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MAXIMAL REPRESENTATIONS

OF COCOMPACT COMPLEX HYPERBOLIC LATTICES,

A UNIFORM APPROACH

by Pierre-Emmanuel Chaput & Julien Maubon

Abstract. — We complete the classification of maximal representations of cocompact complex
hyperbolic lattices in Hermitian Lie groups by dealing with the exceptional groups E6(−14) and
E7(−25). We prove that if ρ is a maximal representation of a cocompact complex hyperbolic
lattice Γ ⊂ SU(1, n), n > 1, in an exceptional Hermitian group GR, then n = 2 and GR =

E6(−14), and we describe completely the representation ρ. The case of classical Hermitian
target groups was treated by Vincent Koziarz and the second named author [KM17]. However
we do not focus immediately on the exceptional cases and instead we provide a more unified
perspective, as independent as possible of the classification of the simple Hermitian Lie groups.
This relies on the study of the cominuscule representation of the complexification G of the
target group GR. As a by-product of our methods, when the target Hermitian group GR has
tube type, we obtain an inequality on the Toledo invariant of the representation ρ : Γ → GR
which is stronger than the Milnor-Wood inequality (thereby excluding maximal representations
in such groups).

Résumé (Représentations maximales des réseaux hyperboliques complexes cocompacts : une
approche unifiée)

Nous complétons la classification des représentations maximales des réseaux hyperboliques
complexes dans les groupes de Lie hermitiens en traitant le cas des groupes exceptionnels
E6(−14) et E7(−25). Nous montrons que si ρ est une représentation maximale d’un réseau
hyperbolique complexe cocompact Γ ⊂ SU(1, n), avec n > 1, dans un groupe hermitien GR de
type exceptionnel, alors n = 2 et GR = E6(−14), et nous décrivons complètement la représen-
tation ρ. Le cas des groupes hermitiens classiques avait été traité par Vincent Koziarz et le
deuxième auteur cité [KM17]. Cependant, nous ne nous restreignons pas immédiatement aux
groupes exceptionnels : nous proposons au contraire une approche unifiée, aussi indépendante
que possible de la classification des groupes de Lie hermitiens simples. Cette approche repose
sur une étude de la représentation cominuscule de la complexification du groupe d’arrivée GR.
Dans le cas où GR est de type tube, nos méthodes permettent en particulier d’établir une inéga-
lité sur l’invariant de Toledo de la représentation ρ : Γ → GR qui est plus forte que l’inégalité
de Milnor-Wood et qui exclut donc la possibilité d’une représentation maximale pour de tels
groupes.
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1. Introduction

This paper deals with maximal representations of complex hyperbolic lattices in
semisimple Hermitian Lie groups with no compact factors.

A complex hyperbolic lattice Γ is a lattice in the Lie group SU(1, n), a finite cover of
the group of biholomorphisms of the n-dimensional complex hyperbolic space HnC =

SU(1, n)/U(n). We shall always assume that our lattice Γ is cocompact, or uniform,
meaning that the quotientX := Γ\HnC is compact. To simplify matters, we also assume
in this introduction (except in the statements of our main results) that Γ is torsion
free, so that X is also a manifold. The SU(1, n)-invariant Kähler form on HnC with
constant holomorphic sectional curvature −1 and the Kähler form it induces on X

will both be denoted by ω.
A Lie group GR is said to be a real algebraic Hermitian Lie group (or a Hermitian

group for short) if it is the connected component G(R)◦ of the group of real point
of an algebraic group G defined over R, if it is semisimple with no compact factors,
and if its associated symmetric space M = GR/KR is a Hermitian symmetric space
(of the noncompact type). This means that the noncompact symmetric space M
admits a GR-invariant complex structure, with respect to which the GR-invariant
Riemannian metrics are (necessarily) Kähler. The real rank rkRGR of GR coincides
with the rank rM ofM as a symmetric space, namely the maximal dimension of a flat
subspace in M . Simple Hermitian groups are classified: there are four infinite families
of classical groups, which up to isogeny are SU(p, q) with 1 6 p 6 q, SO0(2, p) with
p > 3, Sp(2m,R) with m > 2 and SO?(2m) with m > 4; and two exceptional groups
E6(−14) and E7(−25). The real ranks of these groups are respectively p, 2, m, bm/2c,
2 and 3.

Let ωM denote the GR-invariant Kähler form of M , uniquely normalized so that
its holomorphic sectional curvatures lie between −1 and −1/rM .

If ρ is a representation (a group homomorphism) from Γ to GR, we define its Toledo
invariant τ(ρ) as follows:

τ(ρ) =
1

n!

∫
X

f?ωM ∧ ωn−1,

where f : HnC → M is a C∞ and ρ-equivariant map and f?ωM is seen as a 2-form
on X by Γ-invariance. The Toledo invariant does not depend on the choice of the
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map f , it depends only on ρ, and in fact, only on the connected component of ρ in
Hom(Γ, GR). Moreover, it satisfies the following Milnor-Wood type inequality:

|τ(ρ)| 6 rM vol(X),

a fundamental property established in full generality in [BI07].
The maximal representations ρ : Γ → GR are those representations for which the

Milnor-Wood inequality is an equality.
In [KM17], to the introduction of which we refer for a history of the subject, Koziarz

and the second named author classified maximal representations when n > 2, i.e., Γ is
not a surface group, and when GR is a classical group. Their proof uses the standard
representations of the classical groups GR and their complexifications G := G(C) and
is therefore quite dependent on the classification of simple Hermitian groups. In the
present work, using in a uniform way the cominuscule representation of G we give a
new proof of the Milnor-Wood inequality relying on algebraic properties of this comi-
nuscule representation shared by all Hermitian groups, see the proof of Theorem 4.6.
This proof provides information which, in the case of maximal representations, allows
us to extend the classification to all target Hermitian groups.

Theorem A. — Let Γ be a uniform lattice in SU(1, n), n > 2. Let GR be a real
algebraic Hermitian Lie group and let M be the Hermitian symmetric space of the
noncompact type associated with GR. If ρ is a maximal representation of Γ in GR,
then:

– each simple factor of GR is isogenous either to SU(p, q) for some (p, q) with
q > n p, or to the exceptional group E6(−14), the latter being possible if and only if
n = 2;

– if τ(ρ) > 0, there exists a ρ-equivariant holomorphic map f : HnC →M . Moreover
it satisfies f?ωM = rM ω;

– if τ(ρ) < 0, there exists a ρ-equivariant antiholomorphic map f : HnC → M .
Moreover it satisfies f?ωM = −rM ω;

– in both cases, the map f is unique as it is the unique ρ-equivariant harmonic map
HnC → M . It is a totally geodesic embedding. It is also equivariant w.r.t. a uniquely
defined homomorphism of Lie groups ϕ : SU(1, n)→ GR.

We can also deduce a complete structure result for the maximal representation ρ,
namely that ρ is essentially the restriction to Γ of the morphism of Lie groups
ϕ : SU(1, n)→ GR given by Theorem A.

Corollary B. — Under the assumptions of Theorem A, the representation ρ is reduc-
tive, discrete, faithful, and acts cocompactly on the image of f in M . The central-
izer ZR of the image of ϕ in GR is compact and there exists a group morphism
ρcpt : Γ→ ZR such that

∀ γ ∈ Γ, ρ(γ) = ϕ(γ)ρcpt(γ) = ρcpt(γ)ϕ(γ).
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The group ZR is described in Lemma 5.10. Moreover, Lemma 5.12 says that ZR
is exactly the subgroup of GR fixing f(HnC) pointwise. Just before Lemma 5.10,
we also describe the morphism ϕ : SU(1, n) → GR. If GR is simple, and up to
conjugating ρ by an element in GR, it is always given by a diagonal embedding
SU(1, n) ↪→ SU(rM , nrM ) ↪→ GR, where SU(rM , nrM ) is a subgroup of GR stable
under conjugation by elements of the maximal torus.

The global strategy we adopt here is the same as in [KM17]. First, we use known
results (see 3.1) to get a harmonic ρ-equivariant map f : HnC → M and a Higgs
bundle (E, θ) on the quotient X = Γ\HnC associated to a (reductive) representation
ρ : Γ→ GR. Then, we translate the Milnor-Wood inequality into an inequality involv-
ing degrees of subbundles of E (see 4.2). This inequality is then proved (in 4.4) using
the Higgs-stability properties of (E, θ), or rather the leafwise Higgs-stability proper-
ties of the pull-back (E, θ) of (E, θ) to the projectivized tangent bundle PTX of X
with respect to the tautological foliation on PTX (see Sections 3.2 and 3.3).

Although classical target groups were already treated in [KM17], we decided not
to focus immediately on the exceptional cases and instead to provide a more unified
perspective, as independent as possible of the classification of the simple Hermitian
Lie groups, in the spirit of [BGPR17]. To achieve this, instead of considering the Higgs
vector bundle associated with the standard representation of the complexification G
of GR (which is only defined in the classical cases), we work with the Higgs vector
bundle (E, θ) associated with the cominuscule representation E of G defined by M
(and a choice of invariant complex structure), see Section 2.2. This representation
is such that M is holomorphically embedded as a locally closed subset of the pro-
jectivization PE of E: this is sometimes called the first canonical embedding of the
compact dual M̌ , see [NT76, p. 651].

On the algebraic side, we present in Section 2.4 a general construction of a self-
dual graded subspace Vr of E associated with an element of m± of rank r (here, g =

k⊕ (m+⊕m−) is the Cartan decomposition of the Lie algebra of G). The subspace Vr
is in fact a module under the action of a complex subgroup Lr of G, and the self-
duality of Vr corresponds to the fact that Lr admits a noncompact real form Lr,R
which is a simple (if GR is simple) Hermitian Lie group whose associated symmetric
space Mr is of tube type and has rank r, see Section 2.4.4. On the geometric side, this
construction produces a leafwise Higgs subsheaf V of (E, θ) → PTX associated with
the holomorphic component of the Higgs field θ (see Section 4.3), whose existence
is then used to prove the Milnor-Wood inequality. To be a bit more precise, on a
generic fiber of (E, θ)→ PTX , the leafwise Higgs subsheaf we define admits a purely
representation theoretic description. The algebraic counterparts of the generic objects
are first introduced and studied in Section 2. This is then used in Section 4.3 to define
the subsheaf and prove that it has the desired properties.

One interesting by-product of this unified approach is that it allows to exclude
a priori the possibility of maximal representations in any tube type real algebraic
Hermitian Lie group, and in particular in E7(−25). Recall that up to isogeny the simple

J.É.P. — M., 2019, tome 6



Maximal representations, a uniform approach 235

tube type Hermitian groups are SU(p, p), SO0(2, p), Sp(2m,R), SO?(2m) withm even,
and E7(−25). See also Section 2.4.4. Indeed, we prove in Section 5.1 that for tube type
targets the representation ρ satisfies a stronger inequality than the Milnor-Wood
inequality.

Proposition C. — Let Γ be a uniform lattice in SU(1, n), with n > 2, and let X =

Γ\HnC. Assume that the real algebraic Hermitian Lie group GR has tube type and let rM
be the real rank of GR. Let ρ be a representation Γ→ GR. Then

|τ(ρ)| 6 max
{
rM − 1,

rM
2
· n+ 1

n

}
vol(X) < rM vol(X).

When the representation ρ is maximal, the results of [KM17] imply that the restric-
tion of the leafwise Higgs subsheaf V corresponding to the module VrM to almost all
leaves L of the tautological foliation on PTX is a Higgs subbundle of (E, θ)|L. More-
over, the self-duality of VrM means that the holomorphic subbundles Vi composing
V =

⊕
06i6rM

Vi have the symmetries of a weight rM real variation of Hodge struc-
ture: V rM−i ' Vi. This is the Higgs bundle analogue, in the higher dimensional setting
we are in, of the fact that maximal representations of surface groups stabilize maxi-
mal tube type subdomains in M (see the remark below). We also refer to Section 2.6
for a discussion of the cominuscule representation E and the submodule Vr from the
Hodge theoretic point of view developed in [Gro94, SZ10].

To prove Theorem A, one then needs to deduce that the ρ-equivariant harmonic
map f is (anti-)holomorphic from the facts we just mentioned. To this end, thanks to
Proposition C and [KM17], we only need to deal with the case of E6(−14). Maximal
representations in this exceptional group are treated in Sections 5.2 and 5.3 where we
prove that they exist if and only if n = 2, in which case they are essentially induced
by a homomorphism ϕ : SU(1, 2)→ SU(2, 4)→ E6(−14).

Remark. — The assumption n > 2 is of course essential in all these results. Maximal
representations of lattices of SU(1, 1), i.e., surface groups, form a very interesting and
intensely studied subclass of representations, see e.g. [Her91, Xia00, MX02, BGPG03,
BGPG06, BIW10, GW12]. They are also reductive, faithful and discrete, and they
stabilize a tube type subdomain of rank rM inM , but they exist for all target Hermit-
ian groups and they are not in general “induced” by a homomorphism SU(1, 1)→ GR.
On the contrary they define rich moduli spaces (in the case GR = SU(1, 1), this is the
Teichmüller space).

Accordingly, if n = 1, the first inequality of Proposition C is nothing but the
Milnor-Wood inequality. One might ask whether this inequality is sharp when n > 2

and what could be said about representations achieving the optimal bound (whatever
it may be). Note that this question is not restricted to tube type targets. For instance
if GR = SU(p, q), Theorem A says that the Milnor-Wood inequality is sharp when
q > pn, but says nothing about the other cases (when p = 2 and q < 2n, a better
bound is known [KM08]).
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236 P.-E. Chaput & J. Maubon

The interesting (and probably difficult) question of finding the sharp bound for a
given pair (n,GR) for which no maximal representation exists, and of characterizing
the representations achieving this bound remains open.

Remark. — As we mentioned, our main results are true for lattices with torsion, see
Remark 5.16. The assumption that Γ is uniform should not be necessary, and we
believe that our method can be adapted to cover the case of non uniform lattices, but
we decided to leave that aside for a future work.

Acknowledgements. — We thank the anonymous referees for their detailed and helpful
comments, which led to substantial improvements in the presentation of the article.
We thank them in particular for bringing the references [Gro94, SZ10] to our attention.

2. Submodule of a cominuscule representation associated with
a nilpotent element

Here we develop the algebraic material that we will need in Section 4 to give a new
and unified proof of the Milnor-Wood inequality.

2.1. Hermitian symmetric spaces. — We begin by recalling useful facts and defi-
nitions concerning Hermitian symmetric spaces and setting up our notation. Good
references for what follows are [Wol72, AMRT10, Hel01, Kna02].

Let GR be a simple real algebraic Hermitian Lie group and KR a maximal compact
subgroup of GR. By our convention, this means that GR is a simple noncompact Lie
group whose associated symmetric spaceM = GR/KR is a Hermitian symmetric space
of the noncompact type (M is irreducible since GR is simple), and that moreover GR
is the connected component of the group of real points G(R) of an algebraic group G

defined over R. Observe that for example the connected component Isom◦(M) of the
group of isometries of a Hermitian symmetric space of the noncompact type M is a
real algebraic Hermitian Lie group, see e.g. [AMRT10, p. 106]. The group of complex
points G(C) of G will be denoted by G.

We shall first assume that the complex Lie group G is simply connected. This
assumption simplifies the exposition of the paper and the arguments of our proofs.
We shall see in Remarks 5.14 and 5.15 how to deal with the general case.

The rank of the symmetric space M , or equivalently the real rank of GR, will be
denoted by rM . Recall that a k-dimensional flat in M is the image of a totally geo-
desic isometric embedding of Rk inM . By definition the rank rM ofM is the maximal
dimension of a flat in M . Maximal flats are conjugated under GR and maximal flats
through the origin eKR are conjugated under KR. Equivalently, in the Hermitian set-
ting, one can consider polydiscs inM , that is, images of totally geodesic homomorphic
embeddings of a polydisc ∆k inM . Then rM is also the maximal (complex) dimension
of a polydisc in M (maximal polydiscs are complexifications of maximal flats).

The fact that M is an irreducible Hermitian symmetric space is equivalent to
the fact that the Lie algebra kR of KR has a 1-dimensional center zR and that the
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Maximal representations, a uniform approach 237

centralizer of zR in the Lie algebra gR of GR is kR, see e.g. [Kna02]. If gR = kR ⊕ mR
is a Cartan decomposition of gR, the complex structure at the origin is given by
the adjoint action on mR of a suitably normalized element of zR. It follows that any
maximal Abelian subspace tR of kR contains zR and is a Cartan subalgebra of gR. The
corresponding subgroup TR ⊂ KR ⊂ GR is a torus.

The Lie algebra g of G is the complexification of the Lie algebra gR of GR. We
denote by z ⊂ t ⊂ k ⊂ g the complexifications of the subalgebras zR ⊂ tR ⊂ kR and
by Z ⊂ T ⊂ K the corresponding complex algebraic subgroups of G. We also let m

be the complexification of mR, so that g = k ⊕ m is a Cartan decomposition of g. In
particular, [k, k] ⊂ k, [k,m] ⊂ m and [m,m] ⊂ k.

Let z 6= 0 be an element in the center z of k. Since the adjoint action of zR gives the
complex structure of mR, ad(z)|m has exactly two opposite eigenvalues. We choose z
so that these eigenvalues are 2 and −2 and we let

m+ = {x ∈ m | ad(z)x = 2x}, m− = {x ∈ m | ad(z)x = −2x}

be the corresponding eigenspaces. These are abelian subspaces of m.
This in turn implies that p = k⊕m+ is a maximal parabolic subalgebra of g. Let P

be the corresponding parabolic subgroup of G and M̌ the projective variety G/P .
Then M̌ is a symmetric space of the compact type called the compact dual of M .
Indeed if we let ǧ = kR ⊕ imR, ǧ is the Lie algebra of a real compact form ǦR of G,
and M̌ = ǦR/KR. The symmetric space M is then an open GR-orbit in M̌ = G/P .

Example 2.1. — For p 6 q let GR = SU(p, q) be the special unitary group of the
Hermitian form of signature (p, q) on Cp+q whose matrix in the canonical basis is
Ip,q = diag(−1, . . . ,−1, 1, . . . , 1). Then one can choose KR = S(U(p)×U(q)) and the
symmetric spaceM identifies with the set of p-planes in Cp+q on which the Hermitian
form is negative definite. It has rank p. As a bounded symmetric domain, it identifies
with {Y ∈ Mp,q(C) | Ip − Y ?Y is positive definite}. We have G = SL(p + q,C),
K = S(GL(p)×GL(q)), T is the torus of diagonal matrices inG, Z is the 1-dimensional
subgroup of diagonal matrices of the form diag(λq, . . . , λq, λ−p, . . . , λ−p) for λ ∈ C?,
m ' Cpq × Cpq is the subspace of block anti-diagonal matrices in sl(p + q,C). The
compact real form of G is SU(p + q) and the compact dual M̌ identifies with the
Grassmannian of p-planes in Cp+q, of which M is an open subset.

Let R be the set of roots of G. For α ∈ R, gα ⊂ g is the root space of α, sl(α) is the
Lie subalgebra of g generated by gα and g−α and SL(α) the corresponding subgroup
of G.

