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NON-COLLAPSED SPACES WITH RICCI CURVATURE

BOUNDED FROM BELOW

by Guido De Philippis & Nicola Gigli

Abstract. — We propose a definition of non-collapsed space with Ricci curvature bounded
from below and we prove the versions of Colding’s volume convergence theorem and of Cheeger-
Colding dimension gap estimate for RCD spaces. In particular this establishes the stability of
non-collapsed spaces under non-collapsed Gromov-Hausdorff convergence.

Résumé (Espaces « non-collapsed » avec courbure de Ricci minorée). — Nous proposons une
définition d’espace « non-collapsed » avec courbure de Ricci minorée et nous généralisons aux
espaces RCD le théorème de convergence du volume de Colding et l’estimation de l’écart de
dimension de Cheeger-Colding. En particulier, ceci prouve la stabilité des espaces RCD « non-
collapsed » par rapport à la convergence de Gromov-Hausdorff « non-collapsed ».
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1. Introduction

Lott-Villani in [44] and Sturm in [50, 51] introduced a synthetic notion of lower
Ricci curvature bounds for metric measure spaces: their approach is based on suitable
convexity properties for entropy-like functionals over the space of probability measures
equipped with the quadratic Kantorovich distanceW2. The classes of spaces that they
introduced are called CD(K,N), standing for lower Curvature bound by K ∈ R and
upper Dimension bound by N ∈ [1,∞] (in [44] only the cases K = 0 and N = ∞
have been considered).
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614 G. De Philippis & N. Gigli

Since then the study of these classes of spaces has been a very flourishing research
area, see for instance the surveys [53, 54] and references therein. Among the various
fine tunings of Lott-Sturm-Villani’s proposal, we mention the definition of CD∗(K,N)

spaces proposed by Bacher-Sturm in [11]: under minor technical conditions, this is
locally equivalent to the CD(K,N), has better local-to-global properties but a priori
leads to slightly suboptimal constants in various geometric and functional inequalities
(but see (1.2) below).

Since the very beginning, one of the main research lines has been, and still is, that
of understanding the geometric properties of such spaces. Here fundamental ideas
come from the theory of Ricci-limit spaces developed in the nineties by Cheeger and
Colding [16, 17, 18, 19, 22]: one would like at least to replicate all their results in
the synthetic framework, and then hopefully to obtain, thanks to the new point of
view, new insights about both smooth and non-smooth objects having Ricci curvature
bounded from below. In this direction it has been soon realized that the classes of
CD/CD∗(K,N) spaces are not really suitable for the development of this program:
the problem is that Finlser structures are included (see the last theorem in [52]) and
for these Cheeger-Colding’s results are not valid. For instance, the Cheeger-Colding-
Gromoll splitting theorem fails in finite dimensional Banach spaces.

Motivated by this problem the second author proposed in [31] to reinforce the Lott-
Sturm-Villani condition with the functional-analytic notion of infinitesimal Hilber-
tianity:
(1.1) (X,d,m) is infinitesimal Hilbertian provided W 1,2(X,d,m) is an Hilbert space.

This definition is the result of a research program devoted to the understanding of
the heat flow [27, 32, 3] on CD(K,N) spaces, and in particular of the introduction of
the class of RCD(K,∞) spaces—R standing for Riemannian—in a collaboration with
Ambrosio and Savaré [4].

In (1.1), W 1,2(X, d,m) is the Sobolev space of real valued functions on X as in-
troduced by Cheeger in [15] (see also the alternative, but equivalent, descriptions
provided in [49] and [3]). It is a priori non-trivial, but nevertheless true, that infinites-
imal Hilbertianity is stable under mGH-convergence when coupled with a CD(K,N)

condition. Moreover, as proved by the second author in [28] (see also [30]), the splitting
theorem holds in the class of infinitesimally Hilbertian CD(0, N) spaces.

In a different direction, in another collaboration [5] of the second author with
Ambrosio and Savaré it has been introduced the class of BE(K,N) spaces: these are
spaces in which, in a suitable sense, the Bochner inequality with parameters K,N
holds (BE stands for Bakry-Émery). The key points of [5] are the proof that the class
of BE(K,N) spaces is stable under mGH-convergence (and thus provides another
reasonable synthetic notion of spaces having a curvature-dimension bound) and that
for N =∞ it coincides with that of RCD(K,∞) spaces.

This circle of ideas has been closed in [25] (and later in [9]) where it has been
proved that

BE(K,N) = CD∗(K,N) + infinitesimal Hilbertianity.
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Non-collapsed spaces with Ricci curvature bounded from below 615

More recently, Cavalletti-Milman in [14] proved in high generality, and in particular
without relying on infinitesimal Hilbertianity, that it holds

(1.2) CD(K,N) = CD∗(K,N)
(under some kind of non-branching assumption
which always holds in RCD(K,∞) spaces

)
The results in [14] are stated for spaces with finite reference measure but the kind of
arguments used seems to indicate that the same also holds without this restriction. For
this reason in this manuscript we shall work with RCD(K,N) := CD(K,N)+Inf.Hilb.

spaces, rather than with RCD∗(K,N) := CD∗(K,N)+Inf.Hilb. ones which have been
recently more popular. In any case, all our arguments are local in nature and since the
local versions of CD(K,N) and CD∗(K,N) are known to be equivalent from the very
first paper [11] where CD∗ has been introduced, our results are independent from [14].

We now turn to the description of the content of this manuscript. Thanks to the
celebrated volume convergence result by Colding [22], and to its generalization to
Ricci-limit spaces by Cheeger-Colding [17], we know that for a pointed-Gromov-
Hausdorff-converging sequence of pointed Riemannian manifolds (Mn, pn) with the
same dimension and Ricci curvature uniformly bounded from below, the volume of
the unit ball around pn either stays away from 0 (i.e., infn Voln(BMn

1 (pn)) > 0) or it
converges to 0. Limit spaces are called non-collapsed or collapsed according to whether
they are obtained as limits of sequences of the former or latter kind respectively.

As it turned out from the analysis done in [16, 17, 18, 19], non-collapsed spaces are
more regular than collapsed ones and it is therefore natural to look for a synthetic
counterpart of this class of spaces. To do so we should look for an intrinsic charac-
terization of non-collapsed Ricci-limit spaces, i.e., for one which does not rely on the
existence of a converging sequence having suitable properties. A work in this direction
has also been done by Kitabeppu in [43] (see also Remark 1.14).

Let us observe that the aforementioned volume convergence result grants, as noticed
in [17], that: a pGH-limit space (X, d) of a sequence of N -dimensional manifolds with
Ricci curvature uniformly bounded from below is non-collapsed if and only if

the volume measures weakly converge to the measure H N on X and H N (X)>0,
where here and in the following H N is the N -dimensional Hausdorff measure.

Since for a CD(K,N) space (X, d,m) the requirement m(X) > 0 is part of the
definition, the above motivates the following definition.

Definition 1.1 (Non-collapsed RCD spaces). — Let K ∈ R and N > 1. We say that
(X, d,m) is a non-collapsed RCD(K,N) space, ncRCD(K,N) space in short, provided
it is an RCD(K,N) space and m = H N .

From the known structural properties of RCD(K,N) spaces it is not hard to show
that if (X, d,m) is a ncRCD(K,N), then N must be an integer. This follows for in-
stance from the rectifiability results proved in [45], [42], [36] (see Theorem 2.13).
Alternatively, this can be proved by blow-up arguments, see Theorem 1.12 and in
particular the implication (iii)⇒ (iv).

J.É.P. — M., 2018, tome 5



616 G. De Philippis & N. Gigli

Imitating the arguments in [17] we shall prove that ncRCD(K,N) spaces are stable
under Gromov-Hausdorff (thus a priori not necessarily measured-GH) convergence in
the sense made precise by the following theorem.

Theorem 1.2 (Non-collapsed and collapsed convergence). — Let (Xn, dn,H N , xn)

be a sequence of pointed ncRCD(K,N) spaces. Assume that (Xn, dn, xn) converges
to (X∞, d∞, x) in the pointed-Gromov-Hausdorff topology. Then precisely one of the
following happens:

(i) limn→∞H N (B1(xn)) > 0. In this case the lim is actually a limit and
(Xn, dn,H N , xn) converges in the pointed-measured-Gromov-Hausdorff topology to
(X∞, d∞,H N , x). In particular (X,∞ d∞,H N ) is a ncRCD(K,N) space.

(ii) limn→∞H N (B1(xn)) = 0. In this case dimH (X∞) 6 N − 1.

Here and in what follows dimH (X) is the Hausdorff dimension of the metric
space X. Notice that in particular

non-collapsed limits of Riemannian manifolds in the sense of Cheeger-Colding
are non-collapsed spaces in our sense,

explaining our choice of terminology.
Theorem 1.2 is strictly related to the following two results. The first generalizes

the already mentioned volume convergence theorem to the RCD setting. Notice that
there is no non-collapsing assumption.

Theorem 1.3 (Continuity of H N ). — For K ∈ R, N ∈ [1,∞) and R > 0 let BK,N,R
be the collection of all (equivalence classes up to isometry of) closed balls of radius R
in RCD(K,N) spaces equipped with the Gromov-Hausdorff distance.

Then the map BK,N,R 3 Z 7→H N (Z) is real valued and continuous.

Such theorem is true even for open balls, see equation (2.20). Notice also that Gro-
mov precompactness theorem for RCD spaces and the stability of the RCD condition
grant that BK,N,R is compact with respect to the Gromov-Hausdorff topology (see
also the proof of Theorem 1.3 given at the end of Section 3.1).

The second result, analogous to [17, Th. 3.1], concerns the Hausdorff dimension of
an RCD(K,N) space; again there is not an assumption about non-collapsing, but on
the other hand N is assumed to be integer.

Theorem 1.4 (Dimension gap). — Let K ∈ R, N ∈ N, N > 1, and let X be an
RCD(K,N) space. Then either dimH (X) = N or dimH (X) 6 N − 1.

Since R is RCD(0, 1 + ε), we see that the assumption N ∈ N is necessary in the
above. For non-integer N ’s this last result easily implies the following.

Corollary 1.5. — Let K,N ∈ R, N > 1, and let X be an RCD(K,N) space. Then
dimH (X) 6 [N ], where [·] denotes the integer part.

Notice that this is sharp because for everyN∈(1, 2) the space ([0, π],dE,sin
N−1(t)dt)

is an RCD(N − 1, N) space whose Hausdorff dimension is 1.
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Non-collapsed spaces with Ricci curvature bounded from below 617

As a quite direct consequence of Theorem 1.2 and its proof we also obtain the
following volume (almost) rigidity result.

Theorem 1.6 (Volume rigidity). — For every ε > 0 and N ∈ N, N > 1 there is
δ = δ(ε,N) such that the following holds. Let (X, d,H N ) be a ncRCD(−δ,N) space
and x ∈ X such that H N (BX

1 (x)) >H N (BRN
1 (0))(1− δ). Then

dGH

(
BX

1/2(x), BRN
1/2(0)

)
6 ε.

The example of a unit ball in a cylinder shows that we cannot replace 1/2 with 1

in the conclusion, see also the discussion in [24]. A simple consequence of the Bishop-
Gromov inequality combined with Corollary 2.14 and the above theorem is the fol-
lowing corollary.

Corollary 1.7. — Let (X, d,H N ) be a ncRCD(0, N) space, then for all x ∈ X and
r > 0,

(1.3) H N (BX
r (x)) 6 ωNr

N .

Moreover, if there exists x ∈ X and r > 0 achieving equality in (1.3), then BX
r/2(x)

is isometric to BRN
r/2(0). As a consequence, a point x ∈ X is regular (i.e., all tangent

cones are isometric to RN ) if and only if

lim
r→0

H N (BX
r (x))

ωNrN
= 1.

We now pass to the description of the main properties of non-collapsed spaces.
A first result is about the stratification of their singular set: denote by Sk(X) the set
of points x ∈ X such that no tangent space splits off a factor Rk+1 (see (3.48) for the
precise definition). In the same spirit of classical stratification results in geometric
measure theory first established in [1] and axiomatized in [55] we have the following
result, compare with [17, Th. 4.7].

Theorem 1.8 (Stratification). — Let K∈R, N∈N, N>1 and let X be a ncRCD(K,N)

space. Then dimH (Sk(X)) 6 k for every k ∈ N.

Beside these, all the other properties of ncRCD spaces that we are able to prove hold
in the a priori larger class of weakly non-collapsed spaces, which we now introduce.

