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QUANTITATIVE STATISTICAL STABILITY,

SPEED OF CONVERGENCE TO EQUILIBRIUM AND

PARTIALLY HYPERBOLIC SKEW PRODUCTS

by Stefano Galatolo

Abstract. — We consider a general relation between fixed point stability of suitably perturbed
transfer operators and convergence to equilibrium (a notion which is strictly related to decay
of correlations). We apply this relation to deterministic perturbations of a class of (piecewise)
partially hyperbolic skew products whose behavior on the preserved fibration is dominated by
the expansion of the base map. In particular, we apply the results to power law mixing toral
extensions. It turns out that in this case, the dependence of the physical measure on small
deterministic perturbations, in a suitable anisotropic metric, is at least Hölder continuous,
with an exponent which is explicitly estimated depending on the arithmetical properties of the
system. We show explicit examples of toral extensions having actually Hölder stability and non
differentiable dependence of the physical measure on perturbations.

Résumé (Stabilité statistique quantitative, vitesse de convergence vers l’équilibre et produits
croisés partiellement hyperboliques)

Nous considérons une relation générale entre la stabilité des points fixes d’opérateurs de
transfert convenablement perturbés et la convergence vers l’équilibre (une notion strictement
reliée à la décroissance des corrélations). Nous appliquons cette relation aux perturbations dé-
terministes d’une classe de produits croisés partiellement hyperboliques (par morceaux) dont
le comportement sur la fibration préservée est dominé par l’expansion de l’application de la
base. Nous appliquons ces résultats aux applications sur un tore fibrant sur le cercle, partiel-
lement hyperboliques, linéaires par morceaux, avec décroissance lente des corrélations d’allure
polynomiale. Il s’avère que, dans ce cas, la dépendance de la mesure physique en les petites
perturbations déterministes, dans une métrique anisotrope, est au moins Hölder-continue, avec
un exposant estimé explicitement en termes des propriétés arithmétiques du système. Nous don-
nons des exemples explicites d’applications sur un tore fibrant sur le cercle qui ont une stabilité
Hölder et une dépendance non différentiable de la mesure physique en les perturbations.
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378 S. Galatolo

1. Introduction

The concept of statistical stability of a dynamical system deals with the stability of
the statistical properties of its trajectories when the system is perturbed or changed in
some way. Since the statistical properties of systems and their behavior are important
in many fields of mathematics and in applied science, the study of this kind of stabil-
ity has important applications to many fields. Many important statistical properties
of dynamics are encoded in suitable probability measures which are invariant for the
action of the dynamics. Because of this the mathematical approach to statistical sta-
bility is often related to the stability of such invariant measures under perturbations
of the system. In this context it is important to get quantitative estimates, such as the
differentiability of the statistical properties under small perturbations (called Linear
Response) or other quantitative statements, such as the Lipschitz or Hölder depen-
dence. These questions are well understood in the uniformly hyperbolic case, where
the system’s derivative has uniformly expanding or contracting directions. In this case
quantitative estimates are available, proving the Lipschitz and even differentiable de-
pendence of the relevant invariant measures under perturbations of the system (see
e.g. [2], [7] or [26] and related references, for recent surveys where also some result
beyond the uniformly hyperbolic case are discussed). For systems not having a uni-
formly hyperbolic behavior, and in presence of discontinuities, the situation is more
complicated and much less is known. Qualitative results and some quantitative ones
(providing precise information on the modulus of continuity) are known under differ-
ent assumptions or in families of cases, and there is not yet a general understanding of
the statistical stability in those cases (see e.g. [1, 3, 6, 10, 8, 9, 5, 15, 17, 18, 25, 30, 31]).

We approach this question from a general point of view, using a functional analytic
perturbation lemma (see Theorem 5) which relates the convergence to equilibrium
speed of the system to the stability of its invariant measures belonging to suitable
spaces. In our case we consider a space of signed measures equipped with a suitable
anisotropic norm adapted to the system, in which the relevant invariant measures
are proved to exist. We show how, with some technical work, the approach can be
applied to slowly mixing partially hyperbolic skew products. The functional analytic
perturbation lemma we use is quite flexible and was applied in [18] to the study
of the statistical stability of maps with indifferent fixed points. A similar functional
analytic construction was also applied to piecewise hyperbolic skew product maps and
Lorenz-like two dimensional maps in [19].

Main results. — The paper has the following structure and main contents.
(a) A general quantitative relation between speed of convergence to equilibrium of

the system and its statistical stability (Section 2).
(b) The application of this relation to a general class of skew products allowing

discontinuities and a sort of partial hyperbolicity, getting quantitative estimates for
their statistical stability in function of their convergence to equilibrium. Here a main
ingredient is the construction of suitable spaces of regular measures adapted to these
systems. (Sections 3, 4, 5).
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(c) The application of this construction to the stability under deterministic per-
turbations of a class of piecewise constant toral extensions having slow convergence
to equilibrium, getting Hölder stability for these examples (Section 6).

(d) Finally, we show examples of mixing piecewise constant toral extensions where
a perturbation of the map of size δ > 0 results in a change of physical invariant
measure of the size of order δβ , where β 6 1 depends on the Diophantine properties
of the map (Section 6.3).
Let us explain in more details the content of the items listed above:

(a) This relation is a fixed point stability statement we apply to the system’s
transfer operators, giving nontrivial informations for systems having different kinds of
speed of convergence to equilibrium, implying for instance, that in a system with power
law convergence to equilibrium speed, under quite general additional assumptions, the
physical measure is Hölder stable (see Theorem 5 and Remark 7).

(b) We apply the relation to show a general quantitative stability statement for
perturbations of a class of skew products. We consider skew products in which the
base dynamics is expanding and dominates the behavior of the dynamics on the fibers.
For this purpose we introduce suitable spaces of signed measures adapted to such sys-
tems. We consider spaces of signed measures having absolutely continuous projection
on the base space [0, 1] (corresponding to the strongly expanding direction) and equip
them with suitable anisotropic norms: the weak norm ‖·‖“1” and the strong norm
‖·‖p-BV, which are defined by disintegrating along the central foliation (preserved by
the skew product) and considering the regularity of the disintegration. These spaces
have properties that make them work quite like L1 and p-Bounded Variation real func-
tions spaces in the classical theory for the statistical properties of one dimensional
dynamics. In Section 4 we prove a kind of Lasota-Yorke inequality in this frame-
work. This will be used together with a kind of Helly selection principle proved in
Section 3 to estimate the regularity of the invariant measures (like it is done in the
classical construction for one dimensional, piecewise expanding maps). We summa-
rize this informally in the following (see Proposition 22 for a precise and more general
statement).

Theorem 1. — Let us consider a one parameter family of skew product maps
Fδ : [0, 1]×M → [0, 1]×M , where M is a compact manifold with boundary and δ is
a positive real number ranging in a neighborhood of 0. Let us suppose Fδ = (Tδ, Gδ)

is such that the following hold uniformly on δ:
(A1) Tδ : [0, 1]→ [0, 1] is piecewise expanding with C2 onto branches.
(A2) The behavior of Gδ on the fibers is dominated by the expansion of Tδ.
(A3) Gδ satisfies a sort of BV regularity: there exists A > 0, such that(1)

sup
r6A

1

r

∫
sup

y∈M,x1,x2∈B(x,r)

|G(x1, y)−G(x2, y)|dx <∞.

(1)See (Sk1)–(Sk3) at beginning of Section 3 for precise statements of these assumptions.

J.É.P. — M., 2018, tome 5



380 S. Galatolo

Then the maps Fδ have invariant probability measures fδ having an absolutely con-
tinuous projection on the base space [0, 1] and uniformly bounded ‖·‖p-BV norms (they
are uniformly regular in the strong space).

In Section 5 we consider a class of perturbations of our skew products such that the
related transfer operators are near in some sense when applied to (regular) measures
and state a first general statement on the statistical stability of such skew products
(see Proposition 25).

(c) The statement is then applied to slowly mixing piecewise constant toral exten-
sions: systems of the kind (X,F ), where X = [0, 1] × T d, T d is the d dimensional
torus and F : X → X is defined by

(1) F (ω, t) = (Tω, t+ τ(ω)),

where T : [0, 1] → [0, 1] is expanding and τ : [0, 1] → T d is a piecewise constant
function. The qualitative ergodic theory of this kind of systems was studied in several
papers (see e.g. [12, 13]). Quantitative results appeared more recently ([16, 14, 27]),
proving from different points of view that the speed of correlation decay is generically
fast (exponential), but in some cases where τ is piecewise constant, this decay follows
a power law whose exponent depend on the Diophantine properties of τ (see [23] or
Section 6.1).

We apply our general result to deterministic perturbations of these maps, showing
that the physical measure of those systems varies at least Hölder continuously in our
anisotropic “L1-like” distance. We state informally an example of such an application
(see Proposition 32 for a more general statement and the required definitions).

