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EXTENSIONS OF SCHREIBER’S THEOREM ON

DISCRETE APPROXIMATE SUBGROUPS IN Rd

by Alexander Fish

Abstract. — In this paper we give an alternative proof of Schreiber’s theorem which says that
an infinite discrete approximate subgroup in Rd is relatively dense around a subspace. We also
deduce from Schreiber’s theorem two new results. The first one says that any infinite discrete
approximate subgroup in Rd is a restriction of a Meyer set to a thickening of a linear subspace
in Rd, and the second one provides an extension of Schreiber’s theorem to the case of the
Heisenberg group.

Résumé (Extensions du théorème de Schreiber sur les sous-groupes approximatifs discrets de Rd)
Dans cet article, nous donnons une autre démonstration du théorème de Schreiber : un sous-

groupe approximatif discret infini de Rd est relativement dense au voisinage d’un sous-espace.
Nous déduisons aussi du théorème de Schreiber deux nouveaux résultats : le premier affirme
qu’un sous-groupe approximatif discret infini de Rd est la restriction d’un ensemble de Meyer
à un épaississement d’un sous-espace linéaire de Rd, et le second propose une extension du
théorème de Schreiber au cas du groupe de Heisenberg.
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1. Introduction

In this paper we study approximate subgroups. Recall that for a group H, a set
Λ ⊂ H is called an approximate subgroup if there exists a finite set F ⊂ H such that
Λ−1Λ ⊂ FΛ, where Λ−1 = {λ−1 | λ ∈ Λ}. In the case where H is non-commutative,
we will also assume as a part of the definition that Λ contains the identity element
of H and Λ is symmetric:

– eH ∈ Λ,
– Λ−1 = Λ.
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150 A. Fish

Any finite set in a groupH is contained in an approximate subgroup. An interesting
question of classification of approximate subgroups arises if we control the cardinality
of F , while the cardinality of Λ is finite but much larger than of the set of translates F ,
and in this case we say that Λ has a small doubling. The classification of finite sets
having small doubling for the ambient group H = Z has been obtained by Freiman
in his seminal work [3]. These results have been eventually extended to all abelian
groups by Green and Ruzsa [4], and to arbitrary ambient groups by Hrushovski [5],
and by Breuillard, Green and Tao [2].

We will investigate here infinite discrete approximate subgroups in Rd and in the
Heisenberg group. Infinite discrete relatively dense approximate subgroups in Rd,
Meyer sets, have been studied extensively by Meyer [7], Lagarias [6], Moody [8] and
many others. It has been proved by Meyer [7] that a discrete relatively dense approx-
imate subgroup in Rd is a subset of a model (cut and project) set [8]. Thus, despite
a possible aperiodicity of Meyer sets, they all arise from lattices in (possibly) much
higher dimensional spaces. Very recently, there was a spark of interest in the exten-
sion of Meyer theory beyond the abelian case. A foundational work of Björklund and
Hartnick [1] introduced the notion of an approximate lattice within Lie groups. The
approximate lattices behave similarly to genuine lattices, and therefore, they are a
good analog of Meyer sets in the non-abelian case.

The paper addresses a natural question of what kind of structure possesses an in-
finite discrete approximate subgroup Λ in Rd (or in the Heisenberg group) which is
not relatively dense in the whole space. It has been almost forgotten by the math-
ematical community, that Schreiber in his thesis in 1972 [9] proved that in the real
case Λ has to be relatively dense around a subspace, see definition 2.1. We provide an
alternative, more geometric, proof of Schreiber’s result. We also extend his theorem
and show that any discrete infinite approximate subgroup in Rd is a subset of a Meyer
set. In addition, we extend Schreiber’s theorem to the case where the ambient space
is the Heisenberg group.

Remark 1.1. — The first draft of the paper dealt only with the real case (and had
a different title). It was not known to the author that Theorem 2.2 was already
proved by Schreiber. The author thanks Simon Machado for providing the reference
to Schreiber’s thesis.

Remark 1.2. — After the first draft of the paper was released, Simon Machado has
obtained the analog of Theorem 2.7 to all connected real nilpotent groups.

Acknowledgment. — The author is grateful to American Institute of Mathematics
(AIM) and the organisers of the workshop on “Nonstandard methods in combinatorial
number theory” at AIM, where this project has been initiated. We also thank Terrence
Tao who suggested the statement of Theorem 2.4 in the case d = 2. We would like also
to thank Benji Weiss for fruitful discussions and anonymous referees that made very
invaluable comments on the first draft of the paper, and, in particular, asked a question
that led to Theorem 2.3. The paper has been influenced by Michael Björklund, and,
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particularly, by his series of lectures on quasi-crystals given at Sydney University in
April 2016. We thank Michael for sharing his mathematical ideas with us. Finally, the
author thanks Simon Machado for sharing with him his insights on the topic.