For K ∈ R, N ∈ [1,∞) and r > 0 let us consider the volume of the ball of radius r
in the reference ‘space form’ defined by

vK,N (r) := ωN

∫ r

0

∣∣sK,N (t)
∣∣N−1 dt,

where ωN := πN/2/
∫∞
0
tN/2e−t dt coincides for integer N with the volume of the unit

ball in RN and

sK,N (r) :=


√

(N − 1)/K sin(r
√
K/(N − 1)), if K > 0,

r, if K = 0,√
(N − 1)/|K| sinh(r

√
|K|/(N − 1)), if K < 0.
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618 G. De Philippis & N. Gigli

Then the Bishop-Gromov inequality, which is valid in the class of MCP(K,N) spaces
(see [46] and [51] and recall that an RCD(K,N) space is also MCP(K,N)), states that

(1.4) r 7−→ m(Br(x))

vK,N (r)
is decreasing

for any x ∈ supp(m). Therefore the following definition if meaningful.

Definition 1.9 (Bishop-Gromov density). — Let K ∈ R, N ∈ [1,∞) and let (X, d,m)

be a MCP(K,N) space with supp(m) = X. For x ∈ X we define the Bishop-Gromov
density at x as

(1.5) ϑN [X, d,m](x) := lim
r→0

m(Br(x))

vK,N (r)
= sup

r>0

m(Br(x))

vK,N (r)
.

Notice that by the very definition of vK,N (r) we have

(1.6) lim
r→0

vK,N (r)

ωNrN
= 1,

hence

(1.7) ϑN [X, d,m](x) = lim
r→0

m(Br(x))

ωNrN
,

whence the choice of omitting the K in the notation of the Bishop-Gromov density.
Still, the definition (1.5) allows to directly exploit (1.4) and this simplifies some proofs.

We note that for an RCD(K,N) space the Bishop-Gromov density can be
equal to ∞ at almost every point, a simple example being the RCD(0, N) space
([0,∞), dE, x

N−1 dL 1), where here and in the sequel dE will denote the euclidean
distance. In a sense what is happening in this example is that there is a gap between
the ‘functional analytic’ upper bound on the dimension N of the space and its
‘geometric’ dimension. This motivates the following definition.

Definition 1.10 (Weakly non-collapsed RCD spaces). — Let K ∈ R and N ∈ [1,∞).
We say that (X, d,m) is a weakly non-collapsed RCD(K,N), wncRCD(K,N) in short,
space provided it is RCD(K,N), it holds supp(m) = X and

ϑN [X, d,m](x) < +∞ for m-a.e. x.

Notice that by classical results about differentiation of measures (see e.g. Lem-
ma 2.11), if H N is a Radon measure on X we know that

lim
r↓0

H N (Br(x))

ωNrN
6 1 H N -a.e. x ∈ X,

and thus in particular
a non-collapsed RCD(K,N) space is also weakly non-collapsed,

see Corollary 2.14.
Also, from (1.4) it follows that ϑN is lower-semicontinuous both as a function on

the fixed RCD(K,N) space (X, d,m) and along a pmGH-converging sequence (see
Lemma 2.2). This easily implies the stability of the weakly non-collapsed condition
with respect to pmGH-convergence, see Theorem 2.3.
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Non-collapsed spaces with Ricci curvature bounded from below 619

Remark 1.11. — By analogy with the properties of Ricci-limit spaces obtained in
[16, 17, 18, 19, 23] we believe that

if (X, d,m) is RCD(K,N) and ϑN [X, d,m] < ∞ on a set of positive m-measure,
then up to multiply m by a positive constant the space is ncRCD(K,N)

and in particular that any weakly non-collapsed space is, up to multiply the measure
by a positive constant, non-collapsed. Note in particular that a consequence of the
above property would be the constancy of the dimension of RCD(K,N) spaces in
the case when there is at least a N -dimensional piece(1). This fact is proved, in full
generality, for Ricci limit spaces by Colding and Naber in [23]. �

The geometric significance of the finiteness of ϑN is mostly based on the fact that

(1.8) if ϑN [X, d,m](x) <∞ then every tangent space at x is a metric cone

which in turn follows directly from the ‘volume cone to metric cone’ property of RCD
spaces obtained by the authors in [24, Th. 1.1] (see Proposition 2.8 for the proof
of (1.8)).

With this said, we have the following equivalent characterizations of weakly non-
collapsed spaces.

Theorem 1.12. — Let K ∈ R, N ∈ [1,∞) and let (X, d,m) be a RCD(K,N) space
with suppm = X. Then the following are equivalent:

(i) X is a wncRCD(K,N) space.
(ii) m�H N .
(iii) There exists a function ϑ1 ∈ L1

loc(H
N ) such that m = ϑ1H N .

(iv) N is integer and for m-a.e. x ∈ X there exists a constant ϑ2(x) such that

(X, d/r,m/rN , x)
pmGH−−−−−−→ (RN , dE, ϑ2(x)L N , 0) as r ↓ 0.

(v) N is integer and for m-a.e. x ∈ X it holds

(X, d/r,m/cr, x)
pmGH−−−−−−→ (RN , dE,L N/c(N), 0) as r ↓ 0,

where

cr :=

∫
BX
r (x)

(
1− d(y, x)

r

)
dm(y), c(N) :=

∫
BRN

1 (0)

(
1− |y|

)
dL N (y).

(vi) N is integer and for m-a.e. x ∈ X it holds

(X, d/r, x)
pGH−−−−−→ (RN , dE, 0) as r ↓ 0.

(vii) The tangent module L2(TX) has constant dimension equal to N .

(1)During the revision process of this manuscript, Bruè and Semola proved in [12] that finite
dimensional RCD spaces have constant dimension regardless of such ‘maximality’ condition.
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620 G. De Philippis & N. Gigli

Moreover in the above statements

(1.9) ϑ1(x) = ϑ2(x) = ϑN [X, d,m](x) < +∞ for m-a.e. x.

Finally, if any of these holds then (referring to [29] for the necessary definitions) it
holds

(1.10) H2,2(X)=D(∆) and trHf = ∆f ∀ f ∈ H2,2(X).

Remark 1.13. — We believe that if (X, d,m) is an RCD(K,N) space for which (1.10)
holds, then there exists n ∈ N, n ∈ [1, N ], such that (X, d,m) is a weakly non-collapsed
RCD(K,n) space. Notice that according to Han’s results in [41], this would be true if
one knew that the tangent module has constant dimension, in which case one should
pick n to be such dimension.(2) �

Remark 1.14. — The definition proposed by Kitabeppu in [43] in our formalism reads
as: ϑN [X](x) <∞ for every x ∈ X (in particular such spaces are weakly non-collapsed
in our sense). Then in [43] it has been proved that such spaces have many of the
properties stated in Theorem 1.12, see [43, Th. 1.4], and it has also been noticed that
(1.8) holds. Our proofs of these facts are essentially the same as those in [43]. �

We conclude mentioning that the characterization of non-collapsed spaces via blow-
ups allows to deduce that ‘products’ and ‘factorizations’ of (weakly) non-collapsed
spaces are still (weakly) non-collapsed, see Proposition 2.15 and compare it with the
non-trivial behaviour - even on Rn - of products of Hausdorff measures, see e.g. [26,
2.10.29].

Acknowledgements. — The authors wish to thank Jeff Cheeger for a series of inspiring
conversations at the early stage of development of this work. They also would like to
thank the anonymous referees for the careful reading of the manuscript and for their
comments which helped us to improve the presentation

2. Weakly non-collapsed spaces

2.1. Stability. — In this section we prove the stability of the class of wncRCD(K,N)

spaces with respect to pointed-measured-Gromov-Hausdorff convergence.
In all the upcoming discussion, a metric space is always a complete and separable

space (sometimes we will consider convergence of open balls in such spaces, but this
creates no problems in the definition of Gromov-Hausdorff convergence) and a metric
measure space is a metric space equipped with a non-negative and non-zero Radon
measure which is finite on bounded sets. Moreover, by C(α, β, γ, . . . ) we will always
intend a constant whose value depends on the parameters α, β, γ, . . . and nothing
else.

(2)As already mentioned, Bruè and Semola recently proved in [12] that indeed finite dimensional
RCD spaces have constant dimension. As a consequence of their result, the conjecture in this remark
holds.
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Non-collapsed spaces with Ricci curvature bounded from below 621

Let us begin recalling some basic definitions that will be used throughout the
text. The Hausdorff (semi-)distance between two subsets A,B of a metric space Y is
given by

dH(A,B) := inf{ε > 0 | B ⊂ Aε and A ⊂ Bε},

where Aε denotes the ε-neighbourhood of A, i.e., the set of points at distance < ε

from A.
With this said, we now recall the definitions of the various kind of Gromov-

Hausdorff convergences that we shall use. Notice that for the case of pointed and
pointed-measured convergences our definitions are not really the correct ones in the
general case, but given that we will always deal with geodesic metrics and uniformly
locally doubling measures, our (simplified) approach is equivalent to the correct defi-
nitions, see for instance the discussions in [40, Chap. 3], [13, §8.1], [34, §3.5].

Definition 2.1 (Gromov-Hausdorff convergences). — Let (Xn, dn), n ∈ N ∪ {∞} be
metric spaces. We say that (Xn, dn) converges to (X∞, d∞) in the Gromov-Hausdorff
(GH in short) sense provided there exist a metric spaces (Y, dY) and isometric em-
beddings ιn : Xn → Y, n ∈ N ∪ {∞}, such that

dH
(
ιn(Xn), ι∞(X∞)

)
−→ 0 as n −→∞.

If the spaces are pointed, i.e., selected points xn ∈ Xn are given, we say that
(Xn, dn, xn) converges to (X∞, d∞, x∞) in the pointed-Gromov-Hausdorff (pGH in
short) sense provided there exist a metric spaces (Y, dY) and isometric embeddings
ιn : Xn → Y, n ∈ N ∪ {∞}, such that:

(i) ιn(xn)→ ι∞(x∞) in Y,
(ii) for every R > 0 we have

dH
(
ιn(BR(xn)), ι∞(BR(x∞))

)
−→ 0 as n −→∞.

If moreover the spaces Xn are endowed with Radon measures mn finite on bounded
sets, we say that (Xn, dn,mn, xn) converges to (X∞, d∞,m∞, x∞) in the pointed-
measured-Gromov-Hausdorff (pmGH in short) sense provided there are Y and (ιn)

satisfying (i), (ii) above and moreover it holds:
(iii) ((ιn)∗mn) weakly converges to (ι∞)∗m∞, i.e., for every ϕ ∈ Cb(Y) with

bounded support we have∫
ϕd(ιn)∗mn −→

∫
ϕd(ι∞)∗m∞ as n −→∞.

In any of these cases, the collection of the space Y and isometric embeddings (ιn)

is called realization of the convergence and in any of these cases, given zn ∈ Xn,
n ∈ N ∪ {∞}, we say that (zn) converges to z∞, and write zn

GH−→ z∞ provided there
exists a realization such that

lim
n→∞

dY
(
ιn(zn), ι∞(z∞)

)
= 0.
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Notice that in presence of non-trivial automorphism of the limits space X∞ it might
be that the same sequence (zn) converges to two different points z∞, z′∞ ∈ X∞. This
creates no issues in the foregoing discussion.

We shall frequently use, without further reference, the fact that the class of
RCD(K,N) spaces is closed with respect to pmGH-convergence (see [44], [50], [51],
[4], [31], [34]).

Since the Bishop-Gromov inequality (1.4) implies that the measure is locally dou-
bling, we can use Gromov’s compactness theorem (see [40, §5.A]) to deduce that

if (Xn, dn,mn, xn), n ∈ N, are RCD(Kn, N) spaces with N ∈ [1,∞),
supp(mn) = Xn, mn(B1(xn)) ∈ [v, v−1] for every n ∈ N and some v ∈ (0, 1),
and Kn → K∈R, then there is a subsequence pmGH-converging to some
RCD(K,N) space (X,d,m,x) with supp(m)=X and a realization withY proper.

(2.1)

Recall that a metric space is proper provided closed bounded sets are compact. Notice
that a direct consequence of the definitions is that

(2.2) ∀ y∞ ∈ X∞, ∃ yn ∈ Xn, n ∈ N, yn
GH−−−−→ y∞.

We also recall that on MCP(K,N) spaces (see [46] and [51]) (X, d,m) with
supp(m) = X and N <∞, from the spherical version of Bishop-Gromov inequality—
see [51, Ineq. (2.4)]—it holds
(2.3) m(Br(x)) = m(Br(x)) ∀x ∈ X, r > 0,

and in turn this easily implies that if (Xn, dn,mn, xn)
pmGH−→ (X∞, d∞,m∞, x∞) and

all such spaces are MCP(K,N) with measures of full support, then

(2.4) yn
GH−−−−→ y∞ =⇒ mn(Br(yn)) −→ m∞(Br(y∞)) ∀ r > 0,

which easily follows by the weak convergence of the measures and by the fact that
m(∂Br(y∞)) = 0 under our assumptions (from (2.3)).

