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ON THE STABILITY OF GLOBAL SOLUTIONS TO

THE THREE-DIMENSIONAL

NAVIER-STOKES EQUATIONS

by Hajer Bahouri, Jean-Yves Chemin & Isabelle Gallagher

Abstract. — We prove a weak stability result for the three-dimensional homogeneous incom-
pressible Navier-Stokes system. More precisely, we investigate the following problem: if a se-
quence (u0,n)n∈N of initial data, bounded in some scaling invariant space, converges weakly to
an initial data u0 which generates a global smooth solution, does u0,n generate a global smooth
solution? A positive answer in general to this question would imply global regularity for any
data, through the following examples u0,n = nϕ0(n·) or u0,n = ϕ0(· − xn) with |xn| → ∞.
We therefore introduce a new concept of weak convergence (rescaled weak convergence) un-
der which we are able to give a positive answer. The proof relies on profile decompositions in
anisotropic spaces and their propagation by the Navier-Stokes equations.

Résumé (Sur la stabilité de solutions globales aux équations de Navier-Stokes tridimensionnelles)
On démontre un résultat de stabilité faible pour les équations de Navier-Stokes tridimension-

nelles, incompressibles et homogènes. Plus précisément on étudie le problème suivant : si une
suite de données initiales (u0,n)n∈N, bornée dans un espace invariant d’échelle, converge faible-
ment vers une donnée u0 qui engendre une solution globale régulière, est-ce que u0,n engendre
une solution globale régulière ? Une réponse affirmative à cette question en général aurait pour
conséquence la régularité globale pour toute donnée initiale, via les exemples u0,n = nϕ0(n·)
ou u0,n = ϕ0(· − xn) avec |xn| → ∞. On introduit donc un nouveau concept de convergence
faible (convergence faible remise à l’échelle) sous lequel on peut donner une réponse affirma-
tive. La démonstration repose sur des décompositions en profils dans des espaces de régularité
anisotrope, et leur propagation par les équations de Navier-Stokes.
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1. Introduction and statement of the main result

1.1. The Navier-Stokes equations. — We are interested in the Cauchy problem for
the three dimensional, homogeneous, incompressible Navier-Stokes system

(NS)


∂tu+ u · ∇u−∆u = −∇p in R+ × R3

div u = 0

u|t=0 = u0,

where p = p(t, x) and u = (u1, u2, u3)(t, x) are respectively the pressure and velocity
of an incompressible, viscous fluid.

As is well-known, the Navier-Stokes system enjoys two important features. First it
formally conserves the energy, in the sense that smooth and decaying solutions satisfy
the following energy equality for all times t > 0:

(1.1) 1

2
‖u(t)‖2L2(R3) +

∫ t

0

‖∇u(t′)‖2L2(R3) dt
′ =

1

2
‖u0‖2L2(R3).

Second, (NS) enjoys a scaling invariance property: defining the scaling operators, for
any positive real number λ and any point x0 of R3,

(1.2) Λλ,x0
φ(t, x)

def
=

1

λ
φ(t/λ2, (x− x0)/λ) and Λλφ(t, x)

def
=

1

λ
φ(t/λ2, x/λ),

if u solves (NS) with data u0, then Λλ,x0
u solves (NS) with data Λλ,x0

u0.

1.2. The Cauchy problem. — We shall say that u ∈ L2
loc([0, T ]×R3) is a weak solution

of (NS) associated with the data u0 if for any compactly supported, divergence free
vector field φ belonging to C∞([0, T ]×R3) the following identity holds for all t 6 T :∫
R3

u·φ(t, x) dx =

∫
R3

u0(x)·φ(0, x) dx+

∫ t

0

∫
R3

(u·∆φ+u⊗u : ∇φ+u·∂tφ)(t′, x) dx dt′,

with
u⊗ u : ∇φ def

=
∑

16j,k63

ujuk∂kφ
j .

Weak solutions satisfying the energy inequality

(1.3) 1

2
‖u(t)‖2L2(R3) +

∫ t

0

‖∇u(t′)‖2L2(R3) dt
′ 6

1

2
‖u0‖2L2(R3)

are said to be turbulent solutions, following the terminology of J. Leray [42].
We shall say that a family (XT )T>0 of spaces of distributions defined over [0, T ]×R3

is scaling invariant if for all T > 0 one has, with notation (1.2),

∀λ > 0,∀x0 ∈ R3, u ∈ XT ⇐⇒ Λλ,x0u ∈ Xλ−2T with ‖u‖XT = ‖Λλ,x0u‖Xλ−2T
.

Similarly a spaceX0 of distributions defined on R3 will be said to be scaling invariant if

∀λ > 0,∀x0 ∈ R3, u0 ∈ X0 ⇐⇒ Λλ,x0
u0 ∈ X0 with ‖u0‖X0

= ‖Λλ,x0
u0‖X0

.

This leads to the following definition of a solution, which will be the notion of solution
we shall consider throughout this work.
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On the stability of global solutions to the Navier-Stokes equations 845

Definition 1.1. — A vector field u is a (scaled) solution to (NS) on [0, T ], associated
with the data u0 if it is a weak solution in XT , where XT belongs to a family of
scaling invariant spaces.

The energy conservation (1.1) is the main ingredient which enabled J. Leray to
prove in [42] that any initial data in L2(R3) gives rise to (at least) one global turbulent
solution to (NS). The result is the following.

Theorem 1 ([42, 43]). — Associated with any divergence free vector field in L2(Rd)
there is a global in time turbulent solution. Moreover if d = 2 then this solution is
unique.

Uniqueness in space dimension 2, which is proved in [43], is linked to the fact
that L2(R2) is scale invariant. In dimensions three and more, the question of the
uniqueness of Leray’s solutions is still an open problem; we refer to the recent work [29]
for some numerical evidence of non uniqueness. Related to that problem, a number
of results have been proved concerning the uniqueness, and global in time existence
of solutions under a scaling invariant smallness assumption on the data—note that
smallness has to be measured in a scale invariant space to have any relevance. Without
such a smallness assumption, existence and uniqueness often holds in a scale invariant
space for a short time but nothing is known beyond that time, at which some scale-
invariant norms of the solution could blow up. The question of the possible blow up
in finite time of solutions to (NS) is actually one of the Millenium Prize Problems in
Mathematics. We shall not recall all the results existing in the literature concerning
the Cauchy problem in scale invariant spaces for the Navier-Stokes system; we refer
for instance to [2], [41], [47] and the references therein, for surveys on the subject.
Let us nevertheless recall that along with the fundamental Theorem 1, J. Leray also
proved that if u0 is a divergence free vector field satisfying

(1.4) ‖u0‖L2(R3)‖∇u0‖L2(R3) 6 c

for a small enough c, then there exists only one turbulent solution associated
with u0, and the bound (1.4) still holds for future times. Notice that the quantity
‖u0‖L2(R3)‖∇u0‖L2(R3) is invariant by the scaling operator Λλ,x0

. Without the small-
ness assumption (1.4), the uniqueness property holds at least for a short time, time at
which the solution ceases to belong to H1: we recall the definition of (homogeneous)
Sobolev spaces, given by the (semi-)norm

‖f‖Hs
def
=

(∫
|f̂(ξ)|2|ξ|2s dξ

)1/2

.

Note that in d space dimensions, Hs(Rd) is a normed space only if s < d/2. Ho-
mogeneous spaces are usually denoted by Ḣs(Rd) but since this paper is only con-
cerned with homogeneous spaces we choose to drop the dot in the notation. J. Leray
also proved that if one turbulent solution u lies in L2([0, T ];L∞(Rd)), then all tur-
bulent solutions associated with the same initial data as u coincide with u on [0, T ].

J.É.P. — M., 2018, tome 5



846 H. Bahouri, J.-Y. Chemin & I. Gallagher

Thus L2([0, T ];L∞(Rd)) is a uniqueness class for the Navier-Stokes system. Let us now
recall the following slightly more general statement than the one described above: it
is due to H. Fujita and T. Kato [19], who proved that if u0 ∈ H1/2(R3) is a divergence
free vector field satisfying ‖u0‖H1/2(R3) 6 c for a small enough constant c, then there
is only one turbulent solution associated with u0. It satisfies

‖u(t)‖2H1/2(R3) +

∫ t

0

‖∇u(t′)‖2H1/2(R3) dt
′ 6 ‖u0‖2H1/2(R3).

Without the smallness assumption, the uniqueness property holds at least for a short
time, time at which the solution ceases to belong to L2([0, T ];H3/2(R3)). Note that
this generalizes the Leray result since by interpolation

(1.5) ‖u0‖2H1/2(R3) 6 ‖u0‖L2(R3)‖∇u0‖L2(R3).

Many results of this type are known to hold, for instance replacing H1/2(R3) by the
larger Lebesgue space L3(R3) (see [26, 35, 58]). The best result known to this day on
the uniqueness of solutions to (NS) is due to H.Koch and D.Tataru [40]. It is proved,
as most results of the type, by a fixed point theorem in an appropriate Banach space.
The smallness condition is the following:

‖u0‖BMO−1(R3)
def
= sup

t>0
t1/2‖et∆u0‖L∞(R3)

+ sup
x∈R3

R>0

1

R3/2

(∫
[0,R2]×B(x,R)

|(et∆u0)(t, y)|2 dy dt
)1/2

6 c.

Note that the space BMO−1 is again invariant by the scaling operators Λλ,x0
. In the

definition of BMO−1 norm above, the norm supt>0 t
1/2‖et∆u0‖L∞(R3) is equivalent to

the Besov norm ‖u0‖B−1
∞,∞(R3). The Besov spaceB−1

∞,∞(R3) is actually the largest space
in which any scale and translation invariant Banach space of tempered distributions
embeds; it is in fact known that (NS) is ill-posed for initial data in B−1

∞,∞(R3) (see [10]
and [25]), but for small data in B−1+3/p

p,∞ for finite p global existence and uniqueness
are known to hold (see [49]). More on Besov spaces is provided in the appendix, let
us recall their definition here.

Definition 1.2. — Let χ̂ be a radial function in D(R) such that χ̂(t) = 1 for |t| 6 1

and χ̂(t) = 0 for |t| > 2. For j ∈ Z, the truncation operators are defined by

Ŝjf(ξ)
def
= χ̂

(
2−j |ξ|

)
f̂(ξ) and ∆j

def
= Sj+1 − Sj .

For all p in [1,∞] and q in ]0,∞], and all s in R, with s < 3/p (or s 6 3/p if q = 1),
the homogeneous Besov space Bsp,q is defined as the space of tempered distributions f
such that

‖f‖Bsp,q
def
=
∥∥2js‖∆jf‖Lp

∥∥
`q
<∞.

In all other cases of indexes s, the Besov space is defined similarly, up to taking the
quotient with polynomials.
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The results recalled above tend to suggest that the initial data should satisfy some
sort of smallness assumption if one is to prove global existence and uniqueness of
solutions. Actually this turns out not to be the case: there are situations where global
unique solutions are known to exist despite the fact that the initial data is not small
in B−1

∞,∞. That is the case in two space dimensions as recalled above, as well as under
some geometric assumptions (helicity, axisymmetry without swirl...). Let us describe
a result of that type, whose main interest is that its proof gives an idea of the methods
used in this work in a simple framework.

Theorem 2 ([14, 16]). — Consider the sequence of divergence free vector fields

(1.6) u0,n(x) = u0(x) +
(
v1

0 , v
2
0 , 0
)(
x1, x2, x3/n

)
with (v1

0 , v
2
0) a smooth, two-component, divergence free vector field, satisfying

(v1
0 , v

2
0)(x1, x2, 0) ≡ 0 if u0 is not identically zero.

If u0 gives rise to a unique, global solution to the Navier-Stokes equations, then so
does u0,n as soon as n is large enough.

The case when u0 ≡ 0 is proved in [14]. It consists in looking for the solution un as

un(t, x) =
(
v1, v2, 0

)(
t, x1, x2, x3/n

)
+ rn(t, x),

where for all y3, v(·, y3)
def
= (v1, v2)(·, y3) solves the two-dimensional Navier-Stokes

equations with data (v1
0 , v

2
0)(·, y3). We know that v is unique, and globally defined

thanks to Theorem 1. Then the key to the proof is that rn solves a perturbed Navier-
Stokes equation of the type

∂trn + rn · ∇rn + v · ∇rn + rn · ∇v −∆rn = −∇p+ fn, div rn = 0,

where the error term fn contains derivatives in x3 of
(
v1, v2, 0

)(
t, x1, x2, x3/n

)
, which

are of size roughly n−1, hence small. One can therefore solve the equation satisfied
by rn using the same methods as solving globally (NS) with small data and small
force. In the case when u0 is not identically zero, the proof consists in looking for the
solution under the form

un(t, x) = u(t, x) +
(
v1, v2, 0

)(
t, x1, x2, x3/n

)
+ r̃n(t, x)

with u the global solution associated with u0. Then the rough idea is that u decays
at infinity in x3 whereas due to the fact that (v1

0 , v
2
0)(x1, x2, 0) ≡ 0, the vector field(

v1, v2, 0
)(
t, x1, x2, x3/n

)
has a support roughly in x3 ∼ n. So those two functions do not interact one with the
other, and the perturbed equation satisfied by r̃n can again be solved globally.

It should be noted that the sequence u0,n of Theorem 2 converges in the sense of
distributions to u0. The goal of this work is to try to understand if such a property,
which we can call “weak stability”, holds more generally: we would like to address the
question of weak stability:

J.É.P. — M., 2018, tome 5



848 H. Bahouri, J.-Y. Chemin & I. Gallagher

If (u0,n)n∈N, bounded in some scale invariant space X0, converges to u0 in the
sense of distributions, with u0 giving rise to a global smooth solution, is it the case
for u0,n when n is large enough?

1.3. Strong stability results. — Let us recall that it is proved in [1] (see [21] for
the case of Besov spaces B−1+3/p

p,q ) that the set of initial data generating a global
solution is open in BMO−1. More precisely, denoting by VMO−1 the closure of smooth
functions in BMO−1, it is proved in [1] that if u0 belongs to VMO−1 and generates
a global, smooth solution to (NS), then any sequence (u0,n)n∈N converging to u0 in
the BMO−1 norm also generates a global smooth solution as soon as n is large enough.
The question asked above addresses the case when the sequence converges non longer
strongly, but in the sense of distributions.

1.4. Weak stability results

1.4.1. A stability result for weak convergence up to rescaling in B−1+3/p
p,q (R3)

To answer the above question, the first example that may come to mind is the case
when u0 ≡ 0 (which gives rise to the unique, global solution which is identically zero),
and

(1.7) u0,n(x) =
1

λn
Φ0(x/λn) = ΛλnΦ0(x) with lim

n→∞
(λn + 1/λn) =∞,

with Φ0 an arbitrary divergence-free vector field. If the weak stability result we are af-
ter were true, then since the weak limit of (u0,n)n∈N is zero then for n large enough u0,n

would give rise to a unique, global solution. By scale invariance then so would Φ0, and
this for any Φ0, so that would solve the global regularity problem for (NS). Another
natural example is the sequence

(1.8) u0,n = Φ0(· − xn) = Λ1,xnΦ0,

with (xn)n∈N a sequence of R3 going to infinity. Thus sequences built by rescaling
fixed divergence free vector fields according to the invariances of the equation have to
be excluded from our analysis, since solving (NS) for any smooth initial data seems
out of reach. This naturally leads to the following definition.

Definition 1.3 (Convergence up to rescaling). — We say that a sequence (ϕn)n∈N
defined on R3 converges up to rescaling to ϕ if ϕn converges to ϕ in the sense of
distributions and if for all sequences (λn)n∈N of positive real numbers and for all
sequences (xn)n∈N in R3 satisfying

(1.9) λn +
1

λn
+ |xn| −→ ∞ as n −→∞,

the sequence (Λλn,xnϕn)n∈N converges to 0 in the sense of distributions, as n goes to
infinity.

The following result is a first answer to our question. Its proof is straightforward.
We choose to present it for pedagogical reasons, to relate the notion of convergence
up to rescaling to strong convergence in a larger scale invariant space.

J.É.P. — M., 2018, tome 5
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Proposition 1.4. — Let p and q be two real numbers in [1,∞[ and consider (u0,n)n∈N

a sequence of divergence-free vector fields bounded in B−1+3/p
p,q (R3), converging up to

rescaling to u0, with u0 giving rise to a global unique solution. Then the same holds
for u0,n as soon as n is large enough.

Note that the same theorem actually holds in any scale invariant space strictly
embedded in BMO−1.

Proof. — The proof of Proposition 1.4 relies on the following “profile decomposi-
tion” theorem, which describes the lack of compactness of the embedding B−1+3/p

p,q

into B−1+3/p̃
p̃,q̃ for indices p < p̃ and q < q̃. The proof of that result can be found in [3],

following the pioneering work of [24] in the framework of Sobolev spaces Hs and [32]
for Sobolev spaces W s,p. More on profile decompositions is to be found in Section 2.

Proposition 1.5 ([3]). — Fix p < p̃ and q < q̃ four real numbers in [1,∞[ and
consider (ϕn)n∈N a sequence of functions, bounded in B

−1+3/p
p,q (R3) and converging

weakly to some function ϕ0. Then up to extracting a subsequence (which we denote
in the same way), there is a family of functions (ϕj)j>1 in B−1+3/p

p,q (R3), and a fam-
ily (xjn)j>1 of sequences of points in R3, as well as a family of sequences of positive
real numbers (hjn)j>1, orthogonal in the sense that if j 6= k then

either hjn
hkn

+
hkn

hjn
−→∞ as n→∞, or hjn = hkn and |x

k
n − xjn|
hjn

−→∞ as n→∞

such that for all integers L > 1 the function ψLn
def
= ϕn−ϕ0−

∑L
j=1 Λhjn,xjnϕ

j satisfies

lim sup
n→∞

‖ψLn‖B−1+3/p̃
p̃,q̃

(R3)
−→ 0 as L −→∞.

Moreover one has

(1.10) Λ(hjn)−1,−(hjn)−1xjn
ϕn ⇀ ϕj , as n −→∞.

Note that the result (1.10) is not explicitly stated in [3] but is easy to check.
Proposition 1.4 is then an immediate consequence of Proposition 1.5. Indeed if (u0,n)

is bounded in B
−1+3/p
p,q (R3), then one can decompose each of its components using

Proposition 1.5, and the convergence up to rescaling assumption, joint with (1.10),
implies that all profiles are zero. The sequence (u0,n) therefore converges strongly
in B−1+3/p̃

p̃,q̃ (R3) and the result follows from the strong stability in B−1+3/p̃
p̃,q̃ (R3) proved

in [21] and recalled in Section 1.3. �

1.4.2. Stability under rescaled weak convergence. — Considering Theorem 2, it is nat-
ural to try to extend Proposition 1.4 to more general situations. Indeed the sequences

(1.11) u0,n(x) = (v1
0 , v

2
0 , 0)

(
x1, x2, x3/n

)
and

(1.12) ũ0,n(x) = u0(x) + (ṽ1
0 , ṽ

2
0 , 0)

(
x1, x2, x3/n

)
, with ṽ0(x1, x2, 0) ≡ 0

J.É.P. — M., 2018, tome 5



850 H. Bahouri, J.-Y. Chemin & I. Gallagher

are not bounded in B−1+3/p
p,q (or in any such scale invariant space) but we do know

that they converge weakly to a vector field giving rise to a global solution, and that
the same holds for each term of the sequence as soon as soon as n is large enough.
In order to understand in what direction one can generalize Proposition 1.4 to take
into account such examples, there are two points to clarify on the sequences (1.11)
and (1.12):

(1) what function spaces they are bounded in;
(2) what type of weak convergence (possibly after rescaling as in Definition 1.3)

holds for those sequences.
The main feature of the sequences defined in (1.11) and (1.12) is that they are not

bounded in any space B−1+3/p
p,q , but rather in anisotropic spaces where the regularity

in the third variable scales like L∞: for instance L2(R2;H1/2(R)), or L2(R2;L∞(R)).
Notice that those spaces are scaling invariant by the scaling operator Λλ,x0

and satisfy
the additional invariance for the change of variable

(x1, x2, x3) 7−→ (x1, x2, λx3)

for any positive λ. It seems therefore natural to work in those function spaces, or
others having the same scaling properties. Unfortunately H1/2(R) is not a Banach
space, and that fact makes analysis in H1/2(R) rather awkward. We shall therefore
trade H1/2(R) off for the slightly smaller Besov space B1/2

2,1 : we define anisotropic
Besov spaces as follows. These spaces generalize the more usual isotropic Besov spaces
seen in Definition 1.2, which are studied for instance in [2, 9, 51, 57, 56].

Definition 1.6. — With the notation of Definition 1.2, for (j, k) ∈ Z2, the horizontal
truncations are defined by

Ŝh
kf(ξ)

def
= χ̂

(
2−k|(ξ1, ξ2)|

)
f̂(ξ) and ∆h

k
def
= Sh

k+1 − Sh
k ,

and the vertical truncations by

Ŝv
j f

def
= χ̂(2−j |ξ3|)f̂(ξ) and ∆v

j
def
= Sv

j+1 − Sv
j .

For all p in [1,∞] and q in ]0,∞], and all (s, s′) in R2, with s < 2/p, s′ < 1/p

(or s 6 2/p and s′ 6 1/p if q = 1), the anisotropic homogeneous Besov space Bs,s′p,q is
defined as the space of tempered distributions f such that

‖f‖
Bs,s

′
p,q

def
=
∥∥∥2ks+js

′
‖∆h

k∆v
j f‖Lp

∥∥∥
`q
<∞.

In all other cases of indexes s and s′, the Besov space is defined similarly, up to taking
the quotient with polynomials.

Notation. — We shall in what follows use the following shorthand notation:

Bs,s′

p
def
= Bs,s

′

p,1 , Bs,s′ def
= Bs,s′

2 , Bs
p,q

def
= B−1+2/p+s,1/p

p,q ,

Bs
p

def
= Bs

p,1, Bs def
= Bs

2.
(1.13)
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Let us point out that the scaling operators (1.2) satisfy

‖Λλ,x0
ϕ‖B0

p,q
= ‖ϕ‖B0

p,q
.

The Navier-Stokes equations in anisotropic spaces have been studied in a number
of frameworks. We refer for instance, among others, to [4], [18], [28], [31], [48]. In
particular in [4] it is proved that if u0 belongs to B0, then there is a unique solution
(global in time if the data is small enough) in L2([0, T ]; B1). That norm controls
the equation, in the sense that as soon as the solution belongs to L2([0, T ]; B1),
then it lies in fact in Lr([0, T ]; B2/r) for all 1 6 r 6 ∞. The space B1 is included
in L∞ and since the seminal work [42] of J. Leray recalled above, it is known that
the L2([0, T ];L∞(R3)) norm controls the propagation of regularity and also ensures
weak uniqueness among turbulent solutions. Thus the space B0 is natural in this
context.

The initial data defined in (1.11) converges in the sense of distributions to the
two-dimensional vector field (u1

0, u
2
0, 0)

(
x1, x2, 0

)
, whereas the one defined in (1.12)

converges in the sense of distributions to u0. This leads naturally to a stronger
notion of weak convergence, denoted by rescaled weak convergence, which we shall
call R-convergence.

Definition 1.7 (R-convergence). — We say that a sequence (ϕn)n∈N of tempered
distributions defined on R3 R-converges to ϕ if ϕn converges to ϕ in the sense of
distributions, and if for all sequences (λn)n∈N of positive real numbers and for all
sequences (xn)n∈N in R3 satisfying (1.9), up to extracting a subsequence there is a
tempered distribution ψ of (x1, x2) such that (Λλn,xnϕn)n∈N converges to ψ in the
sense of distributions, as n goes to infinity.

The following examples give some insight into the type of sequences that can be
considered with Definition 1.7.

