁ;é t/(dz/z)Qj, with Q; € Px. Moreover, if 7 is the differential in B*,
then

-1 -1
. - dx .
T(Ztﬂpj> = >0 X o+ /0P
7=0 7=0
where we use the fact that t9;t/ = t/t0, + jt/. In other words, we have have an

eigenspace decomposition
-1
B* ~ GB Bj,
7=0
where B} is identified with the complex
0— @X — —@X — 0,

with the differential mapping P to (29, + j/€)P. It follows that B* is filtered quasi-
isomorphic to

-1
D Zx/(x0, +37/0)Zx,
§=0

where the filtration on the j-th component is such that

Foo1(Zx [(x0z + j/0)Zx)

is the Ox-submodule generated by the classes of 1,0y, ...,0%. Moreover, every A € ju
acts on the j* factor in the above decomposition by multiplication with \’.

The assertion in the lemma now follows immediately from the explicit description
of the equivalence between the categories of left and right Z-modules on X = Al
Indeed, recall that if 7 is the C-linear endomorphism of the Weyl algebra I'(Al, Za1)
such that 7(PQ) = 7(Q) - 7(P) for all P and @, and such that 7(¢t) = ¢t and 7(9;) =
—0y, then the left Z-module N corresponding to a right Z-module M is isomorphic
to M itself, with scalar multiplication given via the map 7. Moreover, for filtered
2-modules, via this isomorphism Fi N corresponds to Fj_1 M. In particular, we see
that if M = Px /P - Px, then N ~ 9x /9Px - 7(P), and we obtain the statement. O

In what follows, we denote by [«] the smallest integer that is > a. For a Q-divisor
D=>%"_,a;D;, weput [D] =3 [a;|D;.

CoroLrrary 3.2. If h € Ox(X) is nonzero and such that the support Z of div(h) is
smooth (possibly disconnected), then for every a € Qsq the filtration on 4 (h™%) is
given by

Fotl (b)) = Ox((k+1)Z — [D))h™* ifk >0,
where D = o - div(h), and Fp#(h=) =0 if k < 0.

Proof. — We first reduce to the case when Z = div(h). We can check the assertion in
the proposition locally, hence we may assume that Z = div(g), for some g € Ox(X),
and h = ug™, for some u € O%(X). Furthermore, by Remark 2.15, it is enough to
prove the assertion after passing to a surjective étale cover, hence we may assume
that u = v™ for some v € O%(X). After replacing g by vg, we may thus assume
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that h = ¢g™. In this case we have an isomorphism of filtered Z-modules .# (h~%) ~
A (g~™), hence we may and will assume that div(h) = Z.

We consider the smallest positive integer ¢ such that m := fa € Z. If £ = 1, then
the assertion follows from the formula for the filtration on Ox (*Z) when Z is smooth;
see [MP16, Prop. 8.2]. Therefore from now on we assume £ > 1.

The morphism h: X — A! is smooth over some open neighborhood of 0. Using
Remark 2.15, we see that in order to prove the corollary, we may assume that X = Al
and h = z, the standard coordinate on A'. Consider the Cartesian diagram

v

b lg
X

UA

b

where

jo: V= SpecCle,a~ty]/(y' — &™) — W = SpecCla, /(' —a™), ji(z) =y~

Let ¢: W = Spec C[t] — W be the normalization, given by
o (x) =t" and @*(z) =t™.

(Here we use that ¢ and m are relatively prime.) Note that ¢ is an isomorphism
over V', hence we have an open embedding ¢: V — W, with complement the smooth
divisor T' defined by ¢ (in fact, if @ and b are integers such that am + b¢ = 1, then
1*(t) = y~?ab). We thus have

J4P+O0v =y Oy =, O (xT),

where ¢ = gop. We apply Lemma 3.1 for ¢. Note that ¢ is a py-equivariant morphism
if we let each A\ € py act on ¢t by multiplication with A\*. By considering the behavior
with respect to the ug-action, we see that in the decomposition given by the lemma,
we have #; ~ A (x~%) if and only if ja = —1 (mod ¢), that is, j = —m (mod ¢).

Suppose first that o < 1, in which case the condition for j is that j = ¢ —m. As a
reality check, note that we indeed have an isomorphism

Dx|Dx(0px — (L —m) /) =~ M (x™)

that maps the class of 1 to ~*. The formula for the filtration on .# (h*) now follows
from Lemma 3.1. When o > 1, we put m = [«] —1, and use the fact from Remark 2.4,
namely that we have an isomorphism of filtered modules

M(x7%) — M (@), grT % (grT )T,

to reduce the assertion to the case a € (0,1). This completes the proof of the corollary.
O
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4. Derinition or HopGe 1pEALS FOR Q-DIVISORS. In general, we obtain an upper
bound for the terms in the filtration on .#Z(h~%) by restricting to the open subset
where the support of div(h) is smooth, as follows.

Prorosition 4.1. — Given a nonzero h € Ox(X) and a positive rational number c,
for every k > 0 we have

Fptt (h™*) C Ox((k+1)Z — [D])h™°,
where D = o - div(h) and Z = Supp(D), while Fy.#(h=*) =0 for k < 0.

Proof. — Let t: Xo — X be an open immersion such that the codimension of its
image in X is > 2 and Z|x, is smooth (though possibly disconnected). Note that
our constructions are compatible with restrictions to open subsets. Moreover, since
A (h~) is clearly torsion-free, it follows that Fy, := Fj.# (h~%) is torsion free, hence
the canonical map Fj, — i« (Fk| Xo) is injective. Therefore it is enough to prove the
assertion on X, hence we may assume that Z is smooth. However, in this case the
assertion follows from Corollary 3.2. O

We can now define the Hodge ideals for Q-divisors. Let X be a smooth com-
plex algebraic variety and Z a reduced effective divisor on X. Given an effective
Q-divisor D with Supp(D) = Z, we define coherent ideals sheaves I (D) in Ox as
follows. Suppose first that there is a nonzero h € Ox(X), with H = div(h), and a
positive rational number « such that D = aH. It turns out to be more convenient to
work with the Zx-module .# (h”), where 8 = 1 — . Recall that we have a filtered
isomorphism

M(h™) — (W), wh™ — (wh™1)hP,
and therefore, if k > 0, it follows from Proposition 4.1 that there is a unique coherent
ideal I (D) such that

Fyttl (WP) = Ii(D) ®oy Ox (kZ + H)R”

(note that we always have [D] > Z). The definition is independent of the choice
of a and h: indeed, using Remark 2.15, it is enough to check this after the pullback
by a suitable étale surjective map, hence we deduce the independence assertion using
Remark 2.14. This implies that the general case of the definition follows by covering X
with suitable affine open subsets such that D can be written as above in each of them.
Note that when D = Z we have 8 = 0, and so the ideals I (D) are the Hodge ideals
studied in [MP16].

Remark 4.2. From the definition and the filtration property, it follows that we
always have the inclusion

Ox(—Z) - Iy_1(D) C I(D) for k > 1.
We note that for the reduced divisor Z, we have the more subtle inclusions

Ik(Z) g Ik_l(Z) for k Z 1
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(see [MP16, Prop.13.1]). We do not know however whether this holds for arbitrary
Q-divisors D, and in fact we suspect that this is not the case. (Note that it does
hold when D has simple normal crossings support by Proposition 7.1. It is also shown
to hold when D has an isolated weighted homogeneous singularity in the upcoming
[Zhal8].) However, when D = aZ these inclusions do hold modulo the ideal Ox(—Z2),
see [MP18a, Cor. B]. More precisely, we have

In(aZ)+ Ox(=2Z) C Iy_1(aZ)+ Ox(—=Z) for k > 1.

This implies in particular that if I (aZ) = Ox for some k > 1, then I;_1(aZ) = Ox.

Remark 4.3. According to Proposition 4.1, we also have ideals I}, (D) given by
Frtl (%) = I(D) ®¢y Ox((k+1)Z — [D])h™°,

which are related to I (D) by the formula

Ix(D) = I(D) ®6y Ox(Z — [D]).

The following periodicity property often allows us to reduce our study to the case

[D] =Z.
Lemma 4.4. — If D’ is an integral divisor with Supp(D’) C Supp(D), then

Ii(D+D') = I;(D) ®¢, Ox(—D’).
In particular

1(D) = I(B) ® 0x(Z — [D]),
with B = D + Z — [D] satisfying [B] = Z.
Proof. Using the notation in Remark 4.3, the equivalent statement
IL(D+ D') = [4(D)

follows from the definition and Remark 2.13. ]

Remark 4.5. — Note that I (D) C Ox(Z — [D]) for all k, and so if [D] # Z,
then one can never have I;(D) = Ox. It is however still interesting to ask whether
I (B) = 0x.

5. A GLOBAL SETTING FOR THE STUDY OF [HODGE IDEALS. We now consider a setting
in which we can define global filtered Zx-modules that are locally isomorphic to the
(A (h=>),F) discussed in the previous sections.

Let X be a smooth variety and D = (1/¢)H a Q-divisor, where H is an integral
divisor and /£ is a positive integer. The extra assumption we make here is that there
is a line bundle M such that

Ox(H) ~ M®*.