A root space gα, α ∈ R, is either a subspace of k or a subspace of m, and the root α
is said to be compact or noncompact accordingly. Equivalently, a root α is compact if
and only if 〈α, z〉 = 0. We have:

k = t⊕
⊕

α:〈α,z〉=0

gα, m =
⊕

α:〈α,z〉6=0

gα, m+ =
⊕

α:〈α,z〉=2

gα, m− =
⊕

α:〈α,z〉=−2

gα.
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We choose a basis Π of R so that the roots in R(m+) are positive roots. If α ∈ R,
we write α =

∑
β∈Π nβ(α)β the expression of α in terms of the simple roots. The

support supp(α) of α ∈ R is the set {β ∈ Π | nβ(α) 6= 0}.
The Weyl group of R is denoted by W . If α ∈ R, α∨ ∈ t denotes the corresponding

coroot: it is defined by the relation sα(β) = β−〈β, α∨〉α for all β ∈ t∗, where sα ∈W is
the reflexion corresponding to α (in particular, sα(α) = −α and hence 〈α, α∨〉 = 2).
If α =

∑
β∈Π nβ(α)β is the expression of a root α in the simple roots, then α∨ =∑

β∈Π nβ(α) 〈β,α
∨〉

〈α,β∨〉 β
∨. If β ∈ Π is a simple root, $β denotes the fundamental weight

corresponding to β. The set of simple roots Π is a basis of t?, Π∨ = {β∨ | β ∈ Π} is a
basis of t and {$β | β ∈ Π} is by definition the basis of t? dual to Π∨.

In this paper, we use the convention that if the root system R of g is simply laced
(equivalently, of type A, D or E), then all the roots are long. Therefore short roots exist
only if R is not simply laced. There can be at most two root lengths in R. Moreover
if there are two root lengths the ratio long root length

short root length equals
√

2 because Hermitian
symmetric spaces exist only when the type of G is A, B, C, D, E6 or E7 (in particular,
G2 does not appear). We recall that for α, β ∈ R, the ratio 〈α, β∨〉/〈β, α∨〉 equals
(root length of α)2/(root length of β)2.

Linearly independent positive roots δ1, . . . , δs are said to be strongly orthogonal if
for all i 6= j, δi ± δj is not a root. By [HC56], or [Hel01, Ch.VIII, §7], we have

Fact 2.2. — All maximal sets of noncompact strongly orthogonal roots have cardi-
nality rM .

If (δ1, . . . , δrM ) is such a set then g−δ1 ⊕ · · · ⊕ g−δrM is the tangent space to a
maximal polydisc through the origin in M .

2.2. The cominuscule representation of G associated with M

2.2.1. The representation

Definition 2.3. — A simple root β ∈ Π, is cominuscule w.r.t. the root system R if
nβ(α) ∈ {−1, 0, 1} for all α ∈ R, or equivalently if nβ(Θ) = 1, where Θ is the highest
root of R.

An irreducible representation of G whose highest weight is equal to $β for β a
cominuscule root of R is called a cominuscule representation.

The following is well-known, but we include a proof.

Proposition 2.4. — There is a unique simple noncompact root. This root is long and
cominuscule.

Notation 2.5. — This unique simple noncompact root will be denoted by ζ.

Proof. — Since R is irreducible, the highest root Θ of R is unique and Θ has a
positive coefficient on every simple root. Now, if there are more than one simple
noncompact root, or if nζ(Θ) > 1 for some noncompact simple root ζ, then 〈Θ, z〉 > 2.
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Contradiction. Hence ζ is unique and cominuscule. Assume that ζ is short (so that R
is not simply laced). Then, since Θ is long,

〈Θ, ζ∨〉 = 〈ζ,Θ∨〉 (root length of Θ)2

(root length of ζ)2
> 2.

Since sζ(Θ) is a positive root, this implies that nζ(Θ) > 2, contradicting the fact
that ζ is cominuscule. �

Note that the maximal parabolic subalgebra p = k ⊕ m+ of g is the standard
parabolic defined by the root ζ:

p = t⊕
⊕

α:nζ(α)>0

gα.

Recall that P is the corresponding parabolic subgroup of G and that the compact
dual of M is M̌ = G/P . By [Mur59], since G is simply connected, the Picard group
Pic(G/P ) is isomorphic to the group of characters X (P ) of P . Since p = z ⊕ [p, p],
X (P ) is isomorphic to Z and thus it is generated by the smallest positive character
of P , namely $ := $ζ . Here we embed X (P ) in t∗ via λ 7→ dλ, the differential of λ
at the unit element of T . Moreover, the isomorphism ι : X (P ) ' Pic(G/P ) is given
by λ 7→ (G × Cλ)/P , where Cλ denotes the 1-dimensional P -module defined by λ.
In particular, L := ι($) is a generator of Pic(M̌).

Let now E be the cominuscule irreducible representation of G whose highest weight
is $ = $ζ . Let E$ be the $-eigenspace of E. Then E$ is 1-dimensional and its
stabilizer in G is P . This gives a G-equivariant holomorphic and isometric embedding
of M̌ = G/P in the projective space PE. It is called the first canonical embedding
of M̌ , and since E$ ' C$ as P -modules, we have L ' OPE(−1). See e.g. [NT76] for
more details.

Remark 2.6. — The complex group G may have several cominuscule simple roots or
representations. In fact, cominuscule simple roots are in one to one correspondence
with Hermitian real forms GR (or ǦR) of G. When we will need a case by case
argument, we will rather use the classification of the cominuscule roots than the
classification of the real groups GR. This correspondence is shown in the first two
columns of Table 1.

We now begin our study of the cominuscule representation E of G.

Notation 2.7. — We denote by µ0 the lowest weight of E and by X(E) the set of
weights of E. For χ ∈ X(E), we write Eχ for the corresponding weight space. Recall
that $ is the highest weight of E.

The fact that E is cominuscule has the following consequence on the weights of E.

Lemma 2.8. — For any weight χ of E, and any root α ∈ R, 〈χ, α∨〉 ∈ {−2,−1, 0, 1, 2},
and the equality 〈χ, α∨〉 = ±2 implies that α is short (hence that R is not simply laced).
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Proof. — For the highest weight $ of E, the results follows from the facts that
〈$,α∨〉 = nζ(α) 〈ζ, α∨〉/〈α, ζ∨〉 and ζ is a long root. The result still holds if $ is
replaced by w · $, where w ∈ W is arbitrary, and since any weight of E is in the
convex hull of W ·$, it holds for any weight. �

We deduce that the structure of E with respect to the action of gα for α a long
root is particularly simple.

Lemma 2.9. — Let α be a long root and let χ be a weight of E. We have

g−α · Eχ =

{
Eχ−α if 〈χ, α∨〉 = 1,

{0} otherwise.

Proof. — Let α be long and let sl(α) be the Lie subalgebra of g isomorphic to sl2 cor-
responding to α. Let S ⊂ E be the sl(α)-submodule generated by Eχ. By Lemma 2.8
and the representation theory of sl2, any irreducible component V of S is an sl(α)-
module of dimension 1 or 2.

We therefore have only three possibilities. The first case is when V = Vχ, gα ·
Vχ = {0} and g−α · Vχ = {0}. In this case, 〈χ, α∨〉 = 0. The second case is when
V = Vχ ⊕ Vχ−α, gα · Vχ = {0} and g−α · Vχ = Vχ−α. In this case, 〈χ, α∨〉 = 1 (and
〈χ−α, α∨〉 = −1). The third (symmetric) case is when V = Vχ⊕Vχ+α, gα ·Vχ = Vχ+α

and g−α · Vχ = {0}. In this case, 〈χ, α∨〉 = −1 (and 〈χ+ α, α∨〉 = 1).
If 〈χ, α∨〉 = 1, we deduce that S = Sχ ⊕ Sχ−α and that g−α · Sχ = Sχ−α.

We have sα(χ) = χ − α so dim(Eχ) = dim(Eχ−α). The lemma is proved in this
case. If 〈χ, α∨〉 6 0, we see that g−α · Eχ = {0}. �

2.2.2. The grading

Notation 2.10. — Let zmax denote the number 〈$, z〉.

Remark 2.11. — The precise value of zmax will not play any role in the following,
however it has already been computed in [KM10, p. 214-216]): with our choice of
z ∈ z we have zmax = 2 dim M̌/c1(M̌), where c1(M̌) is the first Chern number of M̌ .
For example if GR = SU(p, q), zmax = 2pq/(p+ q).

Proposition 2.12. — The set {〈χ, z〉 | χ ∈ X(E)} is the set

{zmax, zmax − 2, . . . , zmax − 2rM}.

Proof. — It follows from [RRS92, Th. 2.1] that theW -orbit of the weight $ is exactly
the set of weights of the form $−

∑k
i=1 δi, where (δi)16i6k is a family of noncompact

long strongly orthogonal roots. In fact, the orbit W · $ is in bijection with W/WP ,
so the equivalence between items (c) and (e) in the cited theorem proves the claim.
For any i, we have 〈δi, z〉 = 2, thus we have the equality of sets

{〈µ, z〉 |µ ∈W ·$} = {zmax, zmax − 2, . . . , zmax − 2rM}.
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In particular, 〈µ0, z〉=zmax−2rM and for χ∈X(E), we have zmax − 2rM 6〈χ, z〉 6 zmax.
The result of the proposition now follows from the fact that 2 is a divisor of 〈α, z〉 for
any root α. �

Now we can introduce the grading of E.

Definition 2.13. — For a relative integer i, let

Ei :=
⊕

χ:〈χ,z〉=zmax−2i

Eχ.

This grading corresponds to the decomposition of E into irreducible K-modules.

Proposition 2.14. — The K-modules Ei are irreducible.

Proof. — This might be well-known to experts, but we include a proof for complete-
ness. We give a case by case argument and use Table 1.

In type An−1, we have E = ∧rM (CrM ⊕ Cn−rM ) and thus Ei = ∧rM−iCrM ⊗
∧iCn−rM : this is an irreducible S(GLrM ×GLn−rM )-module.

In type Bn, we have E = C2n+1 = C ⊕ C2n−1 ⊕ C, and each summand is an
irreducible Spin2n−1-module, hence an irreducible K-module. In type (Dn, $1) the
situation is similar.

In type (Dn, $n), E is the spinor representation of the spin group and, according
to [Che97], we have E = ∧0Cn ⊕ ∧2Cn ⊕ · · · ⊕ ∧2pCn (where p = bn/2c). Thus
Ei = ∧2iCn, and this is an irreducible GLn-module.

For the types E6 and E7, we use models of these exceptional Lie algebras and
their minuscule representations, as given for example in [Man06]. In type E6, we
have E = C ⊕ V16 ⊕ V10, where V16 is a spinor representation and V10 the vector
representation of the spin group Spin10. In type E7, we have E = C⊕ V27 ⊕ V ′27 ⊕C,
where V27 and V ′27 are the two minuscule representations of a group of type E6. In
both cases, the K-modules Ei are irreducible.

We now deal with the case of type Cn. The following representation-theoretic argu-
ment has been suggested to us by an anonymous referee that we would like to thank.
We denote by C2n = Cna ⊕ Cnb a symplectic 2n-dimensional space, with Cna and Cnb
supplementary isotropic subspaces. We then have E =

(
∧nC2n

)
ω
, where the symbol ω

means that we take in ∧nC2n the irreducible Sp2n-submodule containing the highest
weight line ∧nCna . More precisely, by [FH91, Th. 17.5], we have a decomposition of
∧nC2n as an Sp2n-module as follows: ∧nC2n = E⊕ ω ∧ (∧n−2C2n).

Thus, ∧n−iCna ⊗ ∧iCnb = Ei ⊕ ω ∧ (∧n−i−1Cna) ⊗ ∧i−1Cnb . We now consider this
as a representation of K = GLn. As K-modules, we have Cnb ' (Cna)

?. We thus
get ∧n−iCna ⊗ ∧n−iCna ' Ei ⊕ ∧n−i−1Cna ⊗ ∧n−i+1Cna . From this last equation, it
follows that Ei is the Cartan square of ∧n−iCna and therefore it is an irreducible
GLn-module. �

Proposition 2.15. — We have the following properties:
(a) E = E0 ⊕ E1 ⊕ · · · ⊕ ErM .
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(b) E0 = E$.
(c) Ei+1 = m− · Ei.
(d) The map E0 ⊗m− → E1 is an isomorphism.

Proof. — Only the last two points need a proof. Let U(m−) denote the enveloping
algebra of m−. The third point follows from the fact that E = U(m−) · E$ and the
fact that for α a root of m−, we have 〈α, z〉 = −2. The last point follows by Schur’s
lemma since m− and E1 are irreducible k-modules and E0 is 1-dimensional. �

Remark 2.16. — Those statements are well-known. In the case where E is of tube
type, they are proved in [Gro94, Prop. 5.2].

2.3. Dominant orthogonal sequences. — In [Kos12], Kostant introduced his so-
called “chain cascade” of orthogonal roots. Here we will need a version of his algorithm
where we impose that all the roots of the chain cascade have a positive coefficient
on ζ. Note that a similar algorithm is used in [BM15].

We define an integer q and, for any integer i such that 1 6 i 6 q, a root αi together
with the subset Πi ⊂ Π, by the following inductive process:

– We let Π1 = Π.
– Assuming that α1, . . . , αi−1 and Π1, . . . ,Πi have been defined, we let αi be the

highest root of the root system R(Πi) generated by Πi.
– We let Σi ⊂ Πi be the set of simple roots β such that 〈α∨i , β〉 6= 0.
– If ζ ∈ Σi, then q = i and the algorithm terminates. Otherwise, Πi+1 is the

connected component of Πi r Σi containing ζ.

Definition 2.17. — If (αi)16i6q is the sequence defined by this process, we say that
it is the maximal dominant orthogonal sequence for $. More generally, the sequences
(αi)16i6r for 1 6 r 6 q are called the dominant orthogonal sequences.

Example 2.18. — In type An−1 with the standard base (β1, . . . , βn−1), and for ζ = βp
with 2p 6 n, we get Πi = {βi, . . . , βn−i} and the maximal dominant orthogonal
sequence is (

∑n−1
i=1 βi,

∑n−2
i=2 βi, . . . ,

∑n−p
i=p βi ), so q = p.

For later use, we record in Table 1 below what are the dominant orthogonal se-
quences (α1, . . . , αr) in all cases. The number r varies from 1 to rM , see Proposi-
tion 2.19 (2).

The following proposition essentially adapts the results of [Kos12] to our context
and explains our terminology.

Proposition 2.19. — Let (αi)16i6q be the maximal dominant orthogonal sequence
for $. Then

(1) The roots αi are long and strongly orthogonal.
(2) q = rM .
(3) For any integer i 6 rM , α∨1 + · · ·+ α∨i is a dominant coweight: for all β in Π,

we have 〈β, α∨1 + · · ·+ α∨i 〉 > 0.
(4) $ − α1 − · · · − αrM is the lowest weight µ0 of the irreducible G-module E.
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(G,$) gR, rM α∨1 + · · ·+ α∨r αr

(An−1, $p), 2p 6 n su(p, n− p) if 2r < n :
0 0 1

r

0 0 1 0 0

n− r

0 0 1

r

1 0 0

n− r

p1 n− 1
rM = p

if 2r = n :
0 0 2

p

0 0 0 0 1

p

0 0

(Bn, $1) so(2, 2n− 1) if r = 1 :
0 1 0 0 0 0 1 2 2 2 2

1 n
rM = 2

if r = 2 :
2 0 0 0 0 1 0 0 0 0

(Cn, $n) sp(2n,R) if r < n :
r

0 0 2 0 0 0 0

r

0 0 2 2 2 1

1 n
rM = n

if r = n :
0 0 0 2 0 0 0 1

(Dn, $1) so(2, 2n− 2) if r = 1 :
0 1 0 0 0

0

0
1 2 2 2

1

1
1

n− 1

n
rM = 2

if r = 2 :
2 0 0 0

0

0
1 0 0 0

0

0

(Dn, $n) so?(2n) if 2r 6 n− 2 :
0 0 1

2r

0 0 0

0

0
0 0 1

2r

2 2 2

1

1
1

n− 1

n
rM = bn/2c

if 2r = n− 1 :
0 0 0

1

1
0 0 1

1

1

if 2r = n :
0 0 0

0

2
0 0 0

0

1

(E6, $1) e6(−14) if r = 1 :
0

1

0 0 0 0 1

2

2 3 2 1

1 rM = 2

if r = 2 :
1

0

0 0 0 1 1

0

1 1 1 1

(E7, $7) e7(−25) if r = 1 :
1

0

0 0 0 0 0 2

2

3 4 3 2 1

7 rM = 3

if r = 2 :
0

0

0 0 0 1 0 0

1

1 2 2 2 1

if r = 3 :
0

0

0 0 0 0 2 0

0

0 0 0 0 1

Table 1. Dominant orthogonal sequences (α1, . . . , αr) for 1 6 r 6 rM
(We do not indicate all the roots αi, but rather the sum of the correspond-
ing coroots α∨1 + · · · + α∨r , by indicating on a Dynkin diagram the values
〈α∨1 + · · ·+ α∨r , β〉 for all simple roots β. In the last column, we express the root
αr which is also the smallest root α such that 〈α∨1 + · · ·+ α∨r , α〉 = 2.)
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Proof. — Kostant [Kos12, Lem. 1.6] proved the strong orthogonality. For the con-
venience of the reader, we recall his arguments in our context. The root αi is the
highest root of R(Πi), and Πi contains the long root ζ, so αi is long. By construction,
〈α∨i , αj〉 = 0 if j > i, so αi and αj are orthogonal. Since they are both long, they are
strongly orthogonal, otherwise αi ± αj would be longer than αi. This proves (1).

For (2), by Fact 2.2, it is enough to prove that (α1, . . . , αq) is a maximal sequence
of orthogonal roots (see also [Kos12, Th. 1.8]). Let α ∈ R be such that 〈α∨i , α〉 = 0

holds for all i. We can and will assume that α > 0. Let i be the greatest integer such
that α ∈ R(Πi). By maximality of i there exists a simple root β in supp(α) ∩ Σi.
Since αi is dominant on R(Πi), we have 〈α∨i , α〉 > 〈α∨i , β〉 > 0, a contradiction to the
assumption made on α.

For the third point, let i 6 rM and let β ∈ Π.
– If β ∈ Πi, by construction, 〈α∨j , β〉 = 0 for j < i. Since αi is the highest root

of Πi, 〈α∨i , β〉 > 0. Thus 〈α∨1 + · · ·+ α∨i , β〉 = 〈α∨i , β〉 > 0.
– If β ∈ Σi−1, then 〈α∨i−1, β〉 > 1 and 〈α∨j , β〉 = 0 for j < i − 1. Since αi is long,

〈α∨i , β〉 > −1. Thus, 〈α∨1 + · · ·+ α∨i , β〉 > 0.
– If β ∈ Σj for j < i − 1, then, by construction of Πi, 〈α∨i , β〉 = 0. By induction

on i, 〈α∨1 + · · ·+ α∨i−1, β〉 > 0, so 〈α∨1 + · · ·+ α∨i , β〉 > 0.
For (4), by Lemma 2.8 and since αi is long, we have 〈$,α∨i 〉 = 1. Thus sαi($) =

$− 〈$,α∨i 〉αi = $−αi. Therefore sα1 · · · sαrM ($) = $−α1− · · · −αrM is a weight
of E. We prove that it is a lowest weight. Let β ∈ Π. If β 6= ζ, then

〈$ − α1 − · · · − αrM , β∨〉 = 〈−α1 − · · · − αrM , β∨〉,

and this is non-positive by (3) and because all the roots αi have the same length. If
β = ζ, then we compute that 〈$ − α1 − · · · − αrM , ζ∨〉 = 1 − 〈αrM , ζ∨〉 6 0 since
ζ ∈ ΣrM . �

We make the following observations.

Proposition 2.20. — Let 1 6 r 6 rM , (α1, . . . , αr) be the corresponding dominant
orthogonal sequence, and hr = α∨1 + · · ·+ α∨r . Then:

(1) hr is dominant: for any positive root α, we have 〈α, hr〉 > 0.
(2) For any root α, we have 〈α, hr〉 6 2.
(3) αr is the smallest root α such that 〈α, hr〉 = 2.
(4) If a root α satisfies 〈α, hr〉 = 2, then 〈α, z〉 = 2.
(5) We have 〈$,hr〉 = r.