Proposition 1.8. — Let µn be a sequence of positive real numbers converging to in-
finity. Then

(1) The sequence ϕ(1)
n (x)

def
= 1

µn
ϕ(1)(x/µn), with ϕ(1) a smooth function, R-con-

verges weakly to 0 if and only if ϕ(1) only depends on (x1, x2).
(2) The sequence ϕ

(2)
n (x)

def
= ϕ(2)(x1, x2, x3/µn), with ϕ(2) a smooth function,

R-converges weakly to ϕ(2)(x1, x2, 0).

Proof

(1) Obviously the sequence ϕ(1)
n converges to zero in the sense of distributions,

and the same goes for Λ1,xnϕ
(1)
n if |xn| → ∞. Now let (λn)n∈N be a sequence of

positive real numbers going to zero or infinity, and for any (xn)n∈N, consider the
sequence (Λλn,xnϕ

(1)
n (x))n∈N, which is given by

Λλn,xnϕ
(1)
n (x) =

1

λnµn
ϕ(1)

(x− xn
λnµn

)
.
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This sequence goes to zero in the sense of distributions as long as λnµn does not
converge to a constant. So assume now λnµn → 1. We notice that

Λ1/µn,xnϕ
(1)
n (x) = ϕ(1)(x− xn)

which again goes to zero in the sense of distributions if |xn| → ∞. Finally if |xn|
is bounded, then up to a subsequence we may assume that xn → a ∈ R3 in which
case Λ1/µn,xnϕ

(1)
n converges in the sense of distributions to ϕ(1)(x− a), and the as-

sumption requires that ϕ(1) is a function of (x1, x2) only.
(2) Next consider the sequence ϕ(2)

n . Clearly it converges to ϕ(2)(x1, x2, 0) in the
sense of distributions, so let us check the R-convergence property. We have

Λλn,xnϕ
(2)
n (x) =

1

λn
ϕ
(x1 − x1,n

λn
,
x2 − x2,n

λn
,
x3 − x3,n

λnµn

)
,

which clearly goes to zero in the sense of distributions when (λn)n∈N goes to zero or
infinity. The same goes when λn = 1 and (x1,n, x2,n) → ∞, so let us finally assume
that λn = 1 and (x1,n, x2,n) is bounded. In that case we write

Λ1,xnϕ
(2)
n (x) = ϕ

(
x1 − x1,n, x2 − x2,n,

x3 − x3,n

µn

)
,

which, up to a subsequence, converges to zero or to a function of (x1, x2) depending
on the behaviour of the sequence x3,n/µn and on the limit of (x1,n, x2,n). This ends
the proof of Proposition 1.8. �

Our main result is the following.

Theorem 3. — Let q be given in ]0, 1[ and let u0 in B0
2,q generate a unique global

solution to (NS) in L2(R+; B1). Let (u0,n)n∈N be a sequence of divergence free vector
fields bounded in B0

2,q, such that u0,n R-converges to u0. Then for n large enough, u0,n

generates a unique, global solution to (NS) in the space L2(R+; B1).

1.5. Main steps of the proof of Theorem 3

1.5.1. Anisotropic profile decomposition of the initial data. — To prove Theorem 3, the
first step consists in the proof of an anisotropic profile decomposition of the sequence
of initial data, in the spirit of Proposition 1.5. Let us start by introducing some
definitions and notations.

Definition 1.9. — We say that two sequences of positive real numbers (λ1
n)n∈N

and (λ2
n)n∈N are orthogonal if

λ1
n

λ2
n

+
λ2
n

λ1
n

−→∞, n −→∞.

A family of sequences
(
(λjn)n∈N

)
j
is said to be a family of scales if λ0

n ≡ 1 and if λjn
and λkn are orthogonal when j 6= k.
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Notation. — For all points x = (x1, x2, x3) in R3 and all vector fields u = (u1, u2, u3),
we denote their horizontal projections by

xh
def
= (x1, x2) and uh def

= (u1, u2).

We shall be considering functions which have different types of variations in the x3

variable and the xh variable. The following notation will be used:[
f
]
β
(x)

def
= f(xh, βx3).

Clearly, for any function f , we have the following identity which will be of constant
use all along this work:

(1.14)
∥∥[f ]β

∥∥
B
s1,s2
p

∼ βs2−1/p‖f‖Bs1,s2
p

.

In all that follows, θ is a given function in D(BR3(0, 1)) which has value 1

near BR3(0, 1/2). For any positive real number η, we denote

(1.15) θη(x)
def
= θ(ηx) and θh,η(xh)

def
= θη(xh, 0).

In order to make notations as light as possible, the letter v (possibly with indices)
will always denote a two-component divergence free vector field, which may depend
on the vertical variable x3.

Finally we define horizontal differentiation operators ∇h def
= (∂1, ∂2) and divh

def
=∇h·,

as well as ∆h
def
= ∂2

1 + ∂2
2 , and we shall use the following shorthand notation: XhYv

def
=

X(R2;Y (R)), where X is a function space defined on R2 and Y is defined on R.

Definition 1.10. — Let µ be a positive real number less than 1/2, fixed from now on.
We define

Dµ
def
= [−2 + µ, 1− µ]× [1/2, 7/2] and D̃µ

def
= [−1 + µ, 1− µ]× [1/2, 3/2].

We denote by Sµ the space of functions a belonging to
⋂

(s,s′)∈Dµ Bs,s′ such that

‖a‖Sµ
def
= sup

(s,s′)∈Dµ
‖a‖Bs,s′ <∞.

Remark 1.11. — Everything proved here would work choosing for Dµ any set of the
type [−2 + µ, 1− µ]× [1/2, A], with A > 7/2. For simplicity we limit ourselves to the
case when A = 7/2.

Proposition 1.12. — Under the assumptions of Theorem 3 and up to the extrac-
tion of a subsequence, the following holds. Let p > 2 be given. There is a family of
scales

(
(λjn)n∈N

)
j∈N and for all L > 1 there is a family of sequences

(
(hjn)n∈N

)
j∈N

going to zero when n goes to ∞ such that for any real number α in ]0, 1[, there are
families of sequences of divergence-free vector fields (for j ∈ [1, L]),

(vjn,α,L)n∈N, (wjn,α,L)n∈N, (v0,∞
n,α,L)n∈N, (w0,∞

0,n,α,L)n∈N, (v0,loc
0,n,α,L)n∈N, (w0,loc

0,n,α,L)n∈N
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all belonging to Sµ, and a smooth, compactly supported function u0,α such that the
sequence (u0,n)n∈N can be written as

u0,n ≡ u0,α +
[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0
n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n

+

L∑
j=1

Λλjn
[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

+ ρn,α,L,

where u0,α approximates u0 in the sense that

(1.16) lim
α→0
‖u0,α − u0‖B0 = 0,

where the remainder term satisfies

(1.17) lim
L→∞

lim
α→0

lim sup
n→∞

‖et∆ρn,α,L‖L2(R+;B1
p) = 0,

while the following uniform bounds hold:

(1.18) M
def
= sup

L>1
sup
α∈]0,1[

sup
n∈N

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
B0 +

∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L)

∥∥
B0

+ ‖u0,α‖B0 +
∑L
j=1

∥∥(vjn,α,L, w
j,3
n,α,L)

∥∥
B0

)
<∞

and for all α in ]0, 1[,

(1.19) Mα
def
= sup

L>1
sup

16j6L
n∈N

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
Sµ

+
∥∥(v0,loc

0,n,α,L, w
0,loc,3
0,n,α,L)

∥∥
Sµ

+ ‖u0,α‖Sµ +
∥∥(vjn,α,L, w

j,3
n,α,L)

∥∥
Sµ

)
is finite. Finally, we have

lim
L→∞

lim
α→0

lim sup
n→∞

∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L

)
(·, 0)

∥∥
B0

2,1(R2)
= 0,(1.20)

∀ (α,L), ∃ η(α,L), ∀ η 6 η(α,L),∀n ∈ N, (1− θh,η)(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L) ≡ 0,(1.21)

∀ (α,L, η), ∃n(α,L, η), ∀n > n(α,L, η), θh,η(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L) ≡ 0.(1.22)

The proof of this proposition is the purpose of Section 2. Proposition 1.12 states
that the sequence u0,n is equal, up to a small remainder term, to a finite sum of or-
thogonal sequences of divergence-free vector fields. These sequences are obtained from
the profile decomposition derived in [4] (see Proposition 2.2 in this work) by grouping
together all the profiles having the same horizontal scale λn, and the form they take
depends on whether the scale λn is identically equal to one or not. In the case when λn
goes to 0 or infinity, these sequences are of the type Λλn

[
(vh
n + hnw

h
n, w

3
n)
]
hn

, with hn
a sequence going to zero. In the case when λn is identically equal to one, we deal with
three types of orthogonal sequences: the first one consists in u0,α, an approximation of
the weak limit u0, the second one given by

[
(vloc,h

0,n,α,L + h0
nw

loc,h
0,n,α,L, w

loc,3
0,n,α,L)

]
h0
n
is uni-

formly localized in the horizontal variable and vanishes at x3 = 0, while the horizontal
support of the third one

[
(v∞,h0,n,α,L + h0

nw
∞,h
0,n,α,L, w

∞,3
0,n,α,L)

]
h0
n
goes to infinity.
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Note that in contrast with classical profile decompositions (as stated in Proposi-
tion 1.5 for instance), cores of concentration do not appear in the profile decomposi-
tion given in Proposition 1.12 since all the profiles with the same horizontal scale are
grouped together, and thus the decomposition is written in terms of scales only. The
price to pay is that the profiles are no longer fixed functions, but bounded sequences.

Let us point out that the R-convergence of u0,n to u0 arises in a crucial way in the
proof of Proposition 1.12. It excludes in the profile decomposition of u0,n sequences
of type (1.7) and (1.8).

1.5.2. Proof of Theorem 3. — Once Proposition 1.12 is known, the main step of the
proof of Theorem 3 consists in proving that each individual profile involved in the
decomposition of Proposition 1.12 does generate a global solution to (NS) as soon
as n is large enough. This is based on the following results concerning respectively
profiles Λλjn

[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

, with λjn going to 0 or infinity, and profiles
of horizontal scale one, see respectively Theorems 4 and 5. Then, an orthogonality
argument leads to the fact that the sum of the profiles also generates a global regular
solution for large enough n.

In order to state the results, let us define the function spaces we shall be working
with.

Definition 1.13
– We define the space A s,s′

p = L∞(R+; Bs,s′

p )∩L2(R+; Bs+1,s′

p ) equipped with the
norm

‖a‖
A s,s′
p

def
= ‖a‖

L∞(R+;Bs,s′
p )

+ ‖a‖
L2(R+;Bs+1,s′

p )
,

and we denote A s,s′ = A s,s′

2 and A s = A s,1/2.
We denote by F s,s′p,q any function space such that

‖L0f‖L2(R+;Bs+1,s′
p,q )

. ‖f‖
F s,s

′
p,q

where, for any non negative real number τ , Lτf is the solution of ∂tLτf −∆Lτf = f

with Lτf|t=τ = 0. We denote F s
p = F

−1+2/p+s,1/p
p,1 and F s = F s

2 .

Examples. — Using the smoothing effect of the heat flow as described by Lemma A.2,
it is easy to prove that the spaces L1(R+;Bs,s

′

p,q ) and L1(R+; Bs+1,s′−1
p ) are contin-

uously embedded in F s,s
′

p,q . We refer to Lemma A.3 for a proof, along with other
examples.

In the following we shall denote by T0(A,B) a generic constant depending only
on the quantities A and B. We shall denote by T1 a generic non decreasing function
from R+ into R+ such that

(1.23) lim sup
r→0

T1(r)

r
<∞,

and by T∞ a generic locally bounded function from R+ into R+. All those functions
may vary from line to line. Let us notice that for any positive sequence (an)n∈N
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belonging to `1, we have

(1.24)
∑
n

T1(an) 6 T∞
(∑

n an
)
.

The notation a . b means that an absolute constant C exists such that a 6 Cb.

Theorem 4. — A locally bounded function ε1 from R+ into R+ exists which satis-
fies the following. For any (v0, w

3
0) in Sµ (see Definition 1.10), for any positive real

number β such that β 6 ε1(‖(v0, w
3
0)‖Sµ), the divergence free vector field

Φ0
def
=
[
(v0 − β∇h∆−1

h ∂3w
3
0, w

3
0)
]
β

generates a global solution Φβ to (NS) which satisfies

(1.25) ‖Φβ‖A 0 6 T1(‖(v0, w
3
0)‖B0) + βT∞(‖(v0, w

3
0)‖Sµ).

Moreover, for any (s, s′) in [−1 + µ, 1− µ]× [1/2, 7/2], we have, for any r in [1,∞],

(1.26) ‖Φβ‖Lr(R+;Bs+2/r) +
1

βs′−1/2
‖Φβ‖Lr(R+;B2/r,s′ ) 6 T∞(‖(v0, w

3
0)‖Sµ).

The proof of this theorem is the purpose of Section 3. Let us point out that this
theorem is a global existence result for the Navier-Stokes system associated with a
new class of arbitrarily large initial data generalizing the example considered in [14],
and where the regularity is sharply estimated, in particular in terms of anisotropic
norms.

The existence of a global regular solution for the set of profiles associated with the
horizontal scale 1 is ensured by the following theorem.

Theorem 5. — Let us consider the initial data, with the notation of Proposition 1.12,

Φ0
0,n,α,L

def
= u0,α +

[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0
n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n
.

There is a constant ε0, depending only on u0 and on Mα, such that if h0
n 6 ε0, then

the initial data Φ0
0,n,α,L generates a global smooth solution Φ0

n,α,L which satisfies for
all s in [−1 + µ, 1− µ] and all r in [1,∞],

(1.27) ‖Φ0
n,α,L‖Lr(R+;Bs+2/r) 6 T0(u0,Mα).

The proof of this theorem is the object of Section 4. As Theorem 4, this is also a
global existence result for the Navier-Stokes system, generalizing Theorem 3 of [15]
and Theorem 2 of [16], where we control regularity in a very precise way.

Proof of Theorem 3. — Let us consider the profile decomposition given by Proposi-
tion 1.12. For a given positive (and small) ε, Assertion (1.17) allows to choose α, L
and N0 (depending of course on ε) such that
(1.28) ∀n > N0, ‖et∆ρn,α,L‖L2(R+;B1

p) 6 ε.

From now on the parameters α and L are fixed so that (1.28) holds. Now let us consider
the two functions ε1, T1 and T∞ (resp. ε0 and T0) which appear in the statement
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of Theorem 4 (resp. Theorem 5). Since each sequence (hjn)n∈N, for 0 6 j 6 L, goes
to zero as n goes to infinity, let us choose an integer N1 greater than or equal to N0

such that
(1.29) ∀n > N1, ∀ j ∈ {0, . . . , L}, hjn 6 min

{
ε1(Mα), ε0,

ε

LT∞(Mα)

}
·

Then for 1 6 j 6 L (resp. j = 0), let us denote by Φjn,ε (resp. Φ0
n,ε) the global solution

of (NS) associated with the initial data[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

resp.

u0,α +
[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0
n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n

given by Theorem 4 (resp. Theorem 5). We look for the global solution associated
with u0,n under the form

un = uapp
n,ε +Rn,ε with uapp

n,ε
def
=

L∑
j=0

ΛλjnΦjn,ε + et∆ρn,α,L,

recalling that λ0
n ≡ 1, see Definition 1.9. As recalled in Section 1, ΛλjnΦjn,ε solves (NS)

with the initial data Λλjn
[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

by the scaling invariance of
the Navier-Stokes equations. Plugging this decomposition into the Navier-Stokes equa-
tion therefore gives the following equation on Rn,ε:

(1.30) ∂tRn,ε −∆Rn,ε + div
(
Rn,ε ⊗Rn,ε +Rn,ε ⊗ uapp

n,ε + uapp
n,ε ⊗Rn,ε

)
+∇pn,ε

= Fn,ε = F 1
n,ε + F 2

n,ε + F 3
n,ε

with
F 1
n,ε

def
= div

(
et∆ρn,α,L ⊗ et∆ρn,α,L

)
F 2
n,ε

def
=

L∑
j=0

div
(
ΛλjnΦjn,ε ⊗ et∆ρn,α,L + et∆ρn,α,L ⊗ ΛλjnΦjn,ε

)
F 3
n,ε

def
=

∑
06j,k6L
j 6=k

div
(
ΛλjnΦjn,ε ⊗ ΛλknΦkn,ε

)
,

and where
(

div(u⊗ v)
)j

=
∑3
k=1 ∂k(ujvk).

We shall prove that there is an integer N > N1 such that with the notation of
Definition 1.13,
(1.31) ∀n > N, ‖Fn,ε‖F0

p
6 Cε,

where C only depends on L and Mα. In the next estimates we omit the dependence
of all constants on α and L, which are fixed.

Let us start with the estimate of F 1
n,ε. Using the fact that B1

p is an algebra, we
have ∥∥et∆ρh

n,α,L ⊗ et∆ρn,α,L
∥∥
L1(R+;B1

p)
. ‖et∆ρn,α,L

∥∥2

L2(R+;B1
p)
,
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so
‖ divh

(
et∆ρh

n,α,L ⊗ et∆ρn,α,L
)
‖L1(R+;B0

p) . ‖et∆ρn,α,L
∥∥2

L2(R+;B1
p)

and
‖∂3

(
et∆ρ3

n,α,Le
t∆ρn,α,L

)
‖
L1(R+;B

2/p,−1+1/p
p,1 )

. ‖et∆ρn,α,L
∥∥2

L2(R+;B1
p)
.

According to the examples page 855, we infer that

(1.32) ‖F 1
n,ε‖F0

p
. ‖et∆ρn,α,L

∥∥2

L2(R+;B1
p)
.

In view of Inequality (1.28), Estimate (1.32) ensures that
(1.33) ∀n > N1, ‖F 1

n,ε‖F0
p
. ε2.

Now let us consider F 2
n,ε. By the scaling invariance of the operators Λλjn in L2(R+; B1

p)

and again the fact that B2/p,1/p
p,1 is an algebra, we get

(1.34)

∥∥ΛλjnΦjn,ε ⊗ et∆ρn,α,L + et∆ρn,α,L ⊗ ΛλjnΦjn,ε
∥∥
L1(R+;B1

p)

. ‖Φjn,ε‖L2(R+;B1
p)‖et∆ρn,α,L‖L2(R+;B1

p)

. ‖Φjn,ε‖L2(R+;B1)‖et∆ρn,α,L‖L2(R+;B1
p).

Next we write, thanks to Estimates (1.25) and (1.27),
L∑
j=0

∥∥Φjn,ε
∥∥
L2(R+;B1)

6 T0(u0,Mα)

+

L∑
j=1

(
T1

(
‖(vjn,α,L, w

j,3
n,α,L)‖B0

)
+ hjnT∞

(
‖(vjn,α,L, w

j,3
n,α,L)‖Sµ

))
,

which can be written due to (1.24)
L∑
j=0

∥∥Φjn,ε
∥∥
L2(R+;B1)

6 T0(u0,Mα) + T∞(M ) +

L∑
j=1

hjnT∞(Mα).

Using Condition (1.29) on the sequences (hjn)n∈N implies that∥∥∥ L∑
j=0

Φjn,ε

∥∥∥
L2(R+;B1)

6 T0(u0,Mα) + T∞(M ) + ε.

It follows (of course up to a change of T∞) that for small enough ε

(1.35)
∥∥∥ L∑
j=0

Φjn,ε

∥∥∥
L2(R+;B1)

6 T0(u0,Mα) + T∞(M ).

Thanks to (1.28) and (1.34), this gives rise to
(1.36) ∀n > N1, ‖F 2

n,ε‖F0
p
6 ε

(
T0(u0,Mα) + T∞(M )

)
.

Finally let us consider F 3
n,ε. Recalling that α and L are fixed, it suffices to prove in

view of the examples page 855 that there is N2 > N1 such that for all n > N2 and
for all 0 6 j 6= k 6 L, ∥∥ΛλjnΦjn,ε ⊗ ΛλknΦkn,ε

∥∥
L1(R+;B1)

. ε.
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Using the fact that B1 is an algebra along with the Hölder inequality, we infer that
for a small enough γ in ]0, 1[,∥∥ΛλjnΦjn,ε ⊗ ΛλknΦkn,ε

∥∥
L1(R+;B1)

6 ‖ΛλjnΦjn,ε‖L2/(1+γ)(R+;B1)‖ΛλknΦkn,ε‖L2/(1−γ)(R+;B1).

Notice that

‖ΛλjnΦjn,ε‖L2/(1+γ)(R+;B1) ∼ (λjn)γ‖Φjn,ε‖L2/(1+γ)(R+;B1)

‖ΛλknΦkn,ε‖L2/(1−γ)(R+;B1) ∼
1

(λkn)γ
‖Φkn,ε‖L2/(1−γ)(R+;B1).and

For small enough γ, Theorems 4 and 5 imply that∥∥ΛλjnΦjn,ε ⊗ ΛλknΦkn,ε
∥∥
L1(R+;B1)

.
(λjn
λkn

)γ
·

We deduce that

‖F 3
n,ε‖F0

p
6 C‖F 3

n,ε‖F0 .
∑

06j,k6L
j 6=k

min
{λjn
λkn
,
λkn

λjn

}γ
.

As the sequences (λjn)n∈N and (λkn)n∈N are orthogonal (see Definition 1.9), we have
for any j and k such that j 6= k

lim
n→∞

min
{λjn
λkn
,
λkn

λjn

}
= 0.

Thus an integer N2 greater than or equal to N1 exists such that

∀n > N2, ‖F 3
n,ε‖F0

p
. ε.

Together with (1.33) and (1.36), this implies that

n > N2 =⇒ ‖Fn,ε‖F0
p
. ε,

which proves (1.31).
Now, in order to conclude the proof of Theorem 3, we need the following results.

Proposition 1.14. — Let p be in the interval [2,∞[. A constant C0 exists such that,
if U is in L2(R+; B1

p), u0 in B0
p and f in F 0

p such that

‖u0‖B0
p

+ ‖f‖F0
p
6

1

C0
exp
(
−C0

∫ ∞
0

‖U(t)‖2B1
p
dt
)
,

then the problem

(NSU )

{
∂tu+ div(u⊗ u+ u⊗ U + U ⊗ u)−∆u = −∇p+ f

div u = 0 and u|t=0 = u0

has a unique global solution in L2(R+; B1
p) which satisfies

‖u‖L2(R+;B1
p) . ‖u0‖B0

p
+ ‖f‖F0

p
.
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Proposition 1.15. — Let p ∈ [2, 4[ be given and let u be a solution of (NS) which
belongs to L2(R+; B1

p) and with initial data u0 in B0. Then u belongs to A 0 and
satisfies

(1.37) ∀ r ∈ [1,∞], ‖u‖Lr(R+;B2/r) + ‖u‖L1(R+;B1,3/2) . ‖u0‖B0 + ‖u‖2L2(R+;B1
p).

Moreover, if p = 2 and if the initial data u0 belongs in addition to Bs for some s in
the interval [−1 + µ, 1− µ], then

(1.38) ∀ r ∈ [1,∞], ‖u‖Lr(R+;Bs+2/r) 6 T1(‖u0‖Bs)T0(‖u0‖B0 , ‖u‖L2(R+;B1)).

Finally, if p = 2 and if u0 belongs to B0,s′ for some s′ greater than 1/2, then

(1.39) ∀ r ∈ [1,∞], ‖u‖Lr(R+;B2/r,s′ ) 6 T1(‖u0‖B0,s′ )T0(‖u0‖B0 , ‖u‖L2(R+;B1)).

The proof of both propositions can be found in the appendix.

Conclusion of the proof of Theorem 3. — Let us fix p ∈ ]2, 4[. By definition of uapp
n,ε we

have

‖uapp
n,ε ‖L2(R+;B1

p) 6
∥∥∥ L∑
j=0

ΛλjnΦjn,ε

∥∥∥
L2(R+;B1

p)
+ ‖et∆ρn,α,L‖L2(R+;B1

p).