Theorem 2. — Consider a family of skew product maps Fδ : [0, 1]×T d → [0, 1]×T d
satisfying (A1)–(A3), as in Theorem 1. Assume that F0 is a piecewise constant toral
extension as in (1), with

(2) T0(x) = 2x mod (1)

and

(3) G0(x, t) = (Tx, t+ θϕ(x)),

where θ = (θ1, . . . , θd) ∈ T d has linear Diophantine type(2) γ`(θ) and ϕ = 1[0,1/2] is
the characteristic function of [0, 1/2]. Suppose Fδ is a small perturbation of F0 in the
following sense:

(D1) For each δ, we have Tδ = T0 ◦ σ for some diffeomorphism σ near to the
identity, satisfying ‖σ − Id‖∞ 6 δ and ‖(1/σ′)− 1‖∞ 6 δ.

(D2) For each δ and x ∈ [0, 1], y ∈ T d, it holds |G0(x, y)−Gδ(x, y)| 6 δ.

(2)See Definition 26 for a recall about this Diophantine type for vectors of real numbers.
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Let f0 be the Lebesgue measure, which is invariant for F0 and let fδ be an invariant
probability measure for Fδ with finite strong norm as found in Theorem 1. Then for
each γ > γ`(θ) there exists K > 0 such that

‖fδ − f0‖“1” 6 Kδ1/(8γ+1).

We remark that the perturbations allowed are quite general. In particular they
allow discontinuities, and the invariant measure to become singular with respect to
the Lebesgue measure after perturbation. We also remark that for a class of smooth
toral extensions with fast decay of correlations, a differentiable dependence statement
was proved in [17].

(d) We finally show examples of piecewise constant, mixing toral extensions where
the physical measure of the system actually varies in a Hölder way (and hence not
in a differentiable way) with an exponent depending on the arithmetical properties
of the system. We state informally the main result about this, see Propositions 33
and 34 for precise statements.

Theorem 3. — Consider a piecewise constant toral extension map
F0 : [0, 1]× T 1 −→ [0, 1]× T 1

as in (2), (3), where θ is a well approximable Diophantine irrational with γ`(θ) > 2.
For every γ < γ`(θ) there exist a sequence of reals δj > 0, δj → 0 and a sequence of
maps F̂δj (x, y) = (T̂0(x), Ĝδj (x, y)) satisfying (A1)–(A3), (D1), (D2) such that

‖µ0 − µj‖“1” >
1

9
δj

1/(γ−1)

holds for every j and every µj, invariant Borel probability measure of F̂δj with abso-
lutely continuous projection on [0, 1].

This shows that in some sense, the general statistical stability result is sharp. We
remark that recently, in [31], examples of Cr families of mostly contracting diffeo-
morphisms with strictly Hölder behavior have been given (see also [15] for previous
results on Hölder stability of these kinds of partially hyperbolic maps).

2. Quantitative fixed point stability and convergence to equilibrium.

Let us consider a dynamical system (X,T ), whereX is a metric space and the space
SM(X) of signed Borel measures on X. The dynamics T naturally induces a function
L : SM(X) → SM(X) which is linear and is called transfer operator. If ν ∈ SM(X)

then L[ν] ∈ SM(X) is defined by

L[ν](B) = ν(T−1(B))

for every measurable set B. If X is a manifold, the measure is absolutely continuous
(dν = f dm, where m represents the Lebesgue measure) and T is nonsingular, the
operator induces another operator L̃ : L1(m) → L1(m) acting on measure densities
(L̃f = d(L(f m))/dm). By a small abuse of notation we will still indicate by L this
operator.
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382 S. Galatolo

An invariant measure is a fixed point for the transfer operator. Let us now see a
quantitative stability statement for these fixed points under suitable perturbations of
the operator. Let us consider a certain system having a transfer operator L0 for which
we know the speed of convergence to equilibrium (see (4) below). Consider a “nearby”
system L1 having suitable properties: suppose there are two normed vector spaces of
measures with sign Bs ⊆ Bw ⊆ SM(X) (the strong and weak space) with norms
‖·‖w 6 ‖·‖s and suppose the operators L0 and L1 preserve the spaces: Li(Bs) ⊆ Bs
and Li(Bw) ⊆ Bw with i ∈ {0, 1}. Let us consider

Vs := {f ∈ Bs | f(X) = 0}

the space of zero average measures in Bs. The speed of convergence to equilibrium
of a system will be measured by the speed of contraction to 0 of this space by the
iterations of the transfer operator.

Definition 4. — Let φ(n) be a real sequence converging to zero. We say that the
system has convergence to equilibrium with respect to norms ‖·‖w, ‖·‖s and speed φ if

(4) ∀ g ∈ Vs, ‖Ln0 (g)‖w 6 φ(n)‖g‖s.

Suppose f0, f1 ∈ Bs are fixed probability measures of L0 and L1. The following
statement relates the distance between f0 and f1 with the distance between L0 and L1

and the speed of convergence to equilibrium of L0. The proof is elementary, we in-
clude it for completeness. Similar quantitative stability statements are used in [21],
[19] and [18] to support rigorous computation of invariant measures, get quantitative
estimates for the statistical stability of Lorenz-like maps and intermittent systems.

Theorem 5. — Suppose we have estimates on the following aspects of the operators L0

and L1:
(1) (Speed of convergence to equilibrium) There exists φ ∈ C0(R), φ(t) decreasing

to 0 as t → ∞ such that L0 has convergence to equilibrium with respect to norms
‖·‖w, ‖·‖s and speed φ.

(2) (Control on the norms of the invariant measures) There exists M̃ > 0 such
that

max(‖f1‖s, ‖f0‖s) 6 M̃.

(3) (Iterates of the transfer operator are bounded for the weak norm) There exists
C̃ > 0 such that for each n,

‖Ln0‖Bw→Bw 6 C̃.
(4) (Control on the size of perturbation in the strong-weak norm) We have

sup
‖f‖s61

‖(L1 − L0)f‖w =: ε <∞.

Then we have the following explicit estimate

‖f1 − f0‖w 6 2M̃C̃ε(ψ−1(εC̃/2) + 1),

where ψ is the decreasing function defined as ψ(x) = φ(x)/x.
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Quantitative statistical stability... 383

Proof. — The proof is a direct computation from the assumptions. Since f0, f1 are
fixed probability measures of L0 and L1, for each N ∈ N we have

‖f1 − f0‖w 6 ‖LN1 f1 − LN0 f0‖w
6 ‖LN1 f1 − LN0 f1‖w + ‖LN0 f1 − LN0 f0‖w
6 ‖LN0 (f1 − f0)‖w + ‖LN1 f1 − LN0 f1‖w.

Since f1 − f0 ∈ Vs, ‖f1 − f0‖s 6 2M̃ , we have

‖f1 − f0‖w 6 2M̃φ(N) + ‖LN1 f1 − LN0 f1‖w,

but

(LN0 − LN1 ) =

N∑
k=1

LN−k0 (L0 − L1)Lk−11 ,

hence

−(LN1 − LN0 )f1 =

N∑
k=1

LN−k0 (L0 − L1)Lk−11 f1 =

N∑
k=1

LN−k0 (L0 − L1)f1,

and therefore

‖f1 − f0‖w 6 2M̃φ(N) + εM̃NC̃.

Now consider the function ψ defined as ψ(x) = φ(x)/x, choose N such that
ψ−1(εC̃/2) 6 N 6 ψ−1(εC̃/2) + 1, in this way φ(N)/N 6 εC̃/2 6 φ(N − 1)/(N − 1)

and

‖f1 − f0‖w 6 2M̃C̃ε(ψ−1(εC̃/2) + 1). �

Theorem 5 implies that a system having convergence to equilibrium is statistically
stable (in the weak norm).

Corollary 6. — Let D > 0, let Lδ, δ ∈ [0, D), be a family of transfer operators under
the assumptions of Theorem 5, including limn→∞ φ(n) = 0. Let fδ ∈ Bs be a fixed
probability measure of Lδ. Suppose there is C > 0 such that for every δ

sup
‖f‖s61

‖(Lδ − L0)f‖w 6 Cδ.

Then f0 is the unique fixed probability measure in Bs and it holds

lim
δ→0
‖fδ − f0‖w = 0.

Proof. — The uniqueness of f0 is trivial from the definition of convergence to equi-
librium. For the stability, suppose there was a sequence δn → 0 and ` > 0 such

J.É.P. — M., 2018, tome 5



384 S. Galatolo

that ‖fδn − f0‖w > ` for all n. Applying Theorem 5 we get successively

2M̃C̃Cδn(ψ−1(δnCC̃/2) + 1) > `,

ψ−1(δnCC̃/2) >
`

δn2M̃C̃C
− 1,

δnCC̃

2
6
φ((`/δn2M̃C̃C)− 1)

(`/δn2M̃C̃C)− 1
,

( `

δn2M̃C̃C
− 1
)δnCC̃

2
6 φ((`/δn2M̃C̃C)− 1),

`

2M̃
− δnCC̃ 6 2φ((`/δn2M̃C̃C)− 1),

which is impossible to hold as δn → 0. �

Remark 7. — In Theorem 5, if φ(x) = Cx−α then ψ(x) = Cx−α−1, ε(ψ−1(ε) + 1) ∼
ε1−1/(α+1) and we have the estimate for the modulus of continuity

‖f1 − f0‖w 6 K1ε
1−1/(α+1),

where the constant K1 depends on M̃, C̃, C and not on the distance between the
operators measured by ε.

