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TOPOLOGICAL ENTROPY FOR

REEB VECTOR FIELDS IN DIMENSION THREE

VIA OPEN BOOK DECOMPOSITIONS

by Marcelo R.R. Alves, Vincent Colin & Ko Honda

Abstract. — Given an open book decomposition of a closed contact three manifold (M, ξ) with
pseudo-Anosov monodromy, connected binding, and fractional Dehn twist coefficient c = k/n,
we construct a Legendrian knot Λ close to the stable foliation of a page, together with a small
Legendrian pushoff Λ̂. When k > 5, we apply the techniques of [CH13] to show that the strip
Legendrian contact homology of Λ → Λ̂ is well-defined and has an exponential growth property.
The work [Alv19] then implies that all Reeb vector fields for ξ have positive topological entropy.

Résumé (Entropie topologique des champs de Reeb en dimension 3 via les livres ouverts)
On associe à toute décomposition en livre ouvert d’une variété de contact close (M, ξ) de

dimension 3, de monodromie pseudo-Anosov, de reliure connexe et de coefficient de Dehn frac-
tionnaire c = k/n, un nœud legendrien Λ proche du feuilletage stable d’une page accompagné
d’un petit translaté legendrien Λ̂. Lorsque k > 5, on applique les techniques de [CH13] pour
montrer que l’homologie de contact legendrienne cylindrique de Λ → Λ̂ est bien définie et a
une propriété de croissance exponentielle. Le travail [Alv19] implique alors que tout champ de
Reeb pour ξ a une entropie topologique non nulle.
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1. Introduction

In this paper we combine the techniques of [CH13] and [Alv19] to obtain results
on the topological entropy of a large class of contact 3-manifolds.

Theorem 1.1. — Let (M, ξ) be a closed cooriented contact 3-manifold which admits a
supporting open book decomposition whose binding is connected and whose monodromy
is isotopic to a pseudo-Anosov homeomorphism with fractional Dehn twist coefficient
k/n. If k > 5 then every Reeb vector field for ξ has positive topological entropy.

In order to explain the significance of our result we start by recalling some notions.
A cooriented contact structure on a 3-manifold M is a plane field ξ given by ξ = kerα

for a 1-form α with α ∧ dα > 0. Such an α is called a contact form on (M, ξ), and it
determines a Reeb vector field Rα defined by ιRαdα = 0, α(Rα) = 1. Denote the Reeb
flow of Rα by φα = (φtα)t∈R. A Legendrian submanifold of (M, ξ) is a 1-dimensional
submanifold ofM everywhere tangent to ξ. In what follows we assume that our contact
structures are cooriented.

The topological entropy htop is a nonnegative number that one associates to a
dynamical system and which measures its complexity. We briefly review its definition
from [Bow70] for a flow φ = (φt)t∈R. Fix a metric d onM . Given T > 0 and x, y ∈M ,
define

dT (x, y) = max
t∈[0,T ]

d(φt(x), φt(y)).

A subset X ⊂M is (T, ε)-separated if for all x 6= y ∈ X we have dT (x, y) > ε. Writing
N(T, ε) for the maximum cardinality of a (T, ε)-separated subset of M , we define

htop(φ) = lim
ε→0

lim sup
T→+∞

logN(T, ε)

T
.

The positivity of the topological entropy for a dynamical system implies some type
of exponential instability for that system. For 3-dimensional flows, the positivity of
htop has the following striking dynamical consequence due to Katok [Kat80, Kat82]
and Lima and Sarig [LS19, Sar13]:

Theorem. — Let φ be a smooth flow on a closed oriented 3-manifold generated by a
nonvanishing vector field. If htop(φ) > 0, then there exists a Smale “horseshoe” as a
subsystem of the flow. As a consequence, the number of hyperbolic periodic orbits of φ
grows exponentially with respect to the period.

A “horseshoe” is a compact invariant set where the dynamics is semi-conjugate to
that of the suspension of a finite shift by a finite-to-one map and is considered to be
the prototypical example of chaotic dynamics; see [KH95]. Combining Theorem 1.1
with this result we obtain the following corollary which is a strengthening of a result
proved in [CH13].

Corollary 1.2. — Let (M, ξ) be a closed contact 3-manifold which admits a sup-
porting open book decomposition whose binding is connected and whose monodromy
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Topological entropy for Reeb vector fields 121

is isotopic to a pseudo-Anosov homeomorphism with fractional Dehn twist coefficient
k/n. If k > 5, then for every Reeb flow φα on (M, ξ) there exists a “horseshoe" as a
subsystem of φα. In particular the number of hyperbolic periodic orbits of φα grows
exponentially with respect to the period, even if α is not generic.

Motivated by results on topological entropy for geodesic flows, Macarini and
Schlenk used the geometric ideas of [FS05, FS06] to prove in [MS11] that if Q is a
surface with genus > 2, then on the unit cotangent bundle (S∗Q, ξ) equipped with
the canonical contact structure ξ every Reeb flow has positive topological entropy. In
previous works [Alv16a, Alv19, Alv16b], the first author discovered an abundance of
examples of contact 3-manifolds with positive entropy: there exist hyperbolic contact
3-manifolds, nonfillable contact 3-manifolds, as well as 3-manifolds with infinitely
many nondiffeomorphic contact structures for which every Reeb flow has positive
topological entropy.

Since every contact 3-manifold admits a supporting open book decomposition with
pseudo-Anosov monodromy, connected binding, and k > 1 by [CH08], Theorem 1.1
can be interpreted as saying that for “almost all” (apart from k = 1, . . . , 4) tight
contact 3-manifolds every Reeb flow has positive topological entropy. We stress that
all the contact 3-manifolds covered by Theorem 1.1 are tight since k > 2 is sufficient
to guarantee tightness by [CH13, Th. 2.3].

Recall that the second and third authors had previously shown in [CH13, Th. 2.3
and Corollary 2.6] that, when k > 3, for every nondegenerate Reeb vector field the
number of periodic orbits grows exponentially with the action and in the degenerate
case the total number of periodic orbits is infinite. The proof uses contact homology
as follows:

(1) Construct a contact form α on M supported by the open book decomposition,
whose Reeb vector field R = Rα behaves well with respect to the pseudo-Anosov
monodromy.

(2) Prove that, when k > 2, the symplectization (R×M,J) of (M,α) contains no
J-holomorphic plane asymptotic to a periodic orbit of R at +∞.

(3) Prove that, when k > 3, index one J-holomorphic cylinders between periodic
orbits of R cannot intersect the trivial cylinder over the binding.

Step (2) implies that the cylindrical contact homology of (M,α) is well-defined.
By Step (3), a J-holomorphic cylinder must join two orbits in the same Nielsen class.
The key point in the proofs of Steps (2) and (3) is that every J-holomorphic curve in
R×M must intersect the J-holomorphic trivial cylinder over the binding positively.
By using a suitable Rademacher function Φ (cf. Section 2.3), one can show that the
intersection must be empty as soon as k is sufficiently large. One finally uses properties
of diffeomorphisms isotopic to pseudo-Anosov homeomorphisms: in every Nielsen class
of periodic points, the total Lefschetz index is −1 and the number of Nielsen classes
grows exponentially with the period. This is enough to conclude that the dimension of
cylindrical contact homology generated by periodic orbits of action less than T grows
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122 M. R.R. Alves, V. Colin & K. Honda

exponentially with T . Invariance properties of the set of linearized contact homologies
yield the result for arbitrary contact forms.

To prove Theorem 1.1 we follow the same strategy combined with the following
criterion which generalizes [Alv19, Th. 1].

Theorem 1.3. — Let (M, ξ = kerα0) be a closed contact 3-manifold and Λ and Λ̂ be
a pair of disjoint Legendrian knots in (M, ξ). If there exists an exhaustive sequence
(αi = Giα0, Li) of contact forms and actions such that

(1) Gi is uniformly bounded above by a constant c > 1 and below by 1/c;
(2) the strip Legendrian contact homologies LCH6Li

st (αi,Λ → Λ̂) are well-defined
and grow exponentially with the action in the following sense: there exist numbers
a > 0 and b such that

dim(LCH6`
st (αi,Λ→ Λ̂) > ea`+b

for each i ∈ N and ` 6 Li; and
(3) for each i 6 j there are induced cobordism maps

ΨW i
j

: LCH6Li
st (αi,Λ→ Λ̂) −→ LCH

6Lj
st (αj ,Λ→ Λ̂),

that are injective on LCH6Li/d
st (αi,Λ→ Λ̂), where d > 1 is independent of i, j,

then every Reeb flow on (M, ξ) has positive topological entropy.

We refer the reader to Section 3 for the definition of strip Legendrian contact
homology and Definition 6.1 for the definition of an exhaustive sequence.

By Theorem 1.3 it suffices to find a pair of suitable Legendrian knots Λ and Λ̂

that satisfy the conditions of Theorem 1.3. The knot Λ will be constructed in a
neighborhood of a page of the open book as the Legendrian lift of an immersed
curve L in the page which is close to the stable invariant foliation of the pseudo-
Anosov representative of the monodromy. It will have the property that the value of
the Rademacher function Φ is 0 on every arc immersed in L. The knot Λ̂ is a small
pushoff of Λ in the Reeb direction. The control on J-holomorphic curves required in
Theorem 1.3 is then obtained using the method from Steps (2) and (3) of the absolute
case, provided k is large enough to take care of the extra leaking coming from the
parts in the boundary of potential J-holomorphic curves lying in R× Λ and R× Λ̂.

Corollary 1.4. — Every closed contact 3-manifold (M, ξ) admits a (tight) degree
five branched cover along a transverse knot on which every Reeb flow has positive
topological entropy.

Proof. — Using [CH08] we take a supporting open book for (M, ξ) with pseudo-
Anosov monodromy h, connected binding K, and fractional Dehn twist coefficient
k/n with k > 1. The degree five branched cover of (M, ξ) along K is supported by an
open book decomposition whose monodromy is h5. Its fractional Dehn twist coefficient
is 5k/n with 5k > 5 and we can apply Theorem 1.1. �
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Topological entropy for Reeb vector fields 123

We finish the introduction with a question which we believe could be interesting
for future investigations:

Question 1.5. — Does there exist an overtwisted contact 3-manifold on which every
Reeb flow has positive topological entropy?