Inequalities (1.28) and (1.35) imply that for n sufficiently large
‖uapp

n,ε ‖L2(R+;B1
p) 6 T0(u0,Mα) + T∞(M ) + Cε.

Because of (1.31), it is clear that, if ε is small enough,

‖Fn,ε‖F0
p
6

1

C0
exp
(
−C0‖uapp

n,ε ‖2L2(R+;B1)

)
which ensures thanks to Proposition 1.14 that u0,n generates a global regular solution
in the space L2(R+; B1

p). Then the conclusion of the proof of Theorem 3 is a direct
consequence of Proposition 1.15. �

The proof of Theorem 3 is structured as follows. In Section 2 we prove Proposi-
tion 1.12. Theorems 4 and 5 are proved in Sections 3 and 4 respectively. The appendix
is devoted to the recollection of some material on anisotropic Besov spaces. We also
prove in the Appendix Proposition 1.14 and the anisotropic propagation of regularity
result for the Navier-Stokes system stated in Proposition 1.15.

Acknowledgments. — We want to thank very warmly Pierre Germain for suggesting
the concept of rescaled weak convergence.

2. Profile decompositions

2.1. An anisotropic profile decomposition. — The study of the defect of compact-
ness in Sobolev embeddings originates in the works of P.-L. Lions (see [44] and [45]),
L. Tartar (see [54]) and P.Gérard (see [23]) and earlier decompositions of bounded
sequences into a sum of “profiles” can be found in the studies by H.Brézis and
J.-M.Coron in [11] and M. Struwe in [53]. Our source of inspiration here is the
work [24] of P.Gérard in which the defect of compactness of the critical Sobolev
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embedding Hs ⊂ Lp is described in terms of a sum of rescaled and translated orthog-
onal profiles, up to a small term in Lp. This was generalized to other Sobolev spaces
by S. Jaffard in [32], to Besov spaces by G.Koch [39], and finally to general critical
embeddings by H.Bahouri, A.Cohen and G.Koch in [3]: see Proposition 1.5 for a
statement. We refer also to [6, 7, 8] for Sobolev embeddings in Orlicz spaces and [55]
for an abstract, functional analytic presentation.

In the pionneering works [5] (for the critical 3D wave equation) and [46] (for the
critical 2D Schrödinger equation), this type of decomposition was introduced in the
study of nonlinear partial differential equations. The ideas of [5] were revisited in [38]
and [20] in the context of the Schrödinger equations and Navier-Stokes equations re-
spectively, with an aim at describing the structure of bounded sequences of solutions
to those equations. These profile decomposition techniques have since then been suc-
cessfully used in order to study the possible blow-up of solutions to nonlinear partial
differential equations, in various contexts; we refer for instance to [22], [30], [34], [33],
[36], [37], [50], [52].

Before stating the result, let us give the definition of anisotropic scaling operators:
for any two sequences of positive real numbers (εn)n∈N and (γn)n∈N, and for any
sequence (xn)n∈N of points in R3, we denote

Λεn,γn,xnφ(x)
def
=

1

εn
φ
(xh − xn,h

εn
,
x3 − xn,3

γn

)
·

Observe that the operator Λεn,γn,xn is an isometry in the space B0
p,q for any 1 6 p 6∞

and any 0 < q 6 ∞ – recall the definition of those spaces in (1.13). Notice also that
when the sequences (εn) and (γn) are equal, then the operator Λεn,γn,xn reduces
to the isotropic scaling operator Λεn,xn defined in (1.2), and such isotropic profiles
will be the ones to disappear in the profile decomposition thanks to the assumption of
R-convergence. We also have a definition of orthogonal triplets of sequences, analogous
to Definition 1.9.

Definition 2.1. — We say that two triplets of sequences (ε`n, γ
`
n, x

`
n)n∈N with ` be-

longing to {1, 2}, where (ε`n, γ
`
n)n∈N are two sequences of positive real numbers and x`n

are sequences in R3, are orthogonal if, when n tends to infinity,

either ε1
n

ε2
n

+
ε2
n

ε1
n

+
γ1
n

γ2
n

+
γ2
n

γ1
n

−→∞

or (ε1
n, γ

1
n) ≡ (ε2

n, γ
2
n) and |(x1

n)ε
1
n,γ

1
n − (x2

n)ε
1
n,γ

1
n | −→ ∞,

where we have denoted (x`n)ε
k
n,γ

k
n

def
= (x`n,h/ε

k
n, x

`
n,3/γ

k
n).

The cornerstone to the proof of Proposition 1.12 is the following proposition.

Proposition 2.2. — Let (ϕn)n∈N and φ0 belong to B0
2,q for some 0 < q < 1, with (ϕn)

converging to φ0 in the sense of distributions as n goes to infinity. Let p > 2 be
given. For all integers ` > 1 there is a triplet of orthogonal sequences in the sense
of Definition 2.1, denoted by (ε`n, γ

`
n, x

`
n)n∈N and functions φ` in B0

2,q such that up
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to extracting a subsequence, one can write the sequence (ϕn)n∈N under the following
form, for each L > 1:

(2.1) ϕn = φ0 +

L∑
`=1

Λε`n,γ`n,x`nφ
` + ψLn ,

where ψLn satisfies
(2.2) lim sup

n→∞
‖ψLn‖B0

p,1
−→ 0, L −→∞.

Moreover the following stability result holds:
(2.3)

∑
`>1

‖φ`‖B0 . sup
n
‖ϕn‖B0 + ‖φ0‖B0 .

The proof follows word for word the proof of Theorem 3 in [4], up to straightforward
modifications of the indices of the Besov spaces at play.

Remark 2.3. — If two scales appearing in the above decomposition are not orthogonal,
then they can be chosen to be equal. We shall therefore assume from now on that is
the case: two sequences of scales are either orthogonal, or equal.

Remark 2.4. — By density of smooth, compactly supported functions in B0
2,q, one

can write for each integer `
φ` = φ`α + r`α with ‖r`α‖B0,1/2

2,q
6 α,

where φ`α are arbitrarily smooth and compactly supported, and moreover

(2.4)
∑
`>1

(
‖φ`α‖B0 + ‖r`α‖B0

)
. sup

n
‖ϕn‖B0 + ‖ϕ0‖B0 .

2.2. Proof of Proposition 1.12. — The proof of Proposition 1.12 is structured as
follows. First we write down a profile decomposition for any bounded, R-converging
sequence of divergence free vector fields, following the results of the previous section.
Next we reorganize the profile decomposition by grouping together all profiles having
the same horizontal scale and finally we check that all the conclusions of Proposi-
tion 1.12 hold.

2.2.1. Profile decomposition of R-converging divergence free vector fields. — In this sec-
tion we start with the anisotropic profile decomposition of sequences of B0

2,q given in
Proposition 2.2 and we use the assumption of R-convergence (see Definition 1.7) to
eliminate from the profile decomposition all isotropic profiles. Finally we study the
particular case of divergence free vector fields. Under this assumption, we are able to
restrict our attention to (rescaled) vector fields with slow vertical variations.

Let us first prove the following result.

Proposition 2.5. — Let (ϕn) and φ0 belong to B0
2,q for some 0 < q < 1, with (ϕn)

R-converging to φ0 as n goes to infinity. Then with the notation of Proposition 2.2,
the following result holds:

(2.5) ∀ ` > 1, lim
n→∞

(γ`n)−1ε`n ∈ {0,∞}.
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Remark 2.6. — This proposition shows that if one assumes that the weak convergence
is actually an R-convergence, then the only profiles remaining in the decomposition
are those with truly anisotropic horizontal and vertical scales. This eliminates profiles
of the type nφ(nx) and ϕ(· − xn) with |xn| → ∞, for which clearly the conclusion of
Theorem 3 is unknown in general (see the discussion in Section 1).

Proof of Proposition 2.5. — To prove (2.5) we consider the decomposition provided in
Proposition 2.2 and we assume that there is k ∈ N such that (γkn)−1εkn goes to 1 as n
goes to infinity. We rescale the decomposition (2.1) to find, choosing L > k,

εkn(ϕn − ϕ0)(εkn ·+xkn) =

L∑
`=1

Λε`n/εkn,γ`n/εkn,x
`,k
n
φ` + Λ1/εkn,1/ε

k
n,−xkn/εkn ψ

L
n ,

where
x`,kn

def
=

x`n − xkn
εkn

·

Now let us take the weak limit of both sides of the equality as n goes to infinity. By
Definition 1.7 we know that the left-hand side goes weakly to a function depending
only on (x1, x2) (up to an extraction), denoted by ψ̃(x1, x2). Concerning the right-
hand side, we start by noticing that

ε`n
εkn
−→ 0 or ε`n

εkn
−→∞ =⇒ Λε`n/εkn,γ`n/εkn,x

`,k
n
φ` ⇀ 0,

as n tends to infinity, for any value of the sequences γ`n, x`n, and xkn. So we can restrict
the sum on the right-hand side to the case when ε`n/εkn → 1. Then we write similarly

ε`n
γ`n
−→∞ =⇒ Λ1,γ`n/ε

`
n,x

`,k
n
φ` ⇀ 0,

so there only remain indexes ` such that ε`n/γ`n → 0 or 1. Finally we use the fact
that if ε`n/γ`n → 1, then the weak limit of Λ1,x`,kn

φ` can be other than zero only
if x`,kn → a`,k ∈ R3, and similarly if ε`n/γ`n → 0, then the weak limit of Λ1,γ`n/ε

`
n,x

`,k
n
φ`

can be other than zero only if x`,kn,h → a`,kh ∈ R2, and (x`n,3 − xkn,3)/γ`n → a`,k3 ∈ R. So
let us define
S1,L(k)

def
=
{
` | 1 6 ` 6 L, ε`n = εkn, x

`,k
n → a`,k ∈ R3, ε`n/γ

`
n
−1 → 1

}
,

S0,L(k)
def
=
{
` | 1 6 ` 6 L, ε`n = εkn, x

`,k
n,h → a`,kh ∈ R2,

(x`n,3 − xkn,3)/γ`n → a`,k3 ∈ R, ε`n/γ`n → 0
}
.

Actually by orthogonality the set S1,L(k) only contains one element, which is k. So
for each L > 1, as n goes to infinity we have finally

−Λ1/εkn,1/ε
k
n,−xkn/εknψ

L
n ⇀ φk +

∑
`∈S0,L(k)

φ`(·h − a`,kh ,−a`,k3 ) + ψ̃(·h).

Since the left-hand side tends to 0 in B
−1+2/p,1/p
2,1 as L tends to infinity, uniformly

in n ∈ N, we deduce that φk must be independent of x3. That is a contradiction
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since φk belongs to B0. It follows that (γkn)−1εkn goes to 0 or infinity as n goes to
infinity.

The case of divergence free vector fields. — Putting together Propositions 2.2 and 2.5
along with Remark 2.4 and the fact that u0,n is divergence free we obtain the following
result.

Proposition 2.7. — Under the assumptions of Theorem 3, the following holds. Let
p > 2 be given. For all integers ` > 1 there is a triplet of orthogonal sequences in
the sense of Definition 1.9, denoted by (ε`n, γ

`
n, x

`
n)n∈N and for all α in ]0, 1[ there

are arbitrarily smooth divergence free vector fields (φ̃h,`α , 0) and (−∇h∆−1
h ∂3φ

`
α, φ

`
α)

with φ̃h,`α and φ`α compactly supported, and such that up to extracting a subsequence,
one can write the sequence (u0,n)n∈N under the following form, for each L > 1:

(2.6) u0,n = u0 +

L∑
`=1

Λε`n,γ`n,x`n

(
φ̃h,`
α + r̃h,`

α −
ε`n
γ`n
∇h∆−1

h ∂3(φ`α + r`α), φ`α + r`α

)
+
(
ψ̃h,L
n −∇h∆−1

h ∂3ψ
L
n , ψ

L
n

)
,

where ψ̃h,L
n and ψLn are independent of α and satisfy

(2.7) lim sup
n→∞

(
‖ψ̃h,L

n ‖B0
p,1

+ ‖ψLn‖B0
p,1

)
−→ 0, as L −→∞,

while r̃h,`
α and r`α are independent of n and L and satisfy for each ` ∈ N

(2.8) ‖r̃h,`
α ‖B0 + ‖r`α‖B0 6 α.

Moreover the following properties hold:

(2.9)
∀ ` > 1, lim

n→∞
(γ`n)−1ε`n ∈ {0,∞},

and lim
n→∞

(γ`n)−1ε`n =∞ =⇒ φ`α ≡ r`α ≡ 0,

as well as the following stability result, which is uniform in α:

(2.10)
∑
`>1

(
‖φ̃h,`

α ‖B0 + ‖r̃h,`
α ‖B0 + ‖φ`α‖B0 + ‖r`α‖B0

)
. sup

n
‖u0,n‖B0 + ‖u0‖B0 .

Proof of Proposition 2.7. — First we decompose the third component u3
0,n according

to Proposition 2.2 and Remark 2.4: with the above notation, this gives rise to

(2.11) u3
0,n = u3

0 +

L∑
`=1

Λε`n,γ`n,x`n
(
φ`α + r`α

)
+ ψLn ,

with lim supn→∞ ‖ψLn‖B0
p,1

L→∞−→ 0. Moreover thanks to Proposition 2.5, we know that
for all ` > 1,

lim
n→∞

(γ`n)−1ε`n ∈ {0,∞}.
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Next thanks to the divergence-free assumption we recover the profile decomposition
for uh

0,n. Indeed there is a two-component, divergence-free vector field ∇h⊥C0,n such
that

uh
0,n = ∇h⊥C0,n −∇h∆−1

h ∂3u
3
0,n,

where ∇h⊥ = (−∂1, ∂2), and some function ϕ such that

uh
0 = ∇h⊥ϕ−∇h∆−1

h ∂3u
3
0.

Now since ∂3u
3
0,n = −divh u

h
0,n and uh

0,n is bounded in B0
2,q, we deduce that ∇h⊥C0,n

is a bounded sequence in B0
2,q and similarly for∇h⊥ϕ. Thus, applying again the profile

decomposition of Proposition 2.2 and Remark 2.4, we get

(2.12) ∇h⊥C0,n −∇⊥h ϕ =

L∑
`=1

Λε̃`n,γ̃`n,x̃`n
(
φ̃h,`
α + r̃h,`

α

)
+ ψ̃h,L

n

with lim supn→∞ ‖ψ̃h,L
n ‖B−1+2/p,1/p

2,1

L→∞−→ 0 and ‖r̃h,`
α ‖B0 6 α. Moreover Proposition

2.5 ensures that for all ` > 1, we have limn→∞ (γ̃`n)−1ε̃`n ∈ {0,∞}.
Finally, by the divergence free assumption, u3

0,n is bounded in B−1,3/2
2,q which im-

plies that necessarily φ`α ≡ r`α ≡ 0 in the case when limn→∞ (γ`n)−1ε`n = ∞ (see
[4, Lem. 5.4]). Up to relabelling the various sequences appearing in (2.11) and (2.12),
Proposition 2.7 follows. �

2.2.2. Regrouping of profiles according to horizontal scales. — With the notation of
Proposition 2.7, let us define the following scales: ε0

n ≡ γ0
n ≡ 1, and x0

n ≡ 0, so
that u0 ≡ Λε0n,γ0

n,x
0
n
u0.

In order to proceed with the re-organization of the profile decomposition provided
in Proposition 2.7, we introduce some more definitions, keeping the notation of Propo-
sition 2.7. For a given L > 1 we define recursively an increasing (finite) sequence of
indexes `k ∈ {1, . . . , L} by

`0
def
= 0,

`k+1
def
= min

{
` ∈ {`k + 1, . . . , L} | ε`n/γ`n → 0 and ` /∈

⋃k
k′=0 ΓL(ε

`k′
n )
}
,

(2.13)

where for 0 6 ` 6 L, we define ΓL(ε`n) as the set of all indices having the same hori-
zontal scale ε`n, namely (recalling that by Remark 2.3 if two scales are not orthogonal,
then they are equal)

(2.14) ΓL(ε`n)
def
=
{
`′ ∈ {1, . . . , L} | ε`′n ≡ ε`n and ε`

′

n (γ`
′

n )−1 → 0, n→∞
}
.

We call L (L) the largest index of the sequence (`k) and we may then introduce the
following partition:

(2.15)
{
` ∈ {1, . . . , L} | ε`n(γ`n)−1 → 0

}
=

L (L)⋃
k=0

ΓL(ε`kn ).

We shall now regroup profiles in the decomposition (2.6) of u0,n according to the value
of their horizontal scale. We fix from now on an integer L > 1.
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Construction of the profiles for ` = 0. — Before going into the technical details of the
construction, let us discuss an example explaining the computations of this paragraph.
Consider the particular case when u0,n is given by

u0,n(x) = u0(x) +
(
v0

0(xh, 2
−nx3) +w0,h

0 (xh, 2
−2nx3), 0

)
+
(
v0

0(x1 +n, x2, 2
−nx3), 0

)
,

with v0
0 and w0,h

0 smooth (say in Bs,s
′

1,q for all s, s′ in R) and compactly supported.
Recall that the notation v for a vector field always stands for a two component vector
field. Let us assume that (u0,n)n∈N R-converges to u0, as n tends to infinity. Then we
can write

u0,n(x) = u0(x) +
(
v0,loc

0,n (xh, 2
−nx3), 0

)
+
(
v0,∞

0,n (xh, 2
−nx3), 0

)
,

with v0,loc
0,n (y)

def
= v0

0(y) + w0,h
0 (yh, 2

−ny3) and v0,∞
0,n (y) = v0

0(y1 + n, y2, y3). We notice
that v0,loc

0,n and v0,∞
0,n are uniformly bounded in B0, but also in Bs,s

′

2,1 for any s in R
and s′ > 1/2.

Moreover since u0,n ⇀ u0, we have v0
0(xh, 0)+wh

0 (xh, 0) ≡ 0, hence v0,loc
0,n (xh, 0) = 0.

The initial data u0,n has therefore been re-written as

u0,n(x) = u0(x)+
(
v0,loc

0,n (xh, 2
−nx3), 0

)
+
(
v0,∞

0,n (xh, 2
−nx3), 0

)
with v0,loc

0,n (xh, 0) = 0

and where the support in xh of v0,loc
0,n (xh, 2

−nx3) is in a fixed compact set whereas the
support in xh of v0,∞

0,n (xh, 2
−nx3) escapes to infinity. This is of the same form as in

the statement of Proposition 1.12.
When considering all the profiles having the same horizontal scale (1 here), the

point is therefore to choose the smallest vertical scale (2n here) and to write the
decomposition in terms of that scale only. Of course that implies that contrary to
usual profile decompositions, the profiles are no longer fixed functions in B0, but
sequences of functions, bounded in B0.

In view of the above example, let `−0 be an integer such that γ`
−
0
n is the smallest

vertical scale going to infinity, associated with profiles for 1 6 ` 6 L, having 1 for
horizontal scale. More precisely we ask that

γ
`−0
n = min

`∈ΓL(1)
γ`n,

where according to (2.14),

ΓL(1) =
{
`′ ∈ {1, . . . , L} | ε`′n ≡ 1 and γ`

′

n →∞, n→∞
}
.

Notice that the minimum of the sequences γ`n is well defined in our context thanks
to the fact that due to Remark 2.3, either two sequences are orthogonal in the sense
of Definition 1.9, or they are equal. Remark also that `−0 is by no means unique, as
several profiles may have the same horizontal scale as well as the same vertical scale
(in which case the concentration cores must be orthogonal).

Now we denote

(2.16) h0
n

def
= (γ

`−0
n )−1,
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and we notice that h0
n goes to zero as n goes to infinity for each L. Note also that h0

n

depends on L through the choice of `−0 , since if L increases then `−0 may also increase;
this dependence is omitted in the notation for simplicity. Let us define (up to a
subsequence extraction)

(2.17) a`
def
= lim

n→∞
(x`n,h, x

`
n,3/γ

`
n).

We then define the divergence-free vector fields

(2.18) v0,loc,h
0,n,α,L(y)

def
=

∑
`∈ΓL(1)

a`h∈R
2

φ̃h,`α

(
yh − x`n,h,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)

and

(2.19)
w0,loc

0,n,α,L(y)
def
=

∑
`∈ΓL(1)

a`h∈R
2

(
− 1

h0
nγ

`
n

∇h∆−1
h ∂3φ

`
α, φ

`
α

)(
yh − x`n,h,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)
.

By construction we have

w0,loc,h
0,n,α,L = −∇h∆−1

h ∂3w
0,loc,3
0,n,α,L.

Similarly we define

(2.20) v0,∞,h
0,n,α,L(y)

def
=

∑
`∈ΓL(1)

|a`h|=∞

φ̃h,`α

(
yh − x`n,h,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)

and

(2.21)
w0,∞

0,n,α,L(y)
def
=

∑
`∈ΓL(1)

|a`h|=∞

(
− 1

h0
nγ

`
n

∇h∆−1
h ∂3φ

`
α, φ

`
α

)(
yh − x`n,h,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)
.

By construction we have again

w0,∞,h
0,n,α,L = −∇h∆−1

h ∂3w
0,∞,3
0,n,α,L.

Moreover recalling the notation[
f ]h0

n
(x)

def
= f(xh, h

0
nx3)

and
Λεn,γn,xnφ(x)

def
=

1

εn
φ
(xh − xn,h

εn
,
x3 − xn,3

γn

)
,

one can compute that

(2.22)
∑

`∈ΓL(1)

a`h∈R
2

Λ1,γ`n,x
`
n

(
φ̃h,`α −

1

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
=
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n
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and

(2.23)
∑

`∈ΓL(1)

|a`h|=∞

Λ1,γ`n,x
`
n

(
φ̃h,`α −

1

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
=
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0
n
.

Let us now check that v0,loc,h
0,n,α,L, w

0,loc
0,n,α,L, v

0,∞,h
0,n,α,L and w0,∞

0,n,α,L satisfy the bounds given
in the statement of Proposition 1.12. We shall only study v0,loc,h

0,n,α,L and w0,loc
0,n,α,L as the

other study is very similar. On the one hand, by translation and scale invariance
of B0,1/2

2,1 and using definitions (2.18) and (2.19), we get

(2.24) ‖v0,loc,h
0,n,α,L‖B0 6

∑
`>1

‖φ̃h,`α ‖B0 and ‖w0,loc,3
0,n,α,L‖B0 6

∑
`>1

‖φ`α‖B0 .

By (2.10), we infer that

(2.25) ‖v0,loc,h
0,n,α,L‖B0 + ‖w0,loc,3

0,n,α,L‖B0 6 C uniformly in α,L, n.

Moreover for each given α, the profiles are as smooth as needed, and since in the
above sums by construction γ`

−
0

n,L 6 γ
`
n, one gets also after an easy computation

(2.26) ∀ s ∈ R,∀ s′ > 1/2, ‖v0,loc,h
0,n,α,L‖Bs,s′2,q

+‖v0,loc
0,n,α,L‖Bs,s′2,q

6C(α) uniformly in n,L.

Estimates (2.25) and (2.26) give easily (1.18) and (1.19).

Finally let us estimate v0,loc,h
0,n,α,L(·, 0) and w0,loc,3

0,n,α,L(·, 0) in B0
2,1(R2) and prove (1.20).

