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ON THE STABILITY OF GLOBAL SOLUTIONS TO
THE THREE-DIMENSIONAL
NAVIER-STOKES EQUATIONS

By Haser Banounr, JEaN-Yves CHEMIN & [SABELLE GALLAGHER

Asstracr. — We prove a weak stability result for the three-dimensional homogeneous incom-
pressible Navier-Stokes system. More precisely, we investigate the following problem: if a se-
quence (uo,n)nen of initial data, bounded in some scaling invariant space, converges weakly to
an initial data ug which generates a global smooth solution, does ug,» generate a global smooth
solution? A positive answer in general to this question would imply global regularity for any
data, through the following examples ug, = neg(n-) or ug,n = @o(- — n) with |z,| = oo.
We therefore introduce a new concept of weak convergence (rescaled weak convergence) un-
der which we are able to give a positive answer. The proof relies on profile decompositions in
anisotropic spaces and their propagation by the Navier-Stokes equations.

Résumi (Sur la stabilité de solutions globales aux équations de Navier-Stokes tridimensionnelles)

On démontre un résultat de stabilité faible pour les équations de Navier-Stokes tridimension-
nelles, incompressibles et homogenes. Plus précisément on étudie le probleme suivant : si une
suite de données initiales (ug,n)nen, bornée dans un espace invariant d’échelle, converge faible-
ment vers une donnée ug qui engendre une solution globale réguliere, est-ce que ug,, engendre
une solution globale réguliére ? Une réponse affirmative a cette question en général aurait pour
conséquence la régularité globale pour toute donnée initiale, via les exemples ug,n, = nyo(n-)
ou ug,n = @o(- — Tn) avec |xn| — 00. On introduit donc un nouveau concept de convergence
faible (convergence faible remise & ’échelle) sous lequel on peut donner une réponse affirma-
tive. La démonstration repose sur des décompositions en profils dans des espaces de régularité
anisotrope, et leur propagation par les équations de Navier-Stokes.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

1.1. Tre Navier-Stokes EQuations. — We are interested in the Cauchy problem for
the three dimensional, homogeneous, incompressible Navier-Stokes system

Ou+u-Vu—Au=-Vp in Rt xR3
(NS) {divu=0
u\t:O = Uog,

where p = p(t,7) and u = (u',u?,u?)(t, ) are respectively the pressure and velocity

of an incompressible, viscous fluid.

As is well-known, the Navier-Stokes system enjoys two important features. First it
formally conserves the energy, in the sense that smooth and decaying solutions satisfy
the following energy equality for all times ¢ > 0:

1 ¢ 1
(1) SOy + [ 1Tu(O ey = Guols e

Second, (NS) enjoys a scaling invariance property: defining the scaling operators, for

any positive real number A and any point xy of R?,

1 1
(12)  Anay(t,2) & S0(/N, (@ = 20)/A) and Axg(t,2) & So(t/X,x/N),
if u solves (NS) with data ug, then Ay ;,u solves (NS) with data Ay z,uo.

1.2, Tue Cavcny prosLEM. — We shall say that u € L2 ([0, T|xR3) is a weak solution

loc

of (NS) associated with the data ug if for any compactly supported, divergence free
vector field ¢ belonging to € ([0, T] x R?) the following identity holds for all ¢t < T

t
/U~¢(t,w)dfﬂ:/ uO(w)~¢(0,w)dx+/ / (u-Ap+u@u : Votu-0;0)(t, x) da dt’,
R3 R3 0 JR3

with
u@u: Ve def Z wuFo,g .
1<5,k<3
Weak solutions satisfying the energy inequality

1 t 1
(1.3) 5\\u(t)lli2<m)+/0 IVu(t') |72 gsy dt’ < 5||uO||2L2<Rs)

are said to be turbulent solutions, following the terminology of J. Leray [42].
We shall say that a family (X7)7o of spaces of distributions defined over [0, T|xR3
is scaling invariant if for all T > 0 one has, with notation (1.2),
V> O,VQSO S RB, u € Xp <— A)\,xou € X2 with ||UHXT = ||A)\7x0u||x/\_2T.
Similarly a space Xg of distributions defined on R? will be said to be scaling invariant if
V> O,V.ﬁo c RS, ug € Xog <— A)\7IOU0 € Xo with ||U0||Xo = ||A)\7$OUOHXO'

This leads to the following definition of a solution, which will be the notion of solution
we shall consider throughout this work.

JE.P — M., 2018, tome 5



ON THE STABILITY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS S/I:;

Derinirion 1.1. A vector field u is a (scaled) solution to (NS) on [0, T, associated
with the data wg if it is a weak solution in X7, where Xt belongs to a family of
scaling invariant spaces.

The energy conservation (1.1) is the main ingredient which enabled J.Leray to
prove in [42] that any initial data in L?(IR3) gives rise to (at least) one global turbulent
solution to (NS). The result is the following.

Turorem 1 ([42, 43]). — Associated with any divergence free vector field in L*(R?)
there is a global in time turbulent solution. Moreover if d = 2 then this solution is
unique.

Uniqueness in space dimension 2, which is proved in [43], is linked to the fact
that L?(R?) is scale invariant. In dimensions three and more, the question of the
uniqueness of Leray’s solutions is still an open problem; we refer to the recent work [29]
for some numerical evidence of non uniqueness. Related to that problem, a number
of results have been proved concerning the uniqueness, and global in time existence
of solutions under a scaling invariant smallness assumption on the data—mnote that
smallness has to be measured in a scale invariant space to have any relevance. Without
such a smallness assumption, existence and uniqueness often holds in a scale invariant
space for a short time but nothing is known beyond that time, at which some scale-
invariant norms of the solution could blow up. The question of the possible blow up
in finite time of solutions to (NS) is actually one of the Millenium Prize Problems in
Mathematics. We shall not recall all the results existing in the literature concerning
the Cauchy problem in scale invariant spaces for the Navier-Stokes system; we refer
for instance to [2], [41], [47] and the references therein, for surveys on the subject.
Let us nevertheless recall that along with the fundamental Theorem 1, J. Leray also
proved that if ug is a divergence free vector field satisfying

(1.4) luoll 2 sy [ Vuo | 23y < ¢

for a small enough ¢, then there exists only one turbulent solution associated
with ug, and the bound (1.4) still holds for future times. Notice that the quantity
luo | 2 (rs) | Vo | L2(rs) is invariant by the scaling operator Ay ;,. Without the small-
ness assumption (1.4), the uniqueness property holds at least for a short time, time at
which the solution ceases to belong to H': we recall the definition of (homogeneous)
Sobolev spaces, given by the (semi-)norm

R 1/2
I 2 ([ @RI ae)

Note that in d space dimensions, H*(R?) is a normed space only if s < d/2. Ho-
mogeneous spaces are usually denoted by H? (R?) but since this paper is only con-
cerned with homogeneous spaces we choose to drop the dot in the notation. J. Leray
also proved that if one turbulent solution w lies in L2([0,7]; L°°(R%)), then all tur-
bulent solutions associated with the same initial data as u coincide with u on [0,T].

JE.P.— M., 2018, tome 5
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Thus L2([0, T]; L>°(R%)) is a uniqueness class for the Navier-Stokes system. Let us now
recall the following slightly more general statement than the one described above: it
is due to H. Fujita and T. Kato [19], who proved that if ug € H'/?(R?) is a divergence
free vector field satisfying |luo| g1/2(rsy < ¢ for a small enough constant c, then there
is only one turbulent solution associated with wg. It satisfies

t
)12y + / IVt B2 gy 4t < luoll3ps/e g

Without the smallness assumption, the uniqueness property holds at least for a short
time, time at which the solution ceases to belong to L?([0, T]; H3/?(R?)). Note that
this generalizes the Leray result since by interpolation

(1.5) w0l Fr /2 ey < lluollze ey | Vol L2 (rs).-

Many results of this type are known to hold, for instance replacing H*/ 2(R?) by the
larger Lebesgue space L3(IR?) (see [26, 35, 58]). The best result known to this day on
the uniqueness of solutions to (NS) is due to H. Koch and D. Tataru [40]. It is proved,
as most results of the type, by a fixed point theorem in an appropriate Banach space.
The smallness condition is the following:

def t1/2||etA

||u0||BMO—1(R3) = sup UOHLOC(H@)
>0

1

1/2

tA 2

— L) d dt) <e

+ :;153 R3/2 (/[ORQ]XB(%R) (e uo)(t, y)|” dy c
R>0

Note that the space BMO™! is again invariant by the scaling operators Ay z,- In the
definition of BMO™" norm above, the norm sup, o t*/2||e!®ug || 1= (rs) is equivalent to
the Besov norm |[ug|[ g1 _ (gs)- The Besov space B! (R?) is actually the largest space
in which any scale and translation invariant Banach space of tempered distributions
embeds; it is in fact known that (NS) is ill-posed for initial data in B3,  (R?) (see [10]
and [25]), but for small data in B, & 3% for finite p global existence and uniqueness
are known to hold (see [49]). More on Besov spaces is provided in the appendix, let
us recall their definition here.

Derinirion 1.2. — Let X be a radial function in Z(R) such that x(¢) =1 for |t| < 1
and X(t) = 0 for |¢t| > 2. For j € Z, the truncation operators are defined by

S L R@IENF©) and A; LS -8

For all p in [1,00] and ¢ in ]0,00], and all s in R, with s < 3/p (or s < 3/pif ¢ =1),
the homogeneous Besov space B , is defined as the space of tempered distributions f
such that

def i
I£lls;, = 11272014, fllze

In all other cases of indexes s, the Besov space is defined similarly, up to taking the

qu < 0Q0.

quotient with polynomials.
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The results recalled above tend to suggest that the initial data should satisfy some
sort of smallness assumption if one is to prove global existence and uniqueness of
solutions. Actually this turns out not to be the case: there are situations where global
unique solutions are known to exist despite the fact that the initial data is not small
in B3!,. That is the case in two space dimensions as recalled above, as well as under
some geometric assumptions (helicity, axisymmetry without swirl...). Let us describe
a result of that type, whose main interest is that its proof gives an idea of the methods
used in this work in a simple framework.

Turorem 2 ([14, 16]). — Consider the sequence of divergence free vector fields

(1.6) uon () = uo(x) + (vg, 05, 0) (21, 22, 23/n)

with (v§,vE) a smooth, two-component, divergence free vector field, satisfying
(v, v3)(21,22,0) =0 if ug is not identically zero.

If ug gives rise to a unique, global solution to the Navier-Stokes equations, then so
does ug,, as soon as n is large enough.

The case when uy = 0 is proved in [14]. It consists in looking for the solution u,, as
up(t,z) = (vl,vQ,O) (t,xl,xg,xg/n) + 7 (t, x),

where for all y3, v(-,ys) def (vt,v?)(,y3) solves the two-dimensional Navier-Stokes
equations with data (v, v3)(-,y3). We know that v is unique, and globally defined
thanks to Theorem 1. Then the key to the proof is that r, solves a perturbed Navier-

Stokes equation of the type
Oyrpn+ 7 -Vry,+v-Vrp+r,-Vo—Ar, =—-Vp+ f,, divr, =0,

where the error term f,, contains derivatives in x3 of (vl, v2, 0) (t, T1, X2, mg/n), which
are of size roughly n~!, hence small. One can therefore solve the equation satisfied
by 7, using the same methods as solving globally (NS) with small data and small
force. In the case when ug is not identically zero, the proof consists in looking for the
solution under the form

un(t, ) = u(t,z) + (vl,v270) (t,xhxg,xg/n) + 7m(t, )

with u the global solution associated with ug. Then the rough idea is that u decays
at infinity in 23 whereas due to the fact that (v}, v3)(z1, x2,0) = 0, the vector field

(vl,vz,O) (t,xl,mg,wg/n)

has a support roughly in x3 ~ n. So those two functions do not interact one with the
other, and the perturbed equation satisfied by 7,, can again be solved globally.

It should be noted that the sequence ug, of Theorem 2 converges in the sense of
distributions to ug. The goal of this work is to try to understand if such a property,
which we can call “weak stability”, holds more generally: we would like to address the
question of weak stability:

JE.P.— M., 2018, tome



848 H. Banourr, J.-Y. Cuemiv & |. GALLAGHER

If (won)nen, bounded in some scale invariant space Xy, converges to ug in the
sense of distributions, with ug giving rise to a global smooth solution, is it the case
for ug n, when n is large enough?

1.3. STRONG STABILITY RESULTS. Let us recall that it is proved in [1] (see [21] for
the case of Besov spaces B, ,}+3/ Py that the set of initial data generating a global

solution is open in BMO™!. More precisely, denoting by VMO ™! the closure of smooth
functions in BMO™?, it is proved in [1] that if uo belongs to VMO™" and generates
a global, smooth solution to (NS), then any sequence (ug ,)nen converging to ug in
the BMO ™! norm also generates a global smooth solution as soon as 7 is large enough.
The question asked above addresses the case when the sequence converges non longer
strongly, but in the sense of distributions.

1.4. WEAK STABILITY RESULTS

.. .. -1
1.4.1. A stability result for weak convergence up to rescaling in Bp,q+3/ P(R3)

To answer the above question, the first example that may come to mind is the case
when ug = 0 (which gives rise to the unique, global solution which is identically zero),

and

1
(1.7) Up,n(x) = T‘bo(lﬂ/)\n) = Ay, Po(z) with lim (A, +1/\,) = o0,

n n—oo
with ®( an arbitrary divergence-free vector field. If the weak stability result we are af-
ter were true, then since the weak limit of (ug , )nen is zero then for n large enough ug ,,
would give rise to a unique, global solution. By scale invariance then so would ®¢, and
this for any ®¢, so that would solve the global regularity problem for (NS). Another

natural example is the sequence
(1.8) uo,n = Po(- — zn) = A1z, Po,

with (7,)nen a sequence of R? going to infinity. Thus sequences built by rescaling
fixed divergence free vector fields according to the invariances of the equation have to
be excluded from our analysis, since solving (NS) for any smooth initial data seems
out of reach. This naturally leads to the following definition.

Derinition 1.3 (Convergence up to rescaling). — We say that a sequence (¢n)nen
defined on R?® converges up to rescaling to ¢ if o, converges to ¢ in the sense of
distributions and if for all sequences (A,)nen of positive real numbers and for all
sequences (T, )nen in R3 satisfying

1
An
the sequence (A, z, ¢n)nen converges to 0 in the sense of distributions, as n goes to
infinity.

(1.9) A+ — 4 |zn| — 0 as n— oo,

The following result is a first answer to our question. Its proof is straightforward.
We choose to present it for pedagogical reasons, to relate the notion of convergence
up to rescaling to strong convergence in a larger scale invariant space.

JE.P — M., 2018, tome5
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Prorosirion 1.4. Let p and q be two real numbers in [1, 00 and consider (upn)nen
a sequence of divergence-free vector fields bounded in B;;JFS/Z)(R?’), converging up to
rescaling to ug, with ug giving rise to a global unique solution. Then the same holds

for ug,, as soon as n is large enough.

Note that the same theorem actually holds in any scale invariant space strictly
embedded in BMO ™.

Proof. — The proof of Proposition 1.4 relies on the following “profile decomposi-
tion” theorem, which describes the lack of compactness of the embedding By 4 L+3/p
into B HS/p for indices p < p and ¢ < g. The proof of that result can be found in [3],
followmg the pioneering work of [24] in the framework of Sobolev spaces H® and [32]

for Sobolev spaces W*P. More on profile decompositions is to be found in Section 2.

Prorosirion 1.5 ([3]). Fiz p < p and q < q four real numbers in [1,00[ and

_1+3/p(R3)

consider (pp)nen a sequence of functions, bounded in B and converging

weakly to some function ©°. Then up to extracting a subsequence (which we denote

in the same way), there is a family of functions (¢?)j>1 in By, 1+3/p(R3)

, and a fam-
ily (x3,);>1 of sequences of points in R3, as well as a family of sequences of positive
real numbers (hl,);>1, orthogonal in the sense that if j # k then
J hk L I k _ i ‘
either —% 4+ - — 00 asn — oo, or hi =h¥ and En "0l o as o 00
hk hl, h

n

such that for all integers L > 1 the function ¥k def On — @ — ZJL 1A hi, i I satisfies
lim sup || % ||B L+3/7(gey T 0 as L — oc.
n—oo

Moreover one has
(1.10) Ay (w18 Pn = ¢, asn — oo.

Note that the result (1.10) is not explicitly stated in [3] but is easy to check.
Proposition 1.4 is then an immediate consequence of Proposition 1.5. Indeed if (ug )
is bounded in By, ;+3/ P(R3), then one can decompose each of its components using
Proposition 1.5, and the convergence up to rescaling assumption, joint with (1.10),
implies that all profiles are zero. The sequence (ug ) therefore converges strongly
in By 211~+3/ P (R?) and the result follows from the strong stability in B; z;l”+3/ P (R?) proved

in [21] and recalled in Section 1.3. O
1.4.2. Stability under rescaled weak convergence. — Considering Theorem 2, it is nat-
ural to try to extend Proposition 1.4 to more general situations. Indeed the sequences
(1.11) U (z) = (v§,v5,0) (21, 22, 23/n)

and

(1.12) U () = uo(x) + (0g,05,0) (w1, 22, 23/n), with Tp(z1,22,0) =0

JE.P.— M., 2018, tome
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are not bounded in B, ;+3/ P (or in any such scale invariant space) but we do know
that they converge weakly to a vector field giving rise to a global solution, and that
the same holds for each term of the sequence as soon as soon as n is large enough.
In order to understand in what direction one can generalize Proposition 1.4 to take
into account such examples, there are two points to clarify on the sequences (1.11)
and (1.12):

(1) what function spaces they are bounded in;

(2) what type of weak convergence (possibly after rescaling as in Definition 1.3)
holds for those sequences.

The main feature of the sequences defined in (1.11) and (1.12) is that they are not
bounded in any space By, ;+3/ P but rather in anisotropic spaces where the regularity
in the third variable scales like L>: for instance L?(R?; H'/2(R)), or L?(R2; L>=(R)).
Notice that those spaces are scaling invariant by the scaling operator A ., and satisfy
the additional invariance for the change of variable

(@1, 2, x3) — (21, T2, AT3)

for any positive A. It seems therefore natural to work in those function spaces, or
others having the same scaling properties. Unfortunately H'/2 (R) is not a Banach
space, and that fact makes analysis in H'/?(R) rather awkward. We shall therefore
trade H'/ 2(R) off for the slightly smaller Besov space 3217/12: we define anisotropic
Besov spaces as follows. These spaces generalize the more usual isotropic Besov spaces
seen in Definition 1.2, which are studied for instance in [2, 9, 51, 57, 56].

DerinttioN 1.6. With the notation of Definition 1.2, for (j, k) € Z2, the horizontal
truncations are defined by

Sh /e def b def

SEFO) E RN &))FE) and AY= S, - S)
and the vertical truncations by

Gv p def ~

SYFER@IIG)E) and AYESY, —SY.