3. Spaces we consider

Our approach is based on the study of the transfer operator restricted to a suitable
space of measures with sign. We introduce a space of regular measures where we can
find the invariant measure of our systems, and the ones of suitable perturbations of it.
We hence consider some measure spaces adapted to skew products. The approach is
taken from [19] (see also [4]) where it was used for Lorenz-like two dimensional maps.
Let us consider a map F : X → X, where X = [0, 1] × M , and M is a compact
manifold with boundary, such that

F (x, y) = (T (x), G(x, y)).

Suppose F satisfies the following conditions:
(Sk1) Suppose T is 1

λ -expanding
(3) and it has C1+ξ branches(4) which are onto.

The branches will be denoted by Ti, i ∈ {1, . . . , q}.
(Sk2) Consider the F -invariant foliation Fs := {{x}×M}x∈[0,1]. We suppose that

the behavior on Fs is dominated by λ: there exists α ∈ R with λξα < 1, such that
for all x ∈ [0, 1] holds

|G(x, y1)−G(x, y2)| 6 α|y1 − y2| ∀ y1, y2 ∈M.

(3)We suppose that infx∈[0,1] T
′(x) > 1/λ for some λ < 1.

(4)More precisely we suppose that there are ξ, Ch > 0 such that
1

|T ′i ◦ T
−1
i (γ2))|

−
1

|T ′i ◦ T
−1
i (γ1))|

6 Chd(γ1, γ2)
ξ, ∀ γ1, γ2 ∈ [0, 1].
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(Sk3) For each p 6 ξ there exists A > 0, such that

Ĥ := sup
r6A

1

rp

∫
sup
y∈M

x1,x2∈B(x,r)

|G(x1, y)−G(x2, y)|dx <∞.

Remark 8. — We remark that (Sk3) allows discontinuities in G, provided a kind
of bounded variation regularity is respected. (Sk2) allows a dominated expansion or
contraction in the fibers direction. Furthermore, by (Sk1) the transfer operator of the
map T satisfies a Lasota-Yorke inequality of the kind

(5) ‖LnT (µ)‖BV 6 ATλn‖µ‖BV +BT ‖µ‖1,

where ‖µ‖BV is the generalized bounded variation norm (see [24]) for some con-
stant AT and BT depending on the map.

Definition 9. — We say that a family of maps Fδ = (Tδ(x), Gδ(x, y)) satisfies
(Sk1)–(Sk3) uniformly, if each Tδ is piecewise expanding, with onto C1+ξ branches,
admitting a uniform expansion rate 1/λ, a uniform α, a uniform Hölder constant Ch,
a uniform second coefficient of the Lasota-Yorke inequality BTδ and furthermore the
family Gδ satisfies (Sk3) with a uniform bound on the constant Ĥ.

We construct now some function spaces which are suitable for the systems we
consider. The idea is to consider spaces of measures with sign, with suitable norms
constructed by disintegrating measures along the central foliation. In this way a mea-
sure on X will be seen as a collection (a path) of measures on the leaves. In the
central direction (on the leaves) we will consider a norm which is the dual of the Lip-
schitz norm. In the expanding direction we will consider the L1 norm and a suitable
variation norm. These ideas will be implemented in the next paragraphs.

Let (X, d) be a compact metric space, g : X → R be a Lipschitz function and let
Lip(g) be its best Lipschitz constant, i.e.,

Lip(g) = sup
x,y∈X

{ |g(x)− g(y)|
d(x, y)

}
.

Definition 10. — Given two signed Borel measures µ and ν on X, we define a
Wasserstein-Kantorovich-like distance between µ and ν by

W1(µ, ν) = sup
Lip(g)61
‖g‖∞61

∣∣∣∣∫ gdµ−
∫
gdν

∣∣∣∣.
Let us denote

‖µ‖W1
:= W1(0, µ).

As a matter of fact, ‖·‖W1 defines a norm on the vector space of signed measures
defined on a compact metric space.

Let SB(Σ) be the space of Borel signed measures on Σ. Given µ ∈ SB(Σ) denote
by µ+ and µ− the positive and the negative parts of it (µ = µ+ − µ−).

J.É.P. — M., 2018, tome 5



386 S. Galatolo

Denote by AB the set of signed measures µ ∈ SB(Σ) such that its associated
marginal signed measures, µ±x = π∗xµ

± are absolutely continuous with respect to the
Lebesgue measure m, on [0, 1] i.e.,

AB = {µ ∈ SB(Σ) | π∗xµ+ � m and π∗xµ− � m},

where πx : X → [0, 1] is the projection defined by πx(x, y) = x and π∗x is the associated
pushforward map.

Let us consider a finite positive measure µ ∈ AB on the space X foliated by the
preserved leaves Fc = {γ`}`∈[0,1] such that γ` = πx

−1(`). We will also call Fc as the
central foliation. Let us denote µx = π∗xµ and let φµ be its density (µx = φµm). The
Rokhlin disintegration theorem describes a disintegration of µ by a family {µγ}γ of
probability measures on the central leaves(5) in a way that the following holds.

Remark 11. — The disintegration of a measure µ is the µx-unique measurable family
({µγ}γ , φµ) such that, for every measurable set E ⊂ X it holds

(6) µ(E) =

∫
[0,1]

µγ(E ∩ γ)dµx(γ).

Definition 12. — Let πγ,y : γ → M be the restriction πy |γ , where πy : X → M is
the projection defined by πy(x, y) = y and γ ∈ Fc. Given a positive measure µ ∈ AB
and its disintegration along the stable leaves Fc, ({µγ}γ , φµ), we define the restriction
of µ on γ as the positive measure µ|γ on M (not on the leaf γ) defined as

µ|γ = π∗γ,y(φµ(γ)µγ).

Definition 13. — For a given signed measure µ ∈ AB and its decomposition µ =

µ+ − µ−, define the restriction of µ on γ by

µ|γ = µ+
|γ − µ

−
|γ .

Definition 14. — Let L1 ⊆ AB be defined as

L1 =

{
µ ∈ AB :

∫
[0,1]

‖µ|γ‖W1
dm(γ) <∞

}
and the norm ‖·‖“1” : L1 → R on it as

‖µ‖“1” =

∫
[0,1]

‖µ|γ‖W1 dm(γ).

The notation we use for this norm is similar to the usual L1 norm. Indeed this
is formally the case if we associate to µ, by disintegration, a path Gµ : [0, 1] →
(SB(M), ‖·‖W1) defined by Gµ( γ) = µ|γ . In this case, this will be the L1 norm of the
path.

(5)In the following to simplify notations, when no confusion is possible we will indicate the generic
leaf or its coordinate with γ.
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3.1. The transfer operator associated to F and basic properties of L1. — Let us
now consider the transfer operator LF associated with F . Being a push forward map,
the same function can be also denoted by F ∗ we will use this notation sometime.
There is a nice characterization of the transfer operator in our case, which makes it
work quite like a one dimensional operator. For the proof see [19].

Proposition 15 (Perron-Frobenius-like formula). — Consider a skew product map F
satisfying (Sk1) and (Sk2). For a given leaf γ∈Fs, define the map Fγ :M→M by

Fγ = πy ◦ F|γ ◦ π−1γ,y.

For all µ ∈ L1 and for almost all γ ∈ [0, 1] it holds

(LFµ)|γ =

q∑
i=1

F∗
T−1
i (γ)

µ|T−1
i (γ)

|T ′i ◦ T
−1
i (γ))|

.

We recall some results showing that the transfer operator associated to a Lipschitz
function is also Lipschitz with the same constant, for the “1” distance, and moreover,
that the transfer operator of a map satisfying (Sk1)–(Sk3) is also Lipschitz with the
same constant for the ‖·‖“1” norm. In particular, if α 6 1 the transfer operator is a
weak contraction, like it happen for the L1 norm on the one dimensional case (for the
proof and more details, see [19]).

Lemma 16. — If G : Y → Y , where Y is a metric space is α-Lipschitz, then for every
Borel measure with sign µ it holds

‖LGµ‖W1
6 α‖µ‖W1

.

If µ ∈ L1and F : [0, 1]×M → [0, 1]×M satisfies (Sk1)–(Sk3) then

‖LFµ‖“1” 6 α‖µ‖“1”.

3.2. The strong norm. — We consider a norm which is stronger than the L1 norm.
The idea is to consider a disintegrated measure as a path of measures on the preserved
foliation and define a kind of bounded variation regularity for this path, in a way
similar to what was done in [24] for real functions.

For this strong space we will prove a regularization inequality, similar to the Lasota-
Yorke ones. We will use this inequality to prove the regularity of the invariant measure
of the family of skew products we consider.

Let us consider µ ∈ L1. Let us define

osc(µ, x, r) = esssup
γ2,γ1∈B(x,r)

(W1(µ|γ1 , µ|γ2)) and varp(µ, r) =

∫
[0,1]

r−p osc(µ, x, r) dx.