We denote by U the complement of Z = Supp(H) and by j the inclusion U < X.
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Let s € T'(X, M®*) be a section whose zero locus is H. Since s does not vanish
on U, we may consider the section s~! € F(U, (M*1)®5). Let p: V. — U be the étale
cyclic cover corresponding to s~!, hence

V ~ Spec(ﬁU PME---b M®(Z*1)).

We consider the filtered Zx-module # = jipy Oy, that underlies a mixed Hodge
module. The i-action on V, where A € jup acts on M®? by multiplication with A =%,
induces an eigenspace decomposition

=1

M = @ %7

i=0
where A € up acts on .#; by multiplication with A\~*. We consider on each .#; the
induced filtration.

Note that if X is an open subset of X such that we have a trivialization M|x, ~

Ox,, and if via the corresponding trivialization of M®|x,, the restriction s|x, cor-
responds to hg € Ox(Xp), then we have isomorphisms of filtered Zx,-modules

M~ M (hg''") for i such that 0 < i< £ — 1.
We also see that the filtration on .# is the direct sum filtration, since this holds
locally. Moreover, we have isomorphisms of &x,-modules
Milx, = Ox (*Z)|x,,
which glue to isomorphisms of &'x-modules
My~ M @4, Ox(xZ) = .5 M®",
Via these isomorphisms, it follows from the definition of Hodge ideals (see also Re-
mark 4.3) that we have
Fpdly~ M® g, I (i/l- H) ®¢, Ox (k+1)Z —[i/(- H)
~ MO (—H)®py It (i)t - H) ®¢, Ox (kZ + H).
6. A COMPLEX ASSOCIATED TO SIMPLE NORMAL CROSSING DIVISORS. We now discuss a
complex that, as we will see later, gives a filtered resolution of .Z,.(h~%) by filtered
induced Zx-modules in the case when h defines a simple normal crossing divisor.
Let X be a smooth, n-dimensional, complex variety, h € Ox(X) nonzero,
and « a nonzero rational number (we allow « to be either positive or negative).
Let D = - div(h). We denote by Z the support of D, and assume that it has simple
normal crossings.
Associated to Z we have the following complex of right Zx-modules:
C*: 00— Px — Q%(log 2) @y Ix — -+ — Q% (log Z) @y Zx — 0,

placed in degrees —n,...,0. We denote by D;: C* — C'*! its differentials. If
T1,...,Ty, are local coordinates on X, then

Din@P)=dn@ P+ (dz; An) @ 0y, P.
=1
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In fact C* is a filtered complex, where
F, ,C'= Q" (log Z) @6y FpyiPx.

This filtered complex is quasi-isomorphic to the filtered right Zx-module wx (xZ)
corresponding to the filtered left Px-module Ox(xZ) (see [MP16, Prop.3.1], and
[Sai90, Prop. 3.11(ii)] for a more general statement).

Given h and « as above, we also consider the filtered complex C?_. consisting of
the same sheaves, but with differential C}L,a — CZJ[}! given by

D; — ((a-dlog(h) A+) @ 15, ).V

It is easy to see that this is indeed a filtered complex.
Suppose now that we also have an effective divisor T" supported on Z. It is not
hard to check that the formula for the map

Ci_. — CitL
induces also a map
Ci_o(=T) := Ox(~T) @y Q" (log Z) @6y Px

— CFL(=T) = Ox(-T) ®ay U (log Z) ®0y Dx.
This is due to the fact that if locally 7 = div(u) and 7 is a local section of Q4" (log Z),
then we can write d(un) = ud(n)+u-dlog(u) An. We thus obtain a filtered subcomplex

Cy_.(=T) of C;_... We emphasize that this is not obtained by tensoring Cj_., with
Ox(-T).

Prorosition 6.1. If no coefficient of D—T lies in Zq, then the complex C;_.(—=T)
is filtered quasi-isomorphic to (lf‘le(*Z),G,), where
Gr—nh “wx(xZ)=0 ifk <0,
G_,h “wx(xZ)=h"%wx(Z-T)
and Gr—nh “wx(xZ) = G_,h “wx (x2Z) - FxPx if k> 0.
Proof. — Tt is immediate to check that the differential induced on gry Cp_.(=T)

does become equal to the differential D; twisted with the identity on Ox(—T'), and
therefore for every p we have

grfj Cr_o(-T)=0Ox(-T) ®py grg C-.
In particular, we have
H'F,Cp_.(~T)=0 forevery p€ZandicZ {0},

by the result in [MP16] quoted above. Consider now the morphism of right Zx-mod-
ules
0: C)_o(-T) =wx(Z —T) @oy Dx — h™wx(xZ)

M1n related settings, for instance involving the de Rham complex of .#(h~%), this type of
complex can already be found in the literature; see for instance [Bj693, §6.3.11].
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given by

plw@n® Q) = (b~ “wn)Q.
We first check that this morphism is surjective. We do this locally, hence we may
assume that we have a system of coordinates x1,...,x, on X such that Ox(—Z2) is
generated by x -2, and Ox(=T) by 2i" - - zfr. We also write h = uz$® - - - z%",
where u is an everywhere nonvanishing function, and define o; = aa; and v; = a; — ;
for all i. Note for later use that

I d ’
a - dlog(h) = % du + E oy <
u i

i=1

x
The surjectivity of ¢ follows from the fact that
(6.1) Tm(p) = (h~ay" - afrn) - Ix = b~ wx (+2),
where
n=dlog(z1) A--- Adlog(z,) Adzpy1 A Aday,

and the second equality in (6.1) is a consequence of the fact that —y; — 1 & Z¢ for
all 7, by assumption.

In order to complete the proof of the proposition it is enough to show that, for
every k > 0, the following sequence is exact:

Ox (=T) ® Q% (log Z) ® Fyr Zx —25s 0 (—T) ® wx (Z) @ FrPx

ks Gronh ™ wx (+Z) — 0,

where @y, is the restriction of ¢ to the (k — n)-th level of the filtration and vy, is the
restriction of the differential of Cp_,(—=T'). The surjectivity of ¢ is an immediate
consequence of the surjectivity of ¢ and the definition of the filtration on h®wyx (x2).

Keeping the above notation for the local coordinates on X, it follows from the
definition of v, that

m (k) = foj ®N® (Z (xiai — %~ 37” : a{?) “Fy19x

i=1 n
+ Z (@‘ - % : %) 'Fk19X>

1=r+1

Jj=1

and it is straightforward to see that this is contained in Ker(ypy). We now prove
by induction on k that if cpk(xfl 2P @n® P) = 0 for some P € F,%x, then
o aBr @ @ P e Im(yy). Note that the case k = 0 is trivial. Let us write
P = Zu,v Cu,p0"z"”, where u and v vary over Z%,. After subtracting suitable terms
from P, we may assume that whenever ¢, ,, # 0, we have u; = 0 for 4 > r. Furthermore,
note that if u;,v; > 0 for some i < r, then we can write

ou ax;

or; u )A+B’

Oz” = (562‘31 -7~
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with both A and B of order < k — 1. Therefore we may also assume that whenever
Cup # 0 and |u| := )", u; = k, we have

(6.2) u;v; = 0 for ¢ such that 1 < i < n.
Since

(h*azfl -~ 2P n)d¥z¥ = (non-zero constant(®)) - (h*azfl )

and since (6.2) implies that for every (u,v) and (v, v") with |u| = k and ¢y, v, ¢y or # 0
we have V™" # x“/_“/7 we conclude that in fact P € Fj_1 Zx, hence we are done by
induction. O

7. Tae HODGE IDEALS OF SIMPLE NORMAL CROSSING DIVISORS. — In this section we show
that the Hodge ideals of divisors with simple normal crossing support essentially
depend only on the support of the divisor, and therefore can be computed as in
[MP16, §8].

Prorosition 7.1. — Let X be a smooth variety, and D an effective divisor on X with
simple normal crossing support Z. Then for all k we have

I.(D) = I(Z) @, Ox(Z — [D]).

Proof. — Equivalently, we need to show that I (D) = I;(Z) for all k. The assertion
is local, hence we may assume that we have coordinates x1,...,x, on X such that
Z =Hy+---+ H,., where H; is defined by x; = 0. The morphism X — C” given by
(z1,...,2,) is smooth, hence using Remark 2.15 we see that it is enough to prove the
proposition when X = Spec C[z,...,,) and D = Y1 | a; H;, where H; = div(x;)
and a; > 0. Let ¢ be the smallest positive integer such that all a; := fo; are integers.
The assertion to be proved is trivial when ¢ = 1, hence from now on we assume ¢ > 2.
Consider the Cartesian diagram

v

p lg
UAX

b

where

jo: V =SpecClzE!, ... att y)/(y* — a7 ™ -z,

n
— W =SpecClzy,..., o, 2]/ (25 — 2t - o),

with j&(2) = y~1. We will make use of some standard facts about cyclic covers with

respect to simple normal crossing divisors, exploiting the toric variety structure on

the normalization of W. For basic facts regarding toric varieties, we refer to [Ful93].
Let N be the lattice Z™ and M its dual. We also consider the lattice

1 1
N' ={(v1,...,vn41) € Z" [ arvr + - + anvn = lonya}
(2)Here we use again the fact that —v; — 1 € Z>q for all i.
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and its dual
M =Z"Z - (ay,...,an, ).

Note that we have an injective lattice map N’ — N, with finite cokernel, induced
by the projection onto the first n components, and the dual map M — M’ is again
injective, with finite cokernel. In fact, we have an isomorphism M'/M ~ Z/{Z that
maps the class of (u1,...,un+1) € M’ to the class of u,41 in Z/0Z.