For all p in [1,00] and ¢ in ]0,00], and all (s,s’) in R?, with s < 2/p,s’ < 1/p
(or s <2/pand s’ < 1/p if ¢ = 1), the anisotropic homogeneous Besov space B;;Z/ is
defined as the space of tempered distributions f such that

HfHB;:;’

In all other cases of indexes s and s’, the Besov space is defined similarly, up to taking
the quotient with polynomials.

def

2559 | AR AT fl s

< 0.
YAzl

Notation. — We shall in what follows use the following shorthand notation:

s,s’ def 5.6’ s,s’ def 5,5’ s def H_142/p+s.1
#,° =By, # =%y, %,q= By, /p /p
(1.13) ’ ’ '

def def
B B, B B

p, 1

JE.P — M., 2018, tome 5
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Let us point out that the scaling operators (1.2) satisfy

[Axzopllao , = el -

The Navier-Stokes equations in anisotropic spaces have been studied in a number
of frameworks. We refer for instance, among others, to [4], [18], [28], [31], [48]. In
particular in [4] it is proved that if ug belongs to %°, then there is a unique solution
(global in time if the data is small enough) in L2([0,7]; %#'). That norm controls
the equation, in the sense that as soon as the solution belongs to L2([0,T]; '),
then it lies in fact in L"([0,T]; #%/") for all 1 < r < co. The space %' is included
in L*™ and since the seminal work [42] of J.Leray recalled above, it is known that
the L2([0,T]; L°°(R?)) norm controls the propagation of regularity and also ensures
weak uniqueness among turbulent solutions. Thus the space #° is natural in this
context.

The initial data defined in (1.11) converges in the sense of distributions to the
two-dimensional vector field (ud,u3,0) (xl,xg,O), whereas the one defined in (1.12)
converges in the sense of distributions to ug. This leads naturally to a stronger
notion of weak convergence, denoted by rescaled weak convergence, which we shall
call R-convergence.

Derinirion 1.7 (R-convergence). We say that a sequence (¢n)nen of tempered
distributions defined on R® R-converges to ¢ if ¢, converges to ¢ in the sense of
distributions, and if for all sequences (A,)nen of positive real numbers and for all
sequences (7,)nen in R3 satisfying (1.9), up to extracting a subsequence there is a
tempered distribution ¢ of (x1,z2) such that (A, z,%n)nen converges to ¢ in the
sense of distributions, as n goes to infinity.

The following examples give some insight into the type of sequences that can be
considered with Definition 1.7.

Prorosition 1.8. — Let u,, be a sequence of positive real numbers converging to in-
finity. Then

(1) The sequence gagll)(z) & l%cp(l)(x/,un), with M a smooth function, R-con-

verges weakly to 0 if and only if V) only depends on (1, z5).
(2) The sequence <p£¢2)(a:) def 0@ (@1, 0, 23/ 11n), with ¢ a smooth function,

R-converges weakly to p? (z1,5,0).

Proof
(1) Obviously the sequence cpgll) converges to zero in the sense of distributions,
and the same goes for Alymnapgll) if |z, — oo. Now let (A,)nen be a sequence of
positive real numbers going to zero or infinity, and for any (x,)nen, consider the
1) S
sequence (Ax, z,¢n (%))nen, which is given by

1 r—x
Ay 2o (z) = —— o) (7n>
/\n7 n <pn (J:) )\nlJn 80 )\nlJn

JE.P.— M., 2018, tome
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This sequence goes to zero in the sense of distributions as long as A,u, does not
converge to a constant. So assume now A, u, — 1. We notice that

Al/uqunngLl)(x) = Qo(l)(x — I’n)

which again goes to zero in the sense of distributions if |x,,| — oco. Finally if |z,
is bounded, then up to a subsequence we may assume that x, — a € R? in which
case Ay, o, 30511) converges in the sense of distributions to ¢ (z — a), and the as-
sumption requires that (1) is a function of (z1, ) only.

(2) Next consider the sequence <p£L2). Clearly it converges to ¢(®)(x1,29,0) in the
sense of distributions, so let us check the R-convergence property. We have

A)\ (2)(1,): 1 (p(xl_xl,n T2 — T2n xB_mB,n)7

nsTn N X )\n ) /\n ) )\n’un

which clearly goes to zero in the sense of distributions when (A, )nen goes to zero or
infinity. The same goes when A\, = 1 and (z1,,,%2.,) — 00, so let us finally assume
that A, =1 and (21,5, ®2,,) is bounded. In that case we write

(2)

A _ T3 — T3,n
Loy (X) = @21 — @1 0, T2 — Ty ——

n

)

which, up to a subsequence, converges to zero or to a function of (x1,z3) depending
on the behaviour of the sequence z3 ,/p, and on the limit of (x1,,,22,). This ends
the proof of Proposition 1.8. g

Our main result is the following.

Tueorem 3. — Let q be given in ]0,1[ and let uy in 938# generate a unique global

solution to (NS) in L*(RT; B'). Let (uon)nen be a sequence of divergence free vector
fields bounded in ,%37(1, such that ug,, R-converges to ug. Then for n large enough, ug p
generates a unique, global solution to (NS) in the space L*(R*; %%Y).

1.5. MaI~N sTEPS OF THE PROOF OF THEOREM 3

1.5.1. Anisotropic profile decomposition of the initial data. To prove Theorem 3, the
first step consists in the proof of an anisotropic profile decomposition of the sequence
of initial data, in the spirit of Proposition 1.5. Let us start by introducing some
definitions and notations.

Derinition 1.9. — We say that two sequences of positive real numbers (ML), en
and (A2),en are orthogonal if

An, An
—2+)\—1—>oo, n —» 0Q.
)\’I’L n

A family of sequences ((A%)neN)j is said to be a family of scales if A =1 and if \,
and A\® are orthogonal when j # k.
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Norarion. — For all points = (21, 22, z3) in R? and all vector fields u = (u!, u?, u?),
we denote their horizontal projections by

o & (z1,72) and u® Lef (ut, u?).
We shall be considering functions which have different types of variations in the x3
variable and the x}, variable. The following notation will be used:

[f]5(x) € F(an, Brs).

Clearly, for any function f, we have the following identity which will be of constant
use all along this work:

(1.14) 11716 | ez ~ B2 F Lz

In all that follows, # is a given function in 2(Bgs(0,1)) which has value 1
near Bgs(0,1/2). For any positive real number 7, we denote

(1.15) O,(x) < O(nz) and 6, (zn) < 6, (2n,0).

In order to make notations as light as possible, the letter v (possibly with indices)
will always denote a two-component divergence free vector field, which may depend
on the vertical variable 3.

Finally we define horizontal differentiation operators V! %< (9;, 85) and div, wh.,

as well as Ay def 0? + 02, and we shall use the following shorthand notation: X1, Y, def

X(R?;Y(R)), where X is a function space defined on R? and Y is defined on R.

Derinition 1.10. — Let p be a positive real number less than 1/2, fixed from now on.
We define
D, =24 1 —p] x [1/2,7/2] and D, ' [—1+4 p,1— ) x [1/2,3/2).

We denote by S,, the space of functions a belonging to ﬂ(s s)eD, %" such that

S, L sup llal| gs.r < 00.
s,s")eD,,

al

Remark 1.11. Everything proved here would work choosing for D,, any set of the
type [—2+ p, 1 — p] x [1/2, A], with A > 7/2. For simplicity we limit ourselves to the
case when A = 7/2.

Prorosirion 1.12. — Under the assumptions of Theorem 3 and up to the extrac-
tion of a subsequence, the following holds. Let p > 2 be given. There is a family of
scales ((A%)nEN)jGN and for all L > 1 there is a family of sequences ((h%)neN)jeN
going to zero when n goes to co such that for any real number o in ]0,1[, there are
families of sequences of divergence-free vector fields (for j € [1,L]),

j j s s .1 .1
(Ufl,a’L)nGNa (wi?mL)nENa (vgy(:L)nEN7 (wgvfsa,[l)neNa (08,£Z7L)neN, (wgﬂzcavL)neN
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all belonging to Sy, and a smooth, compactly supported function ug . such that the
sequence (Uo.n)nen can be written as

_ 0,00 0,,.0,00,h 0,00,3
Ug,n = UQ,q T [(UO’ILCKL_'_h wOnaL’wOnaL)]hO

0,loc 0. .0,loc,h 0,loc,3
+ [(UO n,a, L + h wO n,a, L wO,n,a,L)] h0

7,3
+ZA)\J naL+hn naL’wn,a,L)]th +p7’b704,L7

where up o approzimates ug in the sense that

(1.16) lim ||u0,a — UOHggO = O7
a—0

where the remainder term satisfies

(1.17) ngr;o Olélg?(l)hmsup ||e Pro Ll L2 (RF; a1) =0,

while the following uniform bounds hold:

d
(1.18) A Lef sup sup sup(H vonaL, 820(13]4)
L>1a€l0,1] neN

0,1 0,loc,3
+H UOnOZL’ osZL)

+ ”uO,a”FZO + Zf:l”(vfz,a,lﬂ n a,L ||<980) <0
and for all a in )0, 1],
119) e o sup ([0 o=, + O3 05

L>11<5<L
neN

(Uglz,a,L7 nocL HS )

"

is finite. Finally, we have

. . . 0,1 0,loc,3
(1.20) i lim timsup || (vo;, 1 wona.n) (-

HBgl(Rz) 0,

(1.21) ¥(a, L), 3n(e, L), Y <o, L),¥n €N, (1 0,)(vgres, 1, woma’) =0,
(1.22) V(a, L,n), 3n(a, L), Vn = n(a, L), OV e 1 Womar) = 0.

The proof of this proposition is the purpose of Section 2. Proposition 1.12 states
that the sequence ug,, is equal, up to a small remainder term, to a finite sum of or-
thogonal sequences of divergence-free vector fields. These sequences are obtained from
the profile decomposition derived in [4] (see Proposition 2.2 in this work) by grouping
together all the profiles having the same horizontal scale \,, and the form they take
depends on whether the scale \,, is identically equal to one or not. In the case when A,
goes to 0 or infinity, these sequences are of the type Ay, [(vg + hpwh, wi)] B with A,
a sequence going to zero. In the case when ), is identically equal to one, we deal with
three types of orthogonal sequences: the first one consists in ug o, an approximation of
the weak limit ug, the second one given by [(vloofl}; . +h wloofl}; s wéofl’?; 2] o 18 uni-
formly localized in the horlzontal variable and vanishes at 3 = 0, while the horizontal

support of the third one [(vo LR wgonha s gonda L)]ho goes to infinity.
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Note that in contrast with classical profile decompositions (as stated in Proposi-
tion 1.5 for instance), cores of concentration do not appear in the profile decomposi-
tion given in Proposition 1.12 since all the profiles with the same horizontal scale are
grouped together, and thus the decomposition is written in terms of scales only. The
price to pay is that the profiles are no longer fixed functions, but bounded sequences.

Let us point out that the R-convergence of ug , to ug arises in a crucial way in the
proof of Proposition 1.12. It excludes in the profile decomposition of u , sequences
of type (1.7) and (1.8).

1.5.2. Proof'of Theorem 3. — Once Proposition 1.12 is known, the main step of the
proof of Theorem 3 consists in proving that each individual profile involved in the
decomposition of Proposition 1.12 does generate a global solution to (NS) as soon
as n is large enough. This is based on the following results concerning respectively
profiles A, [(Ui’ayL + hZwaL”ha’D ;?;L
of horizontal scale one, see respectively Theorems 4 and 5. Then, an orthogonality

w )} B » With M), going to 0 or infinity, and profiles
argument leads to the fact that the sum of the profiles also generates a global regular
solution for large enough n.

In order to state the results, let us define the function spaces we shall be working
with.

Derinirion 1.13
— We define the space ,prs’sl = L>®(R™; %’;’s/) NL?(RT; 93;“’5/) equipped with the
norm
def
||a‘|m;xs' = ||a||Lm(R+;@;:S’) + ||a||L2(R+;.93§+1’3,)’
and we denote &> = &* and &* = o/*1/2.
We denote by F;:;/ any function space such that

HLOfHL?(RﬂBf,fC]l’S,) S HfHFI;;’

where, for any non negative real number 7, L, f is the solution of O, L, f — AL, f = f

with L, fi;—r = 0. We denote %, = F;11+2/p+8’1/p and F° = .Z;.

FxamprLes. — Using the smoothing effect of the heat flow as described by Lemma A.2,
it is easy to prove that the spaces L!'(R*; B;;Z/) and L'(RT; e@’;“’s/_l) are contin-
uously embedded in Fl‘f,’qsl. We refer to Lemma A.3 for a proof, along with other
examples.

In the following we shall denote by J5(A, B) a generic constant depending only
on the quantities A and B. We shall denote by 77 a generic non decreasing function
from R* into R* such that

T
(1.23) lim sup Alr) < 00,
r—0 T
and by . a generic locally bounded function from R into RT. All those functions

may vary from line to line. Let us notice that for any positive sequence (ay)nen
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belonging to ¢!, we have

(1.29) 3" Filan) < T (T, an).

The notation a < b means that an absolute constant C' exists such that a < Cb.

TarorEM 4. A locally bounded function g1 from RT into RT exists which satis-
fies the following. For any (vo,w3) in S, (see Definition 1.10), for any positive real
number 3 such that 8 < e1(||(vo, wd)l|s, ). the divergence free vector field

def _
[(UO - 5VhAh 183“’(%» w%)] 8

Dy =
generates a global solution ®g to (NS) which satisfies

(1.25) @60 < Fi([l(vo,w5)l|0) + B Tos(|[(v0, w)]5,.)-
Moreover, for any (s,s") in [-1 4 p, 1 — p] x [1/2,7/2], we have, for any r in [1,00],

1
(1.26) |9sll - (r+;+2/7) + W\|‘I’,@||U(R+;@2/m') < Too(|l(vo, wd)ls,)-

The proof of this theorem is the purpose of Section 3. Let us point out that this
theorem is a global existence result for the Navier-Stokes system associated with a
new class of arbitrarily large initial data generalizing the example considered in [14],
and where the regularity is sharply estimated, in particular in terms of anisotropic
norms.

The existence of a global regular solution for the set of profiles associated with the
horizontal scale 1 is ensured by the following theorem.

Turorem 5. — Let us consider the initial data, with the notation of Proposition 1.12,

0 def 0,00 0 ..0,00,h 0,00,3
(I)O,TL,OC,L = Up,a + [(Uo,n,a,L + hnwO,n,a,L7w0,n,a,L)]h2

0,loc 0, 0,loc,h 0,loc,3
+ [(UO,n,a,L + hnwO,n,a,L7 wO,n,a,L)] RO

There is a constant €o, depending only on ug and on #,, such that if hY < &g, then
the initial data @ ,, ., ; generates a global smooth solution @), , ; which satisfies for
all s in [-14 p,1 — p] and all v in [1, 00|,

(1.27) 125 0 .

The proof of this theorem is the object of Section 4. As Theorem 4, this is also a
global existence result for the Navier-Stokes system, generalizing Theorem 3 of [15]

Lr(R+;@e+2/m) S To(uos M)

and Theorem 2 of [16], where we control regularity in a very precise way.

Proof of Theorem 3. — Let us consider the profile decomposition given by Proposi-
tion 1.12. For a given positive (and small) e, Assertion (1.17) allows to choose «, L
and Ny (depending of course on ¢) such that

(1.28) Vn > Ny, ||etApn7a7L||L2(R+;ggllj) <e.

From now on the parameters o and L are fized so that (1.28) holds. Now let us consider
the two functions €1, 7 and 5, (resp. ep and ) which appear in the statement
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of Theorem 4 (resp. Theorem 5). Since each sequence (h,)nen, for 0 < j < L, goes
to zero as n goes to infinity, let us choose an integer Ny greater than or equal to Ny
such that

. j 3 <
(129) Yn 2 Nla VJ € {0, .. .,L}, h‘ZL < m1n{€1(///a)750, m} .

Then for 1 < j < L (resp. j = 0), let us denote by ®7 _ (resp. ®) _) the global solution
of (NS) assomated with the initial data

1,3
[( naL+h nozL’rwil,()z,L)]hfI

resp.
0,00 0 .0,00,h 0,00,3 0,loc 0. .0,loc,h 0,loc,3
o, + [(,UO n,o, L + h wO n,a,L? wO,n,a,L)] h9, + [(v() n,o, L + h wO n,a, L wO,n,a,L)] ho

given by Theorem 4 (resp. Theorem 5). We look for the global solution associated
with ug , under the form

L
a . app def i tA
Un = un{)sp + Rn,e with un}?c? = E A)\Zl (I)gz,s +e Pn,a,L,

recalling that A2 =1, see Deﬁnition 1.9. As recalled in Section 1, A, ®J _ solves (NS)
with the initial data A,; [(v) Uy ar t hi w?’: o L,wf;il)]hj by the scaling invariance of
the Navier-Stokes equations. Plugging this decompositioﬁ into the Navier-Stokes equa-

tion therefore gives the following equation on R, .:

(1.30) OyRne— ARy +div(Rye ® Ry + Rye @ U2 + 0P @ Ry, o) + Vg e
:FTHE :Fé,e—i_Fg,e—’—Fg,e

with

1 def tA tA
F, . = div(e"pnar ®e®pnar)

L
def . i i
Fio S ) div(Ay @ @ pnar+ePonar @Ay e )

def . i
Fi o= ) div(Ay @) @Ay ®h ),
0<4,k<L
Hék

and where (div(u ® v) )J Zizl O (W o%).
We shall prove that there is an integer N > Nj such that with the notation of
Definition 1.13,

(1'31) Vn =N, HFn,eHﬂg < Ck,

where C only depends on L and .#,. In the next estimates we omit the dependence
of all constants on « and L, which are fixed.
Let us start with the estimate of F, .. Using the fact that %) is an algebra, we

n,e*
have

€2 0@ € g1 gy S 1P o
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S0
. 2
|| divy, (etApl;lz,a,L ® etAPn,a,L) ||L1(1R+;=982) S ||etAp”’a’L||L2(R+;<@;,)
and
A A A 2
105 (et Pi,a,LBt Pn,a,L) ||L1(R+;Bz(lpwfl+1/p) < Jlef Pn,a,LHLz(Rﬁ@;)'
According to the examples page 855, we infer that
A 2
(1.32) [Fncllze < llef p”va»LHLz(RJr;@;)'
In view of Inequality (1.28), Estimate (1.32) ensures that
(1.33) V> Ny, ||F, .z S €%
Now let us consider F? _. By the scaling invariance of the operators A i in L*(R*; )

and again the fact that B;{f’ /P g an algebra, we get
[Ays @ @€ ppar + €2 pnarL® AA%,(I)%»EHLl(RﬂU@;)
(1-34) S H(I)zL,sHLQ(RJr;@;)”etApn,a,L”L?(RJr;gg;lj)

SN el 2@ 1€ oo 2l 22 218 -
Next we write, thanks to Estimates (1.25) and (1.27),

L
Z Hq)zz,eHLz(Rﬁgsl) < Jo(uo, M)
J=0 L
£ (A, w35, ) + 1T (10 035, )
j=1
which can be written due to (1.24)
L L
S 1Bl oy € o o) + T ) + 3Tl
Jj=0 j=1
Using Condition (1.29) on the sequences (hY,),en implies that
L
1> @i
§=0
It follows (of course up to a change of J.,) that for small enough e
L
(1.35) HZ ] .
§=0

Thanks to (1.28) and (1.34), this gives rise to
(1.36) V> Ny, ||Fa |z <& (0w, Mo) + Too(M)).

