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SOME REMARKS ON

FINITARILY APPROXIMABLE GROUPS

by Nikolay Nikolov, Jakob Schneider & Andreas Thom

Abstract. — The concept of a C -approximable group, for a class of finite groups C , is a common
generalization of the concepts of a sofic, weakly sofic, and linear sofic group. Glebsky raised the
question whether all groups are approximable by finite solvable groups with arbitrary invariant
length function. We answer this question by showing that any non-trivial finitely generated
perfect group does not have this property, generalizing a counterexample of Howie. In a related
note, we prove that any non-trivial group which can be approximated by finite groups has a non-
trivial quotient that can be approximated by finite projective special linear groups. Moreover, we
discuss the question which connected Lie groups can be embedded into a metric ultraproduct of
finite groups with invariant length function. We prove that these are precisely the abelian ones,
providing a negative answer to a question of Doucha. Referring to a problem of Zilber, we show
that the identity component of a Lie group, whose topology is generated by an invariant length
function and which is an abstract quotient of a product of finite groups, has to be abelian. Both
of these last two facts give an alternative proof of a result of Turing. Finally, we solve a conjecture
of Pillay by proving that the identity component of a compactification of a pseudofinite group
must be abelian as well. All results of this article are applications of theorems on generators
and commutators in finite groups by the first author and Segal. In Section 4 we also use results
of Liebeck and Shalev on bounded generation in finite simple groups.

Résumé (Remarques sur les groupes finitairement approximables). — Le concept de groupe
C -approximable, pour une classe de groupes finis C , généralise à la fois les notions de groupe
sofique, faiblement sofique et linéairement sofique. Glebsky a soulevé la question de savoir si tous
les groupes sont approximables par des groupes finis résolubles avec une fonction longueur
invariante arbitraire. Nous résolvons cette question en montrant que tout groupe parfait non
trivial de type fini n’a pas cette propriété, en généralisant un contre-exemple dû à Howie. Dans le
même esprit, nous montrons que tout groupe non trivial qui peut être approximé par des groupes
finis a un quotient non trivial qui peut être approximé par des groupes projectifs spéciaux
linéaires finis. De plus, nous discutons la question de savoir quels groupes de Lie peuvent être
plongés dans un ultraproduit métrique de groupes finis avec fonction longueur invariante. Nous
montrons que ce sont exactement les groupes abéliens, fournissant ainsi une réponse négative
à une question de Doucha. En relation avec un problème de Zilber, nous montrons que la
composante neutre d’un groupe de Lie dont la topologie est engendrée par une fonction longueur
invariante et qui est un quotient abstrait d’un produit de groupes finis, doit être abélienne. Ces
deux derniers résultats permettent de donner une nouvelle preuve d’un résultat de Turing.
Enfin, nous résolvons une conjecture de Pillay en montrant que la composante neutre d’une
compactification d’un groupe pseudo-fini doit aussi être abélienne. Tous les résultats de cet
article sont des applications de théorèmes, dus au premier auteur et à Segal, sur les générateurs
et les commutateurs dans un groupe fini, ainsi que de résultats de Liebeck et Shalev.
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1. Introduction

Ever since the work of Gromov on Gottschalk’s Surjunctivity Conjecture [11], the
class of sofic groups has attracted much interest in various areas of mathematics. Major
applications of this notion arose in the work of Elek and Szabó on Kaplansky’s Direct
Finiteness Conjecture [5], Lück’s Determinant Conjecture [6], and more recently in
joint work of the third author with Klyachko on generalizations of the Kervaire-
Laudenbach Conjecture and Howie’s Conjecture [15].

Despite considerable effort, no non-sofic group has been found so far. In view of
this situation, attempts have been made to provide variations of the problem that
might be more approachable. In the terminology of Holt and Rees, sofic groups are
precisely those groups which can be approximated by finite symmetric groups with
normalized Hamming length (in the sense of [27, Def. 1.6]). It is natural to vary the
class of finite groups and also the metrics that are allowed. Note that our terminology
differs from the one used in [19], where similar concepts were studied.

The strongest form of approximation is satisfied by LEF (resp. LEA) groups. In
this case, it is well known that a finitely presented group is not approximable by finite
(resp. amenable) groups with discrete length function, i.e., it is not LEF (resp. LEA),
if and only if it fails to be residually finite (resp. residually amenable). Examples of
sofic groups which fail to be LEA (and thus also fail to be LEF) are given in [2] and
[14] (see also [26]), answering a question of Gromov [11].

In [27] the third author proved that the so-called Higman group cannot be ap-
proximated by finite groups with commutator-contractive invariant length function.
In [13] Howie presented a group which, by a result of Glebsky [9], turned out not to
be approximable by finite nilpotent groups with arbitrary invariant length function.

The present article provides four more results of this type (see Sections 3 and 5).
However, in our setting we restrict only the classes of finite groups and do not impose
restrictions on the length functions of the approximating groups other than being
invariant (see Definitions 1 and 3).

Recently, Glebsky [8] asked whether all groups can be approximated by finite solv-
able groups (in the sense of Definition 1). In Section 3 we answer this question by
establishing that each non-trivial finitely generated perfect group is a counterexample
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(see Theorem 1). The key to this result is a theorem of Segal [22] on generators and
commutators in finite solvable groups.

In Section 4, using results of the first author from [18] and of Liebeck and Shalev
from [16], we prove that any non-trivial group which is approximable by finite groups
has a non-trivial homomorphism into a metric ultraproduct of finite simple groups of
type PSLn(q) with conjugacy length function (see Theorem 4).

In Section 5 we discuss the approximability of Lie groups by finite groups. It is easy
to see that R as a topological group is not approximable by symmetric groups, i.e., it
is not continuously embeddable into a metric ultraproduct of symmetric groups with
arbitrary invariant length function (see Remark 6). Using a much deeper analysis, we
show that a connected Lie group is approximable by finite groups (in the sense of
Definition 3) precisely when it is abelian (see Theorem 6). In [4, Quest. 2.11] Doucha
asked for groups which can be equipped with an invariant length function such that
they do not embed into a metric ultraproduct of finite groups with invariant length
function. Our result implies that any compact, connected, and non-abelian Lie group
is an example of such a group. Thus the simplest example of a topological group which
is not weakly sofic, i.e., not continuously embeddable into a metric ultraproduct of
finite groups with invariant length function, is SO3(R). However, we remark that every
linear Lie group is an abstract subgroup of the algebraic ultraproduct of finite groups
indexed over N (see Remark 5).

