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A DECOMPOSITION THEOREM FOR

SMOOTHABLE VARIETIES WITH

TRIVIAL CANONICAL CLASS

by Stéphane Druel & Henri Guenancia

Abstract. — In this paper we show that any smoothable complex projective variety, smooth
in codimension two, with klt singularities and numerically trivial canonical class admits a finite
cover, étale in codimension one, that decomposes as a product of an abelian variety, and singular
analogues of irreducible Calabi-Yau and irreducible symplectic varieties.

Résumé (Un théorème de décomposition pour les variétés à singularités lissables dont la première
classe de Chern est nulle)

Nous montrons que toute variété complexe projective, à singularités klt lissables et lisse en
codimension deux, dont le diviseur canonique est numériquement trivial, admet un revêtement
quasi-étale fini qui se décompose en un produit d’une variété abélienne et d’analogues singuliers
des variétés symplectiques irréductibles et des variétés de Calabi-Yau irréductibles.
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118 S. Druel & H. Guenancia

1. Introduction

The Beauville-Bogomolov decomposition theorem asserts that any compact Kähler
manifold with numerically trivial canonical bundle admits an étale cover that decom-
poses into a product of a torus, and irreducible, simply-connected Calabi-Yau, and
symplectic manifolds (see [Bea83]).

With the development of the minimal model program, it became clear that sin-
gularities arise as an inevitable part of higher dimensional life. If X is any complex
projective manifold with Kodaira dimension κ(X) = 0, standard conjectures of the
minimal model program predict the existence of a birational contraction X 99K Xmin,
where Xmin has terminal singularities and KXmin

≡ 0. This makes it imperative to
extend the Beauville-Bogomolov decomposition theorem to the singular setting.

In the singular setting, several notion of irreducible Calabi-Yau varieties or ir-
reducible symplectic varieties have been proposed but the results of [GKP16] and
[GGK17] provide evidence that the following definition should be the correct one in
view of a singular analogue of the Beauville-Bogomolov decomposition theorem.

Definition 1.1. — Let X be a normal projective variety with canonical singularities
such that KX ∼Z 0.

(1) We call X irreducible Calabi-Yau if h0
(
Y,Ω

[q]
Y

)
= 0 for all integers q such that

0 < q < dimX and all finite covers Y → X, étale in codimension one.
(2) We callX irreducible symplectic if there exists a holomorphic symplectic 2-form

σ ∈ H0
(
X,Ω

[2]
X

)
such that for all finite étale covers f : Y → X, étale in codimension

one, the exterior algebra of global reflexive forms is generated by f [∗]σ.

Let X be a normal projective variety of dimension at least 2 with KX ≡ 0 and
klt singularities. Suppose moreover that its tangent sheaf is strongly stable in the
sense of Definition 2.3. In [GGK17, Th.C], it is proved that X admits a finite cover,
étale in codimension one, that is either an irreducible Calabi-Yau variety or an irre-
ducible symplectic variety. That result, given the infinitesimal version of the Beauville-
Bogomolov decomposition theorem proved in [GKP16], is a strong indication that the
notions of irreducible Calabi-Yau and symplectic varieties described in Definition 1.1
should be the good ones.

In [Dru17] the first author extends the Beauville-Bogomolov decomposition theo-
rem to complex projective varieties of dimension at most five with klt singularities
and numerically trivial canonical class. The main result of our paper is the following
decomposition theorem for smoothable mildly singular spaces with numerically trivial
canonical class.

Theorem A. — Let X be a normal complex projective variety with klt singularities
and smooth in codimension two. Suppose that KX ≡ 0. Suppose furthermore that
there exists a flat projective holomorphic map with connected fibers f : X → ∆ from
a normal analytic space X onto the complex open unit disk ∆ such that X ∼= f−1(0)

and such that f−1(t) is smooth for t 6= 0. Then there exists a finite cover Y → X, étale

J.É.P. — M., 2018, tome 5



A decomposition theorem for smoothable varieties with trivial canonical class 119

in codimension one, and a decomposition of Y into a product of an abelian variety
and irreducible, Calabi-Yau and symplectic varieties.

Remark 1.2. — The assumptions of Theorem A imply that X does not have any
quotient singularity. Indeed, a theorem of Schlessinger [Sch71, Th. 2] (see also [Art76,
Th. 10.1]) shows that a germ of a quotient singularity (X,x) is rigid as soon as
codim {x} > 3.

In addition to the smoothability condition, the strategy of proof of Theorem A
requires us to assume that codim(XrXreg) > 3. Let us briefly explain why. The idea
of the proof is to consider a cover of the smooth generic fiber that splits off an abelian
variety as well as irreducible, simply-connected Calabi-Yau and symplectic manifolds.
A significant part of the paper is devoted to showing that one can take the flat limits
of these irreducible pieces and recover the central fiber as product of those limits.

It is then tempting to believe that the flat limit X of irreducible and simply-
connected, Calabi-Yau or symplectic manifolds admits a finite cover, étale in codi-
mension one, which is an irreducible Calabi-Yau or symplectic variety. Unfortunately,
this turns out to be false in general as we explain in Section 8.3. This makes it much
harder to use the smoothability assumption in order to prove a decomposition theo-
rem in full generality. However, we are able to prove that TX is stable, see Theorem B
below. To conclude the proof of Theorem A, we show that, in the setting of Theo-
rem A, we must have πét

1

(
Xreg

)
= {1} (see Theorem 7.1). Note that in Theorem A,

we do not require X to be Q-Gorenstein as this condition is automatically satisfied,
see Lemma 7.6.

As we explained above, it seems difficult to obtain a full decomposition theorem
using our strategy without further assumptions on the singularities of X. However,
we are still able to produce a splitting of some quasi-étale cover of X where each
non-abelian factor has a stable tangent bundle, and possesses the same algebra of
reflexive holomorphic forms as the one of an irreducible, simply-connected, Calabi-
Yau or symplectic manifold of the same dimension.

Theorem B. — Let X be a normal complex projective variety with klt singularities.
Suppose that KX ≡ 0. Suppose furthermore that there exists a projective morphism
with connected fibers f : X → ∆ from a normal analytic space X whose canonical
divisor KX is Q-Cartier onto the complex open unit disk ∆ such that X ∼= f−1(0)

and such that f−1(t) is smooth for t 6= 0. Then, there exists an abelian variety A as
well as a projective variety X ′ with canonical singularities, a finite cover

A×X ′ −→ X,

étale in codimension one, and a decomposition

X ′ ∼=
∏
i∈I

Yi ×
∏
j∈J

Zj

of X ′ into normal projective varieties with trivial canonical class, such that the fol-
lowing holds.
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120 S. Druel & H. Guenancia

(1) The sheaf TYi is stable with respect to any polarization and for all integers q
such that 0 < q < dimYi one has h0

(
Yi,Ω

[q]
Yi

)
= 0.

(2) The sheaf TZj is stable with respect to any polarization and there exists a reflex-
ive 2-form σ ∈ H0

(
Zj ,Ω

[2]
Zj

)
such that σ is everywhere non-degenerate on the smooth

locus of Zj, and such that the exterior algebra of global reflexive forms is generated
by σ.

Remark 1.3. — If π : Z̃j → Zj is a Q-factorial terminalization of the variety Zj
from Theorem B, then it follows from [Nam06, Cor. 2] that Z̃j is a smooth symplectic
variety, but not necessarily irreducible, since the varieties Zj are smoothable by con-
struction (see Section 6). In particular, Zj admits a symplectic resolution. Note that
the existence of π is established in [BCHM10, Cor. 1.4.3].

In fact, a little more can be said about the factors of X ′ in the decomposition given
by Theorem B above. We refer to Section 6.2 for partial results from the point of view
of holonomy representation, and for a proof of Conjecture 1.4 below assuming that a
weak analogue of Beauville-Bogomolov decomposition theorem holds.

Conjecture 1.4. — Let X be a normal complex projective variety with klt singularities
and KX ≡ 0. Suppose that TX is stable with respect to some polarization. Then there
exists a quasi-étale cover Y → X such that either Y is an abelian variety, or it splits
as a product of copies of a single Calabi-Yau (resp. irreducible symplectic) variety.

Note that a positive answer to the conjecture above implies that Theorem A holds
without the assumption that X is smooth in codimension 2.

The following result is an immediate consequence of Theorem B.

Corollary C. — Let X be a normal complex projective variety with klt singularities
and KX ≡ 0. Suppose that πét

1

(
Xreg

)
= {1}. Suppose furthermore that there exists a

projective morphism with connected fibers f : X → ∆ from a normal analytic space X

whose canonical divisor KX is Q-Cartier onto the complex open unit disk ∆ such
that X ∼= f−1(0) and such that f−1(t) is smooth for t 6= 0. Then there exists a
decomposition of X into a product of irreducible, Calabi-Yau and symplectic varieties.

Structure of the paper. — Section 2 is mainly devoted to setting up the basic
notation. We have also gathered a number of facts and basic results which will later be
used in the proofs. Sections 3, 4 and 5 consist of technical preparations. In Section 3,
we recall some results on deformations of Kähler-Einstein metrics on smoothable
singular spaces with numerically trivial canonical class. In Section 4, we establish a
structure result for families of mildly singular varieties with trivial canonical class. In
Section 5, we use results from [GGK17] to analyze the stability of the tangent sheaf
of smoothable singular spaces with numerically trivial canonical class. Section 6 is
devoted to the proof of Theorem B. In Section 7, we prove Theorem A. Finally, in
Section 8, we give examples of smoothable (irreducible) Calabi-Yau and symplectic
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A decomposition theorem for smoothable varieties with trivial canonical class 121

varieties. We have also collected examples which illustrate to what extent our results
are sharp.

Acknowledgements. — The project started while the authors were visiting the
Freiburg Institute for Advanced Studies. The authors would like to thank this
institution for its support and Stefan Kebekus for the invitation. They would like to
thank Benoît Claudon, Patrick Graf, Daniel Greb, Stefan Kebekus, Mihai Păun, and
Song Sun for interesting discussions concerning the content of this paper.

2. Notation, conventions, and basic facts

2.1. Global Convention. — Throughout the paper we work over the field C of com-
plex numbers.

A variety is a reduced and irreducible scheme of finite type over C. An analytic
variety is a reduced and irreducible analytic space. Given a scheme X, we denote
by Xan the associated analytic space, equipped with the Euclidean topology.

Given a scheme or an analytic space X, we denote by Xreg its smooth locus.

2.2. Reflexive differential forms. — Given a normal (analytic) variety X, we de-
note the sheaf of Kähler differentials by Ω1

X . If p is any integer such that 0 6 p 6

dimX, write Ω
[p]
X := (ΩpX)∗∗. The tangent sheaf will be denoted by TX := (Ω1

X)∗.