< %(UOaﬁa) =+ goc(%) +e.

L2(R+;5Y)

< Do(uo, My) + Too ().

L2(R+;281)

Finally let us consider F}} _. Recalling that o and L are fixed, it suffices to prove in
view of the examples page 855 that there is No > N7 such that for all n > Ny and
foral 0 < j#k <L,

||AAJ;L(I)%,5 ® AAL“L(I)LCL,5||L1(R+;931) Se.
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Using the fact that %' is an algebra along with the Hélder inequality, we infer that
for a small enough v in ]0, 1]

Ay ®h. ® A)\’,CL(I)Z,EHLl(R-%—;,@l) <Ay @, Nl p2sasm @5 Ak @l L2/a- m+ 1)
Notice that

1Ay @, Ml p2rasm @) ~ )Pl p2rasmn @+
and

1
AN @ Nl 2/ ety ~ k) 1% Ml p2ra- g+ 21)-
n

For small enough ~, Theorems 4 and 5 imply that

||AM~L<I>Z1£ ®AAﬁ<I>’“

I < (MY
n.ell L1 (R+;21) ~ AE
We deduce that

(M Ny
1Facllzg < CIF o < Z mln{/\—z,fy} .
0 k<L n An
iF#k

As the sequences (M,)nen and (A\F), ey are orthogonal (see Definition 1.9), we have
for any j and k such that j # k

PYAD N
lim min{—z, —"} =0.
Thus an integer N, greater than or equal to Nj exists such that

V> No, |IFillze Se.
Together with (1.33) and (1.36), this implies that

n2z Ny = |Foellzo Se

~ )

which proves (1.31).

Now, in order to conclude the proof of Theorem 3, we need the following results.
Proposition 1.14.

Let p be in the interval [2,00[. A constant Cy exists such that,
if U is in L*(RY; B)), ug in BY) and f in F)) such that
Juollsy + 17173 < - exp(~Co [ 10013, ar)
then the problem

ou+diviuu+uU+U®u) —Au=—Vp+ f
(NSv) — -~
divu=0 and up—g=uo

has a unique global solution in L*(R¥; %’;) which satisfies

[ull L2r+;1) S lluollse + [1f]-
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Prorosirion 1.15. Let p € [2,4] be given and let u be a solution of (NS) which
belongs to L2(R+;33;) and with initial data ug in %B°. Then u belongs to </° and
satisfies

(1.37) Vre[l,o0, |ul

Lr(®+sz2/) Ul oy re.ge2) S lluollzo + |\U||%2(R+;@;)-

Moreover, if p = 2 and if the initial data ug belongs in addition to $B° for some s in
the interval [—1 + p, 1 — p], then

(1.38)  Vrel,o0], |ullpr@s.ge+2my < Allluollezs) Zo(lluollao, l|ullL@+a))-

Finally, if p =2 and if ug belongs to B for some s’ greater than 1/2, then

(1.39) Vre[loo], ullprge;z2/mey < Tillluollgo.) Fo(l[uollzo, [lullL2 @+ zm)-
The proof of both propositions can be found in the appendix.

Conclusion of the proof of Theorem 3. — Let us fix p € ]2,4[. By definition of ujPP we

have
L

22 2 ey < || D2 Ay @he
j=0

tA
L2(R+:21) + ||e pn,a,L”L?(]RJr;@é).

Inequalities (1.28) and (1.35) imply that for n sufficiently large
HU?L?EHL?(W;%;) < D(ug, My) + Too (M) + Ce.

Because of (1.31), it is clear that, if £ is small enough,

1.

1
53 < g exp(~Colb? o))

which ensures thanks to Proposition 1.14 that ug , generates a global regular solution
in the space L*(R*; 2)). Then the conclusion of the proof of Theorem 3 is a direct
consequence of Proposition 1.15. a

The proof of Theorem 3 is structured as follows. In Section 2 we prove Proposi-
tion 1.12. Theorems 4 and 5 are proved in Sections 3 and 4 respectively. The appendix
is devoted to the recollection of some material on anisotropic Besov spaces. We also
prove in the Appendix Proposition 1.14 and the anisotropic propagation of regularity
result for the Navier-Stokes system stated in Proposition 1.15.

Acknowledgments. — We want to thank very warmly Pierre Germain for suggesting
the concept of rescaled weak convergence.

2. PROFILE DECOMPOSITIONS

2.1. AN ANISOTROPIC PROFILE DECOMPOSITION. The study of the defect of compact-
ness in Sobolev embeddings originates in the works of P.-L. Lions (see [44] and [45]),
L. Tartar (see [54]) and P.Gérard (see [23]) and earlier decompositions of bounded
sequences into a sum of “profiles” can be found in the studies by H.Brézis and
J.-M. Coron in [11] and M. Struwe in [53]. Our source of inspiration here is the
work [24] of P.Gérard in which the defect of compactness of the critical Sobolev
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embedding H® C LP? is described in terms of a sum of rescaled and translated orthog-
onal profiles, up to a small term in LP. This was generalized to other Sobolev spaces
by S. Jaffard in [32], to Besov spaces by G.Koch [39], and finally to general critical
embeddings by H.Bahouri, A.Cohen and G.Koch in [3]: see Proposition 1.5 for a
statement. We refer also to [6, 7, 8] for Sobolev embeddings in Orlicz spaces and [55]
for an abstract, functional analytic presentation.

In the pionneering works [5] (for the critical 3D wave equation) and [46] (for the
critical 2D Schrodinger equation), this type of decomposition was introduced in the
study of nonlinear partial differential equations. The ideas of [5] were revisited in [38]
and [20] in the context of the Schrodinger equations and Navier-Stokes equations re-
spectively, with an aim at describing the structure of bounded sequences of solutions
to those equations. These profile decomposition techniques have since then been suc-
cessfully used in order to study the possible blow-up of solutions to nonlinear partial
differential equations, in various contexts; we refer for instance to [22], [30], [34], [33],
[36], [37], [50], [52].

Before stating the result, let us give the definition of anisotropic scaling operators:
for any two sequences of positive real numbers (¢, )nen and (vp)nen, and for any
sequence (Z,, )nen of points in R, we denote

Ao o () def i¢<$h —Tph T3 — xn,s).

)

Observe that the operator A., -, ., is an isometry in the space 4 , for any 1 < p < oo
and any 0 < ¢ < oo — recall the definition of those spaces in (1.13). Notice also that
when the sequences (e,,) and (7,) are equal, then the operator A, -, ., reduces
to the isotropic scaling operator A, ,, defined in (1.2), and such isotropic profiles
will be the ones to disappear in the profile decomposition thanks to the assumption of
R-convergence. We also have a definition of orthogonal triplets of sequences, analogous
to Definition 1.9.
Derivition 2.1. — We say that two triplets of sequences (ef,,7%, z%)nen with £ be-
longing to {1, 2}, where (£/,,7%),en are two sequences of positive real numbers and z*,
are sequences in R3, are orthogonal if, when n tends to infinity,
1 2 1 2
either %+5%+lg+l7lz
€r &n  Tn  Tn

1 1 1 1
or (e, ) = (en7m) and ()T — (@)

— 00

— 00,

where we have denoted (acfl)elrcw”fv]i &of (xfhh/ef” zt /7).

The cornerstone to the proof of Proposition 1.12 is the following proposition.

Prorosition 2.2. Let (¢n)nen and ¢o belong to 29, for some 0 < q < 1, with (o)
converging to ¢° in the sense of distributions as n goes to infinity. Let p > 2 be
given. For all integers £ > 1 there is a triplet of orthogonal sequences in the sense
of Definition 2.1, denoted by (¢,~, 2 ) nen and functions ¢* in %g,q such that up
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to extracting a subsequence, one can write the sequence (¢n)nen under the following
form, for each L > 1:

L
(2.1) on ="+ Aot e e df +OF,
=1
where YL satisfies
(2.2) hﬂsolip \|¢£||%g)1 —0, L— oo.
Moreover the following stability result holds:
(2.3) D 116" [lz0 S sup lnllz0 + ll ol z0-
=1 "

The proof follows word for word the proof of Theorem 3 in [4], up to straightforward
modifications of the indices of the Besov spaces at play.

Remark 2.3. If two scales appearing in the above decomposition are not orthogonal,
then they can be chosen to be equal. We shall therefore assume from now on that is
the case: two sequences of scales are either orthogonal, or equal.

Remark 2.4. — By density of smooth, compactly supported functions in %Q,q, one
can write for each integer ¢

¢Z — (ba -|—7‘fY with HTgHBS’I/2 <o
sq

where ¢%, are arbitrarily smooth and compactly supported, and moreover

(2.4) > (Illze + lréllzo) < sup llonllzo + lleollze-
0>1 "
2.2. Proor or Prorosition 1.12. — The proof of Proposition 1.12 is structured as

follows. First we write down a profile decomposition for any bounded, R-converging
sequence of divergence free vector fields, following the results of the previous section.
Next we reorganize the profile decomposition by grouping together all profiles having
the same horizontal scale and finally we check that all the conclusions of Proposi-
tion 1.12 hold.

2.2.1. Profile decomposition of R-converging divergence free vector fields. — In this sec-
tion we start with the anisotropic profile decomposition of sequences of %87(} given in
Proposition 2.2 and we use the assumption of R-convergence (see Definition 1.7) to
eliminate from the profile decomposition all isotropic profiles. Finally we study the
particular case of divergence free vector fields. Under this assumption, we are able to
restrict our attention to (rescaled) vector fields with slow vertical variations.

Let us first prove the following result.

Prorosirion 2.5, Let (¢n) and ¢o belong to B9, for some 0 < q < 1, with (¢y)
R-converging to ¢° as n goes to infinity. Then with the notation of Proposition 2.2,
the following result holds:

(2.5) V=1, lim (v5)7'ef € {0,00}.

n—oo
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Remark 2.6. This proposition shows that if one assumes that the weak convergence
is actually an R-convergence, then the only profiles remaining in the decomposition
are those with truly anisotropic horizontal and vertical scales. This eliminates profiles
of the type ng(nz) and (- — x,,) with |x,| = oo, for which clearly the conclusion of
Theorem 3 is unknown in general (see the discussion in Section 1).

Proof of Proposition 2.5. — To prove (2.5) we consider the decomposition provided in
Proposition 2.2 and we assume that there is k € N such that (v%)71ek goes to 1 as n
goes to infinity. We rescale the decomposition (2.1) to find, choosing L > k,

651(90 4,00) ZAEfL/En,'yn/en,zflk ¢Z + Al/fﬁxl/eﬁ’*wi/elﬁ ,(/)ﬁ’

where
z k def x 335; )
ek
Now let us take the weak limit of both sides of the equality as n goes to infinity. By
Definition 1.7 we know that the left-hand side goes weakly to a function depending
only on (z1,z2) (up to an extraction), denoted by 1;(1’1,1'2). Concerning the right-
hand side, we start by noticing that
! ot
- —0 o £ —00= A

n n

Eﬁ/eﬁwﬁ/eﬁ,xﬁ’k(be —0,
as n tends to infinity, for any value of the sequences v/, z¢ , and x¥. So we can restrict
the sum on the right-hand side to the case when &% /ek — 1. Then we write similarly
‘
€

~0 o0 Al L /el x
'Vn

%k¢z —0

so there only remain indexes ¢ such that &% /v% — 0 or 1. Finally we use the fact
that if ¢/ /4% — 1, then the weak limit of ALl_fI,k #* can be other than zero only
if 6% — a®* € R3, and similarly if Efl/’}/ﬁ — 0, then the weak limit of Alwﬁ/sﬁ)xﬁ,k @
can be other than zero only if xn " = art e R?, and (a xh 5 —ah 3) /75 — ag® € R. So
let us define

SHE(k )delc {€| 1<K =cf 2bF 5 afF ¢ R3 ef;/'yfflﬁl},

y € n

L, &,
SOL () ! {€ 11<0<L, b =k, % 5 al* e R2,

n’ ““nh

(45— 2k 3)/7% > a5 € R, &b /78 = 0.

Actually by orthogonality the set S (k) only contains one element, which is k. So
for each L > 1, as n goes to infinity we have finally

“Aijekayek ek ek n =84 D O (n—ay* —ag®) + ().

€S9 L (k)

Since the left-hand side tends to 0 in B, 1+2/ PP a5 L tends to infinity, uniformly
in n € N, we deduce that ¢* must be mdependent of x3. That is a contradiction
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since ¢* belongs to %°. It follows that (%)~ 1ek goes to 0 or infinity as n goes to
infinity.

The case of divergence free vector fields. — Putting together Propositions 2.2 and 2.5
along with Remark 2.4 and the fact that v ,, is divergence free we obtain the following
result.

Prorosition 2.7. — Under the assumptions of Theorem 3, the following holds. Let
p > 2 be given. For all integers { > 1 there is a triplet of orthogonal sequences in
the sense of Definition 1.9, denoted by (e!,~:, 2" )nen and for all a in ]0,1] there
are arbitrarily smooth divergence free vector fields (¢"*,0) and (=VPA 0308, %)
with 53" and qﬁf; compactly supported, and such that up to extracting a subsequence,
one can write the sequence (ug.n)nen under the following form, for each L > 1:

L 2
~ 3
(26) o =0+ 3 Act yg 0 (007 + 70" = ZHVIAIO 0L +10), o 1)
=1 n

+ (0t = VA sy ),
where @Z?LL and YL are independent of o and satisfy

(2.7) timsup (155 zn | + 10E I, ) — 0, as L— ox,

n—oo

while T and rf, are independent of n and L and satisfy for each £ € N
(2.8) 76 N0 + llrell o < o
Moreover the following properties hold:

V=1, lim (v5)7'ef € {0,000},
(2.9) .y .
n =00 = ¢, =r1r,=0,

and lim (7%)7le
n—oo

as well as the following stability result, which is uniform in «:

(210) > (65 0 + 75 0 + 164 )10 + el z0) < sup [,
0>1 "

|0 + [[uoll o

Proof of Proposition 2.7. — First we decompose the third component u{ ,, according
to Proposition 2.2 and Remark 2.4: with the above notation, this gives rise to

L
(2'11) ug,n = u(3) + Z Aefb,wfl,mfl (d)l;c + Tﬁc) + wﬁ?
=1

with lim sup,,_, . ||| %o ) "23° 0. Moreover thanks to Proposition 2.5, we know that
D,

forall £ > 1,
lim ()¢5 € {0, 00}

n—oo

JEP — M., 2018, tome 5



ON THE STABILITY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 865

Next thanks to the divergence-free assumption we recover the profile decomposition
for ug ,,. Indeed there is a two-component, divergence-free vector field VhLCo,n such
that

b, = V" Cop — VA B5ul

L
where V'™ = (—0y,0s), and some function ¢ such that
L _
ul = V' — VEA 950
Now since dsuf ,, = — divy, ug ,, and ug ,, is bounded in 3 ,, we deduce that VhJ‘C’O,n

is a bounded sequence in %’87 o and similarly for Vthp. Thus, applying again the profile
decomposition of Proposition 2.2 and Remark 2.4, we get

. ~
(2.12) VM Co — Vikp = ZA T (e B

with limsup,, , . || ||B 142/p0/p Li)f 0 and [|7h"(

o < a. Moreover Proposition

2.5 ensures that for all £ > 1 we have lim,, ., (7£)71&¢ € {0, 00}.

1,3/2

Finally, by the divergence free assumption, ug n 18 bounded in By which im-

plies that necessarily gbé = rf; = 0 in the case when lim,_, (’Yn) 1€fL

= oo (see
[4, Lem. 5.4]). Up to relabelling the various sequences appearing in (2.11) and (2.12),

Proposition 2.7 follows. O

2.2.2. Regrouping of profiles according to horizontal scales. — With the notation of
Proposition 2.7, let us define the following scales: €2 = 7% = 1, and 2% = 0, so
that ug = Aggl,yg,nguo-

In order to proceed with the re-organization of the profile decomposition provided
in Proposition 2.7, we introduce some more definitions, keeping the notation of Propo-
sition 2.7. For a given L > 1 we define recursively an increasing (finite) sequence of
indexes £, € {1,...,L} by

60 def 0

(2.13) .
Cosr % min {e e{l+1,.... L} |/t —0 and ¢ U, FL(ef{")},

where for 0 < ¢ < L, we define T'/(¢%) as the set of all indices having the same hori-
zontal scale ¢, namely (recalling that by Remark 2.3 if two scales are not orthogonal,
then they are equal)

(2.14)  TL(eh) {E’ e{l,....,L}|el =t and (L)' —=0,n— oo}.

We call Z(L) the largest index of the sequence (¢;) and we may then introduce the
following partition:

Z (L)
(2.15) {teqt,. . .L}lebri)™ =0} = U THel).
k=0

We shall now regroup profiles in the decomposition (2.6) of ug ,, according to the value
of their horizontal scale. We fix from now on an integer L > 1.
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Construction of the profiles for ¢ = 0. — Before going into the technical details of the
construction, let us discuss an example explaining the computations of this paragraph.
Consider the particular case when ug , is given by

uon(x) = uo(x) + (vg(a:h, 27 "x3) + wg’h(xh, 272 g3), O) + (vg(xl +n,x9,27 "x3), O),

with v§ and wg’h smooth (say in Bi’;l for all 5,5’ in R) and compactly supported.

Recall that the notation v for a vector field always stands for a two component vector
field. Let us assume that (ug.,)nen R-converges to ug, as n tends to infinity. Then we
can write

uom(x) = UO(I) + (vg,&sc(mhv 27“553)’ 0) + (vg,ﬁo(xh, 27nx3)7 0)7

. def _ .
with vgjifc(y) = 09(y) + wy™ (yn, 2 "ys) and v (y) = v3(y1 + 1., y2, y3). We notice

1 . . . s,s! .
that v)*° and vy are uniformly bounded in #°, but also in By$ for any s in R
and s’ > 1/2.

Moreover since ug ,, — ug, we have v3(zy, 0)+w (v1,0) = 0, hence U&l?c(l'h, 0) = 0.

The initial data ug, has therefore been re-written as
up () = uo(95)4—(1187’2)‘:(95}17 2_"303),0)—1—(1)8320(37}1, 27"x3),0) with vgjifc(xh, 0)=0

and where the support in xy, of vgjifc(xh, 27"gx3) is in a fixed compact set whereas the
support in xp of 118”20 (zn, 27 ™x3) escapes to infinity. This is of the same form as in
the statement of Proposition 1.12.