Proof. — Recall Table 1. The first point has been proved in Proposition 2.19 (3).
Let Θ be the highest root of the root system of G, which can be found for example
in [Bou68]. Since hr is dominant, the second item follows from the fact that 〈Θ, hr〉 = 2

in all cases.
For the third item, we have indicated the root αr in the last column of the table.

It readily follows that it is the smallest root α such that 〈α, hr〉 = 2. Since it has

J.É.P. — M., 2019, tome 6



Maximal representations, a uniform approach 245

coefficient 1 on ζ, we have 〈αr, z〉 = 2. Any root α as in the fourth item will be bigger
than αr, so the claim follows.

To prove that 〈$,hr〉 = r, recall that if (α1, . . . , αrM ) is the maximal dominant
orthogonal sequence, the weight $ −

∑rM
1 αi is the lowest weight µ0 by Proposi-

tion 2.19 (4). Thus, 〈$ − µ0, hr〉 = 〈α1 + · · · + αrM , α
∨
1 + · · · + α∨r 〉 = 2r, since

〈αi, α∨j 〉 = 2δi,j by orthogonality of the roots αi. Moreover, hr is part of some sl2-triple
(x, hr, y), so 〈µ0, hr〉 = −〈$,hr〉, by the representation theory of sl2. This proves that
〈$,hr〉 = r. �

2.4. The self-dual Higgs submodule associated with a nilpotent element

We explain in this section that an element y ∈ m− defines a special graded subspace
in E. This algebraic construction will be used in Section 4.3 to produce the leafwise
Higgs subsheaves needed to prove the Milnor-Wood inequality.

2.4.1. K-orbits in m−: ranks of nilpotent elements. — We begin by describing the
K-orbits in m−, introducing the notion of rank, and then we choose nice represen-
tatives in the orbits to simplify our work. Let us recall the following result, which is
proved e.g. in [HC56], [Hel01, Ch.VIII, §7], or [Wol72].

Proposition 2.21. — The orbits of the complex group K in m− are parametrized by
integers r ∈ {0, . . . , rM}. A representative of each orbit is yα1 + · · · + yαr , where
(α1, . . . , αrM ) is the maximal dominant orthogonal sequence.

Definition 2.22. — Let y ∈ m−. The rank r(y) of y is the integer r such that y is in
the K-orbit of yα1 + · · ·+ yαr .

Example 2.23. — In case g has type A, m− identifies with a space of matrices, and
the rank as defined above of an element in m− coincides with its rank as a matrix.

The following proposition is a characterization of the rank r(y) of y ∈ m− in terms
of its action on E. If y ∈ g, we will denote by y ∈ End(E) the image of y by the
representation of g on E.

Proposition 2.24. — Let y = yα1 +· · ·+yαr(y) with (α1, . . . , αr(y)) a dominant orthog-
onal sequence. We have yr(y)+1 = 0 and yr(y)(E0) = E$−α1−···−αr(y) , so in particular
yr(y)(E0) 6= {0}. In other words, the rank of y is the order of nilpotency of y.

Proof. — We have yαi ∈ g−αi . For any pair (χ, δ) with χ ∈ X(E) and δ a long root,
χ− 2δ cannot be a weight of E by Lemma 2.9. We deduce from Proposition 2.19 (1)
that y2

αi = 0. On the other hand, for any i, j with i 6= j, the maps yαi and yαj
commute since αi + αj is not a root by Proposition 2.19 (1) also. Thus we get

yk = k!
∑

yαj1 ◦ · · · ◦ yαjk ,

where the sum is over the increasing sequences 1 6 j1 < · · · < jk 6 r(y).
In particular yr(y)+1 = 0, and yr(y) = r(y)! yα1

◦ · · · ◦ yαr(y) . By Lemma 2.9, we
have yα1

◦ · · · ◦ yαr(y) · E$ = E$−α1−···−αr(y) , so the proposition is proved. �
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For the remaining of this section, we let 1 6 r 6 rM be an integer and y = yr :=

yα1 + · · · + yαr ∈ m−, where (α1, . . . , αr) is the dominant orthogonal sequence of
length r obtained by the algorithm of Definition 2.17. By Proposition 2.21, there is
no loss of generality in considering this particular element y. We denote by hr the
element α∨1 + · · · + α∨r spelled out in Table 1. Recall that y is y acting on E via the
cominuscule representation of g, and that r is the order of nilpotency of y.

2.4.2. Definition of Vr and the Higgs property. — It is a very well-known idea that the
nilpotent element y of End(E) uniquely defines an increasing filtration Wr

• of E, called
the Deligne weight filtration of y, or Jacobson-Morozov filtration. This idea appears
in [Del80, §1.6.13] in the context of Hodge theory and in [McG02, §§3.2&3.4] in the
context of nilpotent orbits in Lie algebras.

The defining properties of the filtration (Wr
k)k∈Z are that for all k ∈ Z,

y(Wr
k) ⊂Wr

k−2

and for all k > 1,

(2.1) yk : Wr
k/Wr

k−1 −→Wr
−k/Wr

−k−1 is an isomorphism.

The filtration (Wr
k)k∈Z can be defined as follows (see e.g. [SZ85]):

(2.2) Wr
k =

∑
`>0

k+`+1>0

Keryk+`+1 ∩ Imy` =
∑
i−j=k
i>0, j>0

Keryi+1 ∩ Imyj .

Since r is the rank of nilpotency of y acting on E, we have Wr
k = {0} for k < −r and

Wr
k = E for k > r.
The elements y and hr fit in an sl2-triple (x, hr, y) for some x ∈ m+, and the

subspaces Wr
k can be alternatively defined by means of this triple:

(2.3) Wr
k =

⊕
χ∈X(E):〈χ,hr〉6k

Eχ.

We combine the gradation E =
⊕rM

i=0 Ei and the weight filtration (Wr
k)k∈Z to define

the subspaces of E that will be the center of our attention for the remaining part of
Section 2.

Notation 2.25. — Let Vri = Ei ∩Wr
r−2i for 0 6 i 6 rM , and let Vr =

⊕
iVri ⊂ E.

Observe that Vr0 = E0 and that Vri 6= {0} only if i 6 r. The subspaces Vri can also
be described as sums of weight spaces Eχ.

Proposition 2.26. — For χ∈X(Ei), we have 〈χ, hr〉> r − 2i. Hence, for all i such
that 0 6 i 6 r,

Vri =
⊕

χ∈X(Ei):
〈χ,hr〉=r−2i

Eχ =
⊕

χ∈X(E):
〈χ,z〉=zmax−2i,
〈χ,hr〉=r−2i

Eχ.

Proof. — Proposition 2.15 and the fact that, for any root α, we have 〈α, hr〉 6 2

(see Proposition 2.20) imply the first assertion. It is plain from the description of the
subspaces Wr

k given in (2.3) that the second assertion follows from the first. �
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The following lemma is reminiscent of Equation (2.1). We will prove a stronger
statement in Proposition 2.40. More Hodge-theoretic considerations will be made in
Section 2.6.

Lemma 2.27. — The linear map yr−2i is an isomorphism between Vri and Vrr−i.
In particular, dimVrr−i = dimVri .

Proof. — We know that

Vri = Ei ∩Wr
r−2i, Vrr−i = Er−i ∩Wr

2i−r,

and that for i satisfying 0 6 i 6 r/2, yr−2i is an isomorphism betweenWr
r−2i/Wr

r−2i−1

and Wr
2i−r/Wr

2i−r−1. By Proposition 2.15, yr−2i maps Ei to Er−i. Since we have
Ek∩Wr

r−2k−1 ={0} for all k by Proposition 2.26 and Equation (2.3), we get that yr−2i

is an isomorphism between Vri and Vrr−i. �

Definition 2.28. — A subspace S of E is a y-Higgs subspace if y ·S ⊂ S and m+ ·S ⊂ S.

The following algebraic fact is at the heart of the construction of leafwise Higgs
subsheaves in Section 4.

Proposition 2.29. — The subspace Vr is a y-Higgs subspace of E. More precisely, the
following inclusions hold:

– y · Vri ⊂ Vri+1.
– m+ · Vri ⊂ Vri−1.

Proof. — Using the description of Vri given in Proposition 2.26, the first inclusion
holds because y ∈

⊕
i g−αi and each αi satisfies 〈−αi, z〉 = 〈−αi, hr〉 = −2. The

second one also holds since for α a root of m+, we have 〈α, z〉 = 2 (and 〈α, hr〉 6 2

by Proposition 2.20). �

2.4.3. The module structure of Vr. — We now show that the subspace Vr of E has the
structure of an irreducible Lr-module, for Lr a complex reductive group determined
by y, whereas the Vri are irreducible Hr-modules, where Hr = Lr ∩K.

We begin by defining the relevant subalgebras of g.

Notation 2.30. — Let qr ⊂ g be the parabolic subalgebra defined by the coweight
z − hr:

qr = t⊕
⊕

α:〈α,hr〉6〈α,z〉
gα.

A Levi factor of qr is
lr = t⊕

⊕
α:〈α,hr〉=〈α,z〉

gα.

Let l±r ⊂ lr be the nilpotent subalgebras of lr defined by

l±r =
⊕

α:〈α,hr〉=〈α,z〉=±2

gα.
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The intersection k ∩ qr is a parabolic subalgebra of k and a Levi factor of it is

hr = t⊕
⊕

α:〈α,hr〉=〈α,z〉=0

gα.

We denote by Qr, Lr and Hr, the connected subgroups of G with Lie algebra qr, lr
and hr respectively. Such groups exist because qr is a parabolic subalgebra, and hr
and lr are Levi subalgebras. We observe that Hr is a Levi subgroup of K∩Qr: in fact,
we have K ∩Qr = Hr · R(K ∩Qr), where R(K ∩Qr) denotes the unipotent radical
of K ∩Qr. Since Levi subgroups correspond to Levi subalgebras, Lr is a Levi factor
of Qr.

For the convenience of the reader, the conditions that define the different Lie sub-
algebras of g we are considering are displayed in Table 2.

Lie algebra k m± qr lr l±r hr

Condition z = 0 z = ±2 hr 6 z hr = z hr = z = ±2 hr = z = 0

Table 2. Lie subalgebras under consideration (We abbreviate the condi-
tion 〈α, z〉 = 0, resp. 〈α, hr〉 = 0, on a root α as z = 0, resp. hr = 0.)

We have the following lemmas concerning the Vri ’s.

Lemma 2.31. — We have Vri+1 = l−r · Vri and Vri−1 = l+r · Vri .

Proof. — Let us denote by X(Ei) the set of weights of Ei. We know by Proposi-
tion 2.15 that Ei+1 = m− · Ei. Thus,

Ei+1 =

( ⊕
α:〈α,z〉=−2

gα

)
·
( ⊕
χ∈X(Ei)

Eχ
)

=
⊕

χ∈X(Ei)
α∈R(m−)

Eχ+α.

Given χ ∈ X(Ei) and α ∈ R(m−), we can make two observations:
– If 〈χ, hr〉 > r−2i then we have 〈χ+α, hr〉 > r−2(i+ 1) and thus Eχ+α 6⊂ Vri+1.
– If 〈α, hr〉 > −2 then 〈χ+ α, hr〉 > r − 2(i+ 1) and thus Eχ+α 6⊂ Vri+1.

The first equality of the lemma follows from these observations. The proof of the
second equality is similar. �

Note that l−r is an hr-module. More precisely, we have

Lemma 2.32. — The modules Vri are irreducible hr-modules. The Lie algebra l−r is an
irreducible hr-module.

Proof. — Denote by k+, resp. h+
r , the sum of the root spaces for positive roots in k,

resp. hr. Let i be fixed and such that Vri 6= {0}. By Proposition 2.15, Ei is an irre-
ducible k-module. Let µi be the lowest weight of Ei. We have Eµi ⊂ Vri . Since Ei is
irreducible, we have Ei = U(k+) · Eµi (here U denotes the universal enveloping alge-
bra). Now, arguing as in the proof of the Lemma 2.31, we see that this implies that
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Vri = U(h+
r ) · Eµi . Now, Eµi has dimension 1, hence Vri is indecomposable. Since hr

is reductive, this proves that Vri is irreducible. Now, by Lemma 2.31 again, we have
Vr1 = l−r · Vr0 ' l−r · E0: thus l−r is also irreducible. �

Concerning the submodule Vr, we have

Proposition 2.33
(1) The subspace Vr ⊂ E is an irreducible Qr-module.
(2) As a consequence, the nilpotent radical of Qr acts trivially on Vr.
(3) Vri is a K ∩Qr-module.
(4) The subgroup of elements in G which preserve Vr is exactly Qr.

Proof. — In characteristic 0, given a representation of a connected group, a subspace
of this representation is stable under this group if and only if it is stable for the
induced action of the Lie algebra. Thus, to prove the proposition, it is enough to deal
with the corresponding Lie algebras.

Let us prove that Vr is stable under qr. It is clearly stable under t. Let α be such that
gα ⊂ qr, i.e., 〈α, hr〉 6 〈α, z〉. Let v ∈ Eχ ⊂ Vri , so that we have 〈χ, hr〉 = r − 2i. For
x ∈ gα, we have x·v ∈ Eχ+α ⊂ Ei−〈α,z〉/2. Since 〈α, hr〉 6 〈α, z〉, we have 〈χ+α, hr〉 6
r−2i+ 〈α, z〉, thus either x ·v = 0 or 〈χ+α, hr〉 = r−2i+ 〈α, z〉, by Proposition 2.26.
In the second case, we get x · v ∈ Vri−〈α,z〉/2. Combining Lemmas 2.31 and 2.32, we
see that Vr is an irreducible lr-module, hence also an irreducible qr-module.

It follows from Engel’s theorem that there exists a non-zero vector in Vr which is
annihilated by the nilpotent radical of qr. Since this radical is an ideal and Vr is an
irreducible qr-module, this radical acts trivially on Vr.

The fact that Vri is a K ∩Qr-module follows because Vri = Ei ∩Vr, Ei is K-stable,
and Vr is Qr-stable.

Finally, to prove that the stabilizer of Vr is exactly Qr, let us denote by stab(Vr)⊂g

the Lie subalgebra preserving the subspace Vr in E. We know by (1) that stab(Vr)⊃qr.
On the other hand, let α be a root such that gα · Vr ⊂ Vr. Let us assume as a first
case that 〈α, z〉 = −2, i.e., gα ⊂ m−. Since, by Proposition 2.15(d), the action of g
on E induces an isomorphism E1 ' E$⊗m−, we have gα ·Vr0 = gα ·E$ = E$+α. Then
E$+α ⊂ Vr ∩ E1 = Vr1, so 〈α, hr〉 = −2, and ga ⊂ qr. Assume now that 〈α, z〉 = 0,
i.e., gα ⊂ k, and by contradiction that 〈α, hr〉 > 0. Proposition 2.20 then implies that
〈α, hr〉 = 1. For any integer 1 6 i 6 r, we cannot have 〈α, α∨i 〉 = 2 because this would
imply α = αi and 〈α, hr〉 = 2. Let i be such that 〈α, α∨i 〉 > 0: then 〈α, α∨i 〉 = 1.
Therefore, α − αi is a root. Since gα ⊂ k, gα · Ei ⊂ Ei and hence gα · Vri ⊂ Vri .
Furthermore gα(Vr0) = 0 since Vr0 = E$. It follows that

gα−αi · E$ = [gα, g−αi ] · E$ = gα · (g−αi · E$).

Again by Proposition 2.15(d), gα−αi · E$ = E$+α−αi and g−αi · E$ = E$−αi . But
E$−αi ⊂ Vr1 whereas E$+α−αi 6⊂ Vr1 since we assumed 〈α, hr〉 > 0. This contradicts
gα · Vr ⊂ Vr.
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Let now Stab(Vr) ⊂ G be the subgroup stabilizing Vr. We have Qr ⊂ Stab(Vr),
thus Stab(Vr) is parabolic and therefore connected [Hum75, Cor. 23.1.B]. It follows
that Q = Stab(Vr). �

2.4.4. The self-duality property. Tube type Hermitian symmetric spaces. — By defini-
tion, a Hermitian symmetric space M = GR/KR is of tube type if it is biholomor-
phically equivalent to a domain F ⊕ iC, where C ⊂ F is a proper open cone in the
real vector space F . The simplest example is the upper half-plane, where F = R and
C = R∗+. For irreducible symmetric spaces, this happens when GR is isogenous to
SU(p, p), Spin(2,m), Sp(2m,R), SO?(2m) for m even, and E7(−25).

We introduce the following definition.

Definition 2.34. — A sequence (γ1, . . . , γr) of roots will be called admissible if all
the roots γi are long and bigger than ζ, and if they are pairwise strongly orthogonal.

Note that the dominant orthogonal sequences (α1, . . . , αr) are admissible. We can
now state:

Proposition 2.35. — The following assertions are equivalent:
(1) M has tube type;
(2) For all admissible sequences γ1, . . . , γrM , we have γ1 + · · ·+ γrM = 2$;
(3) α1 + · · ·+ αrM = 2$;
(4) There exists an admissible sequence γ1, . . . , γrM such that γ1 + · · ·+γrM = 2$;
(5) α∨1 + · · ·+ α∨rM = z;
(6) E is self-dual: E ' E? as G-modules;
(7) For all i, Ei ' E?rM−i as K-modules;
(8) dimErM = 1;
(9) αrM = ζ.

Proof. — Glancing at Table 1, one can readily check that GR/KR is of tube type if
and only if z = α∨1 + · · · + α∨rM , and that this occurs also exactly when αrM = ζ.
Hence (1), (5) and (9) are equivalent.

The equality z = a∨1 + · · · + α∨rM is equivalent to 〈α∨1 + · · · + α∨rM , β〉 = 2δβ,ζ for
all β ∈ Π because ζ is the only noncompact simple root and it has the same length
as each αi (they are all long). Since all the roots αi have the same length, for any
root β, the equation 〈α∨1 + · · ·+α∨rM , β〉 = 0 is equivalent to 〈α1 + · · ·+αrM , β

∨〉 = 0.
It follows that (5) and (3) are equivalent.

We now prove that items (2), (3), and (4) are equivalent. In fact, we have the
trivial implications (2) ⇒ (3) ⇒ (4). Moreover, if (4) holds, then let γ1, . . . , γrM be
an admissible sequence such that γ1 + · · · + γrM = 2$. By [RRS92, Th. 2.1], any
admissible sequence can be obtained applying to this sequence an element w of the
subgroup of the Weyl group that fixes $. Condition (2) follows from the equality
w(γ1) + · · ·+ w(γrM ) = w(2$) = 2$.
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Since the weights of E? are the opposite of the weights of E, the highest weight
of E? is −µ0. Therefore, (6) holds if and only if µ0 = −$, which is equivalent to (3)
by Proposition 2.19 (4).

Assuming (6) and using the decomposition into K-modules E =
⊕rM

i=0 Ei, we de-
duce that ErM−i ' E?i as K-modules. Conversely, given (7), we obviously have (8).
Assuming now (8), we deduce that ErM = Eµ0 . Since ErM is a K-module of dimen-
sion 1 in this case, it follows that µ0 vanishes on all the roots of k, so µ0 is an integral
multiple of $. It follows that µ0 = −$ and we get (3) as above. �

As we just said, the G-module E is not always self-dual. However, the subspace Vr
is always a self-dual module under a subgroup Lr of G that we now define.

Recall that the Lie algebra lr is by definition generated by the root spaces of the
roots α such that 〈hr, α〉 = 〈z, α〉, and that l±r is the subalgebra generated by the
root spaces of the roots α such that 〈hr, α〉 = 〈z, α〉 = ±2. We define lr as the Lie
subalgebra of g generated by the spaces l+r and l−r . Two particular cases are easy:

Fact 2.36. — If r = 1, then sl2 ' lr ⊂ g is the Lie subalgebra corresponding to the
highest root Θ. If M has tube type and r = rM , then lr = g.

