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FROM THE KÄHLER-RICCI FLOW

TO MOVING FREE BOUNDARIES AND SHOCKS

by Robert J. Berman & Chinh H. Lu

Abstract. — We show that the twisted Kähler-Ricci flow on a compact Kähler manifold X

converges to a flow of moving free boundaries, in a certain scaling limit. This leads to a new
phenomenon of singularity formation and topology change which can be seen as a complex
generalization of the extensively studied formation of shocks in Hamilton-Jacobi equations and
hyperbolic conservation laws (notably, in the adhesion model in cosmology). In particular we
show how to recover the Hele-Shaw flow (Laplacian growth) of growing 2D domains from the
Ricci flow. As will be explained elsewhere the scaling limit in question arises as the zero-
temperature limit of a certain many particle system on X.

Résumé (Du flot de Kähler-Ricci au flot des bords libres mobiles et aux chocs)
Nous montrons que le flot de Kähler-Ricci tordu sur une variété kählérienne compacte X

converge vers le flot des bords libres mobiles, dans une certaine limite d’échelle. Ceci conduit à
un nouveau phénomène de formation de singularités et de changement topologique qui peut être
vu comme une généralisation complexe du phénomène abondamment étudié de la formation
de chocs dans la théorie des équations de Jacobi et des lois de conservation hyperboliques
(notamment dans le modèle d’adhésion en cosmologie). En particulier, nous montrons comment
retrouver le flot de Hele-Shaw (croissance du laplacien) dans des domaines 2D croissants à partir
du flot de Ricci. Comme il sera expliqué ailleurs, la limite d’échelle en question apparaît comme
la limite à température nulle de certains systèmes multi-particules sur X.
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1. Introduction

1.1. The twisted Kähler-Ricci flow and its zero-temperature limit. — The Ricci
flow

(1.1) ∂g(t)

∂t
= −2 Ric g(t)

can be viewed as a diffusion type evolution equation for Riemannian metrics g(t) on
a given manifold X. In fact, as described in the introduction of [Ham82], this was one
of the original motivations of Hamilton for introducing the flow. The point is that,
locally, the principal term of minus the Ricci curvature g of a Riemannian metric is
the Laplacian of the tensor g (which ensures the short-time existence of the flow).
The factor 2 is just a matter of normalization as it can be altered by rescaling the
time parameter by a positive number β. However, this reparametrization symmetry
is broken when a source term θ is introduced in the equation:

(1.2) ∂g(t)

∂t
= − 1

β
Ric(g(t)) + θ,

where θ is an appropriate symmetric two tensor on X and β thus plays the role of
the inverse diffusion constant or equivalently, the inverse temperature (according to
the “microscopic” Brownian motion interpretation of diffusions). In general terms the
main goal of the present paper is to study the corresponding zero-temperature limit
β → ∞ of the previous equation. An important feature of the ordinary Ricci flow
(1.1) is that it will typically become singular in a finite time, but in some situations
(for example when X is a three manifold, as in Perelman’s solution of the Poincaré
conjecture) the flow can be continued on a new manifold obtained by performing
a suitable topological surgery of X. In our setting it turns out that a somewhat
analogous phenomenon of topology change appears at a finite time T∗ in the limit
β →∞, even if one assumes the long time existence of the flows for any finite β.

More precisely, following [Cao85, Tsu88, TZ06] we will consider the complex geo-
metric framework where X is a complex manifold, i.e., it is endowed with a complex
structure J and the initial metric g0 is Kähler with respect to J . We will identify
symmetric two-tensors and two-forms of type (1, 1) on X using J in the usual way -
then the Kähler condition just means that the form defined by g0 is closed. We will
also assume that θ is a smooth closed (but not necessarily semi-positive) (1, 1)-form.
Then it is well-known that the corresponding flow g(β)(t) emanating from the fixed
metric g0 preserves the Kähler property as long as it exists - it is usually called the
twisted Kähler-Ricci flow in the literature (and θ is called the twisting form); see
[Cao85, Tsu88, TZ06, CS16, GZ17] and references therein. For simplicity we will also
assume that

(1.3) − 1

β
c1(X) + [θ] > 0

as (1, 1)-cohomology classes (where c1(X) denotes the first Chern class of X) which
ensures that the flows g(β)(t) exist for all positive times [TZ06]. Our main result says
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that g(β)(t) admits a unique (singular) limit g(t) as β → ∞, where g(t) defines a
positive current with L∞-coefficients:

Theorem 1.1. — Let X be a compact Kähler manifold endowed with a smooth closed
(1, 1)-form θ satisfying (1.3). Then

lim
β→∞

g(β)(t) = P (g0 + tθ) (:= g(t))

in the weak topology of currents, where P is a (non-linear) projection operator onto
the space of positive currents. Moreover, the metrics g(β)(t) are uniformly bounded on
any fixed time interval [0, T ].

The assumption (1.3) is introduced only for the presentation purpose. In fact, the
flow g(β)(t) is known to exist in a maximum time interval [0, Tβ) depending on β and
as β → +∞, Tβ → T∞ > 0. Then, for each T < T∞ the flow g(β)(t) converges as
β → +∞ to g(t) in the weak topology of currents and g(t) has uniformly bounded
coefficients for t ∈ [0, T ]. In fact we will prove a more general result in Section 2 where
the form θ is allowed to depend on the parameter β.

The projection operator P appearing in Theorem 1.1, which associates to a given
(1, 1)-current η on X a positive current, cohomologous to η, is defined as a (quasi)
plurisubharmonic envelope on the level of potentials (see Section 2.3.2) and can be
viewed as a complex generalization of the convex envelope of a function. Such en-
velopes play a key role in pluripotential theory (as further discussed in Section 1.4,
below). In particular, the previous theorem yields a dynamic PDE construction of
the envelopes in question, giving an alternative to previous dynamic constructions
appearing in the real convex analytical setting [Ves99, CG12] (see the discussion in
Section 3.1).

The point is that the linear curve g0 + tθ, which coincides with the limiting flow
for short times will, unless θ > 0, leave the space of Kähler forms at the time

(1.4) T∗ := sup{t | g0 + tθ > 0}

and hence it cannot be the limit of the metrics g(β)(t), even in a weak sense, for t > T∗.
In particular, this means that around the time T∗ the Ricci curvatures Ric g(β)(t)

will become unbounded as β → ∞. Indeed, if the Ricci term is uniformly bounded
in β then one immediately sees that as β → +∞ the limiting flow of (1.2) will be
g(t) = g0 + tθ. In particular, for every t > 0, g0 + tθ must be a positive (1, 1)-form
contradicting the definition of T∗. Still we will show that the metrics g(β)(t) do remain
uniformly bounded from above as β → ∞. However, unless θ > 0, the limiting L∞-
metrics g(t) will, for t > T∗, degenerate on large portions of X, i.e., the support

X(t) := supp(dVg(t))

of the limiting L∞-volume form dVg(t) is a proper closed subset of X evolving with t.
Moreover, on the support X(t) the metrics g(t) do evolve linearly, or more precisely

g(t) = g0 + tθ on X(t),
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522 R. J. Berman & C. H. Lu

in the almost everywhere sense. As a consequence, typically the volume form dVg(t) has
a sharp discontinuity over the boundary ofX(t) (i.e., the function g(t)n/ωn is typically
discontinuous at some point on the boundary of the contact setX(t)) showing that the
limiting (degenerate) L∞-metrics g(t) are not continuous and hence C 0-convergence
in the previous theorem cannot hold, in general. In the generic case the evolving open
sets Ω(t) := X r X(t), where dVg(t) vanishes identically are increasing and may be
characterized as solutions of moving free boundary value problems for the complex
Monge-Ampère equation (see Section 2.3.2).

More generally, the weak convergence in Theorem 1.1 will be shown to hold even
when θ is a positive closed (1, 1)-current having continuous potentials. But then the
limit g(t) will, in general, not be in L∞ (unless θ is). Moreover, the support of the
corresponding measure dVg(t) may then be a subset of low Hausdorff dimension. For
example, in the one dimensional setting appearing in the adhesion model discussed
below the conjectures formulated in [SAF92] suggest an explicit formula for the Haus-
dorff dimension of the support, at any given time t, when θ is taken as a random
Gaussian distribution with given scaling exponent (see Section 6.2).

We will pay a particular attention to the special case in Theorem 1.1 where the
twisting form θ represents the trivial cohomology class, i.e.,

θ = ddcf,

for a function f on X. The large β-limit of the corresponding twisted Kähler-Ricci
flow turns out to be intimately related to various growth processes appearing in math-
ematical physics (and hence the Kähler-Ricci flow can be used as a new regularization
of such processes):

1.2. Hamilton-Jacobi equations, shock propagation and the adhesion model in cos-
mology. — In the particular case when X is an abelian variety (or more specifically
X = Cn/(Λ + iZn), for a lattice Λ in Rn) and the potential f of the twisting form θ

is invariant along the imaginary direction, we will show in Theorem 4.5 that the
corresponding limiting twisted Kähler-Ricci flow g(t) corresponds, under Legendre
transformation in the space variables, to a viscosity solution u(x, t) of the Hamilton-
Jacobi equation in Rn with periodic Hamiltonian f [CL83, BE84, LR86]. Under this
correspondence the critical time T∗ (formula (1.4)) corresponds to the first moment
of shock (caustic) formation in the solution ut(x), i.e., the time where ut ceases to be
differentiable. From this point of view the moving domains Ω(t) correspond, under
Legendre duality, to the evolving shock hypersurfaces St (i.e., the non-differentiability
locus of ut). The evolution and topology change of such shocks plays a prominent role
in various areas of mathematical physics (and more generally fit into the general prob-
lem of singularity formation in hyperbolic conservation laws [Ser14]). In particular,
the evolving shock hypersurface St model the concentration of mass density in the
cosmological adhesion model describing the formation of large-scale structures during
the early expansion of the universe [VDFN94, GMS91, HSvdW14, HvdWV+12]. Our
setting contains, in particular, the case when the initial data in the adhesion model is
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periodic [KPSM92, HSvdW14, HvdWV+12]. It should also be pointed out that in this
picture the limit β →∞ can be seen as a non-linear version of the classical vanishing
viscosity limit [CL83, BE84, LR86], which has the virtue of preserving convexity.

We will also study the corresponding large time limits and show in Theorem 4.7
that if the set F of absolute minima of the potential f is finite, then the support
of the positive current defined by the joint large β and large t limit of the twisted
Kähler-Ricci flow is a piecewise affine hypersurface whose vertices coincides with F

and whose lift to Rn gives a Delaunay type tessellation of Rn (which is consistent with
numerical simulations appearing in cosmology [KPSM92, HSvdW14, HvdWV+12]).

1.3. Applications to the Hele-Shaw flow (Laplacian growth). — In another direc-
tion, in Section 5, allowing θ to be a singular current of the form

θ = ω0 − [E],

where ω0 is the initial Kähler form and [E] denotes the current of integration along
a given effective divisor (i.e., complex hypersurface) in X cohomologous to ω0, we
will show that the corresponding domains Ω(t), which in this setting are growing
continuously with t, give rise to a higher dimensional generalization of the classical
Hele-Shaw flow in a two-dimensional geometry. More precisely, the Hele-Shaw flow
appears when X is a Riemann surface, ω0 is normalized to have unit area and E is
given by a point p (in the classical setting X is the Riemann sphere and p is the
point at infinity; the general Riemann surface case was introduced in [HS02]). Then
Ω(t) coincides, up to a time reparametrization, with the Hele-Shaw flow (also called
Laplacian growth) injected at the point p in the medium X with varying permeability
(encoded in the form ω0). The latter flow was originally introduced in fluid mechanics
to model the expansion of an incompressible fluid Ω(t) of high viscosity (for example
oil) injected at a constant rate in another fluid of low viscosity (such as water) occu-
pying the decreasing region X(t). In more recent times the Hele-Shaw flow has made
its appearance in various areas such as random matrix theory, integrable system and
the Quantum Hall Effect [Zab06] to name a few (see [Vas09] for a historical overview).
In particular, in the latter setting X(t) represents the electron droplet. Special at-
tention has been payed to an interesting phenomenon of topology change in the flow
appearing at the time where Ω(t) becomes singular (which is different from T∗ which
in this singular setting vanishes). Various approaches have been proposed to regularize
the Hele-Shaw flow in order to handle the singularity formation (see [Vas09, §5.3]).
The present realization of the Hele-Shaw flow from the limit of the Kähler metrics
ω(β)(t) on Xr{p} suggest a new type of regularization scheme, for example using the
corresponding thick-thin decomposition of X, as in the ordinary Ricci flow (with X(t)

and Ω(t) playing the role of the limiting thick and thin regions, respectively).
In a separate publication deterministic, as well as stochastic gradient flow interpre-

tations of the present results will be explored (see the last section of the first arXiv
preprint version of the present paper).
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1.4. Further relations to previous results. — There is an extensive and rapidly
evolving literature on the Kähler-Ricci flow (and its twisted versions) starting with
[Ham82], [Cao85]; see for example [SW12] and references therein. But as far as we
know the limit β → ∞ (which is equivalent to scaling up the twisting form and
rescaling time) has not been studied before. For a finite β there is no major ana-
lytical difference between the Kähler-Ricci flow and its twisted version, but in our
setting one needs to make sure that the relevant geometric quantities do not blow
up with β (for example, as discussed above the Ricci curvature does blow up). For a
finite β the surgeries in the Kähler-Ricci flow have been related to the Minimal Model
Program in algebraic geometry in [CL12, ST17], where the final complex-geometric
surgery produces a minimal model of the original algebraic variety. In Section 3.3 we
compare some of our results with the corresponding long time convergence results
on the minimal model (which produces canonical metrics of Kähler-Einstein type)
[Tsu88, TZ06, ST12]. In the algebro-geometric setting negative twisting currents θ
also appear naturally, when X is the resolution of a projective variety with canonical
singularities [ST17, EGZ16] (θ is then current of integration along minus the excep-
tional divisor). Recently, viscosity techniques were introduced in [EGZ16] to produce
viscosity solutions for the twisted Kähler-Ricci flow (and in particular its singular
variants appearing when θ is singular). But, again, this concerns the case when β is
finite.