When considering all the profiles having the same horizontal scale (1 here), the
point is therefore to choose the smallest vertical scale (2™ here) and to write the
decomposition in terms of that scale only. Of course that implies that contrary to
usual profile decompositions, the profiles are no longer fixed functions in %°, but
sequences of functions, bounded in %°.

In view of the above example, let {; be an integer such that 'yﬁ,o is the smallest
vertical scale going to infinity, associated with profiles for 1 < ¢ < L, having 1 for
horizontal scale. More precisely we ask that

'yéa = min ’yé
n -
ceri(n) "’

where according to (2.14),
rt(1) = {E’ ef{l,....,L}|ef' =1 and ~Y — o, n—>oo}.

Notice that the minimum of the sequences 7% is well defined in our context thanks
to the fact that due to Remark 2.3, either two sequences are orthogonal in the sense
of Definition 1.9, or they are equal. Remark also that £ is by no means unique, as
several profiles may have the same horizontal scale as well as the same vertical scale
(in which case the concentration cores must be orthogonal).

Now we denote

def , £5\—
(2.16) hy = ()71
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and we notice that h? goes to zero as n goes to infinity for each L. Note also that h®
depends on L through the choice of ¢, since if L increases then {5 may also increase;
this dependence is omitted in the notation for simplicity. Let us define (up to a
subsequence extraction)

g def

(2.17) lim (@, .3/ 7n)-

n—oo

We then define the divergence-free vector fields

0
0,1 ,h “h,e y3 Tn,3
(2'18) UOJ?,((; L Z (b (yh — Ty, h7 ho - ,;lg )
£eT (1) "
af;e]Rz
and
¢
0,1 def - . Y3 Tn,3
219 wo,vffx,L(y) = Z (‘ h183¢ﬁw¢(,;> (yh - flh? RO~L %)
( * ) ZEFL(I) TL’Yn IYn
aﬁGRz

By construction we have

0loch ha—1 0,loc,3
O,TZ(K;,L =-VIA;70 077?,2,L‘
Similarly we define
¢
0,00,h def Th¢ ’ Y3 Tn,3
(220) W) S0 I (s paty — )
tert(1) nin n
|af, |=o00
and
000 def 1 hA=19. 40 ol ¢ Y3 T3
291 On aL(y) - Z - ho Y] \% h 3¢aa¢o¢ Yn 7xn,hv 10 A 1] .
(2:21) et nn Rl n
|af, |=00

By construction we have again
0,00,h ha-—1 0,00,3
wO n,o,L =-V Ah 83w0,n,o¢ L
Moreover recalling the notation

[Flho (@) <" f(an, Bxs)

and

def 1  /op—Tpn T3 —Tp3
Aeyirr, 0l@) & (b ),
€ Yn

E?’l n

one can compute that

1
(2.22) ) Al,vﬁ,zﬁ( vt — VVhAﬂlafscbf;,d?ﬁ)

eert (1)
0 2
af er _ 0,loc,h 0, 0,loc,h 0,loc,3
" - [(UOnaL +h wOnozL7wO,n,a,L)]h%
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and

~ 1
(2.23) Z Av iyt at, (QSZ’Z - = VAL 054, ¢fx>
¢erk(1) Tn

|af, | =00 _ 1(,0,00,h 0,008 0,00,3

0
- [(vo,n,a,L + hnwo,n,a,L’ w07n,a,L>] ho "

0,loc,h 0,loc 0,00,h 0,00 . .
Let us now check that vy, 7, Wo'y o 1> Vo'n.a.r @0d Wy, 1 satisfy the bounds given

in the statement of Proposition 1.12. We shall only study vg’if fth and wg’fca 5, as the
other study is very similar. On the one hand, by translation and scale invariance

of BS:%/Q and using definitions (2.18) and (2.19), we get

(2.24) lgoet o < > ez and  [wgne? g <> Ikl zo-
1 >1

By (2.10), we infer that
(2.25) Hv&fii\\ggo + ||U)87i?723L”gg0 < C  uniformly in «, L, n.

Moreover for each given «, the profiles are as smooth as needed, and since in the

. IS .
above sums by construction v,°; < 7L one gets also after an easy computation

0,loc

(2:26) Vs € RS > 1/2, (ool e + 105, 1] 5z <C(@) uniformly in m, L.

O,n.,oz,L”B;:;

Estimates (2.25) and (2.26) give easily (1.18) and (1.19).

Finally let us estimate vg’ifffL(-, 0) and w)°%% (-,0) in B9 | (R?) and prove (1.20).
On the one hand by assumption we know that ug , — u¢ in the sense of distributions.
On the other hand we can take weak limits in the decomposition of g , provided by
Proposition 2.7. We recall that by (2.9), if &, /75 — oo then ¢f, = r{ = 0. Then we
notice that clearly

el =0 or e =00 = Ace e ge f—0
for any value of the sequences v/, 2!, and any function f. Moreover
T =0 = Ay g f =0
for any sequence of cores zf and any function f, so we are left with the study of
profiles such that ¢/ = 1 and 7. — oco. Then we also notice that if v — oo, then
with Notation (2.17),

(2.27) lag| =00 = Ay e e f — 0.
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Consequently for each L > 1 and each « in |0, 1], we have in view of (2.11) and (2.12),
as n goes to infinity

£
¢ ¢ ’*x, L
U5n_¢7LL/_ Z Toz('_xn,hv ’Y )4u0+ Z (b )

£eTE(1) " eerk(1)
s.t. ahG]RZ
~ — xe
VﬁCOm_wZ’L - Z ’I" ( —J?n h774n)3) AVﬁtpﬁ- Z d)g,e(' _af“O)-
¢eTL(1) Tn Lert (1)
s.t.afleR2

By hypothesis the sequence (ug)n)neN converges weakly to u3 and the sequence
(V,J;Co,n)neN converges weakly to V,J;go, so for each L > 1 and all « in |0, 1], we have
as n goes to infinity

ot
_'l/}r[;_ Z rﬁz('_xfl,hv 74 ’3) - Z (ZS!(;('_G‘%’O)

£erL(1) " rert(1)
s.t.aﬁ€R2
(2.28) at,
L ~h,0 ¢ n,
_¢7z - Z To ( — Zyph ’Yé ) - Z ¢ aiu )
£eT k(1) " rerk (1)
s,t.aﬁ€R2

Now let 7 > 0 be given. Then thanks to (2.7) and (2.8), there is Lo > 1 such that for
all L > Ly there is a9 < 1 (depending on L) such that for all L > Lo and « < ag,
uniformly in n € N

’
Sl
~ht L ‘ n,3
ot | 2 (et =) <0
2eTL(1) n

Using the fact that %° is embedded in L>(R; B | (R?)), we infer from (2.28) that
for L > Lo and o < a

s

(2:29) | > de—do),, . <n
tert (1) B;.1(R?)
s.t. ah€R2

and

(2:30) | > et-an0f <n
tert(1) B2, (%)
s.t.aﬁe]Rz

But by (2.18), we have

¢
0,loc,h _ Tht ¢ Tn,3
’UO,n,a7L<.7 0) - E (ba ( B ,Y[ )
LeT (1) "
af;e]Rz
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and by (2.19) we have also

2t
0,loc,3 V4 n,3
wO n,a, L ¢ Tn h’ B ,YZ '
cert(1) "
aﬁG]RQ

It follows that we can write for all L > Ly and a < ag,

. 0,loc,h Thtl ¢
lim sup||vg, o ( HBo () S Z ¢o" (- — ap,0) <N
n—o0 ZGFL(l) Bg,l(Rz)
aﬁERQ

thanks to (2.29). A similar estimate for w8:lﬁf};i(~, 0) using (2.30) gives finally

1) tim timy i sup (o500 g oy + (165500 g o) = 0

The results (1.21) and (1.22) involving the cut-off function € are simply due to the
fact that the profiles are compactly supported.

Construction of the profiles for £ > 1. — The construction is very similar to the previ-
ous one. We start by considering a fixed integer j € {1,...,.Z(L)}.
Then we define an integer Ej_ so that, up to a sequence extraction,
I .
Y = min ’yft,
tert(e,d)
where as in (2.14)

IE(el) = def {Z’ e{l,....L}|el = and £(E) ' —=0,n— oo}.

n n

Notice that necessarily eli # 1. Finally we define

) Ve
h, d—effz 7 (] >_1~

. ) 0
By construction we have that h?, — 0 as n — oo (recall that e = ey ). Then we
define for j < Z(L)
¢

B The x, h En T3
(2.32) vfl; L Z b (y 7 T Y3 — — )
v Tn
CeTL(e)d)
and
2 0 ¢ 0
i def € _ T 7h € Ty 3
a3 (- AT 000k ) (v - S - )
erL(e)) in R n
and we choose
(2.33) ZL)<j<L = va};LZO and wj ar =0
‘We notice that
wﬁl’};L v A 183wnaL
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Defining
A def gl

n - “n>

a computation, similar to that giving (2.22) implies directly that

R DR N e A QR Ty
éEFL(sfl,j) o " .
=Ny |(v [( oL T hjw) Wy o L’w3177?:1,L)]th'
Notice that since £5 # 1 as recalled above, we have that A\J, — 0 or co as n — oc.
The a priori bounds for the profiles (va}; I wfﬁa 1)i<j<r are obtained exactly as
in the previous paragraph: let us prove that

S h ey, + wi?, sy ) <C, and
jz1

Vs R VS >1/2, D (g pll g + 1wi 1l gger) < Clo).
j>1

(2.35)

We shall detail the argument for the first inequality only, and in the case of v L 88

the study of w)", | is similar. We write, using the definition of v, ; in (2.32),

Z(L)

L
- -
; 1o, 2ll g1 = >

Jj=1 0ETL ()] J

éj Y4

! L € Tn,3
Z (ﬁhf(yh ’f; 5 ]n ) Y3 — ng )
en  hny Tn

BS,I/Q,
2q

so by definition of the partition (2.15) and by scale and translation invariance of BO /2
we find thanks to (2.10), that there is a constant C independent of L such that

L L
j.h Th,e
> Ul gy < > ok o1z < C
= =1
The result is proved.
Construction of the remainder term. With the notation of Proposition 2.7, let us
first define the remainder terms
L
1),h  def ha-19 .0 ha—1 L
(2.36) pih et 3 7” Ace e oo VEAT 957 — VEAT 039 L
(=1
and
o & L
2 e ~h0 ThL L
(237) ng,L,L = A el vtz (ra aO) + Z Aefw'yﬁ,x’f 5 a) (1/) 37/} )
(=1 =1

Observe that by construction, thanks to (2.2) and (2.8) and to the fact that if 7 # 0,
then e/ /7% goes to zero as n goes to infinity, we have

Lll_I)Il hm hmsup ||pa " LHBz/p “1t1/p = 0,

(2.38)

and ngréo inrb hmsup ||,0a - LHB 1e2/paly = =0.
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Then we notice that for each ¢ € N and each « € |0, 1[, we have by a direct compu-
tation

] IR Y i [ P

B, —1/2
We deduce that if &/, /75 — oo, then Ae ¢ z¢ (¢4, 0) goes to zero in BH1/2 as n
goes to infinity, hence so does the sum over ¢ € {1,...,L}. It follows that for each

given v in |0, 1] and L > 1 we may define

1 def —(1),h
pgz,)a,L = ﬁgL,?x,L + Z A Z,’y zf (¢Z’€70)
[/vnﬁoo

and we have

(2.39) ngn hm hmbup Hpn u LHBz/p —141/p = 0.
Finally, as the space Z(R?) is dense in %, let us choose a family (ug o )q of functions
in 2(R3) such that |Jug — up,a|| < « and let us define

(2.40) Pn,a, L = p(()zl)n Lt pfj?y,L + Up — Up,a-

Inequalities (2.38) and (2.39) give

(2.41) ngr;o ignO 1171Lnsup €' P,z || L2 &+ 1) = 0.

2.2.3. Endof the proof of Proposition 1.12. — Let us return to the decomposition given
in Proposition 2.7, and use definitions (2.36), (2.37) and (2.40) which imply that

L 0
Z The  Engha-—1 ARV
Uo,n = U0, + AEﬁ,’yﬁ,xﬁ (¢a - 7v Ah a3¢a7 ¢a) + Pn,a,L-
—1 Tn
el /vt —0

We recall that for all £ in N, we have lim,, o (74)7'e% € {0,00} and in the case
where the ratio £/ /7% goes to infinity then ¢f, = 0. Next we separate the case when

the horizontal scale is one, from the others: with the notation (2.14) we write

~ 1 _
o = ot 3. Avarar (qsz’f—,%vmhlasm)
n

el (1)

L ¢
Thie  Engha—lq .0 40
+ Z Affw'yfwsz <¢04 - 7V Ah 83¢a7¢a) + Pn,a,L-
/=1 Tn
EfL;‘E1
el /75 —0
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With (2.22) this can be written

_ 0,loc,h 0, .0,loc,h 0,loc,3
Ug,n = U0,a + [(vo,n,a,L + hnwO,n,a,L7 wO,n,a,L)] ho

0,00,h 0 . .0,00,h 0,00,3
+ I:(U07TL,067L + hnwO,n,a7L’ wO,ma,L)] ho
¢
Thie  Engha—-lg 40 0
D Acarar (%’ - TZLV Ay 83%%) + Pn,a,L-
=1 n
efz‘fl
et /v —0
Next we use the partition (2.15), so that with notation (2.13) and (2.14),

_ 0,loc,h 0, .0,loc,h 0,loc,3
Ug,n = U0,a + [(vo,n,a,L + hnwo,n,a,L’ wO,n,a,L)] ho

0,00,h 0,,0,00,h 0,00,3
+ [(%:ﬁmL + hywo 0 s wo,fsa,L)]th

Z(L) 2
7 En —
P2 B M (B TVl ) 4 e
I=1 ert(ed) !
el #1
Then we finally use the identity (2.34) which gives

(242) Ug,n = U, + [(Ugjlrzz,hL + h’%wg:iz%ﬁL7 wg:i?,sz)] ho

0,00,h 0. .0,00,h 0,00,3
+ [(vo,n,a,L + hnwo,n,a,Lv wO,n,a,L)] hO
L
§ [(aydoh2 J o Jsh 7,3 )
+ A)\{,L [(’Un,a7L + h’nwn,a,L’ wn,a,L)]hﬁ,’ + Pn,a,L-
Jj=1

The end of the proof follows from the estimates (2.25), (2.26), (2.31), (2.35), along
with (2.41). Proposition 1.12 is proved. O

3. PROPAGATION OF PROFILES: PROOF OF THEOREM 4

The goal of this section is the proof of Theorem 4. Let us consider (vg, w3) satisfying
the assumptions of that theorem. In order to prove that the initial data defined by

def

b, = [(vo — 6VhA;183w8,wg)]

B

generates a global smooth solution for small enough 3, let us look for the solution
under the form

(3.1) by = PP 4y with PP L [(y 4 Bt w?)] .

where v solves the two-dimensional Navier-Stokes equations
Ov+v-Vho—App=—-VPp in Rt x R?
(NS2D),, divpv =0

V=0 = vo(*; ¥3),
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while w? solves the transport-diffusion equation

@) {8tw3+v-vh 8 Apw® — 22w =0 in Rt x R3
B

3 _ .3
Wy, _ = Wp

. . . s . . def

and w" is determined by the divergence free condition on w which gives w" =

—thilagw?’.

In Section 3.1 (resp. 3.2), we prove a priori estimates on v (resp. w), and Section 3.3
is devoted to the conclusion of the proof of Theorem 4, studying the perturbed Navier-
Stokes equation satisfied by .

Before starting the proof we recall the following definitions of space-time norms,
first introduced by J.-Y.Chemin and N.Lerner in [17], and which are very useful in
the context of the Navier-Stokes equations:

(3.2) 111z qozmesy = 1259 IARAY Il o,riem -
Notice that of course L"([0,T]; B3:8') = L"([0, T]; B2, and by Minkowski’s inequal-
ity, we have the embedding L ([0, T); B;:;I) C L7([0,T7; B;:;I) itr>gq.

3.1. Two DIMENSIONAL FLOWS WITH PARAMETER. — Let us prove the following result
on v, the solution of (NS2D),,. We shall use the notation introduced in Definitions 1.10
and 1.13.

Prorosition 3.1. Let vy be a two-component divergence free vector field depending
on the vertical variable x3, and belonging to S,,. Then the unique, global solution v
to (NS2D),, belongs to o/° and satisfies the following estimate:

(3.3) [vllero < T2 ([Jvol| o).
Moreover, for all (s,s") in D, we have
(3.4) Vr € [Lool, [ollg, i gerzory S Tolllvolls,)-

Proof. — This proposition is a result about the regularity of the solution of (NS2D)
when the initial data depends on a real parameter x3, measured in terms of Besov
spaces with respect to the variable x3. Its proof is structured as follows. First, we de-
duce from the classical energy estimate for the two dimensional Navier-Stokes system,
a stability result in the spaces L"(Rt; H*+2/7(R?)) with 7 in [2,00] and s in | — 1, 1[.
This is the purpose of Lemma 3.2, the proof of which uses essentially energy estimates
together with paraproduct laws.

Then we have to translate the stability result of Lemma 3.2 in terms of Besov
spaces with respect to the third variable (seen before simply as a parameter), namely
by propagating the vertical regularity. First of all, this requires to deduce from the
stability in the spaces L (R*; H*T2/7(R?)) with r in [2, oc], the fact that the vector
field v, now seen as a function of three variables, belongs to L"(R*t; LS (H*+2/7(R?))
again for r in [2, 00]. This is the purpose of Lemma 3.3, the proof of which relies on
the equivalence of two definitions of Besov spaces with regularity index in |0, 1[: the
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ON THE STABILITY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 875

first one involving the dyadic decomposition of the frequency space, and the other
one consisting in estimating integrals in physical space.

Finally for s in ] — 3, [ and s’ > 0 a Gronwall type lemma enables us to propagate
the regularities. When s’ > 1/2 product laws enable us to gain horizontal regularity
up to ] — 2,1 and to conclude the proof of Proposition 3.1.

Let us state and prove the first lemma in this proof.

Lemma 3.2, — For any compact set I included in ] — 1,1], a constant C' exists such
that, for any r in [2,00] and any s in I, we have for any two solutions v1 and ve of
the two-dimensional Navier-Stokes equations

(3.5) [v1 = vl Lty ror2rr m2)) S l01(0) — v2(0) || s (r2) E12(0),

where we define

Ei2(0) € exp C(|[v1(0)[|22 + [|v2(0)]122).

Proof. — In the proof of this lemma, all the functional spaces are over R? and we no
longer mention this fact in notations. Moreover, the constant which appears in the
definition of F15(0) can change along the proof. Defining v15(t) L (t) — va(t), we
get

(3.6) 8151)12 + Vo - thlg — Ahvlg = —V12 " thl — Vhp.

