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INFINITE RANDOM PLANAR MAPS RELATED TO

CAUCHY PROCESSES

by Timothy Budd, Nicolas Curien & Cyril Marzouk

Abstract. — We study the geometry of infinite random Boltzmann planar maps having weight
of polynomial decay of order k−2 for each vertex of degree k. These correspond to the dual of
the discrete “stable maps” of Le Gall and Miermont [26] studied in [12] related to a symmetric
Cauchy process, or alternatively to the maps obtained after taking the gasket of a critical O(2)-
loop model on a random planar map. We show that these maps have a striking and uncommon
geometry. In particular we prove that the volume of the (hull of the) ball of radius r for the
graph distance has an intermediate rate of growth and scales roughly as ec

√
r. We also perform

first passage percolation with exponential edge-weights and show that the volume growth for
the fpp-distance scales as ecr. Finally we consider site percolation on these lattices: although
percolation occurs only at p = 1, we identify a phase transition at p = 1/2 for the length of
interfaces. On the way we also prove new estimates on random walks attracted to an asymmetric
Cauchy process.

Résumé (Cartes planaires aléatoires infinies reliées aux processus de Cauchy)
Nous étudions la géométrie de cartes planaires aléatoires infinies de Boltzmann associées à

des poids qui décroissent polynomialement de l’ordre de k−2 pour chaque sommet de degré k.
Elles correspondent au dual des « cartes stables » discrètes de Le Gall et Miermont [26] étudiées
dans [12] et reliées aux processus de Cauchy symétriques, ou encore aux cartes obtenues à partir
de la « décomposition en gasket » d’un modèle de boucles O(2) critique sur une carte planaire
aléatoire. Nous montrons que ces cartes ont une géométrie surprenante et peu commune. En
particulier, nous prouvons que le volume des boules (complétées) de rayon r pour la distance de
graphe a une croissance intermédiaire, de l’ordre de ec

√
r. Nous étudions également la percola-

tion de premier passage avec des poids exponentiels sur les arêtes et montrons que la croissance
du volume des boules pour cette distance est désormais de l’ordre de ecr. Finalement, nous
étudions la percolation par site sur ces réseaux : bien que le phénomène de percolation ne se
produise qu’à p = 1, nous identifions une transition de phase à p = 1/2 pour la longueur des
interfaces ; pour cela, nous prouvons de nouvelles estimées sur les marches aléatoires dans le
bassin d’attraction d’un processus de Cauchy asymétrique.
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Figure 1. A representation of a geodesic ball in a randomly sampled
infinite map considered in this paper. The blue balls indicate high
degree vertices, the green ball is the root-vertex, while the red curve
indicates the boundary of the ball.

1. Introduction

This work studies the geometry of random Boltzmann planar maps with high
degrees in the continuation of [12] and focuses on the critical case a = 2 which was
left aside there. The geometry of those maps turns out to involve in an intricate way
random walks whose step distribution is in the domain of attraction of the standard
symmetric Cauchy process and displays an unexpected large scale geometry such as
an intermediate rate of growth. Let us first present rigorously the model of random
maps we are dealing with. To stick to the existing literature we prefer to introduce the
model of maps with large faces and then take their dual maps to get maps with large
vertex degrees (as opposed to dealing with maps with large vertex degrees directly).
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Infinite random planar maps related to Cauchy processes 751

Boltzmann planar maps with high degrees. — In all this work, we consider rooted
planar maps, i.e., graphs embedded in the two-dimensional sphere or in the plane,
and equipped with a distinguished oriented edge, the root-edge of the map, whose
origin vertex is the root-vertex of the map, and the face adjacent to the right of the
root-edge is called the root-face. For technical reasons, we restrict ourselves to bipartite
maps (all faces have even degree), we denote by M the set of all such finite maps.
Given a non-zero sequence q = (qk)k>1 of non-negative numbers we define a measure
w on M by putting for each m ∈M :

w(m) =
∏

f∈Faces(m)

qdeg(f)/2.

When the total mass w(M ) is finite we say that q is admissible and we can normalise
w into a probability measure. This model of random planar maps was considered
in [27]. We shall also further assume that the weight sequence q is critical in the sense
of [27] (see also [10, 16]), which according to [4] is equivalent to having∑

m∈M

w(m)#Vertices(m)2 =∞.

Under these conditions, one can define a random infinite planar map M∞ of the plane
as the local limit as n → ∞ of random Boltzmann maps distributed according to w
and conditioned on having n vertices (along the sequence of integers for which this
is well-defined), see [8, 30, 16]; the map M∞ is almost surely locally finite and one-
ended. As in [12, 26] we shall henceforth restrict ourself to weight sequences of the
form

(1) qk ∼ pq · c−k+1
q · k−a as k −→∞,

with a ∈ (3/2, 5/2), for some constants cq, pq > 0. Such sequences satisfying the
admissibility and criticality conditions above do exist as proved in [26, §2.2]. Explicit
examples are provided in [12, Eq. 6.1],

qk = pq · c−k+1
q · Γ(1/2− a+ k)

Γ(1/2 + k)
1k>2, cq = 4a− 2, pq = −

√
π

2 Γ(3/2− a)
.

In particular, for a = 2 one may take qk = (6k−1(2k − 1)(2k − 3))−11k>2.
As in [12], the object of study in the present work is not the map M∞ itself but

rather its dual map
M†∞,

where the roles of vertices and faces are exchanged (the root-edge of M†∞ is the dual of
the root-edge of M∞ oriented to cross it from right to left, so the root-vertex of M†∞
corresponds to the root-face of M∞). With our assumptions on the weight sequence q,
the random map M†∞ thus has vertices of very large degree. The geometry of M†∞
displays a phase transition depending on the value a ∈ (3/2; 5/2): for a ∈ (3/2; 2)—
the so-called dense phase—the volume growth of the map is exponential in the radius
whereas for a ∈ (2; 5/2)—the so-called dilute phase—it is polynomial of exponent
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752 T. Budd, N. Curien & C. Marzouk

(a− 1/2)/(a− 2), see [12]. The critical case a = 2 was left aside in [12] and is precisely
the object of our current investigation!

Results. — For r > 0 we denote by Ballr(M
†
∞) the sub-map of M†∞ obtained by

keeping only the vertices which are at distance at most r from the root-vertex of M†∞
and the edges between them and we consider its hull

Ballr(M
†
∞)

made by adding to Ballr(M
†
∞) all the finite connected components of its complement

in M†∞. We define the volume |m| of a map as being the number of vertices of the
map. Our main result shows that the volume growth of M†∞ is intermediate between
exponential and polynomial:

Theorem A (Graph volume growth). — If q is admissible, critical and satisfies (1)
with a = 2 then we have

log |Ballr(M
†
∞)|√

r

(P)−−−→
r→∞

3π√
2
.

Our results also imply that the number of edges adjacent to the hull of the ball of
radius r is of order eπ

√
2r, see Theorem 3. It is maybe surprising to notice that the

first order of the growth of |Ballr(M
†
∞)| in fact does not depend on the parameter pq

introduced in (1)—a similar phenomenon was already observed in the dense phase
a ∈ (3/2, 2) in [12, Th. 5.3]. However, the scaling constant pq does appear if one
modifies the metric as follows: Consider the first-passage percolation (fpp) model
on M†∞ where each edge gets an independent weight distributed as an exponential
law of parameter 1 (this model is sometimes referred to as the Eden model on M∞).
These weights are interpreted as random lengths for the edges of M†∞ and give rise
to the associated fpp-distance. If Ballfpp

r and Ballfpp
r are the associated ball and hull

of radius r > 0 we can prove:

Theorem B (Eden volume growth). — If q is admissible, critical and satisfies (1)
with a = 2 then we have

log |Ballfpp
r (M†∞)|
r

(P)−−−→
r→∞

3

2
π2pq.

Again, our result also includes the perimeter, see Theorem 2. Comparing the two
theorems, we see that the hull of the graph ball of radius r has a volume growth
C
√
r(1+oP (1)) whereas that of the fpp-ball of radius r has exponential volume growth.

This indeed shows that large degree vertices dramatically affect the geometric struc-
ture by diminishing the distances due to the low weights on their edges creating
short-cuts in the graph. A similar and even more dramatic effect was observed in [12]
where the fpp-distance to infinity becomes finite in the dense case a ∈ (3/2, 2). The
case a = 2 we consider here is thus in between the dense case a ∈ (3/2, 2) and the
dilute case a ∈ (2, 5/2) where the fpp-distance and graph metric are believed to be
proportional at large scales, as is the case for random triangulations [18].
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Infinite random planar maps related to Cauchy processes 753

Remark 1. — In the two previous theorems, we have considered the volume of a map
as its number of vertices; we may as well consider its number of faces, the results
would be exactly the same, see Remark 2 below (written for M∞ as opposed to its
dual here).

We also study Bernoulli site percolation on the random graphsM†∞ with parameter
p ∈ [0, 1]. Although there is no usual phase transition for the existence of an infinite
cluster because these graphs almost surely have infinitely many cut-points, we exhibit
a phase transition at p = 1/2 for the size distribution of the origin cluster. More
precisely, we consider face percolation on M(∞), the half-plane version of M∞, and
show that the parameter p = 1/2 is singular for the tail of the length of percolation
interfaces, see Proposition 7 for details.

Connections withO(n)-loop models and SLE/CLE. — As argued in [26, 9], one natural
way to get Boltzmann planar maps with a critical weight sequence q satisfying (1) with
a ∈ (3/2; 5/2) is to consider the so-called gasket of a critical loop-decorated planar
quadrangulation which is obtained by pruning the interior of all the outer-most loops
in the map. See [15] for a study of the perimeter cascades in such maps and [11] for
a peeling approach to these objects. Although the precise case we are dealing with in
these lines seems excluded in [9], heuristically the case a = 2 corresponds to the O(n)

model in the critical case n = 2. In particular, folklore conjectures state that, once
conformally uniformised, these decorated maps should converge towards the CLEκ
ensembles [29] which are (conjecturally) the limits of the critical O(n)-loop models
on Euclidean lattices, with the relation a − 2 = 4/κ − 1 with κ ∈ (8/3, 8). Our case
a = 2 thus corresponds to the critical case κ = 4 as expected.

Techniques. — Our main tool is the edge-peeling process defined in [10] and already
used in [12] in the case when a ∈ (3/2, 5/2)\{2}. More precisely, the peeling process is
an algorithmic way to discover the map and using different algorithms in the process
leads to a different understanding of geometric properties of the random map. A com-
mon feature of all the peeling processes of M∞ is that the perimeter and volume
growth have the same law independently of the peeling algorithm used. In our case
the perimeter process, once rescaled in time and space by n−1, converges towards the
symmetric Cauchy process conditioned to stay positive, see Theorem 1.

As in [12], we use the so-called peeling by layers to study the graph metric (The-
orem 3), the uniform peeling to study the first-passage percolation (Theorem 2) and
the peeling along percolation interfaces to study percolation (Theorem 4). The argu-
ments used in this paper are then, on a first glance, very close to those used in [12].
However, the critical case a = 2 and the singular characteristics of Cauchy processes
make the arguments much more subtle and witness the appearance of totally new
phenomena. In passing we also prove several estimates on random walks converging
towards (a symmetric or) an asymmetric Cauchy process. Although the literature on
random walks converging towards stable Lévy processes is abundant, it seems that
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this case is often put aside. Thus, our work may also be viewed as a contribution to
the study of random walks and Cauchy processes! In particular we prove:

Proposition 1. — Let W be a random walk on Z started from 0 with i.i.d. steps and
let τ = inf{n > 1 : Wn 6 −1}. Suppose that there exist c+, c− > 0, such that

P (W1 > k) ∼ c+
k
, and P (W1 < −k) ∼ c−

k
as k −→∞.

(i) If c+ > c− then there exists κ > 0 such that for every n large enough,

P(τ > n) > (log n)−κ.

(ii) If c+ < c− then there exists C, κ > 0 such that for every n large enough,
C

n log n
6 P(τ > n) 6

(log n)κ

n
.

(iii) If c+ = c− and the limit b = limn→∞ E[W1/(1 + (W1/n)2)] exists and is finite,
then

P(τ > n) = n−ρ+o(1) where ρ =
1

2
+

1

π
arctan (b/πc+) .

Added in proof. — After the completion of this work, Quentin Berger [3] proved that

P(τ > n) =

{
(log n)−c−/(c+−c−)+o(1) when c+ > c−

n−1(log n)c+/(c−−c+)−1+o(1) when c+ < c−.

We end this introduction by an open question:

Open question 1. — Is the simple random walk on M†∞ transient?

Acknowledgments. — We thank the referee for a thorough reading of the paper and a
useful report, the comments have been greatly appreciated. We thank Loïc Chaumont,
Ron Doney and Vladimir Vatutin for help with the literature about random walks
with Cauchy-type tails.

From now on we fix once and for all an admissible and critical weight se-
quence q satisfying (1) for the exponent a = 2 and denote by M∞ the asso-
ciated infinite random Boltzmann planar map. Moreover, we assume that q
is not supported by any sub-lattice of Z to avoid complication.