2.3. Quasi-étale covers

Definition 2.1. — A morphism γ : Y → X between normal (analytic) varieties is
called a quasi-étale cover if γ is finite and étale in codimension one.

Remark 2.2. — Let γ : Y → X be a quasi-étale cover. By the Nagata-Zariski
purity theorem, γ branches only on the singular set of X. In particular, we have
γ−1(Xreg) ⊂ Yreg.

2.4. Stability. — The word “stable” will always mean “slope-stable with respect to
a given polarization”.

Definition 2.3 ([GKP16, Def. 7.2]). — LetX be a normal projective (analytic) variety
of dimension n, and let G be a reflexive coherent sheaf. We call G strongly stable, if for
any quasi-étale cover γ : Y → X, and for any choice of ample divisors H1, . . . ,Hn−1

on Y , the reflexive pull-back γ[∗]G is stable with respect to (H1, . . . ,Hn−1).

2.5. Smoothings. — We will use the following notation.

Notation 2.4. — Let f : X → T be a morphism (resp. holomorphic map) of schemes
(resp. analytic spaces). We will denote by Xt the fiber of f over t ∈ T .

Definition 2.5. — Let X be a compact analytic space. A smoothing of X is a flat
proper holomorphic map f : X → ∆, where X is an analytic space and ∆ is the
complex open unit disk, such that X0

∼= X and Xt is smooth for any t 6= 0. A smooth-
ing of a proper scheme X is a smoothing of the associated analytic space Xan. Let
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122 S. Druel & H. Guenancia

f : X → ∆ be a smoothing of a compact analytic space or a proper scheme. We say
that f is a projective smoothing if f is a projective map. If X is normal, then we say
that f is a Q-Gorenstein smoothing if KX /∆ is Q-Cartier.

Let X be a proper scheme. A smoothing of X over an algebraic curve is a flat
proper morphism f : X → C, where X is a scheme and C is a connected algebraic
curve, such that Xt0

∼= X for some point t0 on C and Xt is smooth for any t 6= t0.
A smoothing f : X → C of X over an algebraic curve is said to be projective if f is a
projective morphism. If X is normal, then we say that f is a Q-Gorenstein smoothing
if KX /C is Q-Cartier.

The following elementary facts will be used throughout.

Fact 2.6. — Let X be an analytic space (resp. a scheme), and let f : X → T be a flat
holomorphic map (resp. morphism) with connected fibers onto a smooth connected
analytic (resp. algebraic) curve T . If Xt is normal for any t ∈ T , then so is X

by [Gro65, Cor. 5.12.7] and [DG67, Th. 1.2]. In particular, X is reduced and locally
irreducible (resp. reduced and irreducible).

Fact 2.7. — Let X be a scheme of finite type over a field, and let X ⊂ X be a
Cartier divisor. If X is regular at x, then so is X .

Fact 2.8. — In the setup of Fact 2.6, suppose that X is a normal variety, and that
KX is Q-Cartier. If Xt has klt singularities for some point t on C, then X has klt
singularities in a neighborhood of Xt by inversion of adjunction (see [Kol97, Cor. 7.6]).
This implies that X has rational singularities in a neighborhood of Xt (see [KMM87,
Th. 1.3.6]).

Remark 2.9. — In the setup of Fact 2.6, suppose that X is a normal variety, and
that KX is Q-Cartier. If Xt0 has lc singularities for some point t0 on C and Xt has
canonical singularities for t 6= t0, then X ×C C1 has canonical singularities for any
finite morphism C1 → C from a smooth algebraic curve C1 by [Kar00, Th. 2.5]. Note
that the proof of [Kar00, Th. 2.5] relies on [BCHM10, Th. 1.2]. However, we will not
need this stronger statement.

Let X be a normal projective variety. If X admits a projective Q-Gorenstein
smoothing over an algebraic curve then X obviously admits a projective Q-Gorenstein
smoothing. The main result of the present section is a partial converse to this obser-
vation. See Lemma 2.10 and Proposition 2.14 for precise statements.

Lemma 2.10. — Let X be a normal projective variety with Gorenstein singularities.
If X admits a projective smoothing, then X admits a projective Q-Gorenstein smooth-
ing over an algebraic curve.

Proof. — Let f : X → ∆ be a projective smoothing of X. We may assume without
loss of generality that X ⊂ PN ×∆ for some positive integer N . Let ∆→ Hilb(PN )an

be the universal holomorphic map, and let H any irreducible component of Hilb(PN )
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A decomposition theorem for smoothable varieties with trivial canonical class 123

such that Han contains the image of ∆. Let also U ⊂ PN × H be the universal
family. Note that dimH > 1 and that the generic fiber of the natural morphism
U → H is smooth. Replacing H by a Zariski open neighborhood of [X], if necessary,
we may assume that for any t ∈ H, Ut is normal and Cohen-Macaulay by [Gro66,
Th. 12.2.1 & 12.2.4]. Denote by ωU/H the dualizing sheaf of the Cohen-Macaulay
morphism U → H (see [Con00, 3.5]). By [Con00, Th. 3.5.6], for any closed point
t ∈ H, we have ωU/H |Ut

∼= ωUt , where ωUt is the dualizing sheaf of Ut → pt. Set
t0 := [X] ∈ H. Because ωUt0 is invertible by assumption, we see that ωU/H is invertible
in a Zariski open neighborhood of X. By shrinking H if necessary, we may therefore
assume that ωU/H is invertible. Let C → H be a smooth curve passing through [X]

and a general point, and set Y := C ×H U . It comes with a natural morphism
g : Y → C. Note that g is a projective smoothing of X over C. By Fact 2.6, we
know that Y is normal. Applying [Con00, Th. 3.5.6] again, we see that ωY /C is
invertible. Moreover, its restriction to the locus Y ◦reg ⊂ Yreg where g is smooth is
ωY ◦reg/H

. On the other hand, ωY ◦reg/H
∼= OY ◦reg

(
KY ◦reg/H

) ∼= OY

(
KY /H

)
|Y ◦reg

. It follows
that ωY /H

∼= OY

(
KY /H

)
since both are reflexive sheaves. Hence KY /H is Cartier,

completing the proof of the lemma. �

The same argument used in the proof of Lemma 2.10 above shows that the following
holds.

Lemma 2.11. — Let X be a normal projective variety. If X admits a projective smooth-
ing, then X admits a projective smoothing over an algebraic curve.

The proof of [Laz04, Prop. 1.4.14] applies in the analytic setting to show that the
following holds.

Lemma 2.12. — Let f : X → T be a projective holomorphic map (resp. morphism) of
analytic spaces (resp. schemes), and let L be a line bundle on X . Suppose further-
more that f is surjective. Then the set of points t on T such that L|Xt

is not nef is
a countable union of analytic subsets.

We end the preparation for the proof of Proposition 2.14 with the following obser-
vation.

Lemma 2.13. — Let f : X → T be a flat projective holomorphic map (resp. morphism)
of analytic spaces (resp. schemes). Suppose that X is normal, T is smooth, and
that Xt is connected with klt singularities for any point t ∈ T . Suppose furthermore
that KX /T is Q-Cartier. If KXt0

≡ 0 for some point t0 ∈ T , then there exists a Zariski
open cover (Tα)α∈A of T such that KX α/Tα is torsion, where X α := f−1(Tα).
In particular, KXt

is torsion for all t ∈ T .

Proof. — Let m0 be a positive integer such that m0KX /T is a Cartier divisor. Ap-
plying Lemma 2.12 in the analytic setting or [Laz04, Prop. 1.4.14] in the algebraic
setting to ±m0KX /T , we see that the set of points t ∈ T such that KXt

6≡ 0

is a countable union of proper Zariski closed subsets. If KXt
≡ 0, then KXt

is
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124 S. Druel & H. Guenancia

torsion by [Nak04, Cor.V 4.9]. Note also that we have m0KXt
∼Z m0KX /T |Xt

by
the adjunction formula. Let now m be a positive integer. Because the functions
t 7→ h0

(
Xt,OXt

(±mm0KXt
)
)
are upper semicontinuous in the Zariski topology on T

(see [BS76, Chap. III, Th. 4.12] in the analytic setting or [Har77, Th. 12.8] in the alge-
braic setting), the set of points t on T such that mm0KXt

∼Z 0 is closed. It follows
that there exists a positive integer m1 such that m1m0KXt

∼Z 0 for all t ∈ T . From
[BS76, Chap. III, Th. 4.12] in the analytic setting or [Har77, Cor. 12.9] in the algebraic
setting, we see that f∗OX (m1m0KX /T ) is a line bundle. Let (Tα)α∈A be a Zariski
open affine cover of T such that f∗OX (m1m0KX /T )|Tα

∼= OTα for all α ∈ A. Set
X α := f−1(Tα), and let t ∈ Tα. Because the formation of f∗OX (m1m0KX /T ) com-
mutes with base change (see loc. cit.), any non-zero section ofm1m0KX /T |Xt

extends
to a global section of m1m0KX /T |X α that is nowhere vanishing in a neighborhood
of Xt. Refining the cover, if necessary, we conclude that m1m0KX /T |X α

∼= OX α .
This completes the proof of the lemma. �

Proposition 2.14. — Let X be a normal projective variety with klt singularities. Sup-
pose that KX ≡ 0. If X admits a projective Q-Gorenstein smoothing, then there exist
a normal projective variety Y , a quasi-étale cover Y → X, and a projective smoothing
Y → C of Y over an algebraic curve such that KY /C ∼Z 0.

Proof. — Let f : X → ∆ be a projective smoothing of X. Applying Lemma 2.13, we
see that KX /∆ is torsion.

By [KM98, Def. 2.52 and Lemma 2.53], there exists a normal analytic variety Y

and a finite cover γ : Y → X , étale over Xreg, such that KY /∆ ∼Z 0. Note that
γt : Yt →Xt is étale for any t 6= 0. In particular, Yt is smooth if t 6= 0. Note also
that Y0 is normal, and that γ0 : Y0 → X0 is a quasi-étale cover. Applying [Kol97,
Prop. 3.16] to γ0, we see that Y := Y0 has klt singularities. Moreover, by the adjunc-
tion formula, we have KY ∼Z 0.

By Lemma 2.10, Y admits a projective Q-Gorenstein smoothing over an algebraic
curve. Arguing as above, we see that there exist a normal projective variety Y1 as well
as a quasi-étale cover γ1 : Y1 → Y , and a projective smoothing Y1 → C1 of Y1 over an
algebraic curve such that KY1/C1

∼Z 0, completing the proof of the proposition. �

3. Kähler-Einstein metrics on smoothable spaces

In this section, we work in the following setting, referred to later as the analytic
setting.