Remark 1.6. — Our paper heavily uses the machinery of contact homology, intro-
duced by Eliashberg-Givental-Hofer in [EGH00]. Despite having been widely used in
the past two decades by researchers in contact topology, the complete construction
of contact homology was not completed until recently because of difficulties that ap-
pear when one deals with moduli spaces of multiply-covered curves. The complete
construction appeared in the works [BH15, Par16, HWZ07]. We refer the reader to
Section 3.3 for a more comprehensive discussion.

Acknowledgements. — Our special thanks to Frédéric Bourgeois for explaining us
the construction of the linearized Legendrian contact homology of a directed pair of
Legendrian submanifolds, which is part of his joint work with Ekholm and Eliashberg
[BEE12].

2. Preliminaries

2.1. Open book decompositions

Definition 2.1. — An open book decomposition of a closed 3-manifold M is a triple
(S, h, φ), where
• S is a compact oriented surface with nonempty boundary;
• the monodromy h : S

∼−→ S is a diffeomorphism which restricts to the identity
on ∂S; and
• φ : M(S, h)

∼−→M is a homeomorphism.
Here M(S, h) denotes the relative mapping torus S × [0, 1]/ ∼h, where ∼h is the
equivalence relation given by (x, 1) ∼h (h(x), 0) for all x ∈ S and (y, t) ∼h (y, t′) for
all y ∈ ∂S and t, t′ ∈ [0, 1].

The surfaces S×{t}/ ∼h are the pages of the open book and the link ∂S×[0, 1]/ ∼h
is the binding. (We will also refer to their images under φ as the “pages” and the
“binding”.) Note that the manifold M(S, h) is oriented since S and [0, 1] are and M
has the induced orientation via φ. The binding is oriented as the boundary of S.

The relationship between contact structures and open book decompositions was
clarified by Giroux [Gir02], who notably gave the following definition:

Definition 2.2. — An open book decomposition (S, h) for M supports a contact
structure ξ if
• ξ is positive with respect to the orientation of M(S, h); and
• there exists a contact form α for ξ whose Reeb vector field is positively transverse

to the interior of the pages and positively tangent to the binding.
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124 M. R.R. Alves, V. Colin & K. Honda

A fundamental result of Giroux [Gir02] is that every contact structure on a closed
3-manifold is supported by some open book decomposition.

2.2. Fractional Dehn twist coefficients. — Let S be a compact oriented surface
with nonempty connected boundary and h : S

∼−→ S be a diffeomorphism of S which
is the identity on the boundary ∂S. We take an orientation-preserving identification
∂S ' R/Z. Suppose that h is freely homotopic to a pseudo-Anosov homeomorphism ψ

by a homotopy (ht)t∈[0,1], h0 = h, h1 = ψ.
We define the fractional Dehn twist coefficient c of h to be the rotation number of

the isotopy (βt = ht|∂S)t∈[0,1] as follows: Lift (βt)t∈[0,1] from an isotopy of R/Z to an
isotopy (β̃t)t∈[0,1] of R and define f(x) = β̃1(x)− β̃0(x) + x. Then

c = lim
n→∞

(fn(x)− x)/n

for any x ∈ ∂S.
The pseudo-Anosov map ψ has a stable invariant singular foliation F . Since ∂S '

R/Z, the foliation F has a certain number n of singularities x1, . . . , xn along ∂S.
These singularities are preserved by both h (which is the identity on ∂S) and ψ. This
implies that the fractional Dehn twist coefficient of h has the form c = k/n.

2.3. The Rademacher function for a pseudo-Anosov map. — Let ψ : S
∼−→ S be a

pseudo-Anosov homeomorphism of a compact oriented surface with nonempty con-
nected boundary. We define a quasi-morphism Φ : π1(S) → Z that is invariant un-
der ψ, called the Rademacher function. Our actual map will rather be defined on the
space of homotopy classes of oriented arcs in S relative to their endpoints. It has the
following properties:

(R1) Φ(δ0δ1) = Φ(δ0) + Φ(δ1) + ε, ε = −1, 0, 1;
(R2) Φ(e) = 0; and
(R3) Φ(δ) = −Φ(−δ).

Here δ0 and δ1 are arcs in S where the terminal point of δ0 equals the initial point
of δ1 and δ0δ1 is their concatenation; e is any constant arc; and −δ is δ with reversed
orientation.

To construct Φ, we consider the stable invariant foliation F of ψ with saddle
singularities x1, . . . , xn on ∂S. We denote by Pi, i = 1, . . . , n, the separatrix in int(S)

that limits to xi; it is called a prong. By slight abuse of notation we assume that Pi
contains xi. We orient the prongs so that their intersection point with ∂S is positive.
Let δ be an oriented arc in S and δ̃ a lift of δ to the universal cover S̃ of S. For
any component D̃ of ∂S̃, we consider PD̃, the union of all the lifts of P1, . . . , Pn with
initial point on D̃. If the (algebraic) intersection number of δ̃ with PD̃ is greater than
or equal to 2, we set nP

D̃
(δ̃) to be the intersection number of δ̃ and PD̃ minus 1. If

the intersection number of δ̃ with PD̃ is less than or equal to −2, we set nP
D̃

(δ̃) to be
the intersection number of δ̃ and PD̃ plus 1. Otherwise, we set nP

D̃
(δ̃) = 0. Finally
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Topological entropy for Reeb vector fields 125

we define

(2.3.1) Φ(δ) = ΣD̃∈∂S̃ nPD̃ (δ̃).

The properties of Φ are proven in [CH13]. In particular, the sum has finitely many
nonzero terms.

3. Review of contact homology

In this section we review the linearized Legendrian contact homology of a directed
pair of Legendrian submanifolds Λ → Λ̂ in a contact manifold (M, ξ). This was ex-
plained to us by Frédéric Bourgeois and is part of his joint work [BEE12] with Ekholm
and Eliashberg.

A contact form α for (M, ξ) is nondegenerate if for each Reeb orbit of α the lin-
earized return map does not have 1 as an eigenvalue. Given a Legendrian subman-
ifold Λ, α is Λ-nondegenerate if for each Reeb chord c : [0, T ] → M , (φT )∗Tc(0)Λ is
transverse to Tc(T )Λ, where φT is the time-T flow of the Reeb vector field for α.

3.1. Cobordisms and almost complex structures

3.1.1. Symplectizations. — Let (M, ξ) be a contact manifold and α a contact form
for (M, ξ). The symplectization of (M, ξ) is the product R ×M with the symplectic
form d(esα), where s denotes the R-coordinate on R ×M . The 2-form dα restricts
to a symplectic form on the vector bundle ξ and it is well-known that the set j(α)

of dα-compatible almost complex structures on the symplectic vector bundle ξ is
nonempty and contractible. Notice that if M is 3-dimensional, the set j(α) does not
depend on the contact form α compatible with a fixed coorientation of (M, ξ).

Given j ∈ j(α), there exists an R-invariant almost complex structure J on R×M
such that:

(3.1.1) J
∂

∂s
= Rα, J |ξ = j,

where Rα is the Reeb vector field of α. We will denote by J (α) the set of almost
complex structures in R×M that are R-invariant and satisfy (3.1.1) for some j ∈ j(α).

3.1.2. Exact symplectic cobordisms. — Let (Ŵ ,$ = dκ) be an exact symplectic man-
ifold without boundary, and let (M+, ξ+) and (M−, ξ−) be contact manifolds with
contact forms α+ and α−.

Definition 3.1. — (Ŵ ,$ = dκ) is an exact symplectic cobordism from α+ to α− if
there exist codimension 0 submanifolds W−, W+, and W of Ŵ and diffeomorphisms
Ψ+ : W+ ∼−→ [s+,+∞) ×M+ and Ψ− : W−

∼−→ (−∞, s−] ×M− for some s+, s−
such that:

W is compact, Ŵ = W+ ∪W ∪W−, W+ ∩W− = ∅,

(Ψ+)∗(esα+) = κ and (Ψ−)∗(esα−) = κ.
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126 M. R.R. Alves, V. Colin & K. Honda

We will write α+ �ex α
− if there exists an exact symplectic cobordism from α+

to α−. We remind the reader that α+ �ex α and α �ex α
− imply α+ �ex α

−; or in
other words the exact symplectic cobordism relation is transitive; see [BEH+03] for
a detailed discussion on symplectic cobordisms with cylindrical ends. Notice that a
symplectization is a particular case of an exact symplectic cobordism.

Definition 3.2. — An almost complex structure J on (Ŵ ,$) is cylindrical if
• J coincides with J+ ∈J (α+) on W+,
• J coincides with J− ∈J (α−) on W−, and
• J is compatible with $ on Ŵ .

For fixed J+ ∈ J (α+) and J− ∈ J (α−), we denote by J (J−, J+) the set of
cylindrical almost complex structures on (Ŵ ,$) that coincide with J+ onW+ and J−
on W−. It is well known that J (J−, J+) is nonempty and contractible.

3.1.3. SFT-admissible exact Lagrangian cobordisms. — Let (Ŵ ,$ = dκ) be an exact
symplectic cobordism from α+ to α−.

Definition 3.3. — A Lagrangian submanifold L of (Ŵ , dκ) is a Lagrangian cobordism
from Λ

+ to Λ
− if there exist Legendrian submanifolds Λ

+ of (M+, kerα+) and Λ
− of

(M−, kerα−), and N > 0 such that, with respect to the identifications Ψ+ and Ψ−:

L ∩ ([N,+∞)×M+) = ([N,+∞)× Λ
+

),

L ∩ ((−∞,−N ]×M−) = ((−∞,−N ]× Λ
−

).

If such an L is an exact Lagrangian submanifold of (Ŵ , dκ), we call it an exact
Lagrangian cobordism from Λ

+ to Λ
−. If L is such that there exists a primitive of κ|L

which vanishes outside some compact subset of L, then L is called an SFT-admissible
exact Lagrangian cobordism. All exact Lagrangian cobordisms used in this paper are
SFT-admissible.