2. Main results

We will always assume that the underlying group H possesses a left H-invariant
metric dH , and for any r > 0 and h ∈ H we will denote by

Br(h) = {g ∈ H | dH(g, h) 6 r}

the ball of radius r around h. We will call a set Λ ⊂ H discrete if for every point
` ∈ Λ there exists δ = δ(`) such that Bδ(`) ∩ Λ = {`}. It is well known, that if
Λ ⊂ H is a discrete approximate subgroup, then Λ is uniformly discrete, i.e., there
exists δ > 0 such that for all ` ∈ Λ we have Bδ(`) ∩ Λ = {`}. Indeed, Λ is uniformly
discrete if and only if Λ−1Λ does not contain identity eH as an accumulation point.
Since eH ∈ Λ−1Λ, and Λ−1Λ is discrete, it follows that eH is not an accumulation
point of Λ−1Λ, and therefore Λ is uniformly discrete. We will call Λ relatively dense
(or R-relatively dense) if there exists R > 0 such that for every h ∈ H we have
BR(h) ∩ Λ 6= ∅.

The following notion will play a key role in our paper.

Definition 2.1. — Let H ′ be a subgroup of the group H. We will say that Λ ⊂ H is
relatively dense around H ′ if there exists R > 0 such that:

– For every h∈H ′ the ballBR(h) of radiusR and centre h intersects non-trivially Λ.
– The R-neighbourhood of H ′ in H contains Λ, i.e.,

Λ ⊂
⋃

h∈H′
BR(h).

2.1. Discrete approximate subgroups in Rd. — In this paper we give an alterna-
tive proof of Schreiber’s theorem [9] that discrete approximate subgroups in Rd are
relatively dense around some subspace.

Theorem 2.2 (Schreiber, 1972). — Let Λ ⊂ Rd be an infinite discrete approximate
subgroup. Then there exists a linear subspace L ⊂ Rd such that Λ is relatively dense
around L.

As a corollary of Theorem 2.2 we obtain a complete characterisation of infinite
approximate subgroups in Rd in terms of Meyer sets. Recall, that a set in Λ ⊂ Rd is
a Meyer set if

– Λ is discrete and relatively dense in Rd,
– There exists a finite set F ⊂ Rd such that Λ− Λ ⊂ Λ + F .

Theorem 2.3. — A set Λ ⊂ Rd is an infinite discrete approximate subgroup if and
only if there exists a Meyer set Λ′ ⊂ Rd, a subspace L ⊂ Rd and R > 0 such that

Λ = Λ′ ∩ (L+BR(0Rd)) ,

and Λ′ is R/2-relatively dense in Rd.

J.É.P. — M., 2019, tome 6
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As another corollary of Theorem 2.2, we obtain a complete characterisation of
infinite approximate subgroups in Zd.

Theorem 2.4. — Let Λ be a subset in Zd. The set Λ is an infinite approximate sub-
group if and only if there exists a linear subspace L ⊂ Rd such that Λ is relatively
dense around L.

A third application of Theorem 2.2 is that any discrete approximate subgroup in Rd

is “very close” to being a Meyer set on a subspace of Rd. More precisely, we prove the
following result.

Proposition 2.5. — Let Λ ⊂ Rd be an infinite discrete approximate subgroup. Then
there exist a subspace L ⊂ Rd and R > 0 such that:

– The orthogonal projection ΛL of Λ on the subspace L is a Meyer set in L, i.e.,
ΛL is discrete relatively dense approximate subgroup in L,

– Λ ⊂ ΛL +BR(0Rd).

The following example shows that an infinite discrete approximate subgroup Λ is
not necessarily subset of finitely many translates of ΛL.

Example 2.6. — Let L = Span((1,
√

3)) ⊂ R2, and let Λ ⊂ R2 be the set of all
(m,n) ∈ Z2 such that dist((m,n), L) 6 1. Then Λ is discrete since it is a subset of
the integer lattice, and Λ− Λ ⊂ Λ + F for a finite set(1) F ⊂ Z2. But the orthogonal
projection of Λ on the orthogonal complement of L in R2 is infinite, since the slope
of L is irrational. This implies that for any finite set F ⊂ R2 we have

Λ 6⊂ ΛL + F,

where ΛL is the orthogonal projection of Λ onto the line L.

2.2. Discrete approximate subgroups in the Heisenberg group. — For any n > 1

we define the Heisenberg group H2n+1 by the following procedure. Assume that
ω : R2n × R2n → R is a symplectic form, i.e., ω is a bilinear, anti-symmetric and
non-degenerate form. Then the Heisenberg group H2n+1 = R2n oω R is defined by
H2n+1 = {(v, z) | v ∈ R2n, z ∈ R}, and the multiplication is given by

(v1, z1) · (v2, z2) =
(
v1 + v2, z1 + z2 +

1

2
ω(v1, v2)

)
.