3.1. The analytic setting. — Let f : X → ∆ be a projective smoothing of a normal
projective (analytic) variety X such that KX /∆ ∼Z 0. Suppose moreover that X
has canonical singularities. Let L be a relatively ample line bundle on X , and set
Lt := L|Xt

. Given t 6= 0, we denote by gt the unique Ricci-flat Kähler metric on Xt

whose fundamental form ωt satisfies [ωt] = [c1(Lt)] ∈ H2(Xt,R). The existence of gt
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A decomposition theorem for smoothable varieties with trivial canonical class 125

is established in [Yau78]. We denote by g0 the Ricci-flat Kähler metric on Xreg given
by [EGZ09, Th. 7.5] applied to (X0,L0).

3.2. Smooth convergence on Xreg. — In the setting described above, let

Φ: Xreg ×∆ −→X

be a smooth embedding such that Φ(x, t) ∈ Xt for any (x, t) ∈ Xreg × ∆ and
Φ|Xreg×{0} = IdXreg (see [RZ11b, p. 1547]). Let us write Φt := Φ|Xreg×{t} : Xreg →Xt.
If It denotes the complex structure on Xt for t 6= 0, and Xreg for t = 0, then it is
not hard to see that Φ∗t It converges to I0 in the C∞loc(Xreg)-topology. The following
theorem is due to Rong-Zhang (see [RZ11a, Th. 1.4]).

Theorem 3.1 ([RZ11a]). — The family of Riemannian metrics Φ∗t gt converges to g0

when t→ 0, in the C∞loc(Xreg)-topology.

Sketch of proof. — We recall the main arguments of the proof for the convenience of
the reader.

The first step is to show that ωt and ωFS,t differ by the ddc of an uniformly bounded
potential ϕt, that we can assume to be normalized by

∫
Xt
ϕtω

n
t = 0. Here, ωFS,t =

ωFS|Xt
under the embedding X ↪→ PN ×∆ given by sections of L . This is proved in

[RZ11a, Lem. 3.1] using Moser iteration given that the Sobolev and Poincaré constants
of (Xt, ωt) are bounded, which in turn is a consequence of the diameter estimate
[RZ11a, Th.B.1 & 2.1].

The L∞-estimate on ϕt combined with Chern-Lu inequality implies that ωt >
C−1ωFS,t for some uniform C > 0 (see the proof of [RZ11a, Lem. 3.2]). This enables
to get estimates at any order on Φ∗tϕt over compact subsets ofXreg. Therefore, one can
extract smooth sequential limits ϕ∞ of Φ∗tϕt over Xreg: ϕ∞ is bounded on the whole
Xreg and as Φ∗t It converges to I0, ϕ∞ satisfies the same Monge-Ampère equation
as ϕ0 on Xreg, where ϕ0 is the normalized potential of ω0 with respect to ωFS,0. By
the choice of the normalization, ϕ∞ and ϕ0 coincide, and therefore Φ∗tϕt converges
locally smoothly to ϕ0, which concludes the proof. �

Remark 3.2. — An important observation is that if Xt admits another complex
structure Jt compatible with gt (in the sense that Jt is unitary and parallel with
respect to gt), then one can extract sequences tj → 0 such that Φ∗tjJtj converges lo-
cally smoothly to a complex structure J0 over Xreg which is compatible with respect
to g0. Indeed, Φ∗tJt is almost g0-unitary and g0-parallel in the sense that the tensors
(Φ∗tJt)

∗0(Φ∗tJt) − Id and ∇g0(Φ∗tJt) converge to zero on Xreg, where ∗0 denotes the
adjoint with respect to g0. The first property gives order 0 estimates while the second
one enables to get higher order ones. Arzelà-Ascoli theorem combined with a diagonal
argument yield the result.

3.3. Identification of the Gromov-Hausdorff limit. — One can actually under-
stand the global limit of (Xt, gt), but this requires considerable more work and will
not be used in the following. The next result is essentially contained in [SSY16, §3]
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(see also [LWX14, §4.2]). As the context is slightly different here since we deal with
Calabi-Yau manifolds rather than log-Fano manifolds, we will recall their main argu-
ments and point out the slight changes to operate.

Theorem 3.3 ([SSY16, LWX14]). — In the standard setting, the metric spaces (Xt, ωt)

converge in the Gromov-Hausdorff sense to (X, d) when t → 0 for some metric d
on X. Moreover, the convergence is smooth on Xreg, and the restriction of d to Xreg

is induced by the Riemannian metric g0.

Sketch of proof. — The fundamental results of [DS14] give the convergence in the
sense of the statement above to a projective variety endowed with a singular Kähler-
Einstein metric, but the key point is to identify that variety with the central fiber X
of our family.

As in the proof of Theorem 3.1, one can write ωt = ωFS,t + ddcϕt with
‖ϕt‖L∞ 6 C, C being independent of t ∈ ∆∗. This has been seen to imply the
estimate ωt > C−1ωFS,t. Also, it is easy but important to notice that the bound on
the potential remains valid after Veronese re-embeddings (see [SSY16, Lem. 3.3]).

The next step consists in comparing the two different embeddings of Xt into a
large PM , one being given by a Veronese embedding (using a large power of L , say k)
and the other one being an embedding by L2 sections of L ⊗kt with respect to ωt.
In the following, we may assume that the first re-embedding is the identity while
the second one will be denoted by it. So in PM , we have two isomorphic varieties,
namely Xt and it(Xt). The variety it(Xt) can be obtained from Xt by a transfor-
mation gt ∈ PGL(CM+1) that sends a basis (s0,t, . . . , sM,t) of H0

(
Xt,L

⊗k
t

)
to a

L2-orthonormal basis (σ0,t, . . . , σM,t), where the first basis of sections is obtained by
the standard embedding induced by L ⊗k. Then one can prove using the estimates on
‖ϕt‖L∞ ,

∫
Xt
ωnt , trωt(ωFS,t) that gt evolves in a compact subset of PGL(CM+1) (see

proof of [SSY16, Th. 3.1]).
The last step invokes the main result of [DS14] that guarantees in this context

that one can choose k and a sequence tj → 0 such that the re-embedding itj (Xtj )

converges both in the sense of cycle and in the Gromov-Hausdorff sense to a projective
variety W (for some metric on W ). Up to extract a subsequence, one can assume
that gtj converges to g ∈ PGL(CM+1) so that W = g(X) as projective varieties. The
rest is a consequence of [DS14]. �

4. Relative Albanese morphism

The Albanese morphism, that is, the universal morphism to an abelian variety (see
[Ser01]), is one important tool in the study of varieties with trivial canonical divisor.
If X is a projective variety with rational singularities, recall from [Kaw85, Lem. 8.1]
that Pic◦(X) is an abelian variety, and that Alb(X) ∼=

(
Pic◦(X)

)∨. Moreover, the
Albanese morphism aX : X → Alb(X) is induced by the universal line bundle. In
particular, dim Alb(X) = h1(X,OX). The following result describes the Albanese
map of X. It is an easy consequence of [Kaw85, Prop. 8.3] and [Bri10, §3].
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Proposition 4.1. — Let X be a normal projective variety X with canonical singular-
ities. Assume that KX is numerically trivial. Then KX is torsion, the Albanese map
aX : X → Alb(X) is surjective and has the structure of an étale-trivial fiber bundle.
More precisely, the following holds. The neutral component A of the automorphism
group Aut(X) of X is an abelian variety. It acts on Alb(X) by translation, compatibly
with its action on X. The induced morphism A→ Alb(X) is an isogeny and the fiber
product over Alb(X) decomposes as a product

X ×Alb(X) A ∼= F ×A,

where F is a fiber of aX .

Proof. — The canonical divisor KX is torsion by [Kaw85, Th. 8.2]. Applying [Kaw85,
Prop. 8.3], we see that the Albanese map aX : X → Alb(X) is surjective and has the
structure of an étale-trivial fiber bundle.

Let A be the neutral component of the automorphism group Aut(X). We claim
that A is an abelian variety. If not, by a theorem of Chevalley, A contains an algebraic
subgroup isomorphic either to Ga or to Gm, and hence, X is uniruled. On the other
hand, κ(X) = 0 since KX is torsion and X has canonical singularities, yielding a
contradiction.

By [Bri10, §3], A acts on Alb(X) by translation, compatibly with its action on X.
Moreover, the induced morphism A → Alb(X) has finite kernel. On the other hand,
we have

dimA = h0(X,TX) = h1(X,OX) = dim Alb(X)

by [Kaw85, Cor. 8.6]. It follows that A → Alb(X) is an isogeny and hence, the fiber
product X ×Alb(X) A decomposes as a product

X ×Alb(X) A ∼= F ×A,

where F is a fiber of aX . �

Next, we extend Proposition 4.1 to the relative setting.

Proposition 4.2. — Let X be a normal variety, and let f : X → C be a flat pro-
jective morphism with connected fibers onto a smooth connected algebraic curve C.
Suppose that Xt has klt singularities for any point t ∈ C. Suppose furthermore that
KX /C ∼Z 0.

(1) The neutral component Aut0(Xt) of the automorphism group of Xt is an
abelian variety, and the algebraic groups Aut0(Xt) fit together to form an abelian
scheme A over C.

(2) Suppose that f has a section, and consider the morphism

aX /C : X −→
(

Pic◦(X /C)
)∨

induced by the universal line bundle. Let 0: C →
(

Pic◦(X /C)
)∨ denotes the neutral

section, and set Y = a−1
X /C(0). Then Y → C is a flat projective morphism with
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normal connected fibers, and there exists a relative isogeny A →
(

Pic◦(X /C)
)∨

such that
X ×(Pic◦(X /C))∨ A ∼= Y ×C A .

Before we give the proof of Proposition 4.2, we need the following auxiliary result.

Lemma 4.3. — Let f : X → C be a flat projective morphism with connected fibers from
a normal variety X onto a smooth connected algebraic curve C. Suppose that X has
rational singularities. Then hi

(
Xt,OXt

)
is independent of t ∈ C for any integer i > 0.

