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RECONSTRUCTING WKB FROM
TOPOLOGICAL RECURSION

BY VINCENT BoucHARD & BERTRAND EYNARD

Asstract. — We prove that the topological recursion reconstructs the WKB expansion of a
quantum curve for all spectral curves whose Newton polygons have no interior point (and that
are smooth as affine curves). This includes nearly all previously known cases in the literature,
and many more; in particular, it includes many quantum curves of order greater than two. We
also explore the connection between the choice of ordering in the quantization of the spectral
curve and the choice of integration divisor to reconstruct the WKB expansion.

Résumi (De la récurrence topologique & WKB). — Nous montrons que la récurrence topo-
logique permet de reconstruire le développement WKB d’une courbe quantique pour toutes
les courbes spectrales dont les polygones de Newton n’ont pas de point intérieur (et qui sont
lisses en tant que courbes affines). Cette classe de courbes contient presque toutes les courbes
quantiques déja étudiées dans la littérature, ainsi que beaucoup d’autres; en particulier, beau-
coup de courbes d’ordre plus élevé que 2 sont incluses dans cette classe. Nous étudions aussi la
relation entre le choix d’un ordre pour la quantification de la courbe spectrale et le choix d’un
diviseur pour l'intégration nécessaire a la reconstruction du développement WKB.
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1. INnTRODUCTION

The topological recursion originally introduced in [29, 18, 31, 32] is now understood
as being a rather universal formalism that reconstructs generating functions for var-
ious enumerative invariants from the data of a spectral curve. While it originated in
the context of matrix models, it has now been shown to be closely related to other fun-
damental structures in enumerative geometry, such as Virasoro constraints, Frobenius
structures, Givental formalism and cohomological field theories [2, 3, 28, 27, 51, 55, 46].
This explains, in part, why the topological recursion appears in so many different
algebro-geometric context.

Another connection between the topological recursion and fundamental mathe-
matical structures has been studied in recent years. With the intuition coming from
determinantal formulae in the matrix model realm [8, 9], it has been conjectured that
the topological recursion reconstructs the WKB asymptotic solution of Schrédinger-
like ordinary differential equations, known as quantum curves. More precisely, the
claim is that there exists a Schrodinger-like ordinary differential operator, which is
a quantization of the original spectral curve (which is why it is called a quantum
curve), and whose WKB asymptotic solution is reconstructed by the topological re-
cursion applied to this spectral curve. This claim [31, 8, 9, 10] has been verified for
a small number of genus zero spectral curves, in various algebro-geometric contexts
[1, 8, 14, 21, 22, 23, 25, 24, 26, 47, 52, 53, 56]. In the context of knot theory, this
claim provides a constructive approach to the well known AJ-conjecture [38], which
has been studied in a number of papers [20, 11, 20, 36, 37, 39, 42]. The quantum
curve connection also appears in the context of mirror symmetry for toric Calabi-Yau
threefolds, in which the topological recursion reconstructs the mirror B-model theory
[16, 33, 35, 48]. In fact, very interesting recent work on quantum curves in this context
has appeared in [19, 40, 41, 43, 44, 45, 49].

1.1. ToPOLOGICAL RECURSION AND WAVE-FUNCTION. — Let us be a little more explicit
on the connection between topological recursion and WKB. Let us start with the
topological recursion. The starting point is a spectral curve. For the purpose of this
paper, a spectral curve will mean a triple (X, z, y) where ¥ is a Torelli marked compact
Riemann surface and x and y are meromorphic functions on ¥, such that the zeroes
of dx do not coincide with the zeroes of dy. Then x and y must satisfy an irreducible
polynomial equation

(1.1) P(z,y) = 0.

For most of the paper, we will restrict ourselves to the case where the affine curve
defined by {(z,y)| P(x,y) = 0} C C? is such that its Newton polygon has no interior
point, and that it is smooth as an affine curve (its projectivization may not be smooth
though) — we call such curves admissible. In particular, admissible curves all have
genus zero, and the Torelli marking is irrelevant.

Out of this spectral data, the topological recursion produces an infinite tower of
meromorphic differentials Wy ,, (21, . .., z,) on £™. In [31], it was proposed to construct

JEP M., 2017, lome /4



ReconstrucTING WKB FROM TOPOLOGICAL RECURSION 847

a “wave-function” as

(12) w(z) = exp(z

g=0n=1

/az-.-/;(wg,n(zl,...,zn)59,057172 m)),

where a € ¥ is a choice of base point for integration of the meromorphic differentials.
In [31, 10] a was chosen as a pole of z, and if x is of some degree d, there can
be d choices for a.() In fact, we will generalize the definition of the wave-function

& f29+n—2

n!

slightly by allowing more general integration divisors. In [31, 10, 30] it was argued
that when the spectral curve has genus > 0, the definition (1.2) should be completed
with some appropriate theta functions, which are necessary for instance to match
knot polynomials [11].

1.2. QUANTUM CURVE. Then the question is whether there exists a quantum curve,
that is, a quantization P(Z,y;h) of the spectral curve P(z,y) = 0 that kills the
wave-function:

(1.3) P(&,5; h) = 0.

What do we mean by quantum curve? To quantize the spectral curve with defining
equation P(z,y) = 0, we map the commutative variables (z,y) to non-commutative
operators

d

I

satisfying the commutation relation [y, Z] = h. This turns the polynomial P(z,y) into
a rank d linear differential operator. Of course, the process is not unique, because of

(1.4) T=x, y=~h

ordering ambiguities. In fact, ordering is a rather involved issue here; we could add
any term of the form p(z,y)(yz — zy)", with p(x,y) and arbitrary polynomial of x
and y, to the polynomial P(z,y) without modifying it, since yx = zy. However, after
quantization, these terms give rise to corrections to the differential operator of the
form p(Z,y)R™. Hence we need to be a bit more general in our definition of quantum
curves.

Derinirion 1.1, — A quantum curve P of a spectral curve C' is a rank d linear
differential operator in x, such that, after normal ordering (that is bringing all the
Z’s to the left of the ¥’s), it takes the form

(1.5) P(&,5:h) = P(Z,5) + Y_ " Pu(Z,7),

n>1

(D1n this paper, we will assume that X has genus zero, so integration is unambiguously defined
g g g y

for all Wy n with 2g — 2 4 n > 0 since they are residueless. The integral of Wy 1 may need to be

regularized, but this will play no role in the following.
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848 V. Boucnarp & B. Eyxarp

where the leading order term P(Z,%) recovers the polynomial equation of the original
spectral curve (normal ordered), and the P, (Z,y) are differential operators (normal
ordered) in z of rank at most d — 1.

We say that a spectral curve is simple if there is only a finite number of A correc-
tions. That is, it is simple if there exists a positive integer N such that P,(Z,3) = 0
for all n > N.

As noted above, the quantization process P Pis certainly not unique. However,
the reverse process P Pis unique. Given a quantum curve P(x y; h), it uniquely
defines an irreducible polynomial equation P(Z,y) at leading order in %, hence an
associated spectral curve.

With this definition under our belt, we can now ask whether there exists a quantum
curve P (Z,y; k) that kills the wave-function . In other words, the question is whether
the asymptotic series in i given by (1.2) reconstructs the WKB expansion of some
ordinary differential equation p (Z,y; h)Y = 0, where ﬁ(f, y; h) is a quantization of the
original spectral curve according to the definition above. It is clear that f; Wo,1 is the
leading order term of the WKB asymptotic solution for any quantum curve associated
to a given spectral curve; that is because in the topological recursion formalism Wy 1 =
ydx, hence it is straightforward to show that
16) [k g Woa pek im0 ]

h=0
for any quantization of the spectral curve. Thus the question is whether the higher
order terms in the A series in (1.2) provide the full WKB asymptotic solution to a
quantum curve.

The motivation for asking this question comes from matrix models. The topological
recursion was originally introduced to solve Hermitian matrix models. However, it now
lives a life of its own, beyond matrix models; it can be applied to any spectral curve to
compute a sequence of Wy ,,, and a corresponding . It is thus natural to ask whether
the mathematical structures known to be present in the context of matrix models can
also be generalized to the broader context of applicability of the topological recursion.