Notation. — We shall write Z+ for {0, 1, . . .}, Z− for {. . . ,−1, 0} and N for {1, 2, . . .}.
For every set A, we denote by IA the indicator function of A. For a real-valued sequence
(xn)n>0, we put ∆xn := xn+1 − xn for all n > 0.

2. Scaling limit of the peeling process on M∞

In this section we recall the edge-peeling process introduced in [10] and the con-
nection with a random walk in the domain of attraction of the symmetric Cauchy
process. We then prove an invariance principle for the perimeter and volume of a
general peeling process. Later, we shall derive Theorems A and B by applying these
general results to well-chosen peeling procedures. The presentation and notation is
inspired by [12, 16], to which we refer for more details.

J.É.P. — M., 2018, tome 5



Infinite random planar maps related to Cauchy processes 755

2.1. Filled-in explorations in M∞. — Recall that we consider rooted bipartite pla-
nar maps; such maps will be denoted by m or M (keeping in mind that we are in fact
interested in their duals m† or M†) and that the root-face of m is the face adjacent
on the right to the root-edge.

Let m be an infinite one-ended bipartite map (an assumption that M∞ satisfies
almost surely) a peeling exploration(1) of m is an increasing sequence (ei)i>0 of sub-
maps of m containing the root-edge such that ei has a distinguished simple face called
the hole. By sub-map ei ⊂ m we mean that we can recover m from ei by gluing inside
the unique hole of ei a bipartite planar map with a (not necessarily simple) boundary
of perimeter matching that of the hole of ei (this map is uniquely defined). More
precisely, a peeling exploration depends on an algorithm A which associates with
each sub-map e an edge on the boundary of its hole.(2) Then the peeling exploration
of m with algorithm A is the following sequence (ei)i>0 of sub-maps of m. First e0
consists only of two simple faces with the same degree as the root-face of m and an
oriented edge, the hole is the face on the left of this root-edge. Then for each i > 0,
given ei, the sub-map ei+1 is obtained by peeling the edge A (ei) in m. When peeling
an edge, there are two cases depicted in Figure 2:

(i) either the face in m on the other side of A (ei) is not already present in ei;
in this case ei+1 is obtained by adding this face to ei glued onto A (ei) and without
performing any other identification of edges,

(ii) or the other side of A (ei) in m actually corresponds to a face already discovered
in ei. In this case ei+1 is obtained by performing the identification of the two edges
in the hole of ei. This usually creates two holes, but since m is one-ended, we decide
to fill-in the one containing a finite part of m.

2.2. The perimeter as a Doob transform. — We now recall the law of a peeling
exploration of M∞. See [10, 12, 16] for details. By definition, if e ⊂ m is a sub-map,
then the perimeter |∂e| is the number of edges on the boundary of its simple hole
whereas its volume |e| is its number of inner vertices, i.e., the vertices not incident to
the hole. To describe the transition probabilities of the Markov chain (ei)i>0 we need
some enumeration results, see [9, §3.3], [26, §2] and [10, 16].

For every n, ` > 0, we denote by M
(`)
n the set of all rooted bipartite planar maps

with exactly n vertices, such that the root-face (the face adjacent on the right of the
root-edge) has degree 2`. We put M (`) =

⋃
n>0 M

(`)
n . Observe that any bipartite map

can be seen as a planar map with a root-face of degree 2 by simply “unzipping” the
root-edge. We shall always implicitly use this identification if necessary. We let

W (`)
n =

∑
m∈M

(`)
n

∏
f∈Faces(m)
f 6= root-face

qdeg(f)/2, and W (`) =
∑
n>0

W (`)
n ,

(1)Filled-in exploration in the language of [16, §3.1.4].
(2)Formally, A is a deterministic function, or possibly a Markovian kernel, but in the latter case

the randomness involved must be independent of the un-revealed part of the map.
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756 T. Budd, N. Curien & C. Marzouk

Figure 2. Illustration of a (filled-in) peeling step in a one-ended bi-
partite map. The peel edge is depicted in blue. In the first case we
add a new face adjacent to this edge, and in the second case we iden-
tify two edges on the boundary of the hole (this identification can
be made either to the left or to the right of the peel edge, so there
are actually three cases); in the case (ii), the hole is split into two
components and we fill-in the finite one.

be the masses given respectively to the sets M
(`)
n and M (`) by the measure w defined

in the introduction, with the slight change that we do not count the root-face anymore.
Since q is admissible, W (`) is finite for every ` > 1 and we let

(2) P(`)(m) :=
w(m)

W (`)
for m ∈M (`)

be the law of a finite Boltzmann rooted bipartite map with a root-face of degree 2`.
For n, ` > 0, we may define a law P(`)

n on M
(`)
n in a similar way; as recalled in the

introduction, for each ` > 1 fixed, these laws converge weakly as n→∞ for the local
topology. We shall denote by P(`)

∞ the limit, it is a distribution on the set of infinite
rooted bipartite maps with a root-face of degree 2` and which are one-ended. With
this notation, M∞ has law P(1)

∞ .
Recall that we assume that the weight sequence q is admissible and critical and

satisfies (1) with a = 2, which imposes cq and pq to be fine-tuned; we have then [16,
Chap. 5.1.3]

W (`) ∼ pq
2
· c`+1

q · `−2 as ` −→∞.

As noticed in [10] the following function on Z

(3) h↑(`) := 2` · 2−2` ·
(

2`

`

)
· I{`>1}

J.É.P. — M., 2018, tome 5



Infinite random planar maps related to Cauchy processes 757

will play a crucial role in connection with the probability measure ν on Z defined by

(4) ν(k) :=

{
qk+1 · ckq for k > 0

2 ·W (−1−k) · ckq for k 6 −1.

The fact that ν is a probability distribution follows from the admissibility of the weight
sequence q, see [16, Lem. 9]. Notice also that ν characterises the weight sequence q

and that the previous asymptotic behaviour of W (`) together with (1) yields

(5) ν(−k) ∼ ν(k) ∼ pq · k−2 as k −→∞.

Furthermore, since q is critical, the function h↑ is (up to a multiplicative constant)
the only non-zero harmonic function on N for the random walk with independent
increments distributed according to ν (we say that h↑ is ν-harmonic on N) and that
vanishes on Z−.(3) Let S be a random walk with i.i.d. increments of law ν given in (4);
we may define its version S↑ conditioned to never hit Z− via a Doob h↑-transform.

We now recall from [10] the law of a peeling exploration (ei)i>0 of M∞ (for a fixed
peeling algorithm A ) as described in the previous subsection. Recall the two possible
outcomes i and ii from Section 2.1 when peeling an edge on the boundary of ei.
Conditionally on the current exploration ei and on the selected edge to peel A (ei), if
the perimeter of ei is 2` for some ` > 1, then the peeling of A (ei) leads to a new face
of degree 2k with probability

(6) p
(`)
k := ν(k − 1)

h↑(`+ k − 1)

h↑(`)
for k > 1.

Otherwise A (ei) is identified with another edge on the boundary, splitting the hole
into two parts, only one contains the infinite part of the map. The probability that
the hole created on the left of the peeled edge is finite and has perimeter 2k with
k > 0 is

(7) p
(`)
−k :=

1

2
ν(−k − 1)

h↑(`− k − 1)

h↑(`)
for 0 6 k 6 `− 2,

and similarly when “left” is replaced by “right”. On these events, the finite holes
created are filled-in with an independent map of law P(k). Notice that

∑∞
k=1 p

(`)
k +

2
∑`−2
k=0 p

(`)
−k = 1 is ensured precisely because h↑ is ν-harmonic. Reformulating the

above transitions we have:

Lemma 1 ([10]). — Let (ei)i>0 be a peeling exploration of M∞ and for every i > 0, let
Pi = 1

2 |∂ei| be the half-perimeter of ei and Vi = |ei| be its volume. Then (Pi, Vi)i>0 is a
Markov chain whose law does not depend on the peeling algorithm A . More precisely,

– (Pi)i>0 has the same law as S↑ the random walk started from 1 and with i.i.d.
increments of law ν given in (4) conditioned to never hit Z−.

(3)In fact, according to [10, §3.2] the sequence q is admissible and critical if and only if ν is a
probability distribution and h↑ is ν-harmonic on N.

J.É.P. — M., 2018, tome 5



758 T. Budd, N. Curien & C. Marzouk

– Conditional on (Pi)i>0, the random variables (Vi+1 − Vi)i>0 are independent,
each Vi+1 − Vi is null if Pi − Pi+1 − 1 6 0, otherwise it is distributed as the volume
of a map sampled from P(`) defined in (2), where ` = Pi − Pi+1 − 1.

Let us point out that P0 = 1 comes from our convention that every rooted bipartite
map can be seen as a planar map with a root-face of degree 2.

2.3. Intermezzo: The map M(∞), a half-plane version of M∞. — Let us next briefly
introduce another model of infinite random planar maps which we shall consider in
Sections 4.2 and 5. We refer to [16, Chap. 4.1] for details. The laws P(`) converge
weakly for the local topology as ` → ∞; we shall denote by P(∞) the limit, which
is now a distribution on the set of one-ended rooted bipartite maps with a root-face
of infinite degree. These are commonly referred to a maps of the half-plane. We may
consider a peeling process (ei)i>0 on such a map, and analogs of (6) and (7) hold
if the perimeter of the hole is understood here in terms of algebraic variation of the
number of edges with respect to the initial state (so it can be negative).

At each step i > 0, conditional on the current exploration ei, once an edge is
selected, its peeling

(i) either leads to a new face of degree 2k with k > 1 with probability ν(k − 1);
(ii) or the edge is identified with another edge on the boundary to its right or to its

left, thus creating a new finite hole of perimeter 2k with probability ν(−k−1)/2 where
k > 0. Conditionally on this event the finite hole is filled-in with an independent map
of law P(k).

Recall Lemma 1, the variation of the half-perimeter process associated with any
peeling exploration of a random map M(∞) sampled from P(∞) has now simply the
law of S, the unconditioned random walk started from 0 and with i.i.d. increments of
law ν given in (4).

2.4. Scaling limits for the perimeter and volume process. — We now give the
scaling limit of the perimeter and volume process in a peeling exploration of M∞.
The result and its proof are similar to [12, Th. 3.6] although we need additional
ingredients to tackle the particular case of the Cauchy process. Let us first introduce
the limiting processes.

Let Υ = (Υt; t > 0) be the symmetric Cauchy process: Υ is a Lévy process started
from 0 with no drift, no Brownian part and with Lévy measure normalised to Π(dx) =

|x|−2I{x 6=0}dx, so that E[eiλΥt ] = e−tπ|λ| for every t > 0 and λ ∈ R. We aim at defining
for Υ the analogous process to the random walk S↑ conditioned to never hit Z−.
Fix x > 0 and let Cx = (Cx(t))t>0 be the process Υ started from x; then we may
define a version conditioned to stay positive C ↑x via a Doob h-transform, using the
harmonic function h : x 7→

√
x · I{x>0}; this process C ↑x then converges in distribution

as x ↓ 0 towards a positive self-similar Markov process Υ↑ started from 0 that we
interpret as the Cauchy process Υ conditioned to stay positive, see e.g. Caravenna
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& Chaumont [13, §1.2] and references therein, in particular [14] for the convergence
of C ↑x towards Υ↑.

To construct the scaling limit of the volume process we proceed as in [12, §3.3]:
We first consider ξ• a positive 2/3-stable random variable with Laplace transform

E
[
e−λξ•

]
= exp

(
−
(
Γ(5/2)λ

)2/3)
.

Since E[ξ−1
• ] =

∫∞
0

Γ(5/2)−1 exp(−x2/3)dx = 1, one can define a random variable ξ,
with mean E[ξ] = 1, by

E [f(ξ)] = E
[
ξ−1
• f(ξ•)

]
,

for every non-negative and measurable function f . Let (ξ(i))i>1 be a sequence of
independent random variables distributed as ξ and let χ = (χt)t>0 be a càdlàg deter-
ministic function. We define a Markov kernel V (χ) = (V (χ)(t))t>0 by

V (χ)(t) =
∑
ti6t

ξ(i) · |∆χ(ti)|3/2 · I{∆χ(ti)<0},

where t1, t2, . . . is a measurable enumeration of the jump times of χ. In general, the
process V (χ) above may be infinite, but since x 7→ x3/2I{x<0} integrates the Lévy
measure of Υ in the neighbourhood of 0 it is easy to check that V (Υ) is a.s. finite.
Since the intensity measure of the negative jumps of the process Υ↑ is dominated by
that of Υ, then the process V (Υ↑) is also almost surely finite.

Theorem 1 (General peeling growth). — Let (Pi, Vi)i>0 be respectively the half-
perimeter and the number of inner vertices in a peeling exploration of M∞. We have
the following convergence in distribution in the sense of Skorokhod(

n−1P[nt], n
−3/2V[nt]

)
t>0

(d)−−−−→
n→∞

(
pq ·Υ↑(t), vq · V (Υ↑)(t)

)
t>0

,

where vq = (2/cq)(pq/π)1/2.