Proof. — Let C be a smooth compactification of C, and let X be a projective com-
pactification of X such that f extends to a morphism f : X → C. Finally, let
ν : X̂ → X be a desingularization of X . Set f̂ := f ◦ ν. It follows from [Kol86,
Cor. 3.9] that the sheaves Rif̂∗OX̂

are torsion free, and hence locally free. The relative
Leray spectral sequence gives Rif̂∗OX̂ |C

∼= Rif∗OX using the assumption that X

has rational singularities. This in turn implies that hi
(
Xt,OXt

)
is independent of

t ∈ C by a theorem of Grothendieck (see [Har77, Th. 12.11]). �

Proof of Proposition 4.2. — Write n := dim X −1. From Lemma 4.3 and Fact 2.8, we
see that h1

(
Xt,OXt

)
is independent of t ∈ C. Note that h1(Xt,OXt

) = h0(Xt, TXt
)

by [Kaw85, Cor. 8.6].
By [DG11, Exp.VIB, Prop. 1.6], the group scheme Aut(X /C) is then smooth

over C. Note that the existence of Aut(X /C) is guarantee by [Gro95a]. Let t ∈ C, and
denote by Aut0(Xt) the neutral component of the automorphism group Aut(Xt) of
Xt. Recall from Proposition 4.1 above that Aut0(Xt) is an abelian variety. Moreover,
we have dim Aut0(Xt) = h0(Xt, TXt

) = h1
(
Xt,OXt

)
.

Now, recall from [DG11, Exp.VIB, Th. 3.10] that the algebraic groups Aut0(Xt)

fit together to form a group scheme A over C. Note that A is quasi-projective over C
(see [Gro95a]). Applying [Gro66, Cor. 15.7.11], we see that A is proper, and hence
projective over C. In particular, A is an abelian scheme over C.

Suppose from now on that f has a section s : C → X , and consider the relative
Picard scheme Pic(X /C) whose existence is guaranteed by [Gro95b, Th. 3.1]. By
[Kaw85, Lem. 8.1], Pic◦(Xt) is an abelian variety for any point t on C. As above, the
algebraic groups Pic◦(Xt) fit together to form a group scheme Pic◦(X /C) over C.
Note that Pic◦(X /C) ⊂ Pic(X /C) is an open subscheme, quasi-projective over C
by [BLR90, Th. 5]. Using [Gro66, Cor. 15.7.11] again, we conclude that it is projective
over C. Let

(
Pic◦(X /C)

)∨ be the dual abelian scheme (see [MFK94, Cor. 6.8]), and
consider the morphism

aX /C : X −→
(

Pic◦(X /C)
)∨

induced by the universal line bundle. Consider also the action ϕ : A ×C X → X ,
and the second projection p2 : A ×C X → X . By the rigidity lemma ([MFK94,
Prop. 6.1]), there exists a morphism

ψ : A ×C
(

Pic◦(X /C)
)∨ −→ (

Pic◦(X /C)
)∨
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such that the square

A ×C X
ϕ

//

(Id× aX /C)
��

X

aX /C
��

A ×C
(

Pic◦(X /C)
)∨ ψ

//
(

Pic◦(X /C)
)∨

is commutative. It follows that A acts on
(

Pic◦(X /C)
)∨ over C. By Proposition 4.1,

the induced morphism
A −→

(
Pic◦(X /C)

)∨
is a relative isogeny. Let 0: C →

(
Pic◦(X /C)

)∨ denotes the neutral section, and set
Y := a−1

X /C(0). Using Proposition 4.1 again, one readily checks that

X ×(
Pic◦(X /C)

)∨ A ∼= Y ×C A .

The proposition then follows easily. �

We end this section with an extension result for differential forms. We feel that
this result might be of independent interest.

Proposition 4.4. — Let X be a normal variety with rational singularities, and
let f : X → C be a flat projective morphism with connected normal fibers onto a
smooth connected algebraic curve C. Let 0 6 p 6 dim X − 1 be an integer, and
assume that h0

(
Xt,Ω

[p]
Xt

)
= hp(Xt,OXt

) for any point t on C. Given t0 ∈ C and
ω ∈ H0

(
Xt0 ,Ω

[p]
Xt0

)
, and replacing C by an open neighborhood of t0 if necessary,

there exists Ω ∈ H0
(
X ,Ω

[p]
X /C

)
such that Ω|(Xt0

)reg = ω|(Xt0
)reg .

Remark 4.5. — In the setup of Proposition 4.4 above, suppose moreover that Xt has
klt singularities for any t ∈ C. Then Hodge symmetry h0

(
Xt,Ω

[p]
Xt

)
= hp(Xt,OXt)

holds by [GKP16, Prop. 6.9].

Proof of Proposition 4.4. — Denote by i : Xreg ↪→ X the natural morphism, so that
Ω

[p]
X /C

∼= i∗Ω
p
Xreg/C

by [Har80, Prop. 1.6]. The sheaf Ω
[p]
X /C is torsion free, and

hence flat over C. This implies in particular that f∗Ω[p]
X /C is locally free of rank

h0
(
Xt1 ,Ω

[p]
X /C |Xt1

)
, where t1 ∈ C is a general point. On the other hand, if t1 is

general enough, then the sheaf Ω
[p]
X /C |Xt1

is reflexive, and hence Ω
[p]
X /C |Xt1

∼= Ω
[p]
Xt1

.
Given t ∈ C, consider the exact sequence

0 −→ OXreg(−Xt ∩Xreg) −→ OXreg −→ OXt∩Xreg −→ 0,

and let jt : Xt∩Xreg ↪→Xt denotes the natural morphism. Tensoring the above exact
sequence with the sheaf ΩpXreg/C

and applying i∗ yield an exact sequence

0 −→ Ω
[p]
X /C ⊗ OX (−Xt) −→ Ω

[p]
X /C −→ (jt)∗

(
ΩpXreg/C |Xt∩Xreg

)
.
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Now, by [Gro05, Exp.VIII, Cor. 2.3], (jt)∗
(
ΩpXreg/C |Xt∩Xreg

)
is a coherent sheaf of

OXt -modules. On the other hand, the complement of Xt∩Xreg in Xt has codimension
at least 2, and ΩpXreg/C |Xt∩Xreg

is locally free. It follows that (jt)∗
(
ΩpXreg/C |Xt∩Xreg

)
is reflexive, and thus (jt)∗

(
ΩpXreg/C |Xt∩Xreg

) ∼= Ω
[p]
Xt

(see [Har80, Prop. 1.6]). Thus,
we obtain an injective morphism of sheaves

Ω
[p]
X /C |Xt

↪−→ Ω
[p]
Xt

and hence

(4.1) h0
(
Xt,Ω

[p]
X /C |Xt

)
6 h0

(
Xt,Ω

[p]
Xt

)
.

We claim that the inequality above is an equality, that is,

(4.2) h0
(
Xt,Ω

[p]
X /C |Xt

)
= h0

(
Xt,Ω

[p]
Xt

)
.

Indeed, let us start by observing that as the function t 7→ h0
(
Xt,Ω

[p]
X /C |Xt

)
is upper

semicontinuous on C, we also have for a general point t1 on C

h0
(
Xt,Ω

[p]
X /C |Xt

)
> h0

(
Xt1 ,Ω

[p]
X /C |Xt1

)
= h0

(
Xt1 ,Ω

[p]
Xt1

)
.

Now, recall from Lemma 4.3 that hp
(
Xt,OXt

)
is independent of t ∈ C. This implies

that h0
(
Xt,Ω

[p]
Xt

)
is independent of t ∈ C since h0

(
Xt,Ω

[p]
Xt

)
= hp

(
Xt,OXt

)
by

assumption. It follows that

h0
(
Xt,Ω

[p]
X /C |Xt

)
> h0

(
Xt,Ω

[p]
Xt

)
.

Combining this with (4.1), we obtain (4.2) hence the claim. Therefore, the quantity
h0
(
Xt,Ω

[p]
X /C |Xt

)
is independent of t ∈ C. By a theorem of Grauert, it follows that

the natural map (
f∗Ω

[p]
X /C

)
⊗ C(t) −→ H0

(
Xt,Ω

[p]
X /C |Xt

)
is an isomorphism (see [Har77, Cor. 12.9]). Finally, observe that the natural map
Ω

[p]
X /C |Xt

↪→ Ω
[p]
Xt

induces an isomorphism

H0
(
Xt,Ω

[p]
X /C |Xt

) ∼= H0
(
Xt,Ω

[p]
Xt

)
by (4.2). This ends the proof of the proposition. �

5. Holonomy and stability of the tangent sheaf

In this section, we study the stability of the tangent sheaf of smoothable projec-
tive varieties with canonical singularities and trivial canonical divisor. The proof of
Proposition 5.4 relies on results proved in [GGK17], which we recall first.
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5.1. Singular Kähler-Einstein metrics, holonomy and stability. — Let X be a
normal projective analytic variety with canonical singularities such that KX ∼Z 0,
and let H be an ample Cartier divisor. By [EGZ09, Th. 7.5], there exists a
unique closed positive (1, 1)-current ω with bounded potentials on X such that
[ω] = [c1(H)] ∈ H2(X,R) and such that the restriction of ω to Xreg is a smooth
Kähler form with zero Ricci curvature. Let g be the Riemannian metric associated
with ω|Xreg

on Xreg. Given x ∈ Xreg, we view (TxX, gx) as an euclidian vector space.
We denote the holonomy group (resp. restricted holonomy group) of (Xreg, g) at x
by Hol(Xreg, g)x (resp. Hol(Xreg, g)◦x). It comes with a linear representation on TxX.
Recall that Hol(Xreg, g)x is a subgroup of SO(TxX, gx), and that Hol(Xreg, g)◦x is
the connected component of the Lie group Hol(Xreg, g)x. Moreover, the complex
structure I on Xreg is parallel with respect to g, so that the hermitian metric hx on
TxXreg induced by gx and Ix enables to realize the holonomy group as subgroup of
U(TxX,hx). We refer to [GGK17, §2.2] for more detailed explanations.

Irreducibility of the holonomy representation and stability of the tangent sheaf are
related by the following.

Proposition 5.1 ([GGK17, Prop. 1.5]). — In the above setting, the tangent sheaf TX
is stable (resp. strongly stable) with respect to any polarization if and only if the ho-
lonomy representation Hol(Xreg, g)x 	 TxX (resp. the restricted holonomy represen-
tation Hol(Xreg, g)◦x 	 TxX) is irreducible.

5.2. Varieties with strongly stable tangent sheaf. — The next result relates va-
rieties with strongly stable tangent sheaf to irreducible Calabi-Yau and irreducible
symplectic varieties.

Theorem 5.2 ([GGK17, Prop. 1.4]). — In the setting of Proposition 5.1, suppose fur-
thermore that X has dimension n > 2. If TX is strongly stable, then one of the
following two cases holds. In either case, the action of the restricted holonomy group
on TxX is isomorphic to the standard representation.

(1) The group Hol(Xreg, g)◦x is isomorphic to SU(n), and X is Calabi-Yau.
(2) The dimension of X is even, the group Hol(Xreg, g)◦x is isomorphic to Sp(n/2),

and there exists a quasi-étale cover Y → X such that Y is irreducible symplectic.

One of the crucial tools in the proof of Theorem 5.2 above is the so-called Bochner
principle.