Let us now collect some basic simple properties of the Bishop-Gromov density.

Lemma 2.2 (Basic properties of the Bishop-Gromov density)
Let K ∈ R, N ∈ [1,∞). Then:
(i) Let (Xj , dj ,mj , xj) be a sequence of pointed MCP(K,N) spaces pmGH-con-

verging to a limit MCP(K,N) space (X∞, d∞,m∞, x∞). Then

xj
GH−−−−→ x∞ =⇒ lim inf

j→∞
ϑN [Xj , dj ,mj ](xj) > ϑN [X∞, d∞,m∞](x∞).

In particular, on a given MCP(K,N) space (X, d,m), the function ϑN : X→ [0,∞] is
lower-semicontinuous (and thus Borel measurable).

(ii) Let (X, d,m) be a MCP(K,N) space. Then m-a.e. point x ∈ {ϑN < ∞} is an
approximate continuity point for ϑN , i.e.,

(2.5) lim
r→0

m
({
y ∈ Br(x) | |ϑN (y)− ϑN (x)| > ε

})
m(Br(x))

= 0

for every ε > 0.
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(iii) Let (X, d,m) be a MCP(K,N) space and put (Xr, dr,mr) = (X, d/r,m/rN ) for
r > 0. Then for every x ∈ X we have ϑN [Xr, dr,mr](x) = ϑN [X, d,m](x).

Proof. — Point (iii) trivially follows from (1.7) and point (i) is a direct consequence
of the definitions, of (2.4) and of the monotonicity granted by the Bishop-Gromov
inequality (1.4).

For point (ii), note that the Bishop-Gromov inequality (1.4) grants that m is locally
doubling, hence the Lebesgue differentiation theorem applies to every function f ∈
L1
loc(X):

(2.6) lim
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) = 0 m-a.e. x.

By applying (2.6) to, for instance, f(x) := arctanϑN (x) one easily gets (ii). �

A stability result for the class of wncRCD spaces now easily follows, see Remark 2.4
below for some comments on the statement.

Theorem 2.3 (Stability of weakly non-collapsed spaces). — Let K ∈ R, N ∈ R and
let (Xn, dn,mn, xn) be a sequence of wncRCD(K,N) spaces pmGH-converging to some
limit space (X, d,m, x). Assume that for every R > 0 there is an increasing function
fR : [0,+∞]→ [0,+∞] with fR(+∞) = +∞ such that

(2.7) lim
n→∞

∫
BXn
R (xn)

fR ◦ ϑN [Xn, dn,mn] dmn <∞.

Then (X, d,m) is a wncRCD(K,N) space and for every R > 0 it holds

(2.8)
∫
BX
R(x)

fR ◦ ϑN [X, d,m] dm 6 lim
n→∞

∫
BXn
R (xn)

fR ◦ ϑN [Xn, dn,mn] dmn.

Proof. — From the stability of the RCD condition we know that (X, d,m) is
RCD(K,N). Let (Y, dY, (ιn)) be a realization of the pmGH-convergence and define
ϑ̃n : Y → [0,∞] as

ϑ̃n(y) :=

{
ϑN [Xn, dn,mn](ι−1n (y)), if y ∈ ι(Xn),

+∞, otherwise.

and similarly ϑ̃. Then from Lemma 2.2 (i) and the monotonicity of fR we deduce that

yn −→ y =⇒ χ
BY
R(ι(x))(y)fR(ϑ̃(y)) 6 lim

n→∞
χ
BY
R(ιn(xn))(yn)fR(ϑ̃n(yn))

having also used the fact that if y ∈ BY
R(ι(x)) then eventually yn ∈ BY

R(ιn(xn)). By
the simple Lemma 2.5 below this inequality and the weak convergence of (ιn)∗mn to
ι∗m give ∫

χ
BY
R(ι(x))fR ◦ ϑ̃ dι∗m 6 lim

n→∞

∫
χ
BY
R(ιn(xn))fR ◦ ϑ̃n d(ιn)∗mn,

which is (2.8). In particular, taking into account (2.7) we deduce that∫
BX
R(x)

fR ◦ ϑN [X, d,m] dm <∞

and since fR(+∞) = +∞, this forces ϑN [X, d,m] to be finite m-a.e.. �
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Remark 2.4. — It is not hard to check that, in this last theorem, if all the spaces Xn

are Riemannian manifolds of the same dimension k converging to a smooth Riemann-
ian manifold X, then necessarily k = N and X has dimension k. In particular, the
convergence is non-collapsed in the sense of Cheeger and Colding, [17].

In this respect the following example might be explanatory: Let S1
r be the 1-

dimensional sphere of radius r and consider the cylinder Mn := R × S1
1/n equipped

with its natural product distance dn and volume measure voln. It is clear that as
n → ∞ the metric spaces (Mn, dn) converge in the pGH-topology to the real line,
which trivially has smaller dimension (since in all these manifolds the isometry group
acts transitively, the choice of reference point is irrelevant and thus omitted).

Let us now consider convergence of the metricmeasure spaces (Mn, dn, voln). Notice
that for any r > 1/n and pn ∈Mn we have that

(2.9) voln(Br(pn)) ∼ r

n
as n −→∞

and thus the measures mn weakly converge, in any realisation of the pGH-convergence,
to 0. However, the choice of the null measure is excluded by the definition of metric
measure space—see the beginning of Section 2.1—, so that (R, dE, 0) is not a legitimate
metric measure space and the spaces (Mn, dn, voln) do not satisfy the assumptions of
Theorem 2.3 above, because they do not converge anywhere in the pmGH-topology.
We emphasize that the choice of excluding null reference measures is customary in
this research field, see for instance [34] and references therein for a discussion of this
topic in relation to convergence of mm-structures.

The typical way to avoid measures disappearing in the limit is to renormalise them
via the multiplication by an appropriate constant: this is precisely what Cheeger-
Colding do in [17], [18], [19] when defining renormalised limit measure. In our case,
by (2.9) we are led to consider the measures mn := cn voln with cn ∼ n, so that the
spaces (Mn, dn,mn) converge in the pmGH-sense to (R, dE, cL 1) for some c > 0. Thus
we have ϑ2[Mn, dn,mn] ≡ cn → +∞ and mn(Br(pn)) → cL 1(Br(0)) = 2cr > 0 as
n→∞. Hence for any function z 7→ f(z) going to +∞ as z → +∞ we have∫

Br(pn)

f ◦ ϑ2[Mn, dn,mn] dmn = f(cn)mn(Br(pn)) −→ +∞, as n −→ +∞,

so that the assumption (2.7) does not hold in this case.
We conclude pointing out that the notion of (weakly) non-collapsed space makes

sense only when coupled with the dimension which is being considered, so that it can
very well be that a sequence of 2-dimensional non-collapsed spaces converges, with
collapsing, to a 1-dimensional non-collapsed space. This is precisely what happens in
the example we discussed here. �

In the proof of Theorem 2.3 we used the following known simple variant of the
classical Fatou lemma.

J.É.P. — M., 2018, tome 5



Non-collapsed spaces with Ricci curvature bounded from below 625

Lemma 2.5 (A variant of Fatou’s lemma). — Let (Y, dY) be a complete and separable
metric space, {µn}n∈N∪{∞} be Radon measures finite on bounded sets such that

lim
n→∞

∫
ϕdµn =

∫
ϕdµ∞

for every ϕ ∈ Cb(Y) with bounded support. Also, let fn : Y → R∪{+∞}, n ∈ N∪{∞}
be such that

(2.10) yn −→ y =⇒ f∞(y) 6 lim
n→∞

fn(yn)

and fn > g for every n ∈ N ∪ {∞} for some g ∈ Cb(Y) with bounded support. Then∫
f∞ dµ∞ 6 lim

n→∞

∫
fn dµn.

Proof. — Replacing fn with fn − g we can assume that the fn’s are non-negative.
Then we follow verbatim the proof in [2, Lem. 8.2] which, although presented on Rd,
actually holds also in our context. �

2.2. Tangent spaces. — In this section we study the tangent spaces of weakly non-
collapsed spaces, here is the definition that we will adopt (notice the chosen scaling
of the measure).

Definition 2.6 ((metric) tangent space). — Let K ∈ R, N ∈ [1,∞), (X, d,m) an
RCD(K,N) space with supp(m) = X and x ∈ X.

We say that (Y, dY, o) is a metric tangent space of X at x if there exists a sequence
rn ↓ 0 such that

(Xrn , drn , x) := (X, d/rn, x)
pGH−−−−−→ (Y, dY, o) as n ↑ ∞.

Similarly, we say that (Y, dY,mY, o) is a tangent space of X at x if there exists a
sequence rn ↓ 0 such that

(Xrn , drn ,mrn , x) := (X, d/rn,m/r
N
n , x)

pmGH−−−−−−→ (Y, dY,mY, o) as n ↑ ∞.

Notice that the Bishop-Gromov inequality (1.4) gives that infr∈(0,1) mr(B1(x)) > 0

for every x ∈ supp(m) and if ϑN (x) < ∞ then by (1.7) we also have that
supr∈(0,1) mr(B1(x)) < ∞. Hence recalling (2.1) we see that given an RCD(K,N)

space (X, d,m) and a point x ∈ X with ϑN (x) < ∞, the family (Xr, dr,mr, x),
r ∈ (0, 1), is precompact and, by scaling, any limit space as r ↓ 0 is RCD(0, N).

For the definition of cone built over a metric space see for instance [13, Def. 3.6.16].
We then give the following definition.

Definition 2.7 (Metric (measure) cones). — We say that (X, d) is a metric cone with
vertex x ∈ X provided there is a metric space (Z, dZ) and an isometry ι between X

and the cone over Z sending x to the vertex.
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If X is also endowed with a Radon measure m we say that it is a metric measure
cone provided there are Z, ι as before and moreover there are a Radon measure mZ

on Z and α > 1 such that

d(ι∗m)(r, z) = dr ⊗ rα−1 dmZ(z).

In this case we say that X is an α-metric measure cone.

A crucial regularity property of weakly non-collapsed spaces is contained in the
following statement, which in turn is a direct consequence of the ‘volume cone to
metric cone’ for RCD spaces obtained in [24, Th. 1.1].

Proposition 2.8 (Tangent spaces are cones). — Let K ∈ R, N ∈ [1,∞), (X, d,m)

an RCD(K,N) space and x ∈ X such that ϑN (x) < ∞. Then every tangent space
(X∞,d∞,m∞, o) at x is an N -metric measure cone based in o and it holds

(2.11) ϑN [X,d,m](x) = ϑN [X∞,d∞,m∞](o) =
m∞(B%(o))

ωN%N
∀ % > 0.

Proof. — Let rn ↓ 0 be such that the rescaled spaces (Xrn , d/rn,m/r
N
n , x) pmGH-

converge to the RCD(0, N) space (X∞,d∞,m∞, o). We shall apply [24, Th. 1.1] to the
space X∞. From the very definition of pmGH-convergence and recalling (2.4), for any
% > 0 we have

(2.12) m∞(B%(o))

ωN%N
= lim
n→∞

m∞(Brn%(x))

ωN (rn%)N
= ϑN [X,d,m](x).

Hence % 7→ m∞(B%(o))/%
N is constant and according to [24, Th. 1.1] this is enough to

deduce that X∞ is a N -metric measure cone based in o. Also, letting % ↓ 0 in (2.12)
we deduce (2.11). �

The fact that tangent cones of wncRCD spaces are in fact a.e. Euclidean spaces
is based on the following simple lemma. Notice that the first part of the statement
only assumes the space to be a metric cone, and not a metric measure cone: the
rigidity is possible because the splitting theorem for RCD(0, N) spaces only requires
the existence of a straight line on the given space and this is a metric requirement (as
opposed to a metric-measure requirement).

Lemma 2.9. — Let N ∈ [1,∞) and let (X, d,m) be an RCD(0, N) space which, for
every x ∈ X, is a metric cone with vertex in x. Then there exists m ∈ N and cm > 0

such that (X, d,m) = (Rm, dE, cmLm).
If we also know a priori that X is an N -metric measure cone with vertex x for

every x ∈ X, then N ∈ N and m = N in the above.

Proof. — By the very definition of metric cone with vertex x any point x ∈ X r {x}
lies in the interior of a half line (i.e., an isometric embedding of [0,+∞)). Moreover,
by assumption, for every x ∈ X r {x} and r > 0 the pointed spaces (X, d/r, x) and
(X, d, x) are isometric and therefore any metric tangent space at x must coincide
with X itself. Given that x lies in the interior of a length minimising geodesic, the
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tangent space, and hence X itself, must contain a line through x, see for instance [33,
Proof of Th. 1.1] for a similar argument. Thus the splitting theorem for RCD spaces
[28], [30] grants that (X, d,m) splits off a line, i.e., it is isomorphic to the product of
the Euclidean line R and a metric measure space (X′, d′,m′). Moreover, such X′ is a
point if N ∈ [1, 2) and a RCD(0, N − 1) space if N > 2. By iterating this fact finitely
many times we obtain the desired conclusion.