Figure 3. Simulation of the processes Υ↑ and V (Υ↑).
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Proof. — Recall that S is a random walk with i.i.d. steps sampled from ν given
in (4) and that P has the law of S↑. A result similar to our claim for a 6= 2 was
proved in [12, §3.3]; the arguments there are based on the convergence in distribution
of (n−1/(a−1)S[nt])t>0 towards a certain (a − 1)-stable Lévy process(4) and they all
carry through without modification for a = 2. Therefore, we only need to prove the
corresponding invariance principle for S in the case a = 2, which is the claim of
Proposition 2 below. �

Remark 2. — Echoing Remark 3.5 in [12], we could have chosen the number of faces
in a peeling exploration of M∞ as the notion of volume; the only effect would have
been to replace the constant vq by v′q = 1

2 (1− 4/cq)(pq/π)1/2.

Recall that Υ is a symmetric Cauchy process started from 0 and S is a random
walk with increments of law ν also started from 0.

Proposition 2. — The following convergence in distribution holds for the Skorokhod
topology: (

n−1S[nt]

)
t>0

(d)−−−−→
n→∞

(pq ·Υt)t>0.

As the proof will show, it is easy to see that for some centring sequence (bn)n>1,
we have the convergence in distribution (n−1S[nt] − bnt)t>0 → (pqΥt)t>0. The main
point is to prove that bn can be set to 0; this was rather simple in [12] in the case
a 6= 2 but is more involved here. The key idea is to use the fact that the explicit
function h↑ is a harmonic function for the walk S killed when entering Z−.

Proof. — First, it is easy to see from its tail behaviour (5) that ν belongs to the
domain of attraction of a symmetric stable law with index one, i.e., there exists two
sequences (an)n>1 and (bn)n>1 such that a−1

n Sn − bn converges towards some sym-
metric Cauchy distribution C1, see e.g. [7, Th. 8.3.1]. By a classical result on random
walks (see e.g. Jacod & Shiryaev [24, Chap.VII]), it follows that the convergence in
distribution

(8)
(
a−1
n S[nt] − bnt

)
t>0

(d)−−−−→
n→∞

(Ct)t>0

holds for the Skorokhod topology, where C = (Ct)t>0 is some symmetric Cauchy
process. Furthermore, one sees from the tails of ν that one can take an = n in (8); we
aim at showing that bn can be set to 0. A straightforward calculation using the jump
measure then shows that C has the same law as pqΥ.

In the remainder of this proof, we assume that (8) holds with an = n and we show
that bn → 0 as n→∞ so that one could have chosen bn = 0 in the first place in (8).
According to [7, Th. 8.3.1], one may take bn = E[S1/(1 + (S1/n)2)] but we cannot
perform bare-hand calculations and so we use the explicit harmonic function h↑. We
shall prove by contradiction that there is no sequence of integers along which bn

(4)Let us point out that the convergence of S↑ given that of S is due to Caravenna & Chau-
mont [13].
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converges to an element of [−∞, 0) ∪ (0,∞]; we shall treat the three cases ∞, −∞,
and (−∞, 0)∪ (0,∞) separately and drop the mention “along a sequence of integers”
to simplify the notation.

We let S0 = n and define a stopping time σ = inf{k > 1 : Sk /∈ [n/2, 2n]}. We
denote by Pn the law of S started from n and similarly by P1 the law of the process C

started from 1. Since h↑ is ν-harmonic on N, we have

(9) En
[
h↑(Sn∧σ)

]
= h↑(n).

Let us first suppose that bn → ∞, then, by (8), we have Pn(Sn∧σ > 2n) → 1.
Observe that h↑ is non-decreasing and that h↑(n) ∼ 2

√
n/π as n → ∞; appealing

to (9), it follows that

h↑(n) > En
[
h↑(Sn∧σ)I{Sn∧σ>2n}

]
> h↑(2n)(1 + o(1)),

which leads to a contradiction when letting n→∞.
Suppose next that bn → −∞, then, by (8) again, we have Pn(Sn∧σ < n/2) → 1.

We write (9) as

h↑(n) = En
[
h↑(Sn∧σ)I{Sn∧σ<n/2}

]
+ En

[
h↑(Sn∧σ)I{Sn∧σ>n/2}

]
.

The first term on the right-hand side is bounded above by h↑(n/2); we show that
the second term is small compared to

√
n and conclude again a contradiction. Let

∆n = max(0, S1 − S0, . . . , Sn − Sn−1) be the largest jump of S up to time n, clearly,
Sn∧σ 6 2n + ∆n. From the tail (5) of ν, there exists a constant K > 0 such that
Pn(n−1∆n > x) 6 n · ν([nx,∞)) 6 Kx−1 for all n > 1 and x > 0. Using the bound
h↑(k) 6 2

√
k for every k > 1, this shows that for every q ∈ (1, 2), it holds that

En
[(
n−1/2h↑(Sn∧σ)

)q]
6 En

[
2q
(
2 + n−1∆n

)q/2]
6 2q

(
2q/2 + En

[(
n−1∆n

)q/2])
6 2q

(
2q/2 + 1 +

∫ ∞
1

Pn(n−1∆n > x
2/q)dx

)
6 2q

(
2q/2 + 1 +

∫ ∞
1

Kx−2/qdx

)
,

which is finite whenever q < 2. In particular, the sequence (n−1/2h↑(Sn∧σ))n>1

is uniformly integrable; since Pn(Sn∧σ > n/2) → 0, we indeed conclude that
n−1/2En[h↑(Sn∧σ)I{Sn∧σ>n/2}]→ 0.

Finally, let us assume that bn → b as n → ∞, with b ∈ (−∞,∞). Then (8) with
an = n yields (

n−1S[nt]

)
t>0

(d)−−−−→
n→∞

(C b
t )t>0,

for the Skorokhod topology, where C b = (Ct + bt)t>0 is a symmetric Cauchy process
with a drift b. We claim that g : x 7→

√
x · I{x>0} is harmonic for C b on (0,∞); recall

that it is also harmonic for C , this would then yield

E1

[
C

1/2
1 · I{inf06t61 Ct>0}

]
= 1 = E1

[
(C b

1 )1/2 · I{inf06t61 C b
t >0}

]
,
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and so b = 0. For every x > 1, set

Θ(x) = inf{t > 0 : C b
t /∈ (0, x)} and θ(x) = inf{k > 1 : k−1Sk /∈ (0, x)}.

Fix a (large) x and observe that n−1/2h↑(Sn∧θ(x)) under Pn converges in distribu-
tion as n → ∞ towards 2π−1/2g(C b

1∧Θ(x)) under P1. Moreover, as above, we have
n−1/2h↑(Sn∧θ(x)) 6 n−1/2h↑(nx+ ∆n) 6 2(x+n−1∆n)1/2, and the latter sequence is
uniformly integrable. It follows that

E1

[
g(C b

1∧Θ(x))
]

=

√
π

2
lim
n→∞

En
[
n−1/2h↑(Sn∧θ(x))

]
=

√
π

2
lim
n→∞

n−1/2h↑(n) = 1.

In only remains to show that the left-hand side converges to E1[(C b
1 )1/2I{inf06t61 C b

t >0}]

as x → ∞. Again, it suffices to show that ((C b
s )1/2I{inf06t61 C b

t >0}; 0 6 s 6 1) is
uniformly integrable. This follows from the easy bound

(C b
s )1/2I{inf06t61 C b

t >0} 6 |b|1/2 + (sup06u61 Cu)1/2 for every s ∈ [0, 1]

and the tail of the random variable sup06u61 Cu, which can be found in [5, Prop. 4,
p. 221], which shows that all moments smaller than 2 are finite (let us mention that
Darling [19] expresses at the very end of the paper the density of sup06u61 Yu when Y
is the standard Cauchy process). �

2.5. More on the perimeter and volume process. — In view of our coming proofs,
we shall need a few more results on the perimeter and volume process. First, we
recall the following result [12, Lem. 5.8] which is stated for a ∈ (3/2, 2) there, but the
arguments still hold in the case a = 2.

Lemma 2 ([12]). — The following almost sure convergences hold:
logPn
log n

(a.s.)−−−−→
n→∞

1, and log Vn
log n

(a.s.)−−−−→
n→∞

3

2
.

Observe that the fact such convergences hold in probability is a direct consequence
of Theorem 1; nonetheless, in order to prove Theorems A and B, we shall evaluate
the process V at a certain random time tending to infinity, therefore an almost sure
convergence as above is required, see Sections 3 and 4.

We continue with a conditional local limit theorem. We denote by f↑ the density
of Υ↑1. For each x ∈ N, we let Px be the law of S or S↑ started from x.

Lemma 3. — For n, x, y ∈ N, let us set

(10) ηn(x, y) :=

√
n

y

(
npq ·

2
√
y

h↑(y)
√
π
· Px(S↑n = y)− f↑ (y/pqn)

)
.

Then:
(i) We have ηn(1, y)→ 0 as n→∞, uniformly in y > 1.
(ii) For every ε ∈ (0, 1) and every sequence δn → 0, we have ηn(x, y) → 0 as

n→∞ uniformly for x ∈ [1, nδn] and y ∈ [εn, ε−1n].
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Proof. — Let us set cn = pqn so c−1
n Sn converges to Υ1 in distribution from Propo-

sition 2. Set τ− = inf{k > 1 : Sk 6 0}, then

Px(S↑n = y) =
h↑(y)

h↑(x)
· Px(Sn = y and τ− > n)

for all n, x, y > 1. Let us consider the meander Υ̃ which is informally the process Υ

conditioned to remain positive up to time 1; we denote by f̃ the density of Υ̃1. Accord-
ing to Doney & Savov [21], the function f̃ is continuous and bounded, also bounded
away from zero and infinity on any interval on the form [ε, ε−1] with ε ∈ (0, 1). Finally,
it is related to the process conditioned to survive (forever) as follows: let f↑ be the
density of Υ↑1, then there exists a constant C1 > 0 such that f↑(x) = C1x

1/2f̃(x).
On the one hand, according to Vatutin & Wachtel [31, Th. 5], uniformly in y > 1,

(11) cn
P1(τ− > n)

P1(Sn = y and τ− > n)− f̃ (y/cn) −−−−→
n→∞

0.

On the other hand, according to Doney [20, Prop. 11], for every ε ∈ (0, 1) and every
sequence δn → 0, uniformly for x ∈ [1, nδn] and y ∈ [nε, n/ε], it holds that

(12) cn
P1(τ− > n)

Px(Sn = y and τ− > n) ·
(
h↑(x) · f̃

(
y/cn

))−1 −−−−→
n→∞

1.

Moreover, according to the discussion on page 181 of [31], since P1(Sn > 0) → 1/2,
there exists a function ` slowly varying at infinity such that, as n→∞,

P1(τ− > n) ∼ `(n)√
n
, and P1(τ+ > n) ∼ 1

π`(n)
√
n
,

where τ+ = inf{k > 1 : Sk > 1}. Moreover, [31, Eq. 31] applied to 1− S reads

h↑(n) ∼ C2 · n · P1(τ+ > n) as n −→∞,

for some constant C2 > 0. Since we know that h↑(n) ∼ 2
√
n/π, we conclude that, as

n→∞,

P1(τ− > n) ∼ 1

π · n · P(τ+ > n)
∼ C2

2
√
πn

.

Since the function f̃ is bounded from infinity and bounded away from zero on
any compact interval included in (0,∞), we conclude from (11) and (12) that the
convergence

2
√
πpq
C2

n3/2

h↑(y)
Px(S↑n = y)− f̃ (y/pqn) −−−−→

n→∞
0

holds uniformly in our two regimes. Recall the relation f↑(x) = C1x
1/2f̃(x), we obtain√

n

y

(2
√
π
√
pqC1

C2

n
√
y

h↑(y)
Px(S↑n = y)− f↑ (y/pqn)

)
−−−−→
n→∞

0

in our two regimes. It only remains to show that 2
√
π
√
pqC1/C2 = 2pq/

√
π so the

left-hand side above is ηn(x, y). Take x = 1 and fix 0 < a < b < ∞, then the
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preceding convergence holds uniformly for y ∈ (an, bn) so by integrating and using
that h↑(y)/

√
y → 2/

√
π, we easily obtain that

2
√
π
√
pqC1

C2

√
π

2
P1

(
S↑n ∈ (an, bn)

)
−−−−→
n→∞

pq P
(
pqΥ↑1 ∈ (a, b)

)
,

and we conclude from Theorem 1. �

Recall that the ratio (2
√
y)/(h↑(y)

√
π) of the harmonic functions associated with S

and Υ tends to 1 as y →∞. We have seen in the preceding proof that the function f↑
is bounded away from zero and infinity on any compact interval included in (0,∞),
therefore 3(ii) reduces to

npq · Px(S↑n = y)− f↑ (y/pqn) −−−−→
n→∞

0

uniformly for x ∈ [1, nδn] and y ∈ [εn, ε−1n]. It enables in particular to compare the
distribution of S↑n when started from two different values at time 0.

Corollary 1. — For every ε ∈ (0, 1) and every sequence δn → 0, we have

n ·
∣∣Px(S↑n = y)− Px′(S↑n = y)

∣∣ −−−−→
n→∞

0

uniformly for x, x′ ∈ [1, nδn] and y ∈ [εn, ε−1n].