In the case when (X,ω) is invariant under the action of a suitable torus T (i.e.,
X is a toric variety or an Abelian variety) the corresponding time dependent con-
vex envelopes (studied in Section 3.1) have recently appeared in [RZ11, RZ17] in a
different complex geometric context than the Kähler-Ricci flow, namely in the study
of the Cauchy problem for weak geodesic rays in the space of Kähler metrics (see
Remark 4.6). Moreover, in [RWN15a, RWN15b, RWN17b] the Hele-Shaw flow and
the corresponding phenomenon of topology change was exploited to study the sin-
gularities of such weak geodesic rays (and solutions to closely related homogeneous
complex Monge-Ampère equations) in the general non-torus invariant setting (see
Remark 5.8).

We also recall that envelope type constructions as the one appearing in the defini-
tion of the projection operator P play a pivotal role in pluripotential theory and have
their origins in the classical work of Siciak and Zakharyuta on polynomial approxima-
tions in Cn (see [GZ05] for the global setting). Moreover, by the results in [BBGZ13]
the corresponding measure (P (θ))n on X can be characterized as the unique normal-
ized minimizer of the (twisted) pluripotential energy (which generalizes the classical
weighted logarithmic energy of a measure in C). The L∞-regularity of P (θ) follows
from [Ber13], which can be seen as the “static” version of the present paper. See also
[Rub14], for relations to time-discretizations of the Ricci flow and the Ricci continuity
method.

1.5. Organization. — In Section 2 we state and prove refined versions of Theorem 1.1
(stated above). Then in Section 3 we go on to study the joint large β and large t-limits

J.É.P. — M., 2018, tome 5



From the Kähler-Ricci flow to moving free boundaries and shocks 525

of the corresponding flows. In particular, a dynamical construction of plurisubhar-
monic (as well as convex) envelopes is given and a comparison with previous work
on canonical metrics in Kähler geometry (concerning finite β) is made. In Sections 4
and 5 the relation to Hamilton-Jacobi equations and Hele-Shaw flows, respectively, is
exhibited. The extension to twisting potentials which are merely continuous and the
relation to random twistings is discussed in Section 6.2.

Acknowledgements. — We are grateful to David Witt Nyström for illuminating dis-
cussions on the Hele-Shaw flow. We thank the referees for valuable comments and
suggestions improving the presentation of the paper.

2. The zero-temperature limit of the Kähler-Ricci flow

2.1. Notation and setup. — Let X be an n-dimensional compact complex manifold.
We will identify symmetric two-tensors with two-forms of type (1, 1) on X using J in
the usual way: if g is a symmetric tensor, then the corresponding form ω := g(·, J ·),
is said to be Kähler if ω is closed and g is strictly positive (i.e., g is a Riemannian
metric). We will assume that X is Kähler, i.e., it admits a Kähler metric. On a Kähler
manifold the De Rham cohomology class [η] ∈ H2(X,R) defined by a given closed
real two form η of type (1, 1) may (by the “∂∂-lemma”) be written as

(2.1) [η] = {η + ddcu | u ∈ C∞(X)}, ddc :=
i

2π
∂∂.

In our normalization the Ricci curvature form Ric(ω) of a Kähler metric ω on X is
defined, locally, by

Ric(ω) := −ddc log
ωn

dV (z)
,

where z are local holomorphic coordinates on X and dV (z) denotes the corresponding
Euclidean volume. The form Ric(ω) represents, for any Kähler metric ω, minus the
first Chern class c1(KX) ∈ H2(X,R) of the canonical line bundle det(T ∗X).

2.1.1. Setup. — Specifically, our geometric setup is as follows: we assume given a
family θβ of closed real (1, 1)-forms (the “twisting forms”) with the asymptotics

θβ = θ + o(1),

as β →∞ (in L∞-norm). We will assume that

(2.2) β−1c1(KX) + [θβ ] > 0

as (1, 1)-cohomology classes, i.e., there exists a semi-positive form χβ in the class
c1(KX)/β+[θβ ] (we will fix one such choice for each β > 0). This assumption ensures
that the corresponding twisted Kähler-Ricci flow

(2.3) ∂ω(t)

∂t
= − 1

β
Ric(ω(t)) + θβ , ω(0) = ω0
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exist for all t > 0 and β > 0.(1) The extra flexibility offered by β-dependence of θβ will
turn out to be quite useful (for example, taking θβ := θ + 1

β Ric(ω) for θ defining a
semi-positive cohomology class, ensures that the semi-positivity condition (2.2) holds).

More precisely, we will refer to the flow above as the non-normalized twisted Kähler-
Ricci flow (or simply the non-normalized KRF) to distinguish it from its normalized
version:

(2.4) ∂ω(t)

∂t
= − 1

β
Ric(ω(t))− ω(t) + θβ , ω(0) = ω0.

As is well-known the two flows are equivalent under a scaling combined with a time
reparametrization: denoting by ω̃(s) the non-normalized KRF one has

1

s+ 1
ω̃(s) = ω(t), et := s+ 1,

(the equivalence follows immediately from the fact that Ric(cω) = Ric(ω), for any
given positive constant c).

In order to write the flows in terms of Kähler potentials we fix a Kähler metric ω
and represent

ω̃(s) = (ω0 + sχβ) + ddcϕ̃(s), ϕ̃(0) = 0

for the fixed semi-positive form χβ in 1
β c1(KX) + [θβ ] (the first term ensures that the

equation holds on the level of cohomology). Then the non-normalized Kähler-Ricci
flow (2.3) is equivalent to the following Monge-Ampère flow:

∂ϕ̃(s)

∂s
=

1

β
log

(ω̃0 + sχβ + ddcϕ̃(s))n

ωn
+ fβ , ϕ̃(0) = 0

for the smooth function ϕ̃(s), which is a Kähler potential of ω̃(s) with respect to
the Kähler reference metric ω0 + sχβ , and where fβ is uniquely determined by the
equation

(2.5) θβ −
1

β
Ric(ω) = ddcfβ + χβ

together with the normalization condition

infX fβ = 0.

We will also assume that χβ is uniformly bounded from above, i.e.,

(2.6) χβ 6 C0ω,

for some constant C0, and hence χβ converge smoothly to χ ∈ [θ] as β → +∞ (2).
Accordingly, fβ converge smoothly to f uniquely determined by χ + ddcf = θ and

(1)In fact, it is enough to assume that c1(KX)/β + [θβ ] is nef (i.e., a limit of positive classes),
which is equivalent to the long time existence of the corresponding KRF [TZ06]. Indeed, the estimates
we get will be independent of the choice of reference form χ and hence the nef case can be reduced
to the semi-positive case by perturbation of the class [θ].

(2)The convergence result still holds without an upper bound on χβ (which does not hold when θ
is nef but not semi-positive), but the dependence on t in the estimates will be worse.
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infX f = 0. Since ω0 is smooth, up to enlarging C0 we can also assume that

(2.7) C−1
0 ω 6 ω0 6 C0ω.

Finally, even when the functions fβ are not uniformly bounded, Lemma 2.11 ensures
that the envelope Pω̂t(fβ) stays bounded from above if the functions fβ do not go
uniformly to +∞. After enlarging C0 one more time we can assume that

(2.8) Pω̂t(fβ) 6 C0, ∀β > 0, ∀t > 0.

Similarly, the normalized KRF is equivalent to the Monge-Ampère flow
∂ϕ(t)

∂t
=

1

β
log

(ω̂t + ddcϕ(t))n

ωn
− ϕ(t) + fβ ,

where
ω(t) = ω̂t + ddcϕ(t), ω̂t := e−tω0 + (1− e−t)χβ .

The corresponding scalings are now given by

ϕ̃(s) = et (ϕ(t) + cβ(t)) , cβ(t) =
n

β
(t− 1 + e−t)

(abusing notation slightly we will occasionally also write ωt = ω(t) = ωϕt).

Remark 2.1. — Under the scaling above a curve ϕ̃(s) of the form ϕ̃(s) = ϕ0 + sf

corresponds to a curve ϕ(t) of the form e−tϕ0 + (1− e−t)f − cβ(t).

2.2. Statement of the main results. — In the following section we will prove the
following more precise version of Theorem 1.1 stated in the introduction of the paper.

Theorem 2.2. — Let X be a compact Kähler manifold endowed with a family of twist-
ing form θβ as above. Denote by ω(β)(t) the flow of Kähler metrics evolving by the
(non-normalized) twisted Kähler-Ricci flow (2.3) with parameter β, emanating from
a given Kähler metric ω0 on X. Then

lim
β→∞

ω(β)(t) = P (ω0 + tθ)

in the weak topology of currents. On the level of Kähler potentials, for any fixed
time-interval [0, T ], the functions ϕ(β)(t) converge uniformly with respect to β in
the C 1,α(X)-topology (for any fixed α < 1) towards the envelope Pω0+tθ(0). More
precisely, fixing a reference Kähler metric ω on X,

0 6 ω(β)(t) 6 eC(1+1/β)t log(t+1)ω

and

−C − n log(1 + t))/β 6
∂ϕ(β)(t)

∂t
6 C

(
1 +

1

β
log(1 + t)

)
/t,

where the constant C only depends on θ through the following quantities: supX Trω(θ)

and on the constant C0 defined in (2.6), (2.7) and (2.8); it also depends on a lower
bound on the holomorphic bisectional curvature of the reference Kähler metric ω.
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The proof of Theorem 2.2 will be given in Section 2.4 and Section 2.5. In Section
2.6 we give an alternative proof of the uniform convergence in Theorem 2.2 without
using the laplacian bound.

The definition of the non-linear projection operators P and Pω0
will be recalled

in Section 2.3.2. The dependence of the constants above on the potential f of θ will
be crucial in the singular setting of Hele-Shaw type flows where f blows up on a
hypersurface of X, but, for some constant C ′ > 0, PC′ω(f) is finite (see Section 5).

Under special assumptions on X we get an essentially optimal bound on ω(β)(t):

Theorem 2.3. — Assume that X admits a Kähler metric ω with non-negative holo-
morphic bisectional curvature. Then the following more precise estimates hold

Trω(ω(β)(t)) 6 (t+ 1) max
{

supX Trω(ω0), supX Trω(θβ)
}
, ∀t > 0.

Moreover, for any Riemann surface (i.e., n = 1) the previous estimate holds without
any conditions on the Kähler metric ω.

The proof of Theorem 2.3 will be given in Section 2.4.5 (see Proposition 2.14).
In particular, letting β →∞ gives that

Trω(P (ω0 + tθ)) 6 (t+ 1) max{sup
X

Trω(ω0), sup
X

Trω(θ)},

which is also a consequence of the estimates in the “static” situation considered in
[Ber13] (of course, in the case when θ is semi-positive the latter bound follows directly
from the equality P (ω0 + tθ) = ω0 + tθ).

However, it should be stressed that, in general, it is not possible to bound ω(β)(t)

by a factor Cβt, even for a fixed β (see Proposition3.6). On the other hand, as we
show in Section 3.1 this is always possible if [θ] = [ω0] (and in particular positive).

2.3. Preliminaries

2.3.1. Parabolic comparison/maximum principles. — We will make repeated use of
standard parabolic comparison and maximum principles for smooth sub/super so-
lutions of parabolic problems of the form

∂u

∂t
= Du

for a given differential operator D acting on C∞(X) (or a subset thereof). We will
say that u is a sub (super) solution if (∂/∂t−D)u 6 0 (> 0).

Proposition 2.4 (Comparison principle). — Let X be a compact complex manifold
and consider a second order differential operator D on C∞(X) of the form

(Du)(x) = a(t, x)u(x) + Ft((dd
cu)(x)),

where a is a bounded function on [0,∞[ × X and Ft(A) is a family of increasing
functions on the set of all Hermitian matrices. If u and v are smooth sub- and super-
solutions, respectively, to the corresponding parabolic problem for D on X × [0, T ],
then u0 6 v0 implies that ut 6 vt for all t ∈ [0, T ]. In particular, the result applies to
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the heat flow of the time-dependent Laplacian ∆gt , defined with respect to a family of
Kähler metrics, and to the twisted KRF (normalized as well as non-normalized).

Proof. — For completeness (and since we shall need a slight generalization; see Re-
mark 2.7) we recall the simple proof. After replacing u with eAtu for A sufficiently
large we may as well assume that a(t, x) < 0. Assume to get a contradiction that it
is not the case, i.e., ut 6 vt does not hold on [0, T ] × X. Then, since u0 6 v0, the
function ut − vt attains its maximum at a point (t0, x0) with t0 > 0. We now carry
our computation at this point. By the maximum principle we have

ut(x)− vt(x) > 0,
∂(ut − vt)

∂t
(x) > 0, (∇gtu)(x) = (∇gtv)(x) = 0,

and (ddcut)(x) − (ddcvt)(x) 6 0. In particular, since a(t, x) < 0 and Ft is increasing
we have that

∂(ut − vt)
∂t

(x)− (Du−Dv)(x) > 0.

But this contradicts that u and v are sub/super solutions (since this implies the
reverse inequality 6 0). �

Remark 2.5. — The condition that X be a complex manifold (and the Kähler condi-
tion) have just been included to facilitate the formulation of the proposition. Moreover,
exactly the same proof as above shows that any first order term of theH(t, x, (∇u)(x))

forH smooth can be added to D above (as in the setting of Hamilton-Jacobi equations
considered in Section 4).

Proposition 2.6 (Maximum principle). — Let X be a compact complex manifold and
consider a second order differential operator D on C∞(X) of the form

(Du)(x) = Ft((dd
cu)(x)),

where Ft(A) is a family of increasing functions on the set of all Hermitian matrices.
Given a smooth function u(x, t) on X × [0, T ] we have that

– The following dichotomy holds: either the maximum of u(x, t) is attained at X×
{0} or at a point x ∈ X × ]0, T ] satisfying(∂u(x, t)

∂t
−D(u)

)
> −Ft(0),

– In particular, if Ft(0) = 0 for all t and( ∂
∂t
−D

)
6 0

on X × [0, T ], then the maximum of u(x, t) is attained at X × {0}.