3.2. Pseudoholomorphic curves. — Let α be a contact form for (M, ξ), J ∈J (α),
and Λ̃ be a Legendrian submanifold of (M, ξ). Let (S, i) be a connected compact
Riemann surface, possibly with boundary, Ω ⊂ S be a finite ordered set, and Ω∂ :=

Ω ∩ ∂S.

Definition 3.4. — An (i, J)-holomorphic map

ũ = (r, u) : (S r Ω, i) −→ (R×M,J)

with boundary in R× Λ̃ is a map that satisfies

∂J(ũ) :=
1

2

(
dũ+ J ◦ dũ ◦ i

)
= 0,

ũ(∂S r Ω∂) ⊂ R× Λ̃.
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Topological entropy for Reeb vector fields 127

The operator ∂J above is called the Cauchy-Riemann operator for the almost com-
plex structure J .

An analogous definition exists for exact symplectic cobordisms. Let (Ŵ , d$) be
an exact symplectic cobordism from a contact form α+ for (M+, ξ+) to a contact
form α− for (M−, ξ−) in the sense of [BEH+03], and L be an SFT-admissible exact
Lagrangian cobordism in (Ŵ , d$) from a Legendrian submanifold Λ̃+ of (M+, ξ+)

to a Legendrian submanifold Λ̃− of (M−, ξ−). We consider an almost complex struc-
ture J ∈ J (J+, J−), where J+ ∈ J (α+) and J− ∈ J (α−) and consider (i, J)-
holomorphic maps ũ : (SrΩ, i)→ (Ŵ , J) with boundary on L in a manner analogous
to Definition 3.4.

3.2.1. Hofer energy. — All pseudoholomorphic curves considered in this paper have
finite Hofer energy (cf. [Hof93, BEH+03]). This is essential to guarantee that the
curves behave well near the points of Ω and to ensure the compactness of the relevant
moduli spaces.

By the finiteness of Hofer energy, the holomorphic maps ũ : (S r Ω, i) → (Ŵ , J)

have a very controlled behavior near the points of Ω: they are either removable or are
asymptotic to Reeb orbits or Reeb chords, as shown in [Abb99, Hof93, HWZ96]. For
simplicity we assume there are no removable points. The elements of the set Ω ⊂ S are
called punctures of ũ; the elements of Ω∂ are boundary punctures and the elements
in Ω r Ω∂ are interior punctures. The works [Abb99, Hof93, HWZ96] classify the
punctures in four different types (here we are writing ũ = (r, u) at the ends):
• z ∈ Ω is a positive (resp. negative) boundary puncture if z ∈ Ω∂ and

limz′→z s(z
′) = +∞ (resp. −∞); in this case u is positively (resp. negatively)

asymptotic to a Reeb chord near z;
• z ∈ Ω is a positive (resp. negative) interior puncture if z ∈ Ω r Ω∂ and

limz′→z s(z
′) = +∞ (resp. −∞); in this case u is positively (resp. negatively)

asymptotic to a Reeb orbit near z.
Intuitively, on a neighborhood of a puncture, ũ detects a Reeb chord or a Reeb orbit.
If u is asymptotic to a Λ-nondegenerate Reeb chord or a nondegenerate Reeb orbit
at a puncture, more can be said about its asymptotic behavior in the neighborhood
of this puncture. In this case u limits to Reeb chords and Reeb orbits exponentially
fast at the punctures: this is crucial to define a Fredholm theory for J-holomorphic
curves.

We will now define the three different types of pseudoholomorphic curves that are
used in this paper.

3.2.2. Curves of Type A. — Let α be a contact form for (M, ξ) and J ∈J (α). Let γ+

be a nondegenerate Reeb orbit of α and let γ− = (γ−1 , γ
−
2 , . . . , γ

−
n ) be an ordered

sequence of nondegenerate Reeb orbits of α.

Definition 3.5. — A finite energy J-holomorphic curve of Type A in (R × M,J)

asymptotic to (γ+,γ−) is a tuple (ũ, z+, z−), where

J.É.P. — M., 2019, tome 6



128 M. R.R. Alves, V. Colin & K. Honda

• z+ is a point in S2,
• z− = (z−1 , . . . , z

−
n ) is an ordered collection of distinct points 6= z+ on S2,

• and ũ : (S2 r z+ ∪ z−, i0) → (R ×M,J) is a finite energy J-holomorphic curve
satisfying:

– ũ is positively asymptotic to γ+ near z+; and
– ũ is negatively asymptotic to γ−` near z−` , ` = 1, . . . , n.

Here i0 is the standard complex structure on S2.

Let M̃ (γ+,γ−; J) be the moduli space of equivalence classes of finite energy
J-holomorphic curves of Type A in (R × M,J) asymptotic to (γ+,γ−). Two
J-holomorphic curves (ũ, z+, z−) and (ṽ, y+,y−) of Type A in (R×M,J) asymptotic
to (γ+,γ−) are equivalent if there exists a biholomorphism τ : (S2, i0)

∼−→ (S2, i0)

which satisfies:
• τ(z+) = y+ and τ(z−` ) = y−` for all `; and
• ṽ ◦ τ = ũ.

The translation in the s-direction induces an R-action on M̃ (γ+,γ−; J) and we write

M (γ+,γ−; J) = M̃ (γ+,γ−; J)/R.

Modifiers. — We also introduce the modifier ∗ as in M ∗(?) to restrict the moduli
space M (?). For example, when ∗ is ind = k, we restrict to curves of Fredholm
index k, and when ∗ is A, we restrict to curves representing a relative homology
class A.

A similar definition holds when (Ŵ , dκ) is an exact symplectic cobordism from a
contact form α+ for (M+, ξ+) to a contact form α− for (M−, ξ−) endowed with an
almost complex structure Ĵ ∈ J (J+, J−), where J+ ∈ J (α+) and J− ∈ J (α−).
If γ+ is a Reeb orbit of α+ and γ− = (γ−1 , . . . , γ

−
n ) is an ordered collection of Reeb

orbits of α−, we define finite energy holomorphic curves of Type A in (Ŵ , Ĵ) asymp-
totic to (γ+,γ−), along the same lines as above. We then define the moduli space
M (γ+,γ−; Ĵ) of equivalence classes of finite energy holomorphic curves of Type A in
(Ŵ , Ĵ) asymptotic to (γ+,γ−).

3.2.3. Curves of Type B. — Let α be a contact form on (M, ξ), J ∈ J (α), and Λ

be a Legendrian submanifold of (M, ξ). Let σ+ be an α-Reeb chord from Λ to itself,
σ− = (σ−1 , . . . , σ

−
n ) be an ordered sequence of α-Reeb chords from Λ to itself, and

γ− = (γ−1 , . . . , γ
−
m) be an ordered collection of Reeb orbits of α. Let D be the closed

unit disk in C.

Definition 3.6. — A finite energy holomorphic curve of Type B in (R×M,J) with
boundary in R × Λ asymptotic to (σ+,σ−,γ−) is a triple (ũ,x−, z−), where x− =

(x−1 , . . . , x
−
n ) is an ordered collection of distinct points 6= 1 in ∂D, z− = (z−1 , . . . , z

−
m) is

an ordered collection of points in the interior of D, and ũ : (Dr ({1}∪x−∪z−), i0)→
(R×M,J) is a finite energy J-holomorphic curve satisfying:

J.É.P. — M., 2019, tome 6



Topological entropy for Reeb vector fields 129

• if we make one full turn in S1 in the counterclockwise sense starting at 1 we hit
the points of x− in the order x−1 , . . . , x−n ,
• ũ is positively asymptotic to the Reeb chord σ+ near the puncture 1,
• ũ is negatively asymptotic to the Reeb chord σ−` near x−` ,
• ũ is negatively asymptotic to the Reeb orbit γ−` near z−` ,
• ũ(∂Dr ({1} ∪ x−)) ⊂ R× Λ.

Let M̃ (σ+,σ−,γ−; J) be the moduli space of equivalence classes of finite energy
holomorphic curves of Type B in (R ×M,J) asymptotic to (σ+,σ−,γ−), where the
equivalence relation is analogous to the one for Type A. Again there is an R-action
on M̃ (σ+,σ−,γ−; J) and we set

M (σ+,σ−,γ−; J) = M̃ (σ+,σ−,γ−; J)/R.

Next suppose that (Ŵ , dκ) is an exact symplectic cobordism from a contact
form α+ for (M+, ξ+) to a contact form α− for (M−, ξ−), and L ⊂ (Ŵ , dκ) is an
SFT-admissible exact Lagrangian cobordism from a Legendrian Λ+ in (M+, ξ+)

to a Legendrian Λ− in (M−, ξ−). Let Ĵ ∈ J (J+, J−), where J+ ∈ J (α+) and
J− ∈ J (α−). If σ+ is a α+-Reeb chord from Λ+ to itself, σ− = (σ−1 , . . . , σ

−
n ) is

an ordered collection of α−-Reeb chords from Λ− to itself, and γ− = (γ−1 , . . . , γ
−
n )

is an ordered collection of Reeb orbits of α−, then we can similarly define finite
energy holomorphic curves of Type B in (Ŵ , Ĵ) with boundary in L asymptotic to
(σ+,σ−,γ−) and the moduli space M (σ+,σ−,γ−; Ĵ) of equivalence classes of finite
energy holomorphic curves Type B in (Ŵ , Ĵ) with boundary in L asymptotic to
(σ+,σ−,γ−).

3.2.4. Curves of Type C. — Let α be a contact form on (M, ξ), J ∈J (α) and (Λ, Λ̂)

be a pair of disjoint Legendrian submanifolds in (M, ξ). Let τ+ and τ− be α-Reeb
chords from Λ to Λ̂, σ− = (σ−1 , . . . , σ

−
n ) be an ordered sequence of α-Reeb chords

from Λ to itself, σ̂− = (σ̂−1 , . . . , σ̂
−
n̂ ) be an ordered sequence of α-Reeb chords from Λ̂

to itself, and γ− = (γ−1 , . . . , γ
−
m) be an ordered collection of Reeb orbits of α.