In order to establish (3.5), we shall resort to an energy estimate making use of product
laws and of the following estimate proved in [12, Lem. 1.1]:

(3.7) (v-VPala) .. < V™| ]|al m

Hs r~ vha”Hs?

available uniformly for any s in [—2 4+ p, 1 — pl.
Let us notice that thanks to the divergence free condition, taking the H® scalar
product with v in Equation (3.6) implies that

1d
5 vz + IV 0w ()]3-

2 dt
= —(vg(t) . thlg(t)‘vlg(t))Hs - (Ulz(t) . thl (t)‘vlg(t))Hs.

Whence, by time integration we get

t
lor2(®) 17+ + 2/0 IV 12 (t) 13- dt’ = [[v12(0) |-

— 2/0 (va(t) - V012 () 012(t")) . dt’ — 2/0 (vi2(t') - VPor () |v12(t)) . At
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876 H. Banourt, J.-Y. Cinemin & I, GALLAGHER

Now using Estimate (3.7), we deduce that there is a positive constant C' such that
for any s in I, we have

2 /O (UQ(t/) . vh’l}lg(t/”?}lg(t/))Hs dt/

vh’Ug (t/)||L2 ||th12(t’) ||Hs dt/

(3.8) <C [ ou®l

<1 ! Vh N2 dt Cﬁ ! N2 Vh N2 dt’
<3/ IV 012 (E) 3= dt” + ; [o12 @) [ IV 02 () || 22 dt'.
Noticing that
t t
/ (v12(t) - VP0r (#)or2(t)) . dt’ < / IV 012 (t) | = or2(t) - VR0 ()| et
0 0

we deduce by Cauchy-Schwarz inequality and product laws in Sobolev spaces on R?
that as long as s is in ]0, 1],

2 /0 (U12(t/) . th (t/)|U12(t/))HS dt,

Vo ()| 2 dt’

v1a(t)] ars

t
(3.9) <cC / V" 012 (#) -
0

1 t 02 t
<5 [ IV 0Ol dt + G [ ona(e )7 o)1 0
When s = 0 we simply write, by product laws and interpolation,

! AN hU / V19 / /
2/0(1112@) Vhoy (¢ ons(t)) ., dt

t
(3.10) <C [ @)l lerale) - Vst - dt
0

1 t CZ t
<5 [ 19 0@t + S [ ora(e) 9 a0
0 0
Finally in the case when s belongs to | — 1,0[, we have

! . hv / V19 / /
2/0(1}12(15) Tho () ora(t)) . dt

U12<t/) . Vh’Ul (t/)HHs dt/

t

(3.11) <cC / o2t
0

1 ! h 12 / 22 ! (12 h N2 !

<5 [ IV sl de + G [ a9 01 () 2

Combining (3.8) and (3.9)-(3.11), we infer that for s in | — 1, 1],

t
a2 (). + / IV 12 ()3 d’

t
< llvr2(0) 17 +/0 a2 (@) e (IV o1 ()17 + [V 02 ()17 dt’.
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Gronwall’s lemma implies that there exists a positive constant C' such that

t
lor2 (). + / IV 012 ()3 d’
0
t
< 12(0)][3. exp C / (19 00 (#)22 + [ Vhoa(t')22) dt”.
0

But for any 4 in {1,2}, we have by the classical L? energy estimate

t
1
(312 [ IVt < 5 1)
0

Consequently for s in | — 1,1],

t
[o12(t) - +/ IV 012 (t) [+ dt” < [v12(0)][7;- E2(0),
0
which leads to the result by interpolation. Lemma 3.2 is proved. ]

Using Lemma 3.2, we are going to establish tEe following result, which will be of
great help to control all norms of v of the type L"(R*t; %%/7) for r in [4, 00| thanks
to a Gronwall type argument.

Levmma 3.3. — For any compact set I included in ] —1,1], a constant C' exists such
that, for any r in [2,00] and any s in I, we have for any solution v to (NS2D),,,

def

[|v] Lr(R+5Lee (HIFT)) < lvoll s E(0)  with  E(0) = exp(C||v(0)||%$oLﬁ).

Proof. We shall use the characterization of Besov spaces via differences in physical
space: as is well-known (see for instance [2, Th.2.36]), for any Banach space X of
distributions one has

3/2( AV N ”u_(T—zu)”L?,(X)%
(3:13) 172185 ullzz00) e ey /]R |2[1/2 2|’

where the translation operator 7_, is defined by

(szf>(t7xh7$3) d:ef f(t7xha r3 + Z)

The above Lemma 3.2 implies in particular that, for any r in [2,00], any s in I and
any pair (3, z) in R?, if v solves (NS2D),, then

o —1—20llye S lvo — 00l B(O) with Y, < L (R*; HY P,

Taking the L? norm of the above inequality with respect to the x5 variable and then
the L' norm with respect to the measure |z|~3/2dz gives

(3.14) lv—72vllzzvy) dz [ Vo — 7—svollrzay) %E(O).
R |2|1/2 2] ~ Jr |2[1/2 2]

Returning to the characterization (3.13)) with X =Y., we find that

I el [[ERRLNINHER)
JEL

R |z|1/2 2| k| LT(R+;Z2(Z;Lﬁ))’ L2
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7

Similarly we have

[vo — 7—2vollL2(as) dz ,
viin) 2 j/2 ks v Ah
/]R 2172 B ;2 (2 [ATA

UOHLﬁ)kHﬁ(Z;Lg)’
so by the embedding from ¢1(Z) to (2(Z), we get

llvo = 7—zvollL2(ap) dz /29ks)| AY
/ |ZTl/2 2(m;) - S S0 2200 AY ARl o).
R (4,k)€z?

Therefore, we deduce from Estimate (3.14) that
i/2 k(s+2/r v Ah
S o/ HH(Q (s+2/ )AjAkv(t,.,z))k|}Lr(R+;e2(Z;L§))HLZ < |lvoll E(0).
JEZ v
As r > 2, Minkowski’s inequality implies that

223/2H || (2k(8+2/7‘)A;A}IéU
JEZ

(t, '))ngz(Z;Lz) Lr(®+) S llvoll 2+ £(0).

Bernstein’s inequality as stated in Lemma A.1 implies that
IAYARo(E, M e (n2) S 2772147 ARt )2,
thus we infer that

Il ako) s 2))

o). g, S 0l E(O)

Permuting the #2 norm and the L norm thanks to Minkowski’s inequality again,
concludes the proof of Lemma 3.3. g

Revark 3.4. — Let us remark that thanks to the Sobolev embedding of H'/?(R?)
into L*(R?), we have, choosing s =0 and r = 4 or r = 2,

||U||L4(R+;L3<>(L;§)) + ||UHL2(R+;L3°(H§)) < llvollo E(0).

Now our purpose is the proof of the following inequality: for any v solving (NS2D),,.,
for any r in [4,00] and any s in | — §, 1[ and any positive s/,

o0

(3.15) ollz0 e gty S 0l e exp( / CIO e gy + 10O i) )

The case when r is in [2,4] will be dealt with later. We are going to use a Gronwall-
type argument. Let us introduce, for any nonnegative A, the following notation: for
any function F' we define

t
FA(t) < F(t) exp (- / oty dt') with  o(t) L ol e qus) + 10O

Notice that thanks to Remark 3.4, we know that

(3.16) /0 (") dt" < E(0)([voll 0 + llvoll0)-
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Then we write, using the Duhamel formula and the action of the heat flow described
in Lemma A.2, that

.
(3.17)  [JAYARuL (1) 12 < Cem P | AYAbvg | 12
t t

+ o2k / exp(—e(t — 127 — X / O(1" ) dt") | AT A (v @ ) (1) |2 '
0 t/

Notice that (v ® v)y = v ® vy. In order to study the term ||A}’A],3(v ®v)A(t)]| L2, we
need an anisotropic version of Bony’s paraproduct decomposition. Let us write that

4
ab = Z T(a,b) with
T (a,b) = Z SYSRaAy ARD,
(3.18) ZSVA aA"SkH

ZAVSkaS (AR,

ZAVA Y1 Skb.

We shall only estimate T and T2, the other two terms being strictly analogous. By
definition of T, using the definition of horizontal and vertical truncations together
with the fact that the support of the Fourier transform of the product of two functions
is included in the sum of the two supports, and Bernstein’s and Holder’s inequalities,
there is some fixed nonzero integer Ny such that

1A ART (0(t), oa(8)) 22 < 252 AT ART" (0(), oA (D) 75,

SR DI D2 TG PO IV ENVENGI P2

j:?j—No
&' >k—No
S0y Y. A AR AR L2
j:?j*]\’o
' >k—No

By definition of L*(R*; #+1/2%) we get
IATART (v(t), va (1))l 2

S22 oallpa e e 0 Ollseay D 27K D2 ),

§'2j—No
k' >k—No
where fj/,k/ (t), defined by
s K’
e (t ) = ||U>\| L4 R+;Bs+1/2,s )2 (s+1/2)97" ”AV Ak’vk( )2,

JE.P.— M., 2018, tome 5



880 H. Banourt, J.-Y. Cinemin & I, GALLAGHER

is on the sphere of ¢!(Z2?; L*(RT)). This implies that
205 2F | AYART (v(t), 0A(£)) | 2

S oAl zsgesgerron W@y Y, 2702 E=RER2E, (1),
J'2i—No
k' >k—Ng

Since s > —1/2 and s’ > 0, it follows by Young’s inequality on series, that
27 2P| AYART (0(t), va ()l S 1ol zs g et 2o 10O | oo 22y Fi e (B),

where f; 1 (t) is on the sphere of £1(Z2; L*(R")). As ¢(t) is greater than |v(t)
we infer that

HLoo(L4)7
t t
(319) Tk (1) L ohare'gks / exp(—c(t 2% A [ gt dt”)
0 t/
X |AYART (u(t'), vr ()| 12
t t
S loallzaer a2 [ exp(=clt =12 =3 [ o) de") o @) (¢ a
0 %
Using Hélder’s inequality, we deduce that

t _ _ 492k 1/4
z)lk)\(t) g ||’U)\HZ4(R+;%,S+1/QVS/) (A e c(t—t")2 f;‘,k(t/) dt’)

t t
2k( _ t—tl 22k Y t// d " t/ 1/3 dtl)
2 [ exp( et =) ERrara

Then Hoélder’s inequality in the last term of the above inequality ensures that

3/4

1 ¢ —e(t—1")22k 1/4
(3.20) Z,lm(t) < )\1/4</ e c(t—t")2 fﬁk(t’)dt’> \\UA||Z4(R+;@5+1/2»S’)-
0

Now let us study the term with T2. Using again that the support of the Fourier
transform of the product of two functions is included in the sum of the two supports,
let us write that

IAYART?(0(), a2 S D IS5 AR vl e (1)
J'2i—No
k' >k—No

()l L2 (Le=)-

Combining Lemma A.1 with the definition of the function ¢, we get
(3.21) 155 AR o)l e 22y S 27 o)l gy S 275 62 (0).
Now let us observe that using again the Bernstein inequality, we have

h h
IAYSE oAz S D AL AR oA®) 22 (250
k//<kl

< Z 2k”||A Ak//v)\( )||L2
K <k
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By definition of the L4(R*; 2°71/2") norm, we have
20" K U2 AT S ox ()| 2 e

5 ||U}‘HE4(R+;<@S+1/2>S,) Z 2(k -k )(S_I/Q)ij/’k//(t)7
k”gk"

where ij (t), on the sphere of £1(Z?; L*(R*)), is defined by

! Jatt
k

def _ 1 "
fj’,k” (t) :e ||U}\HZ41(]R+;<%’S+1/2’S/)2] ° Qk (s+1/2)||A}/'A2”U>\(t)HL2'

Since s < 1/2, this ensures by Young’s inequality that
14T SE o @)llzzoe) S 277272 on|ga g oo Firbe (8),

where fj/ . (t) is on the sphere of ¢!(Z2; L*(R*)). Together with Inequality (3.21),
this gives

20 2RV ATART2 (0(t), oA (E) 22 S S 0nll 7o (v gge 17200 Fii (8),
where f; 1 (t) is on the sphere of ¢!(Z?; L*(R™)). We deduce that

t t
(3.22) T2 ,(t) & 2hois oks / exp(—c(t—t’)22k—)\ qs(t”)dt”)
0 t’

< [ AYART2(0(t'), v (¢)) | = d’

t t
S oalzeer e 272 [ exp(=elt = )22 3 [ o) dt")ott) V2 (¢ .
0 t’

Using Holder’s inequality twice, we get
2 ! t—t")2%F pd 4 /1/4
(3.23) tyj,k)\(t) N HU>\||Z4(R+;ggs+1/2,s’) (/0 emet=t) fj,k(t )dt>

t t 3/4
x 2k/2 (/ exp(—c(t — 22k — X [ ot dt”)¢>(t’)2/3 dt’)
0

t/
1 t o2k 1/4
S WHUAHEHR-%—;,%H—UZS’) (/0 e c(t—t')2 ﬁk(t/> dtl) .
As T? is estimated like T and T is estimated like T2, this implies finally that
29597 | AY Al (1) 12 S 2728 =<2 1| AY Abug | .

! —c(t—t")2%F pa 1\ g1 AR 1
* ( 0 Jixlt )dt> (W + W)||”AHZ4<R+;<%S+1/2’S/)'

As we have
1/4

<t Ce(t—t)2% 4 oy ) 5 —1 —k/2
O (Oe fayat) dr) = e dg

¢ o2k 1/4
and  sup (/ e et=t)2 ;‘,k(t') dt/) =d;y, with dj€("(Z%),
teR+ *J0
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we infer that
27528 (|| AY ARl Lo s 2) + 22| AT ARval Lot 7))
js' oks v 1 1
S 2* ”Aj A}l;UO||L2 + dj,k(m + W) ||7)>\HZ4(R+;ggs+1/2,s’)-

Taking the sum over j and k and choosing A large enough, we have proved (3.15).
Let us gain L?-integrability in t. Using (3.19) and (3.22) with A\ = 0, we find that

235 PR HD | AV ARy (1)) 12 < 275/ 2K+ D=2 | AV ARy | 12
+2% [0l za g+ gorr/2.0t) /Ot emelt=t2 ((g56(") + 27k/2hj,k(t/)) dt',

where g; 1, (resp. hj ) are in €1(Z%; L>(RT)) (resp. £1(Z2; L3(R™))), with
37 lgislzen S Il and D7 bk

(4,k)€Z? (4:k)€2?

1/2
|parsey S Il

Laws of convolution in the time variable, summation over j and k and (3.15) imply
that

912 g e S ool exp(C [ a(0) ).

This implies by interpolation in view of (3.15) that for all  in [2,00], all s in ] — %7 %[
and all positive s’

(3:24) [ —— Y T P Y ACE O

which in view of (3.16) ensures Inequality (3.3) and achieves the proof of Estimate

(3.4) in the case when s belongs to | — £, 1.

Now we are going to double the interval, namely prove that for any s in | — 1, 1],
any s’ > 1/2 and any r in [2, 00] we have
(3:25)  [[vllzr e igerarmery S llvoll g + vl gor2.o [[v0ll 2/2 exp(Cllvo | 0 Eo)-

Proposition A.4 implies that for any s in | — 1, 1] and any s’ > 1/2, we have

[o() @ V)l g, S 0Bl g+ 2 [[0(E) | gty 2,57
The smoothing effect of the horizontal heat flow described in Lemma A.2 implies
therefore that, for any s belonging to ] — 1,1[, any s’ > 1/2 and any r in [2, o0],
||UHZT(]R+;@s+2/T,s’) S ||”U0H95-<v5’ +v® U||Z2(R+;ggs,s’)
S llvoll ggs.o + ||U||Z4(R+;@<s+1>/2)||U||Z4(R+;@(s+1>/2,s’)-
Finally Inequality (3.15) ensures that for any s in | — 1,1[, any s’ > 1/2 and any r
in [2, c0],

(3:26)  |lv]

Dr@ezerrray S Vol gesr + [lvollger2llvoll o s2.0 exp(Cllvoll 20 E£(0))

This concludes the proof of Inequality (3.25).
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Now let us conclude the proof of Estimate (3.4). Again Proposition A.4 implies
that, for any s in | — 2,0] and any s’ > 1/2, we have

[0(t) @ v(B)l| ggo+1.sr S N[0l g2 [[0() | o241,

This gives rise to
lv® U||L1(R+;gas+1,s') S |\U||L2(R+;@s/2+1)||U||L2(R+;gas/2+hs’)'
The smoothing effect of the heat flow gives, for any 7 in [1,00] and any s in | — 2,0],
017 essrrry S 00l + 0l asggeraony [0l s poreon o

Inequality (3.26) implies that, for any r in [1,00] and any s in ] — 2,0] and s’ > 1/2,

(327)  Nollzr s igoraimery S 1vollges + 100l Z 4100l ga/a.e exp(Cllvo]| g0 Eo).-
This proves the estimate (3.4) and thus Proposition 3.1. O
3.2. PROPAGATION OF REGULARITY BY A 2]) FLOW WITH PARAMETER. Now let us esti-

mate the norm of the function w® defined as the solution of (Tj3) defined page 874.
This is described in the following proposition.

Prorosition 3.5. — Let vy and v be as in Proposition 3.1. For any non negative real
number B, let us consider w3 the solution of

(T) Ow® +v- V™ — Apw® — B205w* =0 and w‘gtzo = wp.
Then w® satisfies the following estimates where all the constants are independent of 3:
(3.28) l?lo S ] 0 exp(Zi (1ol 0)),
and for any s in [—2 + u,0] and any s’ > 1/2, we have

(3.29) [w?ll g7 S (N5l e + w50 Too ([lv0]

s.)) exp(Zi([lvolz0))-

Proof. — This is a question of propagating anisotropic regularity by a transport-
diffusion equation. This propagation is described by the following lemma, which will
easily lead to Proposition 3.5.

Lemwa 3.6. Let us consider (s,s") a pair of real numbers, and 2 a bilinear operator
which maps continuously B* x B5+15" into B5". A constant C exists such that for

any two-component vector field v in L*(RT; B), any f in L' (R‘F;c%’s’s/), any ag in

B and for any non negative f, if Ag def Ay + 202 and a is the solution of

O0wa — Aga+ 2(v,a) = f and ap—o = ao,

then a satisfies
Vre[L oo, [lallzr g, ety

< Claollgns + 11 asssmry) ex0(C [ o)1 at).
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Proof. This is a Gronwall type estimate. However the fact that the third index of
the Besov spaces is one, induces some technical difficulties which lead us to work first
on subintervals I of RT on which |[v||z2(r,41) is small.