Proof. — In case r = 1, then hr = Θ∨, so 〈α, hr〉 = 2 implies α = Θ. Thus l+r = gΘ in
this case. When M has tube type and r = rM , we have hr = z (Proposition 2.35 (5)),
so l+r = m+ in this case. �

We now describe the Lie algebra lr in general. To this end, we introduce a definition.

Definition 2.37. — Let R be a (possibly reducible) root system, let Π be a basis
of R, and $ be a dominant weight. Given a simple root β, we say that β is connected
to $ in R if there is a simple root γ in the same connected component as β in the
Dynkin diagram of R and such that 〈$, γ∨〉 > 0.

We denote by Πhr=0 the set of simple roots β ∈ Π such that 〈β, hr〉 = 0.

Lemma 2.38. — The Lie algebra lr is simple. The lowest root −Θ together with the
simple roots which are connected to Θ in Πhr=0 form a basis of the root system of lr.

Proof. — Recall that ζ denotes the only noncompact simple root (see Notation 2.5).
Looking at Table 1, we see that the root ζ cannot be connected to Θ in Πhr=0. Thus,
if γ is connected to Θ in Πhr=0, it satisfies 〈γ, z〉 = 0 and, of course, 〈γ, hr〉 = 0.
Let us assume that 〈Θ, γ∨〉 > 0. Then Θ − γ is a root and it satisfies 〈hr,Θ − γ〉 =

〈z,Θ−γ〉 = 2, so gΘ−γ ⊂ lr, and so gγ ⊂ lr. By induction, the root spaces of all simple
roots connected to Θ and their opposite are in lr, and, together with γ−Θ and γΘ,
they generate lr.

In general, the Dynkin diagram of a Lie algebra has vertices corresponding to the
simple roots of the Lie algebra. In our case, given the above description of a basis of lr,
the set of vertices of its Dynkin diagram is the union of some connected components
of Πhr=0 and the set {−Θ}. Moreover, all the connected components of Πhr=0 which
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occur are connected to −Θ. Thus the Dynkin diagram of lr is connected and lr is
simple. �

In Table 3, we indicate in each case which root system for lr is obtained (the cases
where r = 1 or M has tube type and r = rM are not represented, see Fact 2.36).

(G,$) lr R(lr)

(An−1, $`) βr−1 β2 β1−Θβnβn−1βn−r+1 A2r−1

(Cn, $n) βr−1 β1−Θ Cr

(Dn, $n)
β2(r−1) β3β2

β1

−Θ
D2r−1

(E6, $1), r = 2 −Θβ2β3

β1

β4

D5

(E7, $7), r = 2 −Θβ1 β3β4

β5

β2

D6

Table 3. The Lie algebra lr and its root system (The cases where r = 1

or M has tube type and r = rM are not represented.)

We consider the root system Rlr
with its basis (−Θ, β1, . . . , βk) given by Lem-

ma 2.38. We have

Lemma 2.39. — The simple root −Θ in R(lr) is cominuscule.

In other words, the lemma says that any root in R(lr) has coefficient at most
one on the simple root −Θ. Observe that, as a consequence, −Θ defines a Hermitian
noncompact real form Lr,R of Lr. The element y = yr can be considered as an element
of l−r .

Proof. — Since any root in R(lr) can be obtained from Θ applying a suitable element
of the Weyl group of lr, it is enough to show the implication

|n−Θ(α)| 6 1 =⇒ |n−Θ(sγ(α))| 6 1,
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for any simple root γ in R(lr). To prove this, we assume without loss of generality
that n−Θ(α) > 0. If γ is one of the simple roots βj , then n−Θ(α) = n−Θ(sγ(α)),
so the implication clearly holds. If γ = −Θ, we consider two cases. If n−Θ(α) = 1,
then α is a negative root. We have 0 6 〈α,−Θ∨〉 6 2, thus −1 6 n−Θ(sγ(α)) 6 1.
If n−Θ(α) = 0, then α 6= −Θ. Since Θ is long, it follows that |〈α,−Θ∨〉| 6 1. Thus
|n−Θ(sγ(α))| 6 1, as expected. �

As announced, we have the following, which strengthens Lemma 2.27.

Proposition 2.40. — The Lr-module generated by E$ is Vr. It is self-dual.

Proof. — First, we have lr ⊂ lr. This follows from the definition of lr and the inclu-
sions l+r ⊂ lr, l

−
r ⊂ lr.

From the inclusion lr ⊂ lr and Proposition 2.33(1), it follows that the Lr-submodule
generated by E$ is included in Vr. By Lemma 2.31, Vr is included in the l−r -submodule
generated by E$. Since l−r ⊂ lr by definition, we deduce that the Lr-module generated
by E$ is exactly Vr.

Now we prove that Vr, as an Lr-module, is self-dual. The highest weight of Vr as an
Lr-module is the restriction of$, which is the fundamental weight$−Θ corresponding
to the simple root −Θ in the root system of lr. The sequence α1, . . . , αr is a sequence
of long strongly orthogonal roots. They are all bigger than −Θ. In fact, if αi was not
bigger than −Θ, then it would be a linear combination of the roots βj , so it would
satisfy nζ(αi) = 0, contradicting the definition of the sequence α1, . . . , αr.

In view of (4) in Proposition 2.35, it is enough to prove that
∑
αi and 2$−Θ have

the same pairing with the simple roots of Rlr
. For −Θ, we have 〈

∑
α∨i ,−Θ∨〉 = −2

and 〈2$−Θ,−Θ∨〉 = −2. For β a simple root connected to Θ in Πhr=0, we have
〈
∑
αi, β

∨〉 = 0 because 〈β,
∑
α∨i 〉 = 0. We have 〈$−Θ, β

∨〉 = 0. This proves that Vr
is self-dual. �

From the equivalences in Proposition 2.35 and Proposition 2.40, and recalling that
Lr,R is a Hermitian noncompact real form of Lr, it follows that the symmetric space
Mr := Lr,R/(Lr,R ∩KR) is a tube type Hermitian symmetric space of rank r.

Remark 2.41. — This construction is related, but not identical, to the theory of
boundary components of bounded symmetric domains (see e.g. [Wol72, PS69, Sat80,
AMRT10]). The topological boundary of the symmetric space M inside its compact
dual M̌ is a union of rM GR-orbits, and each GR-orbit is a union of so-called boundary
components, cf. [AMRT10, Def. 3.2 p. 127]. The components are isomorphic to Her-
mitian symmetric subspaces MΛ of M , where Λ is a subset of the set of noncompact
strongly orthogonal roots, see [AMRT10, Th. 3.3 p. 127] for example. If we take our
maximal dominant orthogonal sequence (α1, . . . , αrM ) as the set of strongly orthog-
onal roots, and Λ = {α1, . . . , αr} as a subset, boundary components corresponding
to this subset are symmetric spaces of rank r, as is the subspace Mr, but they are
not of tube type unless M already is. The Lie algebra of the stabilizer of MΛ in GR
is qΛ ∩ gR, where qΛ is the parabolic subalgebra of g corresponding to the coweight
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hrM − hr, whereas we recall that the parabolic subalgebra qr we are considering here
corresponds to the coweight z − hr. This shows that qr = qΛ if and only if M is of
tube type.

Example 2.42. — We give an example of this construction. We assume that we are
in the first row of Table 1, namely that G has type Ap+q−1 for some positive in-
tegers p 6 q and that $ = $p. The group GR is therefore SU(p, q) acting on
Cp+q preserving a Hermitian form h of signature (p, q) given by the diagonal ma-
trix diag(−1, . . . ,−1, 1, . . . , 1) in the canonical basis (e1, . . . , ep, ep+1, . . . , ep+q).

Let y ∈ m− be an element of rank r. We have a natural decomposition Cp+q =

A ⊕ N ⊕ B ⊕ I, with A, resp. N,B, I generated by (e1, . . . , er), resp. (er+1, . . . , ep),
(ep+1, . . . , ep+q−r), (ep+q−r+1, . . . , ep+q), so that y is given by the block matrix

0 0 0 0

0 0 0 0

0 0 0 0

∗ 0 0 0

 .

The element hr ∈ t acts on the Lie algebra sl(p+ q,C) of G, and we represent the
weights of its action as the matrix

0 1 1 2

−1 0 0 1

−1 0 0 1

−2 −1 −1 0

 ,

where the blocks correspond to the decomposition A⊕N ⊕B ⊕ I of Cp+q. Similarly,
the weights of the action of the central element z are given as follows

0 0 2 2

0 0 2 2

−2 −2 0 0

−2 −2 0 0

 .

Thus the Lie algebra qr, lr and hr are respectively
∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ 0

∗ 0 ∗ ∗

 ,


∗ 0 0 ∗
0 ∗ 0 0

0 0 ∗ 0

∗ 0 0 ∗

 and


∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗

 .

We see that Qr is exactly the stabilizer of the flag (N ⊂ N ⊕ A ⊕ I), that
the subgroup Lr of G corresponding to lr is S(GL(N) × GL(A ⊕ I) × GL(B)) and
that Hr is the block diagonal group S(GL(N) × GL(A) × GL(I) × GL(B)). Finally
the intersections of GR = SU(p, q) with these two latter groups are isomorphic to
S(U(p− r)×U(r, r)×U(q− r)) and S(U(p− r)×U(r)×U(r)×U(q− r)) respectively,
so that Lr,R ' SU(r, r).

On the other hand, we have E = ∧p(N ⊕ A ⊕ I ⊕ B) and it is easy to check that
Vr = ∧p−rN ⊗ ∧r(A⊕ I), which illustrates that the stabilizer of Vr is Qr.
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2.5. The slope of the Hr-modules Vri . — Our results so far allow to compute the
slope of the Hr-modules Vri . We first need two definitions and a lemma. Given an
algebraic group H, we denote by X(H) its character group considered as a Z-module
with additive law defined by: (χ+ ψ)(h) = χ(h)ψ(h).

Definition 2.43. — Let H be a reductive group and F be an H-module. The slope
of F is the element µH(F) = det(F)/dim(F) inX(H)⊗ZQ. We say that F is a polystable
H-module if F is a direct sum of irreducible H-modules of the same slope.

Lemma 2.44. — Let H be a reductive group.
– Let F be a polystable H-module. For any H-submodule S of F, µH(S) = µH(F)

and µH(F/S) = µH(F).
– Let F, F′ be polystable H-modules. Then F ⊗ F′ is a polystableH-module, whose

slope is µH(F) + µH(F′).
– Let F be a polystable H-module. Then F? is a polystable H-module, whose slope

is −µH(F).

Proof. — The first assertion is clear because H is reductive and so any submodule
is a direct sum of irreducible components. We prove the second assertion. Let Z be
the center of H. It is known that restriction to Z yields an injection X(H) ↪→ X(Z).
In fact, by [Bor69, Prop. 14.2], we have H = Z · (H,H), and any character of H is
trivial on (H,H).

Let us first assume that F and F′ are irreducible H-modules. By Schur’s lemma,
there are characters χ, ψ of Z such that ∀ g ∈ Z,∀w ∈ F,∀w′ ∈ F′, g ·w = χ(g)w and
g · w′ = ψ(g)w′. Therefore, in X(Z) ⊗ Q, we have χ = µH(F)|Z and ψ = µH(F′)|Z .
Let now U ⊂ F⊗ F′ be an irreducible component. We have

∀u ∈ U, ∀ g ∈ Z, g · u = χ(g)ψ(g)u.

Therefore µH(U)|Z = χ+ ψ. Thus, (µH(F) + µH(F′))|Z = µH(U)|Z . Since restriction
of characters to Z is injective, we have µH(U) = µH(F) + µH(F′).

Let now F and F′ be arbitrary H-modules, and write the decomposition into irre-
ducible submodules: F =

⊕
Fi and F′ =

⊕
F′j . Let i, j be fixed and let U ⊂ Fi ⊗ F′j

be an irreducible factor. We have proved that µH(U) = µH(Fi) + µH(F′j). Since F
and F′ are polystable, we have µH(Fi) = µH(F) and µH(F′j) = µH(F′). Thus, U has
slope µH(F) + µH(F′) and the lemma is proved.

The third item follows from the identity detF? = −detF in X(H). �

We apply this lemma to the Hr-modules Vri :

Proposition 2.45. — We have µHr (Vri ) = µHr (Vr0) + iµHr (Vr0
? ⊗ Vr1).

Proof. — The Hr-modules Vri are irreducible by Lemma 2.32, thus polystable. The
same holds for the Hr-module l−r ' Vr0

?⊗Vr1, and we have µHr (l−r ) = µHr (Vr0
?⊗Vr1).

Let i be fixed. By Lemma 2.44, Vri ⊗ l−r is polystable. Since, by Lemma 2.31, Vri+1 is
a quotient of Vri ⊗ l−r , it follows that µHr (Vri+1) = µHr (Vri ) + µHr (l

−
r ). �
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2.6. Interpretation in terms of homogeneous variations of Hodge structure

As we learned from one of the referees, the cominuscule representation E of G
has been interpreted in the language of Hodge structures, first by Gross [Gro94] in
the tube type case, then by Sheng and Zuo [SZ10] in general. Indeed, the repre-
sentation E defines a canonical homogeneous complex variation of Hodge structure
(C-VHS) ECY :=

⊕
p+q=rM

Ep,q on M or on any quotient Λ\M , for Λ a discrete
subgroup of GR. The Hodge bundle Ep,q is just the bundle over M = GR/KR associ-
ated with the KR-module ErM−p. Geometrically, the corresponding filtration is given
by the successive osculating tangent spaces to the cone over the subvariety M ⊂ PE.
This C-VHS is of particular interest because it is of Calabi-Yau type, meaning that
dimErM ,0 = 1 and ErM−1,1 ' ErM ,0 ⊗ Ω1

M . It is a real variation of Hodge structure
(R-VHS) of weight rM precisely when M is of tube type. This is exactly the same
thing as saying, as we did, that E is self-dual in this case.

From this point of view, what we do here can be interpreted in the following
way. Let us work on the projectivized tangent bundle PTM of M . The notion of
rank of an element of m− naturally extends to elements in the tangent bundle
of M , and the bundle PTM is the union of rM GR-orbits Orb1, . . . ,OrbrM , where
Orbr := {[η] ∈ PTM | rk(η) = r}. It is also the quotient GR/(KR ∩ Zr), where Zr
is the centralizer of a nilpotent element y in m− of rank r. The sets ∪s6rOrbs are
the characteristic varieties of Mok [Mok89]. Let us fix 1 6 r 6 rM and call πM the
projection PTM →M . The definition of the weight filtration Wr

• of E associated with
a nilpotent element y ∈ m− or rank r can also be extended to give an increasing
holomorphic weight filtration on the restriction of the C-VHS π?MECY to Orbr,
compatible with the decreasing Hodge filtration (

⊕
p>k π

?
ME

p,q)k, and this defines a
homogeneous family of “complex” mixed Hodge structures on Orbr. When M has
tube type, π?MECY is an R-VHS and we have a real mixed Hodge structure on each
fiber of π?MECY above Orbr.

Example 2.46. — We keep the notations of Example 2.42, assuming now that we
are in the tube type case: the group GR is SU(p, p) with maximal compact subgroup
KR = S(U(p)×U(p)). Let C, resp. D, be the subspace of C2p generated by (e1, . . . , ep),
resp. (ep+1, . . . , e2p). In this case, the cominuscule representation is

E = ∧p(C ⊕D) =
⊕

m+n=p
∧mC ⊗ ∧nD.

Whenever V is a complex vector space, we denote by V the complex vector space V
with the C-action defined by λ·v = λv. Note that, with this convention, a real structure
on V is the same as an involutory C-linear isomorphism V → V . As representations
of KR, C ' C?, D ' D?, and ∧2p(C ⊕ D) is the trivial representation. We get a
KR-equivariant isomorphism

∧mC ⊗ ∧nD ' ∧mC ⊗∧nD ' ∧mC?⊗∧nD? ' (∧mC ⊗∧nD)? ' ∧p−mC ⊗∧p−nD,
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where the last isomorphism is given by the perfect pairing

(∧mC ⊗ ∧nD)⊗ (∧p−mC ⊗ ∧p−nD) −→ ∧pC ⊗ ∧pD ' ∧2p(C ⊕D) ' C.

Therefore we get a real structure on E, invariant by KR, using the isomorphism

E =
⊕

m+n=p
∧mC ⊗ ∧nD '

⊕
m+n=p

∧nC ⊗ ∧mD = E.

Since we have tautologically, for this real structure, ∧mC ⊗ ∧nD = ∧nC⊗∧mD, this
defines an R-VHS of weight p = rM on the symmetric space M = GR/KR. This is the
homogeneous VHS defined in [Gro94].

If now y is an element in m− of rank r, we moreover have the decompositions
C = A ⊕N and D = B ⊕ I, as in Example 2.42, where the restriction of the action
of y to A gives an isomorphism A ' I. The (p-shifted) increasing weight filtration Wr

•

of E associated to the action of y is given by

Wr
s =

⊕
i−`6s−p
i+j+k+`=p

∧iA⊗ ∧jN ⊗ ∧kB ⊗ ∧`I,

whereas the decreasing Hodge filtration F• is given by

Ft =
⊕

i+j>t
i+j+k+`=p

∧iA⊗ ∧jN ⊗ ∧kB ⊗ ∧`I.

Therefore the graded parts are:

GrFt GrW
r

s E =
⊕

i−`=s−p
i+j=t

i+j+k+`=p

∧iA⊗ ∧jN ⊗ ∧kB ⊗ ∧`I.

The intersection Zr ∩KR of KR with the centralizer Zr of y is the group

{(a, b, c) ∈ U(r)×U(p− r)×U(p− r) | det(a2bc) = 1}.

As (Zr ∩KR)-modules, we have:

∧iA⊗ ∧jN ⊗ ∧kB ⊗ ∧`I ' ∧iA? ⊗ ∧jN? ⊗ ∧kB? ⊗ ∧`I?

' (∧iA? ⊗ ∧jN? ⊗ ∧kB? ⊗ ∧`I?)⊗ ∧2p(A⊕N ⊕B ⊕ I)

' ∧r−iA⊗ ∧p−r−jN ⊗ ∧p−r−kB ⊗ ∧r−`I

' ∧r−`A⊗ ∧p−r−jN ⊗ ∧p−r−kB ⊗ ∧r−iI

' ∧i
′
A⊗ ∧j

′
N ⊗ ∧k

′
B ⊗ ∧`

′
I

with i′ = r − `, j′ = p − r − j, k′ = p − r − k and `′ = r − i (on the fourth line
we used the isomorphism I ' A). Therefore, if i − ` = s − p and i + j = t, then
i′ − `′ = i − ` = s − p and i′ + j′ = p − j − ` = s − (i + j) = s − t. Hence the real
structure on E defined as above with these isomorphisms is such that

GrFt GrW
r

s E = GrFs−t GrW
r

s E

and the Hodge filtration induces a real Hodge structure of weight s on GrW
r

s E, so
that the two filtrations Wr

• and F• indeed define a real mixed Hodge structure on E.
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However, again from the Hodge structures point of view, our purpose here is a
bit different. We would like to construct a canonical “weak sub-R-VHS” of weight r
of the restriction of the C-VHS π?MECY to Orbr. This is the role played by the
submodule Vr. The meaning of “weak R-VHS” is that if V r denotes the equivariant
holomorphic bundle Vr⊗OOrbr on Orbr with its Gauss-Manin connection∇, and if F •

denotes the Hodge filtration on V r defined by the filtration F• of E, then (V r, F •) does
have the symmetries of an R-VHS by Proposition 2.40, but does not satisfy Griffiths
transversality ∇(F t) ⊂ F t−1⊗Ω1

Orbr
. Rather, (V r, F •) satisfies a weak transversality

condition by Proposition 2.29. Indeed we have ∇(F t⊗OPTM (−1)|Orbr ) ⊂ F t−1, where
OPTM (−1) is the tautological line bundle on PTM . This will allow us to construct
leafwise Higgs subsheaves (but not plain Higgs subsheaves) in Section 4.3.