Definition 3.7. — A holomorphic curve of Type C in (R ×M,J) with boundary in
(R × Λ,R × Λ̂) asymptotic to (τ+, τ−,σ−, σ̂−,γ−) is a quadruple (ũ,x−, x̂−, z−),
where z− = (z−1 , . . . , z

−
m) is an ordered collection of distinct points in the interior

of D, x− = (x−1 , . . . , x
−
n ) is an ordered collection of distinct points in ∂D which does

not contain 1 or −1 , x̂− = (x̂−1 , . . . , x̂
−
n̂ ) is an ordered collection of distinct points

in ∂D which is disjoint from x− and does not contain 1 or −1, and

ũ : Dr ({−1, 1} ∪ x− ∪ x̂− ∪ z−) −→ (R×M,J)

is a holomorphic curve satisfying:
• all the points of x− are in the upper semicircle S+ of the circle ∂D, and if we

move along S+ in the counterclockwise direction starting at 1 and ending at −1 we
hit the points of x− precisely in the order given by x−,
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• all the points of x̂− are in the lower semicircle S− of the circle ∂D, and if we
move along S− in the counterclockwise direction starting at −1 and ending at 1 we
hit the points of x̂− precisely in the order given by x̂−,
• ũ is positively asymptotic to τ+ near the puncture 1,
• ũ is negatively asymptotic to τ− near the puncture −1,
• ũ is negatively asymptotic to σ−` near the puncture x−` ,
• ũ is negatively asymptotic to σ̂−` near the puncture x̂−` ,
• ũ is negatively asymptotic to γ−` near the puncture z−` ,
• ũ(S+ r {−1, 1} ∪ x−) is contained in R× Λ,
• ũ(S− r {−1, 1} ∪ x̂−) is contained in R× Λ̂.

Using the same recipe as above we define the moduli space M̃ (τ+, τ−,σ−, σ̂−,γ−; J)

of equivalence classes of finite energy holomorphic curves of Type C in (R ×M,J)

asymptotic to (τ+, τ−,σ−, σ̂−,γ−) and

M (τ+, τ−,σ−, σ̂−,γ−; J) = M̃ (τ+, τ−,σ−, σ̂−,γ−; J)/R.

Next suppose that (Ŵ , dκ) is an exact symplectic cobordism from a contact
form α+ for (M+, ξ+) to a contact form α− for (M−, ξ−) and L ⊂ (Ŵ , dκ) (resp. L̂)
is an SFT-admissible exact Lagrangian cobordism from a Legendrian Λ+ (resp. Λ̂+)
in (M+, ξ+) to a Legendrian Λ− (resp. Λ̂−) in (M−, ξ−). Let Ĵ ∈J (J+, J−), where
J+ ∈ J (α+) and J− ∈ J (α−). If τ+ is an α+-Reeb chord from Λ+ to Λ̂+, τ−
is an α−-Reeb chord from Λ− to Λ̂−, σ− = (σ−1 , . . . , σ

−
n ) is an ordered sequence

of α−-Reeb chords from Λ− to itself, σ̂− = (σ̂−1 , . . . , σ̂
−
n̂ ) is an ordered sequence of

α−-Reeb chords from Λ̂− to itself, and γ− = (γ−1 , . . . , γ
−
m) is an ordered collection

of Reeb orbits of α−, we can define finite energy holomorphic curves of Type C in
(Ŵ , dκ, Ĵ) with boundary in L ∪ L̂ asymptotic to (τ+, τ−,σ−, σ̂−,γ−). We then
define the moduli space M (τ+, τ−,σ−, σ̂−,γ−; Ĵ) of equivalence classes of finite
energy holomorphic curves of Type C in (Ŵ , Ĵ) with boundary in L ∪ L̂ asymptotic
to (τ+, τ−,σ−, σ̂−,γ−).

3.2.5. Compactification of moduli spaces. — By the results of [BEH+03], a moduli
space M of Type A, B or C admit a natural compactification M called the SFT com-
pactification. The compactification M consists not only of pseudoholomorphic curves
but also of multiple-level pseudoholomorphic buildings in the sense of [BEH+03].
Pseudoholomorphic buildings are collections of pseudoholomorphic curves which sat-
isfy certain matching conditions. We refer the reader to [BEH+03] for the precise
definitions.

From now on we restrict attention to the case where the contact manifolds are
3-dimensional and the symplectic cobordisms are 4-dimensional.

3.3. Full contact homology. — The full contact homology of a contact manifold,
introduced in [EGH00], is an important invariant of contact structures. We refer the
reader to [EGH00] and [Bou09] for detailed presentations of the material contained
in this subsection.
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Let (M, ξ) be a contact 3-manifold, α a nondegenerate contact form for ξ, and Rα
the Reeb vector field for α. We denote by P(α) the set of good contractible periodic
orbits of Rα. To each orbit γ ∈P(α), we assign a Z/2-grading |γ| = µCZ(γ)−1 mod 2.
An orbit γ is called good if it is either simple, or if γ = (γ′)i for a simple orbit γ′ with
|γ| = |γ′|.

We will be assuming the following:

Hypothesis H. — There exists a perturbation scheme P which consists of J ∈J (α)

and an assignment of a transversely cut out Q-weighted branched manifold Z A(γ,γ′)

to each compactified moduli space MA(γ,γ′; J) which satisfies the following:
(1) if MA(γ,γ′; J) = MA(γ,γ′; J), is transversely cut out, and has Fredholm

index ind = 1, then #MA(γ,γ′; J) = #Z A(γ,γ′), where # refers to the weighted
algebraic count;

(2) if Z A(γ,γ′) has ind = 2, then

∂Z A(γ,γ′) =
∐

Z A1(γ,γ1)×Z A2(γ2,γ3),

where the disjoint union is over all pairs of ind = 1 moduli spaces that formally glue
to yield a curve from γ to γ′.

Hypothesis H has now been proven by Bao-Honda [BH15]; Pardon [Par16, Par15]
gives an algebraic substitute. Establishing Hypothesis H could also be done using the
polyfold technology of Hofer-Wysocki-Zehnder [HWZ07] or the Kuranishi structures of
Fukaya-Oh-Ohta-Ono [FOOO09]. We now describe the contact homology differential
graded algebra (dga) A(M,α,P). As an algebra A(M,α,P) is the graded commutative
Q-algebra with unit generated by P(α). The commutativity means that the relation
ab = (−1)|a||b|ba is valid for all a, b ∈ A(M,α,P). The Z/2-grading on the elements
of the algebra is obtained by considering on the generators the grading mentioned
above and extending it to A(M,α,P).

We define the differential ∂ on γ ∈P(α) as follows:

∂γ = m(γ)
∑

γ′=(γ′1,...,γ
′
m)

A(γ,γ′)γ′1γ
′
2 · · · γ′m,

where the sum is taken over all finite ordered collections γ′ of elements of P(α),
A(γ,γ′) ∈ Q is the algebraic count of points in Z ind=1(γ,γ′) and m(γ) is the mul-
tiplicity of γ. The map ∂ is extended to the whole algebra by the graded Leibniz
rule.

Part (2) of Hypothesis H implies that ∂2 = 0. Therefore, A(M,α,P) is a Z/2-gra-
ded commutative dga.

Definition 3.8. — The full contact homology HC(M,α,P) is the homology of the
dga A(M,α,P).

The full contact homology is independent of the choice of contact form α for (M, ξ),
the choice of the cylindrical almost complex structure J ∈ J (α), and the choice of
abstract perturbation scheme P.
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3.4. The Legendrian contact homology of a Legendrian knot. — Let Λ be a Leg-
endrian knot in (M, ξ) and let α be a nondegenerate, Λ-nondegenerate contact form
for (M, ξ). Let Tα(Λ) be the set of α-Reeb chords starting and ending at Λ, and that
are trivial in π1(M,Λ).

Using a perturbation scheme P which extends that of full contact homology and
which will usually be suppressed from the notation, one similarly associates to (α,Λ) a
differential graded algebra C(M,α,Λ). This construction is due to Eliashberg, Given-
tal and Hofer and was outlined in [EGH00, §2.8]. The algebra C(M,α,Λ) is the
Z/2-graded associative unital algebra generated by elements of Tα(Λ) and P(α)

with the relations

γ1γ2 = (−1)|γ2||γ1|γ2γ1, γ1σ = (−1)|σ||γ1|σγ1,

for all γ1, γ2 ∈ P(α) and σ ∈ Tα(Λ). Equivalently, we can think of C(M,α,Λ)

as the Z/2-graded associative unital algebra generated by elements of Tα(Λ) with
coefficients in A(M,α). It is then clear that C(M,α,Λ) is a right and left module over
the differential graded algebra A(M,α). The degree |σ| of an element σ ∈ Tα(Λ) is
given by the parity of its Conley-Zehnder index minus one, and is again extended
algebraically to the whole algebra.

We define a differential ∂Λ on the generators σ of Tα(Λ) as follows:

∂Λσ =
∑

σ′=(σ′1,...,σ
′
k),γ=(γ1,...,γm)

σ′1 · · ·σ′kC̃(σ,σ,γ)γ1 · · · γm,

where the sum is taken over all finite ordered collections σ′ of elements of Tα(Λ) and
all finite ordered collections γ of elements of P(α), C̃(σ,σ′,γ) ∈ Q is the algebraic
count of the perturbation Z ind=1(σ,σ′,γ) of M

ind=1
(σ,σ′,γ; J) and m(γj) is the

multiplicity of the Reeb orbit γj . The differential is extended using the graded Leibniz
rule. In particular, if γ ∈ A(M,α) and σ ∈ Tα(Λ) then

∂Λ(σγ) = ∂Λ(σ)γ + (−1)|σ|σ∂(γ).

The Legendrian contact homology analog of Hypothesis H and the outline given in
[EGH00, §2.8] imply that ∂2

Λ = 0.

3.5. The opposite of (C(M,α,Λ), ∂Λ). — We recall the notion of the opposite of
(C(M,α,Λ), ∂Λ); cf. [HL88, Sta] for the definition for general differential graded alge-
bras. We define for all elements a, b ∈ C(M,α,Λ) the product

a •op b = (−1)|a||b|ba.