Recall that the perimeter process P has the law of S↑ started from 1. Appealing
to Lemma 3(i), we next show that the sequence (n/Pn)n>1 is uniformly integrable.

Lemma 4. — For every 0 < q < 3/2, we have

sup
n>1

E [(n/Pn)
q
] <∞.

Proof. — Fix q > 0 and n > 1; Lemma 3(i) and the bound h↑(k) 6 2
√
k valid for all

k > 1 yield

E [(n/Pn)q] 6 1 + E
[
(n/Pn)

q I{Pn6n}
]

= 1 +

n∑
k=1

(n
k

)q
· 1

npq
· h
↑(k)
√
π

2
√
k
·
(
f↑ (k/pqn) +

√
k

n
ηn(1, k)

)
6 1 +

√
π

pq

(
n−1

n∑
k=1

(n
k

)q
f↑ (k/pqn) + sup

k>1
|ηn(1, k)| · n−1

n∑
k=1

(n
k

)q−1/2
)
.

The two rescaled sums in parenthesis converge towards
∫ 1

0
x−qf↑(x/pq)dx and∫ 1

0
x1/2−qdx respectively; according to Doney & Savov [21, Rem. 12], there exists

a constant c > 0 such that f↑(x) ∼ cx as x ↓ 0 so both integrals are finite when-
ever 0 < q < 3/2. Our claim then follows from Lemma 3(i) which asserts that
supk>1 |ηn(1, k)| converges to 0 as n→∞. �
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Remark 3. — We know from Theorem 1 that n/Pn converges in distribution to
(pqΥ↑1)−1 as n→∞. Since Lemma 4 implies that (n/Pn)n>1 is uniformly integrable,
we conclude that

E [n/Pn] −−−−→
n→∞

E
[
(pqΥ↑1)−1

]
.

It turns out that the value of the limit is explicit:

(13) E
[
(pqΥ↑1)−1

]
=

2

π2pq
.

Indeed, the process Υ↑ is a positive self-similar Markov process; let us denote by ξ↑ the
associated Lévy process in the Lamperti representation, then, according to Bertoin &
Yor [6], we have the identity E[(Υ↑1)−1] = E[ξ↑1 ]−1. Kyprianou, Pardo & Rivero [25,
Prop. 2] express the characteristic exponent of ξ↑, from which we find E[ξ↑1 ] = π2/2.

3. First passage percolation distance

In this section we prove Theorem B. The technique of proof is similar to that of [17,
Th. 4] or [12, Prop. 4.1], but again the characteristics of the Cauchy-type walks driving
the perimeter process lead to new phenomena that were absent in previous works and
which require additional arguments.

Let m be an infinite one-ended bipartite map. We consider its dual map m† and
equip independently each edge e of m† with a random weight xe distributed according
to the exponential law of mean 1, i.e., with density e−xdxI{x>0}. We define then the
fpp-distance(5) on m† which modifies the usual dual graph metric on m†: for every
pair u, v of vertices of m† (i.e., faces of m), we set

dfpp(u, v) = inf
∑
e∈γ

xe,

where the infimum is taken over all paths γ : u → v in m†. For any r > 0, we
denote by BallEden

r (m) the set of faces of m which are within fpp-distance less than r
from the root-face of m. Then as usual, we consider its hull BallEden

r (m), obtained by
filling-in all the finite components of its complement: it is then a sub-map of m with
a single hole. Recall that |BallEden

r (m)| is the number of inner vertices of the map
and |∂BallEden

r (m)| the perimeter of its hole. Our main result is the following, which
implies and extends Theorem B, after translation to the dual version and appealing
to Remark 2.

Theorem 2 (First passage percolation growth). — The following convergences in prob-
ability hold:

log |∂BallEden
r (M∞)|
r

(P)−−−→
r→∞

π2pq and log |BallEden
r (M∞)|
r

(P)−−−→
r→∞

3

2
π2pq.

(5)This model on the dual map m† is often referred to as the Eden model on m [1].
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The proof uses the peeling exploration described in Section 2.1 with a random
algorithm that we now describe, called the uniform peeling. We refer to [12, §2.4] for
details. Given a bipartite map m, we construct a sequence (ei)i>0 as in Section 2.1
by selecting for each i > 0, conditional on ei, an edge A (ei) uniformly at random on
the boundary of ei. On the other hand, observing an Eden model on m, it is easy to
see that the process (BallEden

t (m))t>0 admits jump times 0 = t0 < t1 < · · · and that
the sequence (BallEden

ti (m))i>0 is a peeling exploration of m. Based on the properties
of exponential distribution, [12, Prop. 2.3] shows:

(i) the sequence (BallEden
ti (m))i>0 has the same law as a uniform peeling of m;

(ii) conditional on (BallEden
ti (m))i>0, the random variables ti+1 − ti are indepen-

dent and distributed respectively according to the exponential law of parameter
|∂BallEden

ti (m)|.
Let us write (Ti)i>0 for the sequence of jump times of the process

(BallEden
t (M∞))t>0

and for each i > 0, let

Pi =
1

2
|∂BallEden

Ti (M∞)| and Vi = |BallEden
Ti (M∞)|

be respectively the half-perimeter and volume associated with this uniform peeling.
Then, according to Property ii above, we may write

(14) Tn =

n−1∑
i=0

ei
2Pi

, for every n > 1,

where (ei)i>0 are independent exponential variables of expectation 1 which are in-
dependent of the process (Pi)i>0. As discussed in Remark 3, we have E[i/Pi] →
E[(pqΥ↑1)−1] = 2/(π2pq) as i→∞, so

(15) 1

log n

n∑
i=1

E [1/2Pi] −−−−→
n→∞

1

π2pq
.

As we will see in Lemma 5, it turns out that the process (Pi)i>0 decorrelates over
scales and so we can prove concentration of

∑n
i=1 1/2Pi around its mean:

Proposition 3. — The following convergence holds:

E
[∣∣Tn/log n− 1/π2pq

∣∣] −−−−→
n→∞

0.

Let us first prove Theorem 2 taking Proposition 3 for granted.

Proof of Theorem 2. — For every t > 0, let us set Ut = inf{n > 1 : Tn > t} and then
write( log |∂BallEden

t (M∞)|
t

,
log |BallEden

t (M∞)|
t

)
=

log(Ut − 1)

t
·
( logPUt−1

log(Ut − 1)
,

log VUt−1

log(Ut − 1)

)
.
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Since Tn is non-decreasing, Proposition 3 implies that t−1 logUt → π2pq in probability
as t → ∞, then Lemma 2 ensures that the pair in the right-hand side converges in
probability to (1, 3/2). �

We next turn to the proof of Proposition 3.

Proof of Proposition 3. — Recall that (Pn)n>0 has the law of (S↑n)n>0 started from 1,
where S is the random walk with step distribution ν defined by (4). We first claim
that (log n)−1Tn − (log n)−1

∑n−1
i=0

1
2Pi

converges to 0 in L2 as n → ∞. Indeed, we
have Pi > 1 for every i > 0 so, according to Lemma 4, there exists a constant C > 0

such that E[P−2
i ] 6 E[P−1

i ] 6 C(1 + i)−1 for all i > 0. By first conditioning with
respect to (Pk)k>0 and then integrating, we obtain from (14),

4 · E
[(
Tn −

∑n−1
i=0 1/2Pi

)2]
= E

[(∑n−1
i=0 (ei − 1)/Pi

)2]
= E

[∑n−1
i=0 1/P 2

i

]
6
n−1∑
i=0

C

i+ 1
= o((log n)2).

Given the convergence in mean (15), it is sufficient to show the convergence in L1:

(16) 1

log n

n∑
i=1

( 1

Pi
− E [1/Pi]

)
(L1)−−−−→
n→∞

0.

Fix ε ∈ (0, 1) and for every i > 1, set

(17)
X

(ε)
i :=

1

Pi
I{Pi∈[εi,ε−1i]} − E

[ 1

Pi
I{Pi∈[εi,ε−1i]}

]
Y

(ε)
i :=

1

Pi
I{Pi /∈[εi,ε−1i]} − E

[ 1

Pi
I{Pi /∈[εi,ε−1i]}

]
,

so P−1
i − E[P−1

i ] = X
(ε)
i + Y

(ε)
i . We shall prove that

lim
ε↓0

lim sup
n→∞

E
[(

1

log n

n∑
i=1

X
(ε)
i

)2]
= lim

ε↓0
lim sup
n→∞

E
[∣∣∣∣ 1

log n

n∑
i=1

Y
(ε)
i

∣∣∣∣] = 0.

We handle easily the second term. Indeed, according to Lemma 4, for every 1 < q <

3/2 and every i large enough,

i · E
[ 1

Pi
I{Pi /∈[εi,ε−1i]}

]
6 E [(i/Pi)

q
]
1/q · P

(
Pi /∈ [εi, ε−1i]

)1−1/q

6 C(q) · P
(
pqΥ↑1 /∈ [ε, ε−1]

)1−1/q

,

where C(q) is a constant depending only on q. Observe that for q > 1, the last
expression tends to 0 as ε ↓ 0 and so

lim
ε↓0

lim sup
n→∞

1

log n
E
[∣∣∣∣ n∑
i=1

Y
(ε)
i

∣∣∣∣] 6 lim
ε↓0

lim sup
n→∞

2

log n

n∑
i=1

E
[ 1

Pi
I{Pi /∈[εi,ε−1i]}

]
= 0.
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We next consider theX(ε)
i ’s. Fix ε > 0 and a non-decreasing sequence (An)n>1 tending

to infinity such that logAn = o(log n). Let us write for every n > 1,

E
[(

1

log n

n∑
i=1

X
(ε)
i

)2]
6

1

(log n)2

n∑
i=1

E
[
(X

(ε)
i )2

]
+

2

(log n)2

n∑
i=1

Ani∑
j=i+1

∣∣∣E [X(ε)
i X

(ε)
j

]∣∣∣+
2

(log n)2

n∑
i=1

n∑
j=Ani

∣∣∣E [X(ε)
i X

(ε)
j

]∣∣∣ .
The first term converges to zero as n→∞ since

E
[
(X

(ε)
i )2

]
6 E

[
(1/Pi)

2 I{εi6Pi6i/ε}
]
6 (1/iε)

2
.

Appealing to Cauchy–Schwarz inequality, we have for every i large enough,

Ani∑
j=i+1

∣∣∣E [X(ε)
i X

(ε)
j

]∣∣∣ 6 Ani∑
j=i+1

√
(1/iε)

2
(1/jε)

2 6
1

ε2

2 logAn
i

=
o(log n)

i
,

and so the second term above converges to zero as n → ∞ as well. Controlling the
last term is more involved. In Lemma 5, we shall prove that

lim
ε↓0

lim sup
i→∞

sup
16i<n

sup
Ani6j6n

∣∣∣E [(iX(ε)
i ) · (jX(ε)

j )
]∣∣∣ = 0.

Since we have
∑n
i=1

∑n
j=Ani

1
ij 6

∑n
i=1

∑n
j=1

1
ij = O((log n)2), it indeed follows that

lim
ε↓0

lim sup
n→∞

1

(log n)2

n∑
i=1

n∑
j=Ani

∣∣∣E [X(ε)
i X

(ε)
j

]∣∣∣ = 0,

which concludes the proof. �

The next lemma has been used in the course of the previous proof

Lemma 5. — For every sequence (An)n>1 tending to infinity, we have

lim
ε↓0

lim sup
i→∞

sup
16i<n

sup
Ani6j6n

∣∣∣E [(iX(ε)
i ) · (jX(ε)

j )
]∣∣∣ = 0,

where X(ε)
i is as in (17).

We rely on the Markov property of the process P = (Pk)k>0 and the estimate
from Corollary 1 which shows that if j is far enough from i, then Pj does not depend
crucially on Pi. This shows that, when j is far enough from i, the law of (Pi, Pj)

is close to that of (Pi, P
′
j−i), which is itself close to that of (Pi, P

′
j), where P ′ is an

independent copy of P , and we conclude that the covariance between X(ε)
i and X(ε)

j

is small.
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Proof. — Throughout the proof, we shall write C for a universal constant, which may
change from one line to another. Let us write

(18)

∣∣∣E [(iX(ε)
i )(jX

(ε)
j )
]∣∣∣ 6 ∣∣∣E [(iX(ε)

i )(jX
(ε)
j )I{Pi /∈[iε,i/ε]}

]∣∣∣
+
∣∣∣E [(iX(ε)

i )(jX
(ε)
j )I{Pj /∈[jε,j/ε]}

]∣∣∣
+
∣∣∣E [(iX(ε)

i )(jX
(ε)
j )I{Pi∈[iε,i/ε]}I{Pj∈[jε,j/ε]}

]∣∣∣ ,
and let us consider each term separately. We put K(ε)

i = E[P−1
i I{Pi∈[εi,ε−1i]}], then

from Lemma 4, we have supi>1,ε∈(0,1) iK
(ε)
i < C < ∞ and furthermore the family

(iX
(ε)
i )i>1,0<ε<1 is uniformly integrable. Recall also that i/Pi converges in distribution

towards (pqΥ↑1)−1 as i → ∞, so, in particular, supi>1 P(Pi > i/ε) converges to 0 as
ε → 0. For the first term of (18), note that on the event Pi /∈ [iε, i/ε], we have
X

(ε)
i = −K(ε)

i so∣∣∣E [(iX(ε)
i )(jX

(ε)
j )I{Pi /∈[iε,i/ε]}

]∣∣∣ 6 (iK
(ε)
i )

∣∣∣E [jX(ε)
j I{Pi /∈[iε,i/ε]}

]∣∣∣ ,
which converges to 0 as ε→ 0 uniformly in i, j > 1 by the previous uniform integra-
bility. The second term in (18) is symmetric, it only remains to prove

lim
ε↓0

lim sup
n→∞

sup
16i<n

sup
Ani6j6n

∣∣∣E [(iX(ε)
i )(jX

(ε)
j )I{Pi∈[iε,i/ε]}I{Pj∈[jε,j/ε]}

]∣∣∣ = 0.