Let us first consider any subinterval I = [ry, 1] of RT. The Duhamel formula and
the smoothing effect of the heat flow described in Lemma A.2 imply that

k
IARAYa®)]12 < e | AR A a(mo)|| 12

+ C/t e—cZ“(t—t’)
To

After multiplication by 2Fs+7 s and using Young’s inequality in the time integral, we
deduce that

ARAY(2(0(t)), a(t))) + F(t)] 2 dt'-

28535 (|| ARAY Q| oo 1.2y + 22K | ARAY A p1(,02)) < C285F95 | AR AY a (7)) 2
t
* C/ di; () (o) Lo @) oo + [ FE) ] ggoor)
T0

where for any ¢, dy. ;(t) is an element of the sphere of ¢! (Z?). By summation over (k, j)
and using the Cauchy-Schwarz inequality, we infer that

(3.30) Ha”’L‘oo(];,@s,s') + ||a“L1(I;%5+2vS') < Clla(ro)|l g + CHf”Ll(I;(@SvS')
+ Clvllze ey llall L2 (1,5041.47-

Let us define the increasing sequence (T, )o<m<ar+1 by induction such that Ty = 0,
Thrr41 = oo and

Tm+1 oo
vm< M, [T O de =0 and [ ool di < o
Trn T

for some given ¢y which will be chosen later on. Obviously, we have

oo T
(3.31) / o(t)|% dt >/ o(t)|%: dt = Meo.
0 0

Thus the number M of T s such that T,, is finite is less than cngvH%g(RJ,_%l).
Applying Estimate (3.30) to the interval [T5,,, Tyt1], we get

”aHLoo([Tm»Terl]%@s’sl) + ”aHLl([Tm,Tnl+1];@S+2,s’) < Ha”L2([Tm7Tm+1];QS+1,S/)
+ C([la(Tm) |l ggo.sr + CHf||L1([Tm,Tm+1];%SvS'))
if ¢g is chosen such that C'\/co < 1. As

1/2
a
Loc([TnL7TnL+1];ng,s/) ” ||L1([Tm7Tm+1];ng+2,s/)7

N
E3

ol L2z, 7 18417

we infer that

(3.32) Ha||L°°([Tm,Tm+1};335’S/) + ”a“Ll([Tm,Tm+1];%5+2~5')
< 20(|a(T)ll g+ 17l 2, )
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Now let us us prove by induction that

lall Lo 0.7+ ) < (20)™ (Naoll oo + 11 p1 o, 15], 057 ) -

Using (3.32) and the induction hypothesis we get

lall oo (2,0, s s 1s0:51) < 2C (lall oo 0,73, 355:50) + 1 L2 (2, Ty 1s25051))
< 20)™  (|laoll g + 11l pr(o,1 27,8547 )

provided that 2C > 1. This proves in view of (3.31) that

Jall ey < CQlaollgr + 1 pagersnery) exo(C [ ot6) 13 ).

We deduce from (3.32) that

lall prpr, maerzey < Clllaollgesr + 1F 1 i s, z007) eXP(C/O [IG dt)

+ C||f||Ll([deTm’_'_l];E@s,s,)-

Once noticed that zeC® < eClIZ, the result comes by summation over m and the fact
that the total number of m’s is less than or equal to Cgl||v\\%2(R+;g1)~ Lemma 3.6 is
proved. O

We apply Lemma 3.6 with 2(v, a) = divy(av), f = 0, a = w?, and (s,s") = (0,1/2).
Indeed since %' is an algebra we have

[2(v,a)l[z0 S [lavl|zzr < [lallzr [[0] 1

So Lemma 3.6 gives

oo
o 5 gl exp(C [ (Ol ).

Thanks to Estimate (3.3) of Proposition 3.1 we deduce (3.28).
Now for s belonging to [—2 + u, 0], we apply Lemma 3.6 with a = w3, 2(v,a) =
divy(TYa), and f = divy (T, v), where with the notations of Definition 1.6

v def v v v def v v
T a = g Si_jvAia, RY(a,v) = E AY_jaAfv
(3.33) i

J
—1<e<1

TV v def T v+ RY(a,v).
Lemma A.5 implies that for any s in [-2 + u,0] and any s’ > 1/2,
1Ty w? | gerer S Nl0lln [P | e o
We infer from Lemma 3.6 that, for any » in [1, 00],
(3.34) HwBHZr(RJr;@erz/r,s’)

S (lwdll e + 11 diva (T3 0)l| g o1y ) exP (T ([[vollao ).
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But we have, using laws of anisotropic paraproduct given in Lemma A.5,
[ divi(Tasv)l 1 ey S <IIT, w1 (R s
S ||w ”LQ(RJr;%l)HUHL?(R*';QBS*'LS')'

Applying (3.28) and (3.4) gives (3.29). Proposition 3.5 is proved. |

As w" is defined by w® = —VhAglé)g,w?’, we deduce from Proposition 3.5,
Lemma A.1 and the scaling property (1.14), the following corollary.

Cororrary 3.7. — For any s in [—-2+ p,0] and any s’ > 1/2,
[0 gyeerer—1 S (gl e + w0 o (Ilvolls,.)) exp(Zi(llvo]lz0))-

3.3. ConcLusion oF THE PROOF OF TureorEM 4. — Using the definition of the approx-
imate solution ®*PP given in (3.1), we infer from Propositions 3.1 and 3.5 and Corol-
lary 3.7 that

(3.35) 12°PP || 2 g1y < Ta((vo, w)ll o) + BT ([l (vo, wp)ls,,)-

Moreover, the error term v satisfies the following modified Navier-Stokes equation,

with zero initial data:

4
Op) + div(y @ P + SPP @ ) + 1) @ DPP) — Ay = —Vgz + »_ Ef
(=1
with B} < (v, o>1ﬁ + /3( [931]5).
(3.36) g2 w30 vh AL L divy, & ,0 ,
() + (it 0001
3 def h h
w’ - Vi( +v-Vi(w",0
B[(w" - Vv, w?) (")),
Ej g [( b i (W, 0) 4+ w3ds (w 0))}(3.
If we prove that
(3.37) Hz B, < BT ( (w0 wd)lls,),
then according to the fact v;—o = 0, Proposition 1.14 implies that 1 exists globally
and satisfies
(3-38) [0l L2 @+:t) S B Too ([I(vo, wi)ls,,)-

This in turn implies that ®, generates a global regular solution ®5 in L*(R*; %)
which satisfies

(3.39) 1@l 2+;1) < T2 (1I(vo,w5) [l 0) + B Toc (Il (v0, wd)s,,)-

Once this bound in L?(R*; %) is obtained, the bound in «7° follows by heat flow
estimates, and in &% by propagation of regularity for the Navier-Stokes equations
as stated in Proposition 1.15.
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So all we need to do is to prove Inequality (3.37). Let us first estimate the
term 0%[(v,0)]s. This requires the use of some L?(R™; %**") norms. We get
Ha?%[v]ﬁﬂp(w;g@o‘—l/z) S ||[U}B||Z2(R+;@o,3/2)-
Using the vertical scaling property (1.14) of the space AB%3/2 this gives
||a§[v]ﬂ||Z2(R+;(@0,—1/2) S8 ||UHZ2(R+;(@0,3/2)-
Using Proposition 3.1, we get
(3.40) ||6§[U]6||Z2(R+;%0,—1/2) <8 900(”“0”5“)-

Now let us study the pressure term. By applying the horizontal divergence to the
equation satisfied by v we get, thanks to the fact that div, v =0,

2
Osp = =030, Y 00 (v'0™).

£,m=1

Using the fact that A, 19,8, is a zero-order horizontal Fourier multiplier (since ¢
and m belong to {1,2}), we infer that

“531’]6“L1(R+;%°) = 193pll 1+ 0)

S ||’U63U||L1(R+;K@0).
Laws of product in anisotropic Besov as described by Proposition A.4 imply that

[o(t)dsv(t)[| 0 < [lv(E)]| 2 [|O50(t) || 0,
which gives rise to
(3.41) 1103818| 11 (g 90y S 101 L2 @t;0) 190501 L2 (R0
S vl @+ i) 10l L2 (vt s0.8/2) -

Combining (3.40) and (3.41), we get by Proposition 3.1 and Lemma A.3
(3.42) 1E5]l 70 < B T (Ilvolls,)-

Now we estimate Eg Applying again the laws of product in anisotropic Besov spaces
(see Proposition A.4) together with the action of vertical derivatives, we obtain

[w? ()93 (v, w®) (1) || 20 S |w () ]| 2 1|05 (v, ™) () | 0
S 1w’ ()l [ (v, w?) (@) || go.3/2.-
Thus we infer that
(3.43) ||w383(v, ’LU3) ||L1(R+;@0) S ||1U3||L2(R+;@1) ||(U, w3) HLQ(Rﬂ@O@"/?)-

For the other term of Eg, using the fact that VhAg L divy, is an order 0 horizontal
Fourier multiplier and the Leibniz formula, we infer from Lemma A.1 that

IVRALT dive 95 (vw?) (#) |0 < (105 (vw?) (1)) 0
S o050 (1)l z0 + [|lw? ()50(2) | z0-
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In view of laws of product in anisotropic Besov spaces and the action of vertical
derivatives, this gives rise to

IVEAL dive 93 (vw®) () [0 S 0(t)l]n [[w® ()] go.5/2 + [0® () [l [0(2) | 0,572
Together with (3.43), this leads to

IE3 || L2 50y S Bllw? || L2 s | (0, W) | L2 et 0.8/2)

+ Bl | 2@+, m03/2) V]| L2 @+ 1)
hence by Propositions 3.1 and 3.5 along with Lemma A.3
(3.44) IE3] 20 < B Too (Il(v0, wi)ls,,)-

Let us estimate Eg Again by laws of product and the action of horizontal derivatives,
we obtain

[w™ - Va0, w) |1 im0y S 1w |25 [V (0, w?) || L2 e+ 80
S |\wh|\L2(R+;3zl)||(Uaw3)||L2(R+;@1)~
Corollary 3.7 and Propositions 3.1 and 3.5 imply that
(3.45) ||wh . Vh(’U, w3) ||L1(R+;<@0) < yoo (H (’Uo, wg) ||S“)-
Following the same lines we get
[o - V' (w", 0)]| 1 me+50) < Too ([ (v0, w)|

Together with (3.45), this gives thanks to Lemma A.3
(3.46) 1Z5 20 S NES L2209 < B Too ([l (vo, wp)ls,,)-

Now let us estimate Eé. Laws of product and the action of derivations give

Su)'

(3.47) [wh - VPl || 1@t z0y S |2 @e i) [ V0" (8) ]| 22 Rt 09
S ||wh||%2(R+;@1)‘
In the same way, we get
lw? () Bsw" || L1 (r+0) S N[ ]| L2 @2y0) |10 | L2 e+ 1./2),-
Together with (3.47), this gives thanks to Corollary 3.7 and Propositions 3.5
IE5 ]I 1 =+ 5200y < B2 Too ([ (v0, wi)lls,.)-
Lemma A.3 implies that
15l 70 < 8% Too (Il (v0, wp)5,,)-
Together with Inequalities (3.42), (3.44) and (3.46), this gives
1Es )50 < B oo (Il(vo, w))|ls,,)-
Thanks to Proposition 1.14 we obtain that the solution ®4 of (NS) with initial data
By = [(vo — BV A, Bz, wi)] 4
is global and belongs to L?(RT; %'). The whole Theorem 4 follows from the propa-
gation result Proposition 1.15 proved in the appendix. |
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4. INTERACTION BETWEEN PROFILES OF SCALE |: PROOF OF THEOREM D

The goal of this section is to prove Theorem 5. In the next paragraph we define an
approximate solution, using results proved in the previous section, and Paragraph 4.2
is devoted to the proof of useful localization results on the different parts entering
the definition of the approximate solution. Paragraph 4.3 concludes the proof of the
theorem, using those localization results.

4.1. Tue approxiMATE soLuTioN. — Consider the divergence free vector field

0 def 0,00 0, 0,00,h 0,00,3
(DOJL,%L = Ug,a T [(UO n,a, L +h wO n,a,L> wO,n,a,L)] ho

0loc,h  0,loc,3
+ [(”o,n,a,L +hy R W0 m L wo,rﬁZ,L)] RO

with the notation of Proposition 1.12. We want to prove that for h2 small enough, de-

0,00,3 0, loc 0,loc,3

pending only on ug and on H ”()na L W0 non L as well as H V0’ n .0 W0 n.o L)Hsu’

s,
there is a unique, global smooth solution to (NS)*With data q)o,n,a,L'

Let us start by solving globally (NS) with the data ug o. By using the global strong
stability of (NS) in %° (see [4, Ths. 4,5 & Cor. 3]) and the convergence result (1.16))
we deduce that for o small enough there is a unique, global solution to (NS) associated
with g o, which we shall denote by wu, and which lies in L?(R*; %%).

Next let us define

0,00 def [( 0,00 hO 0,00,h 0,00,3 )}h

0,n,a,L = UO n,o, L + wO n,o,L? wO,n,a,L

Thanks to Theorem 4, we know that for h% smaller than &; (|| vO noa, L SZO;’L HS )

I
there is a unique global smooth solution <I> L associated with <I>0 n.a,1» Which belongs
to %, and using the notation and resultb of Section 3, in particular (3.1) and (3.38),
we can write

0,00 def £0,00,app
(I’naL_(DnaL +wnaL with

0, def 10, 0,00,h  0,00,3
(4.1) it = [ogonn + hw nZ"L,wni’fﬂhg and
0,00,3
”wna LHL2 R+;51) < hnyoo(H UOna LW O’?Loa L HSH)’
where vga ; solves (NS2D),, with data UOna ; and wg ZO ,f’ solves the transport-

diffusion equation (Thg ) defined page 874 with data wSZfLO Oi ;.- Finally we recall that

0 h 0,00,3
,00,h _vh 18 w o0,

wn,a,L - n,o,L*

Similarly defining

0,loc,h 0,loc,3
UO n,o, L + hn 0,n,« L’wO,n,a,L)}hQL’
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then for hY smaller than &1 (||( 08 if‘; s w8:i22?L)||Su) there is a unique global smooth

solution ég’lch associated with fbg Lf”; 1» which belongs to <%, and

0,loc def 0,loc,app 0,loc
o o + v, 0. With

n,o, L n,o, L
0,loc,app def 0,loc 0,,0,loc,h 0,loc,3
(42) q)no/L [ no/L +hn naL > Yn,a, L ]h and

el @) S 7o Too (| Wone, s womant)ls,):

where v2'°¢ solves (NS2D),, with data vgjif,;L and w’'°%% solves (Tho ) with

n,a,L n,a,L
data wo loc 3 . Finally we recall that w" lszh =-—VhA, 1831112’71223.
Now we look for the solution under the form
def 0,00 0,1
(bnaL:e O‘—"_q)noz[/—i—q) OCL+wnaL
In the next section we shall prove localization properties on (I>0 o oL and (ID?L IOCL’CL, namely
the fact that CIDO PP escapes to infinity in the space varlable while ®% IOCLap P re-
mains localized (approx1mately), and we shall also prove that @g lchapp remains small

near x3 = 0. Let us recall that as claimed by (1.20), (1.21) and (1.22), those proper-
ties are true for their respective initial data. Those localization properties will enable
us to prove, in Paragraph 4.3, that the function u, + @2 o, L+ <I>0 loc oL 18 itself an

approximate solution to (NS) for the Cauchy data ug o + (I)O’n aL T @8’5";,L.

4.2. LLOCALIZATION PROPERTIES OF THE APPROXIMATE SOLUTION. — Omne important step
in the proof of Theorem 5 consists in the following result.

Prorostrion 4.1. — Under the assumptions of Proposition 3.1, the control of the value
of v at the point x5 = 0 is given by

(4'3) Vre [1700], ”v('v0)||ZT(R+;B§{1T(R2)) 5 ”UO(',O)”BS,I(H@) + HU(',O)Hiz(H@)'
Moreover we have for all n in ]0,1[ and v in {0,1},

(4.4) 10y = Ong)vllare < [|(y = Ong)vol| o ex0 Zi([[vollz0) + 1T ([lv0lls,),
with Oy, , is the truncation function defined by (1.15).

Proof. — In this proof we omit for simplicity the dependence of the function spaces
on the space R2. Let us remark that the proof of [12, Lem. 1.1] claims that for all x5
in R,
(45) (AR(u(t, -, z3) - V(¢ -, mg))|A},;v(t, T3))

S dio(t,23) [ Vo(t, - 23)|| 72 [ ARo(t, - 23)]| 2,

where (dj(t, 23))rez is a generic element of the sphere of ¢1(Z). A L? energy estimate
in R? gives therefore, taking 23 = 0,

5 ALt 0)[3 + e | Afu(t, - 0) s < k(DI e(t, ,0) - | Aku(r, 0z,
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where (dj(t))rez belongs to the sphere of £1(Z). After division by ||Allv(¢,-,0)||.2 and
time integration, we get

(4.6) AL Ol ez + 22 IARS(, 0) [ sz
< | Akvo(-0)]| = + C / A ()| V™0 2, - 0)[12. dr.
0

By summation over k and in view of (3.12), we obtain Inequality (4.3) of Proposi-
tion 4.1.
In order to prove Inequality (4.4), let us define v, , Lof (7 — bh,)v and write that

3
vy — Aty + divy (v @ vy ) = Ey(v) = Z Efi(v) with
i=1

def
(4.7) Efli(v) = —2(V"0)uy V0 — 0 (An0)nqo,
Eﬁ(v) d=ef77v : (Vhe)h,nv and
ES(U) dz&f —(7 - eh’n)thﬁl Z aéam (’Ue’Um)_
1<l,m<2

Let us prove that

(4.8) [ En ()l L2 (r+520) S 11 Too (w0l

Using Inequality (3.27) applied with » = 1 and s = —1 (resp. r = 2 and s = —1/2)
this will follow from

S,)-

(4.9) 1By ()]l Li@riz0) S vl @y + 10122 @ s z1/2)) -
Proposition A.6 and the scaling properties of homogeneous Besov spaces give

(V0,0 Vo)l 0 S (V" Ol By, @2) IV 0(8)] 0
SIVHllsy , @) llv(t)

B

Following the same lines, we get

[(AnO)nnv(®)llz0 S [[(And)n,y

1
S ;HAhGHBg)l(H@)||U(t)||.9317

| BY | (r2)l[0(t) || 81

hence
(4.10) ”E%(U)HLl(]RJr;%O) S 77Hv||L1(R+;35’1)-
Let us study the term E7(v). Proposition A.6 implies

[o(t) - (Vo) 0 S 1(V"0)n,p

|53, r2) SUP [ (&)0™ (£) ] 0

S IVl 22y o) 15512

Thus we get

(4.11) 15 ()| 1 +s0) S nllvll72 s 012
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Let us study the term Ef’](v) which is related to the pressure. For that purpose, we

shall make use of the horizontal paraproduct decomposition:

av = Tla+T v+ R"(a,b) with TMb dEfZSk 1aARb and R"(a,b) defZAh Al
2 k

This allows us to write

3
Ej(v) =) E¥(v) with
(=1
E3'(v) €' T8, Oy, with Vip=VIATL S 9,0, (00™),
(4.12) 1<6,m<2
E2’2(U) e Z [T?,th],VhAglaz@m]vevm and
1<l,m<2
EX)E N VAT 00 TY b
1<e,m<2

Laws of (para)product, as given in (A.10), and scaling properties of Besov spaces give
HTghp(t)ehmH%O S ||Vhp(t)||%*1 Heh,n||B§11(R2)

Snsup o0 ()l 0] 5z, 2)

S o152 19113 , @2)-
Along the same lines we get
th 18@8 T, é(t)vm(f)ah nH@“ N ||T é(f)vm(t)oh n”@l
S of@)o™ @)z 160,01 82, e2)

S llo@)Z 210113, (e2)-

This gives
(4.13) 1B (0) + B2 0) 13 s S 1 1022 s s
Now let us estimate E3’2(v). By definition, we have

(T2, VAL 000,] Z@% with

B (0) L[Sy (7 — B), AEVRA10,0,] AR (0™,

where Eh def @(27%¢,) with ¢ is a smooth compactly supported (in R?~ {0}) function
which has value 1 near B(0,270) + %, where % is an adequate annulus. Then by
commutator estimates (see for instance [2, Lem. 2.97])

1A S ()2 S [V Ohyllzee [ARAT (v (£)0™ ()] 2
As ||Vby,yl|Lee = 1||VO| L, by characterization of anisotropic Besov spaces and laws
of product, we get
IES2(0)ll g1 s s9) S 01 s
Together with estimates (4.10)—(4.13), this gives (4.9), hence (4.8).
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Applying Lemma 3.6 with s =0, s’ = 1/2, a = vy ,, Z2(v,a) = diviy(v® a), f =
E,(v) and § = 0 allows to conclude the proof of Proposition 4.1. O

A similar result holds for the solution w?® of
(Ts) O +v-VPw? — Ayw® — g202w® =0 and w?t:o = wy,

where [ is any non negative real number. In the following statement, all the constants
are independent of 3.