Theorem 5.3 (Bochner principle, [GGK17, Th.A]). — In the setting of Proposition
5.1, let p and q be non-negative integers, and write E :=

(
T⊗pX ⊗ (Ω1

X)⊗q
)∗∗. Then

the restriction to x induces a one-to-one correspondence between global sections of E

and Hol(Xreg, g)x-fixed points in Ex.

5.3. Smoothings and holonomy. — In the analytic setting 3.1, assume that for t 6= 0,
Xt is simply-connected and either irreducible Calabi-Yau or irreducible symplectic.
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The following result then says that TX is stable. If moreover πét
1

(
Xreg

)
= {1}, we

conclude that TX is strongly stable with respect to any polarization.

Proposition 5.4. — In the analytic setting 3.1, assume that for t 6= 0, Xt is simply-
connected and either irreducible Calabi-Yau or irreducible symplectic. We maintain
notation of Proposition 5.1, and set G := Hol(Xreg, g)x, G◦ := Hol(Xreg, g)◦x, and
V := TxX. Then the following holds.

(1) The representation G 	 V is irreducible. Equivalently, TX is stable with respect
to any polarization.

(2) G ⊂ SU(V ) if Xt is irreducible Calabi-Yau and G ⊂ Sp(V ) if Xt is irreducible
symplectic.

(3) If G◦ is trivial, then there exists a quasi-étale cover A → X, where A is an
abelian variety.

(4) If G◦ is nontrivial, then G◦ is isomorphic to SU(r)×· · ·×SU(r) or Sp(r)×· · ·×
Sp(r), for some positive integer r. In either case, the action of G◦ on V is isomorphic
to the corresponding product of standard representations.

Proof. — Let us start with (2). In both cases, KX is trivial so there exists a non-
zero holomorphic n-form on Xreg. By the Bochner principle (see Theorem 5.3), this
implies that G ⊂ SU(V ). In the symplectic case, Remark 3.2 enables to find two
compatible complex structures J0,K0 on (Xreg, g0) satisfying I0J0K0 = −Id and
which are smooth limits of such complex structures on (Xt, gt). In particular, set-
ting σ0(X,Y ) := g0(J0X,Y ) + ig0(K0X,Y ) defines a non-degenerate holomorphic
2-form σ0 on Xreg (see [Bes87, Prop. 14.15]). Therefore, we must have G ⊂ Sp(V ) by
the Bochner principle again.

Moving on to (1), assume that the representation G 	 V is reducible. Then one
can decompose V =

⊕
i∈IWi and write G =

∏
i∈I Gi, where the action of Gi onWj is

irreducible if j = i and trivial otherwise (see [Bes87, Th. 10.38]). Consider the Calabi-
Yau case first. We have Gi ⊂ SU(Wi) by (2), which by the Bochner principle, provides
a non-zero reflexive holomorphic form on Xreg of degree dimWi. By Proposition 4.4
and Remark 4.5, it follows that Wi is either zero or the whole V , which concludes.
In the symplectic case, (2) and an elementary computation shows that Wi is even
dimensional and that Gi ⊂ Sp(Wi). In particular, one gets h0

(
X,Ω

[2]
X

)
= #I, and

Proposition 4.4 enables to conclude once again. Finally, the equivalence with stability
is a consequence of Proposition 5.1 above.

Finally, let us prove (3) and (4). Set V0 := {v ∈ V,∀g ∈ G◦, g(v) = v}. As G◦ is
normal in G, V0 is fixed by G. By (1), this implies that V0 is either zero or the whole V .
Assume V0 = V to start with. Then G◦ is trivial, that is, (Xreg, g) is flat. This implies
that TXreg

is holomorphically flat since the (1, 0)-part of the Chern connection of g
is holomorphic. By [GKP16, Cor. 1.16], we get the expected quasi-étale cover of X
from an abelian variety. So one can now assume that V0 = {0}. Therefore G◦ 	 V

decomposes as sum of non-trivial irreducible representations V =
⊕

j∈J Vj along with
G◦ =

∏
j∈J G

◦
j . By normality of G◦ in G, each element g ∈ G permutes the Vj . As the
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representation G 	 V is irreducible, this implies that the representations G◦j 	 Vj
are pairwise isomorphic. Set r = dimVj . By the classification of restricted holonomy
[GGK17, Prop. 5.4], we see that G◦j 	 Vj is isomorphic to the standard representation
of SU(r) or Sp(r/2), completing the proof of the proposition. �

6. Towards a decomposition theorem

6.1. Reduction to smoothings by simply-connected and irreducible manifolds. —
The main result of this section is Proposition 6.1 below. It reduces the proof of
Theorem B to the case of a smoothing by simply-connected, irreducible Calabi-Yau
or symplectic manifolds.

Proposition 6.1. — Let X be a normal projective variety with klt singularities. Sup-
pose furthermore that KX ≡ 0, and that X admits a projective Q-Gorenstein smooth-
ing. Then there exists an abelian variety A as well as a projective variety Y with
canonical singularities, a quasi-étale cover

A× Y −→ X,

and a decomposition
Y ∼=

∏
i∈I

Yi

such that the following holds.
(1) The Yi admit projective Q-Gorenstein smoothings over algebraic curves by ir-

reducible and simply-connected Calabi-Yau, or symplectic manifolds.
(2) The sheaves TYi are slope-stable with respect to any ample polarization on Yi,

with trivial determinants.

We first provide technical tools for the proof of our result.

Lemma 6.2. — Let X be a normal variety, and let f : X → C be a flat projective
morphism with connected fibers onto a smooth connected curve C. Suppose that KX /C

is Q-Cartier. Suppose furthermore that Xt has klt singularities for any point t on C.
Let γ : Y → X be a quasi-étale cover with Y normal. Then Yt is normal with klt
singularities for any point t on C.

Proof. — Note first that KY /C is Q-Cartier since we have KY /C ∼Z γ
∗KX /C . More-

over, by Fact 2.8, X has klt singularities. Applying [Kol97, Prop. 3.16] to γ, we see
that Y has klt singularities as well. In particular, Y is Cohen-Macaulay by [KMM87,
Th. 1.3.6], and hence so is Yt for all t ∈ C. By the Nagata-Zariski purity theorem,
γ branches only over the singular set of X . On the other hand, we know that the
smooth locus of Xt is contained in the smooth locus of X . It follows that Yt is
smooth in codimension one. Now, from Serre’s criterion for normality, we see that Yt
is normal for any t ∈ C. Note also that γt : Yt →Xt is a quasi-étale cover. By [Kol97,
Prop. 3.16] applied to γt, we conclude that Yt has klt singularities. �
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Remark 6.3. — In the setup of Lemma 6.2, let β : B → C be the Stein factorization
of g. Then β is étale, and γ factors through the étale cover B ×C X →X .

Lemma 6.4. — Let f : X → C be a flat projective morphism with connected fibers
from a normal variety X onto a smooth connected curve C. Suppose that KX /C is
Q-Cartier. Suppose furthermore that Xt has klt singularities for any point t on C. Let
C◦ ⊂ C be a dense open set, and let g◦ : Y ◦ → C◦ be a smooth projective morphism
with connected fibers. Finally, let γ◦ : Y ◦ → f−1(C◦) be a quasi-étale cover such that
g◦ = f|f−1(C◦) ◦γ◦. Then there exists a normal variety Y1 as well as a projective mor-
phism g1 : Y1 → C1 with connected fibers onto a smooth curve C1, a finite morphism
π : C1 → C, and a quasi-étale cover γ1 : Y1 →X ×C C1 such that the following holds.
Write C◦1 := π−1(C◦).

(1) We have Y1|C◦1
∼= Y ◦ ×C◦ C◦1 and γ1|g−1

1 (C◦1 ) is induced by γ◦.
(2) Any fiber of g1 has klt singularities.

Proof. — Let Y be a reduced and irreducible variety, and let g : Y → C be a pro-
jective morphism onto C such that Y|g−1(C◦)

∼= Y ◦ as varieties over C◦. We may
also assume that γ◦ extends to a generically finite morphism γ : Y → X . By a
theorem of Kempf, Knudsen, Mumford, and Saint-Donat ([KKMSD73]), there exist a
smooth curve C1, a finite morphism π : C1 → C, and a birational projective morphism
Ŷ1 → Y ×C C1 from a smooth variety Ŷ1 such that the induced fibration Ŷ1 → C1

is semi-stable. We may also assume without loss of generality that Ŷ1 → Y ×C C1

induces an isomorphism over C◦1 := π−1(C◦). Write X1 := X ×CC1, and consider the
Stein factorization Ŷ1 → Y1 →X1 of Ŷ1 →X1. We have the following commutative
diagram:

Ŷ1

semi-stable

""

birational
  

// Y ×C C1

''

// Y

γ
��

g

��

Y1

g1

��

γ1, finite
// X1 = X ×C C1

f1
��

// X

f
��

C1 C1 π
// C.

Note that γ1|g−1
1 (C◦1 ) is a quasi-étale cover. Since Ŷ1 → C1 has reduced fibers, it follows

that γ1 is étale in codimension one.
We still have to show that fibers of g1 are klt. Note first that X1 is normal by

Fact 2.6. This implies that KX1
is well-defined and Q-Cartier since KX1/C1

is then
the pull-back of KX /C under the projection morphism X1 = X ×C C1 → X . The
claim now follows from Lemma 6.2, completing the proof of the lemma. �

We are now in position to prove Proposition 6.1.

Proof of Proposition 6.1. — Wemaintain notation and assumptions of Proposition 6.1.
Note that the statement (2) in Proposition 6.1 is an immediate consequence of (1)
together with Proposition 5.4.
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By Proposition 2.14, replacing X with a quasi-étale cover, if necessary, we may
assume that there exist a normal variety X and a flat projective morphism with
connected fibers f : X → C onto a smooth connected algebraic curve C such that
X ∼= f−1(t0) for some point t0 on C, f−1(t) is smooth for t 6= t0, and such that
KX /C ∼Z 0. Set C◦ := C r {t0} and X ◦ := X r Xt0 .

Let K be an algebraic closure of the function field of C. Applying the Beauville-
Bogomolov decomposition theorem to XK (see [Bea83]), we see that, replacing C by
a finite cover of some open neighborhood of t0, if necessary, there exists an abelian
scheme B◦/C◦, as well as finitely many families (Y ◦i /C

◦)16i6s of projective mani-
folds, and a finite étale cover

γ◦ : B◦ ×C◦ Y ◦1 ×C◦ · · · ×C◦ Y ◦s −→X ◦

such that the (Y ◦i )K are irreducible and simply-connected Calabi-Yau, or symplec-
tic manifolds. In particular, we have πét

1

(
(Y ◦i )K

)
= {1}. Applying [Gro03, Exp.X,

Th. 3.8], we conclude that πét
1

(
(Y ◦i )t

)
= {1} for any point t on C◦. On the other hand,

we have h1
(

(Y ◦i )t,O(Y ◦i )t

)
= 0 by Lemma 4.3 and K(Y ◦i )t ∼Z 0 by the adjunction

formula. It follows from [Bea83] that (Y ◦i )t has finite fundamental group for t 6= t0.
Hence (Y ◦i )t is simply-connected. Using [Bea83] and Lemma 4.3 again, we obtain
that for any t ∈ C◦, the (Y ◦i )t are irreducible and simply-connected Calabi-Yau, or
symplectic manifolds.