The last statement is now obvious. �

We then have the following proposition.

Proposition 2.10. — Let K ∈ R, N ∈ [1,∞), (X, d,m) an RCD(K,N) space with
supp(m) = X and x ∈ X. Assume that x is a point of approximate continuity of ϑN [X],
i.e., ϑN [X](x) <∞ and (2.5) holds. Then N ∈ N and (RN , dE, ϑN [X](x)L N , 0) is the
only tangent space of X at x.

Proof. — Let (X∞, d∞,m∞, o) be a tangent space at x, let rn ↓ 0 be a sequence that
realises it and pick y ∈ X∞. We claim that there exists a sequence n 7→ yn ∈ Xrn

such that yn
GH−→ y and

(2.13) ϑN [X, d,m](yn) −→ ϑN [X, d,m](x).

Indeed, let n 7→ ỹn ∈ Xrn = X be arbitrary such that ỹn
GH−→ y (recall (2.2)), notice

that d(ỹrn , x) → 0 and that the choice of x and the fact that m is doubling grant
that for every r, ε > 0 the balls Brrn(ỹn) ⊂ X must eventually intersect the set
{x | |ϑ(x) − ϑ(x)| < ε}. Hence with a perturbation and diagonalization argument,
starting from (ỹn) we can produce the desired (yn).

With this said, for any % > 0 we have
m∞(B%(y))

ωN%N
(2.4)
= lim

n→∞

m(B%rn(yn))

ωN (%rn)N

(1.6),(1.4)
6 lim

n→∞
ϑN [X, d,m](yn)

(2.13)
= ϑN [X, d,m](x).

(2.14)

On the other hand, putting R := d∞(y, o) and using again the Bishop-Gromov in-
equality (1.4) (recall that X∞ is RCD(0, N)) we have

m∞(B%(y))

ωN%N

(1.4)
> lim

r→∞

m∞(Br(y))

ωNrN
= lim
r→∞

m∞(Br+R(y))

ωN (r +R)N

> lim
r→∞

m∞(Br(o))

ωNrN
rN

(r +R)N
(2.11)

= ϑN [X, d,m](x).

(2.15)

From (2.14) and (2.15) we deduce that

(2.16) % 7−→ m∞(B%(y))

ωN%N
is constantly equal to ϑN [X, d,m](x)

and from [24] we can then deduce that (X∞, d∞,m∞, y) is a N -metric measure cone.
Then arbitrariness of y ∈ X∞ and the simple Lemma 2.9 above give the conclusion.

�
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2.3. Equivalent characterizations of weakly non-collapsed spaces. — Here we
shall prove Theorem 1.12 about different equivalent characterizations of weakly non-
collapsed spaces.

We shall make use of the following classical result about differentiation of measures,
see e.g. [10, Th. 2.4.3] for the proof.

Lemma 2.11 (Density with respect to Hausdorff measures)
Let (X, d) be a complete and separable metric space, m a Radon measure on it and

for α > 0 define the α-upper density function as:

ϑα(m, x) := lim
r↓0

m(Br(x))

ωαrα
.

Then for every Borel B ⊂ X and c > 0 it holds

ϑα(m, x) > c ∀x ∈ B =⇒ m(B) > cH α(B),(2.17)

ϑα(m, x) 6 c ∀x ∈ B =⇒ m(B) 6 c2αH α(B).(2.18)

Let us point out a direct consequence of the above which, being based on the
Bishop-Gromov inequality only, is valid on general MCP(K,N) spaces.

Proposition 2.12. — Let K ∈ R, N ∈ [1,∞) and (X, d,m) a MCP(K,N) space with
supp(m) = X. Then for every R > 0 there is C = C(K,N,R) such that for every
x ∈ X it holds

(2.19) H N |BR(x)
6
C(K,N,R)

m(B1(x))
m|BR(x)

.

In particular, H N is a Radon measure on X, is absolutely continuous with respect
to m and it holds

(2.20) H N (Br(x)) = H N (Br(x)) ∀x ∈ X, r > 0.

Proof. — The Bishop-Gromov inequality (1.4) implies that

ϑN [X, d,m](y) >
m(B2R(y))

vK,N (2R)
>

m(B1(x))

vK,N (2R)
∀ y ∈ BR(x) and R > 1.

Also, from (1.7) we know that ϑN (m, y) = ϑN [X, d,m](y) for every y ∈ X. Hence
(2.19) comes from (2.17) and then (2.20) follows from (2.3). �

Before coming to the proof of Theorem 1.12 let us collect in the following statement
the known rectifiability properties of RCD spaces.

Theorem 2.13 (Rectifiability of RCD spaces). — Let K ∈ R, N ∈ [1,∞) and (X, d,m)

be an RCD(K,N) space. Then we can write

(2.21) X = N ∪
M⋃
k=1

⋃
j∈N

Ukj
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for Borel sets N , Ukj where m(N ) = 0, M ∈ N, M 6 N , each Ukj is bi-Lipschitz to
a subset of Rk, and for m-a.e. x ∈ Ukj the metric tangent space at x is the Euclidean
space Rk. Moreover for any j, k it holds

(2.22) m|Ukj = ϑkjH
k|Ukj

for some Borel function ϑkj : X→ R which also satisfies

(2.23) ϑkj (x) = lim
r↓0

m(Br(x) ∩ Ukj )

ωkrk
= lim

r↓0

m(Br(x))

ωkrk
H k|Ukj -a.e. x.

Proof. — The existence of the partition (2.21), of bi-Lipschitz charts and the fact that
metric tangent spaces are Euclidean have all been proved in [45]. Property (2.22) has
been proved in [42], [36]. These informations together grant that m|Ukj is a k-rectifiable
measure according to [7, Def. 5.3], hence the first equality in(2.23) follows from [7,
Th. 5.4]. To conclude, notice that if

ϑkj (x) < lim
r↓0

m(Br(x))

ωkrk

holds in a Borel set A ⊂ Ukj of positive H k-measure, then we can find b > a > 0 and
a Borel set A′ ⊂ A such that

H N (A′) > 0, ϑkj 6 a H k-a.e. on A′ and lim
r↓0

m(Br(x))

ωkrk
> b for x ∈ A′.

This would lead to

m(A′)
(2.17)
> bH k(A′) > aH N (A′)

(2.22)
> m(A′),

which is impossible. This proves the second equality in (2.23) and concludes the proof
(see also [6] for similar arguments). �

We are now ready to prove Theorem 1.12.

Proof of Theorem 1.12
(i)⇒ (ii) By (2.18) we know that m|{θ<+∞} �H N and since by hypothesis we have
that m({ϑN = +∞}) = 0, the claim follows.
(ii) ⇒ (iii) Proposition 2.12 grants that H N is σ-finite, hence the claim follows by
the Radon-Nikodym theorem.
(iii) ⇒ (i) We consider the decomposition (2.21) and notice that the assumption
m = ϑ1H N and (2.22) forces m(Ukj ) = 0 for every k < N and j ∈ N and, since
m(X) > 0, N to be an integer. Hence for every j we have

(2.24) ϑN [X](x)
(1.7)
= lim

r→0

m(Br(x))

ωNrN
(2.23)

= ϑ1(x) < +∞ for m|UNj -a.e. x.

(i) ⇒ (iv) Consequence of the assumptions, Lemma 2.2 (ii) and Proposition 2.10,
which also grant that

(2.25) ϑN = ϑ2 m-a.e..
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(iv) ⇒ (v) This is immediate, since one can easily check that

cr/r
N =

∫
BXr

1

(1− dr(y, x)) dmr(y) −→ ϑ2(x)

∫
BRN

1

(1− |y|) dL N (y).

(v) ⇒ (vi) Trivial by definitions.
(vi)⇒ (ii) By Theorem 2.13 we know that for every k, j, for m-a.e. x ∈ Ukj the metric
tangent space at x is Rk. Thus our assumption forces m to be concentrated on

⋃
j U

N
j

and the conclusion follows recalling (2.22).
(vi) ⇔ (vii) This is an immediate consequence of [37, Th. 5.1].
Proof of (1.9). — Consequence of (2.24) and (2.25).
(vii) ⇒ (1.10) This follows from [41, Prop. 4.1]. �

An easy consequence of the above is the following corollary.

Corollary 2.14 (ncRCD ⇒ wncRCD). — Let (X, d,H N ) be a ncRCD(K,N) space.
Then

(2.26) ϑN (x) 6 1 ∀x ∈ X.

In particular, (X̃, d,H N ) is wncRCD(K,N), where X̃ ⊂ X is the support of H N .

Proof. — By Theorem 1.12 (iii) and (1.9) we see that ϑN 6 1 H N -a.e.. Then (2.26)
follows by the lower semicontinuity of ϑN established in Lemma 2.2 (i). �

2.4. Tensorization and factorization

Given two metric measure spaces (X1, d1,m1) and (X2, d2,m2), by their product
we mean the product X1 ×X2 equipped with the distance d1 ⊗ d2 defined by

(d1 ⊗ d2)2
(
(x1, x2), (x′1, x

′
2)
)

:= d21(x1, x
′
1) + d22(x2, x

′
2) ∀x1, x′1 ∈ X1, x2, x

′
2 ∈ X2

and the product measure m1 ×m2.
Recall that the product of an RCD(K,N1) space and an RCD(K,N2) space is

RCD(K,N1 +N2) (see [51], [4], [5]).
With this said, thanks to characterization of wncRCD spaces via blow-ups ob-

tained in Theorem 1.12 we can easily prove that products and factors of wncRCD
(resp. ncRCD) are wncRCD (resp. ncRCD).

Proposition 2.15 (Tensorization and factorization of non-collapsed spaces)
Let (Xi, di,mi) be RCD(K,Ni) spaces, i = 1, 2, with K ∈ R and Ni ∈ [1,∞) and

consider the product space (X1 ×X2, d1 ⊗ d2,m1 ×m2).
Then X1×X2 is wncRCD(K,N1 +N2) if and only if X1 is wncRCD(K,N1) and X2

is wncRCD(K,N2).
Similarly, X1 × X2 is ncRCD(K,N1 + N2) if and only if for some constant c > 0

(X1, d1, cm1) is ncRCD(K,N1) and (X2, d2, c
−1m2) is ncRCD(K,N2).

Proof. — From Theorem 2.13 we know that for m1-a.e. x1 the metric tangent space
of X1 at x1 is Rn1(x1) with n1(x1) 6 N1. Similarly for X2. Then from the very definition
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of pGH-convergence and Fubini’s theorem it is readily checked that Rn1(x1)+n2(x2) is
the metric tangent space of X1 ×X2 at (x1, x2) for m1 ×m2-a.e. (x1, x2).

Thus the claims about wncRCD spaces follows by the characterization given in
Theorem 1.12 (vi).

For the case of ncRCD spaces we can assume, by what just proved, that X1, X2,
X1 × X2 are all wncRCD spaces. Then we notice that, much like in the metric case
just considered, if (RN1 , dE, ϑN1 [X1](x1)L N1 , 0) (resp. (RN2 , dE, ϑN2 [X2](x2)L N2 , 0))
is the tangent space of X1 (resp. X2) at x1 (resp. x2), then

(RN1+N2 , dE, ϑN1
(x1)ϑN2

(x2)L N1+N2 , 0)

is the tangent space of X1 ×X2 at (x1, x2). Hence taking into account the character-
ization of wncRCD spaces in Theorem 1.12 (iv) we deduce that

(2.27) ϑN1+N2
[X1×X2](x1, x2) = ϑN1

[X1](x1)ϑN2
[X2](x2) (m1×m2)-a.e. (x1, x2).

Hence if ϑN1
[X1](x1) = c > 0 m1-a.e. and ϑN2

[X2](x2) = c−1 > 0 m2-a.e. it triv-
ially follows that ϑN1+N2

[X1 × X2] = 1 a.e., thus showing that X1 × X2 is ncRCD

(by Theorem 1.12 (iii) and (2.11)). Conversely, if the left-hand-side of (2.27) is a.e.
equal to 1, then the identity (2.27) forces ϑN1 [X1] and ϑN2 [X2] to be a.e. constant
and since the product of these constants must be 1 we must have ϑN1 [X1](x1) = c

m1-a.e. and ϑN2
[X2](x2) = c−1 > 0 m2-a.e. for some c > 0, which is the claim. �

3. Non-collapsed spaces

3.1. Continuity of H N . — In this section we prove the continuity of H N as stated
in Theorem 1.3.

A key ingredient that we shall need is the “almost splitting via excess theorem”
proved by Mondino and Naber in [45, Th. 5.1]: we shall present such result in the
simplified form that we need referring to [45] for the more general statement.