Recall that (An)n>1 is increasing, and assume that A1 > 2 for simplicity. Then for
every 1 6 i < j 6 n, we have An > Aj−i, and if j > Ani, then 1/2 6 (j − i)/j 6 1.
We apply the bound from Corollary 1 with ε, n, and δn replaced respectively by ε/2,
j − i, and 2/(εAj−i) to obtain: for every i large enough and every Ani 6 j 6 n,

sup
x6i/ε

εj6y6j/ε

|Px(Pj−i = y)− P1(Pj−i = y)|

6 sup
x62(j−i)/(εAj−i)

ε(j−i)/26y62(j−i)/ε

|Px(Pj−i = y)− P1(Pj−i = y)|

6 j−1ε5/2.

The Markov property then yields

|P (Pj = y | Pi)− P (Pj = y | Pi = 1) |I{Pi6i/ε}

=
∑
x6i/ε

|Px(Pj−i = y)− P1(Pj−i = y)| I{Pi=x}

6 j−1ε5/2I{Pi6i/ε},

uniformly for εj 6 y 6 j/ε and so

I{Pi6i/ε}
∣∣∣E [(jX(ε)

j )I{Pj∈[jε,j/ε]}

∣∣∣ Pi]− E
[
(jX

(ε)
j )I{Pj∈[jε,j/ε]}

∣∣∣ Pi = 1
]∣∣∣

6 I{Pi6i/ε}
∑

jε6y6j/ε

∣∣∣ j
y
− jK(ε)

j

∣∣∣ ε5/2

j
6 I{Pi6i/ε}

(1

ε
+ jK

(ε)
j

)
ε3/2.
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Moreover, ∣∣∣E [(jX(ε)
j )I{Pj∈[jε,j/ε]}

∣∣∣ Pi = 1
]∣∣∣ 6 E

[
|jX(ε)

j−i|
]
6 C.

Using the fact that X(ε)
i is centred, we also have∣∣∣E [(iX(ε)

i )I{Pi∈[iε,i/ε]}

]∣∣∣ =
∣∣∣E [(iX(ε)

i )I{Pi /∈[iε,i/ε]}

]∣∣∣
6 (iK

(ε)
i )P (Pi /∈ [iε, i/ε]) 6 C · P

(
Υ↑1 /∈ [ε, 1/ε]

)
.

Hence∣∣∣E [(iX(ε)
i )(jX

(ε)
j )I{Pi∈[iε,i/ε]}I{Pj∈[jε,j/ε]}

]∣∣∣
6 C · P

(
Υ↑1 /∈ [ε, 1/ε]

)(
C +

(
1/ε+ C

)
ε3/2

)
,

which converges to 0 as ε→ 0. �

4. Graph distance

The goal of this section is to prove our main result Theorem A. Recall that we
denote by Ballr(m

†) the hull of the ball of radius r > 1 centred at the root-vertex
for the graph distance in m†. As in the previous section, the proof of this result is
based on the peeling process of m with an algorithm—now deterministic—especially
designed to discover (hulls of) metric balls in the dual map m†, which we now recall.
The latter is taken from [12, §2.3], see also [17] for a slightly different type of peeling
exploration (the “face-peeling”).

Let m be an infinite, one-ended, rooted bipartite map. We construct a peeling
exploration (ei)i>0 as follows. First, recall that e0 consists of a unique simple face
with same degree as the root-face of m, and a hole with the same degree. For any
edge on the boundary of the hole of ei we call its height the graph distance in m†

between the adjacent face in ei to that edge and the root-face of m (the root-vertex
of m†). Inductively, suppose that at every step i > 0, the following hypothesis is
satisfied:
(H) There exists an integer h > 0 such that in the explored map ei all

the edges on the boundary of the hole are at height h or h+ 1, and
that the set of edges at height h forms a connected segment.

If ei satisfies (H) then the next edge to peel A (ei) is chosen as follows:
(i) If all edges on the boundary of the hole of ei are at the same height h then

A (ei) is any (deterministically chosen) edge on the boundary;
(ii) Otherwise A (ei) is the unique edge at height h such that the edge immediately

on its left is at height h+ 1.
The first step e0 satisfies (H) and one easily checks inductively that if we use

this algorithm, then for any i > 0, the i-th step ei satisfies it as well. The sequence
(ei)i>0 thus forms a well-defined peeling exploration which we call the peeling by layers
of m. The name is justified by the following observation: for every i > 0, let Hi be the
minimal height of an edge on the boundary of ei, soH0 = 0 and for each i > 0, we have
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Figure 4. The left figure shows a portion of an infinite planar map
with faces coloured according to (dual) graph distance to the root-
face. The sub-map on the right depicts a possible state of the peeling
by layers. Its hole has three edges at height h = 1 and eleven edges
at height h+ 1 = 2. The next peel edge is indicated in blue.

∆Hi := Hi+1 −Hi ∈ {0, 1}. For each r > 0, if we denote by θr = inf{i > 0 : Hi > r}
then

(19) eθr is the dual inside m of Ballr(m
†) for every r > 0.

If we denote by |∂∗Ballr(m
†)| := |∂eθr | the number of edges adjacent to the hole of

Ballr(m
†) then we have the following generalisation of Theorem A:

Theorem 3 (Graph distance growth). — The following convergences in probability
hold:

log |∂∗Ballr(M
†
∞)|√

r

(P)−−−→
r→∞

π
√

2 and log |Ballr(M
†
∞)|√

r

(P)−−−→
r→∞

3π√
2
.

Theorem 3 then follows from Proposition 4 below together with Theorem 1 in the
same way that Theorem 2 followed from Proposition 3 together with Theorem 1.

Proposition 4. — The following convergence in probability holds:
Hn

(log n)2

(P)−−−−→
n→∞

1

2π2
.

Proof of Theorem 3. — Let (Pi, Vi)i>0 be the half-perimeter and volume process as-
sociated with this peeling by layers. Then we have for all r > 1( log |∂Ballr(M∞)|√

r
,

log |Ballr(M∞)|√
r

)
=

log θr√
r
·
( logPθr

log θr
,

log Vθr
log θr

)
.

Since Hn is non-decreasing, Proposition 4 implies that r−1/2 log θr → π
√

2 in proba-
bility as r →∞ and we conclude appealing to Lemma 2. �

The rest of the section is devoted to proving the key Proposition 4. Before diving
into the proof, let us present the heuristics. We can imagine the peeling by layers
algorithm as “turning around” en in clockwise order to discover, layer after layer the
faces of m by increasing dual graph distance (and filling-in the holes created). The
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idea is to determine the speed at which the algorithm is turning around the current
explored map. Compared to the variation of the perimeter process Pn which is a
balanced random walk, the speed at which the peeling by layer turns around en is
given by an unbalanced random walk with Cauchy-type tails. By standard results, the
rate of growth of such random walks is of order n log n. Since Pn ≈ n, the last heuristic
suggests that the time needed to complete a layer around en is of order n/ log n and
so typically we should have

∆Hn ≈
log n

n
.

Integrating the last display indeed shows that Hn ≈ log2 n.
More precisely, the proof of Proposition 4 is divided into two parts, which use

different arguments. We first prove in the next subsection an upper-bound showing
that lim supn→∞(log n)−2E [Hn] 6 1/(2π2). This part is based on a computational
trick to estimate E[∆Hn]. Section 4.2 is devoted to proving a lower bound showing
that for every ε > 0, we have limn→∞ P((log n)−2Hn > (1− ε)/(2π2)) = 1. This part
uses ideas presented in above the heuristic (see in particular Lemma 7). It is then
straightforward to combine the upper and lower bounds to prove Proposition 4. We
leave the details to the reader.

4.1. The upper bound

Proposition 5. — We have

lim sup
n→∞

1

(log n)2
E [Hn] 6

1

2π2
.

The proof relies on a technical estimate of an interpolated version of the sequence
(Hn)n>0. Let Dn be the number of edges in the boundary that are at height Hn. The
other 2Pn−Dn edges are at height Hn + 1. For a non-increasing function f : [0, 1]→
[0, 1], we introduce the random sequence

Hf
n := Hn + f (Dn/2Pn) and ∆Hf

n := Hf
n+1 −Hf

n .

The next result is inspired by [17, Lem. 13] in the case of random triangulations and
by [12, Lem. 4.3] in the case of Boltzmann maps with exponent a ∈ (2, 5/2). There the
function f : x 7→ 1 − x was used to obtain an upper-bound on E[Hn] 6 E[Hf

n ] with
an arbitrary multiplicative constant. Here, due to extra technical difficulties when we
start or finish a layer, one has to choose the function f more flat near 0 and 1 in order
to obtain the correct constant (see Figure 5).

Lemma 6. — If f : [0, 1] → [0, 1] is twice continuously differentiable with f(0) = 1,
f(1) = 0, f ′′(0) = f ′′(1) = 0 and 0 6 −f ′(x) 6 1 + ε for some ε ∈ (0, 1) and all
x ∈ [0, 1], then there exists a C > 0 such that for all n > 1 we have

E
[
∆Hf

n

∣∣ Pn] 6 (1 + 3ε)3 pq
2

log(Pn) + C

Pn
.
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Figure 5. The solid curve corresponds to a function f satisfying the
hypotheses of Lemma 6 with ε = 0.2, while the dashed lined depicts
x 7→ 1− x.

Proof. — We will establish the equivalent bound on the conditional expectation
E[∆Hf

n | Pn = p,Dn = `] uniformly in 1 6 ` 6 2p. Unless stated otherwise the
correction terms O(p−1) will be uniform in `. For convenience we will use the notation
y := `/(2p) ∈ (0, 1] and we will extend f to a function R→ [0, 1] by setting f(x) = 1

for x < 0 and f(x) = 0 for x > 1.
We claim that E[∆Hf

n | Pn = p,Dn = `] can be expressed as

E
[
∆Hf

n

∣∣ Pn = p,Dn = `
]

=

∞∑
k=0

ν(k)
h↑(p+ k)

h↑(p)

[
f
( `− 1

2p+ 2k

)
− f

( `
2p

)]
(20)

+

p−1∑
k=1

ν(−k)

2

h↑(p− k)

h↑(p)

[
f
( `− 2k

2p− 2k

)
− f

( `
2p

)]
(21)

+

p−1∑
k=1

ν(−k)

2

h↑(p− k)

h↑(p)

[
f
( `− 1

2p− 2k

)
− f

( `
2p

)]
.(22)

Using the law of the Markov process (Pn, Dn, Hn), which was explicitly identified
in [12, §4.2], this can be checked as follows. First of all, if ` = 1 then necessarily
∆Hn+1 = 1 and Dn+1 = 2Pn+1. Therefore ∆Hf

n = 1− f(1/(2p)), which agrees with
each of the terms in brackets since we set f(x) = 1 for x 6 0, and hence with the sum.
Suppose now ` > 2. If a new face of half-degree k+ 1 is discovered, then Pn+1 = p+k

and Dn+1 = `− 1, which explains the first line (20). If the peel edge is identified with
an edge on its right, then Pn+1 = p− k for some 1 6 k < p and either Dn+1 = `− 2k

and ∆Hn = 0 or Dn+1 = 2Pn+1 and ∆Hn = 1, depending on the sign of ` − 2k.
The second line (21) incorporates both these situations. Finally, if the peel edge is
identified with an edge on its left, then Pn+1 = p−k for some 1 6 k < p and ∆Hn = 0

and either Dn+1 = ` − 1 or Dn+1 = 2Pn+1, depending on which is smallest. Both
situations are taken into account in the last line (22).

To bound the expectation value we rely on the following estimates, which are easily
checked:
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– By Taylor’s theorem there is a c > 0 such that |f(y) − f(x) − f ′(x)(y − x)| <
c(y − x)2 for all x, y ∈ R.

– There exists an N > 0 such that (1− ε) < |k|2ν(k)/pq < (1 + ε) for all |k| > N .
– For any k > −p we have√

1 + k/p (1− 1/p) 6
h↑(p+ k)

h↑(p)
6
√

1 + k/p (1 + 1/p) .

The first N terms in each of the sums together contribute O(p−1) (uniformly in `), so
it suffices to bound the sums restricted to |k| > N . For simplicity we may also assume
p > 2N .