Write Y ◦ := Y ◦1 ×C◦ · · · ×C◦ Y ◦s , and Z ◦ := B◦ ×C◦ Y ◦. By Lemma 6.4, replac-
ing C by a further cover, if necessary, we may also assume that there exists a normal
variety Z as well as a flat morphism g : Z → C whose fibers have klt singularities,
and a quasi-étale cover γ : Z → X such that g−1(C◦) = Z ◦ and γ◦ = γ|g−1(C◦).
We may also assume that h◦ : Y ◦ → C◦ has a section. Together with the neutral
section 0◦ : C◦ → B◦, we obtain a section of g|g−1(C◦), and hence a section of g.
Moreover, the projection morphism Z ◦ → B◦ identifies with the natural morphism
Z ◦ →

(
Pic◦(Z ◦/C◦)

)∨ induced by the universal line bundle. By Proposition 4.2,
there exists an abelian scheme A → C, as well as a normal variety Y ⊂ Z , and a fi-
nite étale cover Y ×CA → Z such that the natural map h : Y → C is a flat projective
morphism with connected normal fibers, and such that h−1(C◦) = 0◦ ×C◦ Y ◦ ∼= Y ◦.
The situation is summarized in the following diagram:

A ×C Y
étale

// Z
γ

quasi-étale
// X // C

Z ◦ ∼= B◦ ×C◦ Y ◦

⋃
// X ◦

⋃
// C◦.

⋃
Let L be a relatively ample line bundle on Y . Denote by s◦i : C◦ → Y ◦i the induced

section of Y ◦i → C◦, and consider the embedding Y ◦i ⊂ Y ◦1 ×C◦ · · · ×C◦ Y ◦s
∼= Y ◦

induced by the sections sj for j 6= i. Denote by p◦i : Y ◦ → Y ◦i the projection mor-
phism. Then, we have

L|Y ◦ ∼= (p◦1)∗(L|Y ◦1 )⊗ · · · ⊗ (p◦s)
∗(L|Y ◦s ),

since h1
(
(Y ◦i )t,O(Y ◦i )t

)
= 0 for any point t on C◦.
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Suppose now that L is very ample over C, and set Ni := h0
(
(Y ◦i )t,O(Y ◦i )t

)
− 1.

Then L|Y ◦i is very ample over C◦ and induces an embedding Y ◦i ⊂ PNi×C◦. It follows
that Y ◦1 ×C◦ · · ·×C◦Y ◦s embeds into PN1×· · ·×PNs×C◦. Set N := h0(Y ◦,OY ◦)−1 =

(N1 + 1) · · · (Ns + 1)− 1. Then L embeds Y into PN ×C and the image of Y ◦ agree
with the image of Y ◦1 ×C◦ · · ·×C◦Y ◦s under the Segre embedding PN1×· · ·×PNs×C◦ ⊂
PN ×C◦. Let Yi ⊂ PNi ×C be the closure of Y ◦i . Note that Yi → C is flat. Since the
scheme Hilb(PN ) is separated, we conclude that (Y1)t0 × · · · × (Ys)t0 = Yt0 ⊂ PN .
This easily implies that (Yi)t0 is a normal projective variety with klt singularities and
trivial canonical divisor, completing the proof of Proposition 6.1. �

Proof of Theorem B. — By Proposition 2.14, we may assume without loss of general-
ity that X admits a projective Q-Gorenstein smoothing. Theorem B is now an easy
consequence of Propositions 6.1 and 5.4. Indeed, the only thing to check is the asser-
tion concerning the algebra of reflexive forms. Proposition 4.4 settles the Calabi-Yau
case immediately. In the symplectic case, item (2) in Proposition 5.4 together with the
Bochner principle (see Theorem 5.3) yield a reflexive 2-form σ on X, symplectic on
Xreg, while Proposition 4.4 shows that σ generates the algebra of reflexive forms. �

6.2. Irreducible Calabi-Yau and symplectic varieties with stable tangent sheaf

In this section, we try to analyze a bit further the factors appearing in the de-
composition of X ′ in Theorem B. These varieties have stable tangent sheaf, but that
sheaf may not be strongly stable. Such varieties are conjecturally covered by either
an abelian variety or a product of copies of a single irreducible, Calabi-Yau or sym-
plectic variety, see Conjecture 1.4. Assuming that a weak singular analogue of the
Beauville-Bogomolov decomposition theorem holds, we prove this conjecture.

Proposition 6.5. — Suppose that any projective variety X with klt singularities and
numerically trivial canonical class admits a quasi-étale cover Y → X that splits as a
product of an abelian variety and varieties with strongly stable tangent sheaves. Then
Conjecture 1.4 holds.

Proof. — We maintain notation and assumptions of Conjecture 1.4. We know that
there exists a quasi-étale cover Y → X of X such that Y decomposes as a product
Y ∼= Y0 × Y1 × · · · × Ym of an abelian variety Y0 and varieties Yi for 1 6 i 6 m

with strongly stable tangent sheaves. We may assume without loss of generality that
dimYi > 2 for 1 6 i 6 m. Let Z → Y be a quasi-étale cover such that the induced
quasi-étale cover Z → X is Galois, with Galois group G.

The decomposition Y ∼= Y0 × Y1 × · · · × Ym induces a decomposition

TZ ∼= E0 ⊕ E1 ⊕ · · · ⊕ Em

of TZ , where the Ei for 1 6 i 6 m are strongly stable sheaves. Observe that the
foliation Ei is induced by the Stein factorization of the projection

πi : Z −→ Bi := Y0 × · · ·Yi−1 × Yi+1 × · · · × Ym.
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Note also that
E0 ⊕ · · · ⊕ Ei−1 ⊕ Ei+1 ⊕ · · · ⊕ Em

induces a flat connection on πi. A classical result of complex analysis then implies
that πi is a locally trivial fibration for the Euclidean topology over the smooth locus
of Bi. Denote by Zi a connected component of general fiber of πi. It comes with a
quasi-étale cover Zi → Yi.

Suppose first that dimY0 > 1. Since Ei is strongly stable for 1 6 i 6 m, we have
h0(Z,Ei) = 0 for each 1 6 i 6 m. This immediately implies that E0 is stable under G,
and thus TZ = E0 since TX is stable. This shows that Y is an abelian variety.

Suppose from now on that dimY0 = 0. We claim that Ei 6∼= Ej if i 6= j. Indeed, we
have Ej |Zi

∼= O
⊕ rankEj
Zi

while
(
Ei|Zi

)∗∗ ∼= TZi and h0(Zi, TZi) = 0 since TZi is strongly
stable. Therefore, the group G acts on the set 1 6 i 6 m of stable summands of TZ ,
and since TX is stable, this action is transitive. Thus, for any i ∈ I, there exists gi ∈ G
such that Ei ∼= g∗i E1 ⊂ g∗i TZ ∼= TZ . This in turn implies that Zi ∼= Z1, completing the
proof of the proposition. �

To finish this section, let us rephrase some results obtained in Proposition 5.4 with
the notations of Theorem B. We start by fixing on X a singular Ricci-flat Kähler
metric, provided by [EGZ09]. It can be showed (see [GGK17, Proof of Prop. 7.6])
that the induced metric on A×X ′ is actually a product metric, and that the metric
induced on X ′ is also a product metric compatible with the decomposition of X ′.
Up to passing to a further cover and inflating the abelian part, one can assume that
the factors of X ′ have non-trivial restricted holonomy. Finally, one can pass to an
holonomy cover by [GGK17, Th.B] to ensure that the holonomy is connected. Piecing
everything together, Proposition 5.4 shows that a quasi-étale cover of X splits as

A×
∏
i∈I

Yi ×
∏
j∈J

Zj ,

where A is an abelian variety, and such that the following holds. Let yi ∈ Yi and
zj ∈ Zj be smooth points.

(1) For every i ∈ I, there exist ni, ri ∈ N with niri = dimYi such that the holonomy
acts on TyiYi by the standard product representation SU(ni)

×ri 	 CdimYi .
(2) For every j ∈ J , there exist nj , rj ∈ N with 2njrj = dimZj such that the

holonomy acts on TzjZj by the standard product representation Sp(nj)
×rj 	 CdimZj .

7. Proof of Theorem A

In this section we prove Theorem A.
Let X be a (proper) variety, let m be a positive integer, and write A :=

C[[x1, . . . , xm]] and K := C((x1, . . . , xm)). Let also K be an algebraic closure of K.
Recall that a deformation of X over A is a flat morphism of schemes f : X→ SpecA

such that X ⊗ (A/m) ∼= X, where m denotes the maximal ideal of A. We say that f
is a proper deformation of X over A if f is a proper morphism.
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If f is a smooth proper morphism with geometrically connected fibers, then there
is an isomorphism of fundamental groups πét

1

(
XK
) ∼= πét

1

(
X
)
(see [Gro03, Exp.X,

Th. 3.8]). However, it is well-known that this statement becomes wrong if f is not
assumed to be proper. The following will prove to be crucial.

Theorem 7.1. — Let X be a normal proper variety with klt singularities, and as-
sume that X is smooth in codimension two. Write A := C[[x1, . . . , xm]] and K :=

C((x1, . . . , xm)), and let K be an algebraic closure of K. Let X be a proper deformation
of X over A. Suppose that XK is smooth with πét

1

(
XK
)

= {1}. Then πét
1

(
Xreg

)
= {1}.

The following example shows that Theorem 7.1 is wrong if one relaxes the assump-
tion on the codimension of the singular locus.

Example 7.2. — Let X ⊂ P3 be a cone over a smooth plane cubic curve, and let
f : X → P1 be flat family of cubic surfaces in P3 such that f−1(0) = X and f−1(t)

is smooth for a general point t on P1. Then π1

(
XC(t)

)
= {1} and π1

(
Xreg) ∼= Z⊕ Z.

The same arguments used in the proof of Lemmas [Art76, I. 9.1 and I. 9.2] show
that the following holds.

Lemma 7.3. — Let X be a normal variety of dimension at least two, let X◦ ⊂ Xreg

be an open subset, and let A be a local Artinian C-algebra. Let i : X◦ ↪→ X be the
inclusion map.