Here and in the following for p ∈ X we put dp(·) := d(·, p) and for p, q ∈ X we put
ep,q := dp + dq − d(p, q).

Theorem 3.1. — For every k ∈ N, N ∈ R, 1 6 k 6 N and ε ∈ (0, 1) there is
δ1 = δ1(ε, k,N) 6 1 such that the following holds.

Assume that (X, d,m) is an RCD(−δ1, N) space with supp(m) = X and that there
are points x, {pi, qi}16i6k, {pi + pj}16i<j6k in X with d(pi, x), d(qi, x), d(pi + pj , x) >
1/δ1 such that

(3.1)
∑

16i6k

−
∫
BX
R(x)

|Depi,qi |2dm +
∑

16i<j6k

−
∫
BX
R(x)

∣∣∣D(dpi + dpj√
2

− dpi+pj

)∣∣∣2dm 6 δ1

for all 1 6 R 6 1/δ1.
Then there exists a metric space Y and a map φ : X→ Y such that if we define

u := (dp1 − dp1(x), . . . , dpk − dpk(x)) : X −→ Rk,

the map
U := (u, φ) : X −→ Rk ×Y
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provides an ε-isometry of BX
1 (x) to BRk×Y

1 ((0, φ(x)), i.e.,
– ∀x, y ∈ BX

1 (x), it holds
∣∣dX(x, y)− dRk×Y(U(x), U(y))

∣∣ 6 ε,
– ∀ z ∈ BRk×Y

1 ((0, φ(x)), there is x ∈ BX
1 (x) such that dRk×Y(U(x), z) 6 ε.

Furthermore, if k = N we can take Y to be a single point.

Very shortly and roughly said, the idea of the proof is the following: For given ε > 0

one picks a sequence δ1,n ↓ 0 and a corresponding sequence of spaces Xn satisfying
the assumptions for δ1 = δ1,n pmGH-converging to a limit X. Then by an Ascoli-
Arzelà-type argument, up to subsequences the corresponding functions un : Xn → Rk

converge to a limit u : X → Rk and, this is the key point of the proof, thanks to
(3.1) such limit map u is a metric submersion. The compactness (2.1) of the class of
RCD(−1, N) spaces then gives the conclusion (see [45, Th. 5.1] for the details).

An important consequence of the above theorem is the following sort of ‘ε-
regularity’ result (see also [45, Th. 6.8]) that we shall state for the case k = N ∈ N
only; notice that, as discussed in [45], the map uε is (1 + ε)-bi-Lipschitz for arbi-
trary values of k, but in order to obtain the key inequality (3.3) the ‘maximality’
assumption k = N ∈ N is necessary (see in particular inequalities (3.14) and (3.15)).

Proposition 3.2. — For every N ∈ N, N > 1 and ε ∈ (0, 1) there is δ2 = δ2(ε,N) > 0

such that the following holds. Let (X, d,m) be an RCD(−δ2, N) space with supp(m) = X

and x ∈ X such that

(3.2) dGH

((
BX

1/δ2
(x), d

)
,
(
BRN

1/δ2
(0), dE

))
< δ2.

Then there exists a Borel set Uε ⊂ BX
1 (x) and a (1 + ε)-bi-Lipschitz map uε : Uε →

uε(Uε) ⊂ RN such that

(3.3) L N
(
uε(Uε) ∩BRN

1 (0)
)
> (1− ε) L N (BRN

1 (0)).

Proof. — We divide the proof in two steps.

Step 1: construction of Uε, uε and (1 + ε)-bi-Lipschitz estimate. — This is the content
of [45, Th. 6.8], however since some aspects of the proof will be needed to obtain (3.3)
we briefly recall the argument.

Step 1.1: basic ingredients. — We start observing that for any R > 1 and any f ∈
Lip(X), it holds the simple inequality

(3.4)
∫
BR(x)

|Df |2 dm 6 ‖f‖L∞(B2R(x))

(
‖∆f‖L1(B2R(x)) + m(B2R(x)) Lip(f)

)
,

as can be proved with an integration by parts (see e.g. [31] for all the relevant
definitions and properties of integration by parts and Laplacian) starting from∫
BR(x)

|Df |2 dm 6
∫
X
|Df |2ϕdm for ϕ := (1 − d(·, BR(x)))+. (In fact one can easily

get rid of the term Lip(f) in the right hand side provided ϕ has bounded Laplacian.
The existence of such cut-off functions—i.e., Lipschitz and with bounded Laplacian—
in the context of Ricci-limit spaces has been proved in [16] and frequently used as
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important technical tool in [17, 18, 19, 20, 21, 22]; their existence in the RCD setting
has been proved in [8, Lem. 6.7] and [35, Th. 3.12], see also [45, Lem. 3.1].).

A second ingredient is the Laplacian comparison estimate for the distance function
(see [31]) which ensures that on an RCD(−1, N) space, if d(p, x) > 8R > 8 then
∆dp 6 C(N,R) on B4R(x) (this should be understood as an inequality between
measures, but for the purpose of this outline let us think at ∆dp as a function). From
this bound it is not hard to get the estimate

(3.5) ‖∆dp‖L1(B2R(x)) 6 C(N,R)m(B4R(x)) ∀ p /∈ B8R(x)

(this is in fact reverse engineering: in [31] the fact that ∆dp is a measure is obtained
by proving an inequality like (3.5) with the total variation norm in place of the L1

one).

Step 1.2: geometric argument. — Let η̃, δ1 ∈ (0, 1) and notice - by direct simple com-
putation - that there exists R > 32

δ1
such that

sup
x∈BRN

8/δ1
(0)

(
|x−Rei|+ |x+Rei| − 2R

)
6 η̃ ∀ i = 1, . . . , N.

Hence if (3.2) is satisfied for some δ2 6 min{η̃, 1/R}, letting pi, qi ∈ X be points
corresponding to Rei,−Rei respectively in the δ2-isometry we obtain

‖epi,qi‖L∞(BX
4/δ1

(x)) 6 3δ2 + η̃ 6 4η̃ ∀ i = 1, . . . , N.

Noticing that d(pi, x), d(qi, x) > R− δ2 > 16/δ1, from (3.5) we deduce that

‖∆epi,qi‖L1(B4/δ1
(x)) 6 C(δ1, N)m(B8/δ1(x)) ∀ i = 1, . . . , N

and since epi,qi is 2-Lipschitz, these last two bounds, (3.4) and (1.4) imply that

−
∫
B2/δ1

|Depi,qi |2 dm 6 4η̃ C(δ1, N).

The same line of thoughts yields the analogous inequality for the function

dpi + dpj√
2

− dpi+pj

for properly chosen points pi + pj ∈ X with d(pi + pj , x) > 16/δ1.
Now we fix ε ∈ (0, 1), pick δ1 = δ1(ε,N) given by Theorem 3.1, let η � ε be a

small parameter to be fixed later and notice that we can rephrase what we just proved
as: there exists δ2 = δ2(δ1, η,N) 6 1 such that if (3.2) is satisfied for such δ2 - which
we shall hereafter assume -, then we can find points {pi, qi}16i6N , {pi + pj}161<j6N

with d(pi, x), d(qi, x), d(pi + pj , x) > 2/δ1 and such that
(3.6)∑

16i6N

−
∫
BX

2/δ1
(x)

|Depi,qj |2dm +
∑

16i<j6N

−
∫
BX

2/δ1
(x)

∣∣∣D(dpi + dpj√
2

− dpi+pj

)∣∣∣2dm 6 η2.
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Step 1.3: use of the maximal function. — Consider the function f : X→ R defined as

(3.7) f(x) :=
∑

16i6N

|Depi,qj |2 +
∑

16i<j6N

∣∣∣D(dpi + dpj√
2

− dpi+pj

)∣∣∣2
and its maximal function M : BX

1 (x)→ R given by

M(x) = sup
0<R<1/δ1

−
∫
BX
R(x)

f(x) dm.

We put
U :=

{
x ∈ BX

1 (x) |M(x) 6 η
}

and note that the left hand side of (3.1) is invariant under rescaling of the distance
(essentially because it holds |Drd

r
p| = |Ddp|, where drp = dp/r and |Dr · | is the

weak upper gradient computed with respect to the metric measure space (X, d/r,m)).
Hence for x ∈ U we can apply Theorem 3.1 to the scaled space (X, d/r,m) for r ∈ (0, 1)

(notice that since we multiplied the distance by a factor > 1, the space is ‘flatter’ than
the original one and in any case still RCD(−δ2, N), in particular 3.1 is applicable) to
infer that, provided η, and hence δ2, are sufficiently small, the map

u := (dp1 − dp1(x), . . . , dpN − dpN (x))

is an ε-isometry at every scale in the range (0, 1) around points on U : this is sufficient
to prove that it is (1 + ε) bi-Lipschitz when restricted to U , see the proof of [45,
Th. 6.8] for the details.

Step 2: proof of estimate (3.3). — From the trivial set identity

BRN
1 (0) ∩ u(U) =

(
BRN

1 (0) r
(
BRN

1 (0) r u(BX
1 (x))

))
r
(
u(BX

1 (x)) r u(U)
)

we deduce that

(3.8) L N
(
BRN

1 (0) ∩ u(U)
)

> L N
(
BRN

1 (0)
)
−L N

(
BRN

1 (0) r u(BX
1 (x))

)
−L N

(
u(BX

1 (x)) r u(U)
)
.

Step 2.1: estimate of the size of u(BX
1 (x)) r u(U). — Recall that since δ2 6 1, the

space X is RCD(−1, N) and thus m|BX
2/δ1

(x)
is doubling with a constant depending

only on δ1 and N . Hence according to the weak L1 estimates for the maximal function
we have

m(BX
1 (x) r U)

m(BX
1 (x))

6
C(δ1, N)

ηm(BX
1 (x))

∫
BX

2/δ1
(x)

f(x) dm

(3.6)
6 C(δ1, N) η

m(BX
2/δ1

(x))

m(BX
1 (x))

6 C(δ1, N) η.

(3.9)

Now notice that u is
√
N -Lipschitz so that since u(BX

1 (x)) r u(U) ⊂ u(BX
1 (x) r U)

we have

L N
(
u(BX

1 (x)) r u(U)
)
6 L N

(
u(BX

1 (x) r U)
)
6 (
√
N)NH N

(
BX

1 (x) r U
)

J.É.P. — M., 2018, tome 5



Non-collapsed spaces with Ricci curvature bounded from below 635

and therefore using (2.19) with R = 1 we get

(3.10) L N
(
u(BX

1 (x)) r u(U)
)
6 C(K,N)

m
(
BX

1 (x) r U
)

m
(
BX

1 (x)
) (3.9)

6 C(δ1,K,N) η.

Step 2.2: estimate of the size of BRN
1 (0) r u(BX

1 (x))

Since BRN
1/2(− 1

2e1) ⊂ BRN
1 (0) rBRN

1 (e1) we have that

(3.11) if S ⊂ BRN√
N

(0) is 1
2 -dense in BRN

1 (0), then S ∩BRN
1 (e1) 6= ∅.

Then let δ := δ1(1/2, N,N) be given by Theorem 3.1 and put

λ = λ(N) :=

√
N + 1

δ
.

Apply Lemma 3.3 below to such λ and to the open set A := BRN
1 (0)ru

(
BX

1 (x)
)
(notice

that since u(x) = 0 we have A 6= BRN
1 (0)) to find balls {BRN

rk
(yk)}Mk=1 satisfying the

properties (i), . . . , (iv) stated in the lemma. By property (ii), for every k = 1, . . . ,M

there exists zk ∈ BX
1 (x) such that u(zk) ∈ ∂BRN

rk
(yk). Moreover by point (i) and the√

N -Lipschitzianity of u,

(3.12) u
(
BX
rk

(zk)
)
⊂ BRN√

Nrk
(u(zk)) rBRN

rk
(yk).