The algebra obtained by considering the addition and multiplication by scalars as
in C(M,α,Λ) and the product •op is called the opposite of C(M,α,Λ) and is denoted
by Cop(M,α,Λ).

On Cop(M,α,Λ) with the same grading as C(M,α,Λ), we consider the differ-
ential ∂Λ on C(M,α,Λ). A direct computation shows that ∂Λ is a differential on
Cop(M,α,Λ) since it satisfies the graded Leibniz rule

∂Λ(a •op b) = (∂Λa) •op b+ (−1)|a|a •op ∂Λb
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for all a, b ∈ Cop(M,α,Λ). The differential graded algebra (Cop(M,α,Λ), ∂Λ) is called
the opposite of (C(M,α,Λ), ∂Λ).

3.6. The Legendrian contact homology of a pair Λ → Λ̂. — The homology we
present in this subsection is the one described in [BEE12, Rem. 7.4]; a similar con-
struction appears in [Ekh08]. Let Λ and Λ̂ two disjoint Legendrian knots on (M, ξ).
Suppose that α is nondegenerate and Λ ∪ Λ̂-nondegenerate. Let Tα(Λ → Λ̂) be the
set of α-Reeb chords with initial point on Λ and terminal point on Λ̂. Again we use
a perturbation scheme P which will usually be suppressed from the notation.

We first consider the dga Cop(M,α,Λ)⊗A(M,α) C(M,α, Λ̂) whose differential is the
Koszul differential of the tensor product. Let B(M,α,Λ → Λ̂) be the Z/2-graded
right module over Cop(M,α,Λ) ⊗A(M,α) C(M,α, Λ̂) generated by Tα(Λ → Λ̂). The
differential ∂Λ→Λ̂ in B(M,α,Λ→ Λ̂) is defined on elements τ ∈ Tα(Λ→ Λ̂) by:

∂Λ→Λ̂τ =
∑

τ ′∈Tα(Λ→Λ̂)

τ ′B(τ, τ ′).

Here B(τ, τ ′) ∈ Cop(M,α,Λ)⊗A(M,α) C(M,α, Λ̂) is given by

B(τ, τ ′) =
∑

σ,σ̂−,γ

σ1 · · ·σnσ̂−1 · · · σ̂
−
n̂ γ1 · · · γmB̃(τ, τ ′,σ, σ̂−,γ),

where the sum is taken over all ordered finite collections σ = (σ1, . . . , σn) of
elements in Tα(Λ), all ordered finite collections σ̂− = (σ̂−1 , . . . , σ̂

−
n̂ ) of elements in

Tα(Λ̂), and all ordered finite collections γ = (γ1, . . . , γm) of elements in P(α), and
B̃(τ, τ ′,σ, σ̂−,γ) is the algebraic count of the perturbation Z ind=1(τ, τ ′,σ, σ̂−,γ) of
M

ind=1
(τ, τ ′,σ, σ̂−,γ).

An analog of Hypothesis H and the strategies outlined in [BEE12, §7] and [EGH00,
§2.8] imply that ∂2

Λ→Λ̂
= 0.

Remark 3.9. — The reason we have to use the opposite dga (Cop(M,α,Λ), ∂Λ) is that
for geometric reasons elements of Tα(Λ) have to be multiplied to the left of elements of
Tα(Λ→ Λ̂) in the module B(M,α,Λ→ Λ̂). This implies that B(M,α,Λ→ Λ̂) must
be a left module over C(M,α,Λ) and thus a right module over Cop(M,α,Λ). Analo-
gously elements of Tα(Λ̂) have to be multiplied to the right of elements of Tα(Λ→ Λ̂),
which implies that B(M,α,Λ→ Λ̂) must be a right module over C(M,α, Λ̂).

Combining these observations we conclude that the correct choice is to construct
B(M,α,Λ→ Λ̂) as a right module over Cop(M,α,Λ)⊗A(M,α) C(M,α, Λ̂).

3.7. Augmentations and strip Legendrian contact homology. — The goal of this
subsection is to explain augmentations and the linearization process, introduced to
Legendrian contact homology by Chekanov [Che02]. This allows us to define a differ-
ential ∂ε

Λ→Λ̂
on the Q-vector space LCε(α,Λ → Λ̂) generated by Tα(Λ → Λ̂) in the

presence of an augmentation ε.

J.É.P. — M., 2019, tome 6



134 M. R.R. Alves, V. Colin & K. Honda

An augmentation εA(M,α) for A(M,α) is a dga morphism A(M,α) → Q with the
trivial differential for Q, i.e.,

εA(M,α)(q1) = q for every q ∈ Q,
εA(M,α) ◦ ∂ = 0,

where 1 is the unit in A(M,α).
An augmentation εC(M,α,Λ) for C(M,α,Λ) is a dga morphism C(M,α,Λ)→ Q, i.e.,

εC(M,α,Λ)(q1) = q for all q ∈ Q,
εC(M,α,Λ) ◦ ∂Λ = 0,

where 1 is the unit in C(M,α,Λ). It is straightforward to check that an aug-
mentation εC(M,α,Λ) for C(M,α,Λ) is also an augmentation for the opposite dga
(Cop(M,α,Λ), ∂Λ).

Definition 3.10. — Given augmentations εA(M,α), εC(M,α,Λ) and εC(M,α,Λ̂) that sat-
isfy the following compatibility condition:

εC(M,α,Λ)(a) = εC(M,α,Λ̂)(a) = εA(M,α)(a),

for every a ∈ A(M,α), the composite augmentation

ε : Cop(M,α,Λ)⊗A(M,α) C(M,α, Λ̂) −→ Q

is a dga morphism that satisfies:
• ε coincides with εA(M,α) on elements of the coefficient dga A(M,α),
• ε coincides with εC(M,α,Λ) on elements of the form Cop(M,α,Λ)⊗ 1,
• ε coincides with εC(M,α,Λ̂) on elements of the form 1⊗ C(M,α, Λ̂),
• ε(q1⊗ 1) = q for all q ∈ Q.

We are ready to define our differential ∂ε
Λ→Λ̂

on the Q-vector space LCε(α,Λ→ Λ̂).
We define for each σ ∈ Tα(Λ→ Λ̂)

∂ε
Λ→Λ̂

σ :=
∑

σ′∈Tα(Λ→Λ̂)

ε(B(σ, σ′))σ′.

It is a theorem of Bourgeois, Ekholm and Eliashberg that (∂ε
Λ→Λ̂

)2 = 0. To see this
we first define a map

Fε : B(M,α,Λ→ Λ̂) −→ LCε(α,Λ→ Λ̂)

by setting σ ∈ Tα(Λ→ Λ̂) and C̃ ∈ C(M,α,Λ)⊗A(M,α) C(M,α, Λ̂):

Fε(σC̃) = ε(C̃)σ.

A direct computation shows that the diagram

B(M,α,Λ→ Λ̂)
Fε //

∂Λ→Λ̂
��

LCε(α,Λ→ Λ̂)

∂ε
Λ→Λ̂
��

B(M,α,Λ→ Λ̂)
Fε // LCε(α,Λ→ Λ̂)
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is commutative. It then follows directly from the fact that (∂Λ→Λ̂)2 = 0 that
(∂ε

Λ→Λ̂
)2 = 0.

In the special case where
• there is no index one holomorphic plane asymptotic to a periodic orbit of Rα and
• there is no index one once-punctured holomorphic disk asymptotic to a Reeb

chord for Λ or Λ̂,
the trivial map ε which vanishes for all Reeb chords and Reeb orbits and restricts
to the identity on Q is an augmentation. The corresponding linearized Legendrian
contact homology LCHε(α,Λ → Λ̂) whose differential counts pseudoholomorphic
strips is called the strip Legendrian contact homology of Λ → Λ̂. It is denoted
LCHst(α,Λ→ Λ̂).

3.8. Pullback augmentations and linearizations. — As shown in [BEE12] one can
use exact symplectic cobordisms to pull back linearizations. We explain this in more
detail.

Let (R × M,dσ) be an exact symplectic cobordism from a contact form α for
(M, ξ) to a contact form α0 for (M, ξ). Let L, L̂ ⊂ (R×M,dσ) be disjoint, cylindrical
SFT-admissible exact Lagrangian cobordisms from Legendrian knots Λ, Λ̂ to them-
selves.

The cobordisms (R×M,dσ, L) and (R×M,dσ, L̂) induce chain maps

ΨR×M,dσ,L : C(M,α,Λ) −→ C(M,α0,Λ),

ΨR×M,dσ,L̂ : C(M,α, Λ̂) −→ C(M,α0, Λ̂)

By the arguments of [BEE12, EGH00], the chain maps ΨR×M,dσ,L and ΨR×M,dσ,L̂ are
quasi-isomorphisms. It is straightforward to check that

ΨR×M,dσ,L : C(M,α,Λ) −→ C(M,α0,Λ) is a quasi-isomorphism

implies

ΨR×M,dσ,L : Cop(M,α,Λ) −→ Cop(M,α0,Λ) is a quasi-isomorphism.

If
ε0 : Cop(M,α0,Λ)⊗A(M,α0) C(M,α0, Λ̂) −→ Q

is a composite augmentation, then we can define a composite augmentation

ε0 ◦ (ΨR×M,dσ,L ⊗ΨR×M,dσ,L̂) : Cop(M,α,Λ)⊗A(M,α) C(M,α, Λ̂)) −→ Q.

3.9. Action filtration. — There is an action filtration on contact homology and
Legendrian contact homology.

To see this we first note that if J ∈J (α) and

ũ : (S r Ω, i) −→ (R×M,J)

is a finite energy J-holomorphic curve in the symplectization (R ×M,d(esα)), then∫
S
ũ∗dα > 0 and moreover

∫
S
ũ∗dα = 0 if and only if ũ is either a trivial strip over a

Reeb chord or a trivial cylinder over a Reeb orbit; see [Abb99, Hof93].