Proof. — The first property is proved exactly as in the beginning of the proof of the
comparison principle. The second point then follows by replacing u with u − δt for
any number δ > 0. �
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Remark 2.7. — We will need a slight generalization of the comparison principle to
functions u(x, t) which are continuous on X × [0, T ] and such that u(·, t) is smooth
on X for any fixed t > 0 and u(x, ·) is quasi-concave on [0, T ] for x fixed, i.e., the
sum of a concave and a smooth function. Then we simply define ∂

∂tu(x, t) on ]0, T ]

as the left derivative i.e., ∂
∂tu(x, t) := limh→0(u(x, t + h) − u(x, t))/h for h < 0. In

particular, the notion of a subsolution still makes sense for u and the proof of the
comparison principle then goes through word for word. This is just a very special case
of the general notion of viscosity subsolution [CEL84] which, by definition, means
that the parabolic inequality holds with respect to the super second order jet of u
(which in our setting is just the ordinary jet in the space−direction and the interval
between the right and the left derivative in the time-direction). See [EGZ16] for the
complex setting, where very general comparison principles are established for viscosity
sub/super solution (which however are not needed for our purposes).

2.3.2. The projection operator P . — Let η be a given closed smooth real (1, 1)-form
on X and denote by [η] the corresponding De Rham cohomology class of currents
which may be represented as in formula (2.1), in terms of functions u ∈ L1(X). Under
this representation the subspace of all positive currents in [η] corresponds to the space
of all η-plurisubharmonic (η-psh for short) functions u, denoted by PSH(X, η), i.e.,
u is an upper semi-continuous (usc) function such that

ηu := η + ddcu > 0

in the sense of currents. We will always assume that PSH(X, η) is non-empty (which,
by definition, means that the class [η] is pseudo-effective). This is the weakest notion
of positivity of a class [η] ∈ H1,1(X,R), the strongest being that [η] is a Kähler class
(also called positive), which, by definition, means that it contains a Kähler metric.

Given a lower semicontinuous bounded function f one obtains an η-psh function
Pη(f) as the envelope

Pη(f)(x) := sup
u∈PSH(X,η)

{u(x) | u 6 f on X}.

The operator Pη is clearly a projection operator in the sense that Pη(u) = u if u is in
PSH(X, η) ∩ C 0(X). We then define

P (η) := η + ddc(Pη(0)),

which thus defines a positive current cohomologous to η. Equivalently, if one fixes
another reference form ω in [η], i.e.,

η = ω + ddcf

for some function f . Then

P (η) := ω + ddc(Pω(f)).

If the class [η] is semi-positive, i.e., PSH(X, η)∩C∞(X) is non-empty, then it follows
immediately from the definition that Pη(f) is bounded if f is. However, even if f is
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smooth Pη(f) will in general not be C 2-smooth. On the other hand, by [Ber13] Pη(f)

is almost C 2-smooth if the class [η] is positive:

Proposition 2.8. — Let ω be a Kähler form and f be a smooth function on X. Then
the complex Hessian ddc(Pω(f)) is in L∞. Equivalently, given any smooth form η

defining a positive class [η] the corresponding positive current P (η) in [η] is in L∞.
As a consequence,

(2.9) P (η)n = 1C η
n,

in the point-wise almost everywhere sense, where C is the corresponding (closed) co-
incidence set:

C := {x ∈ X | Pη(0)(x) = 0}.

In fact, we will get a new proof of the previous result using the Kähler-Ricci flow
(which can be seen as a dynamic version of the proof in [Ber13]); see Section 3.1.

Very recently the approximation scheme introduced in [Ber13] has been used to
improve the regularity of the envelope Pη(f) (see [Tos17], [CZ17]).

Remark 2.9. — Setting u := Pω(f) and Ω := {Pω(f) < f} the previous proposition
implies that the pair (u,Ω) can be characterized as the solution to the following free
boundary value problem for the complex Monge-Ampère operator with obstacle f ,
i.e., u 6 f on X and

(ω + ddcu)n = 0 in Ω u = f, du = df on ∂Ω

and ω + ddcu > 0 on X. In the case when n = 1 it is well-known that u is even
C 1,1-smooth [BK74], but the free boundary ∂Ω may be extremely irregular and even
if ω is real analytic it will, in general, have singularities [Sch77].

A key role in the present paper will be played by parametrized envelopes (where f
varies linearly with time).

Lemma 2.10. — Fix a Kähler metric ω on X. Given smooth functions ϕ and f on X
the function t 7→ ϕ(t, x) := Pω(ϕ + tf)(x) on R is concave for x fixed. Moreover,
locally on ]0,∞[ the corresponding curve ϕ(t) can be written as a uniform limit ϕε(t)
of concave curves with values in PSH(X,ω) ∩ C∞(X). Furthermore, if ∂ϕ(t)/∂t 6 g
for a continuous function g (the time derivative here means left derivative which
exists since the function is concave) then the family ϕε can be constructed so that
∂ϕε(t)/∂t 6 g.

Proof. — It follows immediately from its definition that the projection operator Pω
is concave and in particular locally Lipschitz continuous as a function of t. As for the
approximation property it seems likely that it can be deduced in a much more general
setting from an appropriate parametrized version of the approximation schemes for ω-
psh function introduced by Demailly. But here we note that a direct proof can be given
exploiting that ddcϕ(t) is in L∞ and in particular ϕ(t) is in C 1(X). Indeed, ϕε(t) can
be defined by using local convolutions (which gives local C 1-convergence) together
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with a partition of unity and finally replacing ϕε(t) with (1− δ1(ε))ϕε(t)− δ2(ε)t

for appropriate sequence δi(ε) tending to zero with ε. The point is that, by the
C 1-convergence the error terms coming from the first derivatives on the partition
of unity are negligible and hence ϕε(t) is ω-psh up to a term of order o(ε). Indeed,
setting

ϕε(t) :=

m∑
i=1

ρiϕ
(i)
ε (t), 1 =

m∑
i=1

ρi, ρi ∈ C∞c (X)

and using Leibniz rule gives ddcϕε(t) =
∑m
i=1(ρidd

cϕ
(i)
ε (t)+Ri(ϕ

(i)
ε )) where the second

term R(ϕε) only depends on the first order jet of φ. Now, by the local C 1-convergence
R(ϕε) = R(ϕ)+o(ε). But R(ϕ) vanishes (since ϕ = ρ1φ+... and ddcϕ = ρ1dd

cϕ+· · · )
and hence ddcϕε(t) =

∑m
i=1 ρidd

cϕ
(i)
ε (t) + o(ε). Finally, from the definition of convo-

lution we have ddcϕε(t) +ω > ω−ω ?χε > −Cεω (where χε is the smoothing kernel)
and ∂ϕε(t)/∂t 6 g + Cε (for some positive constant C) and hence we may first take
δ1(ε) = Cε and then δ2(ε) = Cε(1 + sup |g|). �

We will also have use for the following generalized envelope associated to a given
compact subset K of a Kähler manifold (X,ω) and a lower semicontinuous function f
on X:

P(K,ω)(f)(x) := sup
u∈PSH(X,ω)

{u(x) | u 6 f on K}

(the function VK,ω := P(K,ω)(0) is called the global extremal function of (K,ω) in
[GZ05]).

We recall that a subset K in X is said to be non-pluripolar if it is not locally
contained in the −∞-set of a local psh function.

Lemma 2.11. — Suppose that f is a lower semicontinuous function on a compact
Kähler manifold (X,ω) taking values in ]0,∞] such that f is bounded from above
on K, where K is non-pluripolar. Then the function P(K,ω)(f) is bounded from above.
As a consequence, if X = K and f is locally bounded on the complement of an analytic
subvariety, then P(X,ω)(f) is bounded from above.

Proof. — By assumption P(K,ω)(f) 6 P(K,ω)(0) + C for C a sufficiently large con-
stant. But it is well-known that P(K,ω)(0) is finite if and only if K is non-pluripolar
[GZ05, Th. 5.2]. The last statement of the lemma then follows by fixing a coordi-
nate ball B contained in the open subset where f is locally bounded and using that
P(X,ω)(f) 6 P(B,ω)(f) <∞. �

In general, P(K,ω)(f) is not upper semicontinuous. But we recall that K is said to
be regular (in the sense of pluripotential theory) if P(K,ω)(f) is continuous (and hence
ω-psh) for any continuous function f (see[BBWN11] and references therein).

2.4. A priori estimates. — The key element in the proof of Theorem 2.2 is the Lapla-
cian estimate which provides a uniform bound on the metrics ω(β)(t) on any fixed time
interval. There are various well-known approaches for providing such an estimate for
a fixed β, using parabolic versions of the classical estimate of Aubin and Yau and
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its variants. However, in our setting one has to make sure that all the estimates are
uniform in β and that they do not rely on a uniform positive lower bound on ω(β)(t)

(which is not available).

2.4.1. The Laplacian estimate in the one dimensional case. — We start with the one-
dimensional case where the Laplacian estimate becomes particularly explicit:

Proposition 2.12. — When n = 1 we have, for the normalized KRF,

Trω(ω(β)(t)) 6 max
{

supX Trω(ω0), supX Trω(θβ − β−1 Ric(ω))
}
.

For the non-normalized KRF using the change of variables ω̃(s) = (s+1)ω(t), with
et = s+ 1 we obtain the estimate

ω̃(s) 6 (s+ 1) max
{

supX Trω(ω0), supX Trω(θβ − β−1 Ric(ω))
}
,

as stated in Theorem 2.3.

Proof. — We write the normalized KRF as

h := log
ωϕt
ω

= β
(
ϕt − fβ +

∂ϕt
∂t

)
.

Applying the parabolic operator 1
β∆t−∂/∂t, where ∆t(= ddc/ωϕt) denotes the Lapla-

cian with respect to the metric ωϕt , to the equation above gives

1

β
∆th−

∂

∂t
h =

1

ωϕt
(ddcϕt − ddcfβ) + ∆t

∂ϕt
∂t
− ∂

∂t
h.

Now
∂

∂t
h :=

∂

∂t
log
(e−tω0 + (1− e−t)χβ + ddcϕt

ω

)
=

1

ωϕt

(
−e−tω0 + e−tχβ + ddc

∂ϕt
∂t

)
.

Hence, the two terms involving ∂ϕt/∂t cancel, giving

(2.10) 1

β
∆th−

∂

∂t
h =

ω

ωϕt

(
∆ω(ϕt − fβ))− e−t(χβ − ω0)/ω

)
,

i.e.,

ωϕt

( 1

β
∆th−

∂

∂t
h
)

+ ddcfβ + e−t(χβ − ω0) = ddcϕt,

which in terms of ω(t) (:= ω0 + (1− e−t)(χβ − ω0) + ddcϕt) becomes

ωϕt

( 1

β
∆th−

∂

∂t
h
)

+ ddcfβ + χβ = ω(t).

Applying the parabolic maximum principle to h concludes the proof. Indeed, there
are two alternatives: either h has its maximum on X × [0, T ] (for T fixed) at t = 0

which implies that Trω ω(t) 6 Trω ω0 on X × [0, T ], or the maximum of h is attained
at a point (x, t) in X× ]0, T ]. In the latter case Trω ω(t) 6 supX Trω(ddcfβ +χβ) 6 C
(since ddcfβ + χβ = θβ − 1

β Ricω = θ + o(1)). �
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2.4.2. The upper bound on ϕ(β)
t . — Next, we come back to the general case. For nota-

tional convenience we will drop the superscript β. Writing the normalized KRF flow
as

−∂(ϕt − fβ)

∂t
+

1

β
log

(ω̂t + ddcfβ + ddc(ϕt − fβ))n

ωn
= ϕt − fβ ,

it follows immediately from the parabolic maximum principle that

ϕt(x)− fβ(x) 6 max

{
supX(0− fβ), 1

β supX log
(ω̂t + ddcfβ + 0)n+

ωn

}
6 A/β,

where A only depends on the upper bounds of θβ . Here η+ = η if η > 0 and 0

otherwise. To see how the maximum principle can be applied one can consider a
point (t0, x0) where ϕt − fβ attains a maximum. At this point ddcϕt − fβ 6 0 hence
the form (ω̂t + ddcfβ)(x0) is semipositive and the computation carries out as usual.
In particular,

ϕt 6 Pω̂t(fβ) +A/β

and, as a consequence,

6 PC′ω(fβ) +A/β,

where C ′ is any constant satisfying χβ 6 C ′ω and ω0 6 C ′ω (thus ensuring that
PSH(X, ω̂t) ⊂ PSH(X,C ′ω)).

2.4.3. The lower bounds on ∂ϕ̃s/∂s and ∂ϕt/∂t. — Differentiating the non-normalized
KRF with respect to s gives, with g(x, s) := −∂ϕ̃s(x)/∂s,

∂g

∂s
− 1

β
∆sg = − 1

β
Trs(χβ) 6 0.

Hence, by the parabolic maximum principle the sup of g is attained at t = 0 which
gives

−∂ϕ̃s
∂s
6 C1, C1 = supX

(
− 1

β
log

ωnϕ0

ωn
− fβ

)
where C1 thus only depends on the strict positive lower bound of ωnϕ0

and on infX(fβ)

(which by our normalizations vanishes).
Next, using that

∂ϕ̃s
∂s

=
∂ϕt
∂t

+ ϕt + nt/β

gives

(2.11) ∂ϕt
∂t
> −C1 − ϕt − nt/β > −C ′1 − nt/β

using the previous upper bound on ϕt.

2.4.4. The lower bound on ϕt. — It follows immediately from the previous bound that

ϕt > ϕ0 − C ′1t− nt2/2β.

J.É.P. — M., 2018, tome 5



From the Kähler-Ricci flow to moving free boundaries and shocks 535

2.4.5. The Laplacian bound. — We will use Siu’s well-known variant [Siu87, p. 98–99]
of the classical Aubin-Yau Laplacian estimate.

Lemma 2.13. — Given two Kähler forms ω′ and ω such that ω′n = eFωn we have that

∆ω′ log Trω(ω′) >
Trω(−Ric(ω′))

Trωω′
−BTrω′ω,

where −B 6 0 is a lower bound on the holomorphic bisectional curvature of ω.