(1) Let XA be a deformation of X over A, and suppose that XrX◦ has codimension
at least two. Then the restriction map induces an isomorphism OXA

∼= i∗
(
i−1OXA

)
.

Let X1
A and X2

A be deformations of X over A, and let (X1
A)◦ ⊂ X1

A and (X2
A)◦ ⊂ X2

A

be the open subschemes with underlying topological space X◦. Then any isomorphism
(X1

A)◦ ∼= (X2
A)◦ of A-schemes uniquely extends to an isomorphism X1

A
∼= X2

A of
A-schemes.

(2) Suppose that X is affine, that X r X◦ has codimension at least three, and
that depthOX,x > 3 for any point x ∈ X r Xreg. Let X◦A be a deformation of X◦
over A, and set XA := SpecH0(X◦A,OX◦A). Then XA is a flat deformation of X
over A extending X◦A.

Proposition 7.4. — Let γ : Y → X be a quasi-étale cover of normal proper varieties.
Suppose that X is smooth in codimension two, and that depthOY,y > 3 for any point
y ∈ Y rYreg. Let (A,m) be a complete local Noetherian C-algebra with residue field C,
and let X be a proper deformation of X over A. Then there exists a proper deformation
Y of Y over A, and a finite morphism Γ: Y→ X extending γ. If moreover A is regular,
then Γ is a quasi-étale cover.

Proof. — For any non-negative integer m, write Am := A/mm+1, S := SpecA, Sm :=

SpecAm, and Xm := X×S Sm. We will also denote by X̂ the formal completion of X
along X. Note that X̂ is the colimit of the Xm. Moreover, it comes with a proper
morphism onto Ŝ := SpfA.
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Let X◦ be the smooth locus of X, and set Y ◦ := γ−1(X◦). By the Nagata-Zariski
purity theorem, γ branches only over the singular set of X, and hence γ|Y ◦ : Y ◦ → X◦

is an étale cover. Note that Y rY ◦ has codimension at least three and that Y ◦ ⊂ Yreg.
Let im : X◦m ⊂ Xm be the open subscheme with underlying topological space X◦.

By [Gro67, Th. 18.1.2], there exists a finite étale cover γ◦m : Y ◦m → X◦m such that
Y ◦m
∼= Y ◦m+1 ×Sm+1

Sm for any integer m > 0. Set Ym := SpecXm(im ◦ γ◦m)∗OY ◦m , and
denote by γm : Ym → Xm the natural morphism. Note that Y ◦m can be identified with
the open subscheme of Ym with underlying topological space Y ◦. Applying Lemma
7.3 above, we see that Ym is flat over Sm, and that γm+1×Sm+1Sm = γm. Moreover,
by [Gro05, Exp.VIII, Cor. 2.3], γm is finite. Let Ŷ denote the colimit of the Ym; Ŷ is
a Noetherian formal scheme, proper and flat over Ŝ. It comes with a finite morphism
Γ̂ : Ŷ → X̂. Now, by [Gro61, Prop. 5.4.4], Ŷ is algebraizable. More precisely, there
exists a scheme Y proper over S such that Ŷ identifies with the formal completion of Y
along Y . Moreover, the morphism Γ̂ : Ŷ→ X̂ of formal schemes is induced by a finite
morphism of schemes Γ: Y→ X (see proof of [Gro61, Prop. 5.4.4]). Note that Y is flat
over S by [Bou61, Chap. III, §5, Th 2 & Prop. 2].

Suppose from now on that A is regular. Let x ∈ X be a codimension one point, not
contained in the special fiber Xm, and suppose that Γ is ramified at x. Then γ must
be ramified along {x}∩Xm. On the other hand, {x}∩Xm has codimension one in Xm

since A is regular. This yields a contradiction, and shows that Γ is a quasi-étale cover,
completing the proof of the proposition. �

Before proving Theorem 7.1 below, we note the following consequence of Proposi-
tion 7.4.

Corollary 7.5. — Let X be a normal proper variety with klt singularities, and assume
that X is smooth in codimension two. Write A := C[[x1, . . . , xm]], and let X be a proper
deformation of X over A. Then the natural map πét

1

(
Xreg

)
→ πét

1

(
Xreg

)
is injective.

Proof. — Given a finite étale cover γ◦ : Y ◦ → Xreg with Y ◦ connected, we need to
show that there exists a finite étale cover Γ◦ : Y◦ → Xreg such that Y ◦ is a connected
component of Y◦|(Γ◦)−1(Xreg) and such that γ◦ is induced by Γ◦.

Let γ : Y → X be the normalization ofX in the function field of Y ◦. Note that γ is a
quasi-étale cover. Applying [Kol97, Prop. 3.16] to γ, we see that Y has klt singularities.
It follows that Y is Cohen-Macaulay by [KMM87, Th. 1.3.6]. By the Nagata-Zariski
purity theorem, γ branches only over the singular set of X, and hence Y is smooth in
codimension two. Combining the previous two assertions, one sees that the assumption
from Proposition 7.4 about the depth of points in Y r Yreg is satisfied. Applying the
aforementioned proposition then proves the corollary. �

Proof of Theorem 7.1. — By the semicontinuity theorem, we have h0(XK ,OXK
) =

h0(X,OX) = 1, and hence XK is connected.
Let γ◦ : Y ◦ → Xreg be a finite étale cover with Y ◦ connected, and let γ : Y → X

be the normalization of X in the function field of Y ◦. Note that γ is a quasi-étale
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cover. The same argument used in the proof of Corollary 7.5 shows that there exists
a deformation Y of Y over A and a quasi-étale cover Γ: Y → X over A extending γ.
By the semicontinuity theorem again, we see that YK is connected. Moreover, by the
Nagata-Zariski purity theorem, the finite morphism γK : YK → XK is étale, and hence
an isomorphism since πét

1

(
XK
)

= {1}. This implies that γ is an isomorphism as well,
completing the proof of the theorem. �

We will also need the following observation. The proof follows the line of argument
given in [KM92, Cor. 12.1.9].

Lemma 7.6. — Let X be a normal projective variety with klt singularities. If X is
smooth in codimension two, then any projective smoothing over an algebraic curve is
a Q-Gorenstein smoothing.

Proof. — Let X be a normal variety, and let f : X → C be a flat projective morphism
with connected fibers onto a smooth connected curve C such that X ∼= f−1(t0) for
some point t0 on C and such that f−1(t) is smooth for t 6= t0.

By [KMM87, Th. 1.3.6], we know that X is Cohen-Macaulay. Let m be a positive
integer such that mKX is a Cartier divisor. Set U := X r (X rXreg) ⊂ Xreg, and
denote by j : U ↪→X and i : Xreg = Xt0 ∩U ↪→ X the natural inclusions. By [Har80,
Prop. 1.6], we have

j∗
(
OX (mKX /C)|U

) ∼= OX (mKX /C)

and
i∗
(
OX (mKX /C)|Xreg

) ∼= i∗
(
OX(mKX)|Xreg

) ∼= OX(mKX).

Applying [KM92, Lem. 12.1.8], we see that OX (mKX /C)|X
∼= OX(mKX). This im-

plies that OX (mKX /C) is a Cartier divisor, proving the lemma. �

We are now in position to prove our main result.

Proof of Theorem A. — We maintain notation and assumptions of Theorem A.
Applying Lemma 2.11 and Lemma 7.6, we see that we may assume without loss

of generality that X admits a projective Q-Gorenstein smoothing f : X → C over
an algebraic curve C. Let t0 be a point on C such that X ∼= f−1(t0). By Proposition
6.1 and Lemma 7.6 again, we may also assume that Xt is an irreducible and simply-
connected Calabi-Yau, or symplectic manifold for any point t 6= t0, and that TX is
slope-stable with respect to any ample polarization on X.

Denote by A the completion of the local ring OC,t0 . Note that A ∼= C[[t]] by a
theorem of Cohen. Let K denotes the field of fractions of A, and let K be an algebraic
closure of K. Write S := SpecA, and X := X ×C S.

Applying [Gro03, Exp.X, Th. 3.8], we see that πét
1

(
XK
)

= {1}. It follows from
Theorem 7.1 that πét

1

(
Xreg

)
= {1}, and hence the tangent sheaf TX is strongly stable.

The theorem now follows from Theorem 5.2. �

Remark 7.7. — There is a alternative proof of Theorem A in the case where Xt is
irreducible symplectic, still assuming that X := X0 is smooth in codimension two.
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Indeed, in that case a theorem of Namikawa [Nam06, Cor. 2] asserts that if π : Y → X

is a Q-factorial terminalization of X, then Y is smooth and π is a symplectic resolu-
tion. Note that Q-factorial terminalizations always exist for varieties with canonical
singularities by [BCHM10, Cor. 1.4.3]. By a result of Kaledin (see [Kal01, Prop. 1.2]),
a symplectic resolution is a semi-small morphism; in particular, 2 codim π−1(Xsing) >
codim Xsing, and therefore codim π−1(Xsing) > 2. Set Y ◦ := Y rπ−1(Xsing), and note
that Y ◦ ∼= Xreg and codim (Y r Y ◦) > 2. In particular, we have π1(Y ◦) ∼= π1(Y ).
By [Tak03, Th. 1.1], we also have π1(Y ) ∼= π1(X), and from [Kol93, Lem. 5.2.2]), we
see that π1(X) = 0. Eventually, Xreg is simply-connected, and as TX is stable by
Proposition 5.4, it is automatically strongly stable.

8. Examples

In this section, we first give examples of smoothable (irreducible) Calabi-Yau and
symplectic varieties. We also collect examples which illustrate to what extent our
results are sharp. We maintain notation of Section 5.

8.1. Examples of smoothable Calabi-Yau varieties

Example 8.1 (Nodal hypersurfaces). — Let X be a nodal degree n + 2 hypersurface
in Pn+1 with n > 3. This means that the singularities of X are isolated and locally
analytically isomorphic to the germ at 0 of the quadric

Q :=
{
z ∈ Cn+1 |

∑n+1
i=1 z

2
i = 0

}
.

Then X has canonical Gorenstein singularities, and it is smooth in codimension 2.
Moreover, X has trivial canonical bundle and is smoothable by irreducible Calabi-Yau
manifolds. By Theorem 7.1, one has πét

1 (Xreg) = {1}. Then, Proposition 4.4 shows
that X is an irreducible Calabi-Yau variety.