For instance, it is well known that the partition function of a Hermitian matrix
model is a particular example of a tau-function [50]. It can then be argued that the
appropriate Schlesinger transform constructs the wave-function (1.2) (for genus zero
spectral curves), and that this wave-function should be a Baker-Akhiezer function for
some isomonodromic integrable system. This implies that it should satisfy some Sato
and Hirota equations, and that it should be annihilated by a quantum curve in the
sense above.

The question then is whether this web of interconnections remains valid in the
broader context of the topological recursion. As explained in [10], from the topologi-
cal recursion there is a natural candidate for a tau-function. For genus zero spectral
curves, the wave-function (1.2) is the Schlesinger transform of this conjectural tau-
function. It then follows that, conjecturally, it should be annihilated by a quantum
curve. This claim was proved to order O(h?) in [10] for arbitrary spectral curves of
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any genus (more precisely, as mentioned above, the wave-function (1.2) is only appro-
priate for genus zero curves; for higher genus spectral curves it must be appropriately
completed with theta functions [10, 30]). Our aim is to study whether this claim is
true at all orders in h.

1.3. Our maiN rReEsuLT. — The goal of this paper is to answer this question affirma-
tively for a large class of spectral curves. More precisely, we prove that there exists
a quantum curve for all admissible spectral curves, that is, for all spectral curves
whose Newton polygons have no interior point and that are smooth as affine curves.
Moreover, these quantum curves are all simple.

The class of admissible spectral curves considered in this paper includes all of the
genus zero quantum curves that have already been studied in the literature (to our
knowledge), and many more. It includes many quantum curves of rank greater than
two.

We also study the question of whether the quantization is unique. The answer to
this question turns out to be very interesting; we find (as explained in section 2.3.1
of [10]) a very explicit dependence between the form of the quantum curve and the
choice of integration divisor to reconstruct the asymptotic expansion (1.2) from the
meromorphic differentials produced by the topological recursion. Different choices of
integration divisors, for the same spectral curve, give rise to different quantum curves
that are all quantizations of the original spectral curve; they generally differ by some
choice of ordering in the quantization. We study this explicitly in many examples.

While the class of spectral curves that we study in this paper is quite large, it
would be interesting to investigate whether our proof can be generalized to even more
spectral curves: for instance, genus zero curves whose Newton polygons have interior
points, or spectral curves in C x C* or C* x C*, or higher genus spectral curves. We
hope to report on this in the near future.

1.4. OUTLINE AND STRATEGY. To prove the existence of quantum curves for such
a large class of spectral curves requires quite a few steps. We start in Section 2 by
reviewing the geometry of spectral curves and their corresponding Newton polygons,
and we define what we mean by admissible spectral curves. Then, in Section 3 we
reformulate the topological recursion in a “global way”, which involves summing over
sheets instead of local deck transformations near the ramification points. Such a global
formulation of the topological recursion was first introduced in [15, 12]. But here, we
push the calculations further and reformulate it in a different way, which is, for our
purpose, more useful. Our main result in this section is Theorem 3.26, which provides
a neat and simple formulation of the topological recursion.

We would like to remark here that for the topological recursion to reconstruct the
WKB expansion in general, we need to evaluate residues in the topological recursion
at all ramification points of the z-projection, not only zeros of dz. For most spectral
curves, ramification points that are not zeros of dz (i.e., poles of x of order 2 or
more) do not contribute to the residues, but this is not true for all curves. This is
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an important point that had been missed in the previous literature on topological
recursion.

The next step in the program is to evaluate the residues in the topological recursion
of Theorem 3.26, which we do in Section 4. To achieve this, we propose a detailed pole
analysis of the integrand. Our main result is Theorem 4.12, which gives an explicit
expression for some objects py(2) S;LL)H (z;2)/dxz(z)™. This is in fact perhaps the most
important theorem in the paper. In practice, what it does is reconstruct a sort of loop
equation from the topological recursion, from which we will be able to reconstruct
the quantum curves.

Finally in section 5 we reconstruct the quantum curves. We start from the ex-
pressions in Theorem 4.12. We define a procedure to integrate them for arbitrary
integration divisors on Y, and use it to obtain a partial differential system. We sum
over g and n with appropriate powers of &, and then we “principal specialize”, mean-
ing that we set all variables to be equal in an appropriate way. The system then
becomes a system of non-linear first-order ordinary differential equations. We finally
use a “Riccati trick” to transform this system into a system of linear first-order differ-
ential equations for some objects that we call ¢, k = 1,...,7, where r is the degree of
P(x,y) in y. Those ¥y, are constructed out of the wave-function introduced in (1.2).
The main result of this section is Theorem 5.11, which presents this system of linear
first-order differential equations. This method is a generalization for rank > 2 of the
method introduced in [8, 9, 25, 24].

In section 5.3 we study special choices of integration divisors. If, in (1.2), we in-
tegrate from a to z, with a a pole of the function z, then the system simplifies very
nicely. In Lemma 5.14 we then show that it can be rewritten as an order r ordinary
differential equation for the wave-function ¥ of (1.2): the quantum curve!

In section 6 we study many examples explicitly. We reproduce all genus zero quan-
tum curves obtained in the literature (to our knowledge), and construct many more,
to show that our result is not only general but also concretely applicable. All the ex-
amples presented in section 6 have also been checked numerically to a few non—trivial
orders in A in Mathematica.

In section 7 we study the case of the r-Airy curve, y" — z = 0, in a bit more
detail, focusing on its enumerative meaning. This section is somewhat independent
from the rest of the paper. We explain how the meromorphic differentials constructed
by the topological recursion for the r-Airy curve are generating functions for r-spin
intersection numbers; however, we postpone an explicit proof from matrix models to
a future publication [7]. This result was first announced in [13], and has now also
been proved using a different approach in [27]. We give explicit calculations from the
topological recursion that reproduce known r-spin intersection numbers.

Acknowledgments. — We would like to thank N. Do, O. Dumitrescu, O. Marchal,
M. Marinio, M. Mulase, and N. Orantin for interesting discussions. We would also
like to thank the referees for insightful comments. We would like to thank the Centre
de recherches mathématiques at Université de Montréal, and the thematic 2012-2013
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semester on “Moduli Spaces and their Invariants in Mathematical Physics” where this
work was initiated, and the American Institute of Mathematics, where parts of this
work was completed.

2. THE GEOMETRY

In this section we introduce the geometric context for the topological recursion.

2.1. SPECTRAL CURVES

Derinition 2.1, — A spectral curve is a triple (3, x,y) where X is a Torelli marked
genus § compact Riemann surface® and x and y are meromorphic functions on ¥,
such that the zeroes of dz do not coincide with the zeroes of dy.

Remark 2.2 The definition of spectral curves can (and for many applications
must) be generalized, but this restricted definition is sufficient for the purpose of this

paper.

Since we assume that = and y are meromorphic functions on ¥, this means that
they must satisfy an absolutely irreducible equation of the form

(2.1) P(z,y) =po(@)y" +p1(@)y" "+ +proa(@)y +pe(z) = > pri(a)y’ =0,
=0

where the p;(z) are polynomials of z. Therefore, we can also see our spectral curve as
being given by an irreducible affine algebraic curve (2.1) in C2, which we will call 3:
in this case ¥ is the normalization of 3. We will call the punctures the poles of z(z)
and y(z).

We will be interested in the branched covering 7 : ¥ — P! given by the meromor-
phic function x. This branched covering agrees with the projection my : X9 — C on
the x-axis away from the singularities and the points over x = co. We denote by R
the set of ramification points of m. The ramification points of 7w are either at zeros
of dx or at poles of x of order > 2.

2.2. NEwron poLyGons. — Let us rewrite the defining equation (2.1) of the spectral
curve X as
(2.2) P(z,y) = Z i 'y’ =0,

(i,5)€A

where A C N? is the set of pairs of indices (4,5) such that o; ; # 0 for (i,j) € A.
Derinirion 2.3. — The Newton polygon A\ of is the convex hull of the set A.