We will denote by V the symplectic space R2n, and by Z the abelian subgroup
Z = {(0, z) | z ∈ R}. The subgroup Z is the centre of H2n+1. The Heisenberg group
H2n+1 is 2-step nilpotent. Indeed, for any two elements h1 = (v1, z1), h2 = (v2, z2) ∈
H2n+1, the commutator of h1 and h2 satisfies

(1) [h1, h2] = (0, ω(v1, v2)).

(1)We can take F = Z2 ∩B2(0R2 ).

J.É.P. — M., 2019, tome 6
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It is easy to see that the Heisenberg group can be equipped with a left invariant metric.
In the topology defined by this metric, the sequence (vn, zn) in H2n+1 converges to
(v, z) if and only if vn → v in V and zn → z in Z.

We extend Schreiber’s theorem to the Heisenberg case.

Theorem 2.7. — Let Λ ⊂ H2n+1 be an infinite discrete approximate subgroup. Then
there exists a connected non-trivial subgroup H ′ in H2n+1 such that Λ is relatively
dense around H ′. Moreover, if H ′ is non-abelian, then the projection of Λ onto V is
discrete.

Let us denote by πV the projection from H2n+1 onto V , i.e., πV ((v, z)) = v for any
(v, z) ∈ H2n+1. The following example shows that we cannot improve the statement
of the theorem.

Example 2.8. — Let Λ = {(m
√

5 + n
√

3, 0),m) | m,n ∈ Z}. Then Λ is a discrete
subgroup in H3. It is clear that πV (Λ) is dense within L = R × {0} ⊂ V , and
therefore it is non-discrete.

It is easy to see that the projection on the Z-coordinate of a discrete approximate
subgroup is not necessarily discrete. Indeed, we can find lattices in H3 with a dense
set of the Z-coordinates.

Example 2.9. — It is easy to see that

Λ =
{(

(m,n),m
√

5 + 1
2Z
)
| m,n ∈ Z

}
is a discrete co-compact subgroup in H3 (equipped with the determinant on R2 as
the symplectic form). But the projection of Λ on Z is everywhere dense.

By the methods similar to the ones used to prove Theorem 2.7, we prove also the
following claim.

Proposition 2.10. — Let Λ ⊂ H2n+1 be a discrete approximate subgroup. If πV (Λ) is
relatively dense in V , then Λ is an approximate lattice, i.e., Λ is relatively dense in
H2n+1.

The analog of Theorem 2.3 is not possible in the Heisenberg group:

Proposition 2.11. — Let Λ = {(m
√

5 + n
√

3, 0),m) | m,n ∈ Z}. Then there is
no approximate lattice (discrete relatively dense approximate subgroup) in H3 which
contains Λ.

3. Discrete approximate subgroups in Rd

Let Λ ⊂ Rd be an approximate subgroup. By translating Λ if necessary, we can
assume that 0Rd ∈ Λ. Denote K = diam(F ). Since, for any two `1, `2 ∈ Λ we have
`1 − `2 ∈ Λ +F , this implies that there exists ` ∈ Λ with `1 − `2 ∈ BK(`). If, we take
`1 = 0, we obtain the following property of Λ:

(A) for every ` ∈ Λ there exists `′ ∈ BK(−`) ∩ Λ.
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By use of the property (A), if we take `2 ∈ Λ, then there exists `3 ∈ Λ such that
`3 ∈ BK(−`2). Also for every `1 ∈ Λ,there exists `4 ∈ Λ such that `1 − `3 ∈ BK(`4).
Finally, this implies that `1 + `2 ∈ B2K(`4). Thus, the following property holds for
any approximate subgroup Λ containing the neutral element:

(B) for any `1, `2 ∈ Λ there exists `′ ∈ B2K(`1 + `2) ∩ Λ.

We will call the property (A) the almost symmetry, and (B) the almost doubling. We
start with an easy observation which proves Theorem 2.2 in the case d = 1.

Proposition 3.1. — Let Λ ⊂ R be an infinite discrete approximate subgroup. Then Λ

is relatively dense.

Proof. — Assume that Λ ⊂ R is an infinite approximate subgroup. Take ` ∈ Λ with
` > 3K (which exists by uniform discreteness of Λ). By the almost doubling property
there exists `2 ∈ Λ with `2 ∈ [2` − 2K, 2` + 2K] ⊂ [` + K, 2` + 2K]. Similarly, there
exists `3 ∈ Λ∩B2K(`2+`). Therefore, `3 ∈ [`2+K, `2+`+2K]. Assume that we already
constructed `1 = `, `2, . . . , `n ∈ Λ satisfying that `m + K 6 `m+1 6 `m + ` + 2K for
m = 1, . . . , n− 1. Then there exists `n+1 ∈ Λ∩ [`n + `− 2K, `n + `+ 2K]. Therefore,
we constructed an increasing sequence in Λ ∩ R+ with bounded gaps. By almost
symmetry property of Λ, we also have in Λ the elements {−`′,−`′2, . . . ,−`′n, . . .} with
`′ ∈ BK(−`). This finishes the proof of the Proposition. �

A higher-dimensional case is much more subtle. An important role in the proof of
Theorem 2.2 will play the set of asymptotic directions of the points in Λ.