We thus have an isomorphism N ~ Nr = R"™. The strongly convex cone o = RY,
in Nr = R" gives the toric variety X = C". As a cone in Nj, o gives an affine toric
variety W, and the lattice map N’ — N corresponds to a toric map 1 : W - X.
Note that we have a morphism of &' (X)-algebras 0(W) — ﬁ(W) that maps x; to the
element of C[o¥ N M’] corresponding to the class of the i-th element of the standard
basis of Z™, and z to the class of (0,...,0,1). It is easy to check that if we denote
by || the largest integer < +, then

—ljonl i
Lol i,

(7.1) oW)= @ OX)a b g
0j<e—1

and consequently to deduce that (W) is integral over &(W). As the coordinate ring
of a toric variety, & (W) is normal, hence it is the integral closure of &(W) in its field
of fractions. Moreover, since W is a toric variety, we may choose a toric resolution of
singularities Y — f/[v/, and let f: Y — X be the composition. Since the map ¥ — W
is an isomorphism over the complement of g~ (>~ H;), it follows that there is an open
embedding ¢: V' < Y such that fo. = jop. The support Ey of Y \ +(V) is the sum
of all prime toric divisors on Y.

The action of the torus Thys = Spec C[M’] on W induces an action of the finite
group Spec C[M’/M] ~ Spec C|Z/(Z] = py on W. This is the action induced on
the normalization W by the pe-action on W that we discussed in Section 2. In par-
ticular, the toric resolution ¥ — W is automatically equivariant. Note that in the
decomposition (7.1), an element A € pp acts on the summand corresponding to j by
multiplication with \.

The equality f ot = jop implies that we have an isomorphism of filtered Zx-mod-
ules

J+p+O0v = fr11.0v = f1 Oy (xEy).

As usual, in order to compute the push-forward of &y (xEy ), it is more convenient to
work with right Z-modules. Recall that there is a complex of right Zy-modules

A=Ay 0 — Dy — Q%/(logEy) Roy Dy — -+ — wY(Ey) ®ey v — 0

located in degrees —n,...,0, that is filtered quasi-isomorphic to wy (xEy); see the
beginning of Section 6. Since Y is a toric variety, we have a canonical isomorphism
N (log Ey) ~ M' ®z Oy (see [Ful93, §4.3]). We will also consider the corresponding
complex on X:

AB(Z 0—9x — MQz 9x — -+ — N"M Qg 9x — 0.
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It follows from the definition that, forgetting about the filtration, we have
frwy (xBy) = Rf.(A®* ®g, Py x).
Note that Py . x = f*Px as Oy-modules, hence the projection formula implies
R f (AP ®g, Dy _,x) ~N'M' @z R' f.Oy @6, Dx =0

for ¢ > 0, since f is the composition of a finite map with a toric resolution. Therefore
frwy (xEy) is represented by the complex B*, where

BP™"™ = AP M’ Rz w*ﬁw Ry Dx.

In order to describe the differential of this complex, it is convenient to use the iso-
morphism Mq ~ Mg and the decomposition (7.1). With a little care, it follows from
the definitions that if we put

BYT" = APMq ®q Ox -a; UM ap i) @6, 9,

then B* decomposes as the direct sum of the subcomplexes B}, for j such that 0 <
j < £—1. Furthermore, if we identify each By~ in the obvious way with A% ™, then
the differential

6%:” AP Mq ®q Ix — /\p+1MQ ®q Ix
is given by
(5%;” = (52;’” + (U)j AN —) ® Id@X,
where § 4, is the differential on A% and
U)j = (wj,la N ,U)j’n), with wm- = jai — L?alJ

It follows from Proposition 6.1 that we have a morphism

B — (a7 )
that induces a quasi-isomorphism

By s A

(see also Remark 2.3).
We now bring the filtrations into the picture. It follows from Saito’s strictness
results (see the discussion in Section 1; cf. also [MP16, §4, §6]) that

Fifywy (xBy) = Im(Rf.FR(A° @9y Dy x) — Rf(A° Qgay Dy-x)).
Arguing as above, we deduce that
Frfrwy (xBy) = Im(foFr(A®* ®ay Dy x) — [o(A° @9y Dy_x)).

In other words, (fiwy (xEy ), F') is represented by the filtered complex B*, and using
Proposition 6.1, we conclude that

{—1
frwy (+By) = @ My (z)"" -2y,
=0

JEP. — M., 2019, tome 6



306 M. Mustati & M. Pora

where the filtration on ., (2, -+ z,,”") is given by

F oyl (27 - gim) = o{7" o alimwy (Z)

and  Fy_p My ()7 alim) = F_ o (x)"" - alm) - FyDx  for k > 1.

n

By comparing the pg-actions, we conclude that the summand ., (z]7“* - - -z, *")

on which an element \ € yi, acts by multiplication with A~! corresponds to j = ¢ — 1.
Therefore the filtration on 4 (x; ** - - x,;*") is given by

Foetlp oy ) = (a7 o)y ™l (2)

n

and  Fy_p Ml (x] -z, ) = Fop ol (27 -2 ) - FpDx  for k> 1.

It is now a straightforward computation to see that I, (D) is the ideal generated by
the monomials []}_, ", where 0 < ¢; < k for all ¢ and Y, ¢; = (n — 1)k. This
coincides with I(Z) according to [MP16, Prop.8.2], completing the proof of the
proposition. O

8. COMPUTATION IN TERMS OF A LOG RESOLUTION. We use the results of the previous
two sections in order to describe Hodge ideals of Q-divisors in terms of log resolutions.
Let X be a smooth variety, h € Ox(X) a nonzero function, H = div(h), and o € Qxo.
We are interested in computing I (D), where D = aH. As always, let Z = Supp(D)
and f=1-—a.

Let f: Y — X be a log resolution of the pair (X, D) that is an isomorphism over
U=X\Z, and denote g = ho f € Oy(Y). We fix a positive integer ¢ such that
Lo € Z. As usual, we consider

p: V =SpecOylyl/(y' —h™ ") — U

and the inclusion j: U — X. By assumption, we also have an open immersion
t: U <= Y such that f o: = j. By considering the decompositions of

J+p+O0v = f1i4p1 Oy
into isotypical components, we conclude that we have a filtered isomorphism
(8.1) M) = [l (g7,
We now denote G = f*D, and consider on Y the complex introduced in Section 6:
C;,a(—(GD 20— Oy (—[G)) ®sy, Dy — Oy(—[G]) @6, Q- (log E) ®¢, Dy
— - — Oy (—]G]) ®gy wy (E) ®p, Dv — 0,

where E = (f*D)yeqa. This is placed in degrees —n,...,0, and if z1,...,z, are local
coordinates on Y, then its differential is given by

n®Q'—>dn®Q+Z(dxi/\n)®8¢Q— (a-dlog(g)/\n)@@.
i=1
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Taeorem 8.1. With the above notation, the following hold:

(i) For every p # 0 and every k € Z, we have

RPf.(C5-a(~[G]) ®2y Py—x) =0

and RPf. Fy (C;ﬂl(—(GD Ry QY*}X) =0.

(ii) For every k € Z, the natural inclusion induces an injective map

Rof*Fk (C;*a (_ ’—G-I) ®2y @Y—>X) — Rof* (C;—a (— [GW) Q2y .@Y—)X)-
(iii) We have a canonical isomorphism
Rf.(Coo(—[G) ®gy Dy x) =~ Me(h™)
that induces for every k € Z an isomorphism
R fuFy n(Co-a(=[G]) ®gy Dy x) ~ b wx ((k+1)Z — [D]) ®ey I(D)
~ hPwx (kZ + H) ®e, Iy(D).
Proof. — Tt follows from Lemma 2.8, and from the definition of its filtration, that
M (g~%) is a direct summand of a right Hodge Z-module on Y. By Saito’s strictness
of the filtration of (push-forwards of) such Z-modules, it follows that for all k,p € Z
the canonical map
L L
RPf.Fy (M (97%) ®ay Dy x) — RPfo(M(g) @ay Dyx)

is injective, and its image is equal to

L
F R f (Mo (9~%) @2y Dy x)

(see the discussion in Section 1).

On the other hand, note that if write G = a-div(g) = >, a; E;, then —[o; |+ oy &
Z . for all i. We may thus apply Proposition 6.1 for the divisor G, with T' = [G].
Using Proposition 7.1 as well, we see that C_. (—[G]) is filtered quasi-isomorphic to
A(g~%), hence

L
RPf.(Cs-o(=[G]) @9y Py x) = RP [ (M (97) @ay Dy x)
L

and RPf, Fy (C’;_a(*[G]) Ry @y_»() ~ RPf,Fy, (///T(gia) Ry @Y-}X).

Finally, by the definition of push-forward for right Z-modules we have

L
RPf (M (g~%) @ay Dy—x) = HP fr(g7%),

and by (8.1) this is 0 if p # 0, and is canonically isomorphic to .Z,.(h~=%) if p = 0.
The assertions in the proposition follow by combining all these facts. O

Remark 8.2 (Local vanishing). — The statement in Theorem 8.1 (i) is a generalization
of the Local Vanishing theorem for multiplier ideals [Laz04, Th.9.4.1], in view of the
calculation in Proposition 9.1 below.
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As a consequence of the vanishing statements in Theorem 8.1 (i), provided by
strictness, we deduce the following local Nakano-type vanishing result, first obtained
by Saito [Sai07, Cor.3] when D is reduced; cf. Corollary C in the introduction and
the discussion following it.