An example of a Newton polygon is given in Figure 2.1.
For m =0,...,r, we define:

(2.3) am =inf{a | (a,m) € A}, B =sup{a | (a,m) € A}.

(2)A Torelli marked compact Riemann surface ¥ is a genus g Riemann surface ¥ with a choice
of symplectic basis of cycles (A1,...,Ag, B1,...,Bg) € Hi1(%,Z).
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Frcure 2.1. The Newton polygon of the curve xzy® 4+ y + 1 = 0.

Clearly, the number of integral points of the Newton polygon A is then given by
r—1

(2.4) # interior integral points of A = Z ([8i] = |ei] = 1).

=1

An important result is Baker’s formula [4]:

Tarorem 2.4. — The genus g of ¥ satisfies the inequality
r—1
(2.5) g<) (18]~ ] = 1).
i=1
The right-hand-side is of course equal to the number of interior points of the Newton
polygon /\.

See for instance [5] for a short proof of this result.

Another interesting result is the following. First, some notation. Given a meromor-
phic function f on ¥, we denote by div(f) the divisor of f, by divo(f) the divisor of
zeros, and by dive(f) the divisor of poles.

Derinition 2.5, — For m = 2,...,r, we define the following meromorphic functions
on X:

m—1
(2.6) Pr(z,y) = Y pm-1-k(z)y".

k=1

Then, as shown in [5], we get:
Levmva 2.6 ([5]). Form=2,...,r,
(2.7) div(Pp) 2 ar—m+1 dive(z) — Br—m+1 divee ().

This particular lemma will be very useful for us.

2.3. ADMISSIBLE SPECTRAL CURVES
DeriNtrion 2.7. We say that a spectral curve is admissible if:

(1) its Newton polygon A has no interior point;
(2) if the origin (x,y) = (0,0) € C? is on the curve {P(x,y) = 0} C C2, then the
curve is smooth at this point.
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The first condition is equivalent to
(2.8) (Bl — i) =1, i=1,...,r—1.

From Baker’s formula, Theorem 2.4, it follows that admissible spectral curves have
genus zero.

Remark 2.8. It follows that an admissible curve must be smooth as an affine curve.
In fact, its projectivization can only have singularities at (1:0:0) and (0:1:0). This is
because, as explained in [6], the genus of a curve is exactly equal to the number of
interior points if and only if the singularities of its projectivization are all among
(0:0:1), (0:1:0) and (1:0:0), and a certain non-degeneracy condition is satisfied. Since
we also impose that the curve is smooth at the origin, it follows that it cannot have
singularities anywhere else in C2.

Examrre 2.9. As an example of admissible curves, we note that all curves that
are linear in z, i.e., of the form P(x,y) = A(y) + B(y) = 0, with A(y) and B(y)
polynomials in y, are admissible. Indeed, it is easy to see that for any such curve,
the Newton polygon has no interior point, and all curves of that form are smooth as
affine curves. Therefore they are admissible.

We will see many interesting examples of curves of that form in Section 6. But
admissible curves certainly do not have to be linear in z; we will also study many
examples that do not fall into this class.(®)

2.4. More periNiTIONs. — Let us now go back to general spectral curves. We intro-
duce the following notation.

Derinition 2.10. — We introduce

(2.10) 7(2) =7 Hn(2), 7'(2)=1(2)~{z}.

7(z) : ¥ — Sym"(X) is an analytic map that takes a point p € ¥ to the set of
preimages (with multiplicity) of the inverse image of its projection with respect to
the branched covering m : ¥ — P'. Similarly, 7/(z) : ¥ — Sym” !(¥) is also an
analytic map that takes a point p € 3 to the set of preimages of the inverse image of
its projection, minus the original point itself (with multiplicity 1).

We now introduce two objects that are canonically defined on a compact Riemann
surface X with a symplectic basis of cycles for Hy (X, Z).

(3)We note that admissible curves are not too difficult to classify. They are either:
1) linear in z;
2) with Newton polygon given by the convex hull of {(0,0), (2,0), (0,2)};
3) such that they can be obtained from the previous cases by a transformation of the form

(
(
(
(2.9) (z,y) — (a:ayb,xcyd), with ad —bc=1,

combined with overall rescaling by powers of x and y to get an irreducible polynomial equation.
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Derinition 2.11. Let a,b € X. The canonical differential of the third kind w®=°(2)
is a meromorphic one-form on ¥ such that:

— it is holomorphic away from z = @ and z = b;
— it has a simple pole at z = a with residue +1;
it has a simple pole at z = b with residue —1;
it is normalized on A-cycles:

(2.11) f{ wib(z)=0, fori=1,...,3.
z€EA;

Derintrion 2.12. The canonical bilinear differential of the second kind B(z1, z2) is
the unique bilinear differential on X2 satisfying the conditions:

— it is symmetric, B(z1, 22) = B(22, 21);
— it has its only pole, which is double, along the diagonal z; = 25, with leading
order term (in any local coordinate z)

dzleQ
2.12 B S —T
(212) (1:22) =2

— it is normalized on A-cycles:
(2.13) 7{ B(z1,22) =0, fori=1,...,3.
z21€A;

Remark 2.13. — It follows from the definition that
(2.14) B(Zl,ZQ) = dlwzl_b(22>.
Equivalently,

(2.15) Wi b(2) = /a_b B(z,2),

where the integral is taken over the unique homology chain with boundary [a] — [b]
that doesn’t intersect the homology basis.

When 3 has genus 0, both objects have very explicit expressions:

1 1
a—b _ _
(2.16) w (z)-dz(z_a 7z—b>7
_ dzida
(217) B(Zl72'2) = m

3. ToPOLOGICAL RECURSION

Let us now introduce the topological recursion formalism, which was first proposed
in [29, 18, 31, 32].

JEP M., 2017, lome /4
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3.1. DEFINITION OF THE TOPOLOGICAL RECURSION. Let (X, z,y) be a spectral curve.
The topological recursion constructs an infinite tower of symmetric meromorphic dif-
ferentials Wy (21, ..., zn) on £". To this end, we need to define the recursive structure
that appears in the topological recursion.

Let us first introduce some notation:

Derinirion 3.1, — Let A Cy Bif AC B and |A| = k.

DeriNtrion 3.2, Let B be a set and J;’s be subsets of B. The symbol W means
disjoint union, i.e., the notation J; W Jo W --- W J, = B means that the J;s are all
pairwise disjoint and their union is B.

Derintrion 3.3. — Let S(¢) be the set of set partitions of an ensemble ¢.
We now define the recursive structure:

Derinirion 3.4. Let {Wy n+1} be an arbitrary collection of symmetric meromor-
phic differentials on X", with g > 0, n > 0. Let k& > 1. Define t = {¢1,...,t;} and
z={z1,...,2n}, where the ¢;’s and z;’s are copies of the coordinate on the Riemann
surface X.

Then we define:

/ L(p)
(3 1) R( )Wg n+1 t z Z Z Z (H i | |41 J5 .U“L?Jl)>

HES(E) Wit J—p S0 g gpp(u)—k =1

The first summation is over set partitions of ¢; ¢(x) is the number of subsets in the
set partition p. The third summation is over all #(u)-tuple of non-negative integers
(9155 9e(uy) such that gy + -+ + gouy = g + £(p) — k. The prime over the third
summation indicates that we exclude all terms that include contributions from Wy i;

more precisely, we exclude the cases with (g;, || + |Ji]) = (0,1) for some i. We also
define

(3.2) ROW, 11(2) = 84,000,

where §; ; is the Kronecker delta symbol.

Remark 3.5. — This recursive structure appeared in [15, 12]. It can be understood
pictorially as encoding all possible ways of removing a sphere with k& + 1 marked
boundaries from a genus g Riemann surface with n 4+ 1 marked boundaries. We refer
the reader to [15, 12] for a discussion of the geometric interpretation of the recursive
structure in terms of degenerations of Riemann surfaces.