We start with the case when X admits a Kähler metric ω with non-negative holo-
morphic bisectional curvature. In this case we can take B = 0.

Proposition 2.14. — Suppose that the Kähler metric ω has non-negative holomorphic
bisectional curvature. Then

Trω(ω(β)(t)) 6 max
{

supX Trω(ω0), supX Trω(θβ)
}
, ∀t > 0.

Proof. — Setting
H := log Trω(ωt),

where ωt = ω̂t + ddcϕ(β)(t), we get, using Siu’s inequality,

−∂H
∂t

+
1

β
∆ωtH >

Trω(e−tω0 − e−tχβ) + Trω(ddcϕ
(β)
t − ddcfβ − β−1 Ric(ω))

Trω(ωt)

=
Trω(ωt)− Trω(θβ)

Trω(ωt)
.

The rest of the proof then proceeds precisely as in the Riemann surface case. �

In the general case we get the following

Proposition 2.15. — There is a constant C such that, for β > β0 large enough

ω(β)(t) 6 eC(1+1/β)(1+t)etω,

where C depends on the same quantities as in the statement of Theorem 2.2.

Proof. — Recall that by abuse of notation we set ωt = ω̂t + ddcϕ
(β)
t , and ω̂t :=

e−tω0 + (1− e−t)χβ . By the Laplacian inequality (Lemma 2.13) we have, by setting
H := log Trω(ωt),

β−1B Trωt(ω) +
(
β−1∆ωtH − ∂tH

)
>

Trω(ddcϕ
(β)
t − ddcfβ − β−1 Ric(ω))− e−t Trω(χβ − ω0)

Trω(ωt)

=
Trω(ωt)− Trω(θβ)

Trω(ωt)

thanks to the cancelation of the terms involving ∂tϕ(β)
t , just as before. To handle the

first term in the left-hand side above we note that

ω 6 C0e
tω̂t,
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where 1/C0 is a positive lower bound for ω0. Since Trωt ω̂t = n − ∆ωtϕ
(β)
t we thus

get, by setting
G(x, t) := H −BC0e

tϕ
(β)
t − f(t),

for any given function f(t) of t,

−∂tf−C0B∂t(e
tϕ

(β)
t )+nβ−1BC0e

t+
(
−∂tG+ β−1∆ωtG

)
>

Trω(ωt)− Trω(θβ)

Trω(ωt)
.

Next we note that, thanks to the lower bound on ∂ϕt/∂t (see (2.11)) we have

∂(etϕt)

∂t
> −et

(
C1 +

nt

β

)
.

Hence, taking f(t) = C2(1 + t)(1 + 1/β)et for C2 sufficiently large (depending on
C1, C0, B, n) gives (

− ∂

∂t
+

1

β
∆ωt

)
G >

Trω(ωt)− Trω(θβ)

Trω(ωt)
.

This shows that the estimate on Trω ωt we get from the parabolic maximum principle
applied to G only depends on χβ through the upper bound on ϕt (which in turn
depends on an upper bound on χβ and is of the order 1/β). �

2.4.6. The upper bound on ∂ϕt/∂t and ∂ϕ̃s/∂s. — From the upper bound on ω(t)

and the defining equations for the KRFs one directly obtains bounds on ∂ϕt/∂t and
∂ϕ̃s/∂s. However, better bounds can be obtained by a variant of the proof of the
lower bounds on ∂ϕt/∂t and ∂ϕ̃s/∂s. Indeed, differentiating the normalized and the
non-normalized KRFs, respectively gives

(2.12) ∂∂ϕ̃s/∂s

∂s
−∆s

∂∂ϕ̃s/∂s

∂s
− Trs χβ = 0

and

(2.13) ∂(et∂ϕt/∂t)

∂t
−∆t

∂(et∂ϕt/∂t)

∂t
− Trt(χβ − ω0) = 0.

Using that ω(s) = etω(t), ds/d = e−tdt/d and ∂ϕ̃s/∂s = ∂ϕt/∂t+ϕt +nt/β the first
equation above becomes

∂(∂ϕt/∂t+ ϕt + nt/β)

∂t
−∆t

∂(ϕt + nt/β)

∂t
− Trt χβ = 0.

Hence, taking the differences between equations (2.12) and (2.13) gives that g :=

et∂ϕt/∂t− ∂ϕt/∂t− ϕt − nt/β satisfies
∂g

∂t
−∆t

∂g

∂t
= −Trt ω0 6 0.

Accordingly, the parabolic maximum principle reveals that the sup over X of
et∂ϕt/∂t− ∂ϕt/∂t− ϕt − nt/β is decreasing, thanks to the upper bound on ϕt,

∂ϕt
∂t
6

supX Pt(fβ) + (A+ nt)/β)

(et − 1)
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(this is a minor generalization of the estimate in [TZ06]). Finally, this yields

∂ϕ̃s
∂s
6 C ′′

1 + β−1 log(1 + s)

s
.

2.5. Existence and characterizations of the large β limit of the KRF. — By the
previous estimates there is a subsequence of ϕ(β)(t) which converges uniformly (and
even in C 1,α-norm) to a limiting Lipschitz curve ϕ(t) with values in PSH(X, ω̂t). As
we next show ϕ(t) is uniquely determined, i.e., the whole family converges to ϕ(t).

Proposition 2.16. — The large β-limit of ϕ(β)(t) of the normalized KRF exists: it
is equal to the curve defined as the sup over all curves ψ(t) in PSH(X,ω) such that
ψ(0) = ϕ(0) and such that ψ(t) is locally Lipschitz in t (for t > 0) and in C 1(X), for
a fixed t and

∂ψ(t)

∂t
6 −ψ(t) + f

(in the weak sense), or equivalently such that

(ψ(t)− f)et

is decreasing in time.

Proof. — By the second order a priori estimates we have

dϕ(β)(t)

dt
6
C(t)

β
− ϕ(β)(t) + fβ

and hence the limiting Lipschitz curve ϕ(t) satisfies

dϕ(t)

dt
6 −ϕ(t) + f

in the weak sense, i.e., ϕ(t) is a candidate for the sup appearing in the statement of
the proposition. Alternatively, we get

d
(
(ϕ(β) − fβ)(et − (C/β)et)

)
dt

6 0,

i.e.,

(ϕ(β) − fβ)(t) 6
1

(1− C/β)
e−tgβ(x, t),

where gβ(x, t) is decreasing in time. Hence, after passing to a subsequence the limit
satisfies

(ϕ− f)(t) 6 e−tg(x, t),

where g(x, t) is decreasing in time.
Next, by the parabolic maximum principle ϕ(β)(t) is the sup over all smooth curves

uβ(t) with values in (the interior of) PSH(X, ω̂t) such that uβ(0) = ϕ(0) and

duβ
dt
6

1

β
log

(ω̂t + ddcuβ(t))n

ωn
− (uβ(t)− fβ)
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on a fixed time-interval [0, T ]. Now take a smooth curve v(t) from [0, T ] to
PSH(X, ω̂t) ∩ C∞(X) such that and v(0) = ϕ(0) and such that

d

dt
v(t) 6 −(v(t)− f).

We set
vε(t) := (1− ε)v(t)− ε,

ensuring that
d

dt
vε(t) 6 −vε(t)− f − ε

and
(ω̂t + ddcvε(t))

n > εnω̂nt > ε
nC(T )ωn.

Hence, for β sufficiently large (depending on the lower bound C(T ) of the positivity
of ω̂nt on [0, T ] and the convergence speed of fβ towards f),

dvε(t)

dt
6

1

β
log

(ω̂t + ddcvε(t))
n

ωn
− vε(t)− fβ .

But then it follows from the parabolic maximum principle that vε(t) 6 ϕβ,ε(t),
for β � 1, where ϕβ,ε(t) satisfies the same KRF as ϕ(β)(t), but with initial value
(1− ε)ϕ0 + εv0. By the maximum principle we have∣∣ϕβ,ε(t)− ϕ(β)(t)

∣∣ 6 Cε
and hence letting β →∞ gives, for any limit ϕ(t) of ϕ(β)(t)

vε(t) 6 ϕ(t) + Cε.

Since ε was arbitrary this gives v(t) 6 ϕ(t). All that remain is thus to show that
the smoothness assumption on v(t) can be removed. This could be done by working
with the notion of viscosity subsolutions [EGZ16], but here we will use a more direct
approach by first noting that the sup above is realized by Pω̂t(e−tϕ0 + (1 − e−t)f),
as shown in the next proposition. Then we can use the regularization in Lemma 2.10
together with the slight generalization of the parabolic comparison principle formu-
lated in Remark 2.7) to conclude. �

Proposition 2.17. — The sup in the previous proposition coincides with Pω̂t(e−tϕ0 +

(1− e−t)f).

Proof. — It will be convenient to use the equivalent “non-normalized setting” which
means that we replace the convex combination above with ϕ0 + tf and we prove that
a(t) := Pt(ϕ0+tf)−tf , where Pt = Pω0+tχ (for any smooth closed semipositive (1, 1)-
form χ), is decreasing, i.e., that a(t + s) − a(t) 6 0 for any fixed t, s > 0 (compare
Remark 2.1). To this end we rewrite the difference above as

a(t+ s)− a(t) = Pt+s(ϕ0 + tf + sf)− Pt(ϕ0 + tf)− sf
= Pt+s((1− λ)ϕ0 + λψt)− Pt(ψt)− sf,

where
ψt := ϕ0 + tf, λ := (t+ s)/t.
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In particular, λ > 1 and hence it follows from the very definition of the envelope P
that

Pt+s((1− λ)ϕ0 + λψt) 6 (1− λ)ϕ0 + λPt(ψt).

Indeed, by writing

ω0 + tχ =
λ− 1

λ
ω0 +

1

λ
(ω0 + (t+ s)χ)

it can be easily seen that the function

u :=
λ− 1

λ
ϕ0 +

1

λ
Pt+s((1− λ)ϕ0 + λψt)

is (ω0 + tχ)-psh and u 6 ψt, ultimately giving

a(t+ s)− a(t) 6 (1− λ)ϕ0 + λPt(ψt)− Pt(ψt)− sf
6 (λ− 1)tf − sf = 0.

A similar direct proof can be given for the normalized KRF, but using instead λ =

(1− e−(t+s))/(1− e−t). �

Remark 2.18. — It follows from Proposition 2.17 that the parametrized non-
coincidence sets Ωt := {Pωt(ϕ+ tf) < (ϕ+ tf)} are, in fact, increasing in t.

2.6. Alternative proof of the uniform convergence in Theorem 2.2. — It is possi-
ble to prove the uniform large β-convergence of the flows ϕ(β)(t) directly without the
Laplacian estimate and without going through the characterization in terms of curves
appearing in Proposition 2.16.

For this purpose we recall that ϕ(β)(t) solves the non-normalized Kähler-Ricci flow

(ω0 + tχβ + ddcϕ(β)(t))n = eβ(∂tϕ
(β)(t)−fβ)ωn,

and we want to prove that ϕ(β)(t) converge as β → +∞ uniformly to Pωt(ϕ0 + tf),
where ωt := ω0 + tχ, χ = limβ→+∞ χβ , f = limβ→+∞ fβ .

2.6.1. The upper bound. — We first establish an upper bound for ϕ(β)(t). Consider

ψt := ϕ0 + tfβ +
Ct+ nt log(t+ 1)

β
,

where C > 0 is a constant to be chosen later. If the function ϕ
(β)
t − ψt attains a

maximum at some (t0, x0) ∈ [0, T ]×X with t0 > 0 then, at (t0, x0),

0 6 (ω0 + tχβ + ddcϕ
(β)
t ) 6 (ω0 + tχβ + ddcϕ0 + tddcfβ)

= (ω0 + ddcϕ0 + tθβ − tβ−1 Ric(ω))

6 C ′(1 + t)ω,

for some uniform constant C ′ (since we assumed that θβ = θ + o(1)). Hence if C > 0

is large enough (independent of β), we have, at (t0, x0),

(ω0 + tχβ + ddcϕ
(β)
t )n < eC(1 + t)nωn.
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Also, the maximum principle reveals that, at (t0, x0),

∂tϕ
(β)
t > ∂tψt > fβ +

C + n log(t+ 1)

β
,

which gives a contradiction. Thus if C > 0 is large enough (independent of β) then
ϕ

(β)
t 6 ψt, for all t > 0 giving the upper bound.

2.6.2. The lower bound. — The lower bound is then proved as before using regulariza-
tion and the parabolic comparison principle. Alternatively, the lower bound can also
be proved directly (without regularization) using the monotonicity property (Propo-
sition 2.17) and the viscosity comparison principle

ϕ(β)(t) > vt := (1− δ)Pt(ϕ0 + tfβ) +
Ctn log δ

β
, δ ∈ (0, 1),

for some uniform constant C. Indeed, assume that the function ϕ
(β)
t − vt attains a

minimum on [0, T ] ×X at some point (t0, x0) with t0 > 0. Then using the notion of
viscosity subsolutions [EGZ11] we see that, at (t0, x0),

(ω0 + tχβ + ddcϕ
(β)
t )n > δnωn0 .

On the other hand the function vt(x) is uniformly semiconcave in t and its left deriv-
ative satisfies ∂tvt 6 (1− δ)fβ +Cnβ−1 log δ (as follows from Proposition 2.17). Also,
by the maximum principle the left derivative in t of ϕ(β)

t − vt at (t0, x0) is 6 0, hence

∂tϕ
(β)
t − fβ 6 Cnβ−1 log δ.

Thus choosing C > 0 large enough (dependent only on ω0, ω) we see that the minimum
of ϕ(β)

t − vt is attained at t0 = 0 giving the lower bound.
Finally, since χβ converges smoothly to χ and fβ converge smoothly to f , the

bounds above allow us to let β → +∞ to conclude the proof of the uniform conver-
gence ϕ(β)

t → Pω0+tχ(ϕ0 + tf) in each fixed interval [0, T ].

Remark 2.19. — More generally, the uniform convergence holds even if f is merely
continuous (see Section 6).