3. Higgs bundles on foliated Kähler manifolds

3.1. Harmonic Higgs bundles. — We keep the notation of the previous sections. In
particular, GR is a simple real algebraic Hermitian group, KR its maximal compact
subgroup, M = GR/KR the associated irreducible Hermitian symmetric space of the
noncompact type, G and K are the complexifications of GR and KR, and g = k ⊕ m

and gR = kR ⊕mR are the associated Cartan decompositions of the Lie algebras of G
and GR.

Let now (Y, ωY ) be a compact Kähler manifold, Γ = π1(Y ) its fundamental group,
and ρ : Γ → GR be a reductive representation (group homomorphism) of Γ into GR.
The assumption that ρ is reductive means that the real Zariski closure of ρ(Γ) in GR
is a reductive group.

In this case, by [Cor88], there exists a ρ-equivariant harmonic map f from the uni-
versal cover Ỹ of Y to the symmetric spaceM = GR/KR associated with GR. The fact
that Y is Kähler and the nonpositivity of the complexified sectional curvature of M
imply by a Bochner formula due to [Sam78, Siu80] that the map f is pluriharmonic
(i.e., its restriction to 1-dimensional complex submanifolds of Y is still harmonic),
and that the image of its (complexified) differential at every point y ∈ Y is an abelian
subalgebra of TC

f(y)M identified with m.
By the work of Hitchin and Simpson, this gives a harmonic GR-Higgs principal

bundle (PK , θ) on Y . We will now briefly describe the construction and the properties
of such a Higgs bundle. Details and proofs can be found in the original papers [Hit87,
Hit92, Sim88, Sim92].

There is a flat principal bundle PGR → Y of group GR associated with the represen-
tation ρ. The ρ-equivariant map f : Ỹ → GR/KR defines a reduction of its structure
group to KR, i.e., a principal KR bundle PKR ⊂ PGR . The differential of f can be seen
as a 1-form with values in PKR(mR) := (PKR ×mR)/KR, the vector bundle associated
with the adjoint action of KR on mR.

If we enlarge the structure group of PKR to K, the pluriharmonicity of f implies
that the K-principal bundle PK → Y is a holomorphic bundle and that the (1,0)-part
d1,0f : T 1,0Y → TCM of the complexified differential of f defines a holomorphic
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section θ of PK(m)⊗ Ω1
Y , where PK(m) is the holomorphic vector bundle associated

with the principal bundle PK and the adjoint representation of K on m. The section θ
is called the Higgs field and satisfies the integrability condition [θ, θ] = 0 as a section
of PK(m) ⊗ Ω2

Y . The pair (PK , θ) is called a GR-Higgs principal bundle on Y , see
e.g. [BGPG06, §2.2].

If now E is a (complex) representation of G we can construct the associated holo-
morphic vector bundle E := PK(E) over Y . Since E is a representation of g and not
only of k, we have a morphism PK(m) → PK(End(E)) = End(E). Thus, the Higgs
field θ can be seen as a holomorphic 1-form with values in the endomorphisms of E,
i.e., a section of End(E) ⊗ Ω1

Y . The pair (E, θ) is called a GR-Higgs vector bundle
on Y . The harmonic map f , seen as a reduction of the structure group of PK to the
compact subgroup KR, together with a KR-invariant metric on E, gives a Hermitian
metric on (E, θ) called the harmonic metric.

The existence of this harmonic metric and the fact that PK comes from a flat
principal GR bundle imply that for any representation E of G, the associated Higgs
vector bundle (E, θ) → Y is Higgs polystable of degree 0, see [Sim88]. To explain
what Higgs polystability means, we first define Higgs subsheaves of the Higgs bundle
(E, θ). A coherent subsheaf F of OY (E) is a Higgs subsheaf if it is invariant by the
Higgs field, i.e., if it satisfies θ(F ) ⊂ F ⊗Ω1

Y . The Higgs vector bundle (E, θ) is said
to be Higgs stable if for any Higgs subsheaf F of (E, θ) such that 0 < rk F < rkE, we
have µωY (F ) < µωY (E), where µωY (F ) is the slope of F , i.e., its degree (computed
w.r.t. the Kähler form ωY of Y ) divided by its rank. The Higgs bundle (E, θ) is Higgs
polystable if it is a direct sum of Higgs stable Higgs vector bundles of the same slope.
Note that here E is flat as a C∞ bundle, so that its degree is zero.

Remark 3.1. — Since moreover we assumed that GR is a Hermitian group, then as a
K-representation we have m = m+ ⊕m− and the Higgs field θ on the principal bun-
dle PK (or on any associated vector bundle E) has two components β ∈ PK(m−)⊗ Ω1

Y

and γ ∈ PK(m+)⊗Ω1
Y . The vanishing of γ, resp. β, means that the harmonic map f

is holomorphic, resp. antiholomorphic. The component β, resp. γ, will be called the
holomorphic, resp. antiholomorphic, component of the Higgs field θ.

3.2. Harmonic Higgs bundles on foliated Kähler manifolds. — Assume now that
the base Kähler manifold Y of the harmonic GR-Higgs vector bundle (E, θ) → Y

of degree 0 admits a smooth holomorphic foliation by complex curves and that this
foliation T admits a transverse volume form Ω. This means that Ω is a nowhere
vanishing semipositive closed (d− 1, d− 1)-form (d is the dimension of Y ) such that
the interior product of Ω with any vector tangent to the foliation T is zero.

Our goal in this section is to briefly explain the interplay between the Higgs bundle
and the foliation (equipped with its transverse volume form). Details can be found
in [KM17, §2.2].

We first weaken the notion of Higgs subsheaves of (E, θ) to leafwise Higgs sub-
sheaves by asking only an invariance by the Higgs field along the leaves. More precisely
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we now consider the Higgs field as a section of Hom(E ⊗ L,E), where L is the holo-
morphic line subbundle of TY tangent of the foliation T . A leafwise Higgs subsheaf F

of (E, θ) is a subsheaf of OY (E) such that θ(F ⊗ L) ⊂ F .
We define the foliated degree degT F and the foliated slope µT (F ) of a coherent

sheaf F on Y by wedging the first Chern class of F with the transverse volume
form Ω:

degT F :=

∫
Y

c1(F ) ∧ Ω, and µT (F ) =
degT F

rk F
.

The link between the notions of slope (and stability) for modules and for sheaves
used in this paper will be given by Fact 4.5 below.

In order to state the needed leafwise polystability property of the Higgs bundle
(E, θ) w.r.t. the foliated degree, we first recall a few definitions.

An open subset of Y is called big if it is the complement of an analytic set of
codimension at least 2 in Y . Two line bundles on Y which have isomorphic restrictions
to a big open subset of Y are in fact isomorphic over Y .

Let F be a subsheaf of OY (E). The complement of the biggest subset of Y where F

is the sheaf of sections of a subbundle F of E is called the singular locus S (F ) of F .
Equivalently, S (F ) is the analytic subset of Y where the quotient sheaf OY (E)/F

is not locally free. Recall that a subsheaf F of OY (E) is saturated if OY (E)/F is tor-
sion free. The saturation of F is the kernel of the morphism OY (E)→ (OY (E)/F )tf ,
where (OY (E)/F )tf denotes the quotient of OY (E)/F by its torsion. If F is sat-
urated, S (F ) has codimension at least 2 in Y , so that the regular locus Y \S (F )

of F is a big open subset. Moreover a saturated subsheaf F is normal, so that in
particular for all big open subsets U of Y , the restriction F (Y )→ F (U ) is injective.

A subset of the foliated manifold (Y,T ) is said to be saturated under the foliation T

if it is a union of leaves of T . Obviously if Z ⊂ Y is saturated under T , then so is
its complement Y \Z. (Unfortunately, the word “saturated” is used here with two
different meanings but this shouldn’t cause any confusion.)

Here is the result ([KM17, Prop. 2.2]).

Proposition 3.2. — The harmonic Higgs bundle (E, θ) on the foliated Kähler manifold
(Y,T ,Ω) is weakly polystable along the leaves in the following sense:

(1) it is semistable along the leaves of T : if F is a leafwise Higgs subsheaf of
(E, θ), then degT F 6 0.

(2) if F is a saturated leafwise Higgs subsheaf of (E, θ) such that degT F = 0,
then the singular locus S (F ) of F is saturated under the foliation T . Moreover,
on Y \S (F ), and if F denotes the holomorphic subbundle of E such that F =

OY \S (F)(F ) and F⊥ its C∞ orthogonal complement w.r.t. the harmonic metric,
then θ(F⊥ ⊗ L) ⊂ F⊥. Finally, for each leaf L of T such that L ∩ S (F ) = ∅,
F⊥|L is holomorphic on L and (E, θ)|L = (F, θ|F )|L ⊕ (F⊥, θ|F⊥)|L is a holomorphic
orthogonal decomposition of Higgs bundles on L.
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3.3. The tautological foliation on the projectivized tangent bundle of a complex
hyperbolic manifold. — An n-dimensional complex hyperbolic manifold X is a quo-
tient of the complex hyperbolic n-space HnC = SU(1, n)/U(n) by a discrete torsion
free subgroup Γ of SU(1, n). It is a Hermitian locally symmetric space of rank 1. The
complex hyperbolic space HnC can be realized as the subset of negative lines in Cn+1

for a Hermitian form h of signature (n, 1) (recall our convention in Example 2.1),
which is an open subset in the projective space CPn.

Intersections of lines of CPn with HnC are totally geodesic complex subspaces of HnC
isometric to the Poincaré disc. They are called complex geodesics. The space G of
complex geodesics is the homogeneous space SU(1, n)/ S(U(1, 1)×U(n−1)). It is also
a complex manifold, since it can be realized as the open subset of the Grassmannian
manifold Gr2(Cn+1) of 2-planes in Cn+1 consisting of planes on which the signature
of h is (1, 1).

The projectivized tangent bundle PTHnC of HnC is the space of lines in the holomor-
phic tangent bundle THnC of HnC. As a homogeneous space it can be identified with
SU(1, n)/ S(U(1) × U(1) × U(n − 1)). Again, its also a complex manifold (in fact a
Kähler one) since it identifies with an open subset of the manifold F1,2(Cn+1) of in-
complete flags (` ⊂ Π ⊂ Cn+1) with dim ` = 1, dim Π = 2. A flag (` ⊂ Π ⊂ Cn+1)

belong to PTHnC if the line ` is negative and the plane Π has signature (1, 1) for the
Hermitian form h.

The natural SU(1, n)-equivariant fibration πG : PTHnC → G which associates to a
tangent line to HnC the complex geodesic it defines is a disc bundle over G .

By SU(1, n)-equivariance, this fibration endows the projectivized tangent bundle
PTX = Γ\PTHnC of X = Γ\HnC with a smooth holomorphic foliation T by complex
curves, whose leaves are given by the tangent spaces of the (immersed) complex
geodesics in X. This foliation is called the tautological foliation of PTX because the
tangent line bundle L to the leaves is naturally isomorphic to the tautological line
bundle OPTX (−1) on PTX .

The space G of complex geodesics of HnC is a pseudo-Kähler manifold: it admits
an SU(1, n)-invariant Kähler form ωG , which is closed, of type (1, 1), non degenerate,
but not positive definite. The form ωG is moreover unique up to scaling. This form
defines a transverse volume form ΩG for the tautological foliation T on PTX , and
the associated notion of foliated degree degT for sheaves on PTX has the following
fundamental property (after a suitable normalization of the involved forms) [KM17,
Prop. 3.1].

Proposition 3.3. — Assume that X = Γ\HnC is compact and let π : PTX → X be the
projectivized tangent bundle of X. If F is a coherent OX-sheaf, then degT (π∗F ) =

degω F , where degω F is the usual degree of F computed w.r.t. the Kähler form ω

on X.
4. The Milnor-Wood inequality

Let Γ be a uniform lattice in SU(1, n), X be the compact quotient Γ\HnC, and let ρ
be a representation of Γ in a simple real algebraic Hermitian Lie group GR, whose
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associated symmetric space is denoted by M . In this section we use the material
developed or recalled in Sections 2 and 3 to prove the Milnor-Wood inequality

|τ(ρ)| 6 rM vol(X).

Before going into the proof, we remark that if the lattice Γ has torsion, the measure
defined by the Kähler form ω on HnC descends to X so that vol(X) is well-defined.
There are several ways to define the Toledo invariant of the representation ρ of Γ

in this case. Since this is how we will handle lattices with torsion, we observe that
by Selberg’s Lemma (see [Rat06, p. 327] or [Sel60]) there exists a finite index tor-
sion free subgroup Γ′ of Γ. We then define the Toledo invariant of ρ : Γ → GR by
τ(ρ) := τ(ρ′)/|Γ/Γ′|, where ρ′ = ρ|Γ′ is the restriction of ρ to Γ′ and τ(ρ′) is defined
as in the introduction. One checks easily that this does not depend on the choice
of Γ′. Moreover, if X ′ = Γ′\HnC, then vol(X) = vol(X ′)/|Γ/Γ′| so that proving the
Milnor-Wood inequality for ρ : Γ → GR is equivalent to proving the Milnor-Wood
inequality for ρ′ : Γ′ → GR.

In addition, the representation ρ can always be deformed to a reductive represen-
tation with the same Toledo invariant, see e.g. [KM17, Lem. 4.11]. Moreover, we may
change the complex structure of M to its opposite (i.e., replace z ∈ t by −z ∈ t, or
equivalently m± by m∓), thereby changing the sign of the Toledo invariant of ρ.

Therefore we may assume without loss of generality that
– the lattice Γ is torsion free, so that X = Γ\HnC is a compact complex hyperbolic

manifold of (complex) dimension n;
– the representation ρ is reductive, so that the results discussed in Section 3 are

available;
– the Toledo invariant τ(ρ) is positive, so we only have to prove τ(ρ)6rM vol(X).

(Observe that this implies that the harmonic map f is not antiholomorphic.)
We also assume as in Section 2 that

– the complexification G of GR is simply connected.
See Remarks 5.14 and 5.15 where we explain why this is also not a loss of generality.

4.1. Setup. — Consider the representation E of G defined in Section 2.2. As
explained in Section 3.1, this gives rise to a flat harmonic GR-Higgs vector bundle
(E, θ) over X, associated to the GR-Higgs principal bundle (PK , θ). As a represen-
tation of K, E =

⊕rM
i=0 Ei, where rM is the real rank of GR. This means that the

holomorphic bundle E admits the holomorphic decomposition E =
⊕rM

i=0Ei, which
is orthogonal for the harmonic metric. Moreover, the components β ∈ PK(m−)⊗Ω1

X

and γ ∈ PK(m+)⊗Ω1
X of the Higgs field θ ∈ Hom(E,E) ⊗ Ω1

X (see Remark 3.1)
satisfy

β ∈
rM−1⊕
i=0

Hom(Ei, Ei+1)⊗ Ω1
X and γ ∈

rM−1⊕
i=0

Hom(Ei+1, Ei)⊗ Ω1
X .

We pull-back the harmonic Higgs bundle (E, θ)→ X to the projectivized tangent
bundle PTX of X to obtain a harmonic Higgs bundle that we denote by (E, θ)→ PTX .

J.É.P. — M., 2019, tome 6



Maximal representations, a uniform approach 263

We restrict the Higgs field θ to the tangent space L of the tautological foliation on
PTX , so that its components β and γ satisfy

β ∈
rM−1⊕
i=0

Hom(Ei ⊗ L,Ei+1) and γ ∈
rM−1⊕
i=0

Hom(Ei+1 ⊗ L,Ei).

We also call PK the pull-back of the principal bundle PK to PTX .

Notation 4.1. — A tangent vector ξ 6= 0 to X at a point x ∈ X defines a point [ξ]

in the projectivized tangent bundle PTX . It also defines an element in the fiber
OPTX (−1)[ξ] = {v ∈ TX,x | v ∈ [ξ]} of the tautological line bundle OPTX (−1) at [ξ],
hence an element in the fiber L[ξ] of the tangent line bundle L to the tautological
foliation T at [ξ], which will also be denoted by ξ.

Definition 4.2. — For ξ 6= 0 a vector tangent to X and [ξ] the corresponding point
in PTX , the rank rkβ[ξ] of β[ξ] is the rank of the corresponding element β(ξ) in m−,
as defined in Definition 2.22. By Proposition 2.24, it is also the largest value of k such
that (β[ξ])

k : E0 ⊗ Lk → Ek is not zero.
– The generic rank rkβ of β is the maximum of the ranks of β[ξ] for [ξ] ∈ PTX .
– The singular locus of β is the following subset of PTX :

S (β) : = {[ξ] ∈ PTX | rkβ[ξ] < rkβ}

= {[ξ] ∈ PTX | (β[ξ])
rk β : E0 ⊗ Lrk β → Erk β vanishes}.

– The regular locus of β is R(β) := PTX\S (β).
– The singular locus S (β) of β is the projection to X of S (β).
The regular locus R(β) of β is X\S (β) (it is not the projection to X of R(β)).

Our assumption that τ(ρ)>0 implies that β 6=0 and β 6=0, therefore 1 6 rkβ 6 rM .
Observe that while S (β) is an analytic subset of PTX of codimension at least 1, its
projection S (β), although it is an analytic subset of X (because π : PTX → X is
a proper map), might be equal to the whole base X. A very important consequence
of the weak polystability along the leaves (Proposition 3.2 (2)), is that this does not
happen when there is equality in the refined Milnor-Wood inequality of Theorem 4.6,
see Proposition 4.7. This will indeed be a crucial point when dealing with maximal
representations.

4.2. Rewording of the inequality. — Since the Hermitian symmetric spaceM asso-
ciated with GR is a Kähler-Einstein manifold, the first Chern form c1(TM ) of its
tangent bundle is a constant multiple of the GR-invariant Kähler form ωM : c1(TM ) =

− 1
4π c ωM for some positive constant c (c = c1(M̌) is the first Chern number of the

compact dual M̌ of M). On the other hand, the line bundle L associated with the
K-representation E0 is a generator of the Picard group of the compact dual M̌ of M
and it can be checked that the canonical bundle KM̌ of M̌ is precisely given by L −c,
see e.g. [KM10, §2]. Therefore the pull-back f?ωM is 4π times the first Chern form of
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the line bundle f?L = E0, so that the Toledo invariant of ρ is

(4.1) τ(ρ) = 4π deg(E0) = 4π degT (E0),

where the last equality follows from Proposition 3.3. Similarly, we get that

(4.2) deg(KX) =
n+ 1

4π
vol(X).

Recall that L is the tangential line bundle to the tautological foliation T on the
projectivized tangent bundle PTX , and let L? be its dual line bundle. One can compute
as explained in [KM17, §4.3.1] that

(4.3) degT (L?) =
1

2π
vol(X).

Therefore, the Milnor-Wood inequality can be rephrased as an inequality between
the foliated degrees of the line bundles E0 and L? on PTX and we need to prove:

(4.4) degT (E0) 6
rM
2

degT (L?),

where rM is the rank of the symmetric space M .