Furthermore, in the same section we answer the question of Zilber [32] if there
exists a compact simple Lie group which is not a quotient of an algebraic ultraproduct
of finite groups. Indeed, we show that a Lie group which can be equipped with an
invariant length function generating its topology and which is an abstract quotient
of a product of finite groups has abelian identity component (see Theorem 7). Hence
any compact simple Lie group fails to be approximable by finite groups in the sense
of Zilber.

A slight variation of Theorem 7 also answers Question 1.2 of Pillay [20]. Moreover,
we point out that Theorem 6 and Theorem 7 provide an alternative proof of the main
result of Turing [30].

Finally, using the same approach as for the previous two results, we solve the
conjecture of Pillay [20] that the Bohr compactification of any pseudofinite group is
abelian (see Theorem 8).

All results of Section 5 follow from a theorem on generators and commutators in
finite groups of the first author and Segal [18].

Acknowledgements. — The second and third author want to thank Alessandro
Carderi for interesting discussions. The content of this paper is part of the PhD
project of the second author.

After we finished a first version of this article and circulated it among some experts,
it was pointed out that (independently and slightly earlier) Lev Glebsky found a
solution to Zilber’s problem along the same lines.
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2. Preliminaries

In this section we recall some basic concepts. We introduce the notion of
C -approximable abstract and topological groups, and present examples.

2.1. Metric groups and length functions. — By a metric group we mean a group
equipped with a metric. However, we allow a metric to attain the value infinity (this is
needed for Definition 2 to make sense). For a left-invariant metric dG : G×G→ [0,∞]

on the group G we define the corresponding length function (or norm) `G : G→ [0,∞]

by `G(g) := dG(1G, g). It inherits the following three properties from dG:
(i) `G(g) = 0 if and only if g = 1G;
(ii) `G(g) = `G(g

−1) for g ∈ G;
(iii) `G(gh) 6 `G(g) + `G(h) for g, h ∈ G.

Conversely, to any such function `G we associate a left-invariant metric

dG : G×G −→ [0,∞]

defined by dG(g, h) := `G(g
−1h). This gives a one-to-one correspondence between

length functions and left-invariant metrics. We indicate that a length function and
a left-invariant metric correspond to each other by equipping them with the same
decoration.

The length function `G is called invariant if it is constant on conjugacy classes.
This happens precisely when dG is bi-invariant. In this article all length functions will
be invariant (and all metrics are bi-invariant).

Let us introduce the following types of length functions on a finite group G, which
we shall use in this article. The discrete length function `dG is the simplest one. It is
defined by `dG(g) := 1 for g ∈ G r {1G} and corresponds to the discrete metric ddG
on G. The conjugacy (pseudo) length function `cG is defined by

(2.1) `cG(g) :=
log|gG|
log|G|

for g ∈ G, where gG is the conjugacy class of g in G. It is only a proper length
function if G has trivial center. The projective rank length function `prG is defined if
G 6 PGLn(q) for some n ∈ N and q a prime power;

`prG (g) :=
1

n
min{rk(1− ĝ) | ĝ some lift of g}.

Finally, the Cayley length function `Cay,S
G with respect to some subset S ⊆G is de-

fined by

`Cay,S
G (g) := min{n ∈ N | g = s1 · · · sn for si ∈ S ∪ S−1} ∪ {∞}.

We call a family of length functions (`i)i∈I on a sequence of finite groups (Hi)i∈I
Lipschitz continuous with respect to a second family (`′i)i∈I on the same groups if
there is L > 0 such that `i 6 L`′i (i ∈ I).
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For example, since `cG, `
pr
G 6 `

d
G for any finite group G, the conjugacy length funct-

ion and the projective rank length function are Lipschitz continuous with respect to
the discrete length function (with L = 1).

If (`′i)i∈I is also Lipschitz continuous with respect to (`i)i∈I , we call these families
Lipschitz equivalent.

For example, `c and `pr are Lipschitz equivalent on the class of non-abelian finite
simple groups, which follows from [16] (see the argument at the end of Section 4).

2.2. On C -approximable abstract groups. — Now we can define metric approxima-
tion of an abstract group by a class of finite groups. Throughout the article let C be
such a class.

Definition 1. — An abstract group G is called C -approximable if there is a function
δ• : G r {1G} → (0,∞] such that for any finite subset S ⊆ G and ε > 0 there exist
a group H ∈ C , an invariant length function `H on H, and a map ϕ : S → H, such
that

(i) if 1G ∈ S, then ϕ(1G) = 1H ;
(ii) if g, h, gh ∈ S, then dH(ϕ(g)ϕ(h), ϕ(gh)) < ε;
(iii) for g ∈ S r {1G} we have `H(ϕ(g)) > δg.

Note that the above definition differs slightly from [27, Def. 1.6] as we impose no
restrictions on the invariant length functions. However, it is equivalent to [8, Def. 6].

Indeed, we may even require that `H 6 1 and δ• ≡ 1 in the above definition without
changing its essence. Namely, choosing ε > 0 small enough, setting c := ming∈S δg,
`′H := min{`H/c, 1}, and defining δ′ : Gr {1G} → (0,∞] by δ′• := 1, we can replace δ
by δ′ and `H by `′H . So, in the sense of [12, p. 3], if we do not impose restrictions
on the length functions on the groups from C , the terms ‘C -approximation property’,
‘discrete C -approximation property’, and ‘strong C -approximation property’ coincide.

Moreover, similar to soficity, being C -approximable is a local property. This is
expressed in the following remark.

Remark 1. — An abstract group is C -approximable if and only if every finitely gen-
erated subgroup has this property.

Let us now present some examples of C -approximable abstract groups. Subse-
quently, denote byAlt (resp. Fin) the class of finite alternating groups (resp. the class
of all finite groups). Indeed, C -approximable abstract groups (in the above sense) can
be seen as a generalization of sofic (resp. weakly sofic) groups as it is shown in [8, §2].