CoroLrARY 8.3. Let D be an effective Q-divisor on the smooth variety X and
f:Y = X alog resolution of (X, D) that is an isomorphism over X \ Supp(D). If
E = (f*D)yed, then

Rif.(Oy(—[f*D]) @6y B (logE)) =0 for p+q >n = dim(X).

Proof. — We argue by descending induction on p, the case p > n being trivial. Sup-
pose now that p < n and ¢ > n — p. After possibly replacing X by suitable open
subsets, we may assume that D = « - div(h). We may thus apply Theorem 8.1 to
deduce that if

C* =F (Cy-o(=[f*D]) ®2y, Pvx)lp—nl,
then
(8.2) RIf,C*=0 forj>n—p.
Note that by definition, we have
C' = Oy (~[f*D]) ®ay, Q2 (log E) ®a, f*F;Zx for i such that 0 <i < n — p.
Consider the spectral sequence
EY = RIf,0" = R™If,C°.

It follows from (8.2) that E%? = 0. Now by the projection formula we have

(83) B} = R f.(Oy (—[f*D] @6, OB (log E)) @0, F,Px.
In particular, it follows from the inductive hypothesis that for every r > 1 we have
EP97™ = 0, hence EZ%"t! = 0 as well. On the other hand, we clearly have

Ematr=1 = () since this is a first-quadrant spectral sequence. We thus conclude that

E%1 = E%9 forall r > 1,

r+1
hence E{"? = E%4 = (. Using (8.3) again, we conclude that
Rf.(Oy(=[f"D]) ®a, O (log £)) = 0. 0
9. Tue mEAL Io(D) AND LOG CANONICAL PAIRS. We now use Theorem 8.1 in order

to relate Ip(D) to multiplier ideals. Recall that for a Q-divisor B, one denotes by
J(B) the associated multiplier ideal; see [Laz04, Ch.9] for the definition and basic
properties.

Prorosition 9.1. — If f: Y — X is a log resolution of (X, D) that is an isomorphism
over X N\ D, and E = (f*D)ycq, then

Io(D) ~ f.0y (Ky,x + E—[f*D]) = #((1 —¢)D)
for e such that 0 < e < 1.
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Proof. The first equality follows from Theorem 8.1, together with the fact that the
term F_,Cs_.(—[f*D]) consists of

wy (E = [f*D1)

placed in degree 0. The second equality then follows from the definition of multiplier
ideals and the fact that if A is an effective divisor with support F, then

E—-[A]l=—-|(1—-¢)A| foresuchthat 0<e<1. O

As in [MP16] in the case of reduced divisors, we obtain therefore that for every
Q-divisor D we have that Iy(D) = Ox if and only if the pair (X, D) is log canonical,
which leads to the following:

Derinition 9.2, — The pair (X, D) is k-log canonical if
Iy(D)=---=1(D) = Ox.®
Note however that by Remark 4.3, the triviality of any I(D) is possible only if

[D] = Z; in general it is more suitable to focus on the triviality of the ideals I} (D).
We therefore introduce also:

Derinition 9.3. — The pair (X, D) is reduced k-log canonical if

Iy(D) =---=I}(D) = Ox,
or equivalently
Iy(D) = =Ix(D) = Ox(Z — [D]).
Exampre 9.4. Let Z have an ordinary singularity, i.e., an isolated singular point
whose projectivized tangent cone is smooth, of multiplicity m. If D = aZ with

0 < a<1,then
(X, D) is k-log canonical <= k < {ﬁ - a].
m
See Corollary 11.8 and Remark 11.9.

C. LoOCAL STUDY AND GLOBAL VANISHING THEOREM

10. GENERATION LEVEL OF THE HHODGE FILTRATION, AND EXAMPLES. — As above, we con-
sider a divisor D = aH, with H = div(h) for some nonzero h € Ox(X) and a € Qxy.
We denote by Z the support of D, and § = 1 — «. By construction, the filtration
on . (h?) is compatible with the order filtration on Zx. This means that for every
k,?¢ > 0 we have

(10.1)  E9x - (I(D) @ Ox(kZ + H)h?) C Iy10(D) ® Ox ((k +0)Z + H)RP,
or equivalently for every k > 0 we have

(10.2)  Fi9x - (In(D) ® Ox(kZ + H)h®) C I;11(D) ® Ox((k +1)Z + H)h".

(3)We note that by the results in [MP18a, §5], at least in the case of divisors of the form D = aZ,
with a € Q>o, this condition is equivalent simply to I (D) = Ox (cf. Remark 4.2).
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By working locally, we may assume that we also have an equation g for Z. With this
notation, condition (10.2) is equivalent to the following two conditions:

(10.3) g I(D) € Iry1(D)

and for every derivation @ of Ox and every w € I(D), we have
Q(h

(10.4) g-Qw) — kw-Qlg) ~ agw- A ¢ Iy (D).

We now turn to the problem of describing the generation level of the filtration on
A (hP). Recall that one says that the filtration is generated at level k if

FyDx - Fydl (WP) = Fyyptt (hP)  for all £ >0,
or in other words if equality is satisfied in (10.1). This is of course equivalent to having
F\Dx - Fytl (hP) = Fypr.al (hP)  for all p > k.
Suppose now that we are in the setting of Theorem 8.1.
Tueorem 10.1. The filtration on .# (hP) is generated at level k if and only if
Rf.(Qy Y(log B) ®6y Oy(—[f*D1])) =0 forq> k.
In particular, the filtration is always generated at level n — 1.

Proof. — The proof follows almost verbatim that of [MP16, Th.17.1]. It is more
convenient to work equivalently with .#(h~%), and in fact with the associated right
Px-module A, (h~%). It is enough to show that

(10.5) Fyntly(h™%) - F1Dx = Fy—ni1 M (h™7)
if and only if
RN (£.057% (log B) 4, Ov(~[f*D])) =0.
The inclusion “C” in (10.5) always holds of course by the definition of a filtration,

hence the issue is the reverse inclusion.
With the notation in Section 6, for every p let

Cs = F,(Co-o(~[£"D]) ®2, Pv—x),
where g = h o f. Consider the morphism of complexes
O Cr_,, ®f-104 fTR92x — Criti-n
induced by right multiplication, and let T* = Ker(®;). Using Theorem 8.1, we see
that (10.5) holds if and only if the morphism
(10.6) Rf.Cr_, ®oy F1Px — R £.Chy i

induced by ®; is surjective.
For every m > 0, let R, be the kernel of the morphism induced by right multipli-
cation
Fm-@X ®ﬁx Fng — FTVL+1-@X'
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Note that this is a surjective morphism of locally free &x-modules, hence R,, is a
locally free &'x-module and for every p we have

T? = Oy (=[f*D]) ®@o, Ay "(l0g E) @10y [~ Ritp-
Consider the first-quadrant hypercohomology spectral sequence
EY? = RIf TP~ = RPTI"fT".
The projection formula gives
RIfTP™" = RUf. (Oy (=[f*D]) ®oy N (l0g E)) @6y Ritp—n,

and this vanishes for p + ¢ > n by Corollary 8.3. We thus deduce from the spectral
sequence that R’ f,T* = 0 for all j > 0.

We first consider the case when k > n and show that (10.5) always holds. Indeed,
in this case @y, is surjective. It follows from the projection formula and the long exact
sequence in cohomology that we have an exact sequence

Rf.Cr_, ®oy F19x — R f.Cho ., — R £.T°.

We have seen that R!f,T* = 0, hence the morphism in (10.6) is surjective.
Suppose now that 0 < k < n. Let B* — C},, , be the subcomplex given by

BP = Cﬁﬂfn for all p # —k — 1 and B~%~! = 0. Note that we have a short exact

sequence of complexes
(10.7) 0— B* — Chyy_p — Ol [k +1] — 0.

It is clear that &, factors as

/
Cr_p @10y [Ty —2 B Chyyy.

Moreover, @) is surjective and Ker(®}) = T*. As before, since R'f.T* = 0, we
conclude that morphism induced by ®7:

Rf.Ch_, ®oy F19x — R°f.B*
is surjective. This implies that (10.6) is surjective if and only if the morphism
(10.8) R f.B* — Rf.Cp 1 _,
is surjective. The exact sequence (10.7) induces an exact sequence
Rf,B* — R°f.Cp,,_, — RV LG, — RUAD.
We have seen that R2f,T* = 0, and we also have
R Y. (Cr_ ®p16c [TTF1Zx) =0.