4.3. Leafwise Higgs subsheaves associated with the holomorphic component of
the Higgs field. — We now define a subsheaf V of E := O(E) associated with β

(recall that β 6= 0) in the same way we defined the submodule Vr of E associated
with the nilpotent element y ∈ m− of rank r in Definition 2.25 (for all ξ ∈ L,
β(ξ) ∈ PK(m−) is a nilpotent endomorphism of the bundle E). This subsheaf will
be shown to be a leafwise Higgs subsheaf of the Higgs bundle (E, θ) on PTX . In
Section 4.4 this will be used to prove the Milnor-Wood inequality.

More precisely, mimicking Definition 2.25 and for −rkβ 6 k 6 rkβ, we define the
following subsheaves of E :

Wk :=
∑
`>0

k+`+1>0

Kerβk+`+1 ∩ Imβ`,

where in order to define Kerβj we consider βj as a sheaf morphism from E to E⊗(L?)
j

and to define Imβj we consider βj as a sheaf morphism from E ⊗ Lj to E .
For k = 0, 1, . . . , rkβ, let Vk be the saturation in Ek := O(Ek) of the subsheaf

Ek ∩Wrk β−2k and set
V =

⊕
06k6rk β

Vk.

Since the sheaves Vk are saturated subsheaves of O(Ek), there exist a big open
subset U of PTX and subbundles Vk of Ek defined on U such that the restriction of
the Vk’s to U are the sheaves of sections of the Vk’s. On U we let V be the subbundle
⊕06k6rVk, so that V|U = OU (V ).

Observe that on the regular locus R(β) of β, the rank of βk, as a vector bundle
morphism from E⊗Lk to E, is constant for all k. Indeed, by Definition 2.22, the rank
of β(ξ) viewed as an element of m− determines its K-orbit. Hence on this open subset
the formulas used above to define the subsheaves Wk of E in fact define subbundlesWk

J.É.P. — M., 2019, tome 6



Maximal representations, a uniform approach 265

of E such that Wk|R(β) = OR(β)(Wk). Therefore, on R(β), the subbundles Vk such
that Vk|R(β) = O(Vk) are given by Vk = Ek ∩Wrk β−2k. Thus, we may assume that
R(β) is contained (and therefore dense) in U .

We view an element p of the K-principal bundle PK
πK−→ PTX above ξ ∈ PTX as

an isomorphism between the fiber Eξ of E = PK(E) and the model space E. The
component β of the Higgs field is a section of PK(m−)⊗ L? ⊂ PK(End(E))⊗ L?.

Let y = yrk β and Qrk β be defined as in Section 2.4.

Lemma 4.3. — On the big open set U , the subsheaf V defines a reduction PK∩Qrk β

of the structure group of PK to the subgroup K ∩Qrk β ⊂ K.

Proof. — We begin by working on R(β) ⊂ U . Since for all ξ ∈ R(β) and all
η ∈ Lξ, η 6= 0, we have that βξ(η) has rank rkβ, there exists p ∈ (PK)ξ such
that p ◦ βξ(η) ◦ p−1 = y ∈ m− ⊂ End(E), so that p(Vξ) = Vrk β . Therefore, on R(β),
by Proposition 2.33 (4), the subbundle V of E defines a (holomorphic) reduction
PK∩Qrk β

of the structure group of PK to the subgroup K ∩ Qrk β of K (Qrk β is
the normalizer in G of the parabolic subalgebra qrk β , see Definition 2.30). Explicitly
PK∩Qrk β

= {p ∈ PK | p(VπK(p)) = Vrk β}.
We now work on U . Enlarge the structure group of PK to GL(E). The subbundle

V =
⊕rk β

k=0 Vk of E defines a reduction PS of the structure group of PGL(E)

πGL(E)−→ PTX
to the stabilizer S of Vrk β in GL(E) by setting PS={p∈PGL(E) | p(VπGL(E)(p))=Vrk β}.

Let B ⊂ U be an open ball on which PK is trivial. Then the reductions PK∩Qrk β

of PK on B ∩ R(β) and PS of PGL(E) on B are respectively given by holomorphic
maps σ : B ∩R(β) → K/(K ∩ Qrk β) and s : B → GL(E)/S. Moreover, if ι denotes
the natural map K/(K∩Qrk β)→ GL(E)/S, which is injective, then we have s = ι◦σ
on B ∩R(β). Since K/(K ∩ Qrk β) is compact, its image by ι is closed in GL(E)/S.
Therefore, since B ∩R(β) is dense in B, s maps B to ι(K/(K ∩Qrk β)). This means
that the reduction PK∩Qrk β

initially defined on R(β) extends to U . �

We deduce the following result.

Proposition 4.4. — The subsheaf V is a leafwise Higgs subsheaf of the Higgs bundle
(E, θ) on PTX .

Proof. — By Proposition 2.29, we know that y and m+ stabilize Vrk β . Therefore, on
R(β), the two components β and γ of the Higgs field stabilize the subsheaf V since
it is the sheaf of sections of the subbundle V = PK∩Qrk β

(Vrk β) of E = PK∩Qrk β
(E).

By continuity, this still holds on U since on this big open set V is also the sheaf
of section of V = PK∩Qrk β

(Vrk β). Now, V is a saturated, hence normal, subsheaf of
O(E) by definition. Hence the restriction map V (PTX) → V (U ) is an isomorphism
since U is big. Therefore V is indeed a leafwise Higgs subsheaf of (E, θ) on PTX . �

4.4. Proof of the Milnor-Wood inequality. — Recall that the slope of an H-
module was introduced in Section 2.5 and is an element in X(H) ⊗ Q. To relate
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it to the slope of the associated vector bundle, we use the following fact which follows
immediately from the definitions.

Fact 4.5. — Let H be a complex reductive group and let PH → Z a holomorphic
H-principal bundle over a complex manifold Z. Let Vi, i ∈ {1, 2}, be H-modules and
let Vi = PH(Vi) be the associated vector bundles. Assume that µH(V1) = µH(V2).
Then

detV1

rkV1
=

detV2

rkV2
,

as elements of Pic(Z) ⊗Z Q. In other words, the line bundles (detV1)⊗ rkV2 and
(detV2)⊗ rkV1 are isomorphic.

Therefore, if one is given a reasonable way to compute slopes of vector bundles
on Z, e.g. the usual one if Z is X with its Kähler form ω, or the foliated one if Z
is PTX with its tautological foliation T and transverse volume form ΩG , then using
the notation of Fact 4.5, µH(V1) = µH(V2) implies that the slopes of V1 and V2 are
equal.

This observation, together with the computation of the slopes of the Hrk β-
submodules Vrk β

k of E and the construction of the leafwise Higgs subsheaf V of
(E, θ), gives the Milnor Wood inequality.

Theorem 4.6. — We have the inequalities

degT (E0) +
rkβ

2
degT (L) 6 µT (V ) 6 0.

Therefore the Milnor-Wood inequality degT (E0) 6 (rM/2) degT (L?) holds.

Proof. — Let nk := dimVrk β
k . First, recall that Proposition 2.33 (2) states that the

unipotent radical of Qrk β acts trivially on Vrk β . Hence so does the unipotent rad-
ical of K ∩ Qrk β . Thus, in fact, Vrk β is a (K ∩ Qrk β)/Ru(K ∩ Qrk β)-module, and
(K ∩Qrk β)/Ru(K ∩Qrk β) ' Hrk β is reductive.

Therefore, by Lemma 4.3, on the big open set U , the vector bundles Vk such that
Vk = O(Vk) are given by Vk = PK∩Qrk β

(Vrk β
k ). By Proposition 2.45 and Fact 4.5

applied to Vrk β
k and V′k := Vrk β

0 ⊗ (Vrk β
1 ⊗ Vrk β

0

?
)⊗k, we have on U

(detVk)rkV ′k ' (detV ′k)rkVk ,

where V ′k = PK∩Qrk β
(V′k). Letting V ′k := V0 ⊗ (V1 ⊗ V0

?)⊗k, we deduce that the line
bundles (det Vk)rk V ′k and (det V ′k )rk Vk on PTX are isomorphic on U , hence on PTX ,
because U is a big open set of PTX . Therefore

µT (Vk) = µT (V ′k ) = degT (V0) + k µT (V ?
0 ⊗ V1).

Since βrk β : V0 ⊗ Lrk β → Vrk β is not zero and n0 = nrk β = 1, we also have
µT (Vrk β) > µT (V0) + rkβ µT (L) so that µT (V ?

0 ⊗ V1) > degT (L).
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Finally, remembering that nk = nrk β−k by Proposition 2.35 and that V0 = E0,
we get

2 degT (V ) =

rk β∑
k=0

degT (Vk) +

rk β∑
k=0

degT (Vrk β−k)

=

rk β∑
k=0

(nk µT (Vk) + nrk β−k µT (Vrk β−k))

>
rk β∑
k=0

nk (degT (V0) + k degT (L) + degT (V0) + (rkβ − k) degT (L))

= (dimVrk β) (2 degT (E0) + rkβ degT (L)).

The inequality µT (V ) 6 0 follows from Propositions 4.4 and 3.2, and the conclu-
sion from the fact that rkβ 6 rM . �

In case of equality in Theorem 4.6, we have

Proposition 4.7. — Assume that degT (E0) + rk β
2 degT (L) = 0. Then

(1) on the regular locus R(β) = PTX\S (β) of β, the orthogonal complement V ⊥ =

(
⊕
Vi)
⊥ of the subbundle V =

⊕
Vi of E w.r.t. the harmonic metric is stable under

the Higgs field θ : E ⊗ L→ E;
(2) the regular locus R(β) ⊂ X of β is (open and) dense in X.

Proof. — The first point follows from the discussion after the definition of the sub-
sheaves Vk and the polystability property (2) in Proposition 3.2, since our hypothesis
implies that degT V = 0 by Theorem 4.6.

Proposition 3.2 (2) also implies that the singular locus S (β) of β, which is a closed
proper subset of PTX , is saturated under the tautological foliation T , see the proof of
[KM17, Lem. 4.5]. Since the leaves of the tautological foliation on PTX are projections
of SU(1, 1)-homogeneous subsets of Γ\ SU(1, n), M.Ratner’s results on unipotent flows
and the fact that HnC = SU(1, n)/U(n) is a rank 1 symmetric space, then imply
by [KM17, Prop. 3.6] that the singular locus S (β) := π(S (β)) of β is a proper
analytic subset of X = Γ\HnC, hence the second point of the proposition. �

5. Maximal representations

Maximal representations ρ : Γ→ GR, where Γ is a uniform lattice in SU(1, n) with
n > 2 and GR is a classical Hermitian group, were classified in [KM17]. Therefore we
focus here on exceptional targets, namely GR is either E6(−14), which is not of tube
type, or E7(−25), which is.

In Section 5.1 we exclude the possibility of maximal representations in E7(−25).
In fact, our uniform approach allows to easily prove that maximal representations
in tube type target groups GR do not exist (Proposition C). The case of E6(−14) is
treated in Section 5.2, Theorem A and Corollary B are established in Section 5.3.
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5.1. Tube type targets. — We prove Proposition C, namely that whenever GR has
tube type and n > 2, the Toledo invariant of a representation from Γ to GR satisfies
an inequality stronger than the Milnor-Wood inequality, preventing a representation
in such a group to be maximal.

Proposition 5.1. — Let Γ be a uniform lattice in SU(1, n), and let X = Γ\HnC. As-
sume that the simple real algebraic Hermitian Lie group GR has tube type and let rM
be the real rank of GR. Let ρ be a representation Γ→ GR. Then

|τ(ρ)| 6 max
{
rM − 1,

rM
2
· n+ 1

n

}
vol(X).

Remark 5.2. — Observe that max
{
rM − 1, rM2 ·

n+1
n

}
= rM − 1 unless rM 6 2 or

rM = 3 and n = 2.

Proof. — We may assume that Γ is torsion free, that τ(ρ) > 0, that ρ is reductive
(see the beginning of Section 4), and that G is simply connected (see Remarks 5.14
and 5.15). Then, the constructions of Sections 2, 3 and 4 are valid and the inequality
of the proposition is equivalent to the inequality

degT (E0) 6 max
(rM − 1

2
,
rM
2
· n+ 1

2n

)
degT (L?).

We use freely the notation of Section 4. If the generic rank of β on the projectivized
tangent bundle PTX of X is 6 rM − 1 then we are done by Theorem 4.6. Therefore
we may assume that the generic rank of β on PTX is rM .

We come back to the Higgs bundle (E, θ) on X and we consider β : E ⊗ TX → E.
The fact that rkβ = rM implies that βrM , seen as a morphism from E0 ⊗ E

?

rM

to the rM -th symmetric power SrMΩ1
X of Ω1

X , is not zero. Since Ω1
X is a semi-

stable bundle over X (X is Kähler-Einstein), so is SrMΩ1
X . On the other hand,

E0 ⊗ E
?

rM is also semistable because it is a line bundle by Section 2.4.4. There-
fore µω(E0 ⊗ E

?

rM ) 6 µω(SrMΩ1
X) (recall that ω is our Kähler form on X), so that

degω E0 − degω ErM 6 rM µω(Ω1
X). Now, as explained in Section 2.4.4, the K-mod-

ules ErM and E?0 are isomorphic, so that degω ErM = −degω E0 by Fact 4.5. We get
the result, since by Equations (4.2) and (4.3) in Section 4.2 and the isomorphism
KX ' det Ω1

X , we have degω(Ω1
X) = n+1

2 degT (L?). �

5.2. Target group E6(−14)

5.2.1. Algebraic preliminaries. — In the case GR = E6(−14), the cominuscule repre-
sentation ofG = E6 is the defining representation of E6 on the 27-dimensional complex
exceptional Jordan algebra E = JC. The real rank of E6(−14) is 2 and E = E0⊕E1⊕E2

with E0, E1, and E2 of dimension 1, 16 and 10 respectively. The semi-simple part of K
is isomorphic to Spin10 and as Spin10-representations, E0, E1, and E2 are respectively
a trivial, half-spin, and vector representation.

Given x ∈ m− (resp. y ∈ m+), x (resp. y) defines linear maps E0 → E1 and
E1 → E2 (resp. E1 → E0 and E2 → E1). We denote these maps by λ1(x), λ2(x)
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resp. µ1(y), µ2(y). We thus have maps λ1(x) : E0 → E1, λ2(x) : E1 → E2 and
µ1(y) : E1 → E0, µ2(y) : E2 → E1.

We start with a description of the Spin10-representations E1 and E2 in terms
of octonions. More precisely, by Proposition 2.15(d), there is a Spin10-equivariant
isomorphism E1 ' E0 ⊗ m−. Choosing a non-zero vector in E0, this yields an iso-
morphism α : E1 → m−. We consider the quadratic map κ : E1 → E2 defined by
κ(x) = λ2(α(x)) · x. This is a Spin10-equivariant quadratic map E1 → E2.

As the next proposition shows, there is, up to a scale, only one such map, and this
map can be described in terms of octonions. We denote by O the (non associative)
algebra of octonions (see [Che97, §4.5] or [SV00]). We denote by N : O → C the
norm, a quadratic map such that N(z1z2) = N(z1)N(z2) for all octonions z1, z2. The
following is certainly well-known to specialists, however we could not find an adequate
reference.

Proposition 5.3. — There are (Spin8×Spin2)-equivariant identifications of E1 with
O⊕O and E2 with C⊕O⊕ C such that κ(u, v) = (N(u), uv,N(v)).

Proof. — We consider the Spin10 half-spin representation E1. According to [Che97],
when we restrict to Spin8, this representation splits as S + ⊕S −, where S ± denote
the two half-spin representations of Spin8. Similarly, the Spin10 vector representa-
tion E2 splits as C⊕V⊕C, where V denotes the 8-dimensional vector representation.

Now, the quadratic map κ is given by a Spin10-equivariant linear morphism
S2E1 → E2 which is itself induced by an injection

E2 ⊂ E1 ⊗ E1 = S + ⊗S + ⊕S + ⊗S − ⊕S − ⊗S + ⊕S − ⊗S −.

Since there are Spin8-equivariant maps S + ⊗ S − → V, S + ⊗ S + → C and
S −⊗S − → C, and no Spin8-equivariant maps from other factors in the tensor prod-
uct E1⊗E1 to E2, κ is of the form κ(s+, s−) = (ψ+(s+), ϕ(s+, s−), ψ−(s−)), for some
equivariant quadratic maps ψ± : S ± → C, and for a bilinear map ϕ : S +×S − → V.
None of these maps can vanish, otherwise the image of κ would be degenerate. More-
over, there are, up to scale, only one such map, as it follows from the decompo-
sition of the tensor product of two spin representations [Che97, §3.3]. It is given,
once S +,S − and V are identified with the space of octonions O, by the formulas:
ψ+(s+) = N(s+), ϕ(s+, s−) = s+s− and ψ−(s−) = N(s−) (see again [Che97, §4.5]).
The proposition follows. �

We can deduce from the explicit formula above some information about maps λ2(x).

Proposition 5.4. — Let x, y ∈ E1 ' m−.
(a) x has rank one if and only if x 6= 0 and κ(x) = 0.
(b) x has rank one if and only if dim (Imλ2(x)) = 5.
(c) x has rank two if and only if dim (Imλ2(x)) = 9 if and only if κ(x) 6= 0.
(d) Assume that all non trivial linear combinations of x and y have rank 2 (in par-

ticular, x and y are not colinear). Then dim(Kerλ2(x) ∩Kerλ2(y)) 6 3.
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(e) Assume that x and y have rank 1 and dim(Imλ2(x) ∩ Imλ2(y)) > 4. Then x

and y are proportional.

Proof. — We use the above isomorphism E1 ' O⊕O. According to [Igu70, Prop. 2],
there are exactly 3 orbits in E1 under Spin10×C∗. Let u ∈ O such that N(u) = 0. We
have κ(u, 0) = (0, 0, 0) and κ(1, 0) = (1, 0, 0). Thus, (u, 0) and (1, 0) cannot be in the
same orbit. It follows that (u, 0) has rank 1 and (1, 0) has rank 2 and statement (a)
of the proposition is proved.

Let κ̃ : E1 × E1 → E2 be the polarization of κ, namely, the unique symmetric
bilinear map such that κ̃(x, x) = κ(x) for all x in E1. We have λ2(x) = κ̃(x, ·). Thus
the image of λ2(u, 0) is the set of triples (t, z, 0) with t ∈ C arbitrary and z of the
form uw for some w in O: this space has dimension 5. On the other hand, the image
of λ2(1, 0) is the set of triples (t, z, 0) with t and z arbitrary. It has dimension 9.
Points (b) and (c) are proved.

For point (d), let us assume that any non trivial linear combination of x and y

has rank 2. Thanks to the result of Igusa, we may assume that x = (1, 0). Writing
y = (a, b), the assumption implies that b 6= 0 (in fact, if y = (a, 0), then some linear
combination of x and y will be of the form (u, 0) with N(u) = 0). The kernel of
λ2(x) is the space of elements of the form (u, 0) with 〈u, 1〉 = 0 (here, 〈· , ·〉 denotes
the symmetric bilinear form associated with N). If such an element is in the kernel
of λ2(y) then bu = 0 and so N(u) = 0. In fact, the octonion algebra is alternative,
meaning that for all elements a, b one has (ab)b = a(b2). Since b is a linear combination
of 1 and b, we also have (ab)b = a(bb). From the equation 0 = bu it thus follows
0 = (bu)u = b(uu) = bN(u) so N(u) = 0. Thus, the intersection of the kernels of
λ2(x) and λ2(y) is isomorphic to an isotropic subspace of the space of octonions u
with 〈u, 1〉 = 0. Such an isotropic subspace can have at most dimension 3.

Finally, let us assume that x and y have rank 1 and that

dim(Imλ2(x) ∩ Imλ2(y)) > 4.