Now let us choose A > 0 and consider varp(µ) := supr6A varp(µ, r). Finally we define
the p-BV norm as:

‖µ‖p-BV = ‖µ‖“1” + varp(µ).

Let us consider p such that 1 > p > 0 and the following space of measures

p-BV =
{
µ ∈ L1 | ‖µ‖p-BV <∞

}
.
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This will play the role of the strong space in the present case.

Remark 17. — If µ ∈ p-BV, then it follows that

esssup
γ
‖µ|γ‖W1

6 Ap−1‖µ‖p-BV.

See [4, Lem. 2] for a proof in the case of real functions which also works in our case.

We now prove a sort of Helly selection principle for sequences of positive measures
with bounded variation. This principle will be used, together with a regularization
inequality, proved in next section, to get information on the variation of invariant
measures. First we need a preliminary lemma:

Lemma 18. — If µn is a sequence of positive measures such that for each n, we have
‖µn‖“1” 6 C, varp(µn) 6M , and µn|γ → µ|γ for a.e. γ, in the Wasserstein distance,
then

‖µ‖“1” 6 C, varp(µ) 6M.

Proof. — Let us consider the ‖·‖“1” norm. Since by Remark 17 it holds ‖µn|γ‖W 6
Ap−1(C + M) for all γ, by the dominated convergence theorem we have ‖µ‖“1” 6
C. Let us now consider the oscillation. We have that lim infn→∞ osc(µn, x, r) >
osc(µ, x, r) for all x, r. Indeed, consider a small ε > 0. Because of the definition
of osc(), we have that for all ` > osc(µ, x, r) − ε, there exist positive measure sets
A1 and A2 such that W1(µ|γ1 , µ|γ2) > ` for all γ1 ∈ A1, γ2 ∈ A2. Since µn|γ → µ|γ
for a.e. γ, if n is big enough there must exist sets An1 and An2 of positive measure
such that W1(µn|γ1 , µn|γ2) > ` for all γ1 ∈ An1 , γ2 ∈ An2 . As a consequence we ob-
tain osc(µn, x, r) > `, and then for all x, r, lim infn→∞ osc(µn, x, r) > osc(µ, x, r).
Fatou’s Lemma implies lim infn→∞ varp(µn, r) = lim infn→∞

∫
I
r−p osc(µn, x, r) dx >

varp(µ, r), from which the statement follows directly. �

Theorem 19 (Helly-like selection theorem). — Let µn be a sequence of probability
measures on X such that ‖µn‖p-BV 6 M for some M > 0. Then there exist µ with
‖µ‖p-BV 6M and subsequence µnk such that

‖µnk − µ‖“1” −→ 0.

Proof. — Let us discretize in the vertical direction. Let us consider a continuous
projection πy,δ : PM(M)→ Uδ of the space of probability measures on M to a finite
dimensional space. Suppose πy,δ is such that ‖πy,δ(ν)−ν‖W1

6 Cδ, for all ν ∈ PM(M)

(such a projection can be constructed discretizing the space by a partition of unity
made of Lipschitz functions with support on sets whose diameter is smaller than δ,
see [20] for example). Let us consider the natural extension πδ : L1(X) → L1(X) of
this projection to the whole L1(X) space, defined by πδ(µ)|γ = πy,δ(µ|γ).

Let us consider the sequence πδ(µn). We have ‖πδ(µn)‖p-BV 6 KδM , where Kδ is
the modulus of continuity of πδ. Indeed

esssup
γ2,γ1∈B(x,r)

(W1(πδ(µ)|γ1 , πδ(µ)|γ1)) 6 Kδ esssup
γ2,γ1∈B(x,r)

(W1(µ|γ1 , µ|γ1)).
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Since after projecting we now are in a space of functions with values in a finite
dimensional space, to the sequence πδ(µn) we can apply the classical Helly selection
theorem and get that there exist a limit measure µδ and a sub sequence nk such
that πδ(µnk) → µδ in L1 and πδ(µnk)|γ → µδ |γ almost everywhere. Let us consider
a sequence δi → 0 and select inductively at every step from the previous selected
subsequence µ` such that πδi−1

(µ`) → µδi−1
a further subsequence µ`k , such that

πδi(µ`k) → µδi in L1 and almost everywhere. Since for all γ and m 6 i we have
‖πδm(µ`k |γ)− µ`k |γ‖W1

6 Cδm, it holds that for different δm, δj > δi,

‖πδi(µ`k |γ)− πδj (µ`k |γ)‖W1 6 C(δi + δj)

and then
∀ γ, ‖µδm |γ − µδj |γ‖W1

6 C(δm + δj + δi)

uniformly in γ. Since µδn are positive measures, this shows that there exists a µ such
that µδi → µ in L1 and µδi |γ → µ|γ almost everywhere. This shows that a further
subsequence µn

j
can be selected in a way that

πδi(µnj ) −→
j→∞

µδi for all i, and µnj −→j→∞ µ in L1 and almost everywhere.

Applying Lemma 18 we get ‖µ‖p-BV 6M . �

4. A regularization inequality

In this section we prove an inequality, showing that iterates of a bounded variation
positive measure are of uniform bounded variation. This will play the role of a Lasota-
Yorke inequality. A consequence will be a bound on the variation of invariant measures
in L1. This will be used when applying Theorem 5 to provide the estimate needed at
Item (2). The following regularization inequality can be proved.

Proposition 20. — Let F be a skew product map satisfying assumptions (Sk1)–(Sk3)
and let us suppose that µ is a positive measure. Let p 6 ξ (the Hölder exponent as in
(Sk1)). It holds

varp(LFµ)6 λpα varp (µ)+(Ĥ‖µx‖∞ + 3qαChA
ξ−p‖µx‖∞).

We recall that, here, µx is the marginal of the disintegration of µ (see Equation (6))
and ‖µx‖∞ is the supremum norm for its density.

Proof. — By the Perron Frobenius-like formula (Lemma 15)

(LFµ)|γ =

q∑
i=1

F∗
T−1
i (γ)

µ|T−1
i (γ)

|T ′i ◦ T
−1
i (γ)|

for almost all γ ∈ [0, 1]

we have to estimate

I := sup
r6A

1

rp

∫
esssup

γ2,γ1∈B(x,r)

‖(LFµ)|γ1 − (LFµ)|γ2‖W1
dm(x)

= sup
r6A

1

rp

∫
esssup

γ2,γ1∈B(x,r)

∥∥∥∥ q∑
i=1

(
F∗
T−1
i (γ1)

µ|T−1
i (γ1)

|T ′i ◦ T
−1
i (γ1)|

−
F∗
T−1
i (γ2)

µ|T−1
i (γ2)

|T ′i ◦ T
−1
i (γ2)|

)

∥∥∥∥
W1

dm(x).
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To make the notation concise, let us set in the next equations

F
∗(a, b) := F

∗
T−1
i (a)

µ|T−1
i (b), gi(a) := T

′

i ◦ T−1i (a).

By the triangular inequality we have

I 6 sup
r6A

q∑
i=1

1

rp

∫
esssup

γ2,γ1∈B(x,r)

∥∥∥F∗(γ1, γ1)− F∗(γ2, γ2)

|gi(γ1)|

∥∥∥
W1

dm

+ sup
r6A

q∑
i=1

1

rp

∫
esssup

γ2,γ1∈B(x,r)

∥∥∥F
∗(γ2, γ2)(

1

|gi(γ1)|
− 1

|gi(γ2)|
)
∥∥∥
W1

dm.

Recalling that (1/|gi(γ2))|)− (1/|gi(γ1))|) 6 Chd(γ1, γ2)ξ, we deduce

I 6 sup
r6A

q∑
i=1

1

rp

∫
(

1

|gi(x)|
+ Chr

ξ) esssup
γ2,γ1∈B(x,r)

‖F
∗(γ1, γ1)− F

∗(γ2, γ2)‖W1
dm

+ sup
r6A

q∑
i=1

1

rp

∫
Chr

ξ esssup
γ2

‖F
∗(γ2, γ2)‖W1

dm,

and

I 6 sup
r6A

q∑
i=1

1

rp

∫
1

|gi(x)|
esssup

γ2,γ1∈B(x,r)

‖F
∗(γ1, γ1)− F

∗(γ2, γ2)‖W1
dm

+ sup
r6A

q∑
i=1

1

rp

∫
Chr

ξ esssup
γ2,γ1∈B(x,r)

‖F
∗(γ1, γ1)− F

∗(γ2, γ2)‖W1
dm

+ sup
r6A

q∑
i=1

1

rp

∫
Chr

ξ esssup
γ2

‖F
∗(γ2, γ2)‖W1

dm.

Hence

I 6 sup
r6A

q∑
i=1

1

rp

∫
1

|gi(x)|
esssup

γ2,γ1∈B(x,r)

‖F
∗(γ1, γ1)− F

∗(γ1, γ2)‖W1 dm

+ sup
r6A

q∑
i=1

1

rp

∫
1

|gi(x)|
esssup

γ2,γ1∈B(x,r)

‖F
∗(γ1, γ2)− F

∗(γ2, γ2)‖W1
dm

+ 3 sup
r6A

q∑
i=1

1

rp

∫
Chr

ξ esssup
γ2

‖F
∗(γ2, γ2)‖W1

dm

= Ia + Ib + Ic.