Remark 3.6. — Note that RFW, ,, 11 (t; z) is symmetric under internal permutations
of both the t-variables and the z-variables.

-

ExamprrLe 3.7. — Given the ubiquity of the recursive structure defined in Defini-
tion 3.4, let us give a few examples to make it more explicit.
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We first consider the case k = 1. For ¢ = 0 and n = 0, we simply get
(3.3) ROWo 1 (t;2) =0

because of the prime in the summation on the right-hand-side of (3.1). For g > 0,
n > 0 and (g,n) # (0,0), we get

(3.4) ROW, i1(t;2) = W,y nia(t, 2).

Consider now the case k = 2. For g > 0, n > 0, we get that
(35) R(Q) Wg1n+1(t17 t27 Z)

/
=Wy_1nta(ts, b2, 2) + Z Wi 41 (1, J1)We, 11,141 (L2, J2),

JiWJo==2
g1+92=9g

where it is understood that W, ,,’s with negative g vanish. This is the original recursive
structure considered by Eynard and Orantin.

With this under our belt, we are ready to define the topological recursion.

DeriNtTION 3.8. Let (X, x,y) be a spectral curve, with 7 : ¥ — P! a degree r
branched covering given by the meromorphic function x, and R C X the set of rami-
fication points of .

We first define

(3.6) Woi(2) = y(2)dx(z), Woal(z1,22) = B(21, 22),

with B(z1, 22) defined in Definition 2.12.

Let z = {z1,...,2,} € ™. Recall the set 7/(z) defined in Definition 2.10. For
n>0,9>0and 29 — 24+ n > 0, we uniquely construct symmetric meromorphic
differentials W, ,, on X" with poles along R via the topological recursion:

(3'7) Wg,n+1(207z) »
=2 5_63(2 2 <—1>’“+1m R“““)Wg,nﬂ(z,ﬁ(z);z)),

a€R k=1B(2)Ce7’(2)
where
k

(38) E(k) (Z; tl, N ,tk) = H(WQJ(Z) — WO,l(ti))7

i=1
with the ¢;’s copies of the coordinate on the Riemann surface Y. The first summation
in (3.7) is over all ramification points in R, and the second and third summations
together mean that we are summing over all subsets of 7/(z). « is an arbitrary base
point on ¥ which is not in R.

Remark 3.9. — Note that this recursion was called “global topological recursion”
n [12]; from now on we will simply refer to it as “topological recursion”. It was shown
in [12] that it is indeed equivalent to the usual local formulation of the topological
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recursion [31, 32] when the ramification points are all simple. But here we do not need
to assume simplicity of the ramification points.

Remark 3.10. — It is important to note here that it is not clear a priori that Def-
inition 3.8 even makes sense. Indeed, for the recursive structure introduced in Def-
inition 3.4 to be well defined, the differentials W, , must be symmetric. Hence for
the topological recursion proposed in (3.7) to make sense, we must show by induction
that the W ,, thus constructed are indeed symmetric. This was proven in [31] (Theo-
rem 4.6) for the original topological recursion, and it was shown in [12] (see Section 4)
that symmetry also holds for the Wy ,, constructed from the global topological recur-
sion presented above. In fact, one could also formulate a proof of symmetry directly
from the global topological recursion above along the same lines as the proof in [31].

It is also important that (3.7) is independent of the choice of base point . This is
easy to see by induction. Let W(?L) be the differentials constructed with base point «,
and Wg('yn) the differentials constructed with base point v # «. For both cases the
initial conditions of the recursion (Wy 1 and Wy o) are the same. Now assume that

W;f?l, = ;7721, for all ¢’,n’ such that 2¢g’ — 2 +n’ < 29 — 2+ n. Then
(3.9) Wg(ffl)ﬂ(zo, z) — W;:L)H(zo, z)

r—1
e (=Dt (k+1) .
=W (20) ) Res (Z > B (2 5(2) RYTIWyn1(2,8(2); 2) |-
a€R k=1 8(z)Cr7’(2)
The right-hand-side has simple poles at zyg = v and zy = «, which is a contradiction,
since the left-hand-side can only have poles at zp = a for a € R (see below). Thus
both the left-hand-side and the right-hand-side must be zero, and we conclude that
W;?;L)H = g(j’n)H, that is, (3.7) is independent of the choice of base point .
The Wy, also satisfy various other properties. For instance, it can be shown that
the Wy, only have poles along R, with no residues, and that they are normalized

over A-cycles:
(310) % Wq,n+1(z0,z) :0, k= 1,...,./g\.
zo€EAL

Again, this was proved in [31] (see Theorems 4.2 and 4.3) for the original topological
recursion, and shown to hold for the global version in [12] (Section 4). Other properties
of the Wy ,, are also discussed there.

Remark 3.11. — In the standard formulation of the topological recursion [31, 32, 12],
the Wy ,, are constructed by summing only over residues at the zeros of dz, instead of
all ramification points of the branched covering 7 : ¥ — P! given by the meromorphic
function z. In other words, the poles of order > 2 of = are generally not included in the
sum. In most cases, this does not matter, since these poles would yield zero residues
hence would not change the W ,. However, for some curves, they do contribute,
and in fact they are necessary in order to obtain the quantum curve later on. More
precisely, the fundamental result established below in Lemma 4.7 only holds when all
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ramification points are included in R — otherwise the meromorphic one-forms studied
in Lemma 4.7 can have extra poles at the poles of = of order > 2. Therefore, we must
sum over residues at all ramification points in R to construct the Wy, not only the
zeros of dr.

3.2. REWRITING THE TOPOLOGICAL RECURSION. — In this subsection we rewrite the
topological recursion in a different, and for our purposes nicer, way. First, we need to
introduce a few more objects.

Derinirion 3.12. — Using the same notation as in Definition 3.4, for g,n > 0 and
k > 1 we define

()
B1) EOW itz = > Y > <HWi,ui+|Ji|(ui,Ji))~

#es(t)uf(:ul)‘]z—zza“)gz 9+[(#) k= 1

The main difference with Definition 3.4 is that we have removed the prime in the
third summation. Therefore, the summation includes contributions from Wy ;. We
also define

(3.12) g(O)Wq,n+1(Z) = 6g705n,0.

Remark 3.13. — Similarly to R(k)Wg,nJrl(t; z), it can be understood pictorially as
encoding all possible ways of removing a sphere with k + 1 marked boundaries from
a genus g Riemann surface with n + 1 marked boundaries, but for E®W, ,, 1 (¢; 2)
we may also cut out discs.

Remark 3.14. — Note that € (k)Wg’nH(t; z) is also symmetric under internal permu-
tations of both the ¢t-variables and the z-variables.

Exampre 3.15. — Let us give a few examples of this structure. First, for k =1, g > 0,
n > 0 we get as in Example 3.7:

(3.13) EOW, i1(t;2) = Wynia(t, 2),

but now this includes the case (g,n) = (0,0) as well since there is no prime in the
summation on the right-hand-side of (3.11). Similarly, for k =2, g > 0, n > 0, we get

(3.14) EDW, i1(t,t2;2)
o-tmi2(tita, 2)+ > Wy, s (b, J)Wey 41 (b2, J2),

JiWJo=2
g1+g92=g

without the prime in the summation.
Another special case of interest is for g = 0, n = 0 and arbitrary k& > 1. Then we
get

(3.15) ERWo 1 ( H Wo,1(
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Similarly, for ¢ = 0, n = 1 and arbitrary k > 1, we get

k
(3.16) EWWoa(tiz) =) (WO o H Wo.1( )
7=t #J
Let us now study a few properties of the £ (k)ngH(t; z) that will be useful later

on. We first recall Lemma 1 of [12], whose proof was purely combinatorial (note that
T\’,(k)Wg,nH was denoted by Wy = there):

Levva 3.16 ([12, Lem. 1]). — For allg,n >0 and k > 1
(317) RBW, 11 (t;2) = R(k_l)Wg Lnta(t~ {te}; 2, t1)

+ Z Z R(k gl,|J1\+1(t\ {tk} Jl))Wgz,|J2\+1(tk7J2)'

JiWJa=z g1+9g2=g

The prime over the summation means that we do not include the case (g2, J2) = (0, D).
Similarly, we can prove the following lemma:
Lemva 3.17. — For all g,n,k > 0,

(3.18) E(k)Wq,nH(t' z)= S(k_l)Wg_l n+2(t ~ At} 2, tr)
+ Z Z Wy a1~ {tk}; J1)) Woy o) 41 (tr, J2)-
JiWJa=z g1+g2=g

Note that unlike in Lemma 3.16, the summation is unprimed, that is, it includes the
case (g2, J2) = (0, D).