Definition 3.2. — Let Λ ⊂ Rd be a uniformly discrete infinite set. We call

D(Λ) =
{
u ∈ Sd−1 | there exists (`n) ∈ Λ with `n/‖`n‖ → u and ‖`n‖ → ∞

}
the set of asymptotic directions of Λ.

It is easy to see that D(Λ) is non-empty closed set. It will be very convenient to
us to introduce the subspace generated by D(Λ). Let L ⊂ Rd be the smallest linear
subspace with the property that D(Λ) ⊂ L. In other words, we have

L = Span(D(Λ)).

The next lemma is an important ingredient in the proof of Theorem 2.2.

Lemma 3.3. — Assume that Λ is an infinite discrete approximate subgroup. Let L =

Span(D(Λ)) be a proper subspace in Rd. Then there exists R > 0 (R = 3 · diam(F ))
such that

Λ ⊂
⋃
x∈L

BR(x).

Proof. — Let Λ ∈ Rd be an infinite discrete approximate subgroup, i.e., there exists
a finite set F ⊂ Rd with Λ − Λ ⊂ Λ + F . Denote K = diam(F ). For any ε > 0 and
any u ∈ Sd−1 we define the cone

Vε(u) = {tv | t > 0, v ∈ Sd−1 with 〈v, u〉 > 1− ε}.

J.É.P. — M., 2019, tome 6
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Let us take R = 3K. We claim that

Λ ⊂
⋃
x∈L

BR(x).

Indeed, if there exists ` ∈ Λ such that ` 6∈
⋃
x∈LBR(x), let us define u = `/‖`‖

and 1− ε =
√
‖`‖2 − 5K2/‖`‖. Then we construct a sequence `1, `2, `3, . . . in Λ with

`n →∞ and `n ∈ Vε(u). Since, clearly, we have

Vε(u) ∩ L = {0Rd},

this will imply the contradiction.
The construction is the same as in the proof of Proposition 3.1. Let us define `1 = `.

We find `2 ∈ B2K(`1 + `) ∩ Λ. The following calculation guarantees that `2 ∈ Vε(u):〈
`2/‖`2‖, u

〉
>

2‖`‖√
4‖`‖2 + 4K2

=
‖`‖√

‖`‖2 +K2
> 1− ε.

Also, it is clear that ‖`2‖ > ‖`1‖+K. Assume that we constructed a finite sequence
`1, `2, . . . , `n ∈ Λ with ‖`m+1‖ > ‖`m‖+K,m = 1, . . . , n−1, and `1, `2, . . . , `n ∈ Vε(u).
Then there exists `n+1 ∈ B2K(`n + `) ∩ Λ. Clearly, we have

‖`n+1‖ > ‖`n‖+K.

Finally, for any vector v ∈ Vε(u) we have

B2K(v + `) ⊂ Vε(u).

This will guarantee that `n+1 ∈ Vε(u). Indeed, if a vector v ∈ Vε(u), then v+Vε(u) ⊂
Vε(u), and therefore we have:

dist(v + `, ∂Vε(u)) > dist(v + `, ∂(v + Vε(u)))

= dist(`, ∂(Vε(u))) = ‖`‖(1− ε) =
√
‖`‖2 − 5K2 > 2K. �

Our next step in the proof of Theorem 2.2 is to construct a system of “basis”
vectors for Λ. Let L = Span(D(Λ)), and let R satisfy

(2) Λ ⊂
⋃
x∈L

BR(x).

Assume that dim(L) = k, where 1 6 k 6 d, and denote K = diam(F ). By the
definition of the set of asymptotic directions D(Λ), there exists ε > 0 such that for
every M > 0 there exist k elements `1, . . . , `k ∈ Λ satisfying the following properties:

– (ε-well spreadness) For all 1 6 i 6 k, any vi ∈ B2K(`i), and vj ∈ B2K(εj`j),
j 6= i, εj ∈ {−1, 1}, let us denote by γi the angle between vi and the subspace

V i = Span{v1, . . . , vi−1, vi+1, . . . , vk}.

Then we require:
ε 6 γi 6 π − ε,

– (no short vectors) For every 1 6 i 6 k we have

‖`i‖ >M.
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By almost symmetry of Λ, we can also find the “reflected” vectors {`′1, . . . , `′k} ⊂ Λ

which satisfy the property

`′i ∈ BK(−`i), i = 1, . . . , k.