Now,

Ia6 sup
r6A

q∑
i=1

1

rp

∫
1

|gi(x)|
esssup

γ2,γ1∈B(x,r)

‖F
∗
T−1
i (γ1)

(µ|T−1
i (γ1)

− µ|T−1
i (γ2)

)‖W1
dm.
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We recall that, by Lemma 16, ‖F∗γ µ‖W1
6 α‖µ‖W1

, so that

Ia 6 sup
r6A

q∑
i=1

1

rp

∫
1

|gi(x)|
esssup

γ2,γ1∈B(x,r)

α‖µ|T−1
i (γ1)

− µ|T−1
i (γ2)

‖W1

6 sup
r6A

q∑
i=1

1

rp

∫
Ii

esssup
y1,y2∈B(x,λr)

α‖µ|y1 − µ|y2‖W1
dx.

= λp sup
h6λA

q∑
i=1

1

hp

∫
Ii

esssup
y1,y2∈B(x,h)

α‖µ|y1 − µ|y2‖W1
dx

and
varp(LFµ)6 λpα varp (µ)+(Ib + Ic).

By (Sk3), we have

Ib = sup
r6A

∑
i

1

rp

∫
1

|gi(x)|
esssup

y1,y2∈B(x,r)

‖F
∗(γ1, γ2)− F

∗(γ2, γ2)‖W1 dm 6 Ĥ‖µx‖∞.

Now, let us remark that, since we are working with positive measures, we have

esssup
γ2

‖F
∗(γ2, γ2)‖W1

6 α‖µx‖∞,

and therefore

Ic = 3 sup
r6A

q∑
i=1

1

rp

∫
Chr

ξ esssup
γ2

‖F
∗(γ2, γ2)‖W1

dm

6 3 sup
r6A

q∑
i=1

1

rp

∫
Chr

ξα‖µx‖∞ dm 6 3qChA
ξ−pα‖µx‖∞.

Summarizing, we have obtained

�(7) varp(LFµ)6 λpα varp (µ)+(Ĥ‖µx‖∞ + 3qαChA
ξ−p‖µx‖∞).

Remark 21. — By Equation (5) it holds that for each n

‖Lnµx‖∞ 6 Cµ := Ap−1(ATλ‖µx‖BV +BT ‖µx‖1 + 1).

Iterating (7) we obtain

varp(L
n
Fµ) 6 (λ

p
α) varp (L

n−1
µ)+(Ĥ + 3qαChA

ξ−p)Cµ

6 ...

6 (λ
p
α)
n

varp (µ)+
Ĥ + 3qαChA

ξ−p

1− λpα
Cµ.

(8)

By the Helly-like selection principle (Theorem 19) we then have:

Proposition 22. — In a system as above there is at least an invariant positive measure
in p-BV. For every such invariant measure µ, we have

varp(µ) 6
BT (Ĥ + 3qαChA

ξ−p)

1− λpα
‖µ‖“1”.

J.É.P. — M., 2018, tome 5



392 S. Galatolo

Proof. — We consider the sequence of positive measures µn = 1
n

∑
LnFm. By Equa-

tion (8), this sequence has uniformly bounded variation. Applying Theorem 19, we
deduce the existence of an invariant measure µ in p-BV. By the Lasota-Yorke inequal-
ity relative to the map T , we have that

Ap−1BT ‖µ‖“1” > Ap−1BT ‖µx‖1 > Ap−1‖µx‖BV > ‖µx‖∞.

This gives that

varp(µ) = varp(LFµ)6 λpα varp (µ)+BT ‖µ‖“1”Ap−1(Ĥ + 3αqChA
ξ−p),

from which we get the statement. �

5. Distance between the operators and a general statement for
skew products

Here we consider a suitable class of perturbations of a map satisfying (Sk1)–(Sk3)
such that the associated transfer operators are near in the strong-weak topology,
providing one of the estimates needed to apply Theorem 5 (item (4)). In this section
and in the following we set p = 1. We now define a topology on the space of piecewise
expanding maps in order to have a notion of “allowed perturbations” for these maps.

Definition 23. — Let n∈N, let T1 and T2 be to piecewise expanding maps. Denote by

Intn = {A ∈ 2[0,1] | A = I1∪, . . . ,∪In, where Ii are intervals}

the set of subsets of [0, 1] which is the union of at most n intervals. Set

C(n, T1, T2) =

{
ε

∣∣∣∣ ∃A1 ∈ Intn and ∃σ : I → I a diffeomorphism s.t.
m(A1) > 1− ε, T1|A1

= T2 ◦ σ|A1

and ∀x ∈ A1, |σ(x)− x| 6 ε, |(1/σ′(x))− 1| 6 ε

}

and define a kind of distance from T1 to T2 as:

dS,n(T1, T2) = inf {ε | ε ∈ C(n, T1, T2)} .

It holds that one dimensional piecewise expanding maps which are near in the sense
of dS,n also have transfer operators which are near as operators from BV to L1. If we
denote by dS the classical notion of Skorokhod distance (see e.g. [11]), it is obvious
that dS,n > dS for all n. By [11, Lem. 11.2.1] it follows that for all n there exists
CSk > 0 such that, for each pair of piecewise expanding maps T1, T2,

(9) ‖LT0
− LTδ‖BV→L1 6 CSkdn,S(T1, T2).

Let us see a statement of this kind for our skew products.

Proposition 24. — Let Fδ = (Tδ, Gδ), 0 6 δ 6 D be a family of maps satisfying
(Sk1)–(Sk3) uniformly with ξ = 1 and:

(1) There exists n ∈ N such that for each δ 6 D, dn,S(T0, Tδ) 6 δ (thus for each δ
there is a set A1 ∈ Intn as in the definition of C(n, T1, T2)).

(2) For each δ 6 D there exists a set A2 ∈ Intn such that m(A2) > 1 − δ and for
all x ∈ A2, y ∈M , it holds |G0(x, y)−Gδ(x, y)| 6 δ.
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Let us denote by F∗δ the transfer operators of Fδ and by fδ a family of probability
measures with uniformly bounded variation

var1(fδ) 6M2.

Then, there exists a constant C1 such that for δ small enough
‖(F∗0−F

∗
δ)fδ‖“1” 6 C1δ(M2 + 1).

Proof. — Let us set A = A1 ∩A2. Note that m(Ac) 6 2δ. Let us estimate

‖(F∗0−F
∗
δ)fδ‖“1” =

∫
I

‖(F ∗0 fδ − F ∗δ fδ)|γ‖W dm(γ)(10)

=

∫
I

‖F ∗0 (1Afδ)|γ−F
∗
δ (1Afδ)|γ‖W dm(γ)

+

∫
I

‖F ∗0 (1Acfδ)|γ−F
∗
δ (1Acfδ)|γ‖W dm(γ).

By the assumptions, for a.e. γ, ‖fδ|γ‖W 6 (M2 + 1) and ‖1Acfδ‖1 6 (M2 + 1)δ.
Since F ∗ is α-Lipschitz for the L1norm we have∫

I

‖F ∗0 (1Acfδ)|γ−F
∗
δ (1Acfδ)|γ‖W dm(γ) 6 2α(M2 + 1)δ.

Let us now estimate the first summand of (10). Let us set µ = 1Afδ and let us
estimate

‖(F∗0−F
∗
δ)µ‖“1” =

∫
‖(F ∗0 µ− F ∗δ µ)|γ‖W dm(γ).

Let us denote by T0,i, with 0 6 i 6 q, the branches of T0 defined in the sets Pi,
partition of I, and set Tδ,i = Tδ |Pi∩A. These functions will play the role of the branches
for Tδ. Since in A, T0 = Tδ ◦ σδ (where σδ is the diffeomorphism in the definition of
the Skorokhod distance), then Tδ,i are invertible. Then for µx-a.e. γ ∈ I, we have

(F ∗0 µ− F ∗δ µ)|γ =

q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χT0(Pi∩A)

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χTδ(Pi∩A)

|T ′δ,i(T
−1
δ,i (γ))|

.

Let us now consider T0(Pi ∩ A) and Tδ(Pi ∩ A), and remark that T0(Pi ∩ A) =

σδ(Tδ(Pi ∩ A)), where σδ is a diffeomorphism near to the identity. Let us denote
Bi = T0(Pi ∩A) ∩ Tδ(Pi ∩A), Ci = T0(Pi ∩A)4Tδ(Pi ∩A). We have

(11) ‖(F∗0−F
∗
δ)µ‖“1” =

∫
I

‖(F ∗0 µ− F ∗δ µ)|γ‖W dm(γ)

6
∫
I

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

dm

+

∫
I

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χCi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χCi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

dm.

And since there exists K1 such that m(Ci) 6 K1δ, we have∫
I

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χCi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χCi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

dm 6 qK1(M2 + 1)δ.
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Now we have to consider the first summand of (11). We have

∫
I

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

dm

6
∫
I

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

dm

+

∫
I

∥∥∥∥ q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

dm

=

∫
I

I(γ) dm(γ) +

∫
I

II (γ) dm(γ).