Proof. — The proof is exactly the same as for Lemma 1 in [12]. By definition, the
LHS is given by

£(p)
(3 19) 5( )Wg n+1 t Z Z Z Z (HWi7#i|+|Ji(Mi7Ji)>'

HES(t) f(:“l),]l:.z Zé(”) gi=g+L(p)—k = 1

The first term on the RHS takes care of all partitions that do not include a subset
of cardinality one of t containing only t;. These are then taken care by the second
term on the RHS. The summation in the second term on the RHS is unprimed,
because terms with Wo 1(tx) (that is (g2, J2) = (0,2)) are included in the definition
of EMW, ,11(t; 2). O

The relation between RW, ,,11(¢; z) and EFW, .41 (¢; 2) can be expressed ex-
plicitly. We obtain
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Lemma 3.18. For all g,n,k >0,
EWW,y i (8 2) k
= R( ) g,n-‘rl + Z g( )WO 1 ( 7:)VVg,n—i-l(t N ﬁy Z)

(320) i=1 BC;t
k

ZZS( )W01 ( i)Wg,n—Fl(t\B;z)v

i=0 BC;t

where in the second line we used the fact that E(O)WOJ =1
Proof. — This is just a combinatorial rewriting, taking the Wy 1 (¢) contributions out:

(3.21) EWMW, i1 (t; 2)
= R( )Wg n+1 —|- Z WO 1 (k 1)I/Vg,n-i-l (t ~ {ti}; z)

) WOJ(til)Wo,l(fiz)R(k_2)Wg,n+1(t\{tm%};z)Jr

1=i; <ig <k
+ > Woi(ti,) - Wor(ti ) ROWynpa (@ {tiy, - by} 2)
1=i1<ig< - <ip_2<k
+ > Woa(tiy) - Wor(ti_ )Womnsr (8 A{tiy, - ti_, }, 2).

1=i1<ig< - <ip_1<k

Noting that g(i)WO71(t1, NN 7ti) = WO,l(tl) cee WO71(ti), and that R(l)ng_i_l(t; Z) =
Wy nt1(t, 2), we get the statement of the lemma. a

We also define:

Derinition 3.19. — Using the notation of Definition 2.10, we define, for g,n, k > 0

(3.22) Qg n+1(z;z) = Z e®w, gn+1(ﬁ( z); 2).
B(2)Cr7(2)
Remark 3.20. — Since (3.22) is invariant under permutations of the preimages in 7(z),

Q;k)l +1(2; 2) is in fact the pullback (in the variable z) of a globally defined meromor-

phic k-differential on the base of the branched covering 7 : ¥ — P'. In other words,
we can write

(3.23) Qé’fglﬂ(z; 2) = f(2(2), 21, ., 2n)dx(2)Fdzy - - - dza,

for some meromorphic function f(z,z1,...,2,).

Remark 3.21. — Note that for any spectral curve of degree r, and for all (g, n),
(3.24) QW) 1(22)=0, forallk>r.

This is because we are summing over subsets of 7(z), hence there is no subset of 7(z)
of cardinality k& > r since 7(z) has r elements.
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Remark 3.22. As for the k = 0 case, note that from the definition we obtain:

(325) Q§?2L+1(z) = 6g,05n,0a

Exampre 3.23. — The Q(()’fl) (2) are particularly simple. From the definition, we have

k
(3.26) Q= > T]WoealBi(2)),

B(2)Crr(z) i=1

where the product on the RHS is over all elements of a given subset 3(z). It then
follows that

) () = (_pyk Pe(2) o
(3.27) Qp,1(2) = (=1) o) dz(2)”,

where the p; are the coefficients in the defining equation for the spectral curve in
Definition 2.1. Here and henceforth, we will abuse notation slightly and write p;(z) :=
pi(z(z)) to unclutter equations.

ExamrLe 3.24. The Qél) 41 are also easy to understand. From the definition, they

N
are simply the pullback of the pushforward of the correlation functions Wy ,, 11 with
respect to the branched covering 7 : ¥ — P! (in the z-variable):

(3.28) Q)1 (552) = T Wynia(2,2) = 3 Woni (7:(2), 2).
i=1

where we wrote 7(z) = {71(2),...,7(2)} (the labeling doesn’t matter). Indeed, the
pushforward 7, means that we are summing over all preimages in 7(z) to get a well
defined meromorphic differential on the base P!, and then we pull it back to 2.

It then follows from Theorem 4.4 of [31] and Example 3.23 above that:
Lemma 3.25 ([31]). — For2g—2+n >0,

(3.29) Q) (z2) =0.

For the unstable cases, we have

p1(2)
3.30 Q(l) z)=— dx(z),
( ) 071( ) pO(Z) ( )
where py(x) is the coefficient of y"~1 in the defining equation (2.1) for the spectral
curve, and
dx(z)d

(x(2) — x(21))*’
by which we mean that we are pulling back to ¥ (in both variables) the canonical

bilinear differential B(z,x1) on the base P! of the branched covering © : ¥ — P,
which has the expression above since P has genus 0.
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Proof. — The (g,n) = (0,0) case follows directly from the definition of spectral
curves, see Example 3.23 above. The (g,n) = (0,1) case is a well known property
of the canonical bilinear differential (see for instance [31, Eq. (A-1)]):

dx(z)dxz(z1)
(#(2) — 2(21))*
As for 2g—24n > 0, the statement was proven in Theorem 4.4 of [31]. To be precise,

there the statement was proven for the original topological recursion, but it is easy
to see, following arguments similar to those in Section 4 of [12], that it also holds for

(3.32) Q0(z21) = Y B(i(2), 21) =

the global topological recursion. a

We are now ready to rewrite the topological recursion in a different way.

Turorem 3.26. — The topological recursion in Definition 3.8 is equivalent to the fol-
lowing equation (for 29 —2+4+n>0) :
(3.33) 0= Res (w ™ (20)Qqn+1(2:2)) |

acER

where the 1-form Qg n41(z;2) is defined in terms of the Qg’f%_i_l(z;z) from Defini-
tion 3.19 as follows:

, ® (s
(3.34) Qgnt1(z;2) == (‘ﬂ;d/x@(;)(z) <p0(z) kz_:il(—lﬁy(Z)rfk W)’

with P(z,y) = 0 the equation of the spectral curve introduced in (2.1).

Remark 3.27. — Before we prove the theorem, let us remark that the beauty of this
formulation of the topological recursion is the following. First notice that Qg n41(%; 2)
is a meromorphic 1-form of z € ¥, with poles possibly on R, at coinciding points, and
possibly at the poles of Wy 1, and/or at the zeros of 9P/0y (which are R for a smooth
affine curve).

If ¥ is genus zero, w*~%(zp) is also meromorphic and the integrand is a globally
defined meromorphic differential on ¥ in z. If ¥ is higher genus, it is not quite globally
defined (since w*~*(zp) is not a well defined meromorphic function of z), but it is a
meromorphic differential on the fundamental domain. Therefore, in both cases we can
replace the sum over residues by a single contour integral surrounding all ramification
points in R. This point of view is quite powerful to study various global properties of
the topological recursion.