This follows as above, using the projection formula, the hypercohomology spectral
sequence, and Corollary 8.3. We deduce from the long exact sequence associated to

0—1T" —C;_, Q164 f71F1.9X — B*—0
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that R!f,B* = 0. Putting all of this together, we conclude that (10.6) is surjective if
and only if R**1f, L ff_ln = (. Since by definition we have

RME. O = R (Oy (—[ D)) ®6y Q5 F(log E)),

this completes the proof of the first assertion in the proposition. The second assertion
follows from the first, since all fibers of f have dimension < n. ]

Exampre 10.2 (Nodal curves). — If X is a smooth surface and Z is a reduced curve
on X, defined by h € €/(X), such that Z has a node at € X and no other singular-
ities, then the filtration on .# (h?) is generated at level 0. Indeed, let f: Y — X be
the blow-up of X at x, with exceptional divisor F. This is a log resolution of (X, Z),
hence our assertion follows if we show that

(10.9) R'f.(Qy(log E) ®e, Oy(—[af*Z])) =0,

where E = Z + F. Note that Z = Z + 2F and we may assume that 0 < a < 1.
If1/2 < a < 1, then [af*Z] = f*Z and (10.9) follows from [MP16, Th. B] using the
projection formula. On the other hand, if 0 < o < 1/2, then [af*Z] = E and the
vanishing follows from the fact that the pair (X, Z) is log canonical, using [GKKP11,
Th. 14.1] (though, in this case, one could also check this directly).

Once we know that the filtration on .# (h?) is generated at level 0, it is straight-
forward to check that

Ik(aZ):mk for all & such that 0 < o <1 and all £ > 0,

x

where m,, is the ideal defining z in X.

Unlike in the case when D is a reduced integral divisor, when the filtration
F,0x(+D) is generated at level n — 2 by [MP16, Th. B], in general it is not possible
to improve the bound given by Proposition 10.1.

Examrre 10.3 (Optimal generation level). It can happen that on a surface X the
filtration on .# (h?) is not generated at level 0. Suppose, for example, that X = A2
and Z = Ly 4+ Lo + L3, where Ly, Lo, and L3 are 3 lines passing through the ori-
gin. If f: Y — X is the blow-up of the origin and F = (f*Z)cq, then we write
E = F + G1 + G5 + G3, where F is the exceptional divisor and the GG; are the strict
transforms of the L;. Let D = oZ with 0 < a < 1, so that [f*D] = E. If

H'(Y,Qy (log E) ®g, Oy(—[f*D])) = H'(Y,Qy (log E) ®¢, Oy(—E))

were zero, then it would follow from the standard exact sequence

3
0— Qy(lOgE) X oy ﬁy(—E) —Qy — Q&P @ Qgi — 0
=1

that the map

3
HO(Y,Qy) — H°(F,QF) ® @ H"(Gi, Q)
=1
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is surjective. In particular, we would deduce that the map

3
HY(X,Qx) — @ H°(L;,Qr,)
i=1
is surjective. It is an easy exercise to see that this is not the case. Note that the non-
vanishing of H' (Y, Qy (log E) ®¢, Oy (—E)) is not inconsistent with the Steenbrink-
type vanishing in [GKKP11, Th. 14.1], since the pair (X, Z) is not log-canonical.

Examrere 10.4 (Quasi-homogeneous isolated singularities). — For the class of quasi-
homogeneous isolated singularities (such as those in the examples above), the gener-
ation level for the filtration on .# (h”) can be detected by the Bernstein-Sato poly-
nomial. Before formulating this more precisely, we recall some definitions. Suppose
that Z is a hypersurface in X defined by h € Ox(X). The Bernstein-Sato polynomial
of Z is the non-zero monic polynomial b;, € Cls| of smallest degree such that we
locally have a relation of the form

bn(s)h® = P(s)eh* !

for some nonzero P € Zx|[s]. If Z is non-empty, it is known that (s + 1) divides bp;
moreover, all the roots of b, are negative rational numbers. In this case, one defines
ap = — A\, where A is the largest root of the reduced Bernstein-Sato polynomial by, =
bn(s)/(s + 1). Note that by has degree 0 if and only if Z is smooth, and in this case
one makes the convention that aj = co.

The statement is that if Z = div(h) is reduced and has a unique singular point at x,
which is a quasi-homogeneous singularity, and D = aZ, then the generation level kg
of the filtration on .# (h”) (i.e., the smallest k such that the filtration is generated at
level k) is

k‘(): Ln—&h—aj.
This was proved by Saito [Sai09, Th.0.7] when D is reduced, i.e., for « = 1, and was
extended to the general case by Zhang [Zha18].(*)

Note that for such singularities there is an explicit formula for ap; see e.g. [Sai09,
§4.1]. Just as an illustration, for h = zy(z+y), which describes the previous example,
we have ap = 2/3, and so for a small (more precisely 0 < o < 1/3) we recover the
fact that the generation level is equal to 1.

Exampre 10.5 (Incomensurability of higher Hodge ideals). Suppose that X is a
smooth surface and Z = )", | D; is a reduced effective divisor on X. Let f: Y — X
be a log resolution of (X, Z) that is an isomorphism over X \Z, and put E = (f*Z)yeq.
Let D =3>""_,(1—a;)D; be a divisor with 0 < a; < 1 for all 7, so that [f*D] = f*Z.
In this case we have

R'f.(Oy (—[f*D]) ® Qy(log E)) =0

(4)Moreover, based on calculations of Saito, Zhang shows in loc. cit. that all Hodge ideals of
Q-divisors associated to such singularities can be computed explicitly.

JE.P. — M., 2019, tome 6



314 M. Mustati & M. Pora

by the projection formula and [MP16, Th.B], and so the filtration is generated at
level 0. It follows from the discussion at the beginning of the section (see (10.3) and
(10.4)) that if g is a local equation of Z, and D = «Z, with « < 1 and close to 1,
then Ij41(D) is generated by ¢ - I(D) and
{h-Qw) — (e +k)w-Q(h) | w € Ix(D), Q € Derc(Ox)} .

For example, if X = C? and Z is the cusp defined by z? + 3, then for D = aZ
with o < 1 and close to 1 we have
Io(D) = (z,y), L(D)= (2% wy,y°), and (D) = («* 2%y xy®,y* — (2a+ 1)a’y).

Note in particular that if D1 = a1 Z and Dy = a2, with a3 < as both close to 1,
then there is no inclusion between the ideals I5(D;) and I3(Dsz). This is in contrast
with the picture for multiplier ideals, where for any Q-divisors D; < D> one has
Iy(D3) C In(D1); see [Laz04, Prop. 9.2.32(i)]. It is not hard to check however that

Iy(Dy) = Iy(Dy) mod 22 + o3,

and that this is part of a general phenomenon where the picture is well behaved
after modding out by a defining equation for the hypersurface; this follows from the
connection with the V-filtration, see [MP18a, Cor. BJ.

Remark 10.6. — If the filtration is generated at level k, then I;1(D) is generated
by the terms appearing on the left hand side of conditions (10.3) and (10.4). A simple
calculation shows then that in this case, for every j > 1 and every z € X, we have

multy I;4;(D) > multy Iy ;1 (D) + mult, Z — 1.
In particular, we have
multg Ii4;(D) > multy I (D) + j - (mult, Z — 1).

Since the filtration is always generated at level n — 1 by Proposition 10.1, we obtain
the following consequence.

Cororrary 10.7. — If D is an effective Q-divisor on the smooth variety X, with
support Z, and if Z is singular at some x € X, then I;(D), # Ox , for all j 2 n. In
fact, if m = mult, Z, then

mult, [;(D) > (j —n+1)(m—1) forallj>n.
11. Non-trivianiry criteria. — The following is the analogue of [MP16, Th. 18.1] in
the setting of Q-divisors. Let D be an effective Q-divisor on the smooth variety X,

with Z = Supp(D), and let ¢: X; — X be a projective morphism with X; smooth,
such that ¢ is an isomorphism over X \ Z. We denote

Z1 = (¢"Z)rea and Tx, x = Coker(Tx, — ¢"Tx).

Turorem 11.1. — With the above notation, the following hold:

(i) We have an inclusion

¢ (In(¢" D) ®ox, Ox,(Kx,/x +k(Z1 — ¢*Z))) € I;(D).
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(i) If J is a coherent ideal on X such that J -Tx,,x =0, then
J* - 1k(D) C @i (In(9"D) @ox, Ox,(Kx,/x +k(Z1 — ¢ Z))).
Proof. — We may assume that D = « - div(h), for some a € Q> and some nonzero
h e Ox(X). Let ¢: Y — X; be a log resolution of (X7, ¢*D) that is an isomorphism
over X1 \ ¢~ 1(Z). We put
f=potp and E = (f"Z)req.

With the notation in Section 6, consider the filtered complex C* = C5_.(—[f*D1]),
where g = h o f. We have an inclusion of complexes

A =C" Ry .@Y_)Xl —» B*=C" Ry Dy _,x.
Note that this is an injection due to the fact that Oy (—[f*D]) and Qf (log E) are
locally free sheaves of Oy-modules, while all the maps F,%yv_,x, — F,%y_,x are

generically injective morphisms of locally free 0y-modules. Consider, for any inte-
ger k, the short exact sequence of complexes

0— Fp,_,A* — F,_,B* — M, — 0.

Applying R f, and taking the corresponding long exact sequence, we obtain a short
exact sequence

ROf.Fy_nA* -5 Rf,Fy_,,B* — ROf.M".
If 8 =1— a, it follows from Theorem 8.1 that

Rf.Fy_nB* = R f.Fy_nB* ~h’Ox (Kx + kZ + H) ®oy Ir(D)
and
Ry, FrnA® = R°g.Fy_nA* = W Ox,(Kx, + kZy + 0" H) ®cy, Ir(¢*D).