On the one hand by assumption we know that u0,n ⇀ u0 in the sense of distributions.
On the other hand we can take weak limits in the decomposition of u0,n provided by
Proposition 2.7. We recall that by (2.9), if ε`n/γ`n → ∞ then φ`α ≡ r`α ≡ 0. Then we
notice that clearly

ε`n → 0 or ε`n →∞ =⇒ Λε`n,γ`n,x`nf ⇀ 0

for any value of the sequences γ`n, x`n and any function f . Moreover

γ`n → 0 =⇒ Λ1,γ`n,x
`
n
f ⇀ 0

for any sequence of cores x`n and any function f , so we are left with the study of
profiles such that ε`n ≡ 1 and γ`n → ∞. Then we also notice that if γ`n → ∞, then
with Notation (2.17),

(2.27) |a`h| =∞ =⇒ Λ1,γ`n,x
`
n
f ⇀ 0.
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Consequently for each L > 1 and each α in ]0, 1[, we have in view of (2.11) and (2.12),
as n goes to infinity

u3
0,n − ψLn −

∑
`∈ΓL(1)

r`α

(
· − x`n,h,

· − x`n,3
γ`n

)
⇀ u3

0 +
∑

`∈ΓL(1)

s.t. a`h∈R
2

φ`α(· − a`h, 0)

∇⊥hC0,n − ψ̃h,Ln −
∑

`∈ΓL(1)

r̃h,`α

(
· − x`n,h,

· − x`n,3
γ`n

)
⇀ ∇⊥h ϕ+

∑
`∈ΓL(1)

s.t. a`h∈R
2

φh,`
α (· − a`h, 0).

By hypothesis the sequence (u3
0,n)n∈N converges weakly to u3

0 and the sequence
(∇⊥hC0,n)n∈N converges weakly to ∇⊥h ϕ, so for each L > 1 and all α in ]0, 1[, we have
as n goes to infinity

(2.28)

−ψLn −
∑

`∈ΓL(1)

r`α

(
· − x`n,h,

· − x`n,3
γ`n

)
⇀

∑
`∈ΓL(1)

s.t. a`h∈R
2

φ`α(· − a`h, 0)

−ψ̃h,Ln −
∑

`∈ΓL(1)

r̃h,`α

(
· − x`n,h,

· − x`n,3
γ`n

)
⇀

∑
`∈ΓL(1)

s.t. a`h∈R
2

φ̃h,`α (· − a`h, 0).

Now let η > 0 be given. Then thanks to (2.7) and (2.8), there is L0 > 1 such that for
all L > L0 there is α0 6 1 (depending on L) such that for all L > L0 and α 6 α0,
uniformly in n ∈ N∥∥∥(ψ̃h,L

n , ψLn
)∥∥∥

B0
+
∥∥∥ ∑
`∈ΓL(1)

(r̃h,`α , r`α)
(
· − x`n,h,

· − x`n,3
γ`n

)∥∥∥
B0
6 η.

Using the fact that B0 is embedded in L∞(R;B0
2,1(R2)), we infer from (2.28) that

for L > L0 and α 6 α0

(2.29)
∥∥∥ ∑
`∈ΓL(1)

s.t. a`h∈R
2

φ̃h,`α (· − a`h, 0)
∥∥∥
B0

2,1(R2)
6 η

and

(2.30)
∥∥∥ ∑
`∈ΓL(1)

s.t. a`h∈R
2

φ`α(· − a`h, 0)
∥∥∥
B0

2,1(R2)
6 η.

But by (2.18), we have

v0,loc,h
0,n,α,L(·, 0) =

∑
`∈ΓL(1)

a`h∈R
2

φ̃h,`α

(
· −x`n,h,−

x`n,3
γ`n

)
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and by (2.19) we have also

w0,loc,3
0,n,α,L(·, 0) =

∑
`∈ΓL(1)

a`h∈R
2

φ`α

(
· −x`n,h,−

x`n,3
γ`n

)
.

It follows that we can write for all L > L0 and α 6 α0,

lim sup
n→∞

∥∥v0,loc,h
0,n,α,L(·, 0)

∥∥
B0

2,1(R2)
6

∥∥∥∥ ∑
`∈ΓL(1)

a`h∈R
2

φ̃h,`α (· − a`h, 0)

∥∥∥∥
B0

2,1(R2)

6 η

thanks to (2.29). A similar estimate for w0,loc,3
0,n,α,L(·, 0) using (2.30) gives finally

(2.31) lim
L→∞

lim
α→0

lim sup
n→∞

(∥∥v0,loc,h
0,n,α,L(·, 0)

∥∥
B0

2,1(R2)
+
∥∥w0,loc,3

0,n,α,L(·, 0)
∥∥
B0

2,1(R2)

)
= 0.

The results (1.21) and (1.22) involving the cut-off function θ are simply due to the
fact that the profiles are compactly supported.

Construction of the profiles for ` > 1. — The construction is very similar to the previ-
ous one. We start by considering a fixed integer j ∈ {1, . . . ,L (L)}.

Then we define an integer `−j so that, up to a sequence extraction,

γ
`−j
n = min

`∈ΓL(ε
`j
n )

γ`n,

where as in (2.14)

ΓL(ε`n)
def
=
{
`′ ∈ {1, . . . , L} | ε`′n ≡ ε`n and ε`

′

n (γ`
′

n )−1 → 0, n→∞
}
.

Notice that necessarily ε`
−
j 6≡ 1. Finally we define

hjn
def
= ε`jn (γ

`−j
n )−1.

By construction we have that hjn → 0 as n → ∞ (recall that ε`jn ≡ ε
`−j
n ). Then we

define for j 6 L (L)

(2.32) vj,hn,α,L(y)
def
=

∑
`∈ΓL(ε

`j
n )

φ̃h,`α

(
yh −

x`n,h

ε
`j
n

,
ε
`j
n

hjnγ`n
y3 −

x`n,3
γ`n

)
and

wjn,α,L(y)
def
=

∑
`∈ΓL(ε

`j
n )

(
− ε

`j
n

hjnγ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)(
yh −

x`n,h

ε
`j
n

,
ε
`j
n

hjnγ`n
y3 −

x`n,3
γ`n

)
and we choose

(2.33) L (L) < j 6 L =⇒ vj,hn,α,L ≡ 0 and wjn,α,L ≡ 0.

We notice that
wj,hn,α,L = −∇h∆−1

h ∂3w
j,3
n,α,L.

J.É.P. — M., 2018, tome 5



On the stability of global solutions to the Navier-Stokes equations 871

Defining
λjn

def
= ε`jn ,

a computation, similar to that giving (2.22) implies directly that

(2.34)
∑

`∈ΓL(ε
`j
n )

Λ
ε
`j
n ,γ`n,x

`
n

(
φ̃h,`α −

λjn
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
= Λλjn

[
(vj,hn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn
.

Notice that since ε`jn 6≡ 1 as recalled above, we have that λjn → 0 or ∞ as n→∞.
The a priori bounds for the profiles (vj,hn,α,L, w

j,3
n,α,L)16j6L are obtained exactly as

in the previous paragraph: let us prove that

(2.35)

∑
j>1

(
‖vj,hn,α,L‖B0

2,q
+ ‖wj,3n,α,L‖B0

2,q

)
6 C, and

∀ s ∈ R, ∀ s′ > 1/2,
∑
j>1

(
‖vj,hn,α,L‖Bs,s′2,q

+ ‖wj,3n,α,L‖Bs,s′2,q

)
6 C(α).

We shall detail the argument for the first inequality only, and in the case of vj,hn,α,L as
the study of wj,3n,α,L is similar. We write, using the definition of vj,hn,α,L in (2.32),

L∑
j=1

‖vj,hn,α,L‖B0,1/2
2,q

=

L (L)∑
j=1

∥∥∥∥ ∑
`∈ΓL(ε

`j
n )

φ̃h,`α

(
yh −

x`n,h

ε
`j
n

,
ε
`j
n

hjnγ`n
y3 −

x`n,3
γ`n

)∥∥∥∥
B

0,1/2
2,q

,

so by definition of the partition (2.15) and by scale and translation invariance of B0,1/2
2,q

we find thanks to (2.10), that there is a constant C independent of L such that
L∑
j=1

‖vj,hn,α,L‖B0,1/2
2,q

6
L∑
`=1

‖φ̃h,`α ‖B0,1/2
2,q

6 C.

The result is proved.

Construction of the remainder term. — With the notation of Proposition 2.7, let us
first define the remainder terms

(2.36) ρ̃
(1),h
n,α,L

def
= −

L∑
`=1

ε`n
γ`n

Λε`n,γ`n,x`n∇
h∆−1

h ∂3r
`
α −∇h∆−1

h ∂3ψ
L
n

and

(2.37) ρ
(2)
n,α,L

def
=

L∑
`=1

Λε`n,γ`n,x`n
(
r̃h,`α , 0

)
+

L∑
`=1

Λε`n,γ`n,x`n(0, r`α) +
(
ψ̃h,Ln , ψLn

)
.

Observe that by construction, thanks to (2.2) and (2.8) and to the fact that if r`α 6≡ 0,
then ε`n/γ`n goes to zero as n goes to infinity, we have

(2.38)
lim
L→∞

lim
α→0

lim sup
n→∞

‖ρ̃(1),h
α,n,L‖B2/p,−1+1/p

p,1
= 0,

and lim
L→∞

lim
α→0

lim sup
n→∞

‖ρ(2)
α,n,L‖B−1+2/p,1/p

p,1
= 0.
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Then we notice that for each ` ∈ N and each α ∈ ]0, 1[, we have by a direct compu-
tation ∥∥∥Λε`n,γ`n,x`n(φ̃h,`α , 0)

∥∥∥
B1,−1/2

∼
(
γ`n/ε

`
n

)1/2∥∥φ̃h,`α ∥∥B1,−1/2 .

We deduce that if ε`n/γ`n → ∞, then Λε`n,γ`n,x̃`n(φ̃h,`α , 0) goes to zero in B1,−1/2 as n
goes to infinity, hence so does the sum over ` ∈ {1, . . . , L}. It follows that for each
given α in ]0, 1[ and L > 1 we may define

ρ
(1)
n,α,L

def
= ρ̃

(1),h
n,α,L +

L∑
`=1

ε`n/γ
`
n→∞

Λε`n,γ`n,x`n(φ̃h,`α , 0)

and we have

(2.39) lim
L→∞

lim
α→0

lim sup
n→∞

‖ρ(1)
n,α,L‖B2/p,−1+1/p

p,1
= 0.

Finally, as the space D(R3) is dense in B0, let us choose a family (u0,α)α of functions
in D(R3) such that ‖u0 − u0,α‖B0 6 α and let us define

(2.40) ρn,α,L
def
= ρ

(1)
α,n,L + ρ

(2)
n,α,L + u0 − u0,α.

Inequalities (2.38) and (2.39) give

(2.41) lim
L→∞

lim
α→0

lim sup
n→∞

‖et∆ρn,α,L‖L2(R+;B1
p) = 0.

2.2.3. End of the proof of Proposition 1.12. — Let us return to the decomposition given
in Proposition 2.7, and use definitions (2.36), (2.37) and (2.40) which imply that

u0,n = u0,α +

L∑
`=1

ε`n/γ
`
n→0

Λε`n,γ`n,x`n

(
φ̃h,`α −

ε`n
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L.

We recall that for all ` in N, we have limn→∞ (γ`n)−1ε`n ∈ {0,∞} and in the case
where the ratio ε`n/γ`n goes to infinity then φ`α ≡ 0. Next we separate the case when
the horizontal scale is one, from the others: with the notation (2.14) we write

u0,n = u0,α +
∑

`∈ΓL(1)

Λ1,γ`n,x
`
n

(
φ̃h,`α −

1

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)

+

L∑
`=1
ε`n 6≡1

ε`n/γ
`
n→0

Λε`n,γ`n,x`n

(
φ̃h,`α −

ε`n
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L.
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With (2.22) this can be written

u0,n = u0,α +
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n

+
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0
n

+
∑
`=1
ε`n 6≡1

ε`n/γ
`
n→0

Λε`n,γ`n,x`n

(
φ̃h,`α −

ε`n
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L.

Next we use the partition (2.15), so that with notation (2.13) and (2.14),

u0,n = u0,α +
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n

+
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0
n

+

L (L)∑
j=1

∑
`∈ΓL(ε

`j
n )

ε
`j
n 6≡1

Λ
ε
`j
n ,γ`n,x

`
n

(
φ̃h,`α −

ε
`j
n

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L.

Then we finally use the identity (2.34) which gives

(2.42) u0,n = u0,α +
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n

+
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0
n

+

L∑
j=1

Λλjn [(vj,hn,α,L + hjnw
j,h
n,α,L, w

j,3
n,α,L)]hjn + ρn,α,L.

The end of the proof follows from the estimates (2.25), (2.26), (2.31), (2.35), along
with (2.41). Proposition 1.12 is proved. �

3. Propagation of profiles: proof of Theorem 4

The goal of this section is the proof of Theorem 4. Let us consider (v0, w
3
0) satisfying

the assumptions of that theorem. In order to prove that the initial data defined by

Φ0
def
=
[
(v0 − β∇h∆−1

h ∂3w
3
0, w

3
0)
]
β

generates a global smooth solution for small enough β, let us look for the solution
under the form

(3.1) Φβ = Φapp + ψ with Φapp def
=
[
(v + βwh, w3)

]
β
,

where v solves the two-dimensional Navier-Stokes equations

(NS2D)x3


∂tv + v · ∇hv −∆hv = −∇hp in R+ × R2

divh v = 0

v|t=0 = v0(·, x3),
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while w3 solves the transport-diffusion equation

(Tβ)

{
∂tw

3 + v · ∇hw3 −∆hw
3 − β2∂2

3w
3 = 0 in R+ × R3

w3
|t=0 = w3

0

and wh is determined by the divergence free condition on w which gives wh def
=

−∇h∆−1
h ∂3w

3.
In Section 3.1 (resp. 3.2), we prove a priori estimates on v (resp. w), and Section 3.3

is devoted to the conclusion of the proof of Theorem 4, studying the perturbed Navier-
Stokes equation satisfied by ψ.

Before starting the proof we recall the following definitions of space-time norms,
first introduced by J.-Y.Chemin and N. Lerner in [17], and which are very useful in
the context of the Navier-Stokes equations:

(3.2) ‖f‖
L̃r([0,T ];Bs,s

′
p,q )

def
=
∥∥2ks+js

′
‖∆h

k∆v
j f‖Lr([0,T ];Lp)

∥∥
`q
.

Notice that of course L̃r([0, T ];Bs,s
′

p,r ) = Lr([0, T ];Bs,s
′

p,r ), and by Minkowski’s inequal-
ity, we have the embedding L̃r([0, T ];Bs,s

′

p,q ) ⊂ Lr([0, T ];Bs,s
′

p,q ) if r > q.

3.1. Two dimensional flows with parameter. — Let us prove the following result
on v, the solution of (NS2D)x3 . We shall use the notation introduced in Definitions 1.10
and 1.13.

Proposition 3.1. — Let v0 be a two-component divergence free vector field depending
on the vertical variable x3, and belonging to Sµ. Then the unique, global solution v

to (NS2D)x3 belongs to A 0 and satisfies the following estimate:

(3.3) ‖v‖A 0 6 T1(‖v0‖B0).

Moreover, for all (s, s′) in Dµ, we have

(3.4) ∀ r ∈ [1,∞], ‖v‖
L̃r(R+;Bs+ 2

r
,s′ )
6 T∞(‖v0‖Sµ).

Proof. — This proposition is a result about the regularity of the solution of (NS2D)

when the initial data depends on a real parameter x3, measured in terms of Besov
spaces with respect to the variable x3. Its proof is structured as follows. First, we de-
duce from the classical energy estimate for the two dimensional Navier-Stokes system,
a stability result in the spaces Lr(R+;Hs+2/r(R2)) with r in [2,∞] and s in ]− 1, 1[.
This is the purpose of Lemma 3.2, the proof of which uses essentially energy estimates
together with paraproduct laws.

Then we have to translate the stability result of Lemma 3.2 in terms of Besov
spaces with respect to the third variable (seen before simply as a parameter), namely
by propagating the vertical regularity. First of all, this requires to deduce from the
stability in the spaces Lr(R+;Hs+2/r(R2)) with r in [2,∞], the fact that the vector
field v, now seen as a function of three variables, belongs to Lr(R+;L∞v (Hs+2/r(R2))

again for r in [2,∞]. This is the purpose of Lemma 3.3, the proof of which relies on
the equivalence of two definitions of Besov spaces with regularity index in ]0, 1[: the
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first one involving the dyadic decomposition of the frequency space, and the other
one consisting in estimating integrals in physical space.

Finally for s in ]− 1
2 ,

1
2 [ and s′ > 0 a Gronwall type lemma enables us to propagate

the regularities. When s′ > 1/2 product laws enable us to gain horizontal regularity
up to ]− 2, 1[ and to conclude the proof of Proposition 3.1.

Let us state and prove the first lemma in this proof.

Lemma 3.2. — For any compact set I included in ] − 1, 1[, a constant C exists such
that, for any r in [2,∞] and any s in I, we have for any two solutions v1 and v2 of
the two-dimensional Navier-Stokes equations

(3.5) ‖v1 − v2‖Lr(R+;Hs+2/r(R2)) . ‖v1(0)− v2(0)‖Hs(R2)E12(0),

where we define

E12(0)
def
= expC

(
‖v1(0)‖2L2 + ‖v2(0)‖2L2

)
.

Proof. — In the proof of this lemma, all the functional spaces are over R2 and we no
longer mention this fact in notations. Moreover, the constant which appears in the
definition of E12(0) can change along the proof. Defining v12(t)

def
= v1(t) − v2(t), we

get

∂tv12 + v2 · ∇hv12 −∆hv12 = −v12 · ∇hv1 −∇hp.(3.6)

In order to establish (3.5), we shall resort to an energy estimate making use of product
laws and of the following estimate proved in [12, Lem. 1.1]:

(3.7)
(
v · ∇ha|a

)
Hs
. ‖∇hv‖L2‖a‖Hs‖∇ha‖Hs ,

available uniformly for any s in [−2 + µ, 1− µ].
Let us notice that thanks to the divergence free condition, taking the Hs scalar

product with v12 in Equation (3.6) implies that

1

2

d

dt
‖v12(t)‖2Hs + ‖∇hv12(t)‖2Hs

= −
(
v2(t) · ∇hv12(t)|v12(t)

)
Hs
−
(
v12(t) · ∇hv1(t)|v12(t)

)
Hs
.

Whence, by time integration we get

‖v12(t)‖2Hs + 2

∫ t

0

‖∇hv12(t′)‖2Hs dt′ = ‖v12(0)‖2Hs

− 2

∫ t

0

(
v2(t′) · ∇hv12(t′)|v12(t′)

)
Hs

dt′ − 2

∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hs

dt′.
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Now using Estimate (3.7), we deduce that there is a positive constant C such that
for any s in I, we have

(3.8)

2

∣∣∣∣∫ t

0

(
v2(t′) · ∇hv12(t′)|v12(t′)

)
Hs

dt′
∣∣∣∣

6 C
∫ t

0

‖v12(t′)‖Hs‖∇hv2(t′)‖L2‖∇hv12(t′)‖Hs dt′

6
1

2

∫ t

0

‖∇hv12(t′)‖2Hs dt′ +
C2

2

∫ t

0

‖v12(t′)‖2Hs‖∇hv2(t′)‖2L2 dt′.

Noticing that∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hs

dt′ 6
∫ t

0

‖∇hv12(t′)‖Hs‖v12(t′) · ∇hv1(t′)‖Hs−1 dt′,

we deduce by Cauchy-Schwarz inequality and product laws in Sobolev spaces on R2

that as long as s is in ]0, 1[,

(3.9)

2

∣∣∣∣∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hs

dt′
∣∣∣∣

6 C
∫ t

0

‖∇hv12(t′)‖Hs‖v12(t′)‖Hs‖∇hv1(t′)‖L2 dt′

6
1

2

∫ t

0

‖∇hv12(t′)‖2Hs dt′ +
C2

2

∫ t

0

‖v12(t′)‖2Hs‖∇hv1(t′)‖2L2 dt′.

When s = 0 we simply write, by product laws and interpolation,

(3.10)

2

∣∣∣∣∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
L2 dt

′
∣∣∣∣

6 C
∫ t

0

‖v12(t′)‖H1/2‖v12(t′) · ∇hv1(t′)‖H−1/2 dt′

6
1

2

∫ t

0

‖∇hv12(t′)‖2L2 dt′ +
C2

2

∫ t

0

‖v12(t′)‖2L2‖∇hv1(t′)‖2L2 dt′.

Finally in the case when s belongs to ]− 1, 0[, we have

(3.11)

2

∣∣∣∣∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hs

dt′
∣∣∣∣

6 C
∫ t

0

‖v12(t′)‖Hs‖v12(t′) · ∇hv1(t′)‖Hs dt′

6
1

2

∫ t

0

‖∇hv12(t′)‖2Hs dt′ +
C2

2

∫ t

0

‖v12(t′)‖2Hs‖∇hv1(t′)‖2L2 dt′.

Combining (3.8) and (3.9)-(3.11), we infer that for s in ]− 1, 1[,

‖v12(t)‖2Hs +

∫ t

0

‖∇hv12(t′)‖2Hs dt′

. ‖v12(0)‖2Hs +

∫ t

0

‖v12(t′)‖2Hs
(
‖∇hv1(t′)‖2L2 + ‖∇hv2(t′)‖2L2

)
dt′.
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Gronwall’s lemma implies that there exists a positive constant C such that

‖v12(t)‖2Hs +

∫ t

0

‖∇hv12(t′)‖2Hs dt′

. ‖v12(0)‖2Hs expC

∫ t

0

(
‖∇hv1(t′)‖2L2 + ‖∇hv2(t′)‖2L2

)
dt′.

But for any i in {1, 2}, we have by the classical L2 energy estimate

(3.12)
∫ t

0

‖∇hvi(t
′)‖2L2 dt′ 6

1

2
‖vi(0)‖2L2 .

Consequently for s in ]− 1, 1[,

‖v12(t)‖2Hs +

∫ t

0

‖∇hv12(t′)‖2Hs dt′ . ‖v12(0)‖2Hs E12(0),

which leads to the result by interpolation. Lemma 3.2 is proved. �

Using Lemma 3.2, we are going to establish the following result, which will be of
great help to control all norms of v of the type L̃r(R+; B2/r) for r in [4,∞] thanks
to a Gronwall type argument.

Lemma 3.3. — For any compact set I included in ] − 1, 1[, a constant C exists such
that, for any r in [2,∞] and any s in I, we have for any solution v to (NS2D)x3 ,

‖v‖
Lr(R+;L∞v (H

s+2/r
h ))

. ‖v0‖BsE(0) with E(0)
def
= exp

(
C‖v(0)‖2L∞v L2

h

)
.

Proof. — We shall use the characterization of Besov spaces via differences in physical
space: as is well-known (see for instance [2, Th. 2.36]), for any Banach space X of
distributions one has

(3.13)
∥∥(2j/2‖∆v

ju‖L2
v(X)

)
j

∥∥
`1(Z)

∼
∫
R

‖u− (τ−zu)‖L2
v(X)

|z|1/2
dz

|z|
,

where the translation operator τ−z is defined by

(τ−zf)(t, xh, x3)
def
= f(t, xh, x3 + z).

The above Lemma 3.2 implies in particular that, for any r in [2,∞], any s in I and
any pair (x3, z) in R2, if v solves (NS2D)x3

then

‖v − τ−zv‖Y sr . ‖v0 − τ−zv0‖HshE(0) with Y sr
def
= Lr(R+;H

s+2/r
h ).

Taking the L2 norm of the above inequality with respect to the x3 variable and then
the L1 norm with respect to the measure |z|−3/2dz gives

(3.14)
∫
R

‖v − τ−zv‖L2
v(Y sr )

|z|1/2
dz

|z|
.
∫
R

‖v0 − τ−zv0‖L2
v(Hsh)

|z|1/2
dz

|z|
E(0).

Returning to the characterization (3.13)) with X = Y sr , we find that∫
R

‖v − τ−zv‖L2
v(Y sr )

|z|1/2
dz

|z|
∼
∑
j∈Z

2j/2
∥∥∥∥∥(2k(s+2/r)∆v

j∆h
kv(t, ·, z)

)
k

∥∥
Lr(R+;`2(Z;L2

h))

∥∥∥
L2

v

.
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Similarly we have∫
R

‖v0 − τ−zv0‖L2
v(Hsh)

|z|1/2
dz

|z|
∼
∑
j∈Z

2j/2
∥∥(2ks‖∆v

j∆h
kv0‖L2

h

)
k

∥∥
`2(Z;L2

v)
,

so by the embedding from `1(Z) to `2(Z), we get∫
R

‖v0 − τ−zv0‖L2
v(Hsh)

|z|1/2
dz

|z|
.