Let us denote F = {`1, . . . , `k, `′1, . . . , `′k}. By Lemma 3.3 there exists R > 0 such
that Λ ⊂ LR, where LR =

⋃
x∈LBR(x) is the R-thickening of the subspace L. Let us

assume that R > K. Finally, for any choice of M > 0, let us call the corresponding
system F the (M, ε, L,R)-system in Rd, and denote

T (F) = max{‖`i‖ | i = 1, . . . , k}.

Our next claim is the following.

Proposition 3.4. — Let ε > 0. There exist δ = δ(ε) > 0 and M0 such that if F is a
(M, ε, L,R)-system for a subspace L of Rd, M >M0 and R > K, then for all x ∈ LR
with ‖x‖ large enough there exists ` ∈ F such that for every v ∈ BK(`) we have

‖x− v‖ 6 ‖x‖ − δM

4
.

Proof. — Let us first assume on the system F the following:
– F is symmetric, i.e., if ` ∈ F then −` ∈ F ,
– F ⊂ L.

We will also assume that x ∈ L and v ∈ F .
Our next step is to observe that there exists δ = δ(ε) > 0 such that for any

z ∈ S(L) = {x ∈ L | ‖x‖ = 1} there exists v ∈ F with |〈z, v〉| > δ‖v‖. Indeed, we
can assume that all the `i ∈ F are of length one. Denote by S′ the set of k-tuples
{`1, . . . , `k} in S(Rd) which are ε-well spread. Since it is a closed condition, the set S′
is closed. By compactness of

U = {(z, `1, . . . , `k) | z ∈ Span(`1, . . . , `k), ‖z‖ = 1, (`1, . . . , `k) ∈ S′}

it follows that there exist (`′1, . . . , `
′
k) ∈ S′, z0 ∈ Span(`′1, . . . , `

′
k) with ‖z0‖ = 1, and

1 6 i0 6 k such that

min
{z,`1,...,`k}∈U

max
16i6k

|〈z, `i〉| = max
16i6k

|〈z0, `′i〉| = |〈z0, `′i0〉|.

Obviously, the right hand side is positive, since otherwise, we will have that z0 6∈
Span(`′1, . . . , `

′
k). Then we define δ = |〈z0, `′i0〉|.

Let x ∈ L and let us consider the triangle with the vertices at the origin, x and at
v ∈ F with(2) 〈x, v〉 > δ‖x‖‖v‖. Denote D = ‖v‖. Notice that D 6 T (F). We have

‖x− v‖2 = ‖x‖2 +D2 − 2〈x, v〉.

Assume that ‖x‖ satisfies:

2δ‖x‖ − (T (F))2 > δ‖x‖,

(2)Since F is symmetric, such v exists.
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and
‖x‖ > T (F).

Then we have

‖x‖ − ‖x− v‖ =
2〈x, v〉 −D2

‖x‖+ ‖x− v‖
>
δ‖x‖D
3‖x‖

>
δM

3
.

For a general (M, ε, L,R)-system F we can find a symmetric (M, ε/2, L,R)-sys-
tem F ′ with F ′ ⊂ L, such that for every `′ ∈ F ′ there exists ` ∈ F with ‖` − `′‖ 6
R+K. Take x ∈ LR with ‖x‖ large. Then there exists x′ ∈ L such that ‖x−x′‖ 6 R.
By the previous discussion, there exists δ = δ(ε/2) such that for any x′ ∈ L there
exists `′ ∈ F ′ with

‖x′‖ − ‖x′ − `′‖ > δM

3
.

Take ` ∈ F such that ‖`− `′‖ 6 R+K. Then for every v ∈ BK(`) we have

‖x‖ − ‖x− v‖ > (‖x′‖ − ‖x′ − x‖)− (‖x− x′‖+ ‖x′ − `′‖+ ‖`′ − `‖+ ‖`− v‖)
> (‖x′‖ − ‖x′ − `′‖)− (2‖x− x′‖+ ‖`′ − `‖+ ‖`− v‖)

>
δM

3
− 3R− 2K >

δM

4
,

where the last transition is correct if M is large enough.(3) �

3.1. Proof of Theorem 2.2. — Assume that Λ ⊂ Rd is an infinite discrete approx-
imate subgroup satisfying Λ − Λ ⊂ Λ + F for a finite set F . Denote K = diam(F )

and L = Span(D(Λ)). Then by Lemma 3.3 there exists R > 0 such that Λ ⊂ LR =⋃
x∈LBR(x). By the discussion above, there exists ε > 0 such that for an arbitrary

M > 0 there exists (M, ε, L,R)-system F within Λ. Let us take M > 0 so large that
the claim of Proposition 3.4 holds true for some δ = δ(ε) > 0. Let R′ be such that
for every x ∈ LR with ‖x‖ > R′ there exists ` ∈ F with the property that for every
v ∈ BK(`) we have:

‖x− v‖ 6 ‖x‖ − δM

4
.