Proof. — We start with the topological recursion in Definition 3.8. For 2g—2+n > 0,

(3.35)  Wynt1(20,2)

SYRs(X Y 0 SR, (e 82 5) ).

acER k=18(2)Cr7'(2)
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We put all terms on a common denominator to get

Wi a(ZO)

(3.36) Wy nt1(20,2 dei(ap/ay (2) da(z)m1

% Z (=D)L EUD (2 p(z ))R(\B\H)W nt1(z, B(2); ))

p(2)Wp(2)=7"(2)

Now we can in fact replace the second sum by a sum over all non-empty disjoint sub-
sets p(z), B(z) C 7(z) such that p(z)W3(z) = 7(z), instead of 7/(z). This is because in
the equation above, z is already an entry in RUFIFDW, 1 so all subsets 3(z) C 7(z)
that include z are already taken into account. As for the subsets p(z) C 7(z) that in-
clude z, they will not contribute to the sum, since for those E(?D(z; p(z)) will vanish.
However, since in the previous sum the subsets 3(z) C 7/(z) had to be non-empty, in
our new sum the subsets 5(z) C 7(z) must have cardinality at least two. Therefore
we get:

wz—a(ZO)

031) Warao.2) = 38R

% Z (—1)|/3|E(|”|)(z;p(z))R(m')Wg,nH(ﬁ(z); z)).

p(2)8B(2)=7(z)
18(2)[>2

Now we would like the terms with |3(z)| = 1 to be included in the sum as well. But
this is exactly what happens if we bring the term on the LHS to the RHS. More
precisely, for 2g — 2 +n > 0, we can write

(3.38) Wynt1(20,2) = —Res w*™*(20) Wy,n+1(2, 2)

z=z0

— s Po(2)w™* (20 =D (z: 7 (2 2z, z
Z a(@P/ay( ) x(z)” 1E ( ’ ( ))Wg,nJrl( ) ))

_ o _Po(z)w* ™" (20) (r—1) . ,
z_a<ap/ay() dz(z)r1 > ECTV(z7(2) N B(2) Wt (B( )7Z)>7

a€R B(2)C17(2)

where for the second equality we used Riemann’s bilinear identity to pick up residues
at the other poles (a € R) of the integrand. Then we used the fact that B(z, zg) and
the W ,, are normalized on A-cycles to show that the contour integrals vanish.
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We then move this term to the RHS, and we end up with the equation:

" R 2 )
(3.39) 0= ggfg(ap/ay( )dar(z)71

x (1) B0 ) ROV, (502 ).
p(2)¥B(2)=T(2)

where the summation now includes subsets (z) C 7(z) of cardinality one.
Then, recall that

I

EUPD (2 p(2)) = H (Wo,1(2) — Wo,1(pi(2)))
(3.40) o
=D (Y Woa()P YT EDWoa(r(2)),
=0 ¥(2)Cjp(2)

where we wrote the elements of p(2) = {p1(2),...,p|,|(2)}-

What we need to do now is collect terms in the second summation of (3.39) order by
order in Wy 1(z). Writing j = |y| and k = || +|v|, we have |p|—j = r—|8|—|y| =r—k,
that gives

> (=)D (2 p(2)) RV, 111 (B(2); 2)
p(2)8B(2)=7(2)
=D (D) Woa(z) ™ > DWW (v(2)RIPDIW, 111 (B(2); 2)

k Y(2)WB(2)Cr7(2)
(3.41) :Z(—l)ka ) kz ERWy ni1(p(2); 2)
k p(2)CrT(2)

= S (=1 Woa (2) Q)L (2 2)
k

_ OP/0y(z)dx(z) 1 .
- po(Z) Qg,n—i—l( ,Z),

where the second equality is lemma 3.18. We get the Theorem. |

4. POLE ANALYSIS

For the next few sections, we now assume that our spectral curve (X, z,y) is ad-
missible, according to Definition 2.7.

In this section what we do is get rid of the residue in the topological recursion as
presented in Theorem 3.26. More precisely, what we will show is that Theorem 3.26
implies a nice formula for the expressions

po(2)Q\, 1 (2 2)
dz(z)™

This result is what will give rise to the quantum curve in the next section.

(4.1)
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4.1. Tae Uéﬁz. — To proceed further we introduce the following objects:
Derintrion 4.1. — Using the notation of Definition 2.10, we define:
k
(4.2) UM ()= Y €W, (B(2); 2).
B(2)CkT(2)
For k=0, g > 0 and n > 0, we define
(43) Ué?erl(z) = 5g,05n70-

Remark 4.2. — The difference between the Uéﬁ? and the Q(k) is that the latter sums
over all preimages 7(z), while in the former we are only summing over the preimages
in 7/(z) = 7(2) " {z}. Thus, while Q is the pullback (in z) of a k-differential on the
base, Ug(fc,z is an honest k-differential in z on 3.

Remark 4.3. Note that for any spectral curve of degree r, and for all (g, n),
(4.4) Ug({chH(Z; z)=0, forallk>r

This is because we are summing over subsets of 7/(z) = 7(z) \ {z}, hence there is no
subset of 7/(z2) of cardinality k > r since 7/(z) has r — 1 elements.

Remark 4.4. — Notice that for any Y one has
r—1
BT o) TT 0 =) = ma) [L0 = wl2)
qeT'(2) =1
(15) — @ )Y Y T
k=0 BCr7'(2) q€EB
r—1 (k)
= (x \kvr—1—k Upp(2)
= po( )1;( nrY dz(z)k"

In particular if we choose Y = y(z) = y(70(z)) we get

op = 1 Usi (2)
(46) 3y )= D e G
while for Y = y(7;(z)) with 7 # 0, we get
r—1 (k) .
(47) 0= po(2) 3 (- 1)y(ra(e)y -k DL )
= dx(z)
Conversely,
(m) m ZL’
(48) pO( )U ( ) d me k

= (=1)"dx(2)" (Pm+1( (2),4(2)) +pm(2)),

where Pp,11(x,y) was defined in Definition 2.5.

The U;fii are closely related to the Qé’f%. We find:
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Lemma 4.5. For all g,n,k >0,
k k—1
(4.9) Qq n+1( z) = U;;JZ-H(Z;Z) + Uq( 1 72+2(Z'Z z)
k: 1
+ Z Z o |J)H-1 zZ; Jl)Wgz,\J2|+1(Z7J2)'
Ji1WJa=z g1+9g2=g

Proof. — The k = 0 case is obvious by definition. Let us focus on k > 1. By definition,
we have:

Quria(zz) = > EPW,(8(2);2)

B(z)Ck7(2)
k
= Ug(712+1(2’;2) + Z EPWo,ns1(2, p(2); 2)-

p(2)Cr-17'(2)

(4.10)

By Lemma 3.17, we have:
(411) 5(k)Wg’n+1(t' Z) = g(k—l)ngl n+2(t AN {tk}; z, tk)
+ Z Z g(k 91,|J1\+1(t N {tk} ']1) g2, |J2\+1(tk7‘]2)

JiWJa=z g1+g2=g

Therefore
k—
(4.12) S EOWy (2 p(2)2) = UL (252, 2)

p(2)Cr-17'(2) k ,
+ Z Z 91,1 ‘-‘rl 5 Jl)WQZ,‘J2|+1(Z7J2)7
J1WJ2=z g1+g2=g

and the lemma is proved. O
Cororrary 4.6. — For all g,n,k >0,

k k k
413) QW) [(z2)=U") [ (z2) + USTY (22, 2)

k p1(z k—
=YY UG ) - P e U )
JiWJa=z g1+g2=g po(z)

3 M (E=1) (20 2~ {2
+; (x(2) — 2(2:))? Ugn (% {zi}).

Proof. — This follows directly from Lemma 4.5, Lemma 3.25 and the fact that

1 1
(4.14) Qi1 (7 2) = Wynra (2,2) + Ugh 11 (2 2). O
4.2. PorE anxaLysis. — We now prove the following lemma:
Lemma 4.7. Consider the topological recursion presented in Theorem 3.26. Then,

for 2g — 2+ n > 0, the meromorphic one-forms (in z)

r (k)
d.]f( ) k —k an+1(Z;Z)
4.1 —_— -1 S
@19 Qi) = 5prrs (mlo Sy
can only have poles at coinciding points, that is, at z € 7(z;), fori=1,...,n
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Proof. Let us first prove that they do not have poles on R. We start with the
topological recursion in Theorem 3.26:

(4.16) 0= Res w'™*(20)Qn+1(: 2).
i=1 ’

Assume that Q4 ,+1(z; 2) has a pole of some order m+1 > 1 at a ramification point
a € R, i.e., in some local coordinate near a we may write

(4.17) Qgni1(z:2) ~ ( dz

m Sg,7L+1(Z) (1 + O(Z — a)),

where we assume Sy p4+1(2) # 0. We also have the Taylor expansion at a of w*~%(z)

in the same local coordinate
oo

(4.18) W (20) ~ Y (2 — )" Ea k(205 ),

k=0
where &, 1 (20; @) is a meromorphic 1-form of 7, that is analytical everywhere but at a,
where it has a pole of order k£ + 1. Using the same local coordinate near a we have
the Laurent expansion

dz
(4.19) Ear(20) ~ m (14 O(z — a)).
Writing
0=> Res w™™%(20) Qgn+1(2:2)
(420) bt z2—a z—a
= Rep ™ (30) Qi (252) + 3 Res ™™ (20) Qi (35 2),

b#a
the sum of residues over b # a may produce some linear combination of the &, x(z0)s
which don’t have poles at zyg — a. The only term that can have a pole at zp = a
comes from the residue at z — a, and therefore we have

terms holomorphic at zy — ¢ = Resw®™ *(20) Qg.n+1(2; 2)
zZ=a

= Sgn+1(2) &a.m(20) (1 + O(20 — a)),
which is a contradiction since the right hand side is not analytical at zy — a whenever
Sg.n+1(2) # 0. This shows that Qg n41(2;2) cannot have poles on R.

Now we need to check that they do not have poles elsewhere, except perhaps at the

(4.21)

points z € 7(z;), for i = 1,...,n. Where could other poles come from? Assuming that
the curve is smooth as an affine curve, it is clear from (4.15) that the only possible
poles are at coinciding points z € 7(2;), for i = 1,...,n, or at punctures. So we need
to show that Qg n4+1(2;2) has no pole at the punctures. But this follows directly by
noticing that we could have included these punctures in the sum over residues in the
definition of the topological recursion (3.7), since the integrand cannot have poles at
the punctures that are not in R, so those would not contribute to the residues. But
then, by the same argument as above, we conclude that Qg »+1(%, 2) is holomorphic
at the punctures.

Therefore Qg n+1(2,2) can only have poles at coinciding points. 0
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To go further, we need to strengthen this result. What we are really interested in
is not the one-forms Qg ,+1(2; 2), but rather the expressions

po(2)Q), 1 (2 2)

(4.22) o

for each m = 1,...,r. Let us consider the cases (g,n) = (0,0) and (g,n) = (0,1) first.

Lemwva 4.8. Form=0,...,r,

po(2)Q57(2)

(4.23) O (=1)"pm (2).
Proof. — This follows from Example (3.23). O
Lemwva 4.9, Form=1,...,r,
(2)Q0% (2:21) LU )
(424) 02 ZEL g e Po(z1)
x(z)lor-—mirldg(z)m T\ 2(2) —2(z1) N da(z1)™ 1 2(zg)lor—m+1]

T e =) |

(z)[ar7m+lj - x(zl)LO‘rferlJ
where ay, was defined in (2.3).

Proof. — First, the case m = 1 is straightforward. Since Ué?l) (z1) = 1, the statement
is simply that

(1)

po(2)Qua(2;21) B 1 __po(z)dx(z1)
(4.25) &t 9 () T Bl e
which is indeed correct since
b ds(E)i)
(4.26) Q025 = G e

For m=2,...,r, we have

PEIQNE () _ 3 Bni(2). 1) s (m(2)po(2)

(4.27) dx(z)™ = da(z) dx(z)m—1
= 0 (Z PR Pt vntn) + P 1 (2)

where the second equality follows from (4.8) (recall that P, (z,y) was defined in
Definition 2.5). The second term is easy to evaluate. Since

r—1

(4.28) S B(ti(2),21)  da(z)

da(z) (x(2) — 2(21))*’

k=0
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we get

)= s dx(z1)
dn(zy P ) = PG e

= pm-1(2)dz, (;)

x(2) — x(z1)

(4.29) k=0

As for the first term, we rewrite it as follows:

< B(ri(2), 1)

dz(2)
£ — B(%', z1)

= Res — 1 _p (2(z"),y(2
(4.30) ];)z':m(z)x(z’) —z(z) (2(z), y(=))

LS e B a2, ()

Pt 2= (2)x(2") — z(2) x(2')ler—m1] ’
where a,, was defined in (2.3).
Now recall from Lemma 2.6 that for m =2,...,r,

(4.31) div(P,) 2 ar—my1 dive(z) — Bromt1 diveo ().
Moreover, the Newton polygon of an admissible spectral curve has no interior point,
hence, for all m=2,...,r,
(4.32) |—Br7m+1-| - I_arfm+1J =1
Therefore,

div(Pim)

xLUCTferlJ
(433) > (i1 — [Arems1]) divo(@) = Bremit — [Brema1] + 1) diveo ()
> —diveo (2).

It then follows that the only poles of the expression

B(z',z1) a(z)lrr i) Py (a(2), y(2"))

(434) IZZ(Z/) — LI}(Z) LU(Z/) Loty —m+1]

in 2’ are at 2z’ = 7,(2) and at 2’ = z;. Therefore, we obtain

> 2O b ol ()
k=0 B B(2',21) a(z)lor i1l Py (a ('), y(2))
(4.35) = ZBZQZSII,(Z) — () x(2) Lor—m—+1]

.G ( 1 Pm<x<zl>,y<zl>>>.

z(z) —x(z1) m(z)lor—ms1l
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7

Putting this together, we get

Po(2)Q5% (2)
dx(z)™
— (v, (

(m—1)
:x(z)l_ar—m,+lj le 1 UO,l (Z;l) po(Zl)
22— 2o \da(z)m T m(a) o it

+(1)m1(x(§;’[;f_(i)+u B xéﬁfif—zi)m)))} .

Now we consider the general case (g,n) # (0,0),(0,1). Let us first prove the fol-
lowing useful lemma.

(@) mei) B(@(a),9(21) P (2)
2() —a(z) a(en) il a(z) = x(zn)
(4.36)

Lemva 4.10. — Consider a r-differential

T

(4.37) Qz) = da(2)" Y (=1)*y(z)

k=1

1 Qr(2(2))
Cdx(z)k

where the Qi (x(2)) are k-differentials pullbacked from the base. Then

r—1 (k—l)
Q(ri(2)) Upy "(7i(2))
4. = _ z)F , .
(4.38) @n(@(2)) Po(z ;(aP/ay (1i(2)) dz(z)r  dx(z)k-T )
where we denoted 7(z) = {70(2),...,7r—1(2)} (the labeling is irrelevant).
Proof. This is an application of the Lagrange interpolating polynomial.
Let us denote 7(z) = {719(2),...,7+—1(2)}, where we chose our labeling so that

z =19(2).

Recall from Remark 4.4 that

(4.39) 5y () =m2) kio(—l)%)“l*k FEBIR
and

r—1 (k) 2
(440 0= po(2) 3 (—1)y(ra(eyy -k DL )

prd dx(z)
In other words

=1 U(k) Ti\Z

(4.41) o) 20y dx(()()) = S
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Then we can compute:

r r—1 ( (klfl) 7i(z
_dx(z)r Z(_l)ky(z)r—kpo(z) Z((‘?P/ayl - Q(Tzi 2) Uoéx(zsk(l )))

k=1 i=0 ( (Z)) dl’()
. = 2 5p /oyt o) L V) )"
Q) op -
2 P oyt 2y )0 = )
Hence
(4.43)  Qu(x(2)) = — kzl( Q(i(2)) Ué,kfl)(ﬁ(Z))) .
. lx(z)) = Po v ap/ay 7_1( )) dI(Z)T daj(z)k—l .