Starting with the first sum (20), which has only positive terms, the aforementioned
estimates lead to
∞∑
k=N

ν(k)
h↑(p+ k)

h↑(p)

[
f
( `− 1

2p+ 2k

)
− f

( `
2p

)]
6 (1 + ε) (1 + 1/p)

∞∑
k=N

pq
k2

√
1 + k/p

[
|f ′(y)|1 + yk

p+ k
+ c
(1 + k

p+ k

)2]
,

where we used that
`

2p
− `− 1

2p+ 2k
6

1 + yk

p+ k
6

1 + k

p+ k
.

The sum of the quadratic term is O(p−1) and therefore the full sum is bounded by

(1+ε) pq y |f ′(y)| 1
p

∫ ∞
(N−1)/p

dx

x
√

1 + x
+O(p−1) 6 (1+ε) pq y |f ′(y)| log(p)

p
+O(p−1).

The second sum (21) also has positive terms, so

p−1∑
k=N

ν(−k)

2

h↑(p− k)

h↑(p)

[
f
( `− 2k

2p− 2k

)
− f

( `
2p

)]
6

(1 + ε)

2
(1 + 1/p)

p−1∑
k=N

pq
k2

√
1− k/p

[
|f ′(y)|(1− y)

k

p
+ c (k/p)

2
]
,

where we used that
`

2p
− `− 2k

2p− 2k
6

(1− y)k

p
6
k

p
.

Again the quadratic term yields a contribution O(p−1) and therefore the full sum is
bounded by

(1 + ε) pq
1− y

2
|f ′(y)| 1

p

∫ 1

(N−1)/p

√
1− x
x

dx+O(p−1)

6 (1 + ε) pq
1− y

2
|f ′(y)| log(p)

p
+O(p−1).

The last sum (22) may have both positive and negative terms (depending on
the sign of p − `k), so we should proceed more carefully. Since the terms with
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p/2 6 k 6 p− 1 are O(p−2) uniformly in k and `, it suffices to consider the sum
restricted to N 6 k 6 p/2. For these values of k,

`

2p
− `− 1

2p− 2k
6

1

p

and therefore the contribution of the positive terms to the sum is O(p−1).
We now distinguish two cases: y ∈ (0, ε) and y ∈ [ε, 1]. In the first case we are

done, because taking into account just the positive contributions already yields the
uniform bound

E
[
∆Hf

n

∣∣Pn = p,Dn = `
]
6

pq
2

(1 + ε) (1 + y)|f ′(y)| log(p)

p
+O(p−1)

6 (1 + ε)3 pq
2

log(p)

p
+O(p−1).

In the case y ∈ [ε, 1] we still need a lower-bound on the absolute value of the
negative terms. Assuming we have chosen N > 1/ε all terms with k > N > 2p/` are
negative and we have

p/2∑
k=N

ν(−k)

2

h↑(p− k)

h↑(p)

∣∣∣f( `− 1

2p− 2k

)
− f

( `
2p

)∣∣∣
>

(1− ε)
2

(1− 1/p)

p/2∑
k=N

pq
k2

√
1− k/p

[
|f ′(y)|

(
y
k

p
− 1

2p

)
− c (2k/p)

2
]
,

where we used that
`− 1

2p− 2k
− `

2p
>
`k − p

2p2
= y

k

p
− 1

2p
and

∣∣∣ `
2p
− `− 1

2p− 2k

∣∣∣ 6 2k/p.

As before the quadratic part yields a contribution O(p−1) and the full sum is bounded
from below by

(1− ε)pq
y

2
|f ′(y)| 1

p

∫ 1/2

N/p

√
1− x
x

dx+O(p−1) > (1− ε)pq
y

2
|f ′(y)| log(p)

p
+O(p−1).

Putting the three sums together and using that y ∈ [ε, 1] and |f ′(y)| 6 1 + ε we find

E
[
∆Hf

n

∣∣ Pn = p,Dn = `
]
6

pq
2

((1 + ε)(1 + y)− (1− ε)y)|f ′(y)| log(p)

p
+O(p−1)

6 (1 + 3ε)2 pq
2

log(p)

p
+O(p−1),

uniformly in 1 6 ` 6 2p. �

The proof of Proposition 5 is now a simple consequence of Lemma 6.

Proof of Proposition 5. — It is not hard to see that for any ε ∈ (0, 1) there exists a
function f satisfying the conditions of Lemma 6. Since Hn 6 Hf

n we immediately
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obtain that for any ε ∈ (0, 1) there exists a C > 0 such that

(23) E [Hn] 6 E
[
Hf
n

]
=

n−1∑
k=0

E
[
∆Hf

k

]
6 (1 + 2ε)2 pq

2

n−1∑
k=0

E
[ log(Pk) + C

Pk

]
.

We claim that for any C > 0,

lim
k→∞

k

log k
E
[ log(Pk) + C

Pk

]
= E

[
(pqΥ↑1)−1

]
=

2

π2pq
.

Recall from Theorem 1 that k/Pk converges in law to (pqΥ↑1)−1 as k → ∞ so
(k(log(Pk) + C))/(Pk log k) as well. Let us prove that this sequence is uniformly in-
tegrable. First, according to Lemma 4, the sequence (k/Pk)k>0 is bounded in Lq for
all q < 3/2, and so ((Ck)/(Pk log k))k>2 as well. Next, fix ε ∈ (0, 1), and observe that
since x 7→ x/ log x is increasing on [e,∞), we have
k logPk
Pk log k

I{ k logPk
Pk log k>1/ε} 6

k logPk
Pk log k

I{Pk/logPk6εk/log(εk)} 6
k logPk
Pk log k

I{Pk6εk} 6
k

Pk
,

and the right-hand side is bounded in Lq for all q < 3/2.
The bound (23) and the fact that (log n)−2

∑n
k=1 log(k)/k → 1/2 as n→∞ then

yield
lim sup
n→∞

1

(log n)2
E [Hn] 6

pq
2
· 2

π2pq
· 1

2
,

which concludes the proof. �

4.2. The lower bound. — In this subsection, we aim at showing the following result,
which completes the proof of Proposition 4.

Proposition 6. — For every ε > 0, we have

P
( Hn

(log n)2
>

1− ε
2π2

)
−−−−→
n→∞

1.

Recall that for all k > 1, we denote by θk the first time n when all the edges on
the boundary after n peeling steps are at height at least k, for the peeling algorithm
introduced earlier in this section. Recall also from Section 2.2 the law P(`)

∞ of an infinite
rooted bipartite Boltzmann map with a root-face of degree 2`, for ` > 1. The main
ingredient of the proof of Proposition 6 is the following.

Lemma 7. — For every ε ∈ (0, 1),

lim
`→∞

P(`)
∞

(pq log `

2`
· θ1 6 1 + ε and Pθ1

`
∈ [1− ε, 1 + ε]

)
= 1.

Remark 4. — This lemma will suffice to prove Proposition 6 and so Proposition 4.
However it is not difficult to see (e.g. with the argument developed below) that such
an upper bound on θ1 and the limit of the height Hn from Proposition 4 imply that
for every ε ∈ (0, 1),

lim
`→∞

P(`)
∞

(pq log `

2`
· θ1 ∈ [1− ε, 1 + ε] and Pθ1

`
∈ [1− ε, 1 + ε]

)
= 1.
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In words, the above display indeed confirms the heuristic presented at the beginning
of this section, stating that the time needed for the peeling by layers to complete a
full turn around a boundary of perimeter 2` is of order 2`/pq log `.

The last lemma has an immediate corollary on the time needed to complete k
layers:

Corollary 2. — For every ε ∈ (0, 1) and every k ∈ N,

lim
`→∞

P(`)
∞

(pq log `

2`
· θk
k
6 1 + ε

)
= 1.

Proof. — Let us set ∆θi = θi+1−θi for every i > 0. By the strong Markov property of
the peeling exploration applied successively at the stopping times θk−1, θk−2, . . . , θ1,
we deduce from the last lemma that for any ε > 0 we have

lim
`→∞

P(`)
∞

(
k−1⋂
i=0

[{
∆θi 6

(1 + ε)2Pθi
pq logPθi

}
∩
{Pθi+1

Pθi
∈ [1− ε, 1 + ε]

}])
= 1.

On the event considered in the last display we have θk 6 (1+Cε)k2`/pq log ` for some
constant Cε > 0 tending to 0 as ε→ 0. This proves the corollary. �

We defer the proof of Lemma 7 and first complete the proof of Proposition 6.
The idea goes as follows: fix some C > 0 large and set for every k > 1 a time
tk := bexp((2Ck)1/2)c so

(24) tb(logn)2/(2C)c = n(1 + o(1)), and ∆tk := tk+1 − tk = (C + o(1))
tk

log tk
.

Recall from Remark 3 that E[t/Pt] → E[1/(pqΥ↑1)] = 2/(π2pq) as t → ∞. Observe
next that

∆tk = C
pqtk
2Ptk

2Ptk
pq logPtk

· logPtk
log tk

· (1 + o(1)).

The last factor logPtk/ log tk converges to 1 in probability from Theorem 1 (even
almost surely from Lemma 2), whilst, according to Corollary 2, the first factor is
roughly bounded below by the time needed for our peeling algorithm to reveal the
first Cpqtk/2Ptk layers starting from an initial half-perimeter Ptk . Therefore, in ∆tk
amount of time, we discover roughly Htk+1

−Htk & Cpqtk/2Ptk layers, and so

(25) Hn &
(logn)2/(2C)∑

k=1

C
pqtk
2Ptk

≈ (log n)2

2C
· C pq

2
· E
[
(pqΥ↑1)−1

]
=

(log n)2

2π2
.

Before giving a formal statement of the “&” in (25), let us first formalise the “≈”
there. The argument is similar to the one used in the proof of Proposition 3.

Lemma 8. — Fix any C > 0 and define (tk)k>1 as in (24), then

lim
δ↓0

lim sup
N→∞

E
[∣∣∣∣ 1

N

N∑
k=1

tk
Ptk

I{Ptk/tk∈[δ,δ−1]} −
2

π2pq

∣∣∣∣] = 0.
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Proof. — First observe that, by monotone convergence,

lim
δ↓0

E
[
(pqΥ↑1)−1I{pqΥ↑1∈[δ,δ−1]}

]
= E

[
(pqΥ↑1)−1

]
=

2

π2pq
,

so it is equivalent to prove

lim
δ↓0

lim sup
N→∞

E
[∣∣∣∣ 1

N

N∑
k=1

tk
Ptk

I{Ptk/tk∈[δ,δ−1]} − E
[
(pqΥ↑1)−1I{pqΥ↑1∈[δ,δ−1]}

]∣∣∣∣] = 0.

Second, from Theorem 1 and the boundedness of the random variables, for every
δ > 0, we have

lim
k→∞

E
[ tk
Ptk

I{Ptk/tk∈[δ,δ−1]}

]
= E

[
(pqΥ↑1)−1I{pqΥ↑1∈[δ,δ−1]}

]
.

Fix δ > 0 and recall the notation from (17):

X
(δ)
i =

1

Pi
I{Pi/i∈[δ,δ−1]} − E

[ 1

Pi
I{Pi/i∈[δ,δ−1]}

]
;

it is therefore sufficient to prove

lim
δ↓0

lim sup
N→∞

E
[(

1

N

N∑
k=1

tkX
(δ)
tk

)2]
= 0.

Since E[|iX(δ)
i |2] 6 δ−2, we have

lim
N→∞

1

N2

N∑
k=1

E
[(
tkX

(δ)
tk

)2]
= 0.

Next, let us fix a sequence (AN )N>1 tending to infinity such that logAN = o(N1/2)

as N →∞. Observe that t` 6 AN tk is equivalent to

` 6 k + (2k/C)1/2 logAN + (logAN )2/2C.

Cauchy–Schwarz inequality yields |E[(iX
(δ)
i )(jX

(δ)
j )]| 6 δ−2 and so

lim sup
N→∞

1

N2

∑
16k<`6N

I{t`6AN tk}
∣∣E[(tkX(δ)

tk
)(t`X

(δ)
t`

)
]∣∣

6 lim sup
N→∞

1

δ2

1

N2

N∑
k=1

(√2k

C
logAN +

(logAN )2

2C

)
= 0.

Finally, from Lemma 5,

lim
δ↓0

lim sup
N→∞

1

N2

∑
16k<`6N

I{t`>AN tk}
∣∣E[(tkX(δ)

tk
)(t`X

(δ)
t`

)
]∣∣ = 0.

This concludes the proof. �

It remains to give a formal statement of the “&” in (25).
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Proof of Proposition 6. — Let us fix C > 0 and δ ∈ (0, 1) and for every k > 1, set

ηk :=
(
Htk+1

−Htk − C
pq
2

tk
Ptk

)
I{Ptk/tk∈[δ,δ−1]},

where (tk)k>1 is as in (24) and depends on C > 0. In words, on the event Ptk ∈
[δtk, δ

−1tk], the quantity ηk is the error we make by approximating ∆Htk by its value
predicted by Corollary 2 given Ptk . We first claim that, C, δ > 0 being fixed, we have
P(ηk > −1)→ 1 as k →∞. Indeed, let us choose 0 < ε < 2δ/(Cpq − 2δ) and observe
that the following inclusion of events holds:

(26)
{Ptk
tk

/∈ [δ, δ−1]
}
∪
[{Ptk

tk
∈ [δ, δ−1]

}
∩
{
Htk+1

−Htk >
Cpqtk

(1 + ε)2Ptk

}]
⊂ {ηk > −1}.