We will show that for every z ∈ LR we will have BR′(z) ∩ Λ 6= ∅. Assume, on the
contrary, that there exists z ∈ LR such that BR′(z) ∩ Λ = ∅. Take minimal R2 > R′

such that BR2
(z)∩Λ 6= ∅. This means that for every r < R2 we have Br(z)∩Λ = ∅,

and that there exists y ∈ BR2(z) ∩ Λ.
Let us denote x = z − y. Then ‖x‖ = R2, and therefore there exists ` ∈ F ⊂ Λ

such that for every v ∈ BK(`) we have

‖x− v‖ 6 ‖x‖ − δM

4
< ‖x‖ = R2.

But, since Λ is an approximate subgroup with diam(F ) = K, we have that there
exists v ∈ BK(`) such that y + v ∈ Λ. This implies:

‖z − (y + v)‖ < R2.

(3)Here we use that δ is independent of K,R and M .
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Therefore, there exists r < R2 such that Br(z) ∩ Λ 6= ∅. So, we get a contradiction.
Therefore, indeed, for every x ∈ LR we have BR′(x) ∩ Λ 6= ∅. This finishes the proof
of the theorem. �

3.2. Proof of Theorem 2.3

“⇒”: If Λ ⊂ Rd is an infinite discrete approximate subgroup, then by Theorem 2.2
the set Λ is relatively dense around a certain subspace L ⊂ Rd. Therefore, there exists
R > 0 such that

– Λ ⊂ L+BR(0Rd),
– For every z ∈ L we have Λ ∩BR(z) 6= ∅.

Let L⊥ ⊂ Rd be the orthogonal complement of L. Let Γ ⊂ L⊥ be a lattice such
that for any x, y ∈ Γ we have ‖x − y‖L⊥ > 4R. Denote Λ′ = Λ + Γ. Obviously,
Λ = Λ′∩ (L+BR(0Rd)). We claim that Λ′ is a Meyer set in Rd, i.e., discrete relatively
dense approximate subgroup. Indeed, first notice that

Λ′ − Λ′ = (Λ− Λ) + (Γ− Γ) ⊂ (Λ + Γ) + F = Λ′ + F,

for some finite set F ∈ Rd. Also, Λ′ is discrete, since all different translates of Λ by
elements of Γ are far apart. If λ1, λ2 ∈ Λ′, assume that λ1 = `1 + γ1, λ2 = `2 + γ2 for
`i ∈ Λ, γi ∈ Γ, i = 1, 2, then

λ1 − λ2 = (`1 − `2) + (γ1 − γ2).

If γ1 6= γ2, then ‖λ1 − λ2‖ > 2R. And in the case γ1 = γ2 we use the uniform
discreteness of Λ to obtain a uniform bound on ‖λ1 − λ2‖, for λ1 6= λ2. Finally, the
relative density of Λ′ follows immediately from the relative density of Λ around the
subspace L and the relative density of Γ inside L⊥.

“⇐”: Let Λ′ ⊂ Rd be a Meyer set. Let R > 0 be such that for any x ∈ Rd we have
BR/2(x)∩Λ′ 6= ∅. Take any linear subspace L ⊂ Rd. Denote Λ = Λ′ ∩ (L+BR(0Rd)).
Then Λ is an infinite discrete approximate subgroup. The only non-trivial claim is
that Λ is an approximate subgroup. To prove it, we will use Lagarias’ theorem saying
that if Λ′′ is relatively dense in Rd and Λ′′ − Λ′′ is uniformly discrete, then Λ′′ is an
approximate subgroup, i.e., there exists a finite set F ⊂ Rd such that Λ′′−Λ′′ ⊂ Λ′′+F .
First, we construct such Λ′′. Take a lattice Γ ⊂ L⊥ satisfying that for any distinct
γ1, γ2 ∈ Γ we have ‖γ1−γ2‖ > 4R. Then define Λ′′ = Λ+Γ. Obviously, Λ′′ is relatively
dense in Rd. We also have:

Λ′′ − Λ′′ ⊂ (Λ′ − Λ′) ∩ (L+B2R(0Rd)) + Γ.

This implies that Λ′′ − Λ′′ is uniformly discrete, and therefore, by Lagarias theorem,
there exists a finite set F ⊂ Rd with Λ′′ − Λ′′ ⊂ Λ′′ + F . The latter implies that

Λ− Λ + Γ ⊂ Λ + Γ + F.