This applies in particular to

X :=
{

[x0 : · · · : x4] ∈ P4 |x0f + x1g = 0
}
,

where f and g are general homogeneous polynomials in x0, . . . , x4 of degree 4. In-
deed, it is clear that X has 16 (isolated) nodal singularities. In that example, there
is an alternative proof that bypasses Theorem 7.1. Indeed, blowing up the plane
S := (x0 = x1 = 0) ⊂ P4 yields a small resolution π : X̃ → X so in particular, we
must have π1(Xreg) ∼= π1

(
X̃ r π−1(S)

) ∼= π1(X̃) since codim π−1(S) > 2. Applying
successively [Tak03, Th. 1.1] and the Lefschetz’s hyperplane theorem for fundamental
groups, we see that π1(X̃) ∼= π1(X) = {1}, and hence π1(Xreg) = {1} as claimed.

Example 8.2 (Calabi-Yau threefolds with non-nodal singularities)
Let S1 → P1 and S2 → P1 be rational elliptic surfaces with sections, and let

X := S1 ×P1 S2 (see [Sch88]). In [Nam94, Ex. 5.9], Namikawa gives conditions on
the singular fibers of each fibration under which X is a smoothable Q-factorial 3-fold
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with trivial canonical class with one isolated terminal singularity locally analytically
isomorphic to the germ at 0 of the hypersurface

{z ∈ C4 | z2
1 + z2

2 + z3(z3 + z4)(z3 − z4) = 0}.

As in the example above, one concludes that X is an irreducible Calabi-Yau variety.

Example 8.3 (Calabi-Yau threefolds with Q-factorial isolated rational hypersurface
singularities)

If X is a projective variety of dimension three with canonical singularities and
trivial canonical bundle, then Namikawa and Steenbrink proved in [NS95, Th. 1.3]
that X admits a flat deformation to a smooth Calabi-Yau threefold provided that X
has only Q-factorial, isolated, rational hypersurface singularities. If X is singular, then
it is an irreducible Calabi-Yau variety. The argument is as follows.

Suppose from now on that X is singular, and let Y → X be any quasi-étale cover.
We claim that Y is also singular. Suppose otherwise, and let Z → Y be a quasi-étale
cover such that the induced finite morphism Z → X is Galois. By the Nagata-Zariski
purity theorem, Z → Y is étale, and thus Z is smooth as well. This in turn implies
that X has quotient singularities. On the other hand, any isolated quotient singularity
in dimension at least three is rigid by [Sch71, Th. 2] (see also Remark 1.2), yielding a
contradiction. By the Nagata-Zariski purity theorem again, we conclude that Y has
isolated singularities.

Applying Proposition 6.1, we see that there exist a quasi-étale cover Y → X and
a smoothing of Y into irreducible and simply-connected Calabi-Yau or symplectic
manifolds. By Proposition 5.4 and Theorem 7.1, Y is an irreducible Calabi-Yau variety,
and hence so is X.

If the global assumption on Q-factoriality is dropped, [NS95, Th. 2.4] shows that
one can still improve the singularities of X by deforming it to a variety with only
nodal singularities.

Remark 8.4. — It should be noted that from our classification point of view, threefolds
are completely understood as they are known to satisfy a singular analogue of the
Beauville-Bogomolov decomposition theorem by [Dru17]. Therefore, Examples 8.2
and 8.3 should be thought as illustrative rather than new. For instance, [Dru17] can
be used along the same lines as in Example 8.3 above to prove that ifX is a smoothable
projective variety of dimension three with canonical isolated singularities and trivial
canonical class, then X is an irreducible Calabi-Yau variety.

8.2. Examples of smoothable symplectic varieties. — Let X be a normal variety.
Recall that we say that X is a symplectic variety if X has canonical singularities and
there exists ω ∈ H0

(
Xreg,Ω

2
Xreg

)
everywhere non-degenerate. If π : X̃ → X is a resolu-

tion of singularities of X, then ω extends to a holomorphic 2-form on X̃ by [GKKP11,
Th. 1.4]. Let now π : X̃ → X be a Q-factorial terminalization of X. Recall that the
existence of π is established in [BCHM10, Cor. 1.4.3]. Then [Nam06, Cor. 2] asserts
that X is smoothable if and only if X̃ is smooth. Note that ω automatically extends
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to a symplectic form on X̃reg since π is crepant. In particular, if X is smoothable,
then X admits a symplectic resolution. Conversely, if X admits a symplectic resolu-
tion, then X is smoothable by [Nam01, Th. 2.2]. More precisely, any smoothing Xt

of X by symplectic manifolds is a flat deformation of X̃.
Note that Namikawa’s theorem [Nam06, Cor. 2] provides smoothings by Kähler

manifolds which are not projective.

8.3. Examples of smoothable symplectic varieties with stable but not strongly
stable tangent sheaf. — Recall from Proposition 5.4 and Theorem 7.1 that if a
normal projective variety X with klt singularities and KX ≡ 0 whose tangent sheaf is
not strongly stable admits a projective smoothing into simply-connected irreducible
Calabi-Yau, or symplectic manifolds then codim(X rXreg) = 2.

Example 8.5 (Singular Kummer surface). — In the following example, we consider
a degeneration of K3 surfaces to a singular Kummer surface X. More precisely, let
X = A/〈±1〉, where A is a principally polarized abelian surface. Then the following
holds.

– The Kummer surface X admits a Q-Gorenstein projective smoothing f : X → C

by K3 surfaces.
– The tangent sheaf TX is not strongly stable.
– Let L be a relatively ample line bundle on X , and denote by g the Ricci-

flat Kähler metric on Xreg given by [EGZ09, Th. 7.5] applied to (X0,L|X0
). Given

x ∈ Xreg, we have

Hol(Xreg, g)x ∼= Z/2Z and Hol◦(Xreg, g)x = {1}.

– We have π1(X) = {1} and π1(Xreg) is an extension of Z4 by Z/2Z.
It is well-known that X can be realized as a singular quartic surface in P3 (see

[BL04, Th. 4.8.1]). In particular, it can be seen as the fiber over some point t0 ∈ C
of a projective flat family f : X → C of quartic surfaces over a smooth algebraic
curve C such that Xt is smooth if t 6= t0. The total space X is an hypersurface in
C×P3, and hence Q-Gorenstein. For t 6= t0, Xt is a smooth quartic surface, and thus
it is a K3 surface.

The tangent sheaf TX is not strongly stable as X admits a quasi-étale cover γ : A→
A/〈±1〉 of degree two and TA ∼= O⊕2

A is obviously not stable.
By [EGZ09, Th. 7.5], there exists a unique closed positive (1, 1)-current ω with

bounded potentials on X such that [ω] = [c1(L|X)] ∈ H2(X,R) and such that the
restriction of ω to Xreg is a smooth Kähler form with zero Ricci curvature. Note
that g is the Riemannian metric associate with ω|Xreg

on Xreg. We claim that g
is flat, or equivalently that Hol◦(Xreg, g)x = {1}. Indeed, it is known that ω is
of orbifold type, that is, γ∗ω defines a smooth Ricci-flat Kähler metric on A. On
the other hand, it is well-known that any Ricci-flat metric on a torus is flat. Next,
we show that Hol(Xreg, g)x ∼= Z/2Z. Note that the natural surjection π1(Xreg) �
Hol(Xreg, g)x/Hol◦(Xreg, g)x together with the fact that (γ|γ−1(Xreg))

∗g is flat yields
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a surjective map Z/2Z � Hol(Xreg, g)x. Suppose that Hol(Xreg, g)x is trivial. Then,
by Bochner principle, one would get a non-zero element σ ∈ H0(X,Ω

[1]
X ), and there-

fore a non-zero global 1-form on A invariant under the involution a 7→ −a, yielding a
contradiction. Thus

Hol(Xreg, g)x ∼= Z/2Z.

As for the fundamental group, X is simply-connected by Lefschetz theorem. More-
over, a degree two étale cover of Xreg is isomorphic to the complement of 16 points
in an abelian surface, therefore the fundamental group of this cover is Z4.

Example 8.6 (Symmetric square of a K3 surface). — This following example was al-
ready exhibited in [GKP16, Ex. 8.6] as a variety with stable but not strongly stable
tangent sheaf. Let S be a K3 surface, and let X := S × S/〈i〉, where i is the natu-
ral involution (s1, s2) 7→ (s2, s1) of S × S. Recall from [Bea83, §6] that the Hilbert
scheme S[2] parametrizing length 2 zero-dimensional subschemes on S is an irreducible
symplectic manifold which admits a birational crepant morphism S[2] → X. Then the
following holds.

– The variety X admits a Kähler deformation to a smooth irreducible symplectic
variety.

– The tangent sheaf X is not strongly stable.
– Let x ∈ Xreg. There exists a Ricci-flat Kähler metric g on Xreg such that

Hol(Xreg, g)x ∼=
(

SU(2)× SU(2)
)
o Z/2Z and Hol◦(Xreg, g)x ∼= SU(2)× SU(2).

– We have π1(X) = {1} and π1(Xreg) ∼= Z/2Z.
The claim on the existence of a smoothing follows from the existence of the sym-

plectic resolution S[2] → X combined with a theorem of Namikawa [Nam06, Cor. 2]
(see also Section 8.2).

The tangent sheaf TX is not strongly stable as X admits a quasi-étale cover
γ : S × S → X of degree two and TS×S is obviously not stable.

Let us consider the two projections pi : S ×S → S with i = 1, 2. Given a Ricci-flat
Kähler metric gS on S, p∗1gS + p∗2gS defines a Kähler Ricci-flat metric on S × S that
descends to a Ricci-flat Kähler metric g on Xreg. Let y be a point on S×S such that
γ(y) = x. As the restricted holonomy is preserved by passing to an étale cover, we
must have

Hol◦(Xreg, g)x ∼= Hol◦(S × S r ∆, γ∗g)y = SU(2)× SU(2),

where ∆ ⊂ S × S denotes the diagonal.
As in the previous example, we have a surjective map

Z/2Z −� Hol(Xreg, g)x/Hol◦(Xreg, g)x.

Suppose that Hol(Xreg, g)◦x = Hol(Xreg, g)x. Then, by the Bochner principle, one
would get two linearly independent reflexive 2-forms on X, hence two independent
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2-forms on S × S invariant by the involution, yielding a contradiction. This shows
that

Hol(Xreg, g)x ∼=
(

SU(2)× SU(2)
)
o Z/2Z.

By a theorem of Armstrong (see [Arm82]), we have π1(X) = {1}. As for Xreg,
it admits a degree two cover from S × S r ∆. Since codim ∆ = 2 and S × S is
simply-connected, we conclude that S×Sr∆ is simply-connected as well, and hence
π1(Xreg) ∼= Z/2Z.

Remark 8.7. — As already mentioned, Namikawa’s theorem [Nam06, Cor. 2] provides
smoothings by Kähler manifolds which are not projective. We do not know whether X
admits a projective smoothing by irreducible symplectic varieties.
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