Therefore, after tensoring by &x(—H), the map ¢ induces a map
(11.1) ¢x(Ix(¢*D) ® Ox,(Kx, + kZ1)) — I1(D) @6y Ox (Kx + kZ).

Finally, the map ¢ is compatible with restriction to open subsets of X. By restricting
to an open subset X in the complement of Z, such that f is an isomorphism over Xy,
we see that the map in (11.1) is the identity on wx,. We thus deduce the assertion
in (i) by tensoring (11.1) with &x (—Kx —kZ). Furthermore, we see that the assertion
in (ii) follows if we show that J* . RO f,M* = 0. Since

MP = Oy (=[f*D]) @, QP (log E) ®gy, ¢ (9" FrypPx | Ferp?x,);
it is enough to show that under our assumption we have
©'F;Dx - Ji C F;9x, forallj>0.
This is proved in [MP16, Lem. 18.6]. O

We first use Theorem 11.1 in order to give a triviality criterion for Hodge ideals in
terms of invariants of a fixed resolution of singularities. We use this in turn in order
to bound the largest root of the reduced Bernstein-Sato polynomial (i.e., &y defined
in Example 10.4) in terms of such invariants, in [MP18a, Cor. D].
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Prorosition 11.2. Let Z be a reduced divisor on the smooth variety X, and let
D = aZ, with « € Qso. Let f: Y — X be a log resolution of (X,Z) that is an
isomorphism over X \ Z and such that the strict transform Z of Z is smooth. We
define integers a; and b; by the expressions

FfZ=2+> aiF; and Kyx=) bF,
i=1 i=1
where Fy, ..., Fy, are the prime exceptional divisors. If
b; +

K2

then I (D) = Ox ((1 — [a])Z). In particular, if 0 < oo < 1, then I;;(D) = O.

(11.2) >k+a fori such that 1 <i<m,

Proof. — Ut D' =a'Z, where o/ = a+ 1 — [a], then it follows from Lemma 4.4 that
I;(D) = I(D") ® ﬁX((l — fa])Z). Since the inequalities (11.2) clearly also hold if
we replace a by o/, it follows that it is enough to treat the case 0 < o < 1.

First, note that since f*D has simple normal crossings, by Proposition 7.1 we have

m

Li(f*D) = I(E) ® Oy () _(1 - [aa;])F)),

i=1

where E = (f*Z)yeq = ZJrZ;il F;. We apply Theorem 11.1 (i) to obtain the inclusion

(11.3) f+(Ix(E) © Oy (F)) — I(D),
where
Fi=> (bi+k+1—ka; — [aa;])F;.
i=1

On the other hand, since £ = Z+ 27;1 F; has simple normal crossings and 7 is
smooth, it follows from the description of Hodge ideals of simple normal crossing
divisors in [MP16, Prop. 8.2] that we have

m

Oy(—k- > F) C I(E).

i=1

Note that the inequalities in (11.2) imply b; + 1 > ka; + [aa;] for all i, hence the
divisor F — k- ;" | F; is effective We thus deduce using (11.3) that we have

ﬁX:f*ﬁy;)Ik(D). |

Remark 11.3. — More generally, suppose that we write Z = 22:1 Zj, and consider
an effective Q-divisor D = Z;Zl o Z; supported on Z. For simplicity, let us assume
that 0 < a; <1 for all j. If f is a log resolution as in Proposition 11.2, and we write

f*Zj = Zj + ZG{F'L
i=1
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T

for all j (so that a; = 377_, a}), then the same proof gives I} (D) = Ox if
b; +1> ka; + Zajag for all 3.
i=1

We now turn our attention to non-triviality criteria for the Hodge ideals I (D) in
terms of the multiplicity of D, and of its support Z, along a given subvariety.

Cororrary 11.4. — Let D be an effective Q-divisor on the smooth variety X, and
let Z be the support of D. If W is an irreducible closed subset of X of codimension r
such that multyy Z = a and multyy D = b, and if q is a non-negative integer such that

b+ka>qg+r+2k—1,
then I, (D) C Iég), the q-th symbolic power of Iy . In particular, if

g+r+2k-1

lty D > ,
multy, k-i—l

then I (D) C 11(25)-

Proof. — After possibly restricting to a suitable open subset of X meeting W, we may
assume that W is smooth. The first assertion in the corollary follows by applying
11.1(ii) to the blow-up ¢: X; — X along W. Note that we may take J = Iy
by [MP16, Ex.18.7], while I} (¢*D) C Ox,(Z1 — [¢*D]). The last assertion follows
thanks to the fact that by assumption we have a > b. O

Remark 11.5. — An interesting consequence of the above corollary is that if Z is a
reduced divisor on the smooth, n-dimensional variety X, k is a positive integer, and

x € X is a point such that

mult, Z > 2+ %,

then I (D) is non-trivial at x for every effective Q-divisor D with support Z (no mat-
ter how small the coefficients).

Exampre 11.6 (Ordinary singularities, I). — Let X be a smooth variety of dimen-
sion n, and Z a reduced divisor with an ordinary singularity at @ € X (recall that
this means that the projectivized tangent cone of Z at z is smooth), for instance a
cone over a smooth hypersurface. If D = aZ, with « a rational number satisfying
0 < a<1,then

mult, Z < — Ik(D)x = ﬁX@.

n

k+a

Note that the converse of this statement will be proved in Corollary 11.8 below.
Indeed, the assumption implies that after possibly replacing X by an open neigh-

borhood of x, the blow-up f: Y — X of X at x gives a log resolution of (X, Z).
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Let E=F+Z7 , where F' is the exceptional divisor of f and 7 is the strict transform
of Z. If m = mult, Z, then we deduce from Theorem 11.1 that

FIe(¢*D) ®oy Oy (Ky/x + k(E — [*Z)))
= f(In(¢*D) ®e, Oy((n—1+k—km)F)) C I(D).

Now since ¢*D is supported on the simple normal crossings divisor E, by Proposi-
tion 7.1 we have

Ii(¢*D) = It(E) ©@o, Oy ((1—[am])F),
where we use the fact that [«a] = 1. Moreover, by [MP16, Prop. 8.2] we have

L(E) = (6y(~Z) + Oy (~F))" 2 Oy (~kF).

Now by assumption
n—km— [am] >0,

hence we deduce I (D) = Ox.

Exampre 11.7 ( Ordinary singularities, IT). — With considerable extra work, one can
say more in the ordinary case. We keep the notation of the previous example, and
assume that z is a singular point of Z, hence m > 2. If k is a positive integer such
that
(k—1)m+[am] <n and k<n-—2
then we have
I (D) — ms’m—i- [am]—n

in a neighborhood of x, where m, is the ideal defining = (with the convention that
mJ, = Ox if 1<0). The argument is similar to that in [MP16, Prop. 20.7], so we omit it.

In what follows we make use of some general properties of Hodge ideals that will
be proved in Ch.D, namely the Restriction and Semicontinuity Theorems.

Corovrrary 11.8. — If X is a smooth n-dimensional variety, Z is a reduced divisor
with an ordinary singularity of multiplicity m > 2 at x € X, and D = oZ with
0<a<l, then

In(D)y = Ox 5 < m <

k+ao

Proof. — The “if” part follows directly from Example 11.6. For the converse, we
need to show that if m, is the ideal defining « and m > n/(k + «), then I (D) C m,.
We may assume that Z is defined in X by h € Ox(X). Let r > 0 be such that
n+r = mk+[ma]—1 and consider the divisor Z’ in X xC" defined by h+y*+- - -4y™,
where y1,...,y, are the coordinates on C". It is easy to check that Z’ is reduced and
has an ordinary singularity at (z,0). By the Restriction Theorem (see Theorem 13.1
and Remark 13.4 below), we have Iy (aZ) C I (aZ') - Ox, where we consider X
embedded in X x C" as X x {0}. After replacing X and Z by X’ and Z’, we may
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thus assume that n = mk + [ma] — 1. If £ < n— 2, then we may apply Example 11.7
to conclude that I (D) C m,. Otherwise we have

k>=2n—1=mk+ [ma] — 2,

which easily implies m =2, k =1, and a < %, hence n = 2. Since Z has an ordinary
singularity at x, it follows that it must be a node, and in this case we have I (aZ) = m,
by Example 10.2. O

Remark 11.9. — One can give an alternative argument, arguing as follows. Suppose
that Z is a reduced divisor in X, defined by h € Ox(X). It is shown in [MP18a,
Cor. C] that for 0 < a < 1, we have I (aZ) = Ox if and only if k < &y, — «. If Z has
an ordinary singularity at x € X, of multiplicity m > 2, then after replacing X by a
suitable neighborhood of z, we have &), = n/m (see [Sail6, §2.5]), and we recover the
assertion in Corollary 11.8.

Question 11.10. — TIs it true that if X is a smooth n-dimensional variety, Z is a
reduced divisor on X, D is an effective Q-divisor with support Z, and for a point
x € Zging We have

k- mult, Z 4+ mult, D > n,

then Ik(D) Cm,?

This would be a natural improvement of Corollary 11.4, and it does hold when D is
reduced by [MP16, Cor. 21.3]. We may of course assume that [ D] = Z, since otherwise
the inclusion is trivial (see Remark 4.3). At the moment we have:

Cororrary 11.11. — Question 11.10 has a positive answer if D is of the form D=aZ.