We claim that there exists F ′ ⊂ Rd finite such that Λ− Λ ⊂ Λ + F . Indeed, for any
`1, `2 ∈ Λ there exist `3 ∈ Λ, γ ∈ Γ and f ∈ F such that

`1 − `2 = `3 + γ + f.
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But the projection of Λ−Λ−Λ−F onto L⊥ is at bounded distance from the origin,
i.e., there exists R′ > 0 such that πL⊥(Λ − Λ − Λ − F ) ⊂ BR′(0Rd) ∩ L⊥, where
the operator πL⊥ is the orthogonal projection onto L⊥. This implies that every such
γ ∈ Γ for which there exist `1, `2, `3 ∈ Λ and f ∈ F with γ = `1 − `2 − `3 − f is
at bounded distance from the origin in L⊥. But there are only finitely many γ ∈ Γ

which lie in the ball BR′(0Rd) ∩ L⊥. Denote by F2 the finite set F2 = Γ ∩ BR′(0Rd),
and by F ′ = F + F2. Then we have

Λ− Λ ⊂ Λ + F ′. �

3.3. Proof of Theorem 2.4. — It follows immediately from Theorem 2.2 that if
Λ ⊂ Zd is an infinite approximate group, then there exists a subspace L ⊂ Rd and
R > 0 such that Λ ⊂ L+BR(0Rd), and for every ` ∈ L we have that Λ ∩BR(`) 6= ∅.
Let us call any Λ that satisfies these constraints with respect to a subspace L as being
relatively dense around L.

On the other hand, assume that Λ ⊂ Zd is relatively dense around a subspace
L ⊂ Rd. We will show that such Λ is necessarily an approximate subgroup.

Indeed, let us first take R1 > 0 with the property(4) that for any point x ∈ Rd we
have BR1

(x) ∩ Zd 6= ∅. Since, for any λ ∈ Λ there exists ` ∈ L such that λ ∈ BR(`),
we have that for any λ1, λ2 ∈ Λ there exist x1, x2 ∈ Zd ∩ L+BR1

(0) such that

λi ∈ BR+R1
(xi), for i = 1, 2.

Therefore, there exist f1, f2 ∈ BR+R1(0) ∩ Zd such that

λi = xi + fi, for 1 = 1, 2.

Also, notice that x1 − x2 ∈ L + B2R1
(0). Therefore, there exists λ ∈ Λ such that

x1 − x2 ∈ B3R(λ). Thus, there exists f ′ ∈ B3R(0) ∩ Zd such that x1 − x2 = λ + f ′.
Finally, let us denote F = B5R+2R1(0) ∩ Zd (finite set). Then we have

λ1 − λ2 = (x1 + f1)− (x2 + f2) = (x1 − x2) + (f1 − f2) = λ+ (f1 − f2 + f ′) ∈ Λ + F.

This finishes the proof of the Theorem. �

3.4. Proof of Proposition 2.5. — Let Λ be a discrete approximate subgroup in Rd.
By Theorem 2.2 we know that there exist a subspace L and R > 0 such that Λ

is relatively dense around L, i.e., Λ ⊂ L + BR(0Rd) and for any x ∈ L we have
BR(x) ∩ Λ 6= ∅. Let us denote by π the orthogonal projection from Rd to L. And let
ΛL = π(Λ).

By linearity of the map π we get that ΛL is an approximate subgroup. For
`1, `2 ∈ ΛL there exist λ1, λ2 ∈ Λ such that `i = π(λi), i = 1, 2. Denote by L⊥ the
orthogonal complement to L, i.e., we have Rd = L⊕L⊥. Then there exist µ1, µ2 ∈ L⊥
such that

λi = `i + µi, for i = 1, 2.

(4)We can take any R1 >
√
d/2.
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But Λ is an approximate subgroup. Therefore, there exists a finite set F ⊂ Rd such
that Λ− Λ ⊂ Λ + F . This implies that there exist λ ∈ Λ, and f ∈ F such that

λ1 − λ2 = λ+ f.

By projecting both sides on L we obtain:

`1 − `2 = π(λ) + π(f).

Let us denote F ′ = π(F ) (a finite set). Then we have

ΛL − ΛL ⊂ ΛL + F ′.

We also have that ΛL is relatively dense in L since L ⊂ ΛL +B2R(0Rd).
The set ΛL is discrete. Indeed, assume that it is not discrete. Then there exists

(`n) ⊂ ΛL with `n → x ∈ L and `n 6= x for every n. Let (µn) ⊂ L⊥ such that
λn = `n + µn ∈ Λ. Since all µn are bounded, then there is a convergent subsequence
(µnk

). Denote its limit by µ ∈ L⊥. Then we have

λnk
= `nk

+ µnk
−→ x+ µ.

Since Λ is discrete, this implies that the sequence λnk
is fixed for k large enough. This

implies that the subsequence `nk
is fixed for k large enough and we get a contradiction.

All this together, shows that the set ΛL ⊂ L is a Meyer set. Finally, by the con-
struction we have Λ ⊂ ΛL +BR(0Rd). �

4. Discrete approximate subgroups in the Heisenberg group

Assume that n > 1, and Λ ⊂ H2n+1 is a discrete infinite approximate subgroup.
Denote ΛV = πV (Λ). Our fist claim follows from the definition of an approximate
group and the linearity of the projection operator πV

Lemma 4.1. — The set ΛV is an approximate subgroup in V .