3. Large time asymptotics of the flows

In order to study the joint large t and large β-limit of the non-normalized Kähler-
Ricci flows ω(β)(t) introduced in the previous section we consider, as usual, the nor-
malized Kähler forms ω(β)(t)/(t+1) (which have uniformly bounded volume) evolving
according to the normalized Kähler-Ricci flow (2.4). Our first observation is that the
following double limit always exists:

(3.1) lim
t→∞

lim
β→∞

ω(β)(t)/(t+ 1) = P (θ),

for any initial Kähler metric ω0 (where the large t-limit holds in the weak topology of
currents). This follows immediately from Theorem 2.2 combined with the following
lemma.
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Lemma 3.1. — Assume that χ > 0 and set ω̂t := e−tω0 + (1 − e−t)χ. Then, for any
given smooth functions ϕ0 and f on X,

Pω̂t(e
−tϕ0 + (1− e−t)f) −→ Pχ(f)

as t→∞, in the L1-topology. In particular, if [θ] > 0 then P (e−tω0 + (1− e−t)θ)→
P (θ) in the weak topology of currents.

Proof. — Set ψt := Pω̂t(e
−tϕ0 + (1 − e−t)f) =: Pω̂t(f(t)). Since ψt ∈ PSH(X,Cω)

for C sufficiently large and ψt is uniformly bounded the family ψt is relatively compact
in the L1-topology. We denote by ψ∞ a given limit point of ψt, which clearly is in
PSH(X,χ). Moreover, ψt 6 f(t) implies ψ∞ 6 f and hence ψ∞ 6 Pχf . To prove the
converse we set ψ := Pχf and fix δ > 0. Observe that
ddc(1− δ)ψ + ω̂t > (1− δ)ddcψ + (1− e−t)χ > (1− δ)(ddcψ + χ) > 0, for t� 1.

Hence, since ψ is bounded we get
(1− δ)ψ 6 Pω̂t(f + Cδ) 6 Pω̂t(ft) + Cδ + C ′e−t.

Hence, letting first t→∞ gives (1− δ)ψ 6 ψ∞+Cδ. Finally, letting δ → 0 concludes
the proof. �

In the following two sections we will look closer at the situation appearing in the
two extreme cases, where 1

β c1(KX) + [θβ ] is positive and trivial, respectively. Then
we will make some comments on the intermediate cases and the relations to previous
results in complex geometry concerning the case when β is fixed.

3.1. The case when c1(KX)/β + [θβ ] = [ω0]: a dynamic construction of envelopes

In this section we will consider the situation when the normalized KRF preserves
the initial cohomology class. Given a volume form dV on X and a smooth function f
on X, setting θ = ddcf + ω0 and

θβ = θ +
1

β
Ric(ω)

for a fixed choice of Kähler metric ω ∈ [ω0] the normalized KRF in [ω0] on the level
of Kähler potentials becomes

(3.2) ∂ϕ(β)(t)

∂t
=

1

β
log

(ω0 + ddcϕ(β)(t))n

ωn
− ϕ(β)(t) + f.

Theorem 3.2. — Let (X,ω) be a compact Kähler manifold of dimension n and fix a
volume form dV on X. Given a smooth function f we denote by ϕ(β)(x, t) the solution
of the evolution equation (3.2) with initial data ϕ0 and set

ϕ
(∞)
t := Pω0(e−tϕ0 + (1− e−t)f).

Then there is a uniform constant C > 0 such that

(3.3) supX
∣∣ϕ(β)
t − ϕ(∞)

t

∣∣ 6 C log β

β

and
(3.4)

∣∣∣∂ϕ
∂t

∣∣∣ 6 Ce−t, |ddcϕt|ω0
6 C.
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Proof. — Note that g := et∂tϕ
(β)
t satisfies

∂g

∂t
− 1

β
∆tg = 0

and hence, by the parabolic maximum principle,

|g(x, t)| 6 supX |g(x, 0)| = 1

β
log((ω0 + ddcϕ0)n/ωn) + f 6 C,

for some uniform constant C (independent of β > 1). Hence
∣∣∂tϕ(β)

t

∣∣ 6 Ce−t. Now the
proof of Proposition 2.15 can be repeated word by word (using the auxiliary function
F (t) := −Ce−t) to give the desired bound for ddcϕ(β)

t .
Next, the rate of convergence in (3.3) can be proved by repeating the arguments in

Section 2.6 (for the lower bound one can take δ in Section 2.6 to be 1/β, for β > 1).
The details are left to the readers as an exercise. �

In particular, by (3.3)

supX
∣∣ϕ(β)
t − Pω0(f)

∣∣ 6 C( log β

β
+ e−t

)
and hence the envelope Pω0

(f) can be constructed from the joint large β and large
t-limit of the Monge-Ampère flow (3.2):

Pω0
(f) := lim

t→∞
ϕ

(βt)
t

in the C 0(X)-norm for any family of t-dependent βt such that βt → ∞ as t → ∞.
Interpreting βt as the “inverse temperature” this construction is thus analogous to
the method of simulated annealing algorithms used in numerics to find nearly optimal
global minima of a given energy type function by cooling down a thermodynamical
system (and decreasing the corresponding free energy). The analogy can be made
more precise using the gradient flow picture (which will be explored in a separate
publication) where the energy functional in question is the pluricomplex energy intro-
duced in [BBGZ13]. It would be interesting to see whether this is numerically useful
in concrete situations, for example by adapting the numerical implementations for the
Kähler-Ricci flow on a toric manifold introduced in [DHH+08] (concerning a finite β).

It may be illuminating to compare the dynamic construction of the envelope Pω(f)

above with the dynamic PDE construction of the convex envelope of a given smooth
function f on Rn introduced in [Ves99]:

∂ψ(t)

∂t
=
√

1 + |∂xψ(t)|2 min{0, λ1(∂2
xψ(t))} ψ(0) = f,

i.e., the graph of the solution ψt evolves in the normal direction at each point, with
the speed min{0, λ1(∂2

xψ(t))} (expressed in terms of the first eigenvalue of the real
Hessian ∂2

xψ(t))); here ψ(t) is a solution in the viscosity sense. A variant of the lat-
ter construction, obtained by removing the first factor in the right-hand side of the
evolution equation above, was studied in [CG12] using stochastic calculus, where
exponential convergence was established with a uniform control bound on ∂2

xψ(t)),
which is thus analogous to the result in Theorem 3.2 above. Our approach can also
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be applied to convex envelopes by imposing invariance in the imaginary directions
(as in Section 4.3). But the main difference in our setting is that we start with an
arbitrary convex function ψ(0) and the dependence on f instead appears in the evo-
lution equation itself. Moreover, the large parameter β appears as a regularization
parameter ensuring that the solution remains smooth for positive times.

3.2. The case when the class 1
β c1(KX)+[θβ ] is trivial. — Next we specialize to the

case when 1
β c1(KX) + [θβ ] is trivial, which is the one relevant for the applications to

Hele-Shaw type flows and Hamilton-Jacobi equation (in the latter case KX is even
trivial). Equivalently, this means that the non-normalized KRF preserves the initial
cohomology class. In particular, letting β → ∞ reveals that [θ] is trivial and hence
we can write

θ = ddcf, infX f = 0

for a unique function f and then take

θβ := ddcfβ +
1

β
Ricω, fβ := f.

for a fixed Kähler form ω, i.e., by imposing the equation (2.5).
In this setting, the normalized flow always tends to zero as t→∞ (as the volume of

the class does). But, by the result in [Cao85], the non-normalized KRF flow converges
to a Kähler form ωβ :

Proposition 3.3. — For a fixed β > 0 the non-normalized Kähler-Ricci flow ω(β)(t)

emanating from any given form ω0 converges (in the C∞-topology), as t→∞, to the
unique solution ωβ ∈ [ω0] of the Calabi-Yau equation

(3.5) 1

V0
ωnβ =

e−βfωn∫
X
e−βfωn

,

where V0 is the volume of ω0. More precisely, under the normalizations above the
convergence holds on the level of Kähler potentials.

Remark 3.4. — By definition the volume form of the limiting Kähler metric is the
Boltzmann-Gibbs measure associated to the Hamiltonian function f , at inverse tem-
perature β, which gives a hint of the statistical mechanical interpretation of the large
β-limit.

It should be stressed that by the estimates in [Cao85] one has in this setting that

(3.6) ω(β)(t) 6 Cβω0

independently of t, which seemingly improves on the bounds in Theorem 2.2 and
Theorem 2.3 for large t (the proof uses a different application of the Laplacian es-
timate, along the lines of Yau’s original argument, which needs a two-sided bound
on the potential). But the point of the estimates in Theorem 2.3, where one gets a
linear growth in t is to get a multiplicative constant that is independent of β (at least
when t → ∞). In fact, for a generic f , it is impossible to get a constant Cβ in for-
mula (3.6) which is independent of β. Indeed, unless f vanishes identically the Gibbs
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measure in the right-hand side of the Calabi-Yau equation (3.5) blows up as β →∞,
concentrating on the subset of X where f attains its absolute minimum (= 0 with
our normalizations). Hence, for a generic f any limit point of ω(β)(∞) is a sum of
Dirac measures. Accordingly, the convergence in the previous proposition, motivates
(by formally interchanging the large t and large β-limits) the following

Proposition 3.5. — Let f be a smooth function on X and ω0 a Kähler form on X.
Then any limit point of the family (P (ω0+tddcf))n (in the weak topology) is supported
in the closed set F where f attains its absolute minimum. In particular,

– if f admits a unique absolute minimum x0 then

lim
t→∞

(P (ω0 + tddcf))n = V0δx0

weakly. Hence, the corresponding non-normalized Kähler-Ricci flows ω(β)(t) emanat-
ing from ω0 satisfy

lim
t→+∞

lim
β→+∞

ω(β)(t)n = V0δx0

in the weak topology.
– In general, under the normalization infX f = 0,

lim
t→+∞

Pω(ϕ0 + tf) = P(ω,F )(ϕ0)

(increasing pointwise) for any initial continuous ω-psh function ϕ0. In particular, if F
is not pluripolar, then

lim
t→∞

lim
β→∞

ω(β)(t) = ω∞

in the weak topology, where ω∞ is the positive current defined by ω0 + ddcP(ω0,F )(0).

Proof. — First observe that, under the normalization f(x0) = 0 and f > 0 we have
Pχ(f) = 0, as in this case χ = 0 and all psh functions on a compact manifold X are
constants. Next, by Lemma 3.1 Pω̂t((1− e−t)f) := Pt(ft)→ Pχf in the L1-topology.
Since Pt(ft) is in PSH(X,Cω) for C sufficiently large it follows from basic properties
of psh functions that supX Pt(ft)→ supX Pχ(f) = 0. Fixing ε > 0 this means that for
t > tε, supX Pt(ft) 6 ε/2 and hence the non-coincidence sets Ωt satisfy {f > ε} ⊂ Ωt
for t > tε. In particular, (ω̂t + ddcPω̂t((1 − e−t)f)) and hence its non-normalized
version (ω0 + ddcPω0(tf))n is supported in {f 6 ε} for t > tε, which concludes the
proof of the first statement. The first point then follows immediately.

To prove the second point we may assume that infX f = 0, hence the family
Pω(ϕ0 + tf) is increasing in t. By assumption Pω(ϕ0 + tf) 6 ϕ0 + tf = ϕ0 on F

and hence Pω(ϕ0 + tf) 6 P(ω,F )(ϕ0). To prove the reversed inequality we fix ε > 0

and u ∈ PSH(X,ω) such that u 6 ϕ0 on F . Since the sets {f 6 c} decrease to the
compact set F as c ↓ 0 and ϕ0 is continuous, there exists c > 0 small enough such
that {f 6 c} ⊂ {u− ε < ϕ0}. Now, for t > c−1 supX(u−ϕ0) we have u−ε 6 ϕ0 + tf ,

J.É.P. — M., 2018, tome 5



From the Kähler-Ricci flow to moving free boundaries and shocks 545

giving that the limit ϕ∞ of the increasing family Pω(ϕ0 + tf) is greater than u − ε.
As u and ε were chosen arbitrarily the conclusion follows.(3) �

3.3. Comparison with convergence properties for a finite β and canonical metrics

3.3.1. The big case. — Let us start by considering the case when θ = 0. Then, up to
a scaling, we may as well also assume that β = 1. When KX is nef and big, which
equivalently means that KX is semi-positive (by the base point freeness theorem) and
with non-zero volume,Kn

X > 0, it is well-known that the normalized Kähler-Ricci flow
emanating from any given Kähler metric ω0 on X converges, weakly in the sense of
currents, to the unique (possibly singular) Kähler-Einstein metric (or rather current)
ωKE on X [Tsu88, TZ06]. This fact implies the following

Proposition 3.6. — Assume that KX is nef and big, but not ample. Then it is not
possible to have an upper bound of the form ω(β)(t) 6 Cβt along the non-normalized
Kähler-Ricci flow, for t large.

Proof. — Fixing a semi-positive form χ in c1(KX) and representing ωKE = χ +

ddcϕKE the potential ϕKE may be characterized as the unique continuous solution in
PSH(X,χ) to the equation

(χ+ ddcϕ)n = eϕdVχ

(in the sense of pluripotential theory) where dVχ is the normalized volume form
determined by χ (i.e., Ric dVχ = χ). In particular, if KX is not positive (i.e., not
ample) then ωKE is not a bounded current. Indeed, assuming to get a contradiction
that ωKE 6 Cω0 the previous equation gives that ωnKE > δωn0 for some positive
constant δ. But this means that, up to enlarging the constant C we get ω0/C 6
ωKE 6 Cω0 which forces KX to be ample (for example, by the Nakai-Moishezon
criterion or by a direct regularization argument). �

More generally, essentially the same arguments apply to any smooth twisting form θ

and parameter β as long as c1(KX)/β + [θ] is nef and big.