The two summands will be treated separately.

I(γ) =

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

6

∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

∥∥∥∥
W

+

∥∥∥∥ q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

= Ia(γ) + Ib(γ).

Since fδ is a probability measure it holds posing β = T−10,i (γ)∫
Ia(γ) dm =

∫ ∥∥∥∥ q∑
i=1

F ∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

∥∥∥∥
W

dm(γ)

6
∫ q∑

i=1

∥∥∥∥F
∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

∥∥∥∥
W

dm

6
q∑
i=1

∫ ∥∥∥∥F
∗
0,T−1

0,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

∥∥∥∥
W

dm

6
q∑
i=1

∫
T−1
0,i (Bi)

∥∥∥∥F ∗0,βµ|β − F ∗δ,T−1
δ,i (T0,i(β))

µ|β

∥∥∥∥
W

dm(β).

Remark that T−10,i (Bi) ⊆ Pi ∩ A and T−1δ,i (T0,i(T
−1
0,i (Bi))) ⊆ Pi ∩ A. Since we have

|Tδ,i(β)−T0,i(β)| 6 δ and T−10,i is a contraction, then |T−10,i ◦Tδ,i(β)−β| 6 δ. Therefore
we obtain∥∥F ∗0,βµ|β − F ∗δ,T−1

δ,i (T0,i(β))
µ|β
∥∥
W
6
∥∥F ∗0,βµ|β − F ∗δ,βµ|β∥∥W

+
∥∥F ∗δ,βµ|β − F ∗δ,T−1

δ,i (T0,i(β))
µ|β
∥∥
W
.
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By assumption (2), ∥∥F ∗0,βµ|β − F ∗δ,βµ|β∥∥W 6 δ(M2 + 1).

By assumption (Sk3),∥∥F ∗δ,βµ|β − F ∗δ,T−1
δ,i (T0,i(β))

µ|β
∥∥
W
6 sup

y∈M
x1,x2∈B(β,δ)

|G(x1, y)−G(x2, y)|(M2 + 1).

Thus,
Ia(γ) 6 δp(Ĥ + 1)(M2 + 1) + δ(M2 + 1).

To estimate Ib(γ) we have:

Ib(γ) =

∥∥∥∥ q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′0,i(T
−1
0,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

6
q∑
i=1

∣∣∣ χBi(γ)

|T ′0,i(T
−1
0,i (γ))|

− χBi(γ)

|T ′δ,i(T
−1
δ,i (γ))|

∣∣∣∥∥F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)

∥∥
W

and ∫
Ib dm 6 |(PT0

− PTδ )(1)|α(M2 + 1) + qK1δ.

From Equation (9) we obtain∫
A1

Ib(γ) dm(γ) 6 [CSkα(M2 + 1) + qK1]δ.

Now, let us estimate the integral of the second summand

II (γ) =

∥∥∥∥ q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

0,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

−
q∑
i=1

F ∗
δ,T−1

δ,i (γ)
µ|T−1

δ,i (γ)
χBi

|T ′δ,i(T
−1
δ,i (γ))|

∥∥∥∥
W

.

Setting gi(a) := T
′

δ,i ◦ T
−1
δ,i (a) to make the notation concise∫

I

II (γ) dm(γ) 6
q∑
i=1

∫
Bi

1

|gi(γ)|
∥∥F ∗

δ,T−1
δ,i (γ)

(
µ|T−1

0,i (γ)
− µ|T−1

δ,i (γ)

)∥∥
W
dm(γ)

6
q∑
i=1

∫
Bi

α

|gi(γ)|
∥∥µ|T−1

0,i (γ)
− µ|T−1

δ,i (γ)

∥∥
W
dm(γ).

Let us consider the change of variable γ = Tδ,i(β). Then we obtain∫
I

II (γ) dm(γ) 6 α
q∑
i=1

∫
T−1
δ,i (Bi)

∥∥µ|T−1
0,i (Tδ,i(β))

− µ|β
∥∥
W
dm(β).

Since |Tδ,i(β)− T0,i(β)| 6 δ and T−10,i is a contraction, we have |T−10,i ◦ Tδ,i(β)− β| 6 δ
and ∫

I

II (γ) dm(γ) 6 α
∫

sup
x,y∈B(β,δ)

(‖µ|x − µ|y‖W ) dm(β) 6 α
∫

osc(µ, β, δ) dβ,

and then ∫
I

II (γ) dm(γ) 6 α2δ(M2 + 1).

Summing all, the statement is proved. �
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The last statement, together with the results of the previous sections allows to
prove the following quantitative statement for skew product maps.

Proposition 25. — Consider a family of skew product maps Fδ = (Tδ, Gδ), 0 6 δ 6 D
satisfying (Sk1)–(Sk3) uniformly, with ξ = 1, and let fδ ∈ L1 invariant probability
measures of Fδ. Suppose:

(1) There exists φ ∈ C0(R), φ(t) decreasing to 0 as t → ∞, such that LF0 has
convergence to equilibrium with respect to norms ‖·‖1-BV, ‖·‖“1” and speed φ.

(2) There exists C̃ > 0 such that for each n

‖LnF0
‖L1→L1 6 C̃.

(3) There exists n ∈ N such that for each δ 6 D, dn,S(T0, Tδ) 6 δ.
(4) For each δ 6 D there exists a set A2 ∈ Intn such that m(A2) > 1 − δ and for

all x ∈ A2, y ∈M , we have |G0(x, y)−Gδ(x, y)| 6 δ.
Let B = (BT (Ĥ + 3qαCh)/(1− λpα)) + 1. Consider the function ψ defined as

ψ(x) = φ(x)/x, then

‖fδ − f0‖“1” 6 2C̃B2C1δ(ψ
−1(C̃BC1δ/2) + 1),

where C1 is the constant in the statement of Proposition 24.

Proof. — The proof is a direct application of the estimates given in the previous
section into Theorem 5. The quantity M̃ appearing at Item (2) of Theorem 5 is
estimated by Proposition 22:

M̃ 6
BT (Ĥ + 3qαCh)

1− λpα
.

By Proposition 24 the distance between the operators appearing at Item (4) of The-
orem 5 is bounded by ε 6 C1δ(M2 + 1), where M2 bounds the strong norm of fδ. �

We remark that the quantitative stability is proved here in the ‖·‖“1” topology. This
topology is strong enough to control the behavior of observables which are discon-
tinuous along the preserved central foliation, see [9] for other results on quantitative
stability of the statistical properties of discontinuous observables and related appli-
cations.

In the following section we show a class of nontrivial partially hyperbolic skew
products having power law convergence to equilibrium and will apply this statement
to these examples.

6. Application to slowly mixing toral extensions

To give an example of application of Proposition 25 to a class of nontrivial systems,
we consider a class of “partially hyperbolic” skew products with some discontinuities,
having slow (power law) decay of correlations and convergence to equilibrium.

We will consider a class of skew products F : X → X, with X = [0, 1] × T d
(where T d is the d dimensional torus), of the form F = (T,G) (piecewise constant
toral extensions), satisfying (Te1) and (Te2):
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(Te1) There exists ` ∈ N such that T is the piecewise expanding map on [0, 1]

defined as
T (x) = `x mod (1).

(Te2) The map G : [0, 1]× T d → T d is defined by

G(x, t) = t+ θϕ(x),

where θ = (θ1, . . . , θd) ∈ T d and ϕ = 1I is the characteristic function of a set I ⊂ [0, 1]

which is a union of the sets Pi where the branches of T are defined. In this system
the second coordinate is translated by θ if the first coordinate belongs to I.

We remark that on the system (X,F ) the Lebesgue measure is invariant. We will
suppose that θ is of finite Diophantine type. Let us recall the definition of Diophantine
type for the linear approximation. The definition tests the possibility of approximat-
ing 0 by a linear combination of its components with integer coefficients.

The notation ‖·‖ will indicate the distance in Rd to the nearest vector in Zd, and
|k| = sup16i6d |ki| indicates the supremum norm.

Definition 26. — The Diophantine type of θ = (θ1, . . . , θd) for the linear approxi-
mation is

γ`(θ) = inf{γ | ∃ c0 > 0, ‖k · θ‖ > c0|k|−γ , ∀ k ∈ Zd r {0}}.

6.1. The decay of correlations. — In [29], it was observed that piecewise constant
toral extensions cannot have exponential decay of correlations (in [28] by the way it is
shown that for some piecewise constant SU2(C) extensions there can be exponential
decay of correlations). Quantitative estimates for the speed of decay of correlations
by the arithmetical properties of the angles, have been given in [23].

In this section we recall those results and see that the systems defined above have
at least polynomial decay of correlations, while for some choice of the angles the speed
of decay is proved to be actually polynomial.