J.É.P. — M., 2019, tome 6



136 M. R.R. Alves, V. Colin & K. Honda

Let (z+
1 , . . . , z

+
n ) be the positive punctures of ũ and (z−1 , . . . , z

−
m) be the negative

punctures of ũ. If A(z±j ) is the action of the Reeb orbit or Reeb chord that ũ limits
to near z±j , one obtains the following formula:∫

S

ũ∗dα =

n∑
j=1

A(z+
j )−

m∑
j=1

A(z−j ).

It is immediate that M (γ+,γ−; J) = ∅ if A(γ+) 6
∑n
j=1A(γ−j ) and analogous

statements hold for M (σ+,σ−,γ−; J) and M (τ+, τ−,σ−, σ̂−,γ−; J).
These considerations imply that:
• the subalgebra A6T (M,α) of A(M,α) generated by the Reeb orbits of α with

action 6 T is a sub-dga of (A(M,α), ∂),
• the algebra C6T (M,α,Λ) of C(M,α,Λ) generated by Reeb orbits and Reeb chords

with action6 T is a sub-dg-algebra of (C(M,α,Λ), ∂Λ), and a module over A6T (M,α),
• the subset B6T (M,α,Λ→ Λ̂) of B(M,α,Λ→ Λ̂) generated by Reeb orbits and

Reeb chords with action 6 T endowed with the differential ∂Λ→Λ̂ is a dg-module over
C6T

op (M,α,Λ)⊗A6T (M,α) C
6T (M,α, Λ̂).

In the same way as in Section 3.7 we can consider augmentations on (A6T (M,α), ∂),
(C6T (M,α,Λ), ∂Λ) and (B6T (M,α,Λ→ Λ̂), ∂Λ→Λ̂).

4. Constructions

The goal of this section is to construct the Legendrians Λ, Λ̂, and the contact forms
αε,ε′ that are used in the proof of Theorem 1.1.

4.1. Review of [CH13]. — We first recall some notation and the construction of a
family of controlled contact forms from [CH13]. Let (S, h) be a supporting open book
decomposition of (M, ξ) where:
• ∂S is connected;
• h is homotopic to a pseudo-Anosov homeomorphism ψ of S.
Let F be the stable foliation of ψ. The singularities of F along ∂S are denoted

x1, . . . , xn and the ones in the interior of S are denoted y1, . . . , yq. We first consider a
small (one-sided) collar neighborhood N(∂S) ⊂ S of ∂S such that the component of
∂N(∂S) contained in the interior of S is a concatenation of arcs that are alternately
tangent to and transverse to F . Let ai be the transverse arc of ∂N(∂S) corresponding
to xi. Then we look at the separatrices emanating from the interior singularities yj
and cut them at the first moment they enter N(∂S). The corresponding arcs from yj
to ∂N(∂S) are called Q′j1, . . . , Q′jmj . Let Pi be the prong emanating from xi and let P ′i
be the first component of Pi∩ (Sr int(N(∂S))) that can be reached from the singular
point xi while traveling inside an arc (called pi) of Pi. The arc P ′i has endpoints
on int(ai) and some int(ai′). Now, for each j, we define N(yj) to be a sufficiently
small neighborhood of Q′j1 ∪ · · · ∪ Q′jmj in S r int(N(∂S)) such that ∂N(yj) is a
concatenation of arcs that are alternately tangent to and transverse to F .
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We define the subset

S′′ = S r
⋃

16j6q
int(N(yj)) r

⋃
16i6n

int(N(P ′i )) r int(N(∂S)).

Here the boundary of the neighborhoods N(P ′i ) are also alternatively tangent to and
transverse to F . By [CH13, Claim 6.4] we know that F |S′′ is orientable.

In [CH13, Prop. 6.3], the second and third authors construct a 1-form β on S which
satisfies dβ > 0 and which has the following properties:

(P1) kerβ = F on S′′;
(P2) β is nonsingular (i.e., has no zeros) away from N(∂S) and from a very small

neighborhood of the interior singularities yi;
(P3) β has an elliptic singularity in each component of N(∂S) r

⋃
16j6n pi.

An important point in what follows is that
(P4) a nonempty subset of the leaves from each elliptic singularity e in N(∂S) r⋃

16j6n pi go to the boundary ∂S.
This means that we can take the dβ-area of a small disk around each elliptic singularity
e to be arbitrary large without affecting the value of β in S rN(∂S).

4.2. Construction of Λ and Λ̂. — Recall the Rademacher function Φ from Sec-
tion 2.3. The following is the main technical lemma:

Lemma 4.1. — There exist:
• a sufficiently small neighborhood N(∂S),
• sufficiently thin neighborhoods N(yj) and N(P ′i ),
• a 1-form β on S such that dβ > 0 and (P1)–(P4) hold, and
• an immersed curve L in S,

such that:
(A)

∫
L
β = 0;

(B) Φ(δ) = 0 for every immersed arc δ in L;
(C) every closed curve δ : S1 → L which is noncontractible and which turns at

most once at a double point of L is noncontractible in S.

Proof. — We first construct an oriented embedded closed curve L0 = δ0 ∪ δ1 in S

such that:
(L1) δ0 is a sufficiently short arc transverse to F , δ1 is a (long) arc tangent to F ,

and int(δ0) ∩ int(δ1) = ∅
(L2) δ1 is not contained in a separatrix;
(L3) δ1 is positively (or negatively) transverse to δ0 at its two boundary points

and the sign is the same for both;
(L4) every closed curve on S which is the union of a nontrivial embedded subarc

of δ0 and an arc tangent to F is π1-injective in S.
See Figure 1.

The construction uses the density of the leaves of the stable foliation F : Let r0 ∈
int(S) be a point not on a separatrix and let L be a half-leaf of F starting from r0.
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δ0 δ1

Figure 1. The curve L0

We take a short arc c that is transverse to F and has r0 as an endpoint and consider
the first point of return r1 of L to c. If L and c intersect with the same sign at
both r0 and r1, then we are done. Otherwise, consider the second point of return r2

of L to the subarc [r0, r1] of c. Then either r0 and r2 have the same sign or r1 and r2

have the same sign, and we are done. (L1)–(L3) are immediate from the construction.
(L4) is due to the fact that leaves of F are quasi-geodesic for some hyperbolic metric
on S and δ0 is sufficiently short.

Next we take N(∂S) to be sufficiently small and⋃
16j6q

int(N(yj)) and
⋃

16i6n
int(N(P ′i ))

to be sufficiently thin such that N(∂S) ∩ L0 = ∅ and δ1 ⊂ S′′.
We then apply the construction of β from [CH13, Prop. 6.3] to this S′′ and show

that (B) and (C) hold for L0. Given an arc δ in L, we consider nP
D̃

(δ̃) as described in
Section 2.3, where D̃ is a component of ∂S̃ and δ̃ is a lift of δ to S̃. Let P̃ ′, P̃ ′′ ⊂ PD̃ be
consecutive lifts of prongs that end on D̃ and let C̃ be the component of S̃r(P̃ ′∪ P̃ ′′)
that has P̃ ′ ∪ P̃ ′′ as part of its boundary. The arc δ̃ cannot intersect PD̃ more than
once, since if δ̃ crosses P̃ ′∪ P̃ ′′ into C̃, then it cannot exit C̃ by (L3). Hence (B) holds
by Equation (2.3.1). (C) holds for L0 by (L4). However,

∫
L0
β =

∫
δ0
β has no reason

to vanish.
We will now modify L0 to L so that

∫
L
β = 0, while preserving conditions (B)

and (C); see Figure 2. We extend δ1 at both ends by arcs a and a′ that are tangent
to F until they hit N(∂S) and then go inside N(∂S) to the elliptic singularity e or e′
of kerβ contained in the appropriate component of N(∂S) r

⋃
16j6n pi. Notice here

that a and a′ might intersect δ0 at some interior points. We define L to be the result
of applying a finger move to L0 along a or a′ so that it circles around e or e′, i.e., we
delete a small portion δ]0 of δ0 from L0 and replace it by a long arc δ[0 such that:
• δ]0 and δ[0 have the same endpoints;
• inside S′′, δ[0 is tangent to F and is close to (two copies of) a or a′, as appropriate;
• inside N(∂S), δ[0 circles around e without crossing the pi’s.

(L3) implies that the two possibilities a and a′ contribute different signs to
∫
δ[0
β. The

choice of a or a′ depends on the sign of
∫
L0
β. Since the dβ-area around e can be

made arbitrarily large, we can use it to counterbalance
∫
L0
β. Hence we obtain (A),

i.e.,
∫
L
β = 0.

J.É.P. — M., 2019, tome 6



Topological entropy for Reeb vector fields 139

a

a

c

d

e

a

a

c

g

e

f

dδ1 δ1

δ1 δ1

δ0 δ0

a

a

e e

δ[0

∂S

Figure 2. Modification of L0 along a which gives L

Finally we verify that (B) and (C) still hold for L. (B) follows from observing that:
• a and a′ are tangent to F away from the neighborhood N(∂S), and
• a and a′ do not intersect the prongs on N(∂S).

Hence the finger move does not give any additional contributions to Φ. (C) follows
from observing that the finger move creates bigons bounded by L but not monogons,
since the arcs a and a′ are long quasi-geodesics. �

We lift the curve L from Lemma 4.1 to an embedded Legendrian curve Λ in
(S × [−c, c], dt+ εβ), where t is the [−c, c]-coordinate. This is done by observing that
the contact form dt+ εβ defines a connection for the trivial fibration π : S ×R→ S.
The condition

∫
L
β = 0 ensures that every lift of L is a closed curve. Starting a lift

at a point of altitude t = 0, if ε > 0 is sufficiently small, then the entire Legendrian
lift Λ of L lies in the region S × [−c, c] ⊂ S × R.

The Legendrian Λ̂ is taken to be a small pushoff of Λ in the Reeb direction which
is also contained in S × [−c, c] ⊂ S × R.

4.3. Construction of the contact forms αε,ε′ . — The construction of the contact
form αε,ε′ and the corresponding Reeb vector field Rε,ε′ then proceeds exactly as in
[CH13, §6.2], where we are using the 1-form β satisfying Lemma 4.1. We then make
one modification: on S × {1/2}, αε,ε′ = dt+ εβ and we plug into the mapping torus
(S × [0, 1])/(x, 1) ∼ (h(x), 0) at t = 1/2 a copy of the t-invariant contact structure
(S× [−c, c], dt+εβ) for sufficiently small c and ε. This part of the open book contains
the Legendrians Λ and Λ̂.