Since the proof of Theorem 2.2 does not use the discreteness of an approximate
subgroup in V but only its unboundedness, we derive that there exists a linear sub-
space L ⊂ V such that ΛV is relatively dense around L. Our next claim will use the
identity (1).

Lemma 4.2. — If ω(ΛV ,ΛV ) 6= 0 and dimL > 1, then [Λ,Λ] is relatively dense in Z,
and ΛV is discrete in V .

Proof. — By the identity (1), it follows that for any two elements λ1 = (v, z), λ2 =

(u, t), their commutator

(3) [λ1, λ2] = (0, ω(v, u)).

Also, by the assumptions of the lemma, there exist a line L0 in V , and R > 0 such
that for every ` ∈ L0 there exists v` ∈ ΛV with ‖` − v`‖V 6 R. It is also clear from
the assumptions that there exists v ∈ ΛV such that v 6∈ L0. Then it follows from the
continuity of the symplectic form ω that the set

{ω(v, u) | u ∈ ΛV }
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is relatively dense in R. The identity (3) implies that [Λ,Λ] is relatively dense in Z.
The only remaining part of the lemma that we have to prove is the discreteness
of ΛV . Since Λ is an approximate group in H2n+1, it follows that there exists a finite
set F ′ ⊂ H (F ′ = FFF ) such that

[Λ,Λ] ⊂ F ′Λ.

Thus there exists a relatively dense sequence (tn) ⊂ R such that for every n corre-
sponds at least one fn from the finite set F ′−1 with fn(0, tn) ∈ Λ. Assume that ΛV is
non-discrete. Then there exists a sequence (vn, zn) ∈ Λ with vn → v such that vn 6= v

for all n. Then by applying from the left the elements fn(0, tn) with tn + zn is in a
compact set in R we have the new sequence

fn(vn, tn + zn) ⊂ F ′−1FΛ.

But now we achieved that the new sequence is inside a compact set in H2n+1. Thus,
without loss of generality, we assume that the sequence fn(vn, tn + zn) converges.
Since fn’s belong to a finite set F ′−1, by taking a subsequence, we can assume that
fn = f and (vn, tn + zn) converges to (v, t) for some t ∈ R. Since the element fn is
fixed, there exists a finite set F ′′ such that (vn, tn + zn) ⊂ F ′′Λ. But the set on the
right hand side is discrete, while the sequence on the left hand side is not. We get a
contradiction and it finishes the proof of the lemma. �

4.1. Proof of Theorem 2.7. — Let Λ be an infinite discrete approximate subgroup
in the Heisenberg group H2n+1. As we already noticed, the projection ΛV of Λ onto V
is relatively dense around a subspace L ⊂ V . If L = {0}, then by the unboundedness
of ΛV and using the same reasoning as in the proof of Proposition 3.1 we obtain
that Λ is relatively dense around the centre Z of H2n+1. Now assume that dimL > 1.
Then there are two cases:

(1) ω(ΛV ,ΛV ) = 0,
(2) ω(ΛV ,ΛV ) 6= 0.

In the first case, there exists a Lagrangian subspace L′ ⊂ V such that ΛV ⊂ L′, and
ω(L′, L′) = 0. Then we make use of Schreiber’s theorem with respect to the abelian
group V ′ = L′ ×Z and conclude that there exists a subspace L′′ ⊂ V ′ such that Λ is
relatively dense around L′′. This abelian subgroup L′′ is clearly a connected subgroup
of H2n+1.

In the second case, we invoke Lemma 4.2 and obtain that Λ is relatively dense
around the connected subgroup H ′ = LZ, where

LZ = {(v, z) | v ∈ L, z ∈ R}.

To prove the last part of the theorem, we notice that H ′ around which the subgroup Λ

is relatively dense is non-abelian only in the last case, i.e., H ′={(v, z) | v∈L, z∈R},
and ω(L,L) 6= 0. Then by Lemma 4.2 we are done. �
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4.2. Proof of Proposition 2.10. — If ΛV = πV (Λ) is relatively dense in V , then
ω(ΛV ,ΛV ) 6= 0. By Lemma 4.2, we get that [Λ,Λ] is relatively dense in Z. This easily
implies the conclusion of the proposition. �

4.3. Proof of Proposition 2.11. — Let Λ be as in the statement of the proposition.
Assume that there exists Λ′ ⊂ H3 such that Λ ⊂ Λ′ and Λ′ is relatively dense in H3.
Then the projection Λ′V of Λ′ onto V is non discrete. On other hand, it follows from
Lemma 4.2 that Λ′V is discrete. We get a contradiction. �
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