We now claim that there exists a radius ρk ∈ (rk, rk/δ) such that

(3.13) −
∫
Bρk (zk)

f(x)dm > δ,

where f is the function defined in (3.7) (recall that the points pi, qi, pi + pj have been
already fixed in Step 1.2). Indeed if (3.13) fails we can apply the scaled version of
Theorem 3.1 to deduce that u(BX

rk
(zk)) is 1

2rk-dense in BRN
rk

(u(zk)), a contradiction
with (the scaled version of) (3.11) and (3.12). Using again that m|B2/δ1

(x)
is doubling

with a constant depending only on δ1 and N , and that ρk 6 rk/δ 6 1/δ we see that

(3.14) m
(
BX

2/δ1
(x)
)
6 C(δ1, N)

m(BX
ρk

(zk))

ρNk
for every k = 1, . . . ,M

and therefore from the fact that rk 6 ρk we obtain
M∑
k=1

rNk 6
M∑
k=1

ρNk
(3.14)
6

C(δ1, N)

m(BX
2/δ1

(x))

M∑
k=1

m(BX
ρk

(zk))

(3.13)
6

C(δ1, N)

δm(BX
2/δ1

(x))

M∑
k=1

∫
BX
ρk

(zk)

f dm.

(3.15)

Since u is
√
N -Lipschitz and u(zk) ∈ ∂BRN

rk
(yk) we have

u(BX
ρk

(zk)) ⊂ u(BX
rk/δ

(zk)) ⊂ BRN√
Nrk/δ

(u(zk)) ⊂ BRN
(
√
N+1)rk/δ

(yk) = BRN
λ(N)rk

(yk).
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This inclusion and the fact that, by Lemma 3.3 (iii), the balls BRN
λ(N)rk

(yk) are disjoint,
grant that the balls BX

ρk
(zk) ⊂ BX

2/δ1
(x) are disjoint as well. Hence from (3.15) we get

M∑
k=1

rNk 6
C(δ1, N)

δm(BX
2/δ1

(x))

∫
BX

2/δ1
(x)

f dm
(3.6)
6

C(δ1, N)

δ
η2

which together with Lemma 3.3 (iv) gives

L N
(
BRN

1 r u(BX1 (x)
)
6 C(λ(N), N)

C(δ1, N)

δ
η2.

The conclusion comes plugging this bound and (3.10) into (3.8) and by picking η, and
thus δ2, sufficiently small with respect to ε. �

In the proof of the above proposition we have used the following covering lemma
from [22], we report here its simple proof for the sake of completeness.

Lemma 3.3. — Let N ∈ N, N > 1, and λ > 1. Then there exists a constant C =

C(λ,N) such that the following holds.
For every A ( BRN

1 (0) open there exists a finite family of balls {BRN
rk

(yk)}Mk=1,
such that

(i) BRN
rk

(yk) ⊂ A for every k,
(ii)

(
∂BRN

rk
(yk) ∩ ∂A

)
r ∂BRN

1 (0) 6= ∅ for every k,
(iii) The family {BRN

λrk
(yk)}Mk=1 is disjoint,

(iv) It holds

(3.16) L N (A) 6 C(λ,N)

M∑
k=1

rNk .

Proof. — We claim that if B ⊂ A is a ball with B ⊂ B1(0), then there exists another
ball B′ such that

(3.17) B ⊂ B′ ⊂ A and
(
∂B′ ∩ ∂A

)
r ∂BRN

1 (0) 6= ∅.

Indeed, let B = Br(v), put Bt := B(1−t)r+t(tv), notice that the family (0, 1) 3 t 7→ Bt
is increasing and that Bt ⊂ B1(0) for every t ∈ [0, 1). Since

⋃
t∈[0,1)Bt = B1(0)

and A is strictly included in B1(0), by a simple compactness argument we find a least
t0 ∈ [0, 1) such that Bt0 ∩ (RN r A) 6= ∅ and since Bt0 ⊂ B1(0) we must also have
Bt0 ∩(B1(0)rA) 6= ∅. To conclude the proof of the claim simply notice that from the
trivial identity Bt0 =

⋃
t∈[0,t0)Bt and the minimality of t0 we have Bt0 ⊂ A, hence

B′ := Bt0 does the job.
Now let K ⊂ A be compact so that L N (A) 6 2L N (K) and, by compactness,

find a finite family of balls {BRN
rj (yj)}Lj=1 with closure included in A and covering K.

Up to replace each of these balls with the corresponding one B′ as in (3.17), we can
assume that this family satisfies (i), (ii). We shall now build a subfamily for which
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(iii), (iv) also hold. Up to reordering we can assume that r1 > · · · > rL. Then put
j1 := 1 and define recursively

jn := least index j such that BRN
λrj (yj) ∩

n−1⋃
i=1

BRN
λrji

(yji) = ∅.

Since the original family was finite, this process ends at some step M and, by con-
struction, the family {BRN

rji
(yji)}Mj=1 fulfills (i), (ii), (iii). Also, by construction for

every j > 1 there is i ∈ {1, . . . ,M} such that rji > rj and BRN
λrj

(yj) ∩BRN
λrji

(yji) 6= ∅,
hence BRN

λrj
(yj) ⊂ BRN

3λrji
(yji) and thus

K ⊂
L⋃
j=1

BRN
rj (yj) ⊂

L⋃
j=1

BRN
λrj (yj) ⊂

M⋃
i=1

BRN
3λrji

(yji),

so that (3.16) holds with C(λ,N) := 2ωN (3λ)N . �

We can now prove the continuity of H N under a uniform Riemannian-curvature-
dimension condition.

Proof of Theorem 1.3

Set up. — If N /∈ N, Theorem 2.13 implies that H N (X) = 0 for any RCD(K,N)

space X, hence in this case there is nothing to prove. We shall therefore assume
N ∈ N.

Let (Zn) ⊂ BK,N,R be GH-converging to some limit Z∞ ∈ BK,N,R and for each
n ∈ N, let (Xn, dn,mn, xn) be an RCD(K,N) space such that Zn = BXn

R (xn). Up
to replace mn with mn/mn(Zn) we can, and will, assume that mn(Zn) = 1 for every
n ∈ N. Then by the compactness of the class of RCD(K,N) spaces (2.1), up to pass
to a subsequence, not relabeled, we have (Xn, dn,mn, xn)

pmGH−→ (X∞, d∞,m∞, x∞) for
some pointed RCD(K,N) space X∞. It is then clear that Z∞ = BX∞

R (x∞). To con-
clude it is now sufficient to prove that H N (Zn)→H N (Z∞), because such continuity
property is independent on the subsequence chosen.

Upper semicontinuity. — Let (X,d,m) be a generic RCD(K,N) space with supp(m)=X.
We claim that

(3.18) H N =
1

ϑN [X]
m,

where it is intended that 1/ϑN [X](x) = 0 if ϑN [X](x) =∞. To see this start observing
that the Bishop-Gromov inequality (1.4) grants that

(3.19) ϑN [X](x) > C(K,N)m(B1(x)),

so that 1/ϑN [X] ∈ L1
loc(X,m) and the right hand side of (3.18) defines a Radon

measure. Then, in the notation of Theorem 2.13, by (2.23) for k = N it follows that
equality holds in (3.18) if we restrict both sides to

⋃
j U

N
j , so that to conclude it is

sufficient to show that on X r (
⋃
j U

N
j ) both sides of (3.18) are zero. The fact that

H N (Xr(
⋃
j U

N
j )) = 0 is a trivial consequence of Proposition 2.12 and Theorem 2.13,
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while (2.22) and (2.23) imply that for k < N , k ∈ N we have ϑN [X] = ∞ m-a.e. on⋃
j U

k
j . Hence our claim (3.18) is proved.

Now we apply Lemma 2.5 to the functions

fn := − 1

ϑN [Xn]
χ
BXn
R (xn)

, n ∈ N ∪ {∞}.

Lemma 2.2 (i) grants that (2.10) is satisfied, while from (3.19) and the assumption
mn(Zn) = 1 it easily follows that the fn’s are uniformly bounded from below by a
continuous function with bounded support. Hence the conclusion of Lemma 2.5 gives

−H N (Z∞)
(3.18)

=

∫
f∞ dm∞ 6 lim

n→∞

∫
fn dmn

(3.18)
= lim

n→∞
−H N (Zn)

and thus the desired upper semicontinuity:
lim
n→∞

H N (Zn) 6H N (Z∞).

Lower semicontinuity. — Theorem 2.13 ensures that for H N -a.e. x ∈ Z∞ the metric
tangent space of X∞ at x is RN .

Now fix ε > 0, let δ2 := δ2(ε,N) be given by Proposition 3.2 and notice that what
we just said grants that for H N -a.e. x ∈ Z∞ there exists r = r(x) such that for every
r ∈ (0, r) we have

dGH(BX∞
r/δ2

(x), BRN
r/δ2

(0)) 6 rδ2,

thus, since Proposition 2.12 grants that H N (Z∞) <∞, we can use Vitali’s covering
lemma (see e.g. [10, Th. 2.2.2]) to find a finite number of points y∞,i ∈ BX∞

1 (x∞) and
radii ri > 0, i = 1, . . . ,M , such that

dGH(BX∞
ri/δ2

(y∞,i), B
RN
ri/δ2

(0)) 6 riδ2 ∀ i,(3.20a)

BX∞

ri (y∞,i) ∩BX∞

ri′
(y∞,i′) = ∅ ∀ i 6= i′,(3.20b)

d∞(y∞,i, x∞) + ri < 1 ∀ i,(3.20c)

H N (BX∞
1 (x∞)) 6 ε+ ωN

∑
i

rNi .(3.20d)

For each i find a sequence yn,i
GH−→ y∞,i (recall (2.2)) and notice that there is n ∈ N

such that for every n > n properties (3.20a), (3.20b), (3.20c) hold with yn,i and xn
in place of y∞,i, x∞ respectively for any i. In particular, from (3.20a) for yn,i we can
apply the scaled version of Proposition 3.2 to deduce that

(3.21) H N (BXn
ri (yn,i)) > (1− ε)ωNrNi ∀ i

and since (3.20b), (3.20c) for the yn,i’s ensure that the balls BXn
ri (yn,i), i = 1, . . . ,M ,

are disjoint and contained in BXn
1 (xn) for every n > n we deduce that

H N (BXn
1 (xn)) >

∑
i

H N (BXn
ri (yn,i))

(3.21)
> (1− ε)ωN

∑
i

rNi ∀n > n.

Hence from (3.20d) we obtain
lim
n→∞

H N (BXn
1 (xn)) > (1− ε)

(
H N (BX∞

1 (x∞))− ε
)

and, recalling (2.20), we conclude by the arbitrariness of ε > 0. �
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3.2. Dimension gap. — In this section we shall prove the ‘dimension gap’ Theorem 1.4
and in doing so we will closely follows the arguments in [17, §3].

The crucial part of argument, provided in Proposition 3.5, is the proof that the
Hausdorff dimension of the set of points for which no tangent space splits off a line is
at most N −1. To clarify the structure of the proof, we isolate in the following lemma
the measure-theoretic argument which will ultimately lead to such estimate on the
dimension (see [17, Prop. 3.2]).

Lemma 3.4. — Let X be an RCD(K,N) space and Ωη ⊂ X Borel subsets indexed by a
parameter η > 0 such that it holds

(3.22) m(Ωη) 6 Cη ∀ η ∈ (0, c)

for some C, c > 0. For τ ∈ (0, 1) consider the sets

(3.23) Ωτ,η := {x ∈ Ωη | d(x,X r Ωη) > τη}.

Then

dimH

( ⋂
j∈N

⋃
k>j

Ωτ,2−k
)
6 N − 1.

Proof. — For given x ∈ X, R > 0 let ΩR,η := Ωη ∩BR(x) and Ωτ,R,η be defined as in
(3.23) with ΩR,η in place of Ωη. Then for every τ, η ∈ (0, 1) the definition easily gives
Ωτ,η ∩BR−1(x) ⊂ Ωτ,R,η and therefore

dimH

( ⋂
j∈N

⋃
k>j

Ωτ,2−k
)

= lim
R→∞

dimH

( ⋂
j∈N

⋃
k>j

Ωτ,2−k ∩BR−1(x)
)

6 lim
R→∞

dimH

( ⋂
j∈N

⋃
k>j

Ωτ,R,2−k
)
.

Hence up to replacing Ωη with Ωη ∩BR(x) and then sending R ↑ ∞ we can, and will,
assume that Ωη ⊂ BR(x) for every η ∈ (0, 1).