Proof. — We may assume that o < 1 and, arguing as in the proof of [MP16, Th. E],
we construct a reduced divisor F' on X x U, for a smooth variety U, such that for t € U
general the divisor F} = F|x s is reduced, with an ordinary singularity at (x,t) of
multiplicity m = mult, Z, and for some ¢, € U, the isomorphism X ~ X x {to}
maps D to Fy,. In this case Corollary 11.8 implies that I;(F;) vanishes at (z,t) for
t € U general, and the Semicontinuity Theorem (see Theorem 14.1 below) implies
that Iy (F,) vanishes at (x, o). O

This allows us in particular to provide an analogue of [MP16, Th. AJ:

Corovrrary 11.12. — If D is of the form D = aZ, then

Z is smooth <= I(D)=0x(Z —[D]) forallk.

Proof. — Tt suffices to assume 0 < « < 1, in which case the condition becomes
I (D) = Ox for all k. By Corollary 11.11 however, if mult, Z > 2, then I(D) C m,
for all k > (n/2) — a. O
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12. VANISHING THEOREM. As usual, we consider an effective Q-divisor D with sup-
port Z, on the smooth variety X. In this section we assume that X is projective, and
prove a vanishing theorem for Hodge ideals, extending [MP16, Th. F] as well as Nadel
Vanishing for Q-divisors.

We start by choosing a positive integer ¢ such that £D is an integral divisor, and
further assume that there exists a line bundle M on X such that

(12.1) M®* ~ 0x (D),
so that the setting of Section 5 applies. We note that this can always be achieved

after passing to a finite flat cover of X.

Tarorem 12.1. — Let X be a smooth projective variety of dimension n and D an
effective Q-divisor on X such that (12.1) is satisfied. Let L be a line bundle on X
such that L+ Z — D is ample. For some k > 0, assume that the pair (X, D) is reduced
(k — 1)-log-canonical, i.e., Io(D) = --- = I;_1(D) = Ox(Z — [D]).®>) Then we have:
(1) If k < n, and L(pZ — [D]) is ample for all p such that 2 < p < k+ 1, then
H' (X,wx ® L((k+1)Z) ® I;(D)) =0
for all i > 2. Moreover,
H'(X,wx ® L((k+1)Z) ® I(D)) =0

holds if HY (X, Q%7 @ L((k — j +2)Z — [D])) = 0 for all j such that 1 < j < k.

(2) If Kk = n+ 1, then Z must be smooth by Corollary 10.7, and so Iy(D) =
Ox(Z — [D]) by Corollary 3.2. In this case, if L is a line bundle such that
L((k+1)Z — [D)) is ample, then

H' (X,wx ® L((k+1)Z) ® I;(D)) =0 for all i > 0.

(3) If U = X \ Z is affine (e.g. if D or Z are ample), then (1) and (2) also hold
with L = M(—Z), assuming that M (pZ — [D)) is ample for p such that 1 < p < k.9
Proof. — We use the notation in Section 5 and Remark 4.3. In particular, we consider
the filtered left Zx-module

M =M Qe Ox(x7Z),

which we know is a direct summand in a filtered Z-module underlying a mixed Hodge
module on X. Its filtration satisfies

Fptty ~M(~Z)® Ox((k+2)Z — [D]) ® I;(D).

Note also that since L + Z — D is ample, there exists an ample line bundle A on X
such that L ~ M(-2) ® A.

(5)Recall from Definition 9.3 that equivalently this means Ij(D) = --- = I, _,(D) = Ox. By con-
vention the condition is vacuous when k = 0.

(6)When & > 1, the condition of U being affine is in fact implied by the positivity condition, since
D+ Z — [D] is then an ample divisor with support Z.
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Let us prove (1), i.e., let us consider the case k < n. The statement is equivalent
to the vanishing of the cohomology groups

H'(X,wx ® L((k+2)Z — [D]) ® I}(D)) =0
Since I}, (D) = Ox, we have a short exact sequence
0 —wx®L((k+1)Z—[D]) —wx @ L((k+2)Z — [D]) ® I;,(D)
— wx @ A@grf M — 0.

By taking the corresponding long exact sequence in cohomology and using Kodaira
vanishing, we see that the vanishing we are aiming for is equivalent to the same
statement for
H' (X,wx ® A® gry, ).
We now consider the complex
C* = (grf, . DR(A) ® A)[—k].

Given the hypothesis on the ideals II',(D)7 this can be identified with a complex of the
form
Qv *® L(2Z - [D]) — Q¥ " @ L® 04(3Z — [D])
— = QYR LR 04 ((k+1)Z — [D]) — wx ® A® gry, M|
placed in degrees 0 up to k. Saito’s Vanishing theorem [Sai90, §2.g] gives
(12.2) H/(X,C*)=0 forallj>k+1.
We use the spectral sequence
EYY = HY(X,CP) = HPTI(X,C").
The vanishing statements we are interested in are for the terms Ef ' with i > 1. We
will in fact show that
(12.3) EF = BN, forallr > 1.
This implies that
EY' = ER =0,

where the vanishing follows from (12.2) since i > 1, and this gives our conclusion.

We are thus left with proving (12.3). On one hand we always have EFtmi—m+1 =
because C’k_'H = 0. On the other hand, we will show that under our hypothesis we
have EF~"""=1 = 0, from which we infer that E¥~"+"=1 = 0 as well, allowing us

to conclude. To this end, note first that if » > k this vanishing is clear, since the
complex C* starts in degree 0. If kK = r, we have

EY = HY(X 0% @ (22 — [D])).

If ¢ > 2 this is 0 by Nakano vanishing, while if ¢ = 1 it is 0 because of our hypothesis.
Finally, if £ > r 4+ 1, we have

BT g (X QY T 9 Lo O7((k—r+2)Z — [DY)),
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which sits in an exact sequence

HY X, Q%" @ L((k —r+2)Z — [D])) — By 7!
— H'(X, Q% " @ L((k —r +1)Z — [DY)).

We again have two cases:

(1) If i > 2, we deduce that Ef~""*"~! = 0 by Nakano vanishing.
(2) If i = 1, using Nakano vanishing we obtain a surjective morphism

H (X, Q%" @ L((k —r +2)Z — [D])) — By "1,
and if the extra hypothesis on the term on the left holds, then we draw the same
conclusion as in (1).
The same argument proves (3), once we replace Saito Vanishing (12.2) by the
vanishing
H' (X, grf DR(#1)) =0
for all 4+ > 0 and all k£, which in turn is implied by the same statement for the

Px-module .# underlying a Hodge Z-module, in which .#; is a direct summand.
Furthermore, this is implied by the vanishing of the perverse sheaf cohomology

H'(X,DR(.#)) =0 foralli> 0.

Indeed, by the strictness property for direct images (see e.g. [MP16, Ex.4.2]), for
(A, F) we have the decomposition

H'(X,DR(A)) ~ @ H' (X, gr”  DR(4)).
qE€EZ

Recall now from Section 5 that .# ~ j..#", where .4 underlies a Hodge Z-module
on U, and j: U — X is the inclusion. Denoting P = DR(.#), we then have P ~
j«7* P, and so it suffices to show that

HY(U,j*P) =0 foralli> 0.

But this is a consequence of Artin vanishing (see e.g. [Dim04, Cor. 5.2.18]), since U is
affine.

Finally, the assertion in (2) follows from Kodaira vanishing, using the long exact
sequence in cohomology associated to the short exact sequence

0 —wx ®L((k+1)Z—[D]) — wx ® L((k+2)Z — [D])
—wz;®L((k+1)Z - [D])|z — 0. O

Remark 12.2. — We expect the statement of the theorem to hold even without as-

suming the existence of M (i.e., of an ¢-th root of the line bundle &x (¢D)). This

is known for k = 0, when the statement follows from Nadel Vanishing, see [Laz04,
Th. 9.4.8]. However, at the moment we do not know how to show this for k > 1.
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Remark 12.3 (Toric varieties). As in [MP16, Cor. 25.1], when X is a toric variety
the Nakano-type vanishing requirement in Theorem 12.1 (1) is automatically satisfied
thanks to the Bott-Danilov-Steenbrink vanishing theorem. A stronger result in this
setting is proved in [Dut18].

Remark 12.4 (Projective space, abelian varieties). As in [MP16, Th.25.3 & 28.2],
appropriate statements on P™ and abelian varieties work without the extra assump-
tions of reduced log canonicity and Nakano-type vanishing in Theorem 12.1. More
precisely, keeping the notation at the beginning of the section, we have:

Variant 12.5. Let D be an effective Q-divisor on P™ which is numerically equiv-
alent to a hypersurface of degree d > 1. If £ > d —n — 1, then

H'(P", 0pn({) ® Opn(kZ) @ I(D)) =0 for alli > 0.

Note that the positivity condition in Theorem 12.1 is satisfied, since for every
effective Q-divisor D # 0 in P™ we have deg[ D] < deg D + deg Z.

Variant 12.6. — If X is an abelian variety and D is an ample Q-divisor on X, then
HY(X,M(kZ)® I;(D) ® a) = 0
for alli >0 and a € Pic®(X).

Note that on an abelian variety every effective Q-divisor is nef, and the ampleness
of D is equivalent to that of any divisor whose support is equal to that of D.