∑
(j,k)∈Z2

2j/22ks‖∆v
j∆h

kv0‖L2(R3).

Therefore, we deduce from Estimate (3.14) that∑
j∈Z

2j/2
∥∥∥∥∥(2k(s+2/r)∆v

j∆h
kv(t, ·, z)

)
k

∥∥
Lr(R+;`2(Z;L2

h))

∥∥∥
L2

v

. ‖v0‖Bs E(0).

As r > 2, Minkowski’s inequality implies that∑
j∈Z

2j/2
∥∥∥∥∥(2k(s+2/r)∆v

j∆h
kv(t, ·)

)
k

∥∥
`2(Z;L2)

∥∥∥
Lr(R+)

. ‖v0‖Bs E(0).

Bernstein’s inequality as stated in Lemma A.1 implies that

‖∆v
j∆h

kv(t, ·)‖L∞v (L2
h) . 2j/2‖∆v

j∆h
kv(t, ·)‖L2 ,

thus we infer that∥∥∥∥∥(2k(s+2/r)‖∆h
kv‖L∞v (L2

h)

)
k

∥∥
`2(Z)

∥∥∥
Lr(R+)

. ‖v0‖Bs E(0).

Permuting the `2 norm and the L∞v norm thanks to Minkowski’s inequality again,
concludes the proof of Lemma 3.3. �

Remark 3.4. — Let us remark that thanks to the Sobolev embedding of H1/2(R2)

into L4(R2), we have, choosing s = 0 and r = 4 or r = 2,

‖v‖L4(R+;L∞v (L4
h)) + ‖v‖L2(R+;L∞v (H1

h)) . ‖v0‖B0 E(0).

Now our purpose is the proof of the following inequality: for any v solving (NS2D)x3
,

for any r in [4,∞] and any s in ]− 1
2 ,

1
2 [ and any positive s′,

(3.15) ‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ exp
(∫ ∞

0

C
(
‖v(t)‖4L∞v (L4

h)) + ‖v(t)‖2L∞v (H1
h)

)
dt
)
.

The case when r is in [2, 4] will be dealt with later. We are going to use a Gronwall-
type argument. Let us introduce, for any nonnegative λ, the following notation: for
any function F we define

Fλ(t)
def
= F (t) exp

(
−λ
∫ t

0

φ(t′) dt′
)

with φ(t)
def
= ‖v(t)‖4L∞v (L4

h) + ‖v(t)‖2L∞v (H1
h).

Notice that thanks to Remark 3.4, we know that

(3.16)
∫ t

0

φ(t′) dt′ . E(0)(‖v0‖2B0 + ‖v0‖4B0).
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Then we write, using the Duhamel formula and the action of the heat flow described
in Lemma A.2, that

(3.17) ‖∆v
j∆h

kvλ(t)‖L2 6 Ce−c2
2kt‖∆v

j∆h
kv0‖L2

+ C2k
∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
‖∆v

j∆h
k(v ⊗ v)λ(t′)‖L2 dt′.

Notice that (v ⊗ v)λ = v ⊗ vλ. In order to study the term ‖∆v
j∆h

k(v ⊗ v)λ(t′)‖L2 , we
need an anisotropic version of Bony’s paraproduct decomposition. Let us write that

ab =

4∑
`=1

T `(a, b) with

T 1(a, b) =
∑
j,k

Sv
j S

h
ka∆v

j∆h
kb,

T 2(a, b) =
∑
j,k

Sv
j ∆h

ka∆v
jS

h
k+1b,

T 3(a, b) =
∑
j,k

∆v
jS

h
kaS

v
j+1∆h

kb,

T 4(a, b) =
∑
j,k

∆v
j∆h

kaS
v
j+1S

h
k+1b.

(3.18)

We shall only estimate T 1 and T 2, the other two terms being strictly analogous. By
definition of T 1, using the definition of horizontal and vertical truncations together
with the fact that the support of the Fourier transform of the product of two functions
is included in the sum of the two supports, and Bernstein’s and Hölder’s inequalities,
there is some fixed nonzero integer N0 such that

‖∆v
j∆h

kT
1(v(t), vλ(t))‖L2 . 2k/2‖∆v

j∆h
kT

1(v(t), vλ(t))‖
L2

v(L
4/3
h )

. 2k/2
∑

j′>j−N0

k′>k−N0

‖Sv
j′S

h
k′v(t)‖L∞v (L4

h)‖∆v
j′∆

h
k′vλ(t)‖L2

. 2k/2‖v(t)‖L∞v (L4
h)

∑
j′>j−N0

k′>k−N0

‖∆v
j′∆

h
k′vλ(t)‖L2 .

By definition of L̃4(R+; Bs+1/2,s′) we get

‖∆v
j∆h

kT
1(v(t), vλ(t))‖L2

. 2k/2‖vλ‖L̃4(R+;Bs+1/2,s′ )‖v(t)‖L∞v (L4
h)

∑
j′>j−N0

k′>k−N0

2−k
′(s+1/2)2−j

′s′ f̃j′,k′(t),

where f̃j′,k′(t), defined by

f̃j′,k′(t)
def
= ‖vλ‖−1

L̃4(R+;Bs+1/2,s′ )
2k
′(s+1/2)2j

′s′‖∆v
j′∆

h
k′vλ(t)‖L2 ,
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is on the sphere of `1(Z2;L4(R+)). This implies that

2js
′
2ks‖∆v

j∆h
kT

1(v(t), vλ(t))‖L2

. ‖vλ‖L̃4(R+;Bs+1/2,s′ )‖v(t)‖L∞v (L4
h)

∑
j′>j−N0

k′>k−N0

2−(j′−j)s′2−(k′−k)(s+1/2)f̃j′,k′(t).

Since s > −1/2 and s′ > 0, it follows by Young’s inequality on series, that

2js
′
2ks‖∆v

j∆h
kT

1(v(t), vλ(t))‖L2 . ‖vλ‖L̃4(R+;Bs+1/2,s′ )‖v(t)‖L∞v (L4
h)fj,k(t),

where fj,k(t) is on the sphere of `1(Z2;L4(R+)). As φ(t) is greater than ‖v(t)‖4
L∞v (L4

h)
,

we infer that

(3.19) T 1
j,k,λ(t)

def
= 2k2js

′
2ks
∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
× ‖∆v

j∆h
kT

1(v(t′), vλ(t′))‖L2 dt′

. ‖vλ‖L̃4(R+;Bs+1/2,s′ )2
k

∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
φ1/4(t′)fj,k(t′) dt′.

Using Hölder’s inequality, we deduce that

T 1
j,k,λ(t) . ‖vλ‖L̃4(R+;Bs+1/2,s′ )

(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

)1/4

× 2k
(∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
φ(t′)1/3 dt′

)3/4

.

Then Hölder’s inequality in the last term of the above inequality ensures that

(3.20) T 1
j,k,λ(t) .

1

λ1/4

(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

)1/4

‖vλ‖L̃4(R+;Bs+1/2,s′ ).

Now let us study the term with T 2. Using again that the support of the Fourier
transform of the product of two functions is included in the sum of the two supports,
let us write that

‖∆v
j∆h

kT
2(v(t), vλ(t))‖L2 .

∑
j′>j−N0

k′>k−N0

‖Sv
j′∆

h
k′v(t)‖L∞v (L2

h)‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ).

Combining Lemma A.1 with the definition of the function φ, we get

(3.21) ‖Sv
j′∆

h
k′v(t)‖L∞v (L2

h) . 2−k
′
‖v(t)‖L∞v (H1

h) . 2−k
′
φ1/2(t).

Now let us observe that using again the Bernstein inequality, we have

‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ) .
∑
k′′6k′

‖∆v
j′∆

h
k′′vλ(t)‖L2

v(L∞h )

.
∑
k′′6k′

2k
′′
‖∆v

j′∆
h
k′′vλ(t)‖L2 .
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By definition of the L̃4(R+; Bs+1/2,s′) norm, we have

2j
′s′2k

′(s−1/2) ‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h )

. ‖vλ‖L̃4(R+;Bs+1/2,s′ )

∑
k′′6k′

2(k′−k′′)(s−1/2)f
j′,k′′

(t),

where f
j′,k′′

(t), on the sphere of `1(Z2;L4(R+)), is defined by

f
j′,k′′

(t)
def
= ‖vλ‖−1

L̃4(R+;Bs+1/2,s′ )
2j
′s′2k

′′(s+1/2)‖∆v
j′∆

h
k′′vλ(t)‖L2 .

Since s < 1/2, this ensures by Young’s inequality that

‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ) . 2−j
′s′2−k

′(s−1/2) ‖vλ‖L̃4(R+;Bs+1/2,s′ )f̃j′,k′(t),

where f̃j′,k′(t) is on the sphere of `1(Z2;L4(R+)). Together with Inequality (3.21),
this gives

2js
′
2k(s+1/2) ‖∆v

j∆h
kT

2(v(t), vλ(t))‖L2 . φ(t)1/2‖vλ‖L̃4(R+;Bs+1/2,s′ )fj,k(t),

where fj,k(t) is on the sphere of `1(Z2;L4(R+)). We deduce that

(3.22) T 2
j,k,λ(t)

def
= 2k2js

′
2ks

∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
× ‖∆v

j∆h
kT

2(v(t′), vλ(t′))‖L2 dt′

. ‖vλ‖L̃4(R+;Bs+1/2,s′ )2
k/2

∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
φ(t′)1/2fj,k(t′) dt′.

Using Hölder’s inequality twice, we get

(3.23) T 2
j,k,λ(t) . ‖vλ‖L̃4(R+;Bs+1/2,s′ )

(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

)1/4

× 2k/2
(∫ t

0

exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′) dt′′

)
φ(t′)2/3 dt′

)3/4

.
1

λ1/2
‖vλ‖L̃4(R+;Bs+1/2,s′ )

(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

)1/4

.

As T 3 is estimated like T 1 and T 4 is estimated like T 2, this implies finally that

2js
′
2ks‖∆v

j∆h
kvλ(t)‖L2 . 2js

′
2kse−c2

2kt‖∆v
j∆h

kv0‖L2

+
(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

)1/4( 1

λ1/4
+

1

λ1/2

)
‖vλ‖L̃4(R+;Bs+1/2,s′ ).

As we have(∫ ∞
0

(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

) 1
4×4

dt

)1/4

= c−1dj,k2−k/2

and sup
t∈R+

(∫ t

0

e−c(t−t
′)22k

f4
j,k(t′) dt′

)1/4

= dj,k, with dj,k ∈ `1(Z2),
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we infer that

2js
′
2ks
(
‖∆v

j∆h
kvλ‖L∞(R+;L2) + 2k/2‖∆v

j∆h
kvλ‖L4(R+;L2)

)
. 2js

′
2ks‖∆v

j∆h
kv0‖L2 + dj,k

( 1

λ1/4
+

1

λ1/2

)
‖vλ‖L̃4(R+;Bs+1/2,s′ ).

Taking the sum over j and k and choosing λ large enough, we have proved (3.15).
Let us gain L2-integrability in t. Using (3.19) and (3.22) with λ = 0, we find that

2js
′
2k(s+1)‖∆v

j∆h
kv(t)‖L2 . 2js

′
2k(s+1)e−c2

2kt‖∆v
j∆h

kv0‖L2

+ 22k ‖v‖L̃4(R+;Bs+1/2,s′ )

∫ t

0

e−c(t−t
′)22k(

(gj,k(t′) + 2−k/2hj,k(t′)
)
dt′,

where gj,k (resp. hj,k) are in `1(Z2;L2(R+)) (resp. `1(Z2;L4/3(R+))), with∑
(j,k)∈Z2

‖gj,k‖L2(R+) . ‖φ‖
1/4
L1 and

∑
(j,k)∈Z2

‖hj,k‖L4/3(R+) . ‖φ‖
1/2
L1 .

Laws of convolution in the time variable, summation over j and k and (3.15) imply
that

‖v‖L̃2(R+;Bs+1,s′ ) . ‖v0‖Bs,s′ exp
(
C

∫ ∞
0

φ(t) dt
)
.

This implies by interpolation in view of (3.15) that for all r in [2,∞], all s in ]− 1
2 ,

1
2 [

and all positive s′

(3.24) ‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ exp
(
C

∫ ∞
0

φ(t) dt
)
,

which in view of (3.16) ensures Inequality (3.3) and achieves the proof of Estimate
(3.4) in the case when s belongs to ]− 1

2 ,
1
2 [.

Now we are going to double the interval, namely prove that for any s in ] − 1, 1[,
any s′ > 1/2 and any r in [2,∞] we have

(3.25) ‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ + ‖v0‖Bs/2,s′‖v0‖Bs/2 exp(C‖v0‖B0E0).

Proposition A.4 implies that for any s in ]− 1, 1[ and any s′ > 1/2, we have

‖v(t)⊗ v(t)‖Bs,s′ . ‖v(t)‖B(s+1)/2‖v(t)‖B(s+1)/2,s′ .

The smoothing effect of the horizontal heat flow described in Lemma A.2 implies
therefore that, for any s belonging to ]− 1, 1[, any s′ > 1/2 and any r in [2,∞],

‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ + ‖v ⊗ v‖L̃2(R+;Bs,s′ )

. ‖v0‖Bs,s′ + ‖v‖L̃4(R+;B(s+1)/2)‖v‖L̃4(R+;B(s+1)/2,s′ ).

Finally Inequality (3.15) ensures that for any s in ] − 1, 1[, any s′ > 1/2 and any r
in [2,∞],

(3.26) ‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ + ‖v0‖Bs/2‖v0‖Bs/2,s′ exp(C‖v0‖B0E(0)).

This concludes the proof of Inequality (3.25).
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Now let us conclude the proof of Estimate (3.4). Again Proposition A.4 implies
that, for any s in ]− 2, 0] and any s′ > 1/2, we have

‖v(t)⊗ v(t)‖Bs+1,s′ . ‖v(t)‖Bs/2+1‖v(t)‖Bs/2+1,s′ .

This gives rise to

‖v ⊗ v‖L1(R+;Bs+1,s′ ) . ‖v‖L2(R+;Bs/2+1)‖v‖L2(R+;Bs/2+1,s′ ).

The smoothing effect of the heat flow gives, for any r in [1,∞] and any s in ]− 2, 0],

‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ + ‖v‖L2(R+;Bs/2+1)‖v‖L2(R+;Bs/2+1,s′ ).

Inequality (3.26) implies that, for any r in [1,∞] and any s in ]− 2, 0] and s′ > 1/2,

(3.27) ‖v‖L̃r(R+;Bs+2/r,s′ ) . ‖v0‖Bs,s′ + ‖v0‖3Bs/4‖v0‖Bs/4,s′ exp(C‖v0‖B0E0).

This proves the estimate (3.4) and thus Proposition 3.1. �

3.2. Propagation of regularity by a 2D flow with parameter. — Now let us esti-
mate the norm of the function w3 defined as the solution of (Tβ) defined page 874.
This is described in the following proposition.

Proposition 3.5. — Let v0 and v be as in Proposition 3.1. For any non negative real
number β, let us consider w3 the solution of

(Tβ) ∂tw
3 + v · ∇hw3 −∆hw

3 − β2∂2
3w

3 = 0 and w3
|t=0 = w3

0.

Then w3 satisfies the following estimates where all the constants are independent of β:

(3.28) ‖w3‖A 0 . ‖w3
0‖B0 exp

(
T1(‖v0‖B0)

)
,

and for any s in [−2 + µ, 0] and any s′ > 1/2, we have

(3.29) ‖w3‖A s,s′ .
(
‖w3

0‖Bs,s′ + ‖w3
0‖B0T∞(‖v0‖Sµ)

)
exp
(
T1(‖v0‖B0)

)
.

Proof. — This is a question of propagating anisotropic regularity by a transport-
diffusion equation. This propagation is described by the following lemma, which will
easily lead to Proposition 3.5.

Lemma 3.6. — Let us consider (s, s′) a pair of real numbers, and Q a bilinear operator
which maps continuously B1 ×Bs+1,s′ into Bs,s′ . A constant C exists such that for
any two-component vector field v in L2(R+; B1), any f in L1(R+; Bs,s′), any a0 in
Bs,s′ and for any non negative β, if ∆β

def
= ∆h + β2∂2

z and a is the solution of

∂ta−∆βa+ Q(v, a) = f and a|t=0 = a0,

then a satisfies

∀ r ∈ [1,∞], ‖a‖L̃r(R+;Bs+2/r,s′ )

6 C
(
‖a0‖Bs,s′ + ‖f‖L1(R+;Bs,s′ )

)
exp
(
C

∫ ∞
0

‖v(t)‖2B1 dt
)
.
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Proof. — This is a Gronwall type estimate. However the fact that the third index of
the Besov spaces is one, induces some technical difficulties which lead us to work first
on subintervals I of R+ on which ‖v‖L2(I;B1) is small.

Let us first consider any subinterval I = [τ0, τ1] of R+. The Duhamel formula and
the smoothing effect of the heat flow described in Lemma A.2 imply that

‖∆h
k∆v

ja(t)‖L2 6 e−c2
2k(t−τ0)‖∆h

k∆v
ja(τ0)‖L2

+ C

∫ t

τ0

e−c2
2k(t−t′)∥∥∆h

k∆v
j

(
Q(v(t′), a(t′)) + f(t′)

)∥∥
L2 dt

′.

After multiplication by 2ks+js
′ and using Young’s inequality in the time integral, we

deduce that

2ks+js
′(
‖∆h

k∆v
ja‖L∞(I;L2) + 22k‖∆h

k∆v
ja‖L1(I;L2)

)
6 C2ks+js

′
‖∆h

k∆v
ja(τ0)‖L2

+ C

∫ t

τ0

dk,j(t
′)
(
‖v(t′)‖B1‖a(t′)‖Bs+1,s′ + ‖f(t′)‖Bs,s′

)
dt′,

where for any t, dk,j(t) is an element of the sphere of `1(Z2). By summation over (k, j)

and using the Cauchy-Schwarz inequality, we infer that

(3.30) ‖a‖L̃∞(I;Bs,s′ ) + ‖a‖L1(I;Bs+2,s′ ) 6 C‖a(τ0)‖Bs,s′ + C‖f‖L1(I;Bs,s′ )

+ C‖v‖L2(I;B1)‖a‖L2(I;Bs+1,s′ ).

Let us define the increasing sequence (Tm)06m6M+1 by induction such that T0 = 0,
TM+1 =∞ and

∀m < M,

∫ Tm+1

Tm

‖v(t)‖2B1 dt = c0 and
∫ ∞
TM

‖v(t)‖2B1 dt 6 c0,

for some given c0 which will be chosen later on. Obviously, we have

(3.31)
∫ ∞

0

‖v(t)‖2B1 dt >
∫ TM

0

‖v(t)‖2B1 dt = Mc0.

Thus the number M of T ′ms such that Tm is finite is less than c−1
0 ‖v‖2L2(R+;B1).

Applying Estimate (3.30) to the interval [Tm, Tm+1], we get

‖a‖L∞([Tm,Tm+1];Bs,s′ ) + ‖a‖L1([Tm,Tm+1];Bs+2,s′ ) 6 ‖a‖L2([Tm,Tm+1];Bs+1,s′ )

+ C
(
‖a(Tm)‖Bs,s′ + C‖f‖L1([Tm,Tm+1];Bs,s′ )

)
if c0 is chosen such that C√c0 6 1. As

‖a‖L2([Tm,Tm+1];Bs+1,s′ ) 6 ‖a‖
1/2

L∞([Tm,Tm+1];Bs,s′ )
‖a‖1/2

L1([Tm,Tm+1];Bs+2,s′ )
,

we infer that

(3.32) ‖a‖L∞([Tm,Tm+1];Bs,s′ ) + ‖a‖L1([Tm,Tm+1];Bs+2,s′ )

6 2C
(
‖a(Tm)‖Bs,s′ + ‖f‖L1([Tm,Tm+1];Bs,s′ )

)
.
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Now let us us prove by induction that

‖a‖L∞([0,Tm];Bs,s′ ) 6 (2C)m
(
‖a0‖Bs,s′ + ‖f‖L1([0,Tm],Bs,s′ )

)
.

Using (3.32) and the induction hypothesis we get

‖a‖L∞([Tm,Tm+1];Bs,s′ ) 6 2C
(
‖a‖L∞([0,Tm];Bs,s′ ) + ‖f‖L1([Tm,Tm+1];Bs,s′ )

)
6 (2C)m+1

(
‖a0‖Bs,s′ + ‖f‖L1([0,Tm+1],Bs,s′ )

)
,

provided that 2C > 1. This proves in view of (3.31) that

‖a‖L∞(R+;Bs,s′ ) 6 C
(
‖a0‖Bs,s′ + ‖f‖L1(R+;Bs,s′ )

)
exp
(
C

∫ ∞
0

‖v(t)‖2B1 dt
)
.

We deduce from (3.32) that

‖a‖L1([Tm,Tm+1];Bs+2,s′ ) 6 C
(
‖a0‖Bs,s′ + ‖f‖L1(R+;Bs,s′ )

)
exp
(
C

∫ ∞
0

‖v(t)‖2B1 dt
)

+ C‖f‖L1([Tm,Tm+1];Bs,s′ ).

Once noticed that xeCx2

6 eC
′x2 , the result comes by summation over m and the fact

that the total number of m’s is less than or equal to c−1
0 ‖v‖2L2(R+;B1). Lemma 3.6 is

proved. �

We apply Lemma 3.6 with Q(v, a) = divh(av), f = 0, a = w3, and (s, s′) = (0, 1/2).
Indeed since B1 is an algebra we have

‖Q(v, a)‖B0 . ‖av‖B1 . ‖a‖B1‖v‖B1 .

So Lemma 3.6 gives

‖w3‖A 0 . ‖w3
0‖B0 exp

(
C

∫ ∞
0

‖v(t)‖2B1 dt
)
.

Thanks to Estimate (3.3) of Proposition 3.1 we deduce (3.28).
Now for s belonging to [−2 + µ, 0], we apply Lemma 3.6 with a = w3, Q(v, a) =

divh(T v
v a), and f = divh(T̃ v

a v), where with the notations of Definition 1.6

T v
v a

def
=
∑
j

Sv
j−1v∆v

ja, R
v(a, v)

def
=
∑
j

−16`61

∆v
j−`a∆v

j v

T̃ v
a v

def
= T v

a v +Rv(a, v).

(3.33)

Lemma A.5 implies that for any s in [−2 + µ, 0] and any s′ > 1/2,

‖T v
v w

3‖Bs+1,s′ . ‖v‖B1‖w3‖Bs+1,s′ .

We infer from Lemma 3.6 that, for any r in [1,∞],

(3.34) ‖w3‖L̃r(R+;Bs+2/r,s′ )

.
(
‖w3

0‖Bs,s′ + ‖ divh(T̃ v
a v)‖L1(R+;Bs,s′ )

)
exp
(
T1(‖v0‖B0)

)
.
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But we have, using laws of anisotropic paraproduct given in Lemma A.5,

‖divh(T̃ v
w3v)‖L1(R+;Bs,s′ ) . ‖T̃

v
w3v‖L1(R+;Bs+1,s′ )

. ‖w3‖L2(R+;B1)‖v‖L2(R+;Bs+1,s′ ).

Applying (3.28) and (3.4) gives (3.29). Proposition 3.5 is proved. �

As wh is defined by wh = −∇h∆−1
h ∂3w

3, we deduce from Proposition 3.5,
Lemma A.1 and the scaling property (1.14), the following corollary.