Then we may assume that x = (u, 0) with N(u) = 0 as above. The image of λ2(x) is
then the set of triples (t, z, 0) with t arbitrary and z of the form uw for some octo-
nion w. Thus, this space is an isotropic subspace of E2 of maximal dimension 5. Using
the Spin10-action, it follows that for any x ∈ E1 of rank 1, the image of λ2(x) is an
isotropic subspace of dimension 5. Since two maximal isotropic subspaces in the same
family can intersect only in odd dimension, it follows from the hypothesis on x and y
that the images of λ2(x) and λ2(y) are equal. Thus x and y are pure spinors represent-
ing the same maximal isotropic subspace, so they are proportional by [Che97, III.1.4].
It is also possible to draw this conclusion by a direct computation, using the fact that
for u, v ∈ O such that N(u) = N(v) = 0, the equality {uz | z ∈ O} = {vz | z ∈ O} is
equivalent to the fact that u and v are proportional. �

Recall that we constructed a quadratic Spin10-equivariant map κ : E1 → E2 by
setting κ(x) = λ2(α(x)) · x, where α : E1 → m− is a Spin10-equivariant isomorphism.
Similarly, let β : E?1 → m+ be a Spin10-equivariant isomorphism. Let ι : E?1 → E?2 be
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the quadratic equivariant map obtained setting ι(w) = tµ2(β(w)) ·w. With the same
proof, we get information about m+ and the linear maps µ2(w).

Proposition 5.5. — Let w, z ∈ E∗1 ' m+.
(a) w has rank one if and only if w 6= 0 and ι(w) = 0.
(b) w has rank one if and only if dim(Imµ2(w)) = 5.
(c) w has rank two if and only if dim(Imµ2(w)) = 9 if and only if ι(w) 6= 0.
(d) Assume that all non trivial linear combinations of w and z have rank 2 (in

particular, w and z are not colinear). Then dim(Imµ2(w) ∩ Imµ2(z)) 6 3.
(e) Assume that w and z have rank 1 and dim(Kerµ2(w)∩Kerµ2(z)) > 4. Then w

and z are proportional.

5.2.2. Maximal representations. — Let Γ be a torsion free uniform lattice in SU(1, n)

and ρ : Γ→ E6(−14) be a reductive representation. We may therefore consider the the
Higgs bundle (E, θ) on X and its pull-back (E, θ) on PTX associated with ρ and the
representation of E6 on E = E0 ⊕ E1 ⊕ E2 as in Section 4.

Recall that the components of the Higgs field θ are

PK(m−) 3 β =: (β1, β2) ∈
(
Hom(E0, E1)⊗ Ω1

X

)
⊕
(
Hom(E1, E2)⊗ Ω1

X

)
and

PK(m+) 3 γ =: (γ1, γ2) ∈
(
Hom(E1, E0)⊗ Ω1

X

)
⊕
(
Hom(E2, E1)⊗ Ω1

X

)
.

To lighten the notation, the fibers of the bundles E, E0, E1 and E2 above some
x ∈ X will also be denoted by E, E0, E1 and E2.

Propositions 5.4 and 5.5 immediately imply the following.

Corollary 5.6. — Let x ∈ X and ξ, η be tangent vectors at x.
As an element of Hom(E1, E2), β2(ξ) has rank 0, 5 or 9. Moreover:
(a) If β(ξ) has rank 1, i.e., β1(ξ) 6= 0 but β2(ξ)β1(ξ) = 0, then β2(ξ) : E1 → E2

has rank 5;
(b) If β(ξ) has rank 2, i.e., if β2(ξ)β1(ξ) 6= 0, then β2(ξ) : E1 → E2 has rank 9;
(c) If all non trivial linear combinations of β(ξ) and β(η) have rank 2 (in particular,

ξ and η are not colinear), then we have dim(Kerβ2(ξ) ∩Kerβ2(η)) 6 3.
Similarly, as an element of Hom(E2, E1), γ2(ξ) has rank 0, 5 or 9. Moreover:
(a′) If γ(ξ) has rank 1, i.e., γ2(ξ) 6= 0 but γ1(ξ)γ2(ξ) = 0, then γ2(ξ) : E2 → E1

has rank 5;
(b′) If γ(ξ) has rank 2, i.e., if γ1(ξ)γ2(ξ) 6= 0, then γ2(ξ) : E2 → E1 has rank 9;
(c′) If γ(ξ) and γ(η) have rank 1 and dim(Ker γ2(ξ) ∩ Ker γ2(η)) > 4, then γ(ξ)

and γ(η) are colinear.

Thanks to this corollary, in case of equality in the Milnor-Wood inequality, we may
prove
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Proposition 5.7. — Let (E, (β, γ)) be the harmonic Higgs bundle on X associated
with the reductive representation ρ : Γ → E6(−14) of the torsion free uniform lattice
Γ ⊂ SU(1, n) and assume n > 2.

If degT (E0) = degT (L?) and x ∈ R(β), then for all ξ ∈ TX,x, γ(ξ) = 0.

Proof. — The letters ξ and η will denote tangent vectors at x.
The equality degT (E0) = degT (L?) and Theorem 4.6 imply that the generic rank

of β on PTX is 2. Therefore, since x belongs to the regular locus R(β) of β, for all ξ 6= 0

in TX,x, the rank of β(ξ) is 2. This implies by Corollary 5.6 (b) that the rank of β2(ξ)

is 9 for all ξ 6= 0, and by Corollary 5.6 (c) and linearity of β : TX,x → Hom(E,E),
that if ξ and η are not colinear, dim(Kerβ2(ξ) ∩Kerβ2(η)) 6 3.

We will make a crucial use of the integrability relation [θ, θ] = 0 of the Higgs field θ.
This relation is equivalent to the following three conditions:

γ1(ξ)β1(η) = γ1(η)β1(ξ) in End(E0)

β1(ξ)γ1(η) + γ2(ξ)β2(η) = β1(η)γ1(ξ) + γ2(η)β2(ξ) in End(E1)

β2(ξ)γ2(η) = β2(η)γ2(ξ) in End(E2)

which hold for all ξ, η.
Suppose first that there exists ξ such that γ2(ξ) : E2 → E1 has rank 9. Consider the

subspace W := Ker γ1(ξ) ∩ Kerβ2(ξ) ⊂ E1. Since dimE1 = 16, dim Ker γ1(ξ) = 15

and dim Kerβ2(ξ) = 7, we have dimW > 6. On this subspace, the second integrability
condition reads β1(ξ)γ1(η) +γ2(ξ)β2(η) = 0 for all η. Therefore γ2(ξ)β2(η)(W ) ⊂ E1

is 1-dimensional. Because of our assumption on the rank of γ2(ξ), β2(η)(W ) is of
dimension at most 2, and this implies that dimW ∩ Kerβ2(η) > 4, hence that
dim Kerβ2(ξ) ∩ Kerβ2(η) > 4. Since n > 2, we may choose ξ and η to be linearly
independent and we get a contradiction with Corollary 5.6 (c).

Suppose now that for all ξ 6= 0, γ2(ξ) has rank 5. Fix ξ 6= 0, and let [ξ] be the
class of ξ in the fiber of PTX above x. Let V (ξ) = V0(ξ)⊕ V1(ξ)⊕ V2(ξ) be the fiber
above [ξ] of the subbundle V of the Higgs bundle (E, θ) on PTX . We have

V0(ξ) = E0 = E0

V1(ξ) = E1 ∩ F0 = E1 ∩ (Kerβ[ξ] ⊕Kerβ2
[ξ] ∩ Imβ[ξ]) = Kerβ2(ξ)⊕ Imβ1(ξ)

V2(ξ) = E2 ∩ F−2 = E2 ∩ (Kerβ[ξ] ∩ Imβ2
[ξ]) = Imβ2(ξ)β1(ξ)

and we know by Proposition 4.7 (1) that the orthogonal complement V1(ξ)⊥⊕V2(ξ)⊥

of V0(ξ)⊕ V1(ξ)⊕ V2(ξ) is invariant by θ(ξ), in particular that γ2(ξ) maps V2(ξ)⊥ to
V1(ξ)⊥. Here and after, for i ∈ {1, 2}, we denote by Vi(ξ)⊥ the orthogonal complement
of Vi(ξ) in Ei with respect to the harmonic metric.

By the third integrability condition, γ2(ξ) maps Ker γ2(η) in Kerβ2(η). Hence
γ2(ξ) maps V2(ξ)⊥ ∩Ker γ2(η) to Kerβ2(η) ∩ V1(ξ)⊥.

But β2(ξ) is injective on V1(ξ)⊥ because Kerβ2(ξ) ⊂ V1(ξ). Hence for η close
to ξ, β2(η) is also injective on V1(ξ)⊥, so that Kerβ2(η) ∩ V1(ξ)⊥ = 0 and hence
V2(ξ)⊥ ∩ Ker γ2(η) ⊂ Ker γ2(ξ) by the previous paragraph. Now, dimV2(ξ)⊥ = 9
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and rk γ2(η) = 5, thus V2(ξ)⊥ ∩ Ker γ2(η) is at least 4-dimensional, and so is
Ker γ2(ξ) ∩Ker γ2(η). This implies by Corollary 5.6 (c′) that γ2(ξ) and γ2(η) are
colinear, a contradiction since n > 2 and γ2 is injective by our assumption that all
the γ2(ζ), ζ 6= 0, have rank 5.

We conclude that there exists ξ 6= 0 such that γ2(ξ) = 0. Then also γ1(ξ) = 0 and
by the second integrability condition, for all η, β1(ξ)γ1(η) = γ2(η)β2(ξ). Therefore
γ2(η) has rank at most 1 on Imβ2(ξ) which is 9-dimensional in E2, so that γ2(η) has
rank at most 2, hence vanishes. Therefore γ2 = 0 and γ = 0 identically on TX,x. �

Theorem 5.8. — Let Γ be a torsion free uniform lattice in SU(1, n) with n > 2 and ρ
be a reductive maximal representation of Γ in E6(−14). Then there exists a holomorphic
or antiholomorphic ρ-equivariant map from HnC to the symmetric space M associated
with E6(−14).

Proof. — As explained at the beginning of Section 4, we may and do assume that
τ(ρ) > 0. By Proposition 5.7, γ vanishes on the regular locus R(β) of β. By Propo-
sition 4.7 (2), R(β) is dense in X, so that γ vanishes identically on X. This means
that the ρ-equivariant harmonic map f : HnC → M used to define the Higgs bundle
(E, θ) is holomorphic. �

5.3. Proof of the main results. — In this subsection, we give detailed proofs of The-
orem A and Corollary B stated in the introduction, although some of the arguments
might be well-known.

So let n > 2, Γ ⊂ SU(1, n) be a uniform lattice and ρ a maximal representation
of Γ in a real algebraic Hermitian Lie group GR. Recall that GR is semisimple with
no compact factors and that GR is the connected component G(R)◦ of the group of
real point of a real algebraic group G.

At first we will assume that Γ is torsion free and, as before, that G = G(C) is simply
connected. Remarks 5.14 and 5.15 explain how to deal with non simply connected G’s
and Remark 5.16 with the presence of torsion.

We may moreover assume that GR is simple, because a representation in a product
of simple groups is maximal if and only if the induced representations in the simple
factors are maximal.

Furthermore, we may and will assume that ρ is reductive, since by [BIW09, Cor. 4],
maximal representations are always reductive. Alternatively, one may proceed as in
the following, but first with reductive maximal representations and prove Theorem A
and Corollary B for them. Once the compactness of the centralizer ZR for reductive
maximal representations has been proved, one can prove that all maximal represen-
tations are reductive as in [KM17, §4.5].

Finally, as explained at the beginning of Section 4, we may and do assume that
τ(ρ) > 0.

Let then f : HnC → M = GR/KR be a harmonic ρ-equivariant map (such a map
exists by [Cor88]). By Proposition 5.1, GR is not of tube type, hence GR is isogenous to
either SU(p, q) with p < q, SO?(2m) with m > 5 odd, or E6(−14) (whose real ranks are
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respectively p, (m− 1)/2, and 2). Then [KM17, Th. 4.1 & Prop. 5.6] and Theorem 5.8
imply that f is holomorphic. By the Ahlfors-Schwarz lemma (cf. [Roy80]), since the
holomorphic sectional curvature is −1 on HnC and bounded above by −1/rM on M ,
we have the pointwise inequality f?ωM 6 rM ω. The maximality of ρ then implies
that f?ωM = rM ω. Since there is equality in the Ahlfors-Schwarz lemma, f is totally
geodesic (see e.g. [Roy80]).

Our results so far and [KM17, Prop. 4.10 & 5.7] also imply that GR is either SU(p, q)

with q > pn (in which maximal representations exist indeed) or E6(−14), in particu-
lar GR is not isogenous to SO?(2m) with m odd. In the SU(p, q) case, we also know
from [KM08, §3.1] (see also [KM17, Prop. 4.10]) that a holomorphic map f : HnC →M

such that f?ωM = rM ω is unique up to composition by an element of SU(p, q) and
equivariant w.r.t a morphism ϕ : SU(1, n)→ SU(p, q).

We need another argument to handle the E6(−14) case. Following [BIW09,
p. 690] and [Ham13, p.640], a totally geodesic map g : HnC → M is called tight
if sup∆⊂HnC

∫
∆
g∗ωM = sup∆M⊂M

∫
∆M

ωM , where ∆, resp. ∆M , denote a geodesic
triangle in HnC, resp. M (recall that ωM is the Kähler form on M). It follows from
the fact that our map f is holomorphic and such that f?ωM = rM ω that it is
tight. Tight holomorphic maps between Hermitian symmetric spaces were classified
in [Ham13] using [Iha67]. As we assumed that GR is simple, M is irreducible. In this
case, and since n > 2, tight holomorphic totally geodesic maps HnC →M exist if and
only GR = SU(p, q) with q > pn or GR = E6(−14) if n = 2. Moreover if GR = E6(−14)

they are also deduced one from another by composition by an element of GR.

Remark 5.9. — There is a small inaccuracy in [Ham13], where it is said that there
are two “tight regular” (in the terminology of this paper) maximal noncompact sub-
algebras of e6(−14) in which su(1, 2) can be tightly embedded. In fact, only su(2, 4) ⊂
e6(−14) is a maximal subalgebra for these properties. This was confirmed to us by the
author.

We assume that GR ' E6(−14) and we now show that there is a morphism of
groups ϕ : SU(1, 2) → GR such that f is ϕ-equivariant. The application f is given
by a morphism of Lie algebras su(1, 2) → su(2, 4) → e6(−14). As explained in [Iha67,
§4.5], the inclusion su(2, 4)→ e6(−14) is the inclusion of the Lie algebra u whose root
system is generated by β1, β3, β4, β2, γ, where the βi’s are the simple roots (we use
Bourbaki’s notations for the simple roots, whereas Ihara has different notations) and
γ = β2 + β3 + 2β4 + 2β5 + β6.

To show the existence of our morphism ϕ, it is enough to show that the subgroup
UR ⊂ GR whose Lie algebra is u is isomorphic to SU(2, 4). Since, by [Iha67, §4.5], u '
su(2, 4), it is enough to show that the complexification U of UR is simply connected.
To prove this, we show that for TU ⊂ U a maximal torus, the characters of TU are all
the weights of the root system of U .

Since G is simply connected, all the fundamental weights of its root system de-
fine characters of T , and those characters restrict to some characters of TU . It is
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thus enough to show that the fundamental weights for U can be expressed as linear
combinations of the restrictions of the fundamental weights for G. The fundamental
weights corresponding to the roots β1, β3, β4, β2, γ are the restriction of the weights
$1, $3 − 2$6, $4 − 3$6, $2 − 2$6, $6 respectively. This proves that UR ' SU(2, 4).

This proves all the assertions of Theorem A except the uniqueness of the harmonic
map HnC →M that is ρ-equivariant. To prove it, we need to have a closer look at f . We
know that f is equivariant with respect to a morphism of Lie groups ϕ : SU(1, n)→ GR
and that up to conjugacy of ρ, we may assume that f and ϕ are as follows:

– for GR = SU(p, q) with q > pn, by [KM08, §3.1] (see also [KM17, Prop. 4.10],
or [Ham13]), ϕ is the composition

SU(1, n) ↪
diag−−−−→ SU(1, n)p ↪−→ SU(p, pn) ↪−→ SU(p, q) ;

– for GR = E6(−14) and n = 2, by [Ham13] and the discussion above, ϕ is the
composition

SU(1, 2) ↪
diag−−−−→ SU(1, 2)2 ↪−→ SU(2, 4) ↪−→ E6(−14).

In both cases, the image N of f in M = GR/KR is the orbit of o = KR under
HR := ϕ(SU(1, n)) ⊂ GR.

We now describe the centralizer ZR of HR in GR. In case GR = SU(p, q), let CR
denote the group U(p) × U(q − pn) and let χ : CR → U(1) be the character defined
by χ(x, y) = det(x)n+1 · det(y). In case GR = E6(−14), let CR = U(2) × U(2) and let
χ : CR → U(1) be the character defined by χ(x, y) = det(x)21 · det(y)6. Then:

Lemma 5.10. — The centralizer ZR of HR in GR is a subgroup of KR (hence it is
compact). It is isomorphic to the kernel of χ in CR.

Proof. — In the case of SU(p, q), the description of ϕ given above shows that the
standard representation Cp+q of SU(p, q), when seen as a representation of SU(1, n)

via ϕ, splits as
Cp+q = Cp+pn ⊕ Cr = C1+n ⊗ Cp ⊕ Cr,

where C1+n is the standard representation of SU(1, n), r = q − pn, and Cp and Cr

are trivial representations of SU(1, n). To conclude, we argue as follows. Let g ∈ ZR.
Then g yields an endomorphism of the HR-module C1+n ⊗Cp ⊕Cr. Since by Schur’s
lemma such an endomorphism will preserve isotypic factors, we see that g must pre-
serve the factors C1+n ⊗ Cp and Cr. Moreover its restriction to C1+n ⊗ Cp belongs
to U(p, pn) and so by Schur lemma again it must act by an element of U(p), so that
it belongs to CR. Now, the determinant of an element (x, y) ∈ U(p)×U(q − pn) con-
sidered as an element in U(C1+n ⊗Cp ⊕Cr) is det(x)n+1 · det(y), which implies that
χ(x, y) = 1.

In the case of E6(−14), we use a model given by Manivel in [Man06, Ex. 3 p. 464]
of the 27-dimensional representation E. There is a subgroup in E6(−14) isomorphic
to SU(2, 4) × SU(2) and E splits as ∧2U ⊕ U ⊗ A, where U (resp. A) is the natu-
ral representations of SU(2, 4) (resp. SU(2)) of complex dimension 6 (resp. 2). Here
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we restrict further to SU(1, 2) × SU(2), where the first factor SU(1, 2) is diagonally
embedded in SU(2, 4), meaning that the representation U splits as V ⊗ B, with V
the natural 3-dimensional representation of SU(1, 2) and B the trivial 2-dimensional
representation. We get

E ' ∧2(V⊗ B)⊕ V⊗ A⊗ B ' ∧2V⊗ S2B⊕ S2V⊗ ∧2B⊕ V⊗ A⊗ B.

As in the case of SU(p, q), an element g in the centralizer of HR will yield an
HR-equivariant endomorphism, and will preserve each of these factors, so that it
belongs to GL(A)×GL(B). Since it is an element of the group E6(−14), one sees that
it must be given by an element in U(A)×U(B).

The computation of the character χ is done as follows. If f = (x, y) ∈ U(A)×U(B),
then the determinant of the action of f on E is the product of the determinants of the
actions of f on ∧2(V⊗B) and on V⊗A⊗B. The action on V⊗A⊗B has determinant
det(x)6 det(y)6, and the action on ∧2(V⊗ B) has determinant det(y)15. �

Remark 5.11. — The compactness of ZR is proved in greater generality in [BIW09,
Cor. 4].