The proofs are completely similar to those in loc. cit., replacing Ox (D) in the
reduced case by .#) in the proof above, and noting that since .#; is a filtered direct
summand in j;py Oy as in Section 5, the vanishing properties we use continue to
hold.

l) BESTRICTION, SUBADDITIVITY, AND SEMICONTINUITY THEOREMS

In this part of the paper we provide Q-divisor analogues of the results in [MP18b].
This extends well-known statements in the setting of multiplier ideals; further discus-
sion and references regarding these can be found in loc. cit.

13. RESTRICTION THEOREM. We begin with the Q-divisor version of the Restriction
Theorem:

Tarorem 13.1. — Let D be an effective Q-divisor, with support Z, on the smooth
variety X, and let Y be a smooth irreducible divisor on X such that Y & Z. If we
denote Dy = Dl|y, Zy = Zly, and Zi{, = (Zy )red, then for every k > 0 we have

(13.1) Oy (—k(Zy — Zy)) - Ie(Dy) € Ix(D) - Oy.
In particular, if Zy is reduced, then for every k > 0 we have
(13.2) Iy(Dy) C I(D) - Oy.

Moreover, if Y is sufficiently general (e.g. a general member of a basepoint-free linear
system,), then we have equality in (13.2).
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Remark 13.2. Note that when D is a reduced divisor we have Dy = Zy, and
Dy — Zj, is an integral divisor with support in Z4,. Therefore Lemma 4.4 gives

Iu(Dy) = Ox(—(Dy — Zy)) - I(Zy),
hence the statement in the theorem coincides with that of [MP18b, Th. A].
Proofof Theorem 13.1. — The argument follows the proof of [MP18b, Th. A], with a
simplification observed in [Sail6], hence we only give the outline of the proof. Since the

statement is local, we may assume that D = « - div(h) for some nonzero h € Ox(X).
Consider the following commutative diagram with Cartesian squares:

~

, while ¢ is the inclusion of Y in X. Note that
if n = dim(X), we have a canonical base-change isomorphism

#(iop)+Qun] = (7' o )i Q1]
proved in [Sai90, 4.4.3]. We also have a canonical isomorphism
Q¥ [n] = (QY, [n — 1)) (=1)[~1]

(see for instance [Sai88, §3.5]). Here we use the Tate twist notation, which for a mixed
Hodge module M = (4, F,.# ,K) is given by

M(k) = (M, Fo_ ol , K @q Q(k)).

where p and j are as in diagram (2.3

We obtain, in particular, an isomorphism of filtered right Zx-modules
(A M (W), F) = (Mo (h]), Fatr).

Recall now that if (Vo.#)aecq is the V-filtration on 4 = .#,.(h~*) corresponding

to the smooth hypersurface Y C X, then there is a canonical morphism
o: gry M — gtV M Rp, Ox(Y)
such that
AV ~ Coker(o),

with the Hodge filtration on the right-hand side induced by the Hodge filtration on . .

We refer to [MP18b, §2] for details.
One defines a morphism

Vo

CFyeV o=
n: fegr_y Fo Vo M

— A Reox Oy
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that maps the class of u € FpV_1.# = Fy 4 NV_1.4 to the classof uin F 4 Q¢ Oy .
After tensoring 1 with Ox (Y), the resulting morphism vanishes on the image of the
restriction of o to Fy gry ., hence we obtain an induced morphism

(13.3) 1 M, (h|3®) ~ Fo 0V M ~ Fy, Coker(0) — Fydl @0, Oy (Y).

Applying this with k replaced by k — n, it follows from the definition of Hodge ideals
and the formula for the equivalence between left and right Z-modules that we have
a morphism

Ik(Dy) ®0’Y Wy (ngz + le(hly)) — Ik(D) ®6’X wx (kZ + le(h)) ®ﬁ’x ﬁy(Y)

By tensoring this with wy, (—=kZy —div(h|y)) and composing with the canonical map
I(D) ®y Oy — I;(D) - Oy, we obtain a canonical morphism

©: ﬁy(—k(Zy — Zg/)) ® Ik(Dy) — Ik(D) . ﬁy.

Note that all constructions are compatible with restrictions to open subsets and when
restricting to Z = X ~\ U, the above morphism can be identified with the identity
map on Oy . Therefore the morphism ¢ is compatible with the two inclusions in Oy,
and we deduce the inclusion in (13.1).

Suppose now that Y is general, so that Zy = Z{, and Y is non-characteristic with
respect to .#. For example, this condition holds if Y is transversal to the strata in
a Whitney stratification of Z (see [DMSTO06, §2]); in particular, it holds if ¥ is a
general member of a basepoint-free linear system. We may assume that Y is defined
by a global equation t € &x(X). In this case, it follows from [Sai88, Lem. 3.5.6] that
gry M =0 and gtV M = M @, Oy. It is now straightforward to check that the
morphism (13.3) is an isomorphism, hence ¢ is an isomorphism, and we thus have
equality in (13.2). O

We deduce the following analogue of inversion of adjunction:

Cororrary 13.3. — With the notation of Theorem 13.1, if Zy is reduced and
I;(Dy )y = Oy for some x €Y, then Ii;(D)y = Ox 4.

Remark 13.4. — If D is an effective Q-divisor, with support Z, on the smooth vari-
ety X, and Y is a smooth subvariety of X such that Y Z Z and Z|y is reduced, then
for every k£ > 0 we have

I(Dly) C Ix(D) - Oy.
This follows by writing Y locally as a transverse intersection of r smooth divisors
on X and applying repeatedly the inclusion (13.2).

Remark 13.5. — With the notation in Theorem 13.1, let Yi,...,Y,. be general
elements in a basepoint-free linear system on X, where r < n = dim(X). If
W =Yy N---NY,, then for every k > 0 we have

I(D|w) = In(D) - Oy

Indeed, if W; =Y1 N---NY;, and if (Sg)s are the strata of a Whitney stratification
of Z, then it follows by induction on i that we have a Whitney stratification of Z|yy,
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with strata (Sg N W;)z. Moreover, Y;11 is transversal to each such stratum. We may
thus apply the theorem to each divisor D|yw, and smooth hypersurface Y; 1NW; C W,
to conclude that

Iu(D|w) = In(D) - O

14. Semicontivurty THeEOREM. — The same argument as in [MP18b, §5], based on
the Restriction Theorem (in this case Theorem 13.1 above), gives the following semi-
continuity statement. The set-up is as follows: let f: X — T be a smooth morphism
of relative dimension n between arbitrary varieties X and T, and s: T' — X a mor-
phism such that fos = Idp. Let D be an effective Q-Cartier Q-divisor on X, relative
over T' (that is, we can write D locally as aH, for an effective divisor H and a positive
rational number a, with H flat over T'). We assume that we have an effective divisor Z
on X, relative over T, with Supp(Z) = Supp(D), and such that for every ¢t € T, the
restriction Z; to the fiber X; = f~1(¢) is reduced. For every x € X, we denote by m,
the ideal defining z in Xy (,,).

Turorem 14.1. — With the above notation, for every q > 1, the set
Vg = {t eT | Ix(D:) & mg(t)}
is open in T.

15. SUBADDITIVITY THEOREM. The calculation for I in Example 10.5 shows that
the inclusion

I (D1 + D2) C I(Dy)

cannot hold for arbitrary Q-divisors D; and Ds. However, with an appropriate as-
sumption on the support, we have the following stronger subadditivity statement:

Turorem 15.1. — If Dy and D5 are effective Q-divisors on the smooth variety X,
whose supports Z1 and Zy satisfy the property that Z1 + Zo is reduced, then for every
k > 0 we have

Ie(Dy1+ D) € > Ii(Dy) - Ij(Da) - Ox(—jZ1 —iZa) C Ix(D1) - I (D).
itji=k

Note first that, for every ¢ and j, the inclusion
Fotl (h™%) C Fiyjdl (h™7)
implies the inclusion
(15.1) Ox(—jZ)-1;(D) C I,1;(D).

This gives the second inclusion in the statement above. To prove the first inclusion,
as in the proof of [MP18b, Th. B] it is enough to show the following:(7)

(7)Indeed, the Restriction Theorem applies in the form given in Remark 13.4 for the diagonal
embedding X — X X X, since we are assuming that Z; + Z> is reduced.
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Prorosrrion 15.2. Let X1 and X2 be smooth varieties and let D; be effective
Q-divisors on X;, with support Z;, fori =1,2. If B; = p} D;, where p;: X1 x X2 = X;
are the canonical projections, then for every k > 0 we have

I(Bi+ Ba) = Y (1i(D1)0x,(—571) - Ox,xx,) - (Ij(D2)Ox, (=i Za) - Ox,xxs)-
i+i=k

Proof. — By Remark 2.2, we can assume that there exist regular functions hy on X
and hy on Xo, together with a € Qso, such that I;(D;) and I;(Ds) are defined by
M (hT%) and A, (hy“), respectively. The statement follows precisely as in [MP18b,
Prop.4.1], as long as we show that there is a canonical isomorphism of filtered
2-modules

('///T((p*fhl 'p;hZ)_a)7F) = ('///T(h;a) x%r(h5a>7F)7

where the filtration on the right hand side is the exterior product of the filtrations
on the two factors. But this is a consequence of the canonical isomorphism of mixed
Hodge modules

3sPs QY vy 1 + m2] = 1,01, QY [n1] K o, 2, QT [n2],
with the obvious notation as in (2.3) for ¢ = 1,2, together with Lemma 2.8. O
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