Corollary 3.7. — For any s in [−2 + µ, 0] and any s′ > 1/2,

‖wh‖A s+1,s′−1 .
(
‖w3

0‖Bs,s′ + ‖w3
0‖B0T∞(‖v0‖Sµ)

)
exp
(
T1(‖v0‖B0)

)
.

3.3. Conclusion of the proof of Theorem 4. — Using the definition of the approx-
imate solution Φapp given in (3.1), we infer from Propositions 3.1 and 3.5 and Corol-
lary 3.7 that

(3.35) ‖Φapp‖L2(R+;B1) 6 T1(‖(v0, w
3
0)‖B0) + βT∞(‖(v0, w

3
0)‖Sµ).

Moreover, the error term ψ satisfies the following modified Navier-Stokes equation,
with zero initial data:

∂tψ + div
(
ψ ⊗ ψ + Φapp ⊗ ψ + ψ ⊗ Φapp

)
−∆ψ = −∇qβ +

4∑
`=1

E`β

with E1
β

def
= ∂2

3 [(v, 0)]β + β(0, [∂3p]β),

E2
β

def
= β

[(
w3∂3(v, w3) +

(
∇h∆−1

h divh ∂3(vw3), 0
))]

β
,

E3
β

def
= β

[(
wh · ∇h(v, w3) + v · ∇h(wh, 0)

)]
β

E4
β

def
= β2

[(
wh · ∇h(wh, 0) + w3∂3(wh, 0)

)]
β
.

(3.36)

If we prove that

(3.37)
∥∥∥ 4∑
`=1

E`β

∥∥∥
F0
6 βT∞

(
‖(v0, w

3
0)‖Sµ

)
,

then according to the fact ψ|t=0 = 0, Proposition 1.14 implies that ψ exists globally
and satisfies

(3.38) ‖ψ‖L2(R+;B1) . βT∞
(
‖(v0, w

3
0)‖Sµ

)
.

This in turn implies that Φ0 generates a global regular solution Φβ in L2(R+; B1)

which satisfies

(3.39) ‖Φβ‖L2(R+;B1) 6 T1

(
‖(v0, w

3
0)‖B0

)
+ βT∞

(
‖(v0, w

3
0)‖Sµ

)
.

Once this bound in L2(R+; B1) is obtained, the bound in A 0 follows by heat flow
estimates, and in A s,s′ by propagation of regularity for the Navier-Stokes equations
as stated in Proposition 1.15.
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So all we need to do is to prove Inequality (3.37). Let us first estimate the
term ∂2

3 [(v, 0)]β . This requires the use of some L̃2(R+; Bs,s′) norms. We get

‖∂2
3 [v]β‖L̃2(R+;B0,−1/2) . ‖[v]β‖L̃2(R+;B0,3/2).

Using the vertical scaling property (1.14) of the space B0,3/2, this gives

‖∂2
3 [v]β‖L̃2(R+;B0,−1/2) . β ‖v‖L̃2(R+;B0,3/2).

Using Proposition 3.1, we get

(3.40) ‖∂2
3 [v]β‖L̃2(R+;B0,−1/2) 6 βT∞(‖v0‖Sµ).

Now let us study the pressure term. By applying the horizontal divergence to the
equation satisfied by v we get, thanks to the fact that divh v = 0,

∂3p = −∂3∆−1
h

2∑
`,m=1

∂`∂m(v`vm).

Using the fact that ∆−1
h ∂`∂m is a zero-order horizontal Fourier multiplier (since `

and m belong to {1, 2}), we infer that∥∥[∂3p]β
∥∥
L1(R+;B0)

= ‖∂3p‖L1(R+;B0)

. ‖v∂3v‖L1(R+;B0).

Laws of product in anisotropic Besov as described by Proposition A.4 imply that

‖v(t)∂3v(t)‖B0 . ‖v(t)‖B1‖∂3v(t)‖B0 ,

which gives rise to∥∥[∂3p]β
∥∥
L1(R+;B0)

. ‖v‖L2(R+;B1)‖∂3v‖L2(R+;B0)

. ‖v‖L2(R+;B1)‖v‖L2(R+;B0,3/2).
(3.41)

Combining (3.40) and (3.41), we get by Proposition 3.1 and Lemma A.3

(3.42) ‖E1
β‖F0 6 βT∞

(
‖v0‖Sµ

)
.

Now we estimate E2
β . Applying again the laws of product in anisotropic Besov spaces

(see Proposition A.4) together with the action of vertical derivatives, we obtain

‖w3(t)∂3(v, w3)(t)‖B0 . ‖w3(t)‖B1‖∂3(v, w3)(t)‖B0

. ‖w3(t)‖B1‖(v, w3)(t)‖B0,3/2 .

Thus we infer that

(3.43) ‖w3∂3(v, w3)‖L1(R+;B0) . ‖w3‖L2(R+;B1)‖(v, w3)‖L2(R+;B0,3/2).

For the other term of E2
β , using the fact that ∇h∆−1

h divh is an order 0 horizontal
Fourier multiplier and the Leibniz formula, we infer from Lemma A.1 that

‖∇h∆−1
h divh ∂3(vw3)(t)‖B0 . ‖∂3(vw3)(t)‖B0

. ‖v(t)∂3w
3(t)‖B0 + ‖w3(t)∂3v(t)‖B0 .
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In view of laws of product in anisotropic Besov spaces and the action of vertical
derivatives, this gives rise to
‖∇h∆−1

h divh ∂3(vw3)(t)‖B0 . ‖v(t)‖B1‖w3(t)‖B0,3/2 + ‖w3(t)‖B1‖v(t)‖B0,3/2 .

Together with (3.43), this leads to

‖E2
β‖L1(R+;B0) . β ‖w3‖L2(R+;B1)‖(v, w3)‖L2(R+;B0,3/2)

+ β ‖w3‖L2(R+;B0,3/2)‖v‖L2(R+;B1),

hence by Propositions 3.1 and 3.5 along with Lemma A.3
(3.44) ‖E2

β‖F0 6 βT∞
(
‖(v0, w

3
0)‖Sµ

)
.

Let us estimate E3
β . Again by laws of product and the action of horizontal derivatives,

we obtain
‖wh · ∇h(v, w3)‖L1(R+;B0) . ‖wh‖L2(R+;B1)‖∇h(v, w3)‖L2(R+;B0)

. ‖wh‖L2(R+;B1)‖(v, w3)‖L2(R+;B1).

Corollary 3.7 and Propositions 3.1 and 3.5 imply that
(3.45) ‖wh · ∇h(v, w3)‖L1(R+;B0) 6 T∞

(
‖(v0, w

3
0)‖Sµ

)
.

Following the same lines we get
‖v · ∇h(wh, 0)‖L1(R+;B0) 6 T∞

(
‖(v0, w

3
0)‖Sµ

)
.

Together with (3.45), this gives thanks to Lemma A.3
(3.46) ‖E3

β‖F0 . ‖E3
β ‖L1(R+;B0) 6 βT∞

(
‖(v0, w

3
0)‖Sµ

)
.

Now let us estimate E4
β . Laws of product and the action of derivations give

‖wh · ∇hwh‖L1(R+;B0) . ‖wh‖L2(R+;B1)‖∇hwh(t)‖L2(R+;B0)

. ‖wh‖2L2(R+;B1).
(3.47)

In the same way, we get
‖w3(t)∂3w

h‖L1(R+;B0) . ‖w3‖L2(R2;B0)‖wh‖L2(R+;B1,3/2).

Together with (3.47), this gives thanks to Corollary 3.7 and Propositions 3.5
‖E4

β‖L1(R+;B0) 6 β
2 T∞

(
‖(v0, w

3
0)‖Sµ

)
.

Lemma A.3 implies that
‖E4

β‖F0 6 β2 T∞
(
‖(v0, w

3
0)‖Sµ

)
.

Together with Inequalities (3.42), (3.44) and (3.46), this gives
‖Eβ‖F0 6 βT∞

(
‖(v0, w

3
0)‖Sµ

)
.

Thanks to Proposition 1.14 we obtain that the solution Φβ of (NS) with initial data
Φ0 =

[
(v0 − β∇h∆−1

h ∂3w
3
0, w

3
0)
]
β

is global and belongs to L2(R+; B1). The whole Theorem 4 follows from the propa-
gation result Proposition 1.15 proved in the appendix. �
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4. Interaction between profiles of scale 1: proof of Theorem 5

The goal of this section is to prove Theorem 5. In the next paragraph we define an
approximate solution, using results proved in the previous section, and Paragraph 4.2
is devoted to the proof of useful localization results on the different parts entering
the definition of the approximate solution. Paragraph 4.3 concludes the proof of the
theorem, using those localization results.

4.1. The approximate solution. — Consider the divergence free vector field

Φ0
0,n,α,L

def
= u0,α +

[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0
n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0
n
,

with the notation of Proposition 1.12. We want to prove that for h0
n small enough, de-

pending only on u0 and on
∥∥(v0,∞

0,n,α,L, w
0,∞,3
0,n,α,L)

∥∥
Sµ

as well as
∥∥(v0,loc

0,n,α,L, w
0,loc,3
0,n,α,L)

∥∥
Sµ

,
there is a unique, global smooth solution to (NS) with data Φ0

0,n,α,L.
Let us start by solving globally (NS) with the data u0,α. By using the global strong

stability of (NS) in B0 (see [4, Ths. 4, 5&Cor. 3]) and the convergence result (1.16))
we deduce that for α small enough there is a unique, global solution to (NS) associated
with u0,α, which we shall denote by uα and which lies in L2(R+; B1).

Next let us define

Φ0,∞
0,n,α,L

def
=
[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0
n
.

Thanks to Theorem 4, we know that for h0
n smaller than ε1

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
Sµ

)
there is a unique global smooth solution Φ0,∞

n,α,L associated with Φ0,∞
0,n,α,L, which belongs

to A0, and using the notation and results of Section 3, in particular (3.1) and (3.38),
we can write

(4.1)

Φ0,∞
n,α,L

def
= Φ0,∞,app

n,α,L + ψ0,∞
n,α,L with

Φ0,∞,app
n,α,L

def
=
[
v0,∞
n,α,L + h0

nw
0,∞,h
n,α,L , w

0,∞,3
n,α,L

]
h0
n

and

‖ψ0,∞
n,α,L‖L2(R+;B1) . h

0
nT∞

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
Sµ

)
,

where v0,∞
n,α,L solves (NS2D)x3 with data v0,∞

0,n,α,L and w0,∞,3
n,α,L solves the transport-

diffusion equation (Th0
n
) defined page 874 with data w0,∞,3

0,n,α,L. Finally we recall that

w0,∞,h
n,α,L = −∇h∆−1

h ∂3w
0,∞,3
n,α,L .

Similarly defining

Φ0,loc
0,n,α,L

def
=
[(
v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L

)]
h0
n
,
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then for h0
n smaller than ε1

(∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L)

∥∥
Sµ

)
there is a unique global smooth

solution Φ0,loc
n,α,L associated with Φ0,loc

0,n,α,L, which belongs to A0, and

(4.2)

Φ0,loc
n,α,L

def
= Φ0,loc,app

n,α,L + ψ0,loc
n,α,L with

Φ0,loc,app
n,α,L

def
=
[
v0,loc
n,α,L + h0

nw
0,loc,h
n,α,L , w

0,loc,3
n,α,L

]
h0
n

and

‖ψ0,loc
n,α,L‖L2(R+;B1) . h

0
nT∞

(∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L)

∥∥
Sµ

)
,

where v0,loc
n,α,L solves (NS2D)x3

with data v0,loc
0,n,α,L and w0,loc,3

n,α,L solves (Th0
n
) with

data w0,loc,3
0,n,α,L. Finally we recall that w0,loc,h

n,α,L = −∇h∆−1
h ∂3w

0,loc,3
n,α,L .

Now we look for the solution under the form

Φ0
n,α,L

def
= uα + Φ0,∞

n,α,L + Φ0,loc
n,α,L + ψn,α,L.

In the next section we shall prove localization properties on Φ0,∞
n,α,L and Φ0,loc

n,α,L, namely
the fact that Φ0,∞,app

n,α,L escapes to infinity in the space variable, while Φ0,loc,app
n,α,L re-

mains localized (approximately), and we shall also prove that Φ0,loc,app
n,α,L remains small

near x3 = 0. Let us recall that as claimed by (1.20), (1.21) and (1.22), those proper-
ties are true for their respective initial data. Those localization properties will enable
us to prove, in Paragraph 4.3, that the function uα + Φ0,∞

n,α,L + Φ0,loc
n,α,L is itself an

approximate solution to (NS) for the Cauchy data u0,α + Φ0,∞
0,n,α,L + Φ0,loc

0,n,α,L.

4.2. Localization properties of the approximate solution. — One important step
in the proof of Theorem 5 consists in the following result.

Proposition 4.1. — Under the assumptions of Proposition 3.1, the control of the value
of v at the point x3 = 0 is given by

(4.3) ∀ r ∈ [1,∞], ‖v(·, 0)‖
L̃r(R+;B

2/r
2,1 (R2))

. ‖v0(·, 0)‖B0
2,1(R2) + ‖v(·, 0)‖2L2(R2).

Moreover we have for all η in ]0, 1[ and γ in {0, 1},

(4.4) ‖(γ − θh,η)v‖A 0 6
∥∥(γ − θh,η)v0

∥∥
B0 exp T1(‖v0‖B0) + ηT∞(‖v0‖Sµ),

with θh,η is the truncation function defined by (1.15).

Proof. — In this proof we omit for simplicity the dependence of the function spaces
on the space R2. Let us remark that the proof of [12, Lem. 1.1] claims that for all x3

in R,

(4.5)
(
∆h
k(v(t, ·, x3) · ∇hv(t, ·, x3))

∣∣∆h
kv(t, ·, x3)

)
L2

. dk(t, x3)‖∇hv(t, ·, x3)‖2L2‖∆h
kv(t, ·, x3)‖L2 ,

where (dk(t, x3))k∈Z is a generic element of the sphere of `1(Z). A L2 energy estimate
in R2 gives therefore, taking x3 = 0,

1

2

d

dt
‖∆h

kv(t, ·, 0)‖2L2 + c22k‖∆h
kv(t, ·, 0)‖2L2 . dk(t)‖∇hv(t, ·, 0)‖2L2‖∆h

kv(t, ·, 0)‖L2 ,
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where (dk(t))k∈Z belongs to the sphere of `1(Z). After division by ‖∆h
kv(t, ·, 0)‖L2 and

time integration, we get

(4.6) ‖∆h
kv(·, 0)‖L∞(R+;L2) + c22k‖∆h

kv(·, 0)‖L1(R+;L2)

6 ‖∆kv0(·, 0)‖L2 + C

∫ ∞
0

dk(t)‖∇hv(t, ·, 0)‖2L2 dt.

By summation over k and in view of (3.12), we obtain Inequality (4.3) of Proposi-
tion 4.1.

In order to prove Inequality (4.4), let us define vγ,η
def
= (γ − θh,η)v and write that

∂tvγ,η −∆hvγ,η + divh

(
v ⊗ vγ,η

)
= Eη(v) =

3∑
i=1

Eiη(v) with

E1
η(v)

def
= −2η(∇hθ)h,η∇hv − η2(∆hθ)h,ηv,

E2
η(v)

def
= η v · (∇hθ)h,ηv and

E3
η(v)

def
= −(γ − θh,η)∇h∆−1

h

∑
16`,m62

∂`∂m
(
v`vm

)
.

(4.7)

Let us prove that

(4.8) ‖Eη(v)‖L1(R+;B0) . ηT∞(‖v0‖Sµ).

Using Inequality (3.27) applied with r = 1 and s = −1 (resp. r = 2 and s = −1/2)
this will follow from

(4.9) ‖Eη(v)‖L1(R+;B0) . η
(
‖v‖L1(R+;B1) + ‖v‖2L2(R+;B1/2)

)
.

Proposition A.6 and the scaling properties of homogeneous Besov spaces give

‖(∇hθ)h,η∇hv(t)‖B0 . ‖(∇hθ)h,η‖B1
2,1(R2)‖∇hv(t)‖B0

. ‖∇hθ‖B1
2,1(R2)‖v(t)‖B1 .

Following the same lines, we get

‖(∆hθ)h,ηv(t)‖B0 . ‖(∆hθ)h,η‖B0
2,1(R2)‖v(t)‖B1

.
1

η
‖∆hθ‖B0

2,1(R2)‖v(t)‖B1 ,

hence

(4.10) ‖E1
η(v)‖L1(R+;B0) . η‖v‖L1(R+;B1).

Let us study the term E2
η(v). Proposition A.6 implies

‖v(t) · (∇hθ)h,ηv(t)‖B0 . ‖(∇hθ)h,η‖B1
2,1(R2) sup

`,m
‖v`(t)vm(t)‖B0

. ‖∇hθ‖B1
2,1(R2)‖v(t)‖2B1/2 .

Thus we get

(4.11) ‖E2
η(v)‖L1(R+;B0) . η‖v‖2L2(R+;B1/2).
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Let us study the term E3
η(v) which is related to the pressure. For that purpose, we

shall make use of the horizontal paraproduct decomposition:

av = T h
v a+T h

a v+Rh(a, b) with T h
a b

def
=
∑
k

Sh
k−1a∆h

kb and Rh(a, b)
def
=
∑
k

∆̃h
ka∆h

kb.

This allows us to write

E3
η(v) =

3∑
`=1

E3,`
η (v) with

E3,1
η (v)

def
= T̃ h

∇hpθh,η with ∇hp = ∇h∆−1
h

∑
16`,m62

∂`∂m(v`vm),

E3,2
η (v)

def
= −

∑
16`,m62

[
T h
γ−θh,η ,∇

h∆−1
h ∂`∂m

]
v`vm and

E3,3
η (v)

def
=

∑
16`,m62

∇h∆−1
h ∂`∂mT̃

h
v`vmθh,η.

(4.12)

Laws of (para)product, as given in (A.10), and scaling properties of Besov spaces give
‖T̃ h
∇hp(t)θh,η‖B0 . ‖∇hp(t)‖B−1‖θh,η‖B2

2,1(R2)

. η sup
16`,m62

‖v`(t)vm(t)‖B0‖θ‖B2
2,1(R2)

. η ‖v(t)‖2B1/2‖θ‖B2
2,1(R2).

Along the same lines we get
‖∇h∆−1

h ∂`∂mT̃
h
v`(t)vm(t)θh,η‖B0 . ‖T̃ h

v`(t)vm(t)θh,η‖B1

. ‖v`(t)vm(t)‖B0‖θh,η‖B2
2,1(R2)

. η ‖v(t)‖2B1/2‖θ‖B2
2,1(R2).

This gives
(4.13) ‖E3,1

η (v) + E3,3
η (v)‖L1(R+;B0) . η ‖v‖2L2(R+;B1/2).

Now let us estimate E3,2
η (v). By definition, we have[

T h
γ−θh,η ,∇

h∆−1
h ∂`∂m

]
v`vm =

∑
k

Ek,η(v) with

Ek,η(v)
def
=
[
Sh
k−N0

(γ − θh,η), ∆̃h
k∇h∆−1

h ∂`∂m
]
∆h
k(v`vm),

where ∆̃h
k

def
= ϕ̃(2−kξh) with ϕ̃ is a smooth compactly supported (in R2r{0}) function

which has value 1 near B(0, 2−N0) + C , where C is an adequate annulus. Then by
commutator estimates (see for instance [2, Lem. 2.97])

‖∆v
jEk,η(v(t))‖L2 . ‖∇θh,η‖L∞‖∆h

k∆v
j (v`(t)vm(t))‖L2 .

As ‖∇θh,η‖L∞ = η‖∇θ‖L∞ , by characterization of anisotropic Besov spaces and laws
of product, we get

‖E3,2
η (v)‖L1(R+;B0) . η‖v‖2L2(R+;B1/2).

Together with estimates (4.10)–(4.13), this gives (4.9), hence (4.8).
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Applying Lemma 3.6 with s = 0, s′ = 1/2, a = vγ,η, Q(v, a) = divh(v ⊗ a), f =

Eη(v) and β = 0 allows to conclude the proof of Proposition 4.1. �

A similar result holds for the solution w3 of

(Tβ) ∂tw
3 + v · ∇hw3 −∆hw

3 − β2∂2
3w

3 = 0 and w3
|t=0 = w3

0,

where β is any non negative real number. In the following statement, all the constants
are independent of β.

Proposition 4.2. — Let v and w3 be as in Proposition 3.5. The control of the value
of w3 at the point x3 = 0 is given by the following inequality. For any r in [2,∞],

(4.14) ‖w3(·, 0)‖
L̃r(R+;B

2/r
2,1 (R2))

6 T∞(‖(v0, w
3
0)‖Sµ)

(
‖w3

0(·, 0)‖1−2µ/4(1−µ)

B0
2,1(R2)

+ β
)
.

Moreover, with the notations of Theorem 4, we have for all η in ]0, 1[ and γ in {0, 1},

(4.15) ‖(γ − θh,η)w3‖A 0 6
∥∥(γ − θh,η)w3

0

∥∥
B0 exp T1(‖v0‖B0) + ηT∞(‖(v0, w

3
0)‖Sµ).

Proof. — The proof is very similar to the proof of Proposition 4.1. The main difference
lies in the proof of (4.14) due to the presence of the extra term β2∂2

3w
3, so let us detail

that estimate: we shall first prove an estimate for w3(t, xh, 0) in L̃r(R+;B
1/2+2/r
2,1 (R2)),

and then we shall interpolate that estimate with the known a priori estimate (3.29)
of w3 in L̃r(R+; B

−1/2+2/r
2,1 (R2)) to find the result.

Let us be more precise, and first obtain a bound for w3(t, xh, 0) in the space
L̃r(R+;B

1/2+2/r
2,1 (R2)). Defining

w̃3(t, xh)
def
= w3(t, xh, 0), w̃3

0(xh)
def
= w3

0(xh, 0) and ṽ(t, xh)
def
= v(t, xh, 0),

we have

(4.16) ∂tw̃
3 + ṽ · ∇hw̃3 −∆hw̃

3 = β2(∂2
3w

3)(·, 0) and w̃3
|t=0 = w̃3

0.

Similarly to (4.5) we write (dropping for simplicity the dependence of the spaces
on R2) (

∆h
k(ṽ · ∇hw̃3)

∣∣∆h
kw̃

3
)
L2 . dk(t) 2−k/2‖∇hṽ‖L2‖∇hw̃3‖

B
1/2
2,1
‖∆h

kw̃
3‖L2 ,

where (dk(t))k∈Z belongs to the sphere of `1(Z). Taking the L2 scalar product of ∆h
k

of Equation (4.16) with ∆h
kw̃

3 implies that

1

2
2k/2

d

dt
‖∆h

kw̃
3‖2L2 + c25k/2‖∆h

kw̃
3‖2L2 . dk(t)‖∇hṽ(t)‖L2‖∇hw̃3‖

B
1/2
2,1
‖∆h

kw̃
3‖L2

+ β22k/2‖∆h
k(∂2

3w
3)(·, 0)‖L2‖∆h

kw̃
3‖L2 ,

so as in (4.6) we find

2k/2‖∆h
kw̃

3‖L∞(R+;L2) + c25k/2‖∆h
kw̃

3‖L1(R+;L2) 6 2k/2‖∆kw̃
3
0‖L2

+ C

∫ ∞
0

dk(t)‖∇hṽ(t)‖L2‖∇hw̃3(t)‖
B

1/2
2,1

dt+ Cβ2

∫ ∞
0

2k/2‖∆h
k(∂2

3w
3)(t, ·, 0)‖L2 dt.
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After summation we find that

‖w̃3‖
L̃∞(R+;B

1/2
2,1 )

+ ‖w̃3‖
L1(R+;B

5/2
2,1 )

. ‖w̃3
0‖B1/2

2,1
+ ‖w̃3‖

L2(R+;B
3/2
2,1 )
‖∇hṽ‖L2(R+;L2) + β2‖(∂2

3w
3)(·, 0)‖

L1(R+;B
1/2
2,1 )

.