Definition 27 (Decay of correlations). — Let φ, ψ : X → R be observables on X be-
longing to the Banach spaces B,B′, let ν be an invariant measure for T . Let Φ : N→ R
such that Φ(n) →

n→∞
0. A system (X,T, ν) is said to have decay of correlations with

speed Φ with respect to observables in B and B′ if

(12)
∣∣∣∣∫ φ ◦ Tnψdν −

∫
φdν

∫
ψdν

∣∣∣∣ 6 ‖φ‖B‖ψ‖B′Φ(n),

where ‖·‖B , ‖·‖B′ are the norms in B and B′.

The decay of correlations depends on the class of observables considered. On the
skew products satisfying conditions (Te1) and (Te2) as above, it is possible to establish
an explicit upper bound for the rate of decay of correlations which depends on the
linear type of the translation angle (see [23, Lem. 11]).
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Proposition 28. — In the piecewise constant toral extensions described above, for
Lipschitz observables the rate of decay is

Φ(n) = O(n−1/2γ)

for any γ > γ`(θ). For observables Cp, Cq, the rate of decay is

Φ(n) = O(n−(1/2γ)max(p,q,p+q−d))

for any γ > γ`(θ).

Remark 29. — We remark that the rate is actually polynomial in some cases.
In [23, §5] (using a result of [22]) it is proved that if the Diophantine type is large,
then the mixing rate of the systems we consider is actually slow, with a power law
speed which depends on the Diophantine type. In a system satisfying (12), let the
exponent of power law decay be defined by

p = lim inf
n→∞

− log Φ(n)

log n
.

Let us consider the skew product of the doubling map and a circle rotation endowed
with the Lebesgue (invariant) measure. For this example the exponent p satisfies

1

2γ(θ)
6 p 6

6

max(2, γ(θ))− 2
.

6.2. Convergence to equilibrium. — We will use the decay of correlations of the
toral extensions to get a convergence to equilibrium result with respect to the strong
and weak norm of our anisotropic spaces. We have from Proposition 28 that for
Lipschitz observables the rate of decay is O(n−1/2γ) for any γ > γ`(α) and for any
Lipschitz observables with

∫
f = 0 :∣∣∣∣∫ g ◦ Fn f dm

∣∣∣∣ 6 C‖f‖lip‖g‖lipn−1/2γ

.

From this we will deduce that

‖Lnµ‖“1” 6 C4n
−1/8γ

‖µ‖1-BV.

For this purpose our strategy is to approximate a 1-BV measure µ which is meant to
be iterated with a Lipschitz density and use the decay of correlations with Lipschitz
observables to estimate its convergence to equilibrium. We remark that a statement
of this kind extends greatly the kinds of measures which are meant to be iterated, as
the space of 1-BV measures contains measures with singular behavior in the neutral
direction.

The first step in the strategy is approximating the disintegration of µ with a kind
of “piecewise constant one” in the next lemma.

Lemma 30. — Let us consider a uniform grid of size ε = 1/m, m ∈ N, on the interval
[0, 1]. Given a measure µ with ‖µ‖1-BV < ∞. There is a measure µε such that µε is
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piecewise constant on the ε-grid (µε|x is constant on each element of the grid as x
varies) and

var1(µε) 6 2 var1(µ), ‖µε‖“1” 6 ‖µ‖“1”.
Furthermore,

‖µ− µε‖“1” 6 2ε var1(µ).

Proof. — Let us consider µε defined by averaging in the following way: let x ∈ [0, 1]

and let Ii be the element of the ε-grid containing x. Then, for a measurable set A ⊆M ,
µ|x(A) is defined as

µε|x(A) =

∫
Ii

µε|γ(A)dγ.

We remark that µ|x − µε|x 6 osc(ε, xi(x), µ), where xi(x) is the grid center closest
to x, and osc(ε, xi(x), µ) 6 osc(2ε, x, µ) then∫

‖µ|x − µε|x‖W 6 2ε

∫
osc(2ε, x, µ)

2ε
6 2ε sup

2ε6A

(∫ osc(2ε, x, µ)

2ε

)
6 2ε varp(µ).

The other inequalities are analogous. �

Proposition 31. — The convergence to equilibrium of a system satisfying (Te1) and
(Te2) can be estimated as

‖Lnν‖“1” 6 C4n
−1/8γ

‖ν‖1-BV.

Proof. — Consider a 1-BV measure ν, without loss of generality we can suppose
‖ν‖1-BV = 1. Let us approximate ν it with a Lipschitz measure. First let us approxi-
mate it with a piecewise constant measure νε as before. We have

‖ν − νε‖“1” 6 2ε var1(ν) 6 2ε.

Let νi be such that νi = νε|xi with xi center of the ε grid as before, and fi be the
convolution γ ∗νi, where γ is a ε−12 Lipschitz mollifier supported in [−ε2, ε2]d. Then fi
is a ε−12 Lipschitz function. Let

f(x, y) =

{
fi(y) if |x− xi| 6 (1− ε2)ε,

φi(x)fi(y) + (1− φi(x))fi+1(y) if xi + (1− ε2)ε 6 x 6 xi+1 − (1− ε2)ε,

where φi is a linear function such that

φi(xi + (1− ε2)ε) = 0 and φi(xi+1 − (1− ε2)ε) = 1.

We remark that f is
√

2 ε−12 ε−1 Lipschitz,
∫
f dm = 0. and ‖νε−fm‖“1” 6 3ε2. Hence

(13) ‖ν − fm‖“1” 6 2ε var1(ν) + 3ε2.

Since the convolution with a Lipschitz kernel is a weak contraction in the Wasser-
stein norm, applying Lemma 30 we get var1(fm) 6 2 var1(ν) and ‖f‖“1” 6 ‖ν‖“1”.
Now we apply Proposition 28 in an efficient way. The proposition concerns the be-
havior of the correlation of two observables. We will consider f as one of them, and
the other will be constructed in a suitable way to get the desired statement.
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Let f be the Lipschitz density found above. Let µ = Lnfm. Let µεits piecewise
constant approximation defined as in Lemma 30 and µi = µε|xi . Consider 1-Lipschitz
functions `i : T d → R such that

∣∣ | ∫ `iµi| − ‖µi‖W ∣∣ 6 ξ, consider functions hi :

[0, 1]→ R such that hi = 1 on the central third of the i interval of the ε-grid and zero
elsewhere, and Lip(hi) = 3ε−1. Consider gi : X → R defined by gi(x, y) = `i(y)hi(x)

and g =
∑
i gi. By what is said above, we have

‖µε‖“1” 6 3
(
ξ +

∫
gµε

)
and by Lemma 30, ‖Lnfm− µε‖“1” 6 2ε var1(µ). Then

‖Ln(fm)‖“1” 6 ‖µε‖“1” + 2ε var1(µ)

6 3
(
ξ +

∫
gµε

)
+ 2ε var1(µ).

Now consider
∫
g Lnfm. Since g is 1-Lipschitz in the y direction, we have that∣∣∣∣∫ g Lnf −

∫
g µε

∣∣∣∣ 6 ‖Lnfm− µε‖“1” 6 2ε var1(µ)

and

‖Lnf‖“1” 6 3
(
ξ +

∫
g dLnfµ0 + 2ε var1(µ)

)
+2ε var1(µ).

Now, since
∫
f dm = 0, by Proposition 28∣∣∣∣∫ g dLn(fm)

∣∣∣∣ 6 C‖f‖lip‖g‖lipn−1/2γ

then

‖Lnf‖“1” 6 3(ξ + C‖f‖lip3ε−1n
−1/2γ

+ 2ε var1(Ln(fm))) + 2ε var1(Ln(fm)).

We recall that the Lebesgue measure is invariant for the system. Then if
K is a constant density such that f + K > 0 it holds Ln(fm + Km) =

Ln(fm) + Km. It holds var1(Lnf) = var1(Ln(f + K)), since it is a positive
measure, to (f + K)m we can apply the regularization inequality (Proposition 20).
Setting B = BT (λp + Ĥ + 3qCh)/(1− λpα) we get

var1(Ln(fm))6 λnαn var1 (f)+B(‖f‖“1” +K)

since f is
√

2 ε−12 ε−1-Lipschitz and ‖f‖1-BV 6 1, ‖f‖∞ 6
√

2 ε−12 ε−1 + 1. Therefore
var(Ln(fm))6 λnαn var(f)+B(1 +

√
2 ε−12 ε−1 + 1) and

‖Ln(fm)‖“1” 6 3ξ + 3C‖f‖lip3ε−1n−1/2γ + 8ε var1(Lnf)

6 3ξ + 3C‖f‖lip3ε−1n−1/2γ + 8ε[λnαn var1 (f)+B(1 +
√

2 ε−12 ε−1 + 1)]

6 3ξ + 3C‖f‖lip3ε−1n−1/2γ + 16ε[λnαn var1 (f)+B(1 +
√

2 ε−12 ε−1 + 1)]

6 3ξ + 3C
√

2 ε−12 ε−13ε−1n−1/2γ + 16ε[λnαn var1 (f)+B(1 +
√

2 ε−12 ε−1 + 1)].
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Taking ξ = n−1/2γ , ε2 = n−1/8γ , ε = n−1/8γ , recalling that var1(f) 6 var1(ν) 6 1,
we obtain

‖Ln(fm)‖“1” 6 3n−1/2γ + 9C
√

2n3/8γn−1/2γ + 16n−1/8γ(αλn + 2B) +
√

2Bn−1/8γ

6 C3n
−1/8γ .

Finally, by Equation (13)

‖Lnν‖“1” 6 ‖Ln(ν − fm)‖“1” + ‖Ln(fm)‖“1”
6 2ε‖ν‖1-BV + ‖Ln(fm)‖“1” + 3ε2 6 C4n

−1/8γ . �

Once we have an estimate for the speed of convergence to equilibrium, by Propo-
sition 25, and Remark 7, the following holds directly:

Proposition 32. — Consider a family of skew product maps Fδ = (Tδ, Gδ), 0 6 δ 6 D
satisfying uniformly (Sk1)–(Sk3) and let fδ ∈ L1 its invariant probability measures,
suppose:

(1) F0 is a piecewise constant toral extension as defined in Section 6, with linear
Diophantine type γ`(θ).