3.3.2. The non-big case. — Again we start with the case when θ = 0 with KX nef,
but now not big. Assuming that the abundance conjecture holds, i.e., that KX is
semi-ample it was shown in [ST12] that the normalized Kähler-Ricci flow, emanating
from any given Kähler metric ω0, on X converges, weakly in the sense of currents, to
a canonical current ωX on X defined as follows: by the semi-ampleness assumption
there exists a holomorphic map F from X to a variety Y such that KX = F ∗A

where A is an ample line bundle on Y . In case Y is zero-dimensional the limit ωX
vanishes identically (as in Section 3.2). Otherwise, denoting by κ the dimension of Y
(which equals the Kodaira dimension of X), picking a Kähler form ωA in c1(A) and
taking χ := F ∗ωA, the limiting current ωX obtained in [ST12] can be realized as

(3)The same result holds even when F is non-pluripolar and ϕ0 is unbounded (using the domi-
nation principle in finite energy classes due to Dinew [BL12]).
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F ∗(ωA + ddcψ), where ψ is the unique continuous solution in PSH(Y, ωA) of the
equation

(ωA + ddcψ)κ = eψF∗(dVχ).

Next, we make some heuristic remarks about the connection to the double limit in
formula (3.1). We assume that KX is semi-ample and fix a smooth form θ in c1(KX),
a Kähler metric ω on X and define θβ and f by

θβ := θ − 1

β
Ricω, θ = ddcf + χ.

In particular, c1(KX)/β + [θβ ] = c1(KX) for all β. In the light of the result in [ST12]
one would expect that the corresponding twisted normalized KRF ω(β)(t) converges,
as t→∞, to the current F ∗(ωA+ddcψβ), where ψβ is the unique continuous solution
in PSH(X,χ) of the equation

(ωA + ddcψβ)κ = eβψβF∗(e
−βfωn).

We will make the hypothesis that this is the case. It can be shown that as β → ∞
there exist a (mildly singular) volume form µY on Y such that

F∗(e
−βfdVχ) = e−β(f+o(1))µY ,

where f(y) := infF−1({y}) f (using that the push forward F∗ amounts to integration
along the fibers of F which thus picks out the infimum of f over the fibers as β →∞;
the error term o(1) is uniform away from the branching locus of the map F ). But then
a variant of Theorem 3.2 (see [Ber13]) shows that ψβ → ψ∞ := PωA(f) and hence,
under the hypothetical convergence above,

lim
t→∞

lim
β→∞

ω(β)(t) = χ+ ddcPF∗ωA(F ∗f).

Finally, since KX =F ∗A we have PSH(X,χ)=F ∗ PSH(Y, ωA), forcing PF∗ωA(F ∗f)=

Pχ(f), i.e., the right-hand side above is equal to the current obtained by interchanging
the limits in the lhs (as in Lemma 3.1), i.e., the two limits may be interchanged under
the hypothesis above.

4. Applications to Hamilton-Jacobi equations and shocks

4.1. Background. — Let H be a smooth function on Rn. The corresponding
Hamilton-Jacobi equation (with Hamiltonian H) is the following evolution equation

(4.1) ∂ψt(y)

∂t
+H(∇ψt(y)) = 0, ψ|t=0 = ψ0

for a function ψ(x, t) on Rn × [0,∞[. It is a classical fact that, even if the initial
function ψ0 is smooth a solution ψt typically develops shock singularities at a finite
time T∗, i.e., it ceases to be differentiable in the space-variable (due to the crossing of
characteristics). In order to get a solution defined for any positive time the notion of
viscosity solution was introduced in [CL83, CEL84]. The momentary shock locus St
of such a solution ψt is defined by

St := {x | ψt is not differentiable at x}.
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When H is convex the classical Hopf-Lax formula provides an explicit envelope ex-
pression for a viscosity solution of the Cauchy problem for the HJ-equation (4.1) with
any given smooth initial data ψ0 (which, for example, appears naturally in optimal
control problems):

ψt(y) = inf
x∈Rn

{
ψ0(x) + tH∗

(
(x− y)/t

)}
,

expressed in terms of the Legendre transform:

g∗(y) := sup
x∈Rn

(x · y − g(x)).

On the other hand, in the case when H is non-convex, but the initial data ψ0 is
assumed convex, the second Hopf formula [BE84, LR86] provides a viscosity solution
which may be represented as

(4.2) ψt = (ψ∗0 + tH)∗.

This was shown in [BE84] using the theory of differential games and in [CL83] by a
more direct approach. In particular the viscosity solution ψt above remains convex for
all positive times and as a consequence its shock locus St has Hausdorff codimension
one (unless it is empty, as is the case for small t). More precisely, St is a union of
C 2-manifolds up to set of vanishing (n− 1)-dimensional Hausdorff measure [Alb94].

We recall that the viscosity terminology can be traced back to the fact that viscos-
ity solutions may often be realized as limits of smooth solutions ψ(β) of the following
perturbed (viscous) HJ-equations (where the constant β−1 plays the role of the vis-
cosity constant in fluid and gas dynamics):

(4.3) ∂ψt(y)

∂t
+H(∇ψt(y)) =

1

β
∆ψt(u)

as β →∞. For example, the following result holds:

Theorem 4.1 (Vanishing viscosity limit [CL83, Th. 3.1], [CEL84])
Assume that ψ

(β)
t are smooth solutions to the previous equation and that

a subsequence converges uniformly to ψt. Then ψt is a viscosity solution to the
HJ-equation (4.1).

In particular, under suitable growth assumptions, ensuring that the viscosity solu-
tion ψt is uniquely determined, the whole family converges to ψt. Note however that,
in general, ∆ψ

(β)
t will not be uniformly bounded (even locally), as this would entail

that the limit ψt is differentiable on Rn.
Next, we make the observation that in the case when the initial data ψ0 above is

taken to be |y|2/2 the second Hopf formula is equivalent to the Hopf-Lax formula for
the convex Hamiltonian |x|2/2:

Lemma 4.2. — Let Φ0 be a given function on Rn and denote by Φt the Hopf-Lax vis-
cosity solution to the HJ-equation with convex Hamiltonian |x|2/2 and initial data Φ0.
Then

ψt(y) :=
(
−Φt(y)t+ |y|2/2

)
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gives the viscosity solution to the HJ-equation with non-convex Hamiltonian H := Φ0

and initial data ψ0(y) := |y|2/2 provided by the second Hopf formula (and conversely).
In particular, the shock loci of Φt and ψt coincide.

Proof. — This follows immediately from comparing the Hopf-Lax formula and the
second Hopf formula. �

The previous lemma is consistent (as it must) with the fact that when ψ0(y) =

|y|2/2 the Hamiltonian H can, by the definition of the HJ-equation, be recovered as
minus the derivative at t = 0 of the corresponding viscosity solution ψt.

4.2. The adhesion model in cosmology. — The convex case where H(x) = |x|2/2 is
ubiquitous in mathematical physics and appears, in particular, in the adhesion model
for the formation of the large-scale structure in the early universe (known as the “cos-
mic web”) where Φ0 is proportional to the gravitational potential of the initial fluc-
tuations of the density field and the shock region St corresponds to emerging regions
of localized mass concentration (the adhesion model is an extension of the Zel’dovich
approximation beyond t > T∗) [GMS91, VDFN94, HSvdW14]. The corresponding
singularities of St and their metamorphosis as t evolves have been classified in di-
mensions n 6 3, for generic initial data, using the catastrophe theory of Lagrangian
singularities initiated by Arnold [AZS81, GMS91, Bog99, HSvdW14, KPSM92]. We
refer to the papers [GMS91, VDFN94, HSvdW14] for background on the adhesion
model. Here we just point out that in the setting of the adhesion model the Legendre
transform φt := ψ∗t of the corresponding function ψt appearing in the previous lemma
is given by

φt(x) = x+ tΦ0(x)

and the corresponding map
x 7−→ ∇xφt(x)

describes, in the Zel’dovich approximation, the displacement of a particle with initial
coordinate x to the position y a time t (in the physics literature the initial coordinate
space x is called the Lagrangian space and the position space y at time t is called the
Euler space; accordingly φt is often called the Lagrangian potential). The map above
is injective precisely for t < T∗. In the next section we will show that the adhesion
model can be realized as the zero-temperature limit of the twisted Kähler-Ricci flow
(using Lemma 4.2).

Remark 4.3. — When H(x) = |x|2/2 the vector field vt(y) := ∇ut(y) determined by
a solution ut of the corresponding HJ-equation satisfies Burgers’ equation:

∂vt(y)

∂t
+

1

2
∇ |vt(y)|2 = 0,

which is the prototype of a hyperbolic conservation law [Ser14] and non-linear wave
phenomena [GMS91].
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4.3. Relation to the Kähler-Ricci flow and Theorem 2.2. — The relation between
the Hamilton-Jacobi equation and the Kähler-Ricci flow, which does not seem to have
been noted before, arises when the linear viscosity term in the perturbed HJ-equation
(4.3) is replaced by the following non-linear one:

(4.4) ∂ψt(y)

∂t
+H(∇ψt(y)) =

1

β
log(∂2ψt(y))

for ψ0 strictly convex (for example, ψ0(y) = |y|2/2, as in the adhesion model above).
Here, for a real-valued C 2 function u in Rn we let ∂2u denote the real Hessian matrix
of u (hence ∂2ψt is the Hessian matrix of ψt in the space variable x). One virtue of
the latter evolution equation is that, as will be shown below, the smooth solution ψ(β)

t

remains convex (and even strictly so) for positive times.
We will consider the case when the Hamiltonian H is periodic, i.e., invariant under

the action of a lattice Λ on Rn by translations.(4) Without loss of generality we may
and will assume that a fundamental domain for Λ has unit volume. Since there are
no non-constant periodic convex functions on Rn the natural condition on the initial
function ψ0 is that it is in the class of all convex functions u which are quasi-periodic
in the sense that ψ(y) − |y|2/2 is Λ-periodic on Rn. We denote by CΛ the space of
all quasi-periodic convex functions on Rn. The point is that for any ψ ∈ CΛ the
Hessian ∂2ψ is periodic and the gradient map ∂ψ is Λ-equivariant and hence all terms
appearing in the equation (4.4) are Λ-periodic.

Lemma 4.4. — Equip the space CΛ with the sup-norm. Then the Legendre transform
φ 7→ ψ := φ∗ induces an isometry on CΛ and for any quasi-periodic function f

sup
φ6f
{φ} = f∗∗,

where the sup, that we shall denote by P (f), can be taken either over all convex
functions φ or over all quasi-periodic convex functions. Moreover, the subspace of
all φ in CΛ such that supx∈R(φ(x)− |x|2/2) = 0 is compact.

Proof. — The isometry property follows directly from the relation (φ+ c)∗ = φ∗ − c.
Next, if P ′f denotes the sup over all convex φ below f then, by the extremal property,
the function P ′f − |x|2/2 has to be Λ-periodic, as f − |x|2/2 is, i.e., P ′f is quasi-
periodic, as desired. Finally, it is well-known that if f is convex then P ′f = f∗∗.

The compactness is a consequence of the Arzelà-Ascoli theorem and the fact that
if φ is in CΛ then the periodic function (φ(x)− |x|2/2) is L-Lipschitz for a constant L
only depending on the diameter of a fundamental domain of Λ; see [Hul16, Lem. 3.14]
where further properties of the space CΛ are also established. �

In this setting Theorem 2.2 admits the following dual formulation:

(4)It seems likely that the general case could be studied by extending our results to (appropriate)
non-compact manifolds X or by approximation.
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Theorem 4.5. — Consider the perturbed HJ-equation (4.4) with Λ-periodic smooth
Hamiltonian H and strictly convex and quasi-periodic initial data ψ0. Denote by ψ(β)

the unique solution of the corresponding Cauchy problem such that ψ(β)
t is quasi-

periodic and strictly convex. Then ψ
(β)
t converges, as t → ∞, uniformly in space,

to ψt given by the second Hopf formula (4.2), which is the unique viscosity solution of
the HJ-equation (4.1) with initial data ψ0. Moreover, ψ(β)

t is strictly convex for any
t > 0, uniformly in β:

Tr
(
∂2ψ

(β)
t

)
>

1

t+ 1
min

{
supRn Tr(∂2ψ0),

1

supRn Tr(∂2H)

}
.

The trace operator in the theorem above is the usual trace of a n× n-matrix.

Proof. — To make the connection to the complex geometric setting we let X be the
abelian variety X := Cn/(Λ + iZn) and consider the following holomorphic T -action
on X:

([x+ iy], [a]) 7−→ [x+ iy + a],

where T denotes the real n-torus T := Rn/Zn and π(z) := [z] denotes the corre-
sponding quotient map. Let ω be the standard flat Kähler metric on X induced from
the Euclidean metric ω0 on Cn normalized so that ω0 = ddc|x|2/2 and fix a closed
T -invariant (1, 1)- form θ which is exact, i.e.,

θ = ddcf

for a T -invariant function f on X (uniquely determined up to an additive constant).
Now we can identify T -invariant elements in PSH(X,ω) with convex functions φ(x)

on Rn in the space CΛ (by setting φ := |x|2/2+π∗ϕ and using that ddc(|x|2/2+π∗ϕ) =

ω0 +ddcπ∗ϕ > 0). Accordingly, the non-normalized KRF in the class [ω] with twisting
form θ thus gets identified with the following parabolic equation on Rn:

(4.5) ∂φ
(β)
t (x)

∂t
=

1

β
log(∂2φ

(β)
t (x)) +H(x),

where H is the Λ-periodic function on Rn corresponding to f and φ(β)
t ∈ CΛ. More

precisely, φ(β)
t is smooth and strictly convex. The key observation now is that setting

ψ
(β)
t (y) := φ

(β)∗
t (y)

gives a solution in CΛ to the perturbed HJ-equation (4.4). Indeed, this follows from
the following well-known properties of the (involutive) Legendre transform between
smooth and strictly convex functions (say with quadratic growth at infinity):

∂2φ(x) = (∂2ψ(y))−1,
∂(φ+ tv)(x)

∂t

∣∣∣
t=0

= −v(∂yψ(y)), y := ∂xφ(x)

(see for example the appendix in [BB13] for a proof of the latter formula). Now, by
Theorem 2.2 and the previous lemma

lim
β→∞

φ
(β)
t = PΛ(φ0 + tH) = (φ0 + tH)∗∗
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in CΛ. Since the Legendre transform is an isometry on CΛ and in particular continuous
this equivalently means that limβ→∞ ψ

(β)
t = (φ0 + tH)∗, which coincides with the

viscosity solution of the HJ-equation provided by the second Hopf formula. Finally, the
proof of the previous theorem is concluded by noting that the uniqueness of viscosity
solutions in CΛ follows from the standard uniqueness argument [CL83, CEL84], using
that for any two functions in CΛ the difference u − v is continuous and attains its
maximum and minimum (since it is periodic). �

In fact, in this way Theorem 2.2 could be used to give an alternative proof of
the fact that the second Hopf formula defines a viscosity solution to the HJ-equation
(4.1), by adapting the proof of Theorem 4.1 to the present non-linear setting.