This is exactly an inequality of the type (3.30), up to a harmless localization in time,
so by the same arguments we obtain the same conclusion as in Lemma 3.6, namely
the fact that for all r ∈ [1,∞],

‖w̃3‖L̃r(R+;B1/2+2/r) .
(
‖w̃3

0‖B1/2
2,1

+ β2‖(∂2
3w

3)(·, 0)‖
L1(R+;B

1/2
2,1 )

)
expC‖v0(·, 0)‖2L2 .

Since we have

‖(∂2
3w

3)(·, 0)‖
L1(R+;B

1/2
2,1 (R2))

. ‖w3‖L1(R+;B1/2,5/2)

we infer from the a priori bounds (3.34) obtained on w3 in the previous section that

‖(∂2
3w

3)(·, 0)‖
L1(R+;B

1/2
2,1 (R2))

. T∞(‖(v0, w
3
0)‖Sµ),

so we obtain that for any r in [1,∞],

(4.17) ‖w3(·, 0)‖
L̃r(R+;B

1/2+2/r
2,1 (R2))

6
(
‖w3

0(·, 0)‖
B

1/2
2,1 (R2)

+ β2
)
T∞(‖(v0, w

3
0)‖Sµ).

Recalling that w3
0 belongs to the space Sµ introduced in Definition 1.10, we find that

w3
0(·, 0) ∈

⋂
s∈[−2+µ,1−µ]

Bs2,1(R2).

Since 0 < µ < 1/2, we get by interpolation and Sobolev embeddings that

‖w3
0(·, 0)‖

B
1/2
2,1 (R2)

. ‖w3
0(·, 0)‖1−2µ/2(1−µ)

B0
2,1(R2)

‖w3
0‖

1/2(1−µ)
Sµ

,

which implies that (4.17) can be written under the form

‖w3(·, 0)‖
L̃r(R+;B

1/2+2/r
2,1 (R2))

6
(
‖w3

0(·, 0)‖1−2µ/2(1−µ)

B0
2,1(R2)

+ β2
)
T∞(‖(v0, w

3
0)‖Sµ).

Now interpolating with the a priori bound obtained in Proposition 3.5, we find

‖w3(·, 0)‖
L̃r(R+;B

−1/2+2/r
2,1 (R2))

. ‖w3‖L̃r(R+;B−1/2+2/r)

. T∞(‖(v0, w
3
0)‖Sµ ,

so we obtain finally

‖w3(·, 0)‖
L̃r(R+;B

2/r
2,1 (R2))

6 T∞(‖(v0, w
3
0)‖Sµ)

(
‖w3

0(·, 0)‖1−2µ/4(1−µ)

B0
2,1(R2)

+ β
)
.

This ends the proof of (4.14).
We shall not detail the proof of (4.15) as it is very similar to the proof of (4.4).

Proposition 4.2 is therefore proved. �

Propositions 4.1 and 4.2 imply easily the following result, using the special form
of Φ0,∞

n,α,L and Φ0,loc
n,α,L recalled in (4.1) and (4.2), and thanks to (1.20), (1.21) and (1.22).
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Corollary 4.3. — The vector fields Φ0,loc
n,α,L and Φ0,∞

n,α,L satisfy the following: Φ0,loc
n,α,L

vanishes at x3 = 0, in the sense that for all r in [2,∞],

lim
L→∞

lim
α→0

lim sup
n→∞

‖Φ0,loc
n,α,L(·, 0)‖

L̃r(R+;B
2/r
2,1 (R2))

= 0,

and there is a constant C(α,L) such that for all η in ]0, 1[,

lim sup
n→∞

(
‖(1− θh,η)Φ0,loc

n,α,L‖A 0 + ‖θh,ηΦ0,∞
n,α,L‖A 0

)
6 C(α,L)η.

4.3. Conclusion of the proof of Theorem 5. — Recall that we look for the solution
of (NS) under the form

Φ0
n,α,L = uα + Φ0,∞

n,α,L + Φ0,loc
n,α,L + ψn,α,L,

with the notation introduced in Section 4.1. In particular the two vector fields Φ0,loc
n,α,L

and Φ0,∞
n,α,L satisfy Corollary 4.3, and furthermore thanks to the Lebesgue theorem,

(4.18) lim
η→0
‖(1− θη)uα‖L2(R+;B1) = 0.

Given a small number ε > 0, to be chosen later, we choose L, α and η = η(α,L, u0)

so that thanks to Corollary 4.3 and (4.18), for all r in [2,∞], and for n large enough,

(4.19) ‖Φ0,loc
n,α,L(·, 0)‖

Lr(R+;B
2/r
2,1 (R2))

+ ‖(1− θh,η)Φ0,loc
n,α,L‖A 0

+ ‖(1− θη)uα‖L2(R+;B1) + ‖θh,ηΦ0,∞
n,α,L‖A 0 6 ε.

In the following we denote for simplicity

(Φ0,∞
ε ,Φ0,loc

ε , ψε)
def
= (Φ0,∞

n,α,L,Φ
0,loc
n,α,L, ψn,α,L) and Φapp

ε
def
= uα + Φ0,∞

ε + Φ0,loc
ε ,

so the vector field ψε satisfies the following equation, with zero initial data:

∂tψε −∆ψε + div
(
ψε ⊗ ψε + Φapp

ε ⊗ ψε + ψε ⊗ Φapp
ε

)
= −∇qε + Eε,

with Eε = E1
ε + E2

ε and

E1
ε

def
= div

(
Φ0,∞
ε ⊗ (Φ0,loc

ε + uα) + (Φ0,loc
ε + uα)⊗ Φ0,∞

ε

+ Φ0,loc ⊗ (1− θη)uα + (1− θη)uα ⊗ Φ0,loc
)
,

E2
ε

def
= div

(
Φ0,loc
ε ⊗ θηuα + θηuα ⊗ Φ0,loc

ε

)
.

(4.20)

If we prove that

(4.21) lim
ε→0
‖Eε‖F0 = 0,

then Proposition 1.14 implies that ψε belongs to L2(R+; B1), with

lim
ε→0
‖ψε‖L2(R+;B1) = 0,

and we conclude the proof of Theorem 5 exactly as in the proof of Theorem 4, by
resorting to Proposition 1.15.
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So let us prove (4.21). The term E1
ε is the easiest, thanks to the separation of the

spatial supports. Let us first write E1
ε = E1

ε,h + E1
ε,3 with

E1
ε,h

def
= divh

(
(Φ0,loc

ε + uα)⊗ Φ0,∞,h
ε + Φ0,∞

ε ⊗ (Φ0,loc,h
ε + uh

α)

+ (1− θη)uα ⊗ Φ0,loc,h + Φ0,loc ⊗ (1− θη)uh
α

)
and

E1
ε,3

def
= ∂3

(
(Φ0,loc

ε + uα)Φ0,∞,3
ε + Φ0,∞

ε (Φ0,loc,3
ε + u3

α)

+ (1− θη)uαΦ0,loc,3 + Φ0,loc(1− θη)u3
α

)
.

Next let us write, for any two functions a and b,

ab = (θh,ηa)b+ a
(
(1− θh,η)b

)
.

Denoting
u∞ε

def
= (1− θη)uα

and using by now as usual the action of derivatives and the fact that B1 is an algebra,
we infer that

‖E1
ε,h‖L1(R+;B0) + ‖E1

ε,3‖L1(R+;B
1,−1/2
2,1 )

6 ‖θh,ηΦ0,∞
ε ‖L2(R+;B1)‖Φ0,loc

ε + uα‖L2(R+;B1)

+ ‖(1− θh,η)(Φ0,loc
ε + uα)‖L2(R+;B1)‖Φ0,∞

ε ‖L2(R+;B1)

+ ‖Φ0,loc
ε ‖L2(R+;B1)‖u∞ε ‖L2(R+;B1).

Thanks to (4.19) and to the a priori bounds on Φ0,∞
ε , Φ0,loc

ε and uα, we get directly
in view of the examples page 855 that

lim
ε→0
‖E1

ε‖F0 = 0.

Next let us turn to E2
ε . We shall follow the method of [16], and in particular the

following lemma will be very useful.

Lemma 4.4. — There is a constant C such that for all functions a and b, we have

‖ab‖B1 6 C‖a‖B1‖b(·, 0)‖B1
2,1(R2) + C‖x3a‖B1‖∂3b‖B1 .

We postpone the proof of that lemma. Let us apply it to estimate E2
ε . We write,

as in the case of E1
ε and defining uloc

ε
def
= θηuα,

‖E2
ε‖F0 . ‖uloc

ε ‖L2(R+;B1)‖Φ0,loc
ε (·, 0)‖L2(R+;B1

2,1(R2))

+ ‖x3u
loc
ε ‖L2(R+;B1)‖∂3Φ0,loc

ε ‖L2(R+;B1).

Thanks to (4.19) as well as Inequality (1.26) of Theorem 4, we obtain

lim
ε→0
‖E2

ε‖F0 = 0.

This proves (4.21), hence Theorem 5. �
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Proof of Lemma 4.4. — This is essentially [16, Lem. 3.3], we recall the proof for the
convenience of the reader. Let us decompose b in the following way:

(4.22) b(xh, x3) = b(xh, 0) +

∫ x3

0

∂3b(xh, y3) dy3.

Laws of product give directly on the one hand

‖a(b|x3=0)‖B1 . ‖a‖B1‖b|x3=0‖B1
2,1(R2).

On the other hand, observe that∥∥∥∥a(·, x3)

∫ x3

0

∂3b(·, y3) dy3

∥∥∥∥
B1

2,1(R2)

. ‖a(·, x3)‖B1
2,1(R2)

∫ x3

0

‖∂3b(·, y3)‖B1
2,1(R2) dy3

6 C|x3|‖a(·, x3)‖B1
2,1(R2)‖∂3b‖L∞v (B1

2,1(R2
h)).

The result follows. �

Appendix. Some results in anisotropic Besov spaces

A.1. Anisotropic Besov spaces. — In this section we first recall some basic facts
about (anisotropic) Littlewood-Paley theory and then we prove some basic properties
of anisotropic Besov spaces introduced in Definition 1.6, in particular laws of product
which have used all along this text.

First let us recall the following estimates which are the generalization of the classical
Bernstein’s inequalities in the context of anisotropic Littlewood-Paley theory (see
[2, Lem. 6.10]) describing the action of horizontal and vertical derivatives on frequency
localized distributions:

Lemma A.1. — Let (p1, p2, r) be in [1,∞]3 such that p1 is less than or equal to p2.
Let m be a real number and σh (resp. σv) a smooth homogeneous function of degree m
on R2 (resp. R). Then we have

‖σh(Dh)∆h
kf‖Lp2h Lrv

. 2k(m+2/p1−2/p2)‖∆h
kf‖Lp1h Lrv

and

‖σv(D3)∆v
j f‖LrhLp2v . 2j(m+1/p1−1/p2)‖∆v

j f‖LrhLp1v .

Now let us recall the action of the heat flow on frequency localized distributions in
an anisotropic context.

Lemma A.2. — For any p in [1,∞], we have

‖et∆∆h
k∆v

j f‖Lp . e−ct(2
2k+22j)‖∆h

k∆v
j f‖Lp

‖et∆h∆h
k∆v

j f‖Lp . e−ct2
2k

‖∆h
k∆v

j f‖Lp and

‖et∂
2
3 ∆h

k∆v
j f‖Lp . e−ct2

2j

‖∆h
k∆v

j f‖Lp .

The proof of this lemma consists in a straightforward (omitted) modification of the
proof of [2, Lem. 2.3].

The following result was mentioned in the introduction of this article (see page 855).
We refer to (3.2) and to Definition 1.13 for notations.
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Lemma A.3. — Let p > 2 be given. The spaces L̃2(R+; Bs−1,s′

p ), L̃2(R+; Bs,s′−1
p )

are F s,s′ spaces, as well as the spaces L1(R+; Bs,s′

p ) and L1(R+; Bs+1,s′−1
p ).

Proof. — Let f be a function in L̃2(R+; Bs−1,s′

p ), and let us show that

‖L0f‖A s,s′
p
. ‖f‖

L̃2(R+;Bs−1,s′
p )

.

Applying Lemma A.2 gives

‖∆h
k∆v

jL0f‖Lp .
∫ t

0

e−ct
′(22k+22j)‖∆h

k∆v
j f(t′)‖Lp dt′,

so there is a sequence dj,k(t′) in the sphere of `1(Z× Z;L2(R+)) such that

‖∆h
k∆v

jL0f‖Lp . ‖f‖L̃2(R+;Bs−1,s′
p )

2−k(s−1)2−js
′
∫ t

0

e−ct
′(22k+22j)dj,k(t′) dt′.

Young’s inequality in time therefore gives

‖∆h
k∆v

jL0f‖L2(R+;Lp) . ‖f‖L̃2(R+;Bs−1,s′
p )

2−k(s−1)−js′dj,k,

where dj,k is a generic sequence in the sphere of `1(Z × Z), which proves the result
in the case when f belongs to L̃2(R+; Bs−1,s′

p ). The argument is similar in the other
cases. �

Now let us study laws of product.

Proposition A.4. — Let p be in [2, 4[ and let (σ, σ′, σ̃, σ̃′) ∈ ]1 − 4/p,−1 + 4/p]4 be
such that

σ + σ′ = σ̃ + σ̃′
def
= σ > 0.

If s′ is in ]1/2− 2/p,−1/2 + 2/p], we have

(A.1) ‖ab‖Bσ−1,s′ . ‖a‖Bσ
p
‖b‖

Bσ′,s′
p

.

If s′ is greater than 1/2, then we have

(A.2) ‖ab‖Bσ−1,s′ . ‖a‖Bσ‖b‖Bσ′,s′ + ‖a‖Bσ̃′,s′‖b‖Bσ̃ .

Proof. — Let us use Bony’s decomposition in the vertical variable introduced
in (3.33), namely

ab = T v
a b+ T v

b a+Rv(a, b).

The first two terms are almost the same (up to the interchanging of a and b). Thus
we only estimate T v

a b. This is done through the following lemma.

Lemma A.5. — Let us consider p ∈ [2, 4[, (σ, σ′) in ]1 − 4/p,−1 + 4/p]2 such that
σ + σ′ is positive, and (s, s′) in R2. If s 6 −1/2 + 2/p, then we have

(A.3) ‖T v
a b‖Bσ+σ′+1−4/p,s+s′+1/2−2/p

2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.

If s+ s′ is positive, then we have

(A.4) ‖Rv(a, b)‖
B
σ+σ′+1−4/p,s+s′+1/2−2/p
2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.
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Proof. — Let us use Bony’s decomposition of T v
a b with respect to the horizontal

variable.

T v
a b = T vT h

a b+ T vT̃ h
b a+ T vRh(a, b) with

T vT h
a b

def
=
∑
j,k

Sv
j−1S

h
k−1a∆v

j∆h
kb,

T vT̃ h
b a

def
=
∑
j,k

Sv
j−1∆h

ka∆v
jS

h
k−1b and

T vRh(a, b)
def
=

∑
j,k

−16`61

Sv
j−1∆h

k−`a∆v
j∆h

kb.

Following the same lines as in the proof of Proposition 3.1 (see the lines following
decomposition (3.18)) we have for some large enough integer N0

∆v
j∆h

kT
vT h

a b =
∑

|j′−j|6N0

|k′−k|6N0

∆v
j∆h

k

(
Sv
j′−1S

h
k′−1a∆v

j′∆
h
k′b
)
.

By definition of the Bσ,s′

p norms, this gives, denoting 1/p+ 1/p = 1/2,

T v,h
j,k

def
= 2j(s+s

′+1/2−2/p)+k(σ+σ′+1−4/p)‖∆v
j∆h

kT
vT h

a b‖L2

.
∑

|j′−j|6N0

|k′−k|6N0

2−(j′−j)(s+s′+1/2−2/p)−(k′−k)(σ+σ′+1−4/p)

× 2j
′(s+1/2−2/p)+k′(σ+1−4/p)‖Sv

j′−1S
h
k′−1a‖Lp2j

′s′+k′σ′‖∆v
j′∆

h
k′b‖Lp

. ‖b‖
Bσ′,s′
p

∑
|j′−j|6N0

|k′−k|6N0

2−(j′−j)(s+s′+1/2−2/p)−(k′−k)(σ+σ′+1−4/p)

× dj′,k′2j
′(s+1/2−2/p)+k′(σ+1−4/p)‖Sv

j′−1S
h
k′−1a‖Lp ,

where, as in all that follows, (dj,k)(j,k)∈Z2 lies on the sphere of `1(Z2). Using anisotropic
Bernstein inequalities given by Lemma A.1 and the definition of the Bσ,s

p norm, we get

2j
′(s+1/2−2/p)+k′(σ+1−4/p)‖Sv

j′−1S
h
k′−1a‖Lp

.
∑

j′′6j′−2
k′′6k′−2

2(j′−j′′)(s+1/2−2/p)+(k′−k′′)(σ+1−4/p)

× 2j
′′(s+1/2−2/p)+k′′(σ+1−4/p)‖∆v

j′′∆
h
k′′a‖Lp

.
∑

j′′6j′−2
k′′6k′−2

2(j′−j′′)(s+1/2−2/p)+(k′−k′′)(σ+1−4/p) 2j
′′s+k′′σ‖∆v

j′′∆
h
k′′a‖Lp

. ‖a‖Bσ,s
p

∑
j′′6j′−2
k′′6k′−2

2(j′−j′′)(s+1/2−2/p)+(k′−k′′)(σ+1−4/p)dj′′k′′ .

As s 6 −1/2 + 2/p and σ 6 −1 + 4/p, we get

2j
′(s+1/2−2/p)+k′(σ+1−4/p)‖Sv

j′−1S
h
k′−1a‖Lp . ‖a‖Bσ,s

p
.
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Young’s inequality on series leads to

(A.5) ‖T vT h
a b‖Bσ+σ′+1−4/p,s+s′+1/2−2/p

2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.

Following exactly the same lines, we can prove

(A.6) ‖T vT̃ h
b a‖Bσ+σ′+1−4/p,s+s′+1/2−2/p

2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.

The estimate of T vRh(a, b) is a little bit different. Let us write that

∆v
j∆h

kT
vRh(a, b) =

∑
j′,k′

−16`61

∆v
j∆h

k

(
Sv
j′−1∆h

k′−`a∆v
j′∆

h
k′b
)
.

Arguing as in the proof of Proposition 3.1 we have for some large enough integer N0

∆v
j∆h

kT
vRh(a, b) =

∑
|j′−j|6N0

k′>k−N0

∑
−16`61

∆v
j∆h

k

(
Sv
j′−1∆h

k′−`a∆v
j′∆

h
k′b
)
.

Anisotropic Bernstein inequalities given by Lemma A.1 imply that∥∥∆v
j∆h

k

(
Sv
j′−1∆h

k′−`a∆v
j′∆

h
k′b
)∥∥
L2 . 22k(2/p−1/2)

∥∥Sv
j′−1∆h

k′−`a∆v
j′∆

h
k′b
∥∥
L
p/2
h (L2

v)

. 22k(2/p−1/2)‖Sv
j′−1∆h

k′−`a‖Lph(Lpv)‖∆
v
j′∆

h
k′b
∥∥
Lp
.

Thus we infer that

2k(σ+σ′+1−4/p)+j(s+s′+1/2−2/p)‖∆v
j∆h

kT
vRh(a, b)‖L2

.
∑

|j′−j|6N0

k′>k−N0

∑
−16`61

2−(k′−k)(σ+σ′)−(j−j′)(s+s′+1/2−2/p)

× 2j
′(s+1/2−2/p)+k′σ‖Sv

j′−1∆h
k′−`a‖Lph(Lpv)2

k′σ′+j′s′‖∆v
j′∆

h
k′b‖Lp .

Using again anisotropic Bernstein inequalities and by definition of the Bσ,s norm,
we get

2j
′(s+1/2−2/p)+k′σ‖Sv

j′−1∆h
k′−`a‖Lph(Lpv)

.
∑

j′′6j′−2

2(j′−j′′)(s+1/2−2/p)2j
′′s+k′σ‖∆v

j′′∆
h
k′−`a‖Lp

. ‖a‖Bσ,s
p

∑
j′′6j′−2

2(j′−j′′)(s+1/2−2/p)dj′′,k′ .

As s is less than or equal to −1/2 + 2/p, we get

2j
′(s+1/2−2/p)+k′σ ‖Sv

j′−1∆h
k′−`a‖Lph(Lpv) . ‖a‖Bσ,s

p
.

By definition of the Bσ′,s′

p norm, this gives

2k(σ+σ′+1−4/p)+j(s+s′+1/2−2/p)‖∆v
j∆h

kT
vRh(a, b)‖L2 . ‖a‖Bσ,s

p
‖b‖

Bσ′,s′
p

×
∑

|j′−j|6N0

k′>k−N0

∑
−16`61

2−(k′−k)(σ+σ′)−(j′−j)(s+s′+1/2−2/p)dj′,k′ .
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As σ + σ′ is positive, we get that
2k(σ+σ′+1−4/p)+j(s+s′+1/2−2/p)‖∆v

j∆h
kT

vRh(a, b)‖L2 . dj,k‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.

Together with (A.5) and (A.6) this concludes the proof of Inequality (A.3).
In order to prove Inequality (A.4), let us use again the horizontal Bony decompo-

sition. Defining

∆̃v
j (resp. ∆̃h

k)
def
=

1∑
`=−1

∆v
j−` (resp. ∆h

k−`)

let us write that
Rv
ab = RvT h

a b+RvT h
b a+RvRh(a, b) with

RvT h
a b

def
=
∑
j,k

∆̃v
jS

h
k−1a∆v

j∆h
kb and

RvRh(a, b)
def
=
∑
j,k

∆̃v
j ∆̃h

k−`a∆v
j∆h

kb.

We have for a large enough integer N0,

∆v
j∆h

kR
vT h

a b =
∑

j′>j−N0

|k′−k|6N0

∆v
j∆h

k

(
∆̃v
j′S

h
k′−1a∆v

j′∆
h
k′b
)
.

Using anisotropic Bernstein inequalities, this gives by definition of the Bσ,s′

p norm,

RT v,h
j,k (a, b)

def
= 2j(s+s

′+1/2−2/p)+k(σ+σ′+1−4/p)‖∆v
j∆h

kR
vT h

a b‖L2

. 2j(s+s
′)+k(σ+σ′+1−4/p)‖∆v

j∆h
kR

vT h
a b‖L2

h(L
p/2
v )

.
∑

j′>j−N0

|k′−k|6N0

2−(j′−j)(s+s′)−(k′−k)(σ+σ′+1−4/p)

× 2j
′s+k′(σ+1−4/p)‖∆̃v

j′S
h
k′−1a‖Lph(Lpv)2

j′s′+k′σ′‖∆v
j′∆

h
k′b‖Lp

. ‖b‖
Bσ′,s′
p

∑
j′>j−N0

|k′−k|6N0

2−(j′−j)(s+s′)−(k′−k)(σ+σ′+1−4/p)

× dj′,k′2j
′s+k′(σ+1−4/p)‖∆̃v

j′S
h
k′−1a‖Lph(Lpv).

Using anisotropic Bernstein inequalities and the definition of the Bσ,s norm, we get
2j
′s+k′(σ+1−4/p)‖∆̃v

j′S
h
k′−1a‖Lph(Lpv)

.
∑

j′−16j′′6j′+1
k′′6k′−2

2(j′−j′′)s+(k′−k′′)(σ+1−4/p) · 2j
′′s+k′′(σ+1−4/p)‖∆v

j′′∆
h
k′′a‖Lph(Lpv)

.
∑

j′−16j′′6j′+1
k′′6k′−2

2(j′−j′′)s+(k′−k′′)(σ+1−4/p) · 2j
′′s+k′′σ‖∆v

j′′∆
h
k′′a‖Lp

. ‖a‖Bσ,s
p

∑
j′−16j′′6j′+1

k′′6k′−2

2(j′−j′′)s+(k′−k′′)(σ+1−4/p)dj′′k′′ .
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As σ is less than or equal to −1 + 4/p, we get

2j
′s+k′(σ+1−4/p)‖∆̃v

j′S
h
k′−1a‖Lp . ‖a‖Bσ,s

p
.