Example 1. — A group is sofic (resp. weakly sofic) if and only if it isAlt-approximable
(resp. Fin-approximable) as an abstract group.

Groups approximable by certain classes of finite simple groups of Lie type have
been studied in [1] and [28, 29].
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Every C -group G is certainly C -approximable, since we can take H := G, ϕ to
be the restriction of the identity on G to S, and `H := `dH to be the discrete length
function on H in Definition 1. Hence Remark 1 implies:

Example 2. — Every locally C -group is C -approximable as an abstract group.

2.3. Metric ultraproducts of groups. — Since there is another common equivalent
characterization of C -approximable groups via metric ultraproducts of C -groups with
invariant length function, we recall this concept next (for more details on the algebraic
and geometric structure of such ultraproducts see also [25] and [28, 29]).

Definition 2. — Let (Hi, `i)i∈I be a sequence of finite groups with invariant length
function and let U be an ultrafilter on the index set I. The metric ultraproduct
(H, `) :=

∏
U (Hi, `i) is defined as the group H :=

∏
i∈I Hi modulo the normal

subgroup NU := {(hi) ∈ H | limU `i(hi) = 0} of null sequences equipped with the
(invariant) length function ` defined by `(h) := limU `i(hi), where h = (hi) is a
representative.

Here it is important that length functions are [0,∞]-valued, since otherwise ` would
not be well-defined. Some authors use a slightly different definition by restricting H
to the sequences (hi)∈

∏
i∈I Hi of uniformly bounded length, i.e., supi∈I `i(hi)<∞.

However, we prefer the above definition since then the ultraproduct is always a quo-
tient of a product of the finite groups Hi (i ∈ I).

Another thing we mention here is that an ultraproduct as in Definition 2 is always
a topological group, i.e., the group operation and taking inverses are continuous with
respect to the topology induced by `. This holds because ` is invariant.

Lastly, we remark that the algebraic ultraproduct of a family of finite groups is
isomorphic to the metric ultraproduct of these groups equipped with the discrete
length function with respect to the same ultrafilter. In this sense we can view every
algebraic ultraproduct as a metric ultraproduct.

Now we can point out the announced characterization of C -approximable abstract
groups via metric ultraproducts. Let us call the class C trivial if either C = ∅ or
C = {1}. Here is the promised characterization.

Lemma 1. — If C is a non-trivial class, every abstract C -approximable group G is
isomorphic to a discrete subgroup of a metric ultraproduct (H, `) =

∏
U (Hi, `i) of

C -groups Hi with invariant length function `i (i ∈ I) such that diam(Hi, `i) = 1 and
the distance between the images of any two different elements of G is one. If G is
countable, I can be chosen to be N with the natural order and U to be some non-
principal ultrafilter.

Conversely, any subgroup of a metric ultraproduct of C -groups with invariant length
function is C -approximable as an abstract group.

The proof of this result is identical to the corresponding proof in the sofic case,
which is well known. Hence we omit it here.

J.É.P. — M., 2018, tome 5



Some remarks on finitarily approximable groups 245

2.4. On C -approximable topological groups. — In view of Lemma 1 it is natural
to generalize the notion of a C -approximable group to topological groups using ultra-
products.

Definition 3. — A topological group is called C -approximable if it embeds continu-
ously into a metric ultraproduct of C -groups with invariant length functions.

Lemma 1 indicates the following class of examples of C -approximable topological
groups.

Example 3. — Every C -approximable abstract group equipped with the discrete
topology is C -approximable as a topological group.

Conversely, a C -approximable topological group is C -approximable as an abstract
group when we ‘forget’ its topology.

To present more classes of examples, we need an auxiliary result. The following
lemma gives a sufficient condition for a metric group to be isomorphic to an ultra-
product of finite metric groups. Its proof is trivial.

Lemma 2. — Let (G, `G) be a group with invariant length function, I an index set,
U an ultrafilter on I, (Ki, `i)i∈I a sequence of finite groups with invariant length
function, and (K, `) :=

∏
U (Ki, `i) its metric ultraproduct.

(i) Assume there are mappings ϕi : G→ Ki, which are isometric and a homomor-
phism in the U -limit, i.e.,

lim
U
di(ϕi(g), ϕi(h)) = dG(g, h) and lim

U
di(ϕi(g)ϕi(h), ϕi(gh)) = 0.

Then there is an isometric embedding ϕ : (G, `G) ↪→ (K, `) in the ultraproduct defined
by ϕ(g) := (ϕi(g)).

(ii) The embedding ϕ is surjective if and only if for every (ki) ∈ K :=
∏
i∈I Ki

there exists g ∈ G such that limU di(ϕi(g), ki) = 0.
(iii) It surjects onto the subgroup of elements of finite length of (K, `) if the previous

assertion holds for all (ki) ∈ K with supi∈I `i(ki) <∞.

Let C P and C SP be the class of finite products of C -groups and the class subgroups
of finite products of C -groups, respectively. Now, we investigate which profinite groups
are C -approximable as topological groups. The standard example is given by the
following lemma.

Lemma 3. — Let Hi (i ∈ N>0) be C -groups. Then the profinite group P :=
∏
i∈NHi

is isomorphic to a metric ultraproduct of C P-groups and so C P-approximable as a
topological group.

Proof. — We want to apply (i) and (ii) of Lemma 2 to G := P . Equip G with the
invariant length function `G(h) := max{1/i | i ∈ N>0, hi 6= 1Hi

}∪{0}, where h = (hi).
Let I :=N>0 and U be some non-principal ultrafilter on I. Set Ki :=H1×· · ·×Hi6G
and let `i be the restriction of `G to Ki. Define ϕi : G → Ki in such a way that for
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246 N. Nikolov, J. Schneider & A. Thom

every g ∈ G the distance dG(ϕi(g), g) is minimal. By definition of `G we have that
dG(ϕi(g), g) < 1/i. Hence it is easy to verify that condition (i) of Lemma 2 is fulfilled.
For (ii) define g as the U -limit of (ki) ∈ K (which exists by compactness). Then
limU di(ϕi(g), ki) 6 limU dG(ϕi(g), g) + limU dG(g, ki) = 0. This ends the proof. �

From the previous example we derive the following result.