Now let x1, . . . , xn ∈ Ωτ,η be with d(xi, xj) > τη and denote by C ′ = C(K,N,R, x)

a constant depending only on K,N,R, x (and thus independent on τ, η) whose values
might change in the various instances it appears: since the balls Bτη/2(xi) are disjoint
and contained in Ωη we have

n
(1.4)
6 C ′

n∑
i=1

m(B1(xi))
(1.4)
6 C ′(τη)−Nm

( n⋃
i=1

B τη
2

(xi)
)

6 C ′(τη)−Nm(Ωη)
(3.22)
6 CC ′(τη)−Nη.

If the family {x1, . . . , xn} is maximal we have Ωτ,η ⊂
⋃n
i=1Bτη(xi) and thus for any

ε > 0 the above implies

(3.24) H N−1+ε
2τη (Ωτ,η) 6 CC ′(τη)−Nη(2τη)N−1+ε 6 CC ′τε−1ηε.
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Hence for any j ∈ N we have

H N−1+ε
2τ2−j

( ⋂
j′∈N

⋃
k>j′

Ωτ,2−k
)
6H N−1+ε

2τ2−j

( ⋃
k>j

Ωτ,2−k
)
6
∑
k>j

H N−1+ε
2τ2−k

(Ωτ,2−k)

by (3.24) 6
∑
k>j

CC ′τε−12−εk = CC ′τε−12ε(1−j)

and letting j ↑ ∞ we conclude. �

Let us now give few definitions, following [17, Def. 2.10]. For a given RCD(K,N)

space X with measure having full support we define

E1(X) :=
{
x ∈ X | every metric tangent space at x splits off a line

}
where we say that a metric measure space (X, d,m) splits off a line provided X is
isomorphic to the product of another metric measure space (X′, d′,m′) and the real
line, i.e., there is a measure preserving isometry Φ : X′ × R→ X, where the measure
on X′×R is the product of m′ and the Lebesgue measure and the distance is given by

d2X′×R
(
(x, t), (y, s)

)
:= d′(x, y)2 + |t− s|2, ∀x, y ∈ X′, t, s ∈ R.

Also, for given x ∈ X we put

E1,x(X) :=

x 6= x

∣∣∣∣ ∀ ε, ε
′ > 0, ∃ r = r(ε, ε′, x), s. t. ∀ r ∈ (0, r),∃ y ∈ Bεr(x)

and a unit speed geodesic γ : [0, d(x, y) + r/ε′]→ X

s. t. γ0 = x and γd(x,y) = y

 .

We claim that

(3.25) E1,x(X) ⊂ E1(X) ∀x ∈ X.

Indeed, let x ∈ E1,x(X), ε, ε′ > 0 and r = r(ε, ε′, x) be as above. Then for r ∈
(0, r) let y, γ be as above and notice that the appropriate restriction of γ is a ge-
odesic of length > 2 min{r/ε′, d(x, x) − εr} whose midpoint y has distance 6 εr

from x. Hence in the rescaled space (Xr, dr) := (X, d/r) there is a geodesic of length
> 2 min{1/ε′, d(x, x)/r − ε} whose midpoint has distance 6 ε from x. Letting r ↓ 0

we conclude by a compactness argument that on every tangent space at x there is a
geodesic of length > 2/ε′ whose midpoint has distance 6 ε from the origin, thus the
arbitrariness of ε, ε′ and again a compactness argument ensure the existence of a line
through the origin. Since every tangent space to an RCD(K,N) space is a RCD(0, N)

space, the splitting theorem [28], [30] gives (3.25).
We then have the following proposition.

Proposition 3.5. — Let (X, d,m) be an RCD(K,N) space and x ∈ X. Then

(3.26) dimH (X r E1,x(X)) 6 N − 1

and thus also

(3.27) dimH (X r E1(X)) 6 N − 1.

J.É.P. — M., 2018, tome 5



Non-collapsed spaces with Ricci curvature bounded from below 641

Proof
Step 1: structure of the argument. — From (3.25) and (3.26) the estimate (3.27) follows,
hence we focus in proving (3.26). Since trivially dimH ({x}) = 0 6 N −1, to conclude
it is sufficient to prove that for any R > 2 we have

(3.28) dimH

(
AnnR/2(x) ∩

(
X r E1,x(X)

))
6 N − 1,

where AnnR(x) := BR(x) rB1/R(x). Fix x ∈ X and for η > 0 define

ΩRη := {x ∈ AnnR(x) | there is no unit speed geodesic γ : [0, d(x, x) + η] −→ X

such that γ0 = x, γd(x,x) = x}

and, for τ ∈ (0, 1), define ΩRτ,η as in (3.23). We shall prove that for any R > 2 we have

(3.29) m(ΩRη ) 6 Cη ∀ η ∈ (0, 1/R)

for some C = C(K,N,R, x) and

(3.30) AnnR/2(x) ∩ (X r E1,x) ⊂
⋃
i

(
AnnR/2(x) ∩

⋂
j

⋃
k>j

ΩR2−i,2−k
)
.

Thanks to Lemma 3.4, these are sufficient to get (3.28) and the conclusion.

Step 2: proof of (3.29). — We assume m(AnnR(x)) > 0 or there is nothing to prove,
then we put µ0 := m(AnnR(x))−1m|AnnR(x)

, µ1 := δx and let π ∈P(C([0, 1],X)) be
the only optimal geodesic plan from µ0 to µ1 (see [38]). Then from [38, Th. 3.4] we
know that (et)∗π � m for every t ∈ [0, 1) and that for its density ρt it holds

ρ
−1/N
t (γt) > (m(AnnR(x)))1/Nσ

(1−t)
K,N (d(γ0, γ1)) π-a.e. γ,

where

σ
(t)
K,N (d) :=

sinh(td
√
|K|N)

sinh(d
√
|K|/N)

,

hence using the fact that σ(t)
K,N (d) is decreasing in d we deduce that

(3.31) (et)∗π 6
1

m(AnnR(x))
(
σ
(1−t)
K,N (R)

)N m

while the construction ensures that

(3.32) (et)∗π is concentrated on BR(x) r ΩRt/R ∀ t ∈ (0, 1).

Therefore, for η < 1/R using the above with t := ηR we have

m
(
BR(x) r ΩRη

) (3.31)
> m(AnnR(x))

(
σ
(1−ηR)
K,N (R)

)N
π
(

e−1ηR
(
BR(x) r ΩRη

))
(3.32)

= m(AnnR(x))
(
σ
(1−ηR)
K,N (R)

)N(3.33)

and since ΩRη ⊂ AnnR(x) ⊂ BR(x) yields ΩRη = AnnR(x)r (BR(x)rΩRη ) in turn this
gives

m(ΩRη )
(3.33)
6 m(AnnR(x))

(
1−

(
σ
(1−ηR)
K,N (R)

)N)
which, using the explicit expression of σ(1−ηR)

K,N (R), gives our claim (3.29).
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Step 3: proof of (3.30). — We shall prove the equivalent inclusion

(3.34) AnnR/2(x) ∩ E1,x ⊃ AnnR/2(x) ∩
⋂
i

⋃
j

⋂
k>j

(
X r ΩR2−i,2−k

)
.

Let x belonging to the right hand side of (3.34) and ε, ε′ > 0. Pick i ∈ N such that
2−i 6 εε′ and find j such that x ∈ X r ΩR2−i,2−k for every k > j. Up to increase j we
can also assume that 2−j < 1/R, then we put r := ε′2−j and for given r ∈ (0, r) we
let k > j be such that ε′2−(k+1) < r 6 ε′2−k.

By definition of ΩR2−i,2−k we know that there is y∈X r ΩR2−k with d(x, y)62−i−k

and since x∈AnnR/2(x) the bound 2−i−k62−j<1/R grants that y∈AnnR(x)rΩR2−k .
By definition of ΩR2−k this means that there exists a unit speed geodesic starting from x

passing through y of length d(x, y)+2−k > d(x, y)+ r
ε′ and since d(x, y) 6 2−i−k 6 εε′,

taking into account the arbitrariness of ε, ε′ we just showed that x ∈ E1,x, which was
our claim. �

To get the proof of the dimension gap and, later, of the stratification result we shall
use some facts about the H α

∞ pre-measure. Two direct consequences of the definitions
are

(3.35) H α
∞(A) = 0 ⇐⇒ H α(A) = 0

and

(3.36) dH(An, A)→ 0, A compact =⇒ H α
∞(A) > lim

n→∞
H α
∞(An).

A subtler result relates the Hausdorff measure and the density of the ∞-Hausdorff
premeasure, see [39, Prop. 11.3] and [26, Th. 2.10.17] for the proof.

Lemma 3.6 (Density of ∞-Hausdorff premeasure). — Let (X, d) be a metric space,
α > 0 and E ⊂ X a Borel set. Then for H α-a.e. x ∈ E we have

lim
r↓0

H α
∞(E ∩Br(x))

rα
> 2−αωα.

A last property of Hausdorff measures that we shall use is the following, see [26,
Th. 2.10.45] for the proof:

(3.37) H α(X) = 0 ⇐⇒ H α+1(X× R) = 0,

valid for any α > 0 and metric space X. We can now prove Theorem 1.4.

Proof of Theorem 1.4. — We shall assume that dimH (X) > N − 1 and prove that
H N (X) > 0, thanks to Proposition 2.12 this is sufficient to conclude. We start claim-
ing that

(3.38) there exists an iterated tangent space of Xwhich is the Euclidean spaceRN .

To prove this, let ε > 0 be so that H N−1+ε(X) > 0, then by Proposition 3.5 we
also have H N−1+ε(E1(X)) > 0 and we can apply Lemma 3.6 to E := E1(X) to find

J.É.P. — M., 2018, tome 5



Non-collapsed spaces with Ricci curvature bounded from below 643

x ∈ E1(X) and rn ↓ 0 such that

(3.39) lim
n→∞

H N−1+ε
∞ (E1(X) ∩Br(x))

rN−1+εn

> 2−αωα.

Recalling (2.1), up to pass to a not relabeled subsequence we can assume that
the spaces (Xn, dn,mn, xn) := (X, d/rn,m/m(Brn(x)), x) pmGH-converge to some
RCD(0, N) space (Y1, dY1 ,mY1 , o) as n ↑ ∞. It is clear that after embedding all these
spaces into a realization of such convergence we have that Bdn

1 (xn) → B
dY1

1 (o) with
respect to the Hausdorff distance and thus we have

H N−1+ε
∞ (BY1

1 (o))
(3.36)
> lim

n→∞
H N−1+ε
∞ (BXn

1 (xn)) = lim
n→∞

H N−1+ε
∞ (BX

rn(x))

rN−1+εn

(3.39)
> 0

which, by (3.35), forces

(3.40) H N−1+ε(Y1) > 0.

By definition of E1(X) the fact that x ∈ E1(X) grants that Y1 = R×X1 and since Y1

is RCD(0, N), the splitting ensures that X1 is either a point or N > 2 and X1 is
RCD(0, N − 1).

If X1 is a point we have Y1 = R and (3.40) forces N + ε 6 2. Since N ∈ N and
N > 1, this implies N = 1.

If instead N > 2 we use (3.40) and (3.37) to deduce that H N−2+ε(X1) > 0 and
repeat the argument with the RCD(0, N − 1) space X1 in place of X and N − 1 in
place of N .

Iterating this procedure after exactly N steps we arrive at a tangent space YN to
the RCD(0, 1) space XN−1 of the form YN = R×XN , and since YN is itself RCD(0, 1)

this forces XN to be a point.
In summary, we proved claim (3.38). Therefore by a diagonalization argument there

is r̃n ↓ 0 and (x̃n) ⊂ X such that for the rescaled spaces (X̃n, d̃n) := (X, d/r̃n) it holds

(3.41) lim
n→∞

dGH

(
BX̃n
R (xn), BRN

R (0)
)

= 0 ∀R > 0.

Now we consider δ2 = δ2(1/2, N) be given by Proposition 3.2 and pick R := 1/δ2
in (3.41) above to conclude that for n sufficiently big we have r̃2nK > −δ2 and (3.2)
is satisfied for the RCD(r̃2nK,N) space (X̃n, d̃n,m). Fix such n and let U ⊂ X̃n,
u : U → u(U) ⊂ RN be given by Proposition 3.2 with ε = 1/2. Notice that (3.3)
forces H N (u(U)) = L N (u(U)) > 0 and since u is bi-Lipschitz we also have that
U ⊂ X̃n has positive H N measure in the space (X̃n, d̃n); given that X̃n is obtained
by rescaling of X, we see that U ⊂ X also has positive H N measure in the space X,
which gives the conclusion. �

The proof of Corollary 1.5 can now be easily obtained.

Proof of Corollary 1.5. — If N is integer the claim is a direct consequence of Propo-
sition 2.12 (see also [51, Cor. 2.3]). Otherwise let [N ]+ := min{n ∈ N | N 6 n} and
notice that N < [N ]+ and that (X, d,m) is an RCD(K, [N ]+) space. Thus by Theorem
1.4 and again Proposition 2.12 we conclude that dimH (X) 6 [N ]+ − 1 = [N ]. �
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3.3. Non-collapsed and collapsed convergence. — Having at disposal the ‘conti-
nuity of volume’ granted by Theorem 1.3 and the ‘dimension gap’ Theorem 1.4 we
can now easily obtain the stability of the class of ncRCD(K,N) spaces as stated in
Theorem 1.2.