Prorosition 4.2. Let v and ws be as in Proposition 3.5. The control of the value
of w? at the point x3 = 0 is given by the following inequality. For any r in [2, 00|,

1—2u/4(1—
Pty < T (100 wd) ) (Ilf - 0) 15 3 ™ + ).
Moreover, with the notations of Theorem 4, we have for alln in]0,1[ and v in {0,1},

(4.15) (v = )’ llro < [[(7 = On)wi || o exp T ([lvoll0) + 0T ([ (v, w5 5,,)-

(4.14)  [Jw’(-,0)]

Proof. — The proof is very similar to the proof of Proposition 4.1. The main difference
lies in the proof of (4.14) due to the presence of the extra term 3293w?, so let us detail
that estimate: we shall first prove an estimate for w3 (¢, 2j,,0) in L™ (R*; B;)/12+2/T (R%)),
and then we shall interpolate that estimate with the known a priori estimate (3.29)
of w3 in L"(RT; (%)2*,%/%2# (R?)) to find the result.

Let us be more precise, and first obtain a bound for w?(t,zy,0) in the space
L7(R*; Byt ™7 (R?)). Defining

@3 (t, ) ol (t,an,0),  @o(en) L wden,0) and  B(t,an) ot 2, 0),

we have
(4.16) Ow® + - V'a® — Apw® = B7(05w”)(-,0) and  wi,_, = @
Similarly to (4.5) we write (dropping for simplicity the dependence of the spaces
on R?)

(AR@ V)| ARE?) o S di(t) 272V 12 |V | AR 2,
where (dj(t))rez belongs to the sphere of ¢*(Z). Taking the L? scalar product of Ab
of Equation (4.16) with Al@? implies that

1 d - ~ ~ ~ _
SP2LALT 2 + 22 AL R S d() VTN 22 IV Ty | AL T 1

+ B2 AL @B (- 0) 12 | AT 12,
so as in (4.6) we find

Qk/2HA2w3||LOO(R+;L2) + 025k/2HA2'&53HL1(R+;L2) < 2k/2||Ak@gHL2

+c/ d () [V D) | 22 [T (1) dt+052/ 9412 AL (320 (1, -, )| . .
0 2,1 0
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After summation we find that

||w ||Loo ]R+ B1/2 + Hw ||L1(R+ BS/2
S} ” 0”31/2 + ||w3||L2 (R+; 193’/2)||V v||L2 R+;L2) + B2H(a )(.70)”L1(]R+;B;)/12)'

This is exactly an inequality of the type (3.30), up to a harmless localization in time,
so by the same arguments we obtain the same conclusion as in Lemma 3.6, namely
the fact that for all r € [1, o],

1T N rasarny S (188 gy + G210 (Ol o o 172, €50 Cllo - 0) 3.
Since we have
||(8§w3)(, O)HLl(RJr;B;,/f(]R?)) 5 ngnLl(R*;%l/?ﬁ/?)
we infer from the a priori bounds (3.34) obtained on w? in the previous section that
||(a§w3)(7 0)|‘L1(R+;B;{12(R2)) S yoo(”(voa w%) HS#)v
so we obtain that for any r in [1, oo],
(A17) (02 0) o oo ey < (1B, 0) gy gy + %) Tac oo, s, )
Recalling that w] belongs to the space S, introduced in Definition 1.10, we find that

wy(+,0) € N B3.(R?).
s€[—2+p,1—p]

Since 0 < p < 1/2, we get by interpolation and Sobolev embeddings that

1-2p/2(1— 1/2(1—
0B, 00l 2oy < e, 0) g ey ™ | 27,

which implies that (4.17) can be written under the form
1-2p/2(1—p
Hw ( )”LT(R+ By/PTT(R2)) N (||w0( )|| l / ( #) + 52> (||(anwo)||s )-
Now interpolating with the a priori bound obtained in Proposition 3.5, we find
||w3(.70)||ET(R+;B;’1/2+2/T(R2)) 5 ngllfr(RﬂggflﬂJrZ/r)
5 yOO(”(UO?wg)HSW
so we obtain finally
1—2p/4(1—
||w3('a0)‘ Z7'(R+;B§{1"(R2)) < 900(||(U07wg)||5u)<“w8( )”BO AEH/Q?( “) + 5)

This ends the proof of (4.14).
We shall not detail the proof of (4.15) as it is very similar to the proof of (4.4).
Proposition 4.2 is therefore proved. |

Propositions 4.1 and 4.2 imply easily the following result, using the special form
of <I>?L o and 3% IOCL recalled in (4.1) and (4.2), and thanks to (1.20), (1.21) and (1.22).
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CoroLLARY 4.3. The vector fields @2’}2; and @2’2L satisfy the following: @2’}21
vanishes at x3 = 0, in the sense that for all r in [2, 0],
. . . 0,loc . ~ _
i Yot sup @,y (4 0z g+ 52/ ey = 0

and there is a constant C(a, L) such that for all n in ]0,1],

. 0,1 0,

timsup (1~ 6, )02, [yo -+ [0, 8055 L) < Ol L.

n—oo
4.3. ConcLusion oF THE PROOF oF Throrem 5. — Recall that we look for the solution

of (NS) under the form

0 0,00 0,loc
(I)n,a,L =Uq + @ + (‘Pn,a,L + ¢n,a,La

n,o, L

0,loc
n,a,L
and ®%°>° ;, satisfy Corollary 4.3, and furthermore thanks to the Lebesgue theorem,

nVQ’

with the notation introduced in Section 4.1. In particular the two vector fields ®

(418) %E}Tb”(l 7977)UQHL2(R+;L@1) = O

Given a small number € > 0, to be chosen later, we choose L, a and n = n(a, L, ugp)
so that thanks to Corollary 4.3 and (4.18), for all r in [2, o0], and for n large enough,

0,loc 0,loc
(4'19) H(PH,OL,L("0)||L7'(R+;B§fl"(R2)) + H(l - eh,n)q)n,a,LHﬂio
+ (X = Opuall 2@z + 100, P oo < e
In the following we denote for simplicity

(@2, @01, ) (B, BV Ynar) and B Ly, 4 OO 4 BRI,
so the vector field 1. satisfies the following equation, with zero initial data:
aﬂ/}a - Aws + diV(ibe ® ’@ljs + (I)?pp ® ws + "/}6 ® (I)?pp) = _qu + B,
with E.=E!+ E? and
(4.20) B < iy (@2700 ® (D1 4 1) + (V1 4 1) @ BV
+ (I)O,loc ® (1 _ on)ua + (1 _ en)ua ® (I)O,loc>7
E? 4 v (@271"0 ® Opug + Opta ® @2’1“).

If we prove that
(4.21) lim || E;||#0 = 0,
e—0
then Proposition 1.14 implies that 1. belongs to L?(R*; '), with
21_1% ||'(/J€||L2(R+;§€1) = 07

and we conclude the proof of Theorem 5 exactly as in the proof of Theorem 4, by
resorting to Proposition 1.15.
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So let us prove (4.21). The term E! is the easiest, thanks to the separation of the
spatial supports. Let us first write E! = Eéh + E‘;3 with

EL, = divy, (027 + ua) © 0200 + 02 @ (9210 + o)

+ (1= 60,))uq @ d100h 4 p0loc & (1 — Qn)uh> and

(03

BLy 0, (807 4 ua) 9000 1 8052(a01009 1 )

(e

r(1- en)uaq)o,loc,iﬂ 4 Ooc(] Hn)u?’).
Next let us write, for any two functions a and b,
ab = (0n,na)b+ a((1 — Op,)b).
Denoting
u® def (1—6,)uq
and using by now as usual the action of derivatives and the fact that %' is an algebra,
we infer that
IEL |l e+ 0y + ||E;,3||L1(R+;B;;1—1/2)
< 100,02l L2 (1281 |21 + tal| L2 (121
{11 = O0,) (21 + o) || L2 (. 0) | B | 2 (2 )
+ \\‘1’2’10C||L2(R+;@1)||U§°||L2(R+;g&1)-

Thanks to (4.19) and to the a priori bounds on ®%>°, ®%°¢ and u,, we get directly
in view of the examples page 855 that

. 1 _
lim || B2 50 = 0.

Next let us turn to E2. We shall follow the method of [16], and in particular the
following lemma will be very useful.

Lemvia 4.4. — There is a constant C' such that for all functions a and b, we have
labllzr < Cllallg 1b(-,0)ll 5y , r2) + C'llsall s [|Obl| -

We postpone the proof of that lemma. Let us apply it to estimate E2. We write,

loc def

as in the case of E! and defining u!°® = 6,u,,

IE2| 7o S 1l 2 0) |92, 0) | L2ty , m2))
+ ”xBUlgOCHL?(R‘*';gEl)||83(I)g7loc||L2(R+;.981)~
Thanks to (4.19) as well as Inequality (1.26) of Theorem 4, we obtain
. 2 .
tim |21 70 = 0.

This proves (4.21), hence Theorem 5. O
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Proofof Lemma 4.4. — This is essentially [16, Lem. 3.3], we recall the proof for the
convenience of the reader. Let us decompose b in the following way:

T3
(422) b, ) = bla,0) + [ Oublan, ) i
0
Laws of product give directly on the one hand

la(bizs=0)llzzr S llallz 1bjzs=0ll 5y, m2)-

On the other hand, observe that

a(~,m3)/ 03b(-,y3) dys
0

x3
S oty ooy [ 10800 )l o o
B; 1 (R?) 0 '
< Clas|lla(, z3)l 5y, ®2)l105bll Lee (81, (m2))-

The result follows. |

/”\l’l’l‘l!\l)lX. SOME RESULTS IN ANISOTROPIC BESO\/ SPACES

A.1. Anisorroric BEsov spacEs. In this section we first recall some basic facts
about (anisotropic) Littlewood-Paley theory and then we prove some basic properties
of anisotropic Besov spaces introduced in Definition 1.6, in particular laws of product
which have used all along this text.

First let us recall the following estimates which are the generalization of the classical
Bernstein’s inequalities in the context of anisotropic Littlewood-Paley theory (see
[2, Lem. 6.10]) describing the action of horizontal and vertical derivatives on frequency
localized distributions:

Lemma A1 — Let (p1,p2,7) be in [1,00]® such that py is less than or equal to p.
Let m be a real number and oy, (resp. oy) a smooth homogeneous function of degree m

on R? (resp. R). Then we have
||Uh(Dh)A2f||Lﬁ2Lg < 2k(m+2/p1_2/p2)||A2f||L§1Lg and

lov(Ds)AJ f]

(m+1/prl/pz)HA}(f‘

e < .
LTLY? < 2 LyLyt:

Now let us recall the action of the heat flow on frequency localized distributions in
an anisotropic context.

Lemva A2, — For any p in [1,00], we have
e A ARAY flle < e+ | ARAY £]|
e ARAY flle S e |ARAY 1o and
15 ARAY flle S e | ARAY Fl 1o

The proof of this lemma consists in a straightforward (omitted) modification of the
proof of [2, Lem. 2.3].

The following result was mentioned in the introduction of this article (see page 855).
We refer to (3.2) and to Definition 1.13 for notations.
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Lemya A3, Let p > 2 be given. The spaces EQ(RjL;%;*LS/), EQ(RJF;ﬂ;’S'*l)
are F5% spaces, as well as the spaces L*(R*; %’;75/) and L'(RT; %;“‘175/_1).

Proof. — Let f be a function in L2(R*; 251", and let us show that

I2Y IR T "

Applying Lemma A.2 gives

t
192k 2,
IARAT Lo f | o </ e CTEEI I ARAY ()|
0

~

so there is a sequence d; x(t') in the sphere of /}(Z x Z; L*(RT)) such that
¢
v —k(s— _ig - 2k 235
nM%mmmsmmwwfﬁ2“1vﬂAet@+”%Mww-

Young’s inequality in time therefore gives

HAEA}]LOJCHLZ(]R*;LP) 5 Hf”Zz(]RJr;@Z*LS’)Q_k(s_l)_js dj)/c,

where d; ;, is a generic sequence in the sphere of ¢*(Z x Z), which proves the result
in the case when f belongs to L?(R¥; 0@;*1’5'). The argument is similar in the other
cases. O

Now let us study laws of product.

Prorosirion A4, Let p be in [2,4] and let (0,0',5,0') € ]1 —4/p,—1 + 4/p]* be
such that
oo =5+ L7 >0
If s' isin |1/2 — 2/p, —1/2 4+ 2/p|, we have
(A1) labl| gz—1.0 < llall g bl oo -
If s’ is greater than 1/2, then we have
(A2) labll o1, < llallz= 16l gor.or + llall go.o [[bll 2 -

Proof. — Let us use Bony’s decomposition in the vertical variable introduced
in (3.33), namely

ab=T)b+Tya+ R'(a,b).
The first two terms are almost the same (up to the interchanging of a and b). Thus
we only estimate Tyb. This is done through the following lemma.

Levmva A5, Let us consider p € [2,4], (0,0") in |1 — 4/p,—1 + 4/p]® such that
o+ o' is positive, and (s,s') in R%. If s < —1/2+2/p, then we have

(A.3) T30l g vorrsimsrnsoain < llallagge 18] o

If s + s’ is positive, then we have

(A4) IR (a, b)"@g+a’+1—4/p.s+s’+1/272/p S HQH%’Z*S bH@g’yﬂ

JE.P — M., 2018, tome 5



ON THE STABILITY OF GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 8()()

Proof. Let us use Bony’s decomposition of Tb with respect to the horizontal
variable.
TVb =TT b+ TV a + TR (a,b) with
v d f v
VT = Z 1 Sp_jaAYARD,

TVTPa defZSjV_lA};aA;S};_lb and

TV R"(a,b) ¢ Z AR_aAYARD.
—1<£<1

Following the same lines as in the proof of Proposition 3.1 (see the lines following
decomposition (3.18)) we have for some large enough integer Ny

AYARTYT b= Y AYAR(S) 1 Sp_1aAY ALD).
13" =31<No
|k’ —k|<No
By definition of the %g’s' norms, this gives, denoting 1/p+1/p=1/2,

v, def j(s+s’ — o+o’ — v v
%’kh def 2]( +s'+1/2—2/p)+k(c+o’'+1 4/p)||AJA}k1T T;IbHLQ

~

S Y 2l e /22 )= () (oo 414 /p)
|Ij’ijlSNo
k/_k gN . s _ ’ . _ v ./S/ /0_/ v
Ox 9f (sH1/2=2/p) TR o H1=4/D) | Y, | Sh L a pp27 ¥ TR AY, AR Lo
< ' —(3'=5)(s+s'+1/2=2/p)=(k'=k) (o +0"+1-4/p)
Sl > 2
5" =3|<No

-/ ’
|k —k|<No X djr 20 (STH272/D)R (T 1=4/0) || 6v, S a7,

where, as in all that follows, (dj,x)(j r)ez2 lies on the sphere of £*(Z?). Using anisotropic

Bernstein inequalities given by Lemma A.1 and the definition of the %;* norm, we get

o7 (++1/2-2/) 4k (et 1=4/D) | gv, Gh g

< Z 9(i'=3")(s+1/2=2/p)+(K —k"") (0 +1-4/p)

~Y
i<l _o "
/‘1//2.;6/—2 X 27 (S+1/2 2/p)+k (U+1 4/p)||Av//Ak.Na||LP
~
-1 ’ // -1 1"
< E : 93" =5")(s+1/2=2/p)+(K' —k" ) (0 +1-4/p) 9" s+k U||AV,,Ak,,a||Lp
§<i' =2
k''<k -2
< Jlall e Z 2(]"7j”)(er1/272/p)+(k/7k7//)(U+1*4/P)dj,,k,,.
P
J<s' =2
k' <k -2

Ass< —1/2+2/pand o0 < =1+ 4/p, we get

9i' (s+1/2=2/p)+k (a+1—4/p)||Sv,_15]1€1_1a||ﬁ < ||a||e@g~5-
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Young’s inequality on series leads to
(A.5) HTVT;’bH%gM/H snororsasza S lallgge 1Bl gor.or-

Following exactly the same lines, we can prove

(A.6) |\vagla\|@g+a’+1—4/p,s+s’+1/2 20 S lall g nggU o

The estimate of TVR"(a,b) is a little bit different. Let us write that
AYARTY R™(a, b) Z AYAR (S AR _aAY, ARD).
71<e<1
Arguing as in the proof of Proposition 3.1 we have for some large enough integer Ny
AYARTYRMa,b) = > > AJAR(SY_ AL _,aAyARD).

|§'—7F]<No —1<€<1
k'>k—Ny

Anisotropic Bernstein inequalities given by Lemma A.l imply that

AT AR (S5 AR alS ALD) || o S 2FEPVD ST, A0S AR oz

< 22k(2/p=1/2) ||S;Y'—1A113/—ea||LE(L?) AT ALb

|1
Thus we infer that

QR(o-+0'F1=4/p) i (45 +1/222/2) | AY ABT™ BB (g, 1) | 1.