Lemma 4. — For a pro-C SP group P the following are equivalent:
(i) P is C P-approximable as a topological group.
(ii) P is metrizable.
(iii) P is first-countable.
(iv) P is the inverse limit of a countable inverse system of C SP-groups with all

maps surjective.
(v) P is a closed topological subgroup of a countable product of C -groups.

Proof. — The implications (i)⇒(ii)⇒(iii) are trivial. (iii)⇒(iv): Let B be a countable
system of open neighborhoods at 1G. For each B ∈ B we can find an open normal
subgroup N ⊆ B such that P/N is a subgroup of a C SP-group, so itself a C SP-group
(by [31, Prop. 0.3.3(a) & Prop. 1.2.1]). Let N be the collection of these subgroups.
Since

⋂
B = {1P }, as P is Hausdorff, the same holds for N . Moreover, forM,N ∈ N

we have P/(M ∩ N) 6 P/M × P/N , so P/(M ∩ N) is a C SP-group too. Hence we
may assume that N is closed for finite intersections and apply [31, Prop. 1.2.2] to
obtain that P is the inverse limit of the C SP-groups P/N (N ∈ N ) with respect to
the natural maps P/M → P/N for M 6 N (M,N ∈ N ).

(iv)⇒(v): By the standard construction of the inverse limit, it embeds into a count-
able product of C SP-groups, which (by definition) embeds into a countable product
of C -groups. For (v)⇒(i) we only need to show that a countable product of C -groups
is C P-approximable. This is Lemma 3. The proof is complete. �

Remark 2. — The previous lemma implies that if a pro-C SP group embeds continu-
ously into a metric ultraproduct of C P-groups with invariant length function, then it
already embeds into such an ultraproduct of countably many groups.

We are now able to present the following important example.

Example 4. — If P = 〈x1, . . . , xr〉 is a topologically finitely generated pro-C SP group,
then P is C P-approximable as a topological group.

Proof. — Indeed, P embeds continuously into the product of all its continuous finite
quotients

∏
N P/N and finite generation implies that there are only countably many

of these. By [31, Prop. 1.2.1] we can restrict this map to a product of subgroups of
C SP-groups (which are itself C SP-groups) such that it still is an embedding. But, the
latter embeds into a countable product of C -groups. Hence P is C P-approximable
(by Lemma 4). �
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However, it is also simple to find examples of profinite groups that are not approx-
imable by finite groups.

Example 5. — Uncountable products of (non-trivial) finite groups are not metrizable
and hence not approximable by finite groups.

Now we turn to Lie groups. The following example demonstrates that connected
abelian Lie groups can always be approximated by finite abelian groups in the sense
of Definition 3. Henceforth, let Abd be the class of finite abelian groups which are a
direct sum of at most d cyclic groups.

Lemma 5. — Every d-dimensional connected abelian Lie group L = Rm × (R/Z)n

(m+n = d) equipped with the ‘euclidean’ length function `L is isometrically isomorphic
to the subgroup of elements of finite length of an ultraproduct of Abd-groups with
length function and hence Abd-approximable.

Proof. — We wish to apply (i) and (iii) of Lemma 2 to G := L with euclidean length
function `G := `L. Let I := N>0 and U be some non-principal ultrafilter on I. For
i ∈ N>0 set

Si :=
{−i2

i
,
−i2 + 1

i
, . . . ,

i2

i

}m
×
(
1
iZ/Z

)n ⊆ L,
and Ki := (Z/(4i2))m × (Z/(i))n. Define

αi :
{−i2

i
,
−i2 + 1

i
, . . . ,

i2

i

}m
−→ (Z/(4i2))m

by x 7→ ix, let βi : ( 1iZ/Z)
n → (Z/(i))n be the canonical isomorphism, and set

γi : Si → Ki to be the map (x, y) 7→ (αi(x), βi(y)). Moreover, equip Ki with the
unique length function that turns γi into an isometry. Let δi : G → Si be a map
such that dG(δi(g), g) is minimal for all g ∈ G. Now define ϕi := γi ◦ δi. Clearly,
dG(ϕi(g), g) tends to zero for all g ∈ G. Hence condition (i) of Lemma 2 holds.
Condition (iii) follows from compactness of closed balls of finite radius in G by the
same argument as at the end of the proof of Lemma 3. The proof is complete. �

We will see in Theorem 6 of Section 5 that connected abelian Lie groups are the
only Fin-approximable connected Lie groups.

3. On Sol-approximable groups

Subsequently, let Sol (resp. Nil) be the class of finite solvable (resp. nilpotent)
groups. In this section we establish the following theorem.

Theorem 1. — Any non-trivial finitely generated and perfect group is not Sol-
approximable.

As a consequence, a finite group is Sol-approximable if and only if it is solvable:
Indeed, any finite solvable group is Sol-approximable. On the other hand, a non-
solvable finite group contains a non-trivial perfect subgroup and hence cannot be
Sol-approximable by Remark 1 and Theorem 1.
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Initially, Howie proved in [13] that the group 〈x, y | x−2y−3, x−2(xy)5〉 is not Nil-
approximable. We mimic his proof for any non-trivial finitely generated perfect group
and then extend it by establishing that these groups are not even Sol-approximable
using techniques of Segal [22, 23].

In preparation of the proof of Theorem 1, we need an auxiliary result from [9].
Recall that the pro-C topology on a group K is the initial topology induced by all
homomorphisms to C -groups equipped with the discrete topology. Hence the closure S
of a subset S ⊆ K in this topology is characterized as follows: An element k ∈ K lies
in this closure if and only if ϕ(k) ∈ ϕ(S) for all homomorphism ϕ : K → H, where H
is a C -group.

Adapting [9, Th. 4.3], one can prove the following theorem relating C -approximable
groups to the pro-C topology on a free group of finite rank.

Theorem 2. — Let F/N be a presentation of a group G, where rk(F) <∞. Then, if G
is C -approximable, for each finite sequence n1, . . . , nk ∈ N it holds that nF1 · · ·nFk ⊆ N
(in the pro-C topology on F). The converse holds if C is closed with respect to finite
products and subgroups.