Remark 4.6. — Convex envelopes of the form ψt := (ψ∗0 + tH)∗(= φ∗t ) and the corre-
sponding sets X(t) also appear in a different Kähler-geometric setting in [RWN17a,
RZ17], where it is shown that ψt defines a torus invariant (weak) Kähler geodesic pre-
cisely on [0, T∗[ (what we call T∗ is called the “convex life span” in [RWN17a, RZ17]).
By definition, such a Kähler geodesic φt is characterized by the homogeneous Monge-
Ampère equation MA(φ) = 0 on the product X × ]0, T [. The relation to (C 1-smooth)
solutions of Hamilton-Jacobi equations was also pointed out in Section 6 in [RZ17].
In the light of the results in [RWN17a, RZ17] it seems notable that in our setting φt
has a natural complex geometric interpretation also for t > T∗ (namely, as a limiting
Kähler-Ricci flow).

4.4. Remarks on convex duality in the present setting. — By a well-known duality
principle in convex analysis differentiability of a convex functions ψ corresponds,
loosely speaking, to strict convexity of its Legendre transform φ := ψ∗. To make this
precise we will assume that both φ and ψ are defined on all of Rn and have super-linear
growth (which is the case when any, and hence both, of the functions are in CΛ). This
ensures that the sub gradient maps ∂φ and ∂ψ are both surjective. We recall that a
convex function φ is differentiable at x if and only if the subgradient (∂φ)(x) is single
valued and then we will write (∂φ)(x) = (∇φ)(x). The starting point for the duality
in question is the following fact (which follows directly from the definitions):

x ∈ ∂ψ(y) ⇐⇒ y ∈ ∂φ(x) ⇐⇒ x · y = φ(x) + ψ(y).

In our setting φ := φt (for a fixed time t) is C 1,1-smooth, i.e., ∂φ(= ∇φ) defines a
surjective Lipschitz map Rn → Rn. As a consequence, a point y is in the shock locus St
of ψt if and only if y ∈ ∂φt(U), for an open set U where the Lipschitz map ∂φt is not
injective (which can be interpreted as a local strict convexity of φt). Let now Xt be the
support of the Monge-Ampère measure det(∂2φt)dx and denote by Ωt its complement.
For simplicity we assume that the locus where φt is in C2

loc is dense in Rn (which
presumably holds for a generic H using the arguments in [AZS81, Bog99]). In that
case the continuous map ∂φt maps the interior of Xt injectively to Rn r Sψt and Ωt
non-injectively to Sψt (since a C 2-convex function u has an invertible gradient if and
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only if det(∂2u) > 0). Conversely, ∇ψt maps R−Sψt to Xt. See for example [VDFN94,
Fig. 5] for an illustration of this duality.

It may also be illuminating to consider the case when ψ is piece-wise affine (which,
as we will show in the next section, happens when t = ∞). Then (∇φ)(Rn r Sφ) is
contained in the 0-dimensional stratum S

(0)
ψ of Sψ (i.e., in the vertex set). Indeed,

if y0 := (∇φ)(x0) is not in S
(0)
ψ then there is an open affine segment L passing

through y0 along which ψ is affine. One then gets a contradiction to the differentiability
of φ at x0 by noting that L ⊂ ∂φ(x0). Indeed, since x0 ∈ ∂ψ(y0) one gets ψ(y) =

ψ(y0) + x0 · (y − y0) along L. But this means that x0 · y = φ(x0) + ψ(y) and hence
y ∈ ∂φ(x0).

In fact, this argument also shows that φ is piecewise affine if and only if its Legendre
transform ψ is. Indeed, if ψ is piecewise affine then by the growth assumptions the sup
defining φ is always attained. Hence, for any x ∈ RnrSφ we have that φ = (χ

S
(0)
ψ

ψ)∗.
Since the right-hand side is also a convex function and the complement of Rn r Sφ
is a null set it then follows that φ = (χ

S
(0)
ψ

ψ)∗ everywhere, showing that φ is also
piece-wise affine, as desired.

4.5. The large time limit and Delaunay/Voronoi tessellations. — Next, we spe-
cialize the large time convergence result in Proposition3.5 to the present setting,
showing, in particular, that the Hessian of the limiting solution vanishes almost ev-
erywhere:

Theorem 4.7. — Denote by FΛ the closed set in Rn where the Λ-periodic Hamilton-
ian H attains its minimum, normalized to be 0 and assume that FΛ is discrete. Then,
for any given initial data ψ0 in the space CΛ the unique viscosity solution ψt in CΛ

of the corresponding Hamilton-Jacobi equation converges uniformly to the following
convex piecewise affine function:

(4.6) ψ∞(y) := sup
x∈FΛ

(x · y − ψ∗0(x)).

Equivalently, the large β-limit φt of the Kähler-Ricci flow (4.5) converges to the convex
piecewise affine function φ∞(x) whose graph is the convex hull of the discrete graph
of the function φ0 restricted to FΛ.

Proof. — By the second point in Proposition 3.5

φ∞(x) := sup
φ∈CΛ

{φ(x) | φ 6 φ0 on FΛ}.

Indeed, recall that the limit in Proposition3.5 is the supremum over all ω-psh func-
tions lying below χFΛ

φ0. But as FΛ is non-pluripolar (which follows from the classical
fact in pluripotential theory that Rn is non-pluripolar in Cn), the function φ∞ is
convex bounded in Rn. This together with the maximality property yields that φ∞
is T -invariant and hence the corresponding function in CΛ equals the supremum
taken over CΛ as above. Alternatively, the boundedness can also be seen directly
in the present setting using the compactness property in Lemma 4.4. Writing this
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as φ∞ = P (χFΛ
φ0), where χFΛ

= 0 on FΛ and +∞ on the complement of FΛ (com-
pare Lemma 4.4) reveals that the previous sup coincides with the relaxed sup φ′ ob-
tained by simply requiring that φ be convex (but not quasi-periodic), i.e., the graph
of φ∞(x) is the convex hull of the discrete graph of the function φ0 restricted to FΛ,
as desired. By Lemma 4.4 this means that φ∞ = P (χFΛ

φ0) = ((χFΛ
φ0)∗)∗ and hence

φ∗∞ = (χFΛφ0)∗. Moreover, since the Legendre transform is a continuous operator
on CΛ it follows from the second Hopf formula that ψ∞ := limt→∞ ψt = φ∗∞, which
proves formula (4.6). As a consequence ψ∞(y) is locally the max of a finite number of
affine functions (indeed, since FΛ is locally finite and φ has quadratic growth the sup
defining (χFΛ

φ0)∗(y) can, locally with respect to y, be taken over finitely points in FΛ).
Hence, ψ := ψ∞ is piecewise affine and hence so is φ∞ (compare Remark 4.4). �

In particular, if ψ0(y) = |y|2/2, then we can complete the square and rewrite

ψ∞(y) =
1

2
|y|2 − inf

x∈FΛ

1

2
|x− y|2.

Accordingly the non-differentiability Sψ∞ locus of ψ∞ coincides with the subset
of all points y in Rn where the corresponding minimum is non-unique (compare
Remark 4.4). The latter set is the honeycomb like connected (n − 1)-dimensional
piecewise linear manifold obtained as the union of the boundaries of the open sets
{Oy}y∈FΛ

consisting of points in Rn for which y is the unique closest point in FΛ. In
the computational geometry literature the sets Oy are called Voronoi cells (attached
to the point set FΛ) and the corresponding tessellation of Rn by convex polytopes is
called the Voronoi tessellation (or Voronoi diagram) [OBSC00]. Similarly, the non-
differentiability locus Sφ∞ of φ∞ is the (n− 1)-dimensional stratum in the Delaunay
tessellation of Rn whose 0-dimensional stratum is given by the point set FΛ. The De-
launay tessellation can be defined as the dual tessellation of the Voronoi tessellation,
in a suitable sense. For example, when n = 2 this simply means that Sφ∞ is obtained
by connecting any two points in FΛ which are neighbors in the corresponding Voronoi
tessellation by a segment [OBSC00].

Remark 4.8. — Under suitable generality assumptions it is well-known that the cor-
responding Delaunay tessellation consists of simplices giving a triangulation of F with
remarkable optimality properties [OBSC00].

The previous proposition give a rigorous mathematical justification of the Voronoi
tessellations appearing in numerical simulations in cosmology, which use periodic
boundary conditions [KPSM92, HSvdW14, HvdWV+12]: for large times Voronoi poly-
topes form around points where H has its absolute minimum (the Voronoi polytopes
in question are called voids in the cosmology literature, since the mass in the universe
is localized on the shock locus Sψ∞ between voids). The dual Delaunay tessellation is
also frequently used for the numerics [KPSM92, HSvdW14, HvdWV+12].
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Remark 4.9. — When H has a unique minimum xm (modulo Λ), the corresponding
convex piecewise affine function ψ∞ appears naturally in tropical geometry as a trop-
ical theta function with characteristics (in the case when xm and Λ are defined over
the integers). The tropical subvariety defined by its non-differentiability locus is called
the tropical theta divisor and seems to first have appeared in complex geometry in the
compactification of the moduli space of abelian varieties (see [MZ08] and references
therein).

5. Application to Hele-Shaw type flows

5.1. Background. — The Hele-Shaw flow was originally introduced in fluid mechan-
ics in the end of the 19th century to model the expansion of an incompressible fluid of
high viscosity (for example oil) injected at a constant rate in another fluid of low vis-
cosity (such as water) in a two dimensional geometry. Nowadays the Hele-Shaw flow,
also called Laplacian growth, is ubiquitous in engineering, as well as in mathematical
physics where it appears in various areas ranging from diffusion limited aggregation
(DLA) to integrable systems (the dispersionless limit of the Toda lattice hierarchy),
random matrix theory and quantum gravity; see [Vas09, GV06] and references therein.

To explain the general geometric setup, introduced in [HS02], we letX be a compact
Riemann surface and fix a point p (the injection point) together with an area form ω0

of total area one (whose density models the inverse permeability of the medium).
The classical situation appears when X is the Riemann sphere and p is the point
at infinity so that X r {p} may be identified with the complex plane C. A family
of increasing domains Ω(λ) with time parameter λ ∈ [0, 1] is said to be a classical
solution to the Hele-Shaw flow corresponding to (p, ω0) if Ω(0) = ∅ and the closure
of Ω(λ) is diffeomorphic to the unit-disc in C for λ > 0, the point p is contained in
the interior of Ω(λ), the area grows linearly:∫

Ω(λ)

ω0 = λ

and the velocity of the boundary ∂Ω(λ) equals minus the gradient (with respect to ω0)

of the Green function gp for Ω(λ) with a logarithmic pole at p (i.e., Darcy’s law holds).
Such a solution exists for λ sufficiently small (see [HS02] for the case when ω0 is real
analytic and [RWN15c] for the general case). However, typically the boundary of the
expanding domains Ω(λ) develop a singularity for some time λ < 1 and then changes
its topology so that the notion of a classical solution breaks down. Still, there is a well-
known notion of weak solution of the Hele-Shaw flow, defined in terms of subharmonic
envelopes (obstacles) and which exists for any λ ∈ [0, 1] (where Ω(1) = X); see [HS02]
and references therein. In our notations the envelopes in question may be defined as

(5.1) φλ := sup
φ∈PSH(X,ω0)

{
φ | φ 6 0, φ 6 λ log |z − p|2 +O(1)

}
,

which, for λ fixed, is thus a restrained version of the envelope Pω0
(0) defined in

Section 2.3.2, where one imposes a logarithmic singularity of order λ at the given

J.É.P. — M., 2018, tome 5



From the Kähler-Ricci flow to moving free boundaries and shocks 555

point p. The weak Hele-Shaw flow is then defined as the evolution of the corresponding
increasing non-coincidence sets:

Ω(λ) := {φλ < 0} ⊂ X,

(which thus is empty for λ = 0, as it should). We will write

X(λ) := X r Ω(λ)

for the corresponding decreasing “water domains”. When ω0 is real analytic it follows
from the results in [HS02, Sak91] (applied to the pull-back of ω0 to the universal
covering X̃ of X) that the boundary of Ω(λ) is a piecewise real analytic curve having
a finite number of cusp and double points (if moreover ω0 has negative Ricci curvature
then the lifted Hele-Shaw on X̃ exists for any t > 0).

Example 5.1. — The classical situation in fluid mechanics appears when X is the
Riemann sphere and p is the point at infinity, so that X r {p} may be identified
with the complex plane C. Writing ω0 = ddcΦ0 in C (where the condition Φ0 has
logarithmic growth, since

∫
ω0 = 1), the function φλ may be identified with the

subharmonic function Φλ := Φ0+φλ with the property that Φλ = (1−λ) log |z|2+O(1)

as z → ∞. Accordingly, X(λ) may, for λ > 0, be identified with a decreasing family
of compact domains in C.