5. Control of once-and twice-punctured holomorphic disks

Let us first recall [CH13, Th. 8.1]:

Theorem 5.1 ([CH13]). — Suppose k>2. Given N�0, for sufficiently small ε, ε′>0,
there are no holomorphic planes in R×M asymptotic to a closed Rε,ε′-Reeb orbit of
αε,ε′-action 6 N .
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Since the proofs of Theorems 5.2 and 5.3 below are similar, we give a sketch. For
more details see [CH13, §8].

Sketch of proof. — Arguing by contradiction, suppose that such a holomorphic plane

ũ = (r, u) : C −→ R×M

exists. We first “compactify” the M -component u to a map

u : D −→M

such that:
(C1) u maps ∂D to an Rε,ε′ -Reeb orbit γ which intersects a page m times;
(C2) u|int(D) is immersed away from a finite number of points in int(D);
(C3) on the neighborhoods of the nonimmersed points of u, u is theM -component

of a holomorphic map; and
(C4) at the immersed points of u, u is positively transverse to Rε,ε′ .
We then remove a neighborhood N(K) of K and cut

M rN(K) ' S × [0, 1]/(x, 1) ∼ (h(x), 0)

along a page, say S × {0}. Performing the corresponding cutting operations on the
domain D of u yields a disk D ; here we are assuming the transversality of u and
∂N(K) and S × {0}. Then u(∂D) has the form:

u(∂D) = h−1(α−1
1 )β1α1γ1 · · ·h−1(α−1

m )βmαmγm,

where:
• the αi = αi × {0} are intersections of u with S × {0},
• α−1

i is αi with the opposite orientation,
• h−1(α−1

i ) = h−1(α−1
i )× {1},

• the γi are components of the Reeb orbit γ cut along S × {0}, and
• the βi are arcs of type {pt} × [0, 1], where pt ∈ ∂S.
Next, letting πS : S × [0, 1]→ S be the projection onto the first factor, we obtain

πS(u(∂D)) = h−1(α−1
1 )α1πS(γ1) · · ·h−1(α−1

m )αmπS(γm).

Some rearranging of the terms yields

πS(u(∂D)) = h−1(ξ−1
1 )ξ1h

−1(ξ−1
2 )ξ2 · · ·h−1(ξ−1

m )ξmQ,

where Φ(h−1(ξ−1
i )ξi) > k − 1 and Φ(Q) = 0. Using Property (R1) for Φ, we obtain

Φ(h−1(ξ−1
1 )ξ1 · · ·h−1(ξ−1

m )ξm) > m(k − 1)− (m− 1) > 1,

since k > 2. Finally, a rather tricky argument shows that concatenating with Q does
not contribute any error and hence

Φ(πS(u(∂D))) > 1,

which is a contradiction. �
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h−1(α−1
3 )

γ3

α3

β3

γ2

β1

α1

β2

α2

h−1(α−1
1 )

γ1

h−1(α−1
2 )

Figure 3. The disk D . The labelings indicate the image of the given
boundary arc under the map u.

Theorem 5.2. — Suppose k > 3. Given N � 0, for sufficiently small ε, ε′ > 0, there
are no once-punctured holomorphic disks in R×M asymptotic to an Rε,ε′-Reeb chord
of Λ or Λ̂ of αε,ε′-action 6 N and with boundary on the symplectization of Λ or Λ̂.

Proof. — The proof is similar to that of Theorem 5.1. We sketch it for Λ; the proof
is identical for Λ̂.

Arguing by contradiction, suppose that such a once-punctured holomorphic disk

ũ = (r, u) : Dr {1} −→ R×M

exists whose boundary maps to R× Λ. We “compactify” u to u : D→M such that:
(C1’) u maps ∂D ∩ {Re z 6 0} to Λ and ∂D ∩ {Re z > 0} to an Rε,ε′ -Reeb chord

of Λ;
and (C2)–(C4) hold.

Suppose that u does not intersect the binding K. In this case the Reeb chord must
correspond to a double point of L and there is a projection of u to S which takes the
boundary of u to L. However by Lemma 4.1(C) no curve in L that turns once at a
double point is contractible, a contradiction.

Next suppose that u intersects K. Then we remove a neighborhood N(K) of K,
choose a page S × {0} which is disjoint from Λ, and cut M rN(K) along this page.
Performing the corresponding cutting operations on the domain D of u yields a disk D .

We claim that Φ(πS ◦u(∂D)) 6= 0. Indeed, as in the case of Theorem 5.1, πS ◦u(∂D)

can be written as a concatenation of arcs, where the only difference here is that one
of these arcs is πS of an arc d that is contained in Λ. By construction, πS(d) ⊂ L;
hence Φ(πS(d)) = 0 by Lemma 4.1(B). Since there is also one extra concatenation to
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consider, by Property (R1) for Φ, we lose an extra degree of precision and conclude
that if k > 3 (instead of 2), such a map ũ cannot exist. �

By combining Theorems 5.1 and 5.2, we conclude that the strip Legendrian contact
homology of Λ→ Λ̂ is well-defined when k > 3.

Theorem 5.3. — Suppose k > 5. Given N � 0, for sufficiently small ε, ε′ > 0, there
are no holomorphic strips between Rε,ε′-Reeb chords from Λ to Λ̂ of αε,ε′-action 6 N
which intersect R times the binding nontrivially.

Proof. — The proof is again same as that of [CH13, Th. 9.2] that prevents holomor-
phic cylinders from intersecting the binding, except that we have to concatenate two
extra arcs coming from the boundary components of the holomorphic strip that map
to Λ and Λ̂. Since Φ = 0 on these extra arcs by Lemma 4.1(B), the theorem follows
without more effort at the cost of replacing the inequality k > 3 by k > 5 to take care
of the possible extra leaking of 2 due to the two extra concatenations. �

6. Growth of the number of Reeb chords and positivity of
topological entropy

6.1. A heuristic argument. — Let (M, ξ) be a contact 3-manifold which admits a
supporting open book decomposition whose binding is connected and whose mon-
odromy is homotopic to a pseudo-Anosov homeomorphism with fractional Dehn twist
coefficient k/n with k > 5. Let Λ and Λ̂ be a pair of disjoint Legendrian knots in
(M, ξ) constructed in Section 4.2.

We give a heuristic argument for the exponential growth of strip Legendrian con-
tact homology. Assume that there is a fixed contact form α for (M, ξ) that satisfies the
conclusions of Theorems 5.2 and 5.3. Let G (τ) be the number of times the chord τ of Λ

or Λ̂ intersects the page S ×{0}; here we are assuming that Λ, Λ̂ lie in a small neigh-
borhood of S × {1/2}. By Theorem 5.3 the differential for strip Legendrian contact
homology counts strips in the mapping torus of (S, h), i.e., if there is a holomorphic
strip ũ between two chords τ, τ ′, then G (τ) = G (τ ′). Hence there exists a direct sum
decomposition of the strip Legendrian chain complex LCst(α,Λ→ Λ̂) into

LCst(α,Λ→ Λ̂) = ⊕m∈Z>0LCG =m
st (α,Λ→ Λ̂).

Now by the properties of pseudo-Anosov maps (cf. [FLP12] and [FM12, Th. 14.24]),
the geometric intersection number between L and ψm(L) grows exponentially at a rate
of λm, where λ is the stretch factor for the pseudo-Anosov map. Hence there exist
numbers a > 0 and b such that:

(6.1.1) dim(LCHG =m
st (α,Λ→ Λ̂)) > eam+b.

We also remark that we may replace “G = m” by the condition “6 m” on the action.
The difficulty is that, instead of a single contact form α, we have a sequence of

contact forms for which we control orbits up to a certain action. The actual argument
runs through direct limits as detailed in the next subsection.
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6.2. Growth of the number of Reeb chords. — As indicated in the previous sub-
section we need to use a direct limit argument. The following is the key definition for
taking direct limits:

Definition 6.1. — Fix a contact form α0 for (M, ξ). A sequence (αi = Giα0, Li),
i = 1, 2, . . . , of pairs of contact forms and real numbers is exhaustive if there exists a
constant C > 1 such that

(6.2.1) Li+1 > CNiNi+1Li

where Ni = sup{Gi(x), 1/Gi(x) | x ∈M}.

Suppose that (M, ξ) is a contact 3-manifold satisfying the conditions of Theo-
rem 1.1. Let us fix a contact form α0 = αε0,ε′0 with ε0, ε

′
0 sufficiently small. Then we

have the following analog of [CH13, Prop. 10.2]:

Lemma 6.2. — If (M, ξ) is a contact 3-manifold satisfying the conditions of Theo-
rem 1.1, then given a sequence Li, i = 1, 2, . . . , going to ∞, there exists a sequence
of contact forms αεi,ε′i with εi, ε

′
i → 0 such that:

(1) The strip contact homology chain groups LC6Li
st (αεi,ε′i ,Λ → Λ̂) are well-

defined.
(2) There exists an isotopy (φis)s∈[0,1] of M such that Giα0 = (φi1)∗αεi,ε′i and

1/4 6 Gi 6 4.

We remark that the bound 1/4i 6 Gi 6 4i that originally appears in [CH13,
Prop. 10.2] can be improved to 1/4 6 Gi 6 4 by a slightly more careful use of [CH13,
Lem. 10.4& 10.5] in the proof of [CH13, Prop. 10.2]. Briefly, instead of comparing
αε0,ε′0 to αε1,ε′1 , αε1,ε′1 to αε2,ε′2 , and so on, which gives the bound 1/4i 6 Gi 6 4i, we
can directly compare αε0,ε′0 to αεi,ε′i , which gives the bound 1/4 6 Gi 6 4.

Lemma 6.3. — If (M, ξ) is a contact 3-manifold satisfying the conditions of Theo-
rem 1.1, then there exists an exhaustive sequence (αi = Giα0, Li) that satisfies the
conditions of Theorem 1.3.