Remark 3. — If C is closed with respect to finite products and subgroups, the
previous theorem implies that residually C -groups are C -approximable as abstract
groups, since if G = F/N is a finitely generated such group, for each finite sequence
n1, . . . , nk ∈ N we obtain nF1 · · ·nFk ⊆ N = N (in the pro-C topology on F).

In view of Theorem 2, when C is closed for subgroups, to prove the existence of
a non-C -approximable group, it suffices to find a normal subgroup N E F of a free
group of finite rank, an element x ∈ FrN , and a sequence n1, . . . , nk ∈ N such that
ϕ(x) ∈ ϕ(n1)H · · ·ϕ(nk)H for any surjective homomorphism ϕ : F→ H to a C -group.

As both classesNil and Sol are closed with respect to subgroups, we shall construct
a situation as described before.

Subsequently, let F be freely generated by x1, . . . , xr. Fix a presentation F/N of
some non-trivial perfect group P , and an element x ∈ FrN . The assumption that P
is perfect is equivalent to the fact that F=F′N . Hence we can find n1, . . . , nr, n∈N
such that xi ≡ ni (i = 1, . . . , r) and x ≡ n modulo F′. Consider a surjective homo-
morphism ϕ : F → H to some finite group H (later H will be assumed to be nilpo-
tent resp. solvable). Writing yi := ϕ(xi), hi := ϕ(ni) (i = 1, . . . , r), y := ϕ(x), and
h := ϕ(n), the above translates to yi ≡ hi (i = 1 . . . , r) and y ≡ h modulo H ′.
Clearly, h1, . . . , hr generate H modulo H ′ (as ϕ is surjective). Now we need a lemma.
To state it, it becomes necessary to introduce some notation. In a group G define the
commutator of two elements g, h ∈ G by [g, h] := g−1h−1gh = g−1gh, for S ⊆ G and
g ∈ G write [S, g] for the set {[s, g] | s ∈ S}, and for subgroups K,L 6 G write [K,L]

for the subgroup generated by {[k, l] | k ∈ K, l ∈ L}.
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Lemma 6 ([23, Prop. 1.2.5]). — Let L E G be groups, and suppose that G =

G′〈g1, . . . , gm〉. Then
[L,G] = [L, g1] · · · [L, gm][L, lG]

for all l > 1. Here, [L, lG] denotes the subgroup [L,G, . . . , G︸ ︷︷ ︸
l

] of G.

Proof of Theorem 1, Part 1. — We apply the previous lemma to G := L := H, m := r,
and gi := hi (i = 1, . . . , r). Moreover, we choose l > 1 to be an integer such that
γl(H) = γω(H) (here γl(H) is the lth term in the lower central series of H and
γω(H) =

⋂
{γl(H) | l ∈ N>0}). Hence there exist lij , lj ∈ H (i, j = 1 . . . , r) such that

yi ≡ hi[li1, h1] · · · [lir, hr] (i = 1, . . . , r) and y ≡ h[l1, h1] · · · [lr, hr] modulo γω(H).
Assuming H is nilpotent (so γω(H) = 1), the last congruence shows that

y = ϕ(x) ∈ ϕ(n′1)H · · ·ϕ(n′kNil
)H ,

where kNil = 2r + 1 and (n′j)
kNil

j=1
is a fixed sequence with entries in the set

{n, n±11 , · · · , n±1r }. Thus P cannot be Nil-approximable. �

To prove that P is not Sol-approximable, we need the following deeper result of
Segal on finite solvable groups.

Theorem 3 ([22, Th. 2.1]). — Assume G is a finite solvable group and

γω(G)〈g1, . . . , gm〉 = G

for some m ∈ N. Moreover, assume that G is generated by d elements. Then there
is a fixed sequence (ij)

m′

j=1 of indices in {1, . . . ,m}, whose entries and length m′ only
depend on d and m such that

γω(G) =

m′∏
j=1

[γω(G), gij ].

Proof of Theorem 1, Part 2. — Assume that H is solvable. We want to apply Theo-
rem 3 to G := H. Since ϕ is surjective, the elements y1 = ϕ(x1), . . . , yr = ϕ(xr)

generate H, so we may set d := r. We still have to define the elements g1, . . . , gm ∈ G.
From the above congruences we conclude that the sequence

h1, . . . , hr, (h
−1
1 )l11 , · · · , (h−1r )l1r , · · · , (h−11 )lr1 , · · · , (h−1r )lrr

is a good choice for g1, . . . , gm. Thus m := r(r + 1) is bounded in terms of r.
The theorem gives us, similarly as in the nilpotent case, a fixed sequence (n′′j )

kSol

j=1

with entries in {n, n±11 , · · · , n±1r }, whose length kSol = kNil+2m′ is bounded in terms
of r, such that

y = ϕ(x) = ϕ(n′′1)
H · · ·ϕ(n′′kSol

)H .

Thus P cannot be Sol-approximable. �
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Note that finite generation is crucial here. Indeed, there exist countably infinite
locally finite-p groups which are perfect and even characteristically simple [17]. By
Example 2, these groups are Nil-approximable (since finite p-groups are nilpotent),
but by definition they are not finitely generated. It is known that locally finite-solvable
groups cannot be non-abelian simple [21, p. 154], but it seems to be an open problem
if there exist Sol-approximable simple groups.

4. On Fin-approximable groups

Let PSL be the class of simple groups of type PSLn(q), i.e., n ∈ N>2 and q is
a prime power and (n, q) 6= (2, 2), (2, 3), and recall that Fin is the class of all finite
groups. In this section we prove the following result.

Theorem 4. — Any non-trivial finitely generated Fin-approximable group has a
non-trivial PSL-approximable quotient. In particular, every simple Fin-approximable
group is PSL-approximable.

To prove Theorem 4 we need some preparation. At first we recall a classical lemma
of Goursat [10].

Lemma 7 (Goursat’s Lemma). — Let G 6 K × L be a subdirect product, i.e., the
restricted projection maps πK : G→ K, πL : G→ L are surjective. Set M := ker(πL)

and N := ker(πK). Then M E K, N E L, and the image of G in K/M ×L/N is the
graph of an isomorphism.

We need the preceding lemma for the following auxiliary result. Recall that a
profinite group is called semisimple if it is the direct product of finite non-abelian
simple groups. Moreover, a finite group G is almost simple if it has a unique minimal
normal subgroup N which is non-abelian simple; in this case N E G 6 Aut(N).