Lemma 5.12. — The pointwise stabilizer of N = f(HnC) in GR is exactly ZR. The
stabilizer of N in GR is the almost direct product HR · ZR.

Proof. — Let o = KR ∈ N be the base point of M . Let us denote by Fix(N) ⊂ GR
the subgroup of elements which fix all the elements in N . We want to prove that
Fix(N) = ZR. We have an inclusion ZR ⊂ Fix(N). Indeed, if h ∈ HR and z ∈ ZR,
then z ·o = o since ZR ⊂ KR. Thus, since z and h commute, z ·(h ·o) = h ·(z ·o) = h ·o.

The subgroup HR may be defined referring only to N as follows. Let gR = kR⊕mR
be the Cartan decomposition of gR. The tangent space ToN identifies with a subspace
of mR that we denote by nR. The space nR defines a Lie triple system, so that hR :=

[nR, nR] ⊕ nR ⊂ gR is a Lie subalgebra. Then, HR is the connected Lie group of GR
with Lie algebra hR.

For the reverse inclusion we need to prove that Fix(N) ⊂ ZR. It follows from
the given description of HR that HR is normalized by Fix(N). Let g ∈ Fix(N) and
h ∈ HR. Then the commutator ghg−1h−1 belongs to HR and acts trivially on N .
Thus, it belongs to the center of HR. Since this center is finite, the connectedness
of HR implies that ghg−1h−1 is the neutral element. Therefore g centralizes HR, so it
belongs to ZR.

Since the automorphism group of N is isogenous to HR, the second assertion of the
Lemma follows from the first. �

Remark 5.13. — Lemmas 5.10 and 5.12 fix a mistake in the description given
in [KM08, §3.1.2] of the stabilizer of N in the SU(p, q) case.

Proof of Corollary B. — The facts that ρ is discrete and faithful and that ρ(Γ) acts
cocompactly on N follow from the ρ-equivariance of the totally geodesic embedding f .
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The reductivity of ρ has been already asserted and the compactness of ZR was estab-
lished in Lemma 5.10. Now, given γ ∈ Γ, the equivariance of f w.r.t. ρ and ϕ means
that ρ(γ) and ϕ(γ) have the same action on N . We let ρcpt(γ) = ρ(γ)ϕ(γ)−1. This is
an element of the pointwise stabilizer of N , which is equal to the centralizer ZR of HR
by Lemma 5.12. Since ϕ(γ) ∈ HR by definition of ϕ, the elements ϕ(γ) and ρcpt(γ)

commute. It follows that ϕ(γ) and ρ(γ) commute, and that ρcpt is a morphism of
groups. �

Proof of the uniqueness of f . — By the uniqueness statement for tight holomorphic
totally geodesic maps HnC →M , we know that if f ′ : HnC →M is another ρ-equivariant
harmonic map, then there exists g ∈ GR such that f ′ = g ◦ f . By ρ-equivariance of f
and f ′, we have that

ρ(γ) ◦ g(x) = g ◦ ρ(γ)(x), ∀ γ ∈ Γ and ∀x ∈ N.

It follows that g ·N is ρ(Γ)-stable. Thus the map

dg·N : N −→ R
x 7−→ inf

y∈g·N
d(x, y),

where d denotes the distance in M , is invariant under the cocompact action of ρ(Γ)

on N . It is therefore bounded. Since it is moreover convex ([BH99, p. 178]), it is
constant, equal to a, say. In the same way, the map

dN : g ·N −→ R
x 7−→ inf

y∈N
d(x, y)

is also constant equal to a.
If a > 0 it follows from the sandwich lemma ([BH99, p. 182]) that the convex hull

of N ∪ g ·N in M is isometric to the product N × [0, a]. This implies that there exists
a tangent vector v ∈ ToM ' mR, orthogonal to ToN ' nR such that [v, u] = 0 for
all u ∈ nR. Indeed the norm (for the Killing form) of [v, u] ∈ gR is up to a constant
the sectional curvature of the plane generated by the tangent vectors u and v, which
is 0 since they belong to different factors of a Riemannian product. In this case the
1-parameter group of transvections along the geodesic defined by v is included in the
centralizer ZR of HR, a contradiction since ZR is compact.

Hence a = 0 and g · N = N . Therefore there exist h ∈ HR and z ∈ ZR such that
g = hz = zh. The above commutation relation between ρ(γ) = ϕ(γ)ρcpt(γ) and g

on N means that ρ(γ)gρ(γ)−1g−1 fixes N pointwise and hence belongs to ZR by
Lemma 5.12. Hence for all γ ∈ Γ we obtain that ϕ(γ)hϕ(γ)−1h−1 belongs to ZR ∩HR
(recall that ρcpt(γ) ∈ ZR). Now Γ is Zariski dense in SU(1, n) by the Borel density
theorem and we deduce that ϕ(x)hϕ(x)−1h−1 ∈ ZR ∩HR for all x ∈ SU(1, n). Since
ZR∩HR is finite and SU(1, n) is connected, h ∈ ZR. Therefore g ∈ ZR and f ′ = f . �

Proof of the uniqueness of ϕ. — Since f is well-defined, it makes sense to claim that
there is a unique morphism ϕ : SU(1, n)→ GR such that f is equivariant with respect
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to ϕ. We prove that this statement holds: let ϕ1, ϕ2 be two such morphisms. We get
by equivariance, for x ∈ HnC and g ∈ SU(1, n):

f(g · x) = ϕ1(g) · f(x) = ϕ2(g) · f(x).

Thus, setting ψ(g) = ϕ2(g)−1ϕ1(g), ψ(g) is in the pointwise stabilizer of N . It follows
from Lemma 5.12 that ψ(g) commutes with ϕ1(g′) and ϕ2(g′), for all g′ ∈ SU(1, n).
Thus, ψ : SU(1, n) → GR is a morphism of groups, and ψ(g1)ψ(g2) = ψ(g2)ψ(g1)

for all g1, g2 in SU(1, n). It follows from the fact that SU(1, n) is simple that ψ is
trivial. �

Remark 5.14. — If we drop the assumption that the group of complex points
G = G(C) of the algebraic group G is simply connected, then E might no longer be a
representation of G and our constructions cannot be made. However, in this case, let-
ting G̃ be the simply connected cover of G and E the cominuscule representation of G̃
that we have been considering, there is an integer k such that E⊗k is a representation
of G. The arguments given in the article can be adapted with the representation E⊗k

instead of E, and the main results (Theorem 4.6, Theorem A, Corollary B and
Proposition C) remain true without the simple connectedness assumption.

Proof of Remark 5.14. — We denote by Zmax the maximum value 〈Λ, z〉 for a weight Λ

inX(E⊗k). Since such a weight is of the form χ1+· · ·+χk for some weights χi ∈ X(E),
we have Zmax = kzmax. Similarly the highest value of 〈Λ, h〉 for Λ ∈ X(E⊗k) is kr. We
define as in Definition 2.13 and 2.25 the subspaces E⊗ki and Vkri by the relations

E⊗ki =
⊕

Λ:〈Λ,z〉=kzmax−2i

E⊗kΛ and Vkri =
⊕

Λ∈X(E⊗ki ):
〈Λ,h〉=kr−2i

Eχ.

We set Vkr =
⊕

iVkri . If Λ = χ1 + · · ·+χk ∈ X(E⊗ki ), then for all ` we have χ` ∈ Ej`
with integers j` such that i = j1 + · · ·+ jk. We have the inequality 〈χ`, h〉 > r − 2j`
by Proposition 2.26. Thus, if E⊗kΛ ⊂ Vkri , this implies that for each `, Eχ` ⊂ Vr` . We
deduce that Vkr = (Vr)⊗k. It follows that at the level of sheaves, we will be able to
define a subsheaf of E⊗k by the same trick as in (2.2). Since passing from E to E⊗k

and from Vr to (Vr)⊗k just multiplies the slopes by k, we get the same Milnor-Wood
inequality. In the case of equality, the arguments of Section 5.2 are still valid and we
get that γ = 0, proving that the map f is holomorphic. �

Remark 5.15. — Alternatively, it is possible to deal with non simply connected
groups G as follows. Let G̃ be the universal cover of G, G̃R = G̃(R)◦, and G̃ = G̃(C).
Then G̃ is simply connected (G̃R might not be). By Selberg’s lemma, there is a finite
index sublattice Γ′ ⊂ Γ such that the representation ρ : Γ→ GR restricted to Γ′ lifts
to G̃R, see e.g. [KM10, Lem. 2.2]: we have ρ′ : Γ′ → G̃R. Since τ(ρ′) = |Γ/Γ′| τ(ρ)

and vol(Γ′\HnC) = |Γ/Γ′| vol(Γ\HnC), we may use our results for ρ′ and deduce the
Milnor-Wood inequality for ρ, which is maximal if and only if ρ′ is. Moreover, in the
maximal case, we have by [Cor88] a ρ-equivariant harmonic map f : HnC → M and,
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by our results, a unique ρ′-equivariant harmonic map f ′ : HnC → M . Since f is also
ρ′-equivariant, by uniqueness, we have f = f ′ and our results follow.

Remark 5.16. — If Γ has torsion, then by Selberg’s Lemma (see [Rat06, p. 327] or
[Sel60]) there exists a finite index torsion free normal subgroup Γ′ of Γ. Let ρ′ denotes
the restriction of ρ to Γ′. Since τ(ρ′) = |Γ/Γ′| τ(ρ) and vol(Γ′\HnC) = |Γ/Γ′| vol(Γ\HnC),
ρ : Γ→ GR is maximal if and only if ρ′ : Γ′ → GR is. Then, in view of the foregoing,
Theorem A and Corollary B hold for ρ′. Therefore there exist a unique ρ′-equivariant
map f ′ : HnC →M . Now if γ ∈ Γ, the map f ′γ := ρ(γ)−1 ◦ f ′ ◦ γ is also harmonic and
the fact that Γ′ is normal in Γ implies that it is also ρ′-equivariant. Hence f ′ = f ′γ for
all γ ∈ Γ, i.e., f ′ is in fact ρ-equivariant and Theorem A and Corollary B also hold
for ρ.

References
[AMRT10] A. Ash, D. Mumford, M. Rapoport & Y.-S. Tai – Smooth compactifications of locally sym-

metric varieties, 2nd ed., Cambridge University Press, Cambridge, 2010.
[BGPR17] O. Biquard, O. García-Prada & R. Rubio – “Higgs bundles, the Toledo invariant and the

Cayley correspondence”, J. Topology 10 (2017), no. 3, p. 795–826.
[Bor69] A. Borel – Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[Bou68] N. Bourbaki – Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie.

Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par
des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles,
vol. 1337, Hermann, Paris, 1968.

[BGPG03] S. B. Bradlow, O. Garcia-Prada & P. B. Gothen – “Surface group representations and
U(p, q)-Higgs bundles”, J. Differential Geom. 64 (2003), p. 111–170.

[BGPG06] , “Maximal surface group representations in isometry groups of classical Hermitian
symmetric spaces”, Geom. Dedicata 122 (2006), p. 185–213.

[BH99] M. R. Bridson & A. Haefliger – Metric spaces of non-positive curvature, Grundlehren
Math. Wiss., vol. 319, Springer-Verlag, Berlin, 1999.

[BM15] A. S. Buch & L. C. Mihalcea – “Curve neighborhoods of Schubert varieties”, J. Differential
Geom. 99 (2015), no. 2, p. 255–283.

[BI07] M. Burger & A. Iozzi – “Bounded differential forms, generalized Milnor-Wood inequality
and an application to deformation rigidity”, Geom. Dedicata 125 (2007), p. 1–23.

[BIW09] M. Burger, A. Iozzi & A. Wienhard – “Tight homomorphisms and Hermitian symmetric
spaces”, Geom. Funct. Anal. 19 (2009), no. 3, p. 678–721.

[BIW10] , “Surface group representations with maximal Toledo invariant”, Ann. of
Math. (2) 172 (2010), p. 517–566.

[Che97] C. Chevalley – The algebraic theory of spinors and Clifford algebras, Collected works,
vol. 2, Springer-Verlag, Berlin, 1997.

[Cor88] K. Corlette – “Flat G-bundles with canonical metrics”, J. Differential Geom. 28 (1988),
p. 361–382.

[Del80] P. Deligne – “La conjecture de Weil. II”, Publ. Math. Inst. Hautes Études Sci. 52 (1980),
p. 137–252.

[FH91] W. Fulton & J. Harris – Representation theory. A first course, Graduate Texts in Math.,
vol. 129, Springer-Verlag, New York, 1991.

[Gro94] B. H. Gross – “A remark on tube domains”, Math. Res. Lett. 1 (1994), no. 1, p. 1–9.
[GW12] O. Guichard & A. Wienhard – “Anosov representations: domains of discontinuity and

applications”, Invent. Math. 190 (2012), p. 357–438.
[Ham13] O. Hamlet – “Tight holomorphic maps, a classification”, J. Lie Theory 23 (2013), no. 3,

p. 639–654.
[HC56] Harish-Chandra – “Representations of semisimple Lie groups. VI. Integrable and square-

integrable representations”, Amer. J. Math. 78 (1956), p. 564–628.

J.É.P. — M., 2019, tome 6



280 P.-E. Chaput & J. Maubon

[Hel01] S. Helgason – Differential geometry, Lie groups, and symmetric spaces, Graduate Stud-
ies in Math., vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected
reprint of the 1978 original.

[Her91] L. Hernández – “Maximal representations of surface groups in bounded symmetric do-
mains”, Trans. Amer. Math. Soc. 324 (1991), p. 405–420.

[Hit87] N. Hitchin – “The self-duality equations on a Riemann surface”, Proc. London Math.
Soc. 55 (1987), p. 59–126.

[Hit92] , “Lie groups and Teichmüller space”, Topology 31 (1992), p. 449–473.
[Hum75] J. E. Humphreys – Linear algebraic groups, Graduate Texts in Math., vol. 21, Springer,

New York, 1975.
[Igu70] J.-i. Igusa – “A classification of spinors up to dimension twelve”, Amer. J. Math. 92

(1970), p. 997–1028.
[Iha67] S.-i. Ihara – “Holomorphic imbeddings of symmetric domains”, J. Math. Soc. Japan 19

(1967), p. 261–302.
[Kna02] A. W. Knapp – Lie groups beyond an introduction, 2nd ed., Progress in Math., vol. 140,

Birkhäuser Boston, Inc., Boston, MA, 2002.
[Kos12] B. Kostant – “The cascade of orthogonal roots and the coadjoint structure of the nilradical

of a Borel subgroup of a semisimple Lie group”,Moscow Math. J. 12 (2012), no. 3, p. 605–
620.

[KM08] V. Koziarz & J. Maubon – “Representations of complex hyperbolic lattices into rank 2
classical Lie groups of Hermitian type”, Geom. Dedicata 137 (2008), p. 85–111.

[KM10] , “The Toledo invariant on smooth varieties of general type”, J. reine angew.
Math. 649 (2010), p. 207–230.

[KM17] , “Maximal representations of uniform complex hyperbolic lattices”, Ann. of
Math. (2) 185 (2017), p. 493–540.

[Man06] L. Manivel – “Configurations of lines and models of Lie algebras”, J. Algebra 304 (2006),
no. 1, p. 457–486.

[MX02] E. Markman & E. Z. Xia – “The moduli of flat PU(p, p)-structures with large Toledo
invariants”, Math. Z. 240 (2002), p. 95–109.

[McG02] W. M. McGovern – “The adjoint representation and the adjoint action”, in Algebraic
quotients. Torus actions and cohomology. The adjoint representation and the adjoint
action, Encyclopaedia Math. Sci., vol. 131, Springer, Berlin, 2002, p. 159–238.

[Mok89] N. Mok – Metric rigidity theorems on Hermitian locally symmetric manifolds, Series in
Pure Mathematics, vol. 6, World Scientific, Teaneck, NJ, 1989.

[Mur59] S. Murakami – “Sur certains espaces fibrés principaux différentiables et holomorphes”,
Nagoya Math. J. 15 (1959), p. 171–199.

[NT76] H. Nakagawa & R. Takagi – “On locally symmetric Kaehler submanifolds in a complex
projective space”, J. Math. Soc. Japan 28 (1976), no. 4, p. 638–667.

[PS69] I. Piatetski-Shapiro – Automorphic functions and the geometry of classical domains,
Mathematics and its applications, vol. 8, Gordon and Breach Science Publishers, New
York-London-Paris, 1969.

[Rat06] J. Ratcliffe – Foundations of hyperbolic manifolds, Springer, New York, 2006.
[RRS92] R. Richardson, G. Röhrle & R. Steinberg – “Parabolic subgroups with abelian unipotent

radical”, Invent. Math. 110 (1992), no. 3, p. 649–671.
[Roy80] H. L. Royden – “The Ahlfors-Schwarz lemma in several complex variables”, Comment.

Math. Helv. 55 (1980), no. 4, p. 547–558.
[Sam78] J. H. Sampson – “Some properties and applications of harmonic mappings”, Ann. Sci.

École Norm. Sup. (4) 11 (1978), p. 211–228.
[Sat80] I. Satake – Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4,

Princeton University Press, Princeton, NJ, 1980.
[Sel60] A. Selberg – “On discontinuous groups in higher-dimensional symmetric spaces”, in Con-

tributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata
Institute of Fundamental Research, Bombay, 1960, p. 147–164.

J.É.P. — M., 2019, tome 6



Maximal representations, a uniform approach 281

[SZ10] M. Sheng & K. Zuo – “Polarized variation of Hodge structures of Calabi-Yau type and
characteristic subvarieties over bounded symmetric domains”, Math. Ann. 348 (2010),
no. 1, p. 211–236.

[Sim88] C. Simpson – “Constructing variations of Hodge structure using Yang-Mills theory and
applications to uniformization”, J. Amer. Math. Soc. 1 (1988), p. 867–918.

[Sim92] , “Higgs bundles and local systems”, Publ. Math. Inst. Hautes Études Sci. 75
(1992), p. 5–95.

[Siu80] Y.-T. Siu – “The complex-analyticity of harmonic maps and the strong rigidity of compact
Kähler manifolds”, Ann. of Math. (2) 112 (1980), p. 73–111.

[SV00] T. A. Springer & F. D. Veldkamp – Octonions, Jordan algebras and exceptional groups,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.

[SZ85] J. Steenbrink & S. Zucker – “Variation of mixed Hodge structure. I”, Invent. Math. 80
(1985), p. 489–542.

[Wol72] J. A. Wolf – “Fine structure of Hermitian symmetric spaces”, in Symmetric spaces (Short
Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and App. Math., vol. 8,
Dekker, New York, 1972, p. 271–357.

[Xia00] E. Z. Xia – “The moduli of flat PU(2, 1) structures on Riemann surfaces”, Pacific J. Math.
195 (2000), p. 231–256.

Manuscript received 28th April 2017
accepted 17th April 2019

Pierre-Emmanuel Chaput, Institut Élie Cartan de Lorraine, Université de Lorraine
Site de Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex
E-mail : pierre-emmanuel.chaput@univ-lorraine.fr
Url : http://www.iecl.univ-lorraine.fr/~Pierre-Emmanuel.Chaput/

Julien Maubon, Institut Élie Cartan de Lorraine, Université de Lorraine
Site de Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex
E-mail : julien.maubon@univ-lorraine.fr

J.É.P. — M., 2019, tome 6

mailto:pierre-emmanuel.chaput@univ-lorraine.fr
http://www.iecl.univ-lorraine.fr/~Pierre-Emmanuel.Chaput/
mailto:julien.maubon@univ-lorraine.fr

	1. Introduction
	2. Submodule of a cominuscule representation associated with a nilpotent element
	3. Higgs bundles on foliated Kähler manifolds
	4. The Milnor-Wood inequality
	5. Maximal representations
	References