Proof of Theorem 1.2
(i) The fact that the lim is actually a lim is a direct consequence of Theorem 1.3

(recall also (2.20)). This and the compactness of the class of RCD(K,N) spaces (see
(2.1)) ensure that up to pass to a subsequence, not relabeled, we can assume that
there is a Radon measure m∞ on X∞ such that (Xn, dn,H N , xn) pmGH-converge
to (X∞, d∞,m∞, x) and to conclude it is sufficient to prove that m∞ = H N , as this
will in particular imply that the limit metric measure space does not depend on the
particular converging subsequence chosen.

By Theorems 2.3, 1.12 and Lemma 2.2 (i) we know that m∞ = ϑH N for some
ϑ 6 1, so that our aim is to prove that ϑ = 1 m∞-a.e.. If not, there would exist
y∞ ∈ X∞ and r > 0 such that

(3.42) m∞(BX∞
r (y∞)) < H N (BX∞

r (y∞)).

Now find a sequence yn
GH−→y∞ (recall (2.2)), notice that dGH(BXn

r (yn), BX∞
r (y∞))→ 0

as n→∞ and use Theorem 1.3 to obtain

lim
n→∞

H N (BXn
r (yn))

(2.20)
= lim

n→∞
H N (BXn

r (yn)) = H N (BX∞
r (y∞))

(3.42)
> m∞(BX∞

r (y∞)),

contradicting (2.4).
(ii) We argue by contradiction and assume

(3.43) dimH (X∞) > N − 1.

By the compactness of the class of RCD(K,N) spaces we know that there exists a
Radon measure m∞ on X∞ and a subsequence, not relabeled, such that the nor-
malized spaces (Xn, dn,H N/H N (B1(xn)), xn) pmGH-converge to (X∞, d∞,m∞, x)

(recall (2.1)). In particular, this grants that (X∞, d∞,m∞) is an RCD(K,N) space, so
that our assumption (3.43) and Theorem 1.4 yield that H N (X∞) > 0 and thus there
is x′ ∈ X such that H N (B1(x′)) > 0. Now find a sequence x′n

GH−→ x′ (recall (2.2))
and use Theorem 1.3 (and (2.20)) to obtain that

H N (BXn
1 (x′n)) −→H N (BX∞

1 (x′)) > 0.

Taking into account that limn→∞ dn(xn, x
′
n) = d∞(x, x′) <∞, such convergence and

the uniform local doubling property granted by the Bishop-Gromov inequality give
that

lim
n→∞

H N (BXn
1 (xn)) > 0,

which contradicts our assumption limn→∞H N (BXn
1 (xn)) = 0 and thus yields the

thesis. �
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3.4. Volume rigidity. — Collecting what proved so far it is now easy to establish the
volume rigidity result, Theorem 1.6, and its Corollary 1.7.

Proof of Theorem 1.6

Step 1: set up. — Let (X, d,H N ) be a ncRCD(0, N) space and x ∈ X such that

(3.44) H N (BX
1 (x)) >H N (BRN

1 (0)).

We shall prove that this implies that BX
1/2(x) is isometric to BRN

1/2(0). Thanks to
Gromov compactness theorem (2.1) and to the stability of the ncRCD condition under
non-collapsed convergence established in Theorem 1.2, this is sufficient to conclude.

Step 2: the cone Y. — Consider the function (0, 1] 3 r 7→ H N (Br(x))/ωNr
N and

notice that the Bishop-Gromov inequality grants that it is non-increasing, that by
(3.44) its value at r = 1 is 1 and, recalling the definition of ϑN and Corollary 2.14,
that it converges to ϑN [X](x) 6 1 as r ↓ 0. Hence

(3.45) ϑN [X](x) =
H N (Br(x))

ωNrN
= 1 ∀ r ∈ (0, 1]

and by the ‘volume cone to metric cone’ [24, Th. 1.1] we get the existence of an N -cone
(Y, dY,mY, o) and a measure preserving isometry ι : BX

1/2(x)→ BY
1/2(o).

It follows that mY = H N and thus that Y is ncRCD(0, N). Also, the very definition
of ϑN and the properties of ι give that

(3.46) ϑN [X](x) = ϑN [Y](ι(x)) ∀x ∈ BX
1 (x).

Now observe that by a simple scaling argument it is easy to see that ϑN [Y] is constant
along rays, and this fact together with the lower semicontinuity of ϑN [Y] given by
Lemma 2.2 (i) shows that ϑN [Y](o) 6 ϑN [Y](y) for every y ∈ Y. Therefore

(3.47) 1
(3.45)

= ϑN [X](x)
(3.46)

= ϑN [Y](o) 6 ϑN [Y](y)
(2.26)
6 1 ∀ y ∈ Y.

Step 3: Y = RN . — According to Lemma 2.9 it is sufficient to prove that Y is an
N -metric measure cone centered at any y ∈ Y and by the ‘volume cone to metric cone’
[24, Th. 1.1] in order to prove this it is sufficient to show that r 7→H N (Br(y))/ωNr

N

is constant for every y ∈ Y. By the very definition of N -cone this is true for y = o,
then for general y ∈ Y put R := dY(y, o) and notice that

lim
r→∞

H N (Br(y))

ωNrN
= lim
r→∞

H N (Br+R(y))

ωN (r +R)N
> lim
r→∞

H N (Br(o))

ωNrN
rN

(r +R)N

= ϑN [Y](o)
(3.47)

= 1,

so that the conclusion follows from (3.47) and the monotonicity granted by Bishop-
Gromov inequality (1.4). �

Proof of Corollary 1.7. — Inequality (1.3) immediately follows from Corollary 2.14
and the Bishop-Gromov inequality (1.4). The scaled version of Theorem 1.6 ensures
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the desired rigidity for the equality case. Moreover, by the second step in the proof
of Theorem (1.6) we see that if

ϑ(x) = lim
r→0

H N (BX
r (x))

ωNrN
= 1,

then the spaces (X, d/r,H n) converges to (RN , dE,H N ). The converse being an easy
consequence of Theorem 1.2, this concludes the proof. �

3.5. Stratification. — Here we prove the stratification result stated in Theorem 1.8;
notice the similarity with the proof of Theorem 1.4.

Let us begin by giving the definition of the k-singular set Sk(X):

(3.48) Sk(X) :=
{
x ∈ X | for every tangent space (Y, dY,mY, y) of X at x we have

dGH

(
BY

1 (y), BRk+1×Z
1 ((0, z))

)
> 0 for all pointed spaces (Z, dZ, z)

}
.

We can now prove Theorem 1.8.

Proof of Theorem 1.8. — We argue by contradiction, thus we assume that for some
k ∈ N and ncRCD(K,N) space X we have dimH Sk(X) > k. Hence for some k′ > k

it holds

(3.49) H k′(Sk(X)) > 0.

Then for ε > 0 define

Sεk(X) =
{
x ∈ X | dGH

(
BX
r (x), BRk+1×Z

r ((0, z))
)
> εr ∀ r ∈ (0, ε), pointed Z

}
and note that Sεk(X) is closed and that Sk(X) =

⋃
i∈N S

2−i

k (X). From this and (3.49) it
follows that there exists ε > 0 such that H k′(Sεk(X)) > 0. We now apply Lemma 3.6
to E := Sεk(X) to deduce that there exists x ∈ Sεk(X) and rn ↓ 0 such that

(3.50) lim
n→∞

H k′

∞
(
Sεk(X) ∩BX

rn(x)
)

rk′n
> 2−k

′
ωk′ .

By Corollary 2.14 we have ϑN [X, d,m](x) 6 1 and thus by Proposition 2.8, up
to pass to a non-relabeled subsequence, we can assume that the rescaled spaces
(Xn, dn,mn, xn) := (X, d/rn,m/r

N
n , x) pmGH-converge to a pointed metric measure

cone (Y, dY,mY, y) which, by Theorem 1.2, is ncRCD(0, N).
Embedding all these spaces into a proper realization of this pmGH-convergence

(recall (2.1)) and using the metric version of Blaschke’s theorem (see [13, Th. 7.3.8])
we see that, extracting if necessary a further subsequence, we can assume that the
compact sets Sεk(Xn) ∩ Bdn

1 (xn) converge to some compact set A ⊂ Y with respect
to the Hausdorff distance. A simple diagonal argument based on the very definition
of Sεk(Y) then shows that A ⊂ Sεk(Y) and thus

H k′

∞ (Sεk(Y)) >H k′

∞ (A)
(3.36)
> lim

n→∞
H k′

∞
(
Sεk(Xn) ∩Bdn

1 (xn)
)

= lim
n→∞

H k′

∞
(
Sεk(X) ∩Bd

rn(x)
)

rk′n

(3.50)
> 0.
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Hence by (3.35) we also have H k′(Sεk(Y)r{y}) > 0 and we can repeat the argument to
find z ∈ Sεk(Y), z 6= y, and a tangent cone (Y′, dY′ ,mY′ , y

′) at z, which is ncRCD(0, N),
such that

(3.51) H k′(Sεk(Y′)) > 0.

Since z 6= y the cone Y′ contains a line passing through its origin y′ and thus by
the splitting theorem for RCD spaces we deduce that Y′ = R × X1 for some metric
measure space (X1, d1,m1).

If k = 0 this is enough to conclude, because such splitting contradicts the choice
z ∈ Sεk(Y). Otherwise k > 1, hence k′ > 1 and (3.51) and N ∈ N force N > 2. Then
the splitting grants that X1 is an RCD(0, N − 1) space and from the fact that Y′

is ncRCD(0, N) and Proposition 2.15 we deduce that in fact X1 is ncRCD(0, N − 1).
Taking into account the trivial implication

(r, x1) ∈ Sk(R×X1) ⇐⇒ x1 ∈ Sk−1(X1)

and (3.37), from (3.51) we deduce that

dimH (Sk−1(X1)) > k − 1.

We can therefore repeat the whole argument with X1 and k − 1 in place of X and k:
iterating we eventually find a contradiction and achieve the proof. �

Remark 3.7 (Polar spaces). — This theorem is also valid, with the same proof, in the
a priori larger class of RCD(K,N) spaces X such that every iterated tangent cone is
a metric cone (notice that the analogue of Proposition 2.15 holds, rather trivially, for
this class of spaces). Spaces with this property have been called polar in [17].

Notice that wncRCD(K,N) spaces such that ϑN [X] is locally bounded from above
are polar, and that Theorem 2.3 grants that this class of spaces is stable with respect to
pmGH-convergence provided we impose a uniform local upper bound on the ϑ’s. �

Remark 3.8 (Boundary of ncRCD spaces). — In the case of non-collapsed Ricci limit
spaces it has been shown in [17] that

(3.52) SN−1(X) r SN−2(X) = ∅.

This is however false in the present situation, because, for instance, the closed unit
ball B1(0) ⊂ RN is a perfectly legitimate ncRCD(0, N) space and every point in the
boundary belongs to SN−1(X) r SN−2(X).

The problem is the presence of the boundary: looking for a moment just at smooth
objects, compact manifolds with (convex) boundary are always RCD(K,N) spaces
for suitable K,N but not considered in [17] as objects whose limits define Ricci-limit
spaces. Then in [17] it has been proved (with an argument also linked to topology)
that in the non-collapsing situation boundary of balls converge to boundary of balls,
a fact which quite easily implies (3.52).

This line of thoughts suggests to define the boundary ∂X of a ncRCD(K,N) space X

as
∂X := closure of

(
SN−1(X) r SN−2(X)

)
.
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Then, mostly by analogy with the theory of Ricci-limit and Alexandrov spaces, a
number of natural non-trivial questions arise:

– Given a non-collapsing sequence Xn → X of ncRCD spaces, is it true that ∂Xn

converge to ∂X?
– Is it true that either ∂X = ∅ or ∂X is N − 1-rectifiable with H N−1|∂X locally

finite?
- Is X r ∂X a convex subset of X? That is, is it true that for any x, y ∈ X r ∂X

there is a (or perhaps, is any) geodesic connecting them entirely contained in Xr∂X?
– Let Y be a connected component of ∂X. Is Y connected by Lipschitz paths? If so:

– let dY be the intrinsic distance on Y induced by the distance on X: is (Y, dY)

an Alexandrov space of non-negative curvature? (notice that the analogous of
this latter question for Alexandrov spaces is open - see [48, §9]).

– Let X′ be another ncRCD(K,N) space and assume that Y1, . . . ,Yn and
Y′1, . . . ,Y

′
n are the connected components of ∂X and ∂X′ respectively. Assume

also that for any i = 1, . . . , n the spaces Yi and Y′i with the induced length met-
rics are isometric and glue X and X′ along their boundaries via such isometries.
Is the resulting space ncRCD(K,N)? (the analogous statement for Alexandrov
spaces holds, see [47]). �
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