Lemma 8. — Let G be a closed subdirect product of a profinite group A =
∏
i∈I Ai,

where Ai is almost simple (i ∈ I). Then G contains a closed normal semisimple
subgroup H such that G/H is solvable of derived length at most three and each simple
factor of H is normal in G.

Proof. — For J ⊆ I let πJ : A →
∏
j∈J Aj be the projection maps. Then by [31,

Prop. 1.2.2] G is the inverse limit of the groups πJ(G) (J ⊆ I finite) together with
the natural maps πJ(G)→ πJ′(G) for J ′ ⊆ J .

Using Goursat’s Lemma one can show by induction on |J | that for J ⊆ I finite
there exist r ∈ N and finite non-abelian simple groups S1, . . . , Sr such that

S1 × · · · × Sr E πJ(G) 6 Aut(S1)× · · · ×Aut(Sr).

In this situation, for j0 ∈ I r J the projection πJ∪{j0}(G) → πJ(G) either is an
isomorphism or there exists a finite non-abelian simple group Sr+1 such that

S1 × · · · × Sr+1 E πJ∪{j0}(G) 6 Aut(S1)× · · · ×Aut(Sr+1)
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and the restriction of πJ∪{j0}(G) → πJ(G) to the socle S1 × · · · × Sr+1 of πJ∪{j0} is
the natural projection onto S1 × · · · × Sr (the socle of πJ(G)).

Now it is clear that G, as the inverse limit of the groups πJ(G) (J ⊆ I finite)
and the maps πJ(G) → πJ′(G), contains the inverse limit H of the socles of these
groups together with the restricted maps. It is routine to check that H has the desired
properties. The fact that G/H is solvable of derived length at most three is implied
by Schreier’s conjecture. �

Now we can start with the proof of Theorem 4. We will prove that our group is
PSL-approximable where we endow the groups PSLn(q) with the conjugacy metric
– see Equation (2.1) for a definition.

If the group in the theorem is not perfect, it has a non-trivial cyclic quotient
which clearly has the desired property. So let P = F/N be perfect, where F is freely
generated by x1, . . . , xr and N E F. Let F̂ be the profinite completion of F and
M := 〈〈N〉〉F̂ be the normal closure of N in F̂. Identifying F with its image in the
profinite completion, it follows from Theorem 2 that P is Fin-approximable if and
only if N =M ∩ F, since for a sequence n1, . . . , nk ∈ N we have

nF1 · · ·nFk = F ∩ nF̂1 · · ·nF̂k ,

where the closure on the left is taken in F. This is equivalent to saying that the map
F→ F̂/M induces an embedding of P in F̂/M .

For a profinite group G set G0 :=
⋂
{O Eo G | G/O is almost simple}.

Claim 1. — It holds that F 66 F̂0M .

Proof. — Assume the contrary. Then by perfectness of P there are yi ∈ N such that
xiF

′ = yiF
′ (i = 1, . . . , r). By assumption there are also zi ∈M such that xiF̂0 = ziF̂0

(i = 1, . . . , r). Set Y := {y±11 , . . . , y±1r , z±11 , . . . , z±1r }. As F̂0 is closed, by definition,
we have that

F̂ = F̂0〈Y 〉 = F̂0〈Y 〉 and F̂ = F′〈Y 〉 = F̂′〈Y 〉,
where all closures are taken in F̂. Hence by [18, Th. 1.7] applied to G := F̂ and
H := F̂0 we get that M > 〈〈Y 〉〉F̂ > [F̂0, F̂] > F̂′0. Since F̂0M/M = F̂0/(F̂0 ∩M)

is abelian by the preceding argument, we cannot have F 6 F̂0M , since otherwise P
would be abelian. Contradiction proving the claim. �

Claim 1 implies that P has a non-trivial homomorphism to F̂/F̂0M . Apply
Lemma 8 to G := F̂/F̂0 as a subdirect product of all almost simple quotients of F̂.
Let H = K/F̂0 be the semisimple group provided by the lemma. As F̂/K is solvable,
we cannot have K 6 F̂0M , otherwise the image of P in F̂/F̂0M would be trivial,
contradicting Claim 1.

Hence (K ∩ F̂0M)/F̂0 is a proper normal subgroup of the semisimple group
H = K/F̂0 =

∏
i∈I Si, where Si (i ∈ I) are the simple factors, so by [18, Th. 5.12] it

is contained in a maximal normal subgroup L/F̂0 of the former. By the same result,
K/L is isomorphic (as an abstract group) to a metric ultraproduct of the Si with
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the conjugacy length function `i := `cSi
(i ∈ I). Note that in this situation L is even

normal in F̂, since `i is left invariant under Aut(Si) and Si E F̂/F̂0 by Lemma 8
(i ∈ I).

Claim 2. — In this setting F 66 LM .

Proof. — Otherwise [F,K] 6 [LM,K] 6 L[M,K] 6 L(M ∩ K) = L. Here the
first inclusion holds by assumption, whereas the second follows from the commutator
identity [lm, k] = [l, k][[l, k],m][m, k] for k ∈ K, l ∈ L and [l, k] ∈ L, since L E K,
and [[l, k],m], [m, k] ∈ [K,M ] = [M,K]. The last inclusion holds as M,K E F̂0, and
the last equality by the choice of L. Hence F̂0[F,K] 6 L.

Let S be a simple factor of H. F̂/F̂0 maps continuously on the finite discrete group
Aut(S) via the conjugation action. The image of this map clearly contains the inner
automorphism, since these are induced by S itself. The elements x1, . . . , xr generate
a dense subgroup of F̂/F̂0, which must induce all inner automorphisms of S by the
previous fact.

As S has trivial center, we have |S/CS(xi0)| = |[S, xi0 ]| > |S|1/r for some i0 ∈
{1, . . . , r}. Lemma 3.5 of [18] implies that

∏r
i=1 [S, xi][S, xi

−1] contains the normal
subsets [S, xi]S ⊆ S for i = 1, . . . , r. Since |[S, xi0 ]S | > |S|1/r, by [16, Th. 1.1] there is
e ∈ N only depending on r such that( r∏

i=1

[S, xi][S, xi
−1]

)∗e
= S.