Let us set N := b(Cpqtk)/((1 + ε)2Ptk)c to simplify the notation. We take α = ε/2,
then on the event {Ptk/tk ∈ [δ, δ−1]}, we have for all k large enough:

∆tk
N
>

(1 + ε)2Ptk
Cpqtk

· (C + o(1))
tk

log tk
>

2Ptk
pq logPtk

· (1 + α).

For k > 1, we define θtk,0 := tk and for every i > 1, we let θtk,i be the first time n
when all the edges on the boundary after n peeling steps are at height at least Htk +i.
Appealing to the previous bound for the first inequality, and applying Corollary 2
conditionally on Ptk for the second one, for every γ ∈ (0, 1), for all k large enough,
we have

P
({Ptk

tk
∈ [δ, δ−1]

}
∩
{
Htk+1

−Htk > N
})

= P
({Ptk

tk
∈ [δ, δ−1]

}
∩ {θtk,N 6 ∆tk}

)
> P

({Ptk
tk
∈ [δ, δ−1]

}
∩
{θtk,N

N
6

(1 + α)2Ptk
pq logPtk

})
> (1− γ) · P

(Ptk
tk
∈ [δ, δ−1]

)
.

Note that there is a slight subtlety since at time tk, we may not have all the edges on
the boundary at the same height, say, r > 0: we may have some edges at height r and
the others at height r + 1. However this only decreases the amount of time needed
to complete the first layer so the bound still holds. The last bound in the previous
display converges then to P(pqΥ↑1 ∈ [δ, δ−1]) as γ ↓ 0 and k →∞. Recall the inclusion
of events (26), we conclude that

lim inf
k→∞

P (ηk > −1) > P
(
pqΥ↑1 /∈ [δ, δ−1]

)
+ P

(
pqΥ↑1 ∈ [δ, δ−1]

)
= 1.

Let us set η−k = −min{ηk, 0}, then for every C, δ > 0, since Hn is increasing,

Hn >
(logn)2/(2C)−1∑

k=1

(
Htk+1

−Htk

)
I{Ptk/tk∈[δ,δ−1]}

>
(logn)2/(2C)−1∑

k=1

C
pq
2

tk
Ptk

I{Ptk/tk∈[δ,δ−1]} −
(logn)2/(2C)−1∑

k=1

η−k .
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Let us prove that the last bound, rescaled by (log n)−2, converges to (2π2)−1 in L1

when letting first n → ∞ and then C → ∞ and δ → 0. On the one hand, from
Lemma 8, for any C > 0,

lim
δ↓0

lim sup
n→∞

E
[∣∣∣∣ 1

(log n)2

(logn)2/(2C)∑
k=1

(
C

pq
2

tk
Ptk

I{Ptk/tk∈[δ,δ−1]}

)
− 1

2π2

∣∣∣∣] = 0.

On the other hand, since for all i > 1, we have η−i 6 (Cpq)/(2δ), we obtain

E
[
η−i
]

= E
[
η−i I{η−i 61}

]
+ E

[
η−i I{η−i >1}

]
6 1 +

Cpq
2δ
· P
(
η−i > 1

)
,

which converges to 1 as i → ∞ from the previous discussion. In particular, for any
δ > 0,

lim
C→∞

lim sup
n→∞

1

(log n)2

(logn)2/(2C)∑
k=1

E
[
η−k
]

= 0,

which completes the proof. �

We close this section with the proof of Lemma 7.

Proof of Lemma 7. — First note that, according to Theorem 1, for every sequence
k(`) = o(`), for every ε ∈ (0, 1),

lim
`→∞

P(`)
∞

(
1− ε 6 inf

i6k(`)

Pi
`
6 sup
i6k(`)

Pi
`
6 1 + ε

)
= 1.

It follows that for every ε ∈ (0, 1),

lim
`→∞

P(`)
∞

(Pθ1
`
∈ [1− ε, 1 + ε]

∣∣∣ θ1 6 (1 + ε)
2`

pq log `

)
= 1.

Let us prove that for every ε ∈ (0, 1),

(27) lim
`→∞

P(`)
∞

(
θ1 6 (1 + ε)

2`

pq log `

)
= 1.

The idea is similar to that of [17, Lem. 12]. We perform the peeling by layers. Let B

be the set of edges adjacent to the unique hole at time 0 of the peeling exploration.
For every n > 0, we let An be the number of edges of B which are not adjacent
to the hole at time n of the peeling exploration, i.e., edges of B which have been
“swallowed” by the process. The process (An)n>0 is non-decreasing, it starts from
A0 = 0 and eventually equals 2P0 if the latter is finite; furthermore, for every n < θ1,
it holds that An = 2P0 − Dn. For every ` > 1, we let σ` := inf{n > 1 : An > 2`};
then observe that θ1 and σ` have the same law under P(`)

∞ .
Let us define another non-decreasing sequence (A′n)n>0 started from A′0 = 0: the

steps ∆A′n := A′n+1 − A′n for every n > 0 are defined as follows according to the
(n+ 1)-th peeling step:

– we set ∆A′n = 1 if we discover a new face, or if we identify the selected edge with
another one to its left;
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– we set ∆A′n = 2k + 2 if we identify the selected edge with another one to its
right, and such that the finite hole contains exactly 2k > 0 edges.
Clearly An > A′n for all 1 6 n 6 σ` − 1: the only difference between the two is
when a peeling step identifies an edge with another one to its left, then in A′n we
do not count all the possible edges of B between them. For every ` > 1, we let
σ′` := inf{n > 1 : A′n > 2`} so σ` 6 σ′`.

Recall the law P(∞) of a bipartite Boltzmann map with a root-face of infinite degree
introduced in Section 2.3. Under P(∞), B is infinite and the variables (∆A′n)n>1 are
i.i.d., distributed in {1} ∪ 2N where, for every j > 1,

P(∞)(A′1 = 2j) =
ν(−j)

2
∼

j→∞

pq
2j2

.

Since A′n is non-decreasing, (n log n)−1A′n converges in probability to pq as n → ∞.
We conclude that `(log `)−1σ′` converges in probability to 2/pq as ` → ∞ and so for
every ε > 0,

(28) P(∞)
(
σ` 6 (1 + ε)

2`

pq log `

)
−−−→
`→∞

1.

Recall that under P(`)
∞ , θ1 has the law of σ`, (27) will therefore follow from (28)

by comparing the first peeling steps under the laws P(`)
∞ and P(∞). Recall from Equa-

tions (6) and (7) the transition probabilities for a peeling step when the perimeter
of the hole is 2`: ν(k − 1)h↑(` + k − 1)/h↑(`) to discover a new vertex of degree 2k,
and 1

2ν(−k − 1)h↑(`− k − 1)/h↑(`) to identify to the left, and the same to the right,
two edges and “swallowing” 2k edges. The quantities ν(k − 1) and ν(−k − 1)/2 are
respectively the probabilities of the corresponding events when the perimeter is in-
finite (i.e., under P(∞), see Section 2.3); furthermore ` is the half-perimeter before
the peeling step and ` + k − 1, respectively ` − k − 1, is the half-perimeter after the
peeling step. We deduce that for every `, k > 1 and for every sequence of peeling steps
PS1, . . . ,PSk which occurs with a positive probability under P(`)

∞ , if we denote by `k
the half-perimeter of the hole after these k peeling steps, it holds that

P(`)
∞ (the first k peeling steps are PS1, . . . ,PSk)

P(∞)(the first k peeling steps are PS1, . . . ,PSk)
=
h↑(`k)

h↑(`)
.

Choose any sequence of integers (k(`))`>1 satisfying `/ log ` � k(`) � `. As we
observed at the beginning of this proof, for every δ > 0,

lim
k→∞

P(`)
∞

(
(1− δ)` 6 inf

j6k(`)
Pj 6 sup

j6k(`)

Pj 6 (1 + δ)`
)

= 1.

Recall that h↑ is increasing and that h↑(x) ∼ 2
√
x/π as x → ∞. For every

δ > 0 we may choose ` large enough, such that for every sequence of peeling steps
PS1, . . . ,PSk(`) which occurs with a positive probability under P(`)

∞ and satisfies the
above constraint, we have
√

1− 2δ 6
P(`)
∞ (the first k(`) peeling steps are PS1, . . . ,PSk(`))

P(∞)(the first k(`) peeling steps are PS1, . . . ,PSk(`))
6
√

1 + 2δ.
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The event σ` 6 (1 + ε)2`/pq log ` is measurable with respect to the first
(1 + ε)2`/pq log `� k(`) peeling steps, (27) thus follows from (28) and this compari-
son result. �

5. Bernoulli percolation

In this section, we consider face percolation on infinite maps: given p ∈ [0, 1], every
face is “open” with probability p and “closed” with probability 1− p, independently
of each other. Two open faces are in the same cluster if there exists a path in the
dual map going from one to the other visiting only open faces. We shall focus on
the map M(∞) with a root-face of infinite degree introduced in Section 2.3 instead
of M∞, since the former is slightly simpler to study and already exhibits interesting
behaviour.

We first prove that the boundary of M(∞) (which is the set of edges adjacent to the
infinite face) has infinitely many cut-edges. This implies that there is no percolation.
In Section 5.2, we obtain new estimates on entrance times in Z− of random walks
attracted to a Cauchy process. We finally use these results in Section 5.3 to study
more precisely the length of percolation interfaces using another well-designed peeling
algorithm.

5.1. Cut-edges. — Let us first prove the following striking property of the map
M(∞), illustrated in Figure 6. We call cut-edges the edges on the boundary of M(∞)

which separate the root-vertex from ∞ (recall that M(∞) is one-ended).

Theorem 4. — Almost surely, in M(∞) there are infinitely many cut-edges.

Figure 6. Illustration of the decomposition of M(∞).

Proof of Theorem 4. — Consider the following Markovian algorithm which reveals cut-
edges one after the other: starting from an infinite line B representing the boundary
of M(∞), we first peel the root-edge; we create a cut-edge if the latter is identified with
another edge of B on its left; then we next peel the first edge of B to the right of the
root-edge (which is possibly identified with another one), then we create a cut-edge if
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the latter is identified with another edge of B on the left of the root-edge. We denote
cut1, cut2, . . . the cut-edges ordered from the root-edge, following the boundary to
the right. Clearly, conditional on cut1 existing, the infinite component of the graph
obtained by removing cut1 from M(∞) (rooted say at the first edge on the right of
cut1 on its boundary) has the law of M(∞).

This implies that the number C of cut-edges in M(∞), if finite, has a geomet-
ric distribution. Thus, to prove that C = ∞ almost surely, we only need to prove
E[C ] =∞. For this, we consider the boundary of M(∞) seen as unexplored, which we
identify with Z. By the peeling exploration (recall the transition probabilities from
Section 2.3), for i > 0 and j > 0 such that i+ j is even, the probability that the edge
{(−i− 1)→ −i} is identified in M(∞) to the edge {j → (j + 1)} is equal to

1

2
ν
(
− i+ j

2
− 1
)
.

Hence we have as desired

E[C ] =
∑

i>0,j>0
i+j even

1

2
ν
(
− i+ j

2
− 1
)

=∞,

thanks to (5). �

Remark 5 (Cut-edges in M∞). — We believe that the same phenomenon should
appear in M∞ (although the cut-edges are more rare). Let us sketch the heuristic
argument which we do not carry to a rigorous level; it is similar to that of [12,
§5.2.1], see in particular Figure 10 there. Consider a peeling of M∞ and assume that
between time 2k and 2k+1 we discover a new face of degree proportional to 2k. By
Theorem 1, this event happens with a probability bounded away from 0 (uniformly
in k). When this happens, there is a probability of order 1/k that two edges of this
face are identified and form a cut-edge of M∞. This can for example occur if, when
performing a peeling by layers along this face, we discover an unusually large jump
of size 2k within the first 2k/ log 2k steps and that this jump creates a cut-edge
(see [12, Fig. 10]). The last event occurs with probability of order 1/k. Summarising,
this heuristic makes plausible that with a probability of order 1/k a cut-edge occurs
between the peeling times 2k and 2k+1. Since the harmonic series diverges and these
events are “roughly” independent, this should imply existence of infinitely many cut-
edges in M∞.

5.2. Entrance times of random walks attracted to a Cauchy process. — Our aim
in this subsection is to prove Proposition 1 on the tail behaviour of entrance time for
random walks attracted to a symmetric or asymmetric Cauchy process. We shall use
then these results to study face percolation on infinite Boltzmann random maps. Let
us first prove an easy concentration estimate for non-decreasing random walks in the
domain of attraction of a 1-stable law.