S Z Z 9— (k' —k)(o+0")—(i-3")(s+s'+1/2-2/p)

7' —§I<Nog—1<£<1
K >k— N

x 97 (s41/2=2/p)tk "||S;-’/_1A2,_ea||L£(L§)2k AT AT, AR Lo
Using again anisotropic Bernstein inequalities and by definition of the %7° norm,
we get

o HI/222D RN g8 A all iz

S D 2UTINERATEN R AT, AL _allre
J'<i' =2
< |lal| gz Z 2(j/—j”)(s+1/2—2/p)dj,, -
~Y P k)
<=2
As s is less than or equal to —1/2 + 2/p, we get
-/ _ k/ h
27 (s41/2-2/p)Hk e ||S;”71Aku£a||L§j(L§) < ||aH=%;>S'

By definition of the ,@Z/’S' norm, this gives
2k(a+g’+174/17)+j(s+s'+1/272/17)||A;{A2TVRh(a’ b)||r2 < ||a||@;,s HbHQZI’S/

xS Y o WeRere )G e 22 0 g

7' —3|<No—1<L<1
k'>k—Ng
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As o + o’ is positive, we get that

QH e HL A/ 1220 | AY ARTY R (0, 1) 12 S e

g bl g
P By

Together with (A.5) and (A.6) this concludes the proof of Inequality (A.3).
In order to prove Inequality (A.4), let us use again the horizontal Bony decompo-
sition. Defining

1
X Xhy def
A7 (resp. Al = Z A7_, (resp. A )
=1
let us write that

Rb= RYT" + R'T{"a + R'R"(a,b) with
RTEb & S TAYSE [aAYARD and

7,k
RR"(a,b) ' ST AYAL aAYALD.
7.k

We have for a large enough integer Np,
AYARRTIb = > AYAR(AYSE aAYALD).
§'2j—No
|k'—k|<No
Using anisotropic Bernstein inequalities, this gives by definition of the %} s’ norm,

(@z\’/l;h(a7 b) d:ef 2j(s+s’+1/2—2/p)+k(a+o-’+l—4/p) HA;AERVT;IZJ”LQ

5 2j(s+s )+k(o+o'+1-4/p) ||A;’A2RVT5bHL§(L€/2)
S Z 9—("=3)(s+s")— (K —k)(o+o'+1-4/p)
J'>j—No
|k'—k|<No

« 2j/s+k/(0+1_4/p)H33{,52,*1a||LE(L5)2j/S/+ /‘T/HA}’,Ah/bHLP

§||b|\gggus/ Z 9= (' =) (s+s") = (k' —k)(o+0o'+1-4/p)

j;?j—No

|k"—Ek|<No - ’ - ~
. j's+k'(c+1—4/p) v ¢h _

X dj/,k'2 ||Aj/Sk/_1aHL£(L€).

Using anisotropic Bernstein inequalities and the definition of the %°* norm, we get

i sk’ - Av ¢h
9’ s+k (o +1 MmHA}SkulaHLf(Le)

(' =3")s+(K =k ) o+1-4/p) 95" s+k" (c+1-4/p)) AV, AD _
< E 2 2 1AT: Agrall e
§'-1<5 <5+
k//<k1_2
.7 1 ’ " 11 ”
< E ' 91" =i")s+(K' =k")(o+1-4/p) A 9j"s+k "||A}C/A}klua||1;p

715" <5
K<k —2
-/ -1 ’ 1"
< llall g E ' 9" =3")s+(K' =k )(0+1—4/p)dj,,k,,.
3 —1<5" <G+ 1
K<k —2
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As o is less than or equal to —1 4 4/p, we get

2 N @A | RY, S al| o S llal] g .
Since s + & is positive, Young’s inequality on series leads to
(A7) HRVT(?b|‘%g+a/+l—4/p,s+5/+l/2—2/p ,S Ha||33;,s ||b||(@g/’5/ .

By symmetry, we get

(A8) HRngla"%g+a’+1—4/1),s+s’+1/2—2/1) S Ha”‘%;,s bH%Z/’S"

The estimate of RV R"(a,b) is a little bit different. Arguing as in the proof of Propo-
sition 3.1, we obtain
ASARR'RMa,b) = Y AVAR(AVAR ,aAlARD).

J'>j—No
i >k—No

Anisotropic Bernstein inequalities given by Lemma A.1 imply that
|AYAR(AY AL aAY, ARD)|| . S 2@ FDCRLD | AY, AR aAY, ARD,, -
< 2@/ AY, AL a| o | AL AR -

Thus we infer that

k(70" +1=4/p)+5(s+5'+1/2-2/)| AYARRY B2 (a, b)| 2

S Y WP TR gl R S AR a2 A AR 1o

J'>j—No
i >k—No

By definition of the 53;/’5/ norm, this gives

QH(o+0" +1=4/p) (s H1/2-2/0)| AYARRY R (a, b) | 1.2

T oW Rt )G e,

§'>j—No
k' >k—No

S g 1o

As o0 + ¢/ and s + s’ are positive, we get that

2k(o+a'+174/p)+j(s+s’+1/272/p) ||A;’A£RVRh(CL, b)

22 S djwllallzg- bl 4o .-

Together with (A.7) and (A.8) this concludes the proof of Inequality (A.3). O

In order to conclude the proof of Proposition A.4, it is enough to apply Lemma A.5
with (o,0’) to Tb and with (¢/,7) to T} a. O

Now let us prove laws of product in the case when one of the functions does not
depend on the vertical variable 3. We have the following proposition.

Proposition A.6. — Let a be in BS,(R?) and b in B> with (s,0) in]—1,1]2 such
that s + o is positive and s' greater than or equal to 1/2. We have

(A.9) labll geso-1. S llall B, ) 116

B
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Proof. Using Bony’s decomposition in the horizontal variable gives
ab=T"b + Ta + R"(a,b).
As a does not depend on the vertical variable, we have
AYTIb =Ty AYh, AT a = TR;ba and AYR"(a,b) = R"(a, A}b).

Then, the result follows from the classical proofs of mappings of paraproduct and
remainder operators (see for instance [2, Ths. 2.47 & 2.52]). We give a short sketch of
the proof for the reader’s convenience in the case of T". Let us write

QHEHeRIATARTRb e Y 2K VIS a2 AT AR 2
|k’ —k|<No
Solgeer D 2K OISR alpedie 5.
[k’ —k|<No
Bernstein inequalities imply that
2= |Sp Lafpe Y0 2W ROk AR g

k' <k—1

S ||aHBg$1(R§) Z 2k =k1=o)q,,.
K/ <h—1

This gives, with no restriction on the parameter s and with ¢ less than or equal to 1
and s’ greater than or equal to 1/2,

(A.10) HTgl’H@sw—l,s’ S ”aHBgJ(Rﬁ)

bl .o -
For the other (horizontal) paraproduct term, let us write
P4 | AYART a1

Sy 2NeTIESE L ATl e 1228 7| Al 2
(A.11) |k’ —k|<No

K (s—1)+js’|| gh
Slallsg, @ Do 2V AT g 12y -
|k’ —k|<No

Using Lemma A.1, we get

2HEIINSE Al Y 20 TN OT IO AR AT e 1)
k' <k—1

S Y W EROmgR I AR AYD|| o
k'<k—1

By definition of the 255" norm and using the fact that s < 1, we infer that
27s 7k(173)\\52—1A}b||L§°(L3) < dj|\b||=%-9>s’-
Together with (A.11), this gives

(A.12) 1T all goso—rr < llall g, r2) 18]l oo

JE.P.— M., 2018, tome 5



904 H. Banourr, J.-Y. Cuemiv & |. GALLAGHER

Now let us study the (horizontal) remainder term. Using Lemma A.1, let us write
that

2R to =D AYAR R (a,b) | .2
< 2h(sto)tis ”A}A}}’;Rh(avb)”Lg(Li)
S Y 2R AL a2 A AL b
k/>k—No

By definition of the B, (R?) and 25" norms, we get

MU ATARRY (0,8) 2 S Nollmg o) bl ey D0 27 0P,

’ k' >k—No

Together with (A.10) and (A.12), this gives the result thanks to the fact that s + o

is positive. Proposition A.6 is proved. O

A.2. Proor or Prorosition 1.14. — The proof of Proposition 1.14 is reminiscent of
that of Lemma 3.6, and we shall be using arguments of that proof here.

Let us recall that we want to prove that if U is in L*(R*; 2)), if ug is in ) and f
in %), such that

1 o0
(A.13) Juolsy + 111y < g exp(~Co [ U1 ).
0 0 p
then the problem

Ou+diviu@u+uU+U®u) —Au=—-Vp+ f
divu=0 and wuj—g=wuo

(NSy) {
has a unique global solution in L?(R™; %) which satisfies

lullz2 s mn) S luollasg + 111155.

Let us first prove that the system (NSy) has a unique solution in L?([0,T]; %) for
some small enough T'. Let us introduce some bilinear operators which distinguish the
horizontal derivatives from the vertical one, namely for £ belonging to {1,2, 3},

(A.14) Dy (u, w)* d:efdivh(weuh) and 2, (u,w)" & 5 (whu?).

Then we define By , def L; 2y, and B, , def L2, where L, is defined in Defini-

tion 1.13. It is obvious that solving (NSy) is equivalent to solving
u=eug + Lof + Buo(u,u) + Beo(u,u) + Buo(U,w) + By o(U,u)

+ Bh,o(u, U) + Bv,o(u, U)
Following an idea introduced by G. Gui, J. Huang and P. Zhang in [27], let us define

% def ePug + Lof
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and look for the solution u under the form u = % + p. As the horizontal and
the vertical derivative are not treated exactly in the same way, let us decompose p
into p = pn + py with

def
pn = Bno(p,p) + Buo(Lo + U, p) + Buolp, £+ U) + Fi,

( )

v B, o(p, p) + Beo(Lo+ U, p) + Beolp, %o+ U) + Fy  with
( )
( U)

(

(

(A.15) y

F, = Bno(L, L) + Buno(Z,U) + Buo(U, %) and
(

F, d:ef BV 0 go,fo) + Bv,O(ZOa + BV,O U, go)

The main lemma is the following.
Levvia A.7. — For any subinterval I = [a,b] of RT, we have
HBh,a(ua w)HL”(I;%g) + ”Bh,a(uv w)llLl([;gg%mB;/IPvlﬂ/P)
+ ||Bv,a(u7w)”Loo(I;Bi)/va*l*’l/P) + ||Bv,a(u,w)||L1(I;(@%mBzz)y/f,1+1/p)
S ||U||L2(1;.93}D)||w||L2(1;.9a;,)-
Proof. — As 9311) is an algebra and using Lemma A.1, we get
def — i v
2; o (u,w)(t) = 2XIT2PIIP | AY AR Dy (u, w) (1) Lo
+ 2R/ PRI IR AYAR D, (u, w) (8) || Lo
< dikOllu(®) 3 J10(8) 1,

where as usual we have denoted by d;x(t) a sequence in the unit sphere of ¢!(Z?)
for each t. Lemma A.2 implies that, for any ¢ in [a,b], we have with the notation of
Definition 1.13

L gy w)(t) E 2R 1H2/0)20/2) L AYAR 9y (u, w) (8)]| o
+ 22R/PHICIRLR) || L AYAR D, (u, w) ()] Lo
S / (e ) ()| [0 (t) | 2 '

Convolution inequalities imply that
1. (s w) [ oo 111y + €252 Lo (W) 2 1110

S [ OOy 0y
This concludes the proof of Lemma A.7. ]

As we have by interpolation,

1/2 1/2 1/2
(A16)  allan < llallyg llalls; and  lallz < Jal /z/p,l+l/p|\a|| peases
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we infer that the bilinear maps By, and By, map L*(I;4,) x L*(I;%}) into
L2(I; %;) A classical fixed point theorem implies the local well-posedness in the
space L(I;4}) for initial data in the space %) + Bﬁ,/lp’*lﬂ/p.

Now let us extend this (unique) solution to the whole interval RT. Given € > 0, to
be chosen small enough later on, let us define T, as

def *
(A.17) T. = sup{T < T* | ||pll z2(f0.1:83) < €}-

As in the proof of Lemma 3.6, let us consider the increasing sequence (I,)o<m<m
such that Ty = 0, Th; = oo and for some given ¢y which will be chosen later on

T7n+1 oo
(A18) VYm<M—1, / U@ dt = co and / 1T ()12 dt < co.
T b Thr—1 P

Let us recall that from (3.31), we have

1 oo
(A.19) M < —/ 1U(t)]1Z1 .

Co 0 P
Let us define

def

(A.20) M Z Lol @rsm + 10l 2w 1U | L2 w458 -

Let us consider any m such that T3, < T.. Lemma A.7 implies that for any time T’
less than min{T,,+1; 7.}, we have

w(T) =

= |lpnll Lo (1 73:20) + llonll (7,00 7)22)
< Clion (Tl 29 + CHo

+ Cllpullz2r,., i) + 1140 + Ul i) lonll 2z, 122
< Clion(To)l 0 + CHo

+C (e + 1%l 2 (1., 11.88) + o) llpnll L2 (i, 71228 -

Choosing Cj large enough in (A.13), ¢y small enough in (A.18), and & small enough
in (A.17) implies that

1
(A.21) Zp(T) < Cllpn(Tin)l| a9 + C A + s lenllzem, mya).
Exactly along the same lines, we get
v def
'@m(T) = Hpv”Loc([Tm’T];gg;v—l/Q) + Hpv||L1([Tm,T];9311,’3/2)

< Cllpu (T gmsva + O + 3l 1188
We deduce that
llonll L2 (7., 11:.88) < C(lon(Ton) |l + A0)
< C(llpe ()l gr-1/2 + A5).
This gives, for any m such that T;,, < T and for all T in [Ty,; min{Ty,+1,T:}],
(A.22) P (T) + 23 (T) < Crllpe(Ton) | 172 + llpn (T | 0, + A6).

and lovll 27, 11381
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Let us observe that pj;—o = 0. Thus exactly as in the proof of Lemma 3.6, an iteration
process gives, for any m such that T, < T. and any T in [T}, min{Ty,+1,T:}],

def
ZA(T) = llpnllL=(o,r29) + llenllLr(j0,1):2)

+ ”pv||L°°([O,T];B§{f’71+l/p) + ”ph||L1([O,T];B§{f”1+1/p) < (Cl)m+1%,
By definition of 44 given in (A.20), we have in view of Definition 1.13
A0 5 (luollasg + 11g) (1012 + lluollang + 11/ 1172)-

As claimed in (A.19) the total number of intervals is less than ||U||%2(R+‘%,l). We infer
that, for any T' < T,

Z(T) < Ca(|luoll o +[1fll70) (1U| 12m+581) + [[uoll o + 11 fll.70) exp(CallU 72z an))-

Using the interpolation inequality (A.16) we infer that, for any T < T,

T
| 10t0)13 dt < ool

1 15) (1 22saany + ol + 11711 55) exp(CallU 22 armny ).

Choosing

62

Ca(lluollay + I1f1l70) (1U | L2+ ) +Iluollzg + 1 llz) exp(Call Ul 2z sa0)) < 5

ensures that fOT |p(t)]|%: dt remains less than €2, and thus there is no blow up for the
P

solution of (NSy;). This concludes the proof of Proposition 1.14. O

A.3. Proor or Prorosition 1.15. — Thanks to Proposition A.4, we observe that if u
belongs to L*(R*; 4)), then u ® u belongs to L'(R*; %"'). Lemma A.1 implies that
the operators 2y, and 2, defined in (A.14) satisfy

| Zn (u, U)HD(W;@U) + ||°QV(7-L’u)HLl(R"';g%lv—lﬂ) S HU||2L2(R+;33;)-

Using the Duhamel formula and the action of the heat flow described in Lemma A.2,
we deduce that

Vr e [1,00], [[ullpr@t;zery + Ul oy @s;zr82) S lluollzo + ||UH%2(R+;@}D),

which proves (1.37). Let us prove the second inequality of the proposition which is a
propagation type inequality. Once an appropriate (para)linearization of the terms 2,
and 2, is done, the proof is quite similar to the proof of Proposition 1.14. Following
the method of [13], let us observe that

div(u ® u)* = divy (uu) + 95(u‘u®)
= (divy u?)u’ + " - V' + 05 (T;’gué + TYu® + RY (u?, ué)).
Now let us define the bilinear operator .7 by

(Fhw)* def (divy, wh)u® + u® - Vyw® + 05 (T;’e,wz + TYow® + RY (u?, wz)).

JE.P. — M., 2018, tome



908 H. Banourt, J.-Y. Cinemin & I, GALLAGHER

Let us observe that Z,u = div(u ® u). The laws of product of Proposition A.4 imply
that, for any s in [1 —4/p+ pu, —1+4/p — p,

(A.23) [|(divy, w)u® + ul - Vyw|| 2o < ||wl|gesr ||w]| -

Lemmas A.1 and A.5 imply that, for any s in [1 —4/p+ u,—14+4/p — u,
(A.24) ||(83( ;’3w€ + T;’ew?’ + Rv(u?’, we)Hg} < wl| gszr2 || u]| 1 -

Let us notice that for any non negative a, u is solution of the linear equation
(A.25) w = e D%y(a) + L, Tw.

The smoothing effect of the heat flow, as described in Lemma A.2, implies that for
any non negative a, and any ¢ greater than or equal to a,

(A.26) 27/2FF | AYARL, Zyw(t)|| 12
t )
< / dj()e= 2Ot [ g (lw(t) | pess + [w(E) | gy r2) dt
This gives, for any b in ]a, oo],

Lo Zuw| Lo (1,25) + | La Tuwl| L1 (15420 005/2) S (ull2 (e |0l 21,2041 03/2)

with I = [a, b]. Now let us consider the increasing sequence (T}, )o<m<m Which satis-
fies (A.18). If ¢ is chosen small enough, we have that the linear map L, 7, maps
the space

L ([T, Ty ]; B 0 B 0 53/2)
into itself with a norm less than 1. Thus —ju is the unique solution of (A.25) and it
satisfies, for any m
||UHLO@([T,,L,T,"H];.%) + ”u‘|L2([T,H,T,n+1];%5+1ﬂ%’SvS/Z) < Cilju(Tm)|| -
Arguing as in the proofs of Lemma 3.6 and Proposition 1.14, we conclude that «
belongs to «7° and that
lullers S lluollzs exp(Cllullie@z))-

Inequality (1.38) is proved.
In order to prove Inequality (1.39), let us observe that using Bony’s decomposition
in the vertical variable, we get

3 3
div(u @ u)t = Z O (ufu™) = Z Om (TJ[U”L + Tt + Rv(uz7um)).
m=1

m=1

Now let us define

3
(7 qw)* ef Z Om, (T&’ewm + TYmw® + RY (u, wm))

m=1
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Proposition A.4 implies that, if m equals 1 or 2 then for any s’ greater than or equal
to 1/2

H@m( lem _|_T7me£ +Rv(uszm))HLl(RﬁgZ"’vsl) SJ ||u||L2(R+;@1)||w||L2(R+;U@1,s/),
||83 (quwS + T1Y3w£ + Rv(uzv wS)HLl(R+;@0,s’) 5 ||u||L2(R+;@1) ||w||L2(]R+;.%0»S'+1)'
Thus we get, for any a in RT, any b in I = [a, oc] and any r in [1, o],

||La?uw||u(1;93w’+s/) S ||U||L2(I;%1)(||w||L2(1;@1,s/) + Hw||L2(I;580=a"+1))

with o + ¢’ = 2/r. Then the lines after Inequality (A.26) can be repeated word for
word. Proposition 1.15 is proved. ]
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