Proof
(1) and (2) Pick C > 1 and a sequence Li such that Li+1 > 16CLi. We then apply

Lemma 6.2 to obtain a sequence αi = Giα0. Note that

Ni := sup{Gi(x), 1/Gi(x)} 6 4

and Li+1 > 16CLi implies that Li+1 > CNiNi+1Li. Hence we have an exhaustive
sequence (αi = Giα0, Li) to which Theorems 5.2 and 5.3 apply. The strip Legen-
drian contact homology LCH6Li

st (αi,Λ → Λ̂) is therefore well-defined and by Equa-
tion (6.1.1) there exist numbers a > 0 and b such that

dim(LCH6`
st (αi,Λ→ Λ̂)) > ea`+b

for each i ∈ N and ` 6 Li. Hence (αi = Giα0, Li) satisfies (1) and (2) of Theorem 1.3
with c = 4.
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(3) By the argument of [CH13, §10.3], if i 6 j, then the exhaustive condition
(in particular Equation (6.2.1)) and analogs of Theorems 5.2 and 5.3 for symplectic
cobordisms imply that there exists an exact symplectic cobordism W i

j and SFT-
admissible exact Lagrangian cobordisms R× Λ and R× Λ̂ that induce a map(1)

ΨW i
j

: LCH6Li
st (αi,Λ→ Λ̂) −→ LCH

6Lj
st (αj ,Λ→ Λ̂).

In order to prove the injectivity statement, we consider the composition of cobor-
disms W i

j and W j
i , whose induced maps are viewed as:

ΨW i
j

:LCH
6Li/4

4

st (αi,Λ→ Λ̂) −→ LCH
6Li/4

2

st (αj ,Λ→ Λ̂);

ΨW j
i

:LCH
6Li/4

2

st (αj ,Λ→ Λ̂) −→ LCH6Li
st (αi,Λ→ Λ̂);

i.e., we have to restrict domains. By the homotopy invariance and functoriality of
cobordism maps, ΨW i

i
= ΨW j

i
◦ΨW i

j
, which implies (3) with constant d = 44. �

Proposition 6.4. — If (M, ξ) is a contact 3-manifold satisfying the conditions of
Theorem 1.3, then there exist numbers a > 0 and b such that for every nondegenerate,
Λ ∪ Λ̂-nondegenerate contact form α = fαα0 for (M, ξ) we have

(6.2.2) #(T 6Kα`
α (Λ→ Λ̂)) > ea`+b,

where ` ∈ R+ and Kα = sup{fα(x), 1/fα(x) | x ∈M}.

Proof. — Let (αi, Li) be the exhaustive sequence satisfying Theorem 1.3 and let K =

Kα = sup{fα(x), 1/fα(x) | x ∈M}.
For each pair of numbers i and j there exist an exact symplectic cobordism W i(α)

from αi to α (together with R× (Λ ∪ Λ̂)) and an exact symplectic cobordism Wj(α)

from α to αj (together with R× (Λ ∪ Λ̂)) which induce maps

ΨW i(α) :LCH6`
st (αi,Λ→ Λ̂) −→ LCH6Kc`

ε (α,Λ→ Λ̂),

ΨWj(α) :LCH6Kc`
ε (α,Λ→ Λ̂) −→ LCH6K2c2`

st (αj ,Λ→ Λ̂),

where ` < Li and ε is the pullback of the trivial augmentation via the cobordism
Wj(α). Note that the trivial augmentation for (αi,Λ→ Λ̂) is chain homotopic to the
pullback of ε via W i(α), and hence induce isomorphic linearizations.

Since Lj > K2c2Li for j � i, in view of Equation (6.2.1), we can instead regard
ΨWj(α) as a map

ΨWj(α) : LCH6Kc`
ε (α,Λ→ Λ̂) −→ LCH

6Lj
st (αj ,Λ→ Λ̂).

The gluing of W i(α) and Wj(α) yields an exact symplectic cobordism W i
j (α) which

is homotopic to W i
j as exact symplectic cobordisms; we are still using SFT-admissible

exact Lagrangians R× (Λ ∪ Λ̂).
By the homotopy invariance and functoriality of cobordism maps,

ΨW i
j

= ΨW i
j (α) = ΨWj(α) ◦ΨW i(α).

(1)The Lagrangians will be suppressed from the notation.
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This implies that:

dim(LCH6Kc`
ε (α,Λ→ Λ̂)) > dim(ΨW i

j
(LCH6`

st (αi,Λ→ Λ̂))).

On the other hand, by Conditions (2) and (3) of Theorem 1.3,

dim(ΨW i
j

(LCH6`
st (αi,Λ→ Λ̂))) > ea`+b

for ` 6 Li/d. Hence, for ` 6 Li/d,

#(T 6Kc`
α (Λ→ Λ̂)) > dim(ΨW i

j
(LCH6`

st (αi,Λ→ Λ̂))) > ea`+b.

Finally, after renaming a, b, Equation (6.2.2) follows. �

6.3. Positivity of topological entropy. — The goal of this subsection is to prove
Theorem 1.3.

Nondegenerate case. — First suppose that α is a nondegenerate contact form for
(M, ξ) and the conditions of Theorem 1.3 are satisfied.

Fix δ > 0 small. By the neighborhood theorem for Legendrian submanifolds there
exist a tubular neighborhood Uδ(Λ̂) of Λ̂ which is disjoint from Λ and admits a
contactomorphism

Ψ : (Uδ(Λ̂), ξ|Uδ(Λ̂))
∼−→ (S1 × D2, ker(cos(θ)dx− sin(θ)dy)),

for coordinates θ ∈ S1 and (x, y) ∈ D2, such that
• Ψ(Λ̂) = S1 × {(0, 0)};
• all Legendrian curves of the form Λ̂(x,y) := Ψ−1(S1 × {(x, y)}) are δ-close to Λ̂

in the C3-topology.
The coordinates (θ, x, y) induce the structure of a Legendrian fibration (Uδ(Λ̂), ξ|Uδ(Λ̂))

with fibers Λ̂(x,y). Since Λ̂(x,y) is δ-close to Λ̂, there exists a contactomorphism
φ̃(x,y) : (M, ξ)

∼−→ (M, ξ) which is δ-small in the C2-topology, coincides with the
identity outside Uδ(Λ̂), and satisfies φ̃(x,y)(Λ̂) = Λ̂(x,y) for all (x, y) in a sufficiently
small ball around (0, 0).

The Reeb flows of φ̃∗(x,y)α and α are conjugate by the map φ̃(x,y). Moreover this
conjugation induces a bijection from Tφ̃∗

(x,y)
α(Λ → Λ̂)) to Tα(Λ → Λ̂(x,y)), since it

takes φ̃∗(x,y)α-Reeb chords from Λ to Λ̂ to α-Reeb chords Λ to Λ̂(x,y). Because φ̃∗(x,y)α

is δ-small in the C2-topology we conclude that

K′ := Kφ̃∗
(x,y)

α < Kα + δ,

for Kα as in Proposition 6.4.
By the argument of [Alv19, Lem. 3], there exist a set V (α) ⊂ D2 of full measure

with respect to the Lebesgue measure, such that for all (x, y) ∈ V (α) the contact
form α is Λ ∪ Λ̂(x,y)-nondegenerate. Applying Proposition 6.4 to φ̃∗(x,y)α, we obtain

#(T 6K′`
α (Λ→ Λ̂(x,y))) = #(T 6K′`

φ̃∗
(x,y)

α
(Λ→ Λ̂)) > ea`+b,
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or

(6.3.1) #(T 6`
α (Λ→ Λ̂(x,y))) > e

(a/K′)`+b > e(a/(Kα+δ))`+b

for all (x, y) ∈ V (α).
To obtain a lower bound on htop(φα) from (6.3.1) we reason as in the proof

of [Alv19, Th. 1]. We consider a Riemannian metric g0 on M which restricts to
dθ ⊗ dθ + dx⊗ dx+ dy ⊗ dy on Uδ(Λ̂). We first obtain a lower bound on area of
the cylinder Cyl`α(Λ) := {φtα(Λ) | t ∈ [0, `]}, by estimating the area of the surface
S `
α(Λ) := Cyl`α(Λ) ∩Uδ(Λ̂).
Consider the projection πUδ(Λ̂) : S1 × D2 → D2 on the second coordinate of the

solid torus. The g0-area of the surface S `
α(Λ) is bounded from below by the area of

the disk D2 multiplied by the number of times that πUδ(Λ̂)(S
`
α(Λ)) covers the disk.

By (6.3.1) the disk is covered at least e(a/(Kα+δ))`+b times by πUδ(Λ̂)(S
`
α(Λ)) and we

conclude that

(6.3.2) Areag0(Cyl`α(Λ)) > Areag0(S `
α(Λ)) > πe(a/(Kα+δ))`+b.

Combining (6.3.2) with a Fubini type argument as the one used in [Alv19, Th. 1]
implies the following estimate for the growth of the g0-lengths of the images of Λ

by φtα:

lim sup
t→+∞

log lengthg0(φtα(Λ))

t
>

a

Kα + δ
.

Applying Yomdin’s theorem [Yom87] we then conclude that

htop(φα) >
a

Kα + δ
.

Since δ > 0 can be taken arbitrarily small we have

htop(φα) >
a

Kα
.

General case. — Our reasoning so far implies that for any smooth contact form α for
(M, ξ) which is Λ ∪ Λ̂-nondegenerate we have htop(φα) > a/Kα. This conclusion can
be extended to all smooth α for (M, ξ) by observing that:
• the set of C∞-smooth contact forms for (M, ξ) which are Λ∪ Λ̂-nondegenerate is

dense in the set of C∞-smooth contact forms for (M, ξ);
• htop(φα) depends continuously on the contact form α by a combination of the

results of Newhouse [New89] and Katok [Kat80]; and
• Kα depends continuously on the contact form α.
This completes the proof that every Reeb flow of (M, ξ) satisfying the conditions

of Theorem 1.3 has positive topological entropy.

Proof of Theorem 1.1. — Follows from Lemma 6.3 and Theorem 1.3. �
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