This implies that K 6 F̂0[F,K], since e is independent of the simple factor S. But
then K 6 L, a contradiction. �

From the previous claim we deduce that P still has a non-trivial homomorphism to
F̂/LM . Since F̂/KM is solvable as a quotient of F̂/K, this homomorphism restricts
to KM/LM , which is a non-trivial homomorphic image of the metric ultraproduct
K/L. Since the latter is simple by [25, Prop. 3.1], we are only left to show that K/L,
which is a metric ultraproduct of the sequence (Si)i∈I of finite simple groups from
above with conjugacy length function with respect to some ultrafilter U , embeds
into a metric ultraproduct of groups PSLni(qi) equipped with the conjugacy length
function `ci (i ∈ I), since then P would have the same property.

Let us briefly sketch the argument for this: Firstly, if the limit of the ranks of the
groups Si (i ∈ I) is bounded along the ultrafilter U (where the rank of the alternating
group An is defined to be n and the sporadic groups are also considered as groups of
bounded rank) the resulting ultraproduct will be a simple group of Lie type over a
pseudofinite field k or an alternating group An, respectively. In the first case it clearly
embeds into PSLn(k) for n ∈ N appropriately chosen. However, the latter is a metric
ultraproduct of groups PSLn(qi) with conjugacy length function `ci (i ∈ I) for some
sequence (qi)i∈I of prime powers. The second case is similar.

Hence we may assume that our ultraproduct does not involve finite simple groups
from families of bounded rank.
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We can further assume that it contains no alternating groups as we can replace
any alternating group An by PSLn(q) for q = pe a power of a prime with p > n.
Namely, the natural embedding An ↪→ PSLn(q), where PSLn(q) is equipped with
the projective rank length function `prn , induces the Cayley length function `

Cay,{τ}
n

on An with respect to the conjugacy class of a transposition of the ambient symmetric
group Sn. The latter is Lipschitz equivalent to the conjugacy class length function by
[25, Th. 2.15].

Hence we can assume that all groups Si (i ∈ I) are classical Chevalley or Steinberg
groups. But it follows from Lemmas 5.4, 6.4, and the end of Section 7 and Theorem 1.1
of [16] that the conjugacy length function and the projective rank function (coming
from a natural embedding in some PSLn(q) 6 PGLn(q)) on such groups are also
Lipschitz equivalent.

Hence we can embed our ultraproduct K/L into an ultraproduct of groups
PSLni(qi) equipped with the projective length function `pri (i ∈ I). But by the former
Lipschitz equivalence, `pri can be replaced by the conjugacy length function `ci (i ∈ I).
This ends the proof.

5. On the approximability of Lie groups

In this section we utilize the following theorem of the first author and Segal to
deduce two results concerning the approximability of Lie groups by finite groups and
one result on compactifications of pseudofinite groups.

Theorem 5 ([18, Th. 1.2]). — Let g1, . . . , gm be a symmetric generating set for the
finite group G. If K E G, then

[K,G] =

( m∏
j=1

[K, gj ]

)∗e
,

where e only depends on m.

Remark 4. — It was remarked in [9] that it was an open problem at the time of
writing to decide whether a finite product of conjugacy classes in a non-abelian free
group is always closed in the profinite topology.

It is a rather straightforward consequence of Theorem 5 that this is not the case.
Indeed, the theorem implies that in F = 〈x1, . . . , xm〉 the profinite closure of the
product of the 2me conjugacy classes of x−11 , x1, . . . , x

−1
m , xm contains the entire com-

mutator subgroup, but it is a well known fact (see [23, Th. 3.1.2]) that the commutator
width in this group is infinite if m > 1.

This implication was first observed by Segal and independently discovered by Gis-
matullin.

Actually, we shall use the following immediate corollary of Theorem 5.
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Corollary 1. — Let G be a quotient of a product of finite groups (or any pseudofinite
group), then for g, h ∈ G and N ∈ N we have

[gN , hN ] ∈
(
[G, g][G, g−1][G, h][G, h−1]

)∗e
for some fixed constant e ∈ N.

Recall that Fin denotes the class of all finite groups. At first we prove the following
theorem.

Theorem 6. — A connected Lie group is Fin-approximable as a topological group if
and only if it is abelian.

By Lemma 5 we already know that connected abelian Lie groups are Fin-
approximable. So we are only left to prove that a Fin-approximable connected Lie
group is actually abelian. This will be a consequence of the following auxiliary result.

Lemma 9. — Let ϕ,ψ : R→ (H, `) =
∏

U (Hi, `i) be continuous homomorphisms into
a metric ultraproduct of finite groups Hi with invariant length function `i (i ∈ I).
Then for all s, t ∈ R it holds that [ϕ(s), ψ(t)] = 1H .

Let us first prove Theorem 6 using Lemma 9.

Proof of Theorem 6. — Assume L is a connected Fin-approximable Lie group. Then
there is an embedding ι : L ↪→ (H, `) =

∏
U (Hi, `i) into a metric ultraproduct

of finite groups with invariant length function. If a, b ∈ L are in the image of the
exponential map, Lemma 9 implies that ι(a) and ι(b) commute. So as ι is injective, a
and b commute. Hence by connectedness L = L0 is abelian. This ends the proof. �

We are still left to prove Lemma 9.

Proof of Lemma 9. — For ε > 0 by continuity we can choose N ∈ N>0 large enough
such that `(ϕ(s/N)), `(ψ(t/N)) < ε. Set G := H, g := ϕ(s/N) and h := ψ(t/N) and
apply Corollary 1. This gives

[ϕ(s), ψ(t)] = [gN , hN ] ∈
(
[H, g][H, g−1][H,h][H,h−1]

)∗e
,

whence `([ϕ(s), ψ(t)]) < 8eε by invariance of ` and the triangle inequality. Since ε > 0

was arbitrary, the proof is complete. �

Note that Theorem 6 provides an answer to Question 2.11 of Doucha [4] whether
there are groups with invariant length function that do not embed in a metric ultra-
product of finite groups with invariant length function. Since every compact Lie group
can be equipped with an invariant length function that generates its topology, every
such group with non-abelian identity component is an example of such a group by the
previous theorem. (Indeed, Theorem 6 does even provide topological types of groups
which cannot occur as subgroups of such a metric ultraproduct.)