Lemma 9. — Let ξ be a random variable on Z+ satisfying P(ξ > k) ∼ ck−1 as k →∞
for some c > 0. LetW be a random walk started from 0 and with i.i.d. steps distributed
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as ξ. Then for every δ > 0, as n→∞,

P
(∣∣(n log n)−1Wn − c

∣∣ > δ) = O (1/log n) .

It is well-known that such a random walk satisfies (n log n)−1Wn → c in probability
as n → ∞, and we have used this fact in the proof of Lemma 7, but we shall need
these more precise deviation probabilities.

Proof. — Fix δ > 0 small. Let us write Wn = ξ1 + · · · + ξn, where the ξi’s are i.i.d.,
distributed as ξ. We set also ξ(n) = ξ · I{ξ6n logn}, and then W (n)

n = ξ
(n)
1 + · · ·+ ξ

(n)
n .

First, we have the easy upper bound

P
(∣∣(n log n)−1Wn − c

∣∣ > δ) 6 P
(

sup
16i6n

ξi > n log n
)

+ P
(∣∣(n log n)−1W (n)

n − c
∣∣ > δ).

The first term in the right-hand side is asymptotically equivalent to c/ log n as n→∞
so we focus on the second one. Let us consider the first two moments of ξ(n) as n→∞:

E
[
ξ(n)

]
∼ c log n, and E

[
(ξ(n))2

]
∼ cn log n, so Var

(
(ξ(n))2

)
∼ cn log n.

Then for all n large enough, we have |(n log n)−1E[W
(n)
n ]− c| 6 δ/2 and so

P
(∣∣(n log n)−1W (n)

n − c
∣∣ > δ) 6 P

(
(n log n)−1

∣∣W (n)
n − E

[
W (n)
n

]∣∣ > δ/2)
6

4

δ2(n log n)2
·Var

(
W (n)
n

)
∼ 4

δ2(n log n)2
· cn2 log n,

and the claim follows. �

We next prove Proposition 1 appealing to this lemma.

Proof of Proposition 1. — We start with the symmetric case c+ = c−. According to
[7, Th. 8.3.1] Wn/n− bn converges in distribution as n→∞ to a symmetric Cauchy
random variable C if we choose bn = E[W1/1 + (W1/n)

2
]. Hence, under the assump-

tion that bn = b+ o(1) as n→∞ we have

P (Wn > 0) = P
( 1

n
Wn − bn > −bn

)
= P (C > −b) + o(1).

Using that the Cauchy random variable C with tail P (C > x) ∼ c+/x has distribution
function P (C < x) = 1

2 + 1
π arctan(x/πc+) we find that P (Wn > 0) = ρ + o(1).

In particular, Wn satisfies Spitzer’s condition 1
n

∑n
k=1 P (Wn > 0) → ρ ∈ (0, 1) as

n→∞. Now [7, Th. 8.9.12] implies that τ is in the domain of attraction of a positive
stable random variable with index ρ, and (iii) follows.

Consider next the second case c+ < c−. Let (ξi)i>1 be a sequence of i.i.d. random
variables distributed as W1 and let us set

W (+)
n :=

n∑
i=1

ξi · I{ξi>0}, and W (−)
n :=

n∑
i=1

−ξi · I{ξi60}, so Wn = W (+)
n −W (−)

n .
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Choose A ∈ (c+, c−), then appealing to Lemma 9, we obtain

P (Wn > 0) 6 P
(
W (+)
n > An log n or W (−)

n < An log n
)

6 P
(
W (+)
n > An log n

)
+ P

(
W (−)
n < An log n

)
= O (1/log n) .

In particular this allows us to bound P (Wn > 0) uniformly by the coefficients of an
appropriate analytic function. To be precise, using the transfer theorem from [23,
Th. 3A], there exists a C > 0 such that

P (Wn > 0) 6 [sn]f(s), with f(s) = C ·
( 1

(1− s) log (1/(1− s))
− 1

s

)
.

According to [22, XII.7 Th. 4] the generating function p(s) of the probabilities

pn = P (τ > n) = P (W1 > 0,W2 > 0, . . . ,Wn > 0)

may be expressed in terms of the probabilities P (Wm > 0) through

(29) p(s) =

∞∑
n=0

pns
n = exp

( ∞∑
m=1

sm

m
P (Wm > 0)

)
.

Since the coefficient of sn of the right-hand side is monotone in P (Wm > 0) we have
that

pn 6 [sn] exp

( ∞∑
m=1

sm

m
[sm]f(s)

)
= [sn] exp

(∫ s

0

f(t)dt

)
= [sn]

(1

s
log (1/(1− s))

)C
.

Assuming we have not taken C to be an integer, we may deduce again from the
transfer theorem [23], Theorem 3A and the second remark at the end of Section 3
that the right-hand side is O((log n)C−1/n). Hence, the same is true for pn, giving
the correct upper-bound.

For the lower-bound it suffices to consider the situation in which the walk makes
a large positive jump at the first step: with the same notation as above and A > c−,

P (τ > n) > P (W1 > An log n and τ > n)

> P (W1 > An log n) · P
(
W (−)
n < An log n

)
∼ c+
An(log n)2

.

Consider finally the first case c+ > c−. Then we may apply the previous results to
the walk −W and we have

P (Wn > 0) = 1− P (Wn < 0) > 1−O (1/log n) .

Hence there exist C,N > 0 such that for all n > N

P (Wn > 0) > 1− [sn]f(s) > 0.

Similarly as before, by monotonicity we may bound the coefficients of (29) by

pn > [sn] exp

( ∞∑
m=N+1

sm

m
(1− [sm]f(s))

)
= [sn]G(s),
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where

G(s) =
1

1− s
exp

(
−
∫ s

0

f(t)dt+ P (s)

)
=

1

1− s

(1

s
log
(
1/(1− s)

))−C
eP (s)

with P (s) =
∑N
m=1(1− [sm]f(s))sm/m a polynomial of degree N . The transfer the-

orem [23, Th. 3A] applies to G(s), giving

pn > [sn]G(s) ∼ eP (1)(log n)−C ,

and thus completing the proof. �

5.3. On the length of the interfaces. — We close this paper by considering face
percolation on the map M(∞) in which each face is coloured independently black with
probability p ∈ (0, 1]. This corresponds to site percolation on the dual maps. In both
cases, we shall adopt the following boundary condition: we impose that the infinite
face is white, and we “unzip” the root-edge to create a face of degree two that we
colour black.

Recall the decomposition of M(∞) as a string of disjoint finite maps obtained in
Theorem 4. Since each black cluster is contained in such a finite part, this readily
implies that for any p ∈ (0, 1], almost surely there is no infinite black cluster in M(∞).
We next prove that the behaviour of the length of percolation interfaces changes at
p = 1/2. More precisely, consider the black cluster containing the root-edge, which
we view as a black face of degree two; we denote by L the number of edges on the
outer-most boundary of the latter, as depicted in Figure 8.

Proposition 7. — As n→∞, we have

P (L > n) = n−λ(p)+o(1) where λ(p) =


1 when p < 1/2,
1

π
arctan(2πpq) when p = 1/2,

0 when p > 1/2.

The proof relies on the following peeling process (ei)i>0 which follows the percola-
tion interfaces, defined in [16] (see also [2, 28] for related models). For each i > 0, each
edge on the boundary of the unique hole of ei is given the colour of the face incident
to it in ei. We assume that e0 consists of the white infinite face and the root-edge,
which we view as a black face of degree 2. Consider next the following hypothesis for
a given step i > 0:

(H) The set of black edges on the boundary of ei is connected, possibly empty.

Fix p ∈ (0, 1]. At the initial step e0, there is only one black edge on the boundary.
If ei satisfies (H) and contains ` > 1 black edges, then the next edge to peel A (ei) is
the left-most black edge. We then face several possible situations when peeling this
edge:

(i) either we discover a new black face of degree 2k for some k > 1, this occurs
with probability p · ν(k − 1);

(ii) or we discover a new white face, this occurs with probability (1−p) ·ν([0,∞));
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(iii) or the black edge is identified with an edge on its left, this occurs with prob-
ability ν((−∞,−1])/2;

(iv) or, if ` > 2, it is identified with another black edge on its right, thus creating
a hole of perimeter 0 6 2k 6 `− 2, this occurs with probability ν(−k − 1)/2;

(v) or it is identified with a white edge on its right, this occurs with probability
ν((−∞,−(`− 1)/2− 1])/2.

In all cases, ei+1 satisfies (H). In the first and third cases, or in the second and fourth,
if any black edges remain on the boundary, the next edge to peel A (ei+1) is again
the left-most black edge on the boundary. In the last case, or in the second or fourth
if there is no black edge remaining on the boundary, then we have fully discovered a
black cluster, and the next edge to peel A (ei+1) is the first white edge immediately
to its right.

Figure 7. The map on the left in the red frame depicts an explored
region satisfying hypothesis (H). The five other figures correspond
to the five different situations when peeling the edge indicated in
blue.

Proof of Proposition 7. — Let us consider the exploration process (ei)i>0 in which we
select the left-most edge on the boundary of the black cluster. We let θ ∈ N∪{∞} be
the first instant at which there is no black edge on the boundary and for all 0 6 n 6 θ,
we let P •n be the number of black edges on the boundary of en, so P •0 = 1 and P •θ = 0.
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Let X be a random variable with the following distribution: for k > 0,

(30)

P (X = 2k) = p · ν(k),

P (X = −1) = (1− p) · ν([0,∞)) +
ν((−∞,−1])

2
,

P (X = −2k − 2) =
ν(−k − 1)

2
.

We define a random walk W started from 0 and with i.i.d. steps distributed as X and
we set τ = inf{n > 1 : Wn 6 −1}. Then θ has the law of τ , and more precisely the
sequence (P •0 , . . . , P

•
θ−1) has the law of (W0 +1, . . . ,Wτ−1 +1). Note that the random

walk W oscillates for all p, so τ , and therefore θ, is finite almost surely.
From (5) we deduce that the walk W satisfies

P (W1 > k) ∼ c+
k

and P (W1 < −k) ∼ c−
k

as k −→∞.

with c+ = 2p · pq and c− = pq. Hence, when p 6= 1/2 Proposition 1 already im-
plies that P (θ > n) = n−λ(p)+o(1). For p = 1/2 we still need to consider the limit
of E[W1/(1 + (W1/n)2)] as n → ∞. Since P (W1 = −1) = 1/2 and P (W1 = 2k) =

P (S1 = k) /2 for k ∈ Z with S the walk with increments of law ν started from 0, we
have

E
[
W1/(1 + (W1/n)

2
)
]

=
1

2
· −1

1 + n−2
+ E

[
S1/(1 + (2S1/n)

2
)
]
.

Put bn = E[2S1/(1 + (2S1/n)
2
)]. Recalling the beginning of the proof of Proposi-

tion 1, the walk 2S falls into the symmetric case c− = c+ so 2Sn/n − bn converges
in distribution to some symmetric Cauchy random variable, so according to Proposi-
tion 2 we have bn = o(1). Hence the hypothesis of Proposition 1(iii) is satisfied by W
with b = −1/2, and P (θ > n) = n−λ(p)+o(1) follows.

We now aim at comparing the tail behaviour of L with that of θ; we introduce an
auxiliary random variable N as follows. Consider the stopped exploration (ei)06i<θ

and for each i < θ, let Ni denote the number of peeling steps among the first i at
which either we have discovered a new white face, or we have identified the selected
edge with another one adjacent to a white face on the left. Let us set N = Nθ−1, then
the pair (θ,N ) has the same law as (τ,#{1 6 k < τ : Wk = Wk−1 − 1}). Observe
that N 6 θ. Let us set ϕ(p) := P(W1 = −1) = (1− p)ν([0,∞)) + ν((−∞,−1])/2 and
fix a constant C > 2/ϕ(p). We then write

P (N > n) > P (N > n and θ > Cn)

> P (NCn > n and θ > Cn)

> P (θ > Cn)− P (NCn 6 n and θ > Cn)

> P (θ > Cn)− P (NCn 6 n) .

Since NCn has the binomial distribution with parameters Cn and ϕ(p) > 2/C, the
Chernoff bound thus yield

P (NCn 6 n) 6 P (NCn 6 Cn (ϕ(p)− 1/C)) 6 exp (−2n/C) = o (P (θ > Cn)) .
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Figure 8. Illustration of the outer-most boundary of the percolation
cluster: L = 12 is the number of edges on the red cycle and N = 9

and N ′ = 9 are the number of edges on the blue path on the left
and on the right respectively.

It follows that

P (N > n) > P (θ > Cn) · (1 + o(1)) = n−λ(p)+o(1).

We conclude that P(N > n) = n−λ(p)+o(1).
Consider the exploration process defined similarly but now we select the right-

most edge on the boundary of the black cluster at each step, and we denote by N ′

the number of steps at which either we have discovered a new white face, or we have
identified the selected edge with another one adjacent to a white face on the right, until
there is no black edge adjacent to the hole. Clearly, we have L > sup{N ,N ′} and
simple geometric considerations show that L 6 N + N : the two parts of length N

and N ′ meet to form the outer-most boundary of length L , see Figure 8 for an
illustration. The claim follows from the previous discussion after observing that N

and N ′ have the same law. �
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