(2) There exists n ∈ N such that for each δ 6 D, dn,S(T0, Tδ) 6 δ.
(3) For each δ 6 D there exists a set A2 ∈ Intn such that m(A2) > 1 − δ and for

all x ∈ A2, y ∈ T d, it holds |G0(x, y)−Gδ(x, y)| 6 δ.
Then for each γ > γ`(θ) there exists K1 such that for δ small enough

‖fδ − f0‖“1” 6 K1δ
1/(8γ+1).

6.3. An example having Hölder behavior. — In this section we show a simple ex-
ample of perturbation of toral extensions satisfying assumptions (Te1) and (Te2) for
which the statistical behavior is actually, only Hölder stable. This shows how that
Propositions 25 and 32 give a general estimate, which is quite sharp in the case of
piecewise constant toral extensions.

Proposition 33. — Consider a well approximable Diophantine irrational θ with
γ`(θ) > 2. Let us consider the map F0 : [0, 1] × T 1 defined as a skew product
F0(T0(x), G0(x, y)), where

T0(x) = 2x mod (1) and G0(x, y) = y + θϕ(x),

where ϕ = χ[1/2,1]. Consider γ′ < γ`(θ). There exist a sequence of reals δj > 0,
δj → 0 and a sequence of perturbed of maps F̂δj (x, y) = (T̂δj (x), Ĝδj (x, y)) satisfying
(Sk1)–(Sk3), with T̂δj (x) = T0(x) and ‖Ĝδj (x, y)−G0(x, y)‖∞ 6 2δj such that

‖µ0 − µj‖“1” >
1

9
δj

1/(γ′−1)

holds for every j and every µj, invariant measure of F̂δj (x, y) in L1.
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Proof. — We remark that since there is convergence to equilibrium for F0, the
Lebesgue measure µ0 on [0, 1] × T 1 is the unique invariant measure in L1 for F0.
Consider Fδ = (T0(x), y + (δ + θ)ϕ(x))). For a sequence of values of δ converging
to 0 it holds that (δ + θ) is rational. For this sequence the map y 7→ y + (δ + θ)

(: T 1 → T 1) is such that, 0 has a periodic orbit. Let y1 = 0, . . . , yk be this orbit. For
these parameters, consider the product measure µn = 1

k

∑
i6km⊗δyi , where m is the

Lebesgue measure on [0, 1] and δyi is the delta measure placed on yi. The measure µn
is invariant for Fδ(x, y) and is in L1. It is easy to see that ‖µ0−µn‖“1” > (1/9)(1/k).
Now the Diophantine type of θ will give an estimate for the relation between δ and k.
Indeed, let γ′ < γ(θ), by the Diophantine type of θ we know that there are infinitely
many kj and integers pj such that |kjθ−pj | 6 |1/kj |γ

′ . Then |θ−pj/kj | 6 |1/kj |γ
′−1.

Let us now consider δj = −θ+ pj/kj . It holds |δj | 6 |1/kj |γ
′−1 and the angle (δj + θ)

generates a periodic orbit of period kj . This happens by perturbing the second
coordinate of the map by a quantity which is less than |1/kj |γ

′−1. Summarizing, for
the map Fδj

– we have that there is no perturbation on the first coordinate,
– for the second coordinate we have ‖G0 −Gδj‖∞ 6 δj , and
– denoting by µj the invariant measure on the periodic orbit defined before, it holds

‖µ0 − µj‖“1” >
1

9
δj

1/(γ′−1).

This example can further be improved by perturbing the map Fδj to a new
map F̂δj in a way that µj (a measure supported on the attractor of F̂δj ) and
µj + kj/2

(6)(supported on the repeller of F̂δj ) are the only invariant measures in L1

for F̂δj and µj is the unique physical measure for the system. This can be done by
making a small further C∞ perturbation on G. Let us denote again by y1, . . . , ykj
the periodic orbit of 0 as before. Let us consider a C∞ function g : [0, 1]→ [0, 1] such
that:

– g is negative on the each interval [yi, yi + 1/2kj ] and positive on each interval
[yi + 1/2kj , yi+1] (so that g(yi + 1/2kj) = 0).

– g′ is positive in each interval [yi+1/3kj , yi+1−1/3kj ] and negative in [yi, yi+1]−
[yi + 1/3kj , yi+1 − 1/3kj ].

Considering Dδ : T 1 → T 1 defined by Dδ(x) = x + δg(x) mod (1), it holds that
the iteration of this map send all the space but the set {yi + 1/2kj | i 6 kj} (which
is a repeller) to the set {yi | i 6 kj} (the attractor). Then define F̂δj as:

F̂δj (x, y) = (Tδj (x), Dδj (y + (δj + θ)ϕ(x))).

The claim directly follows from the remark that for the map (F̂δj )
kj the sets

Γ1 := [0, 1]× {yi | i 6 kj} and Γ2 := [0, 1]× {yi + 1/2kj | i 6 kj}

are invariant and the set Γ1 attracts the whole [0, 1]× T 1 r Γ2. �

(6)Defined as [µj +1/2kj ](A) = µj(A−1/2kj) for each measurable set A in T 1, where A−1/2kj
is the translation of the set A by −1/2kj .
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The construction done in the previous proof can be extended to show Hölder be-
havior for the average of a given regular observable. We show an explicit example of
such an observable for a skew product with a particular angle θ.

Proposition 34. — Consider a map F0 as above with the rotation angle θ =∑∞
1 2−2

2i , with

T0(x) = 2x mod (1) and G0(x, y) = y + θϕ(x)

as in Proposition 33. Let F̂δj be its perturbations as described in the proof of
the proposition and µj their invariant measures in L1. There is an observable
ψ : [0, 1]× T 1 → R with derivative in L2 and C > 0 such that∣∣∣∣∫ ψdµ0 −

∫
ψdµj

∣∣∣∣ > C√δj .
Proof. — We recall that that

∑∞
n+1 2−2

2i

6 2−2
2(n+1)+1. From this we deduce

‖222nθ‖ 6 2−2
2(n+1)+1 and the Diophantine type of θ is greater than 4. Following the

construction above, we have that with a perturbation of size less than 2−2
2(n+1)+1 the

angles θj =
∑j

1 2−2
2i generate on the second coordinate of the skew product orbits

of period 22
2j . Now let us construct a suitable observable which can “see” the change

of the invariant measure under this perturbation. Let us consider

(14) ψ(x, y) =

∞∑
1

1

(222i)2
cos(22

2i

2πy) and ψk(x, y) =

k∑
1

1

(222i)2
cos(22

2i

2πy).

Since for the observable ψ, the i-th Fourier coefficient decreases like i−2, then ψ has
a derivative in L2. Let x1 = 0, . . . , x222j be the periodic orbit of 0 for y 7→ y+ θj , and
µj = (1/22

2i

)
∑
δxi the physical measure supported on it. Since 22

2j divides 22
2(j+1)

we have
∑22

2j

i=1 ψk(xi) = 0 for every k < j, thus
∫
ψj−1 dµj = 0. Then

vj :=

∫
ψ dµj >

1

(222j )2
−
∞∑
j+1

1

(222i)2
> 2−2

2j+1

− 2−2
2(j+1)+1.

And for j big enough,

2−2
2j+1

− 2−2
2(j+1)+1 >

1

2
(2−2

2j

)2.

Summarizing, with a perturbation of size

δj =

∞∑
j+1

2−2
2i

6 2 ∗ 2−2
2(j+1)

= 2−2
2(j+1)

= 2(2−2
2j

)4

we get a change of average for the observable ψ from
∫
ψ dm = 0 to vn > 1

2 (2−2
2j

)2.
Hence there exists a C > 0 such that with a perturbation of size δj we get a change
of average for the observable ψ of size bigger than C

√
δj . �
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Remark 35. — Using 1/(22
2i

)α instead of 1/(22
2i

)2 in (14) we can obtain a smoother
observable. Using rotation angles with bigger and bigger Diophantine type it is possi-
ble to obtain a dependence of the physical measure to perturbations with worse and
worse Hölder exponent. Using angles with infinite Diophantine type it is possible to
have a behavior whose modulus of continuity is worse than the Hölder one.
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