Before we continue with our next result, let us state the following two remarks.
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Remark 5. — In Theorem 6 the topology of the Lie group matters. Indeed, any
linear Lie group is Fin-approximable as an abstract group by Remark 1, since all
its finitely generated subgroups are residually finite by Malcev’s Theorem and hence
Fin-approximable by Remark 3.

Thus any linear Lie group L is embeddable (as an abstract group) into a metric
ultraproduct of finite groups with invariant length function indexed over, say, the
partially ordered set of pairs consisting of a finite subset of L and a positive rational
number. We will now show that we can even choose this index set to be N. Namely, if
L ⊆ SLn(C), then L can be embedded into the algebraic ultraproduct

∏
U SLn(p

p!),
where U is a non-principal ultrafilter on the set of prime numbers. Indeed, this ultra-
product is isomorphic to SLn(k), where k =

∏
U GF(pp!) is a pseudofinite field. Now

it is straightforward to see that k contains the field k0 =
∏

U GF(p) together with its
algebraic closure k′ := kalg0 . However, k′ is an algebraically closed field of characteris-
tic zero and cardinality 2ℵ0 (a result due to Shelah [24]) and hence isomorphic to C.
Note that, if we view the above algebraic ultraproduct as a metric ultraproduct, the
induced topology on SLn(C) is discrete.

Since some non-linear Lie groups admit finitely presented subgroups which are
not residually finite [3], it is clear that such embeddings cannot exist without the
assumption of linearity.

Remark 6. — When one approximates with symmetric groups, one can not even
embed the real line R in a metric ultraproduct of such groups with invariant length
function. E.g. for the symmetric group Sn it can be shown that all invariant length
functions ` on it satisfy `(σk) 6 3`(σ), for every k ∈ Z and σ ∈ Sn. Using this
identity, it is simple to deduce that the only continuous homomorphism of R into
a metric ultraproduct of finite symmetric groups with invariant length function is
trivial.

Referring to the question of Zilber [32, p. 17] (also Question 1.1 of Pillay [20])
whether a compact simple Lie group can be a quotient of the algebraic ultraproduct
of finite groups, we present the following second application of Corollary 1.

Theorem 7. — A Lie group equipped with an bi-invariant metric generating its topol-
ogy that is an abstract quotient of a product of finite groups has abelian identity
component.

The proof of this result is almost identical to the proof of Theorem 6.

Proof. — Let (L, `L) be such a Lie group with invariant length function and a, b ∈ L
be in the image of the exponential map. For ε > 0 we find N ∈ N>0, g, h ∈ L such
that `L(g), `L(h) < ε and gN = a, hN = b. Then applying Corollary 1 to G := L

yields
[a, b] = [gN , hN ] ∈

(
[L, g][L, g−1][L, h][L, h−1]

)∗e
,
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whence `L([a, b]) < 8eε by the invariance of `L and the triangle inequality. This shows
that a and b commute. Hence, as L0 is generated by the image of the exponential map,
it must be abelian. �

Theorem 7 implies that any compact simple Lie group, the simplest example being
SO3(R), is not a quotient of a product of finite groups, answering Zilber’s question
(and hence also answers Question 1.1 of Pillay [20]).

Moreover, Theorem 7 remains valid if we replace the product of finite groups by
a pseudofinite group, i.e., a group which is a model of the theory of all finite groups
(as Corollary 1 is still valid in this case). It then also provides a negative answer
to Question 1.2 of Pillay [20], whether there is a surjective homomorphism from a
pseudofinite group to a compact simple Lie group.

Before we state the last theorem of this section, we digress briefly by pointing out
a further application of Theorems 6 and 7.

Referring to [30], we call a compact group G with compatible invariant length
function `G Turing-approximable if for all ε > 0 there is a finite set Sε, a group Hε,
and a bijection γε : Sε → Hε such that for all g ∈ G there is s ∈ Sε with dG(g, s) < ε

and dG(gh, γ−1ε (γε(g)γε(h))) < ε for g, h ∈ Sε. Define for g ∈ Hε

`ε(g) := |Hε|−2
∑

f,h∈Hε

dG(γ
−1
ε (fgh), γ−1ε (fh)).

It is routine to check that `ε is an invariant length function on Hε and that for all
g ∈ Hε we have ∣∣`ε(g)− `G(γ−1ε (g))

∣∣ < 3ε.

Set δε : G→ Sε such that dG(δε(g), g) is minimal for all g ∈ G.
In this situation we can apply Lemma 2, setting I := N>0, U to be a non-principal

ultrafilter on I, Ki := H1/i, and ϕi := γ1/i ◦ δ1/i. Again one checks easily that we may
apply (i) and (ii) of the lemma. Hence a Turing-approximable group is isomorphic to
a metric ultraproduct of finite groups with invariant length function. Thus Theorem 6
as well as Theorem 7 imply that a Turing-approximable Lie group has abelian identity
component. This is the main result of [30]. By [7, Lem. 3.4] the latter condition is also
sufficient for a compact Lie group to be Turing-approximable.

Let us now turn to pseudofinite groups. By a compactification of an abstract
group G, we mean a compact group C together with a homomorphism ι : G → C

with dense image. Pilay conjectured that the Bohr compactification (i.e., the uni-
versal compactification) of a pseudofinite group has abelian identity component ([20,
Conj. 1.7]). We answer this conjecture in the affirmative by the following result.

Theorem 8. — Let G be a pseudofinite group. Then the identity component of any
compactification C of G is abelian.

The proof is again just an easy application of Corollary 1.

Proof. — As G is pseudofinite it satisfies the statement of Corollary 1 (and so does
its image in C). An easy compactness argument shows that C has the same property.
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Now let %i : C → Aut(Vi) be the irreducible unitary representations of C and Li
the image of %i (i ∈ I). By the Peter–Weyl Theorem, C embeds continuously into∏
i∈I Li, and so C0 embeds into

∏
i∈I L

0
i .

But as Li is a compact quotient of C, Corollary 1 holds in it, and so as in the proof
of Theorem 7 it follows that L0

i is abelian (i ∈ I). But then C0 must be abelian as
well, from the above embedding. �

References
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