Since s+ s′ is positive, Young’s inequality on series leads to

(A.7) ‖RvT h
a b‖Bσ+σ′+1−4/p,s+s′+1/2−2/p

2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.

By symmetry, we get

(A.8) ‖RvT h
b a‖Bσ+σ′+1−4/p,s+s′+1/2−2/p

2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

.

The estimate of RvRh(a, b) is a little bit different. Arguing as in the proof of Propo-
sition 3.1, we obtain

∆v
j∆h

kR
vRh(a, b) =

∑
j′>j−N0

k′>k−N0

∆v
j∆h

k

(
∆̃v
j′∆̃

h
k′−`a∆v

j′∆
h
k′b
)
.

Anisotropic Bernstein inequalities given by Lemma A.1 imply that∥∥∆v
j∆h

k

(
∆̃v
j′∆̃

h
k′a∆v

j′∆
h
k′b
)∥∥
L2 . 2(2k+j)(2/p−1/2)

∥∥∆̃v
j′∆̃

h
k′a∆v

j′∆
h
k′b
∥∥
Lp/2

. 2(2k+j)(2/p−1/2)‖∆̃v
j′∆̃

h
k′a‖Lp‖∆v

j′∆
h
k′b
∥∥
Lp
.

Thus we infer that

2k(σ+σ′+1−4/p)+j(s+s′+1/2−2/p)‖∆v
j∆h

kR
vRh(a, b)‖L2

.
∑

j′>j−N0

k′>k−N0

2−(k′−k)(σ+σ′)−(j′−j)(s+s′) · 2j
′s+k′σ‖∆̃v

j′∆
h
k′−`a‖Lp2k

′σ′+j′s′‖∆v
j′∆

h
k′b‖Lp .

By definition of the Bσ′,s′

p norm, this gives

2k(σ+σ′+1−4/p)+j(s+s′+1/2−2/p)‖∆v
j∆h

kR
vRh(a, b)‖L2

. ‖a‖Bσ,s
p
‖b‖

Bσ′,s′
p

∑
j′>j−N0

k′>k−N0

2−(k′−k)(σ+σ′)−(j′−j)(s+s′)dj′,k′ .

As σ + σ′ and s+ s′ are positive, we get that

2k(σ+σ′+1−4/p)+j(s+s′+1/2−2/p)‖∆v
j∆h

kR
vRh(a, b)‖L2 . dj,k‖a‖Bσ,s

p
‖b‖

Bσ′,s′
p

.

Together with (A.7) and (A.8) this concludes the proof of Inequality (A.3). �

In order to conclude the proof of Proposition A.4, it is enough to apply Lemma A.5
with (σ, σ′) to T v

a b and with (σ̃′, σ̃) to T̃ v
b a. �

Now let us prove laws of product in the case when one of the functions does not
depend on the vertical variable x3. We have the following proposition.

Proposition A.6. — Let a be in Bσ2,1(R2) and b in Bs,s′ with (s, σ) in ]− 1, 1]2 such
that s+ σ is positive and s′ greater than or equal to 1/2. We have

(A.9) ‖ab‖Bs+σ−1,s′ . ‖a‖Bσ2,1(R2
h)‖b‖Bs,s′ .
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Proof. — Using Bony’s decomposition in the horizontal variable gives

ab = T h
a b+ T h

b a+Rh(a, b).

As a does not depend on the vertical variable, we have

∆v
jT

h
a b = T h

a∆v
j b, ∆v

jT
h
b a = T h

∆v
j b
a and ∆v

jR
h(a, b) = Rh(a,∆v

j b).

Then, the result follows from the classical proofs of mappings of paraproduct and
remainder operators (see for instance [2, Ths. 2.47&2.52]). We give a short sketch of
the proof for the reader’s convenience in the case of T h. Let us write

2k(s+σ−1)+js′‖∆v
j∆h

kT
h
a b‖L2 .

∑
|k′−k|6N0

2k
′(σ−1)‖Sh

k′−1a‖L∞h 2k
′s+js′‖∆v

j∆h
k′b‖L2

. ‖b‖Bs,s′

∑
|k′−k|6N0

2k
′(σ−1)‖Sh

k′−1a‖L∞h dk′,j .

Bernstein inequalities imply that

2−k(1−σ)‖Sh
k−1a‖L∞h .

∑
k′6k−1

2(k′−k)(1−σ)2k
′σ‖∆h

k′a‖L2
h

. ‖a‖Bσ2,1(R2
h)

∑
k′6k−1

2(k′−k)(1−σ)dk′ .

This gives, with no restriction on the parameter s and with σ less than or equal to 1

and s′ greater than or equal to 1/2,

(A.10) ‖T h
a b‖Bs+σ−1,s′ . ‖a‖Bσ2,1(R2

h)‖b‖Bs,s′ .

For the other (horizontal) paraproduct term, let us write

2k(s+σ−1)+js′‖∆v
j∆h

kT
h
b a‖L2

.
∑

|k′−k|6N0

2k
′(s−1)+js′‖Sh

k′−1∆v
j b‖L∞h (L2

v)2
k′σ‖∆h

k′a‖L2
h

. ‖a‖Bσ2,1(R2)

∑
|k′−k|6N0

2k
′(s−1)+js′‖Sh

k′−1∆v
j b‖L∞h (L2

v)dk′ .

(A.11)

Using Lemma A.1, we get

2−k(1−s)+js′‖Sh
k−1∆v

j b‖L∞h (L2
v) .

∑
k′6k−1

2(k′−k)(1−s)2−k
′(1−s)+js′‖∆h

k′∆
v
j b‖L∞h (L2

v)

.
∑

k′6k−1

2(k′−k)(1−s)2k
′s+js′‖∆h

k′∆
v
j b‖L2 .

By definition of the Bs,s′ norm and using the fact that s 6 1, we infer that

2js
′−k(1−s)‖Sh

k−1∆v
j b‖L∞h (L2

v) 6 dj‖b‖Bs,s′ .

Together with (A.11), this gives

(A.12) ‖T h
b a‖Bs+σ−1,s′ . ‖a‖Bσ2,1(R2)‖b‖Bs,s′ .
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Now let us study the (horizontal) remainder term. Using Lemma A.1, let us write
that

2k(s+σ−1)+js′‖∆v
j∆h

kR
h(a, b)‖L2

. 2k(s+σ)+js′‖∆v
j∆h

kR
h(a, b)‖L2

v(L1
h)

.
∑

k′>k−N0

2−(k′−k)(s+σ)2k
′σ‖∆h

k′a‖L2
h
2k
′s+js′‖∆v

j∆h
k′b‖L2 .

By definition of the Bσ2,1(R2) and Bs,s′ norms, we get

2k(s+σ−1)+js′‖∆v
j∆h

kR
h(a, b)‖L2 . ‖a‖Bσ2,1(R2)‖b‖Bs,s′dj

∑
k′>k−N0

2−(k′−k)(s+σ)dk′ .

Together with (A.10) and (A.12), this gives the result thanks to the fact that s + σ

is positive. Proposition A.6 is proved. �

A.2. Proof of Proposition 1.14. — The proof of Proposition 1.14 is reminiscent of
that of Lemma 3.6, and we shall be using arguments of that proof here.

Let us recall that we want to prove that if U is in L2(R+; B1
p), if u0 is in B0

p and f
in F 0

p , such that

(A.13) ‖u0‖B0
p

+ ‖f‖F0
p
6

1

C0
exp
(
−C0

∫ ∞
0

‖U(t)‖2B1
p
dt
)
,

then the problem

(NSU )

{
∂tu+ div(u⊗ u+ u⊗ U + U ⊗ u)−∆u = −∇p+ f

div u = 0 and u|t=0 = u0

has a unique global solution in L2(R+; B1
p) which satisfies

‖u‖L2(R+;B1
p) . ‖u0‖B0

p
+ ‖f‖F0

p
.

Let us first prove that the system (NSU ) has a unique solution in L2([0, T ]; B1
p) for

some small enough T . Let us introduce some bilinear operators which distinguish the
horizontal derivatives from the vertical one, namely for ` belonging to {1, 2, 3},

(A.14) Qh(u,w)`
def
= divh(w`uh) and Qv(u,w)`

def
= ∂3(w`u3).

Then we define Bh,τ
def
= LτQh and Bv,τ

def
= LτQv where Lτ is defined in Defini-

tion 1.13. It is obvious that solving (NSU ) is equivalent to solving

u = et∆u0 + L0f +Bh,0(u, u) +Bv,0(u, u) +Bh,0(U, u) +Bv,0(U, u)

+Bh,0(u, U) +Bv,0(u, U).

Following an idea introduced by G.Gui, J. Huang and P. Zhang in [27], let us define

L0
def
= et∆u0 + L0f
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and look for the solution u under the form u = L0 + ρ. As the horizontal and
the vertical derivative are not treated exactly in the same way, let us decompose ρ
into ρ = ρh + ρv with

ρh
def
= Bh,0(ρ, ρ) +Bh,0(L0 + U, ρ) +Bh,0(ρ,L0 + U) + Fh,

ρv
def
= Bv,0(ρ, ρ) +Bv,0(L0 + U, ρ) +Bv,0(ρ,L0 + U) + Fv with

Fh
def
= Bh,0(L0,L0) +Bh,0(L0, U) +Bh,0(U,L0) and

Fv
def
= Bv,0(L0,L0) +Bv,0(L0, U) +Bv,0(U,L0).

(A.15)

The main lemma is the following.

Lemma A.7. — For any subinterval I = [a, b] of R+, we have

‖Bh,a(u,w)‖L∞(I;B0
p) + ‖Bh,a(u,w)‖

L1(I;B2
p∩B

2/p,1+1/p
p,1 )

+ ‖Bv,a(u,w)‖
L∞(I;B

2/p,−1+1/p
p,1 )

+ ‖Bv,a(u,w)‖
L1(I;B2

p∩B
2/p,1+1/p
p,1 )

. ‖u‖L2(I;B1
p)‖w‖L2(I;B1

p).

Proof. — As B1
p is an algebra and using Lemma A.1, we get

Qj,k(u,w)(t)
def
= 2k(−1+2/p)2j/p‖∆v

j∆h
kQh(u,w)(t)‖Lp

+ 22k/p+j(−1+1/p)‖∆v
j∆h

kQv(u,w)(t)‖Lp
. dj,k(t)‖u(t)‖B1

p
‖w(t)‖B1

p
,

where as usual we have denoted by dj,k(t) a sequence in the unit sphere of `1(Z2)

for each t. Lemma A.2 implies that, for any t in [a, b], we have with the notation of
Definition 1.13

La,j,k(u,w)(t)
def
= 2k(−1+2/p)2j/p‖La∆v

j∆h
kQh(u,w)(t)‖Lp

+ 22k/p+j(−1+1/p)‖La∆v
j∆h

kQv(u,w)(t)‖Lp

.
∫ t

a

dj,k(t′)e−c2
(2k+2j)(t−t′)‖u(t′)‖B1

p
‖w(t′)‖B1

p
dt′.

Convolution inequalities imply that

‖La,j,k(u,w)‖L∞(I;Lp) + c 22k+2j‖La,j,k(u,w)‖L1(I;Lp)

.
∫
I

dj,k(t)‖u(t)‖B1
p
‖w(t)‖B1

p
dt.

This concludes the proof of Lemma A.7. �

As we have by interpolation,

(A.16) ‖a‖B1
p
6 ‖a‖1/2B0

p
‖a‖1/2B2

p
and ‖a‖B1

p
6 ‖a‖1/2

B
2/p,−1+1/p
p,1

‖a‖1/2
B

2/p,1+1/p
p,1

,
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we infer that the bilinear maps Bh,a and Bv,a map L2(I; B1
p) × L2(I; B1

p) into
L2(I; B1

p). A classical fixed point theorem implies the local well-posedness in the
space L2(I; B1

p) for initial data in the space B0
p +B

2/p,−1+1/p
p,1 .

Now let us extend this (unique) solution to the whole interval R+. Given ε > 0, to
be chosen small enough later on, let us define Tε as

(A.17) Tε
def
= sup

{
T < T ? | ‖ρ‖L2([0,T ];B1

p) 6 ε
}
.

As in the proof of Lemma 3.6, let us consider the increasing sequence (Tm)06m6M

such that T0 = 0, TM =∞ and for some given c0 which will be chosen later on

(A.18) ∀m < M − 1,

∫ Tm+1

Tm

‖U(t)‖2B1
p
dt = c0 and

∫ ∞
TM−1

‖U(t)‖2B1
p
dt 6 c0.

Let us recall that from (3.31), we have

(A.19) M 6
1

c0

∫ ∞
0

‖U(t)‖2B1
p
dt.

Let us define

(A.20) N0
def
= ‖L0‖2L2(R+;B1

p) + ‖L0‖L2(R+;B1
p)‖U‖L2(R+;B1

p).

Let us consider any m such that Tm < Tε. Lemma A.7 implies that for any time T
less than min{Tm+1;Tε}, we have

Rh
m(T )

def
= ‖ρh‖L∞([Tm,T ];B0) + ‖ρh‖L1([Tm,T ];B2)

6 C‖ρh(Tm)‖B0
p

+ CN0

+ C
(
‖ρh‖L2([Tm,T ];B1

p) + ‖L0 + U‖L2([Tm,T ];B1
p)

)
‖ρh‖L2([Tm,T ];B1

p)

6 C‖ρh(Tm)‖B0
p

+ CN0

+ C
(
ε+ ‖L0‖L2([Tm,T ];B1

p) + c0
)
‖ρh‖L2([Tm,T ];B1

p).

Choosing C0 large enough in (A.13), c0 small enough in (A.18), and ε small enough
in (A.17) implies that

(A.21) Rh
m(T ) 6 C‖ρh(Tm)‖B0

p
+ CN0 +

1

2
‖ρh‖L2([Tm,T ];B1

p).

Exactly along the same lines, we get

Rv
m(T )

def
= ‖ρv‖L∞([Tm,T ];B

1,−1/2
p )

+ ‖ρv‖L1([Tm,T ];B
1,3/2
p )

6 C‖ρv(Tm)‖
B

1,−1/2
p

+ CN0 +
1

2
‖ρv‖L2([Tm,T ];B1

p).

We deduce that

‖ρh‖L2([Tm,T ];B1
p) 6 C

(
‖ρh(Tm)‖B0

p
+ N0

)
‖ρv‖L2([Tm,T ];B1

p) 6 C
(
‖ρv(Tm)‖

B
1,−1/2
p

+ N0

)
.and

This gives, for any m such that Tm < Tε and for all T in [Tm; min{Tm+1, Tε}],

(A.22) Rh
m(T ) + Rv

m(T ) 6 C1

(
‖ρv(Tm)‖

B
1,−1/2
p

+ ‖ρh(Tm)‖B0
p

+ N0

)
.
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Let us observe that ρ|t=0 = 0. Thus exactly as in the proof of Lemma 3.6, an iteration
process gives, for any m such that Tm < Tε and any T in [Tm,min{Tm+1, Tε}],

R(T )
def
= ‖ρh‖L∞([0,T ];B0

p) + ‖ρh‖L1([0,T ];B2
p)

+ ‖ρv‖L∞([0,T ];B
2/p,−1+1/p
p,1 )

+ ‖ρh‖L1([0,T ];B
2/p,1+1/p
p,1 )

6 (C1)m+1N0.

By definition of N0 given in (A.20), we have in view of Definition 1.13

N0 .
(
‖u0‖B0

p
+ ‖f‖F0

p

)(
‖U‖L2(R+;B1

p) + ‖u0‖B0
p

+ ‖f‖F0
p

)
.

As claimed in (A.19) the total number of intervals is less than ‖U‖2L2(R+;B1
p). We infer

that, for any T < Tε

R(T )6C2

(
‖u0‖B0

p
+‖f‖F0

p

)(
‖U‖L2(R+;B1

p)+‖u0‖B0
p
+‖f‖F0

p

)
exp
(
C2‖U‖2L2(R+;B1

p)

)
.

Using the interpolation inequality (A.16) we infer that, for any T < Tε,∫ T

0

‖ρ(t)‖2B1
p
dt 6 C2

(
‖u0‖B0

p

+ ‖f‖F0
p

)(
‖U‖L2(R+;B1

p) + ‖u0‖B0
p

+ ‖f‖F0
p

)
exp
(
C2‖U‖2L2(R+;B1

p)

)
.

Choosing

C2

(
‖u0‖B0

p
+ ‖f‖F0

p

)(
‖U‖L2(R+;B1

p)+‖u0‖B0
p

+ ‖f‖F0
p

)
exp
(
C2‖U‖2L2(R+;B1

p)

)
6
ε2

2

ensures that
∫ T

0
‖ρ(t)‖2B1

p
dt remains less than ε2, and thus there is no blow up for the

solution of (NSU ). This concludes the proof of Proposition 1.14. �

A.3. Proof of Proposition 1.15. — Thanks to Proposition A.4, we observe that if u
belongs to L2(R+; B1

p), then u ⊗ u belongs to L1(R+; B1). Lemma A.1 implies that
the operators Qh and Qv defined in (A.14) satisfy

‖Qh(u, u)‖L1(R+;B0) + ‖Qv(u, u)‖L1(R+;B1,−1/2) . ‖u‖2L2(R+;B1
p).

Using the Duhamel formula and the action of the heat flow described in Lemma A.2,
we deduce that

∀ r ∈ [1,∞], ‖u‖Lr(R+;B2/r) + ‖u‖L1(R+;B1,3/2) . ‖u0‖B0 + ‖u‖2L2(R+;B1
p),

which proves (1.37). Let us prove the second inequality of the proposition which is a
propagation type inequality. Once an appropriate (para)linearization of the terms Qh

and Qv is done, the proof is quite similar to the proof of Proposition 1.14. Following
the method of [13], let us observe that

div(u⊗ u)` = divh(u`uh) + ∂3(u`u3)

= (divh u
h)u` + uh · ∇hu

` + ∂3

(
T v
u3u` + T v

u`u
3 +Rv(u3, u`)

)
.

Now let us define the bilinear operator T by

(Tuw)`
def
= (divh w

h)u` + uh · ∇hw
` + ∂3

(
T v
u3w` + T v

u`w
3 +Rv(u3, w`)

)
.
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Let us observe that Tuu = div(u⊗ u). The laws of product of Proposition A.4 imply
that, for any s in [1− 4/p+ µ,−1 + 4/p− µ],

(A.23) ‖(divh w
h)u` + uh · ∇hw

`‖Bs . ‖w‖Bs+1‖u‖B1 .

Lemmas A.1 and A.5 imply that, for any s in [1− 4/p+ µ,−1 + 4/p− µ],

(A.24)
∥∥(∂3

(
T v
u3w` + T v

u`w
3 +Rv(u3, w`)

∥∥
Bs . ‖w‖Bs,3/2‖u‖B1 .

Let us notice that for any non negative a, u is solution of the linear equation

(A.25) w = e(t−a)∆u(a) + LaTuw.

The smoothing effect of the heat flow, as described in Lemma A.2, implies that for
any non negative a, and any t greater than or equal to a,

(A.26) 2j/2+ks‖∆v
j∆h

kLaTuw(t)‖L2

.
∫ t

a

dj,k(t′)e−c2
(2k+2j)(t−t′)‖u(t′)‖B1

(
‖w(t′)‖Bs+1 + ‖w(t′)‖Bs,3/2

)
dt′.

This gives, for any b in ]a,∞],

‖LaTuw‖L∞(I;Bs) + ‖LaTuw‖L1(I;Bs+2∩Bs,5/2) . ‖u‖L2(I;B1)‖w‖L2(I;Bs+1∩Bs,3/2)

with I = [a, b]. Now let us consider the increasing sequence (Tm)06m6M which satis-
fies (A.18). If c0 is chosen small enough, we have that the linear map LTmTu maps
the space

L2([Tm, Tm+1]; B1 ∩Bs+1 ∩Bs,3/2)

into itself with a norm less than 1. Thus ¬†u is the unique solution of (A.25) and it
satisfies, for any m

‖u‖L∞([Tm,Tm+1];Bs) + ‖u‖L2([Tm,Tm+1];Bs+1∩Bs,3/2) 6 C1‖u(Tm)‖Bs .

Arguing as in the proofs of Lemma 3.6 and Proposition 1.14, we conclude that u
belongs to A s and that

‖u‖A s . ‖u0‖Bs exp
(
C‖u‖2L2(R+;B1)

)
.

Inequality (1.38) is proved.
In order to prove Inequality (1.39), let us observe that using Bony’s decomposition

in the vertical variable, we get

div(u⊗ u)` =

3∑
m=1

∂m(u`um) =

3∑
m=1

∂m

(
T v
u`u

m + T v
umu

` +Rv(u`, um)
)
.

Now let us define

(T uw)`
def
=

3∑
m=1

∂m

(
T v
u`w

m + T v
umw

` +Rv(u`, wm)
)
.
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Proposition A.4 implies that, if m equals 1 or 2 then for any s′ greater than or equal
to 1/2∥∥∂m(T v

u`w
m + T v

umw
` +Rv(u`, wm)

)∥∥
L1(R+;B0,s′ )

. ‖u‖L2(R+;B1)‖w‖L2(R+;B1,s′ ),∥∥∂3

(
T v
u`w

3 + T v
u3w` +Rv(u`, w3)

∥∥
L1(R+;B0,s′ )

. ‖u‖L2(R+;B1)‖w‖L2(R+;B0,s′+1).

Thus we get, for any a in R+, any b in I = [a,∞] and any r in [1,∞],

‖LaT uw‖Lr(I;Bσ,σ′+s′ ) . ‖u‖L2(I;B1)

(
‖w‖L2(I;B1,s′ ) + ‖w‖L2(I;B0,s′+1)

)
with σ + σ′ = 2/r. Then the lines after Inequality (A.26) can be repeated word for
word. Proposition 1.15 is proved. �

References
[1] P. Auscher, S. Dubois & P. Tchamitchian – “On the stability of global solutions to Navier-Stokes

equations in the space”, J. Math. Pures Appl. (9) 83 (2004), no. 6, p. 673–697.
[2] H. Bahouri, J.-Y. Chemin & R. Danchin – Fourier analysis and nonlinear partial differential

equations, Grundlehren Math. Wiss., vol. 343, Springer, Heidelberg, 2011.
[3] H. Bahouri, A. Cohen & G. Koch – “A general wavelet-based profile decomposition in the critical

embedding of function spaces”, Confluentes Math. 3 (2011), no. 3, p. 387–411.
[4] H. Bahouri & I. Gallagher – “On the stability in weak topology of the set of global solutions to

the Navier-Stokes equations”, Arch. Rational Mech. Anal. 209 (2013), no. 2, p. 569–629.
[5] H. Bahouri & P. Gérard – “High frequency approximation of solutions to critical nonlinear wave

equations”, Amer. J. Math. 121 (1999), no. 1, p. 131–175.
[6] H. Bahouri, M. Majdoub & N. Masmoudi – “On the lack of compactness in the 2D critical Sobolev

embedding”, J. Funct. Anal. 260 (2011), no. 1, p. 208–252.
[7] , “Lack of compactness in the 2D critical Sobolev embedding, the general case”, J. Math.

Pures Appl. (9) 101 (2014), no. 4, p. 415–457.
[8] H. Bahouri & G. Perelman – “A Fourier approach to the profile decomposition in Orlicz spaces”,

Math. Res. Lett. 21 (2014), no. 1, p. 33–54.
[9] G. Bourdaud – “La propriété de Fatou dans les espaces de Besov homogènes”, Comptes Rendus

Mathématique 349 (2011), no. 15-16, p. 837–840.
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