5.2. A canonical regularization of the Hele-Shaw flow using the Kähler-Ricci
flows. — To make the link to the present setting of Kähler-Ricci flows we set

(5.2) θ = ω0 − δp,

where δp denotes the Dirac measure at p, which defines a trivial cohomology class
(this is thus a singular version of the setting in Section 3.2 ). The corresponding
Kähler-Ricci flows will be defined as follows: first fixing a Kähler form ω on X we set

θβ := θ +
1

β
Ricω,

for a fixed Kähler form ω, i.e., by imposing the equation (2.5). Moreover, we will
use ω0 as the initial data in the corresponding Kähler-Ricci flows. We then get the
following theorem saying that the corresponding Kähler-Ricci flows concentrate, as
β → ∞, precisely on the complement X(λ) of Ω(λ) (i.e., on the “water domain”) up
to a time reparametrization:

Theorem 5.2. — Consider the non-normalized Kähler-Ricci flow ωβ(t) with twisting
current θβ as above and initial condition ω0. Then

lim
β→∞

ω(β)(t) = 1XrΩ(λ(t))(t+ 1)ω0,

weakly on X, where Ωλ is the weak Hele-Shaw flow corresponding to (p, ω0) and λ(t) =

t/(t+ 1). Moreover,

supX
ω(β)(t)

ω
6 (t+ 1) supX

ω0

ω
.
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Remark 5.3. — If one instead let ωβ(t) denote the corresponding normalized Kähler-
Ricci flow, which has total area e−t(= 1−λ), then the corresponding limiting measure
is given by 1XrΩ(λ(t))ω0 and the last estimate above holds without the factor (t+ 1).
In particular, in the canonical case, where ω is taken as ω0, setting ηt := ω0−ω(β)(t)

then yields a family of semi-positive forms of increasing area 1 − e−t concentrating
on the “oil-domains” Ωt.

To prove the previous theorem we first need to make the link between the envelopes
(5.1) and the ones appearing in our setting. To this end we introduce, as before, the
potential f of θ (with respect to the reference semi-positive form χ = 0 in [θ], satisfying

θ = ddcf,

which defines a lower semicontinuous function f : X → ]0,∞] which is smooth on
X r {p} and such that −f has a logarithmic singularity of order one at p.

Lemma 5.4. — The following holds

φλ := (1− λ)Pω0

( λ

(1− λ)
f
)
− λf,

Equivalently, setting t = λ/(1− λ) (i.e., λ := t/(t+ 1)) gives

Ω(λ) := {Pω0(tf) < tf} := Ωt.

Proof. — By a simple scaling argument it will be enough to prove that

φλ = Pω0(1−λ)(λf)− λf.

But the latter identity follows immediately from the fact that a given function φ ∈
PSH(X,ω0) has a logarithmic pole of order at least λ at a point p, i.e., it satisfies

φ+ λf 6 C

on X if and only if the ω0(1−λ)-psh function φ+λf on X r {p} extends to a unique
ω0(1 − λ)-psh function on all of X (as follows from the basic local fact that a psh
function has a unique psh extension over an analytic subvariety, or more generally
over a pluripolar subset). �

Finally, we need to extend Theorem 2.2 to the present setting. To this end we first
recall that, by [ST17, Th. 3.2], there is, for β fixed, a notion of weak Kähler-Ricci flows
on X which applies to any twisting current θ which is smooth away from a (suitable)
divisor D in X. In particular, the result applies to any current θ of the form

θ = θ0 − [E],

where θ0 is smooth and [E] denotes the current of integration along an effective
divisor, i.e.,

D = −E := −
∑
i

ciEi

for ci > 0 and Ei are irreducible hypersurfaces in X. The result in [ST17, Th. 3.2]
yields a unique flow ω(β)(t) of currents in [ω0+tθ] which are smooth onXrD and such
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that the corresponding Kähler potentials are in L∞(X) (as shown in [EGZ16, §4.2]
this flow coincides with the unique viscosity solution constructed in [EGZ16, §4.2]).

Theorem 5.5. — Let θ be a current of the form θ = θ0− [E], with θ0 smooth and E an
effective divisor. Then the conclusion in Theorem 2.2 still applies and the constant C
only depends on upper bounds on θ0 (and the oscillation of its potential) and on the
divisor E. Moreover, the sharp bounds in Theorem 2.3 still hold with θ replaced by θ0.

Proof. — We recall that the weak KRF defined in [ST17, Th. 3.2] is constructed
by approximating θ with a suitable sequence θε of smooth forms. In the present
setting this can be done so that θε 6 Cω and θε converges to θ in C∞loc(X r E).
Indeed, decomposing f = f0 + fE in terms of potentials for θ0 and −[E], respectively,
we have that up to a smooth function f can be written as − log ‖sE‖2, where sE
is a holomorphic section of the line bundle O(E) cutting out E and ‖·‖ is a fixed
smooth Hermitian metric on O(E). Then the form θε is simply obtained by replacing
log ‖sE‖2 with log(‖sE‖2 + ε). The proof of the theorem then follows immediately
from Theorem 2.2 applied to θε by noting that that P (f) 6 supX f0 + P (fE), where
the second term thus only depends on the divisor E, as desired (and is finite, by
Lemma 2.11). �

Example 5.6. — Coming back to the classical setting when E is the point p and
X r {p} = C considered in the previous example, the density ρ(β)(t) with respect to
Lebesgue measure on C of the Kähler form ω(β)(t) on Xr{p} is a solution of the fol-
lowing logarithmic diffusion equation for the smooth and strictly positive probability
densities ρ(t) on C

∂ρ(t)

∂t
=

1

πβ
∂z
∂zρ(t)

ρ(t)
+ ρ0 +O(1/β), ρ(0) = ρ0,

where the last term is equal to 1
β∆ log ρ0(t) (but it could be removed at the expense of

slightly worse estimates in t and β). The equivalence between Ricci flow on Riemann
surfaces and logarithmic diffusion is well-known [VER96], but as far as we know the
limit β →∞ has not been investigated before.

5.3. Monge-Ampère growth. — There is also a natural higher dimensional general-
ization of the Hele-Shaw flow/Laplacian growth on a compact Kähler manifold (X,ω0)

where the higher dimensional viscous “fluid” is injected along a given effective divi-
sor E on X. Indeed, one simply defines φλ as before, but imposing a singularity of
order λ along E (i.e., z − p is in formula (5.1) replaced by a local defining equation
for E). Then one obtains a sequence of increasing domains Ωλ as before for which the
name Monge-Ampère growth was proposed in [Ber14]. The terminology is motivated
by the fact that Ωλ can be characterized as the solution of a free boundary problem
for the complex Monge-Ampère operator on (X,ω0) with singular obstacle λf (see
Remark 2.9), where f is defined by

θ = ω0 − [E], θ = ddcf,
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as before. By the recent results in [RWN17b], for λ sufficiently small, Ωλ is diffeomor-
phic to a ball (and admits a regular foliation, transversal to E, by holomorphic discs
along which φλ is ω0-harmonic).

Now, by Theorem 5.5, the volume forms ωnβ (t) of the Kähler-Ricci flows with twist-
ing form θ as above concentrate on X(λ)(:= X r Ω(λ(t))):

lim
β→∞

ωnβ (t) =
1X(λ)ωn0∫
X(λ) ωn0

with uniform upper bounds on the normalized Kähler forms ωβ(t)/(t+ 1) on X rE,
as before (in this setting

∫
X(λ) ω

n
0 = [ω0 − λ(t)E]n).

Example 5.7. — In the case when X = Pn equipped with a Kähler form ω0 of unit
volume and E is the hyperplane at infinity the corresponding sets X(t) yield, for
t > 0, a decreasing family of compact domains in Cn of volume 1/(t+ 1)n.

Remark 5.8. — As shown in [RWN17a] performing a Legendre transform of φλ
with respect to λ produces a weak geodesic ray φ̂τ in the space of Kähler met-
rics (compare Remark 4.6). Moreover, topology change in the corresponding Hele-
Shaw flow Ω(λ) corresponds (in a certain sense) to singularities of the geodesic φ̂τ
[RWN15b, RWN15a]. In a nutshell, this stems from the fact (shown in [RWN17a])
that Ω(λ) = {h < λ} where h(x) := dφ̂τ/dτ |τ=0+ .

6. Twisting currents with merely continuous potentials

6.1. Continuous potentials. — Without loss of generality we may and will in this
section, assume that ϕ0 = 0.

As will be explained in this section the weak convergence in Theorem 1.1 can be
extended to any twisting form (or rather current) with continuous potentials.

To illustrate this we start with the case n = 1 and assume that 1
β c1(KX) + [θβ ]

is trivial, i.e., that the non-normalized KRF preserves the initial cohomology class.
To simplify the notation we will drop the subscript β in the notation fβ for the
corresponding twisting potential.

Proposition 6.1. — Assume that n = 1 and f is Hölder continuous. Then there is a
unique solution ϕ(β)(t) to the corresponding non-normalized KRF which is in C 2,α(X)

for some α > 0.

Proof. — In the following β will be fixed and we will not pay attention to the depen-
dence on β. First assume that f is smooth. Differentiating the non-normalized KRF
with respect to t reveals that dϕ(β)(t)/dt evolves by the heat equation for the metric
ωβ(t) and hence, by the parabolic maximum principle, |dϕ(β)(t)/dt| 6 C, where the
constant only depends on supX |f |. The defining equation for the KRF then gives
that C ′−1 6 ωβ(t) 6 C ′ for a positive constant C ′ only depending on supX |f |.
But then applying the parabolic Krylov-Safonov Hölder estimate to the heat equa-
tion with respect to ωβ(t) gives that there exists a Hölder exponent α′ such that∥∥dϕ(β)(t)/dt

∥∥
Cα′ 6 C

′′. Using again the defining equation for ϕ(β)(t), we deduce that
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1 + ∆ωϕ
(β)(t) = eβgβ(t), where the Hölder norm of gβ(t) is under control, for some

Hölder exponent. But then the proof is concluded by invoking the classical Schauder
estimates for the Laplacian ∆ω and approximating f with smooth functions (note that
the limit of the approximate solutions is unique, by the comparison principle). �

Given a twisting potential f we denote by P (β)
t f the solution of the corresponding

KRF at time t and set Ptf := Pω0(tf).

Lemma 6.2. — The operator P (β)
t is increasing, i.e., if f 6 g, then P

(β)
t f 6 P

(β)
t g.

Moreover, P (β)
t (f + c) = P

(β)
t (f) + ct for any c ∈ R and hence

(6.1)
∥∥P (β)

t f − P (β)
t g

∥∥
L∞(X)

6 t ‖f − g‖L∞(X) ,

and similarly for the operator Pt.

Proof. — The increasing property follows directly from the comparison principle and
the scaling property from the very definitions of the flows. �

Theorem 6.3. — Let X be a Riemann surface endowed with the twisting current
θ = ddcf , where f is Hölder continuous. Then the corresponding non-normalized
KRFs ωβ(t) defines a family of Hölder continuous Kähler metrics satisfying the weak
convergence in Theorem 1.1, as β → ∞ (more precisely, the convergence holds in
C 0(X)) on the level of Kähler potentials).

Proof. — In the following t will be fixed once and for all. Let fε be a family of smooth
functions such that ‖fε − f‖∞ 6 ε. By the previous lemma∥∥P (β)

t f − Ptf
∥∥
L∞(X)

6
∥∥P (β)

t fε − Ptfε
∥∥
L∞(X)

+ 2εt.

Hence, letting first β →∞ (using Theorem 2.2) and then ε→ 0 concludes the proof.
Of course, even if ωβ(t) is bounded for a fixed β the limiting current ω∞(t) will,

in general, not be bounded unless f has a bounded Laplacian. The previous theorem
also holds when f is assumed to be merely continuous, but then the corresponding
evolution equations have to be interpreted in a generalized sense. More generally,
when f is continuous and the dimension n of X is arbitrary the corresponding KRFs
are well-defined in the sense of viscosity solutions and satisfy the comparison principle,
by [EGZ16]. Accordingly, the C 0-convergence in the previous theorem still holds.
However, even if f is Hölder continuous it does not seem to follow, in general, from
existing regularity theory that ωβ(t) is even bounded, for β fixed. �

6.2. An outlook on random twistings. — Hölder continuous potentials f appear
naturally when f is taken to be an appropriate random Gaussian function. For exam-
ple, in the setting described in Section 4.3, when n = 1 and X = R/Z+ iR/Z and the
potential f is assumed invariant along the imaginary direction, we can identify the
potential f with a 1-periodic function f(x) on R and expand f(x) in a Fourier series:

f(x) =
∑
k∈Z

Ak cos(2πkx) +Bk sin(2πkx).
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Taking the coefficients Ak and Bk to be independent Gaussian random numbers with
mean zero and variance proportional to k−3−2h, for a given number h ∈ [−1, 1], it is
well-known that f is almost surely in the Hölder class C 1,h. Indeed, the derivative f ′ is
a Brownian fractional bridge, whose sample paths are well-known to be almost surely
in C h (recall that a Brownian bridge is defined as a Brownian motion B conditioned
by B(0) = B(1) and similarly in the fractional case, with h = 1/2 corresponding
to ordinary Brownian motion). The corresponding limiting convex envelopes φt(x)

have been studied extensively in the mathematical physics literature in the setting
of Burgers’ equation and the adhesion model, where f ′ represents the random initial
velocity function (compare Section 4). According to a conjecture in [SAF92], for any
fixed positive time t, the support Xt of the distribution second derivative of the
corresponding random function φt(x) on R is almost surely of Hausdorff dimension h
when h ∈ [0, 1] and 0 when h ∈ [−1, 0] (which, when h = 1 is consistent with the
uniform bound in Theorem 1.1 and formula (2.9) which, in this real setting, holds as
long as f ∈ C 1,1). See [Gir03] for the case when h = −1/2 and [Sin92] for a proof of
the conjecture in the case h = 1/2 in a non-periodic setting.

In view of the connections to the Kähler-Ricci flow and the Hele-Shaw flow exhib-
ited in Sections 4 and 5 it would be interesting to extend this picture to any complex
manifold, or at least to Riemann surfaces. For example, in the latter case one would,
at least heuristically, get conformally invariant processes of random metrics ωβ(t) by
taking f to be a Gaussian free field on X. Heuristically, this means that f is taken as
random function in the corresponding Dirichlet Hilbert space H1(X)/R. However, the
situation is complicated by the fact that, almost surely, f only exists as a distribution
in a certain Banach completion of H1(X)/R. [She07]. On the other hand the formal
random measure appearing in the static version of the non-normalized KRF, i.e., in
the Laplace equation

ω0 + ddcϕβ(t) = e−βfω0

appears as the Liouville measure of quantum gravity and has been rigorously defined,
for β ∈ ]0, 2[ in [DS11] using a regularization procedure. But as far as we know the
corresponding stochastic parabolic problem has not been investigated.
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