As an application of this lemma, we get a relation between the Q;?:L)H(z; z) and
the Qg nt1(2; 2):

Cororrary 4.11. — For2g—24n>0andm=1,...,r,

r—1
m m—1

(4.44) Qi (z2) = = D Qo () 2)Usy ™ (1))

k=0
Proof. — Recall that

r (k)
dz(z Qg ni1(2:2)
4.45 n —_— yr—k gt 7

( ) Q‘], +1(Z Z) ap/ay ; d.’E(Z)k
Then we simply apply Lemma 4.10 to get the statement of the corollary. |

Finally we can prove the following theorem on the expressions

Po(2)QY 1 (2 2)
dx(z)™

(4.46)

Tarorem 4.12. For2g—24n>0 m=1,.

Po(2)Qh 1 (5 2)
2zl lda(z)

RN 1 Uy (23 2 ~ {z:}) ()
- ;d% (x(z) —x(2;) ( dx(z;)m1 a:(zg(farfmﬂJ ))
For (gvn) = (071)’ m=1

pO(Z)QgZ)(z;Zl) =d ( : (UéT_l)(Zl) po(z1)
x(z)[a7~_m+1jd$(z)m - Yz m(z)—$(21) dSL’(Zl)m_l x(zl)tar—m-%—lJ

+ (_1)m_1 (m(Z;nLa,l(i)+1J N x(IZ)SL;v-(Z:LLJ )))7

(4.47)

(4.48)
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while for (g,n) = (0,0), m=0,...,r,

(4.49) W = (=1)"pm(2).

Proof. — The (g,n) = (0,0) and (g,n) = (0,1) statements were proved in Lemmas
4.8 and 4.9. Let us then focus on 2g —2 +n > 0.

The proof follows along similar lines to the proof of Lemma 4.9.

First, the case m = 1 is trivial, since both the left-hand-side and the right-hand-side
are zero.

So we consider m = 2,...,r. We have
Po(x)Qpmia(:2) Z le Tk 12) Ut (m(2)po(2)
dx(z)™ dx(z)m—1

(4.50) (Z Qg - T’“ 2 P (w(2), y(mh(2))
" Z Qorts Q2 1(2),

where the second equality follows from (4.8) (recall that P, (z,y) was defined in
Definition 2.5).
The second term vanishes, since

r—1
(4.51) > Qguir(ri(2);2) = 0.
k=0
Indeed, using the fact that Ué?l) =1, from Corollary 4.11 we get

(4.52) ZQg nt1(Te(z ZQg n1(Th(2 ) 1 = _Qg n+1( z),

which vanishes according to Lemma 3.25.
As for the first term, we rewrite it as

Z > Qo (4(2):2) il Tk 2 o (a(2), y(mu(2)))
(4.53) - Z Res Zont1lE52) p o i)
’ z' =7 (2) .’B( /) — .’L‘(Z) ’
sylormi] Z Qg n+1(2 z) Pp(x(2'),y(2"))

z’=7'k(z) z(2') —x(z) x(2)lor—m+1l

)

where o, was defined in (2.3).

By the same argument as in the proof of Lemma 4.9, the only poles of the integrand
in 2’ are at 2’ = 7;(2) and at the poles of Qg n+1(2; 2). From Lemma 4.7, we know
that Qg n+1(%'; 2) can only have poles at 2’ = 7 (2;), k=0,...,r—1,j=1,....,n
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Therefore, we get that the expression above is equal to

n r—1
P (z(2), y(2'))
4.54 [ar m1] Qg,n+1(z Z) m y 7
which is in turn equal to
n r—1
(4.55) g)lermil 37N Res Qg & () 2) P ((2), (70 ("))
| LT a) —ae) a@ee]
Putting this together, we get
(m) .
po(z)QgﬂH»l(Z?z)
dx(z)™ I / /
= a(z)ler-nsl(—1)m13° 5 Re Qg n+1 (11(2); 2) Pm(2(2), y(1(2")))
j=1 k= oZ'_zJ —x(2) (z')lor-m+1]

(4.56) Qgmi1(Te(2); 2) Uéf’f—l)(m(z’))po(z’)

LO‘r m+lj R
Z OS2 () —al(z) () e da (2
r—1

2= es Qg,n—i—l(Tk(z/); Z) pm—l(z/)
24208 T —a(z) ale)le ]

where for the second equality we used again (4.8). The second term vanishes because

r—1
(4.57) D Qonir(k(2);2) =0,
k=0

hence

po(2)QU", 1 (2 2)

dx(Z)m n r—1 ’ (m—1) ’ ’
LaT ma] ZZ Res Qg n+1 (e(2');2) Upa (7(2"))po(2')
2=z —xz(z) x()lor—mildz(z)m-1
j=1k=0
Q“”) (' 2)po(=')
Lav m+1] gn+1
(4.58) Z R_GZSJ — 2(2))a () er—meldp(z/)m1
— Lotr—m 1] Z Res (' ZJ)U(mn V(s 2~ {zPmo(#)
25 () — 2 ()a(e o T (/)T

ylm=1
Qi1 Ugm (252~ {2})po(2;)
L szzj< 2) — (z;))a(z;)lor—milda(z;)m= 1)

As an immediate corollary, we get:
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Lemma 4.13. Form=1,...,r

) )

Po(2) U;'ZH(z,z)

(4.59)

w@er ] da(z)m
U(m 1) U(m .
_ po(z) g— 1n+2(z z Z) + pl(Z) g,n+1 (sz)
)l dw( yda(z) sl de(e)
pylm—1 1) .
91 \J1|+1(Z Jl) ng |J2\+1(Z7 JQ)
+ I_ar TIL+1J Z Z d:r( )
J1wJa=2z g1+g92=9
- i da(z)  Usin™(z2~ {=:))
o G
(ol L v Ve gy
T\ (z) lor—mer] 2(2) — x(2;) dx(z;)m1
+5g705n,0(71) .23(2’) LOér—m-HJ
— 1 pm—l(z) pm—l(zl)
_1 m—1 _ .
+ 6_(]7061'7,,1( ) d., (x(Z) — x(zl) (m(z) [ —mi1] x(zl)Lo‘r*mHJ )
Proof. — This follows directly from Theorem 4.12 and Corollary 4.6. O

5. QQUANTUM CURVES

We are now ready to prove the existence of the quantum curves. What we need to
do is integrate (4.59).

5.1. INTEGRATION

5.1.1. Integration procedure. Let us first define the following integration proce-
dure.

Derinirion 5.1 — Let D = )", x;[ps] be a divisor on X, with p; € . We define its
degree deg D = ), x;. The set of degree 0 divisors of ¥ is called Divy(X).
For D € Div((X) we define integration of a meromorphic one-form v(z) on ¥ as

5:1) [ o= [ v

where b € ¥ is an arbitrary base point, and the integration contours are the unique
homology chains (b,p;) that do not intersect our basis of non-contractible cycles.
Since we assumed that deg D = ). x; = 0, it follows that the integral above does not
depend on the choice of base point b.

Remark 5.2. — Here and in what follows, we always assume that the integration
divisor is chosen such that all integrals converge.
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Derinition 5.3. Let D1,..., D, be n arbitrary degree 0 divisors on ¥, with
(5.2) Di=> xijlzil-
J
We define
(5.3) ngn+1(z; Dy,...,D,) = /D . ./D U_(52+1(Z3 Zly.ens2n)-
1 n

Note that we are not integrating in z. The Gé’fiﬂ (2; D1, ..., Dy) should be understood
as differentials in z, and functions of the points z;; € X in the definition of the
integration divisors.

We also define the so-called “principal specialization”

k k
(5.4) G§72L+1(Z;D):/ / Uéﬂzﬂ(z;zl,...,zn),
D D
where we set all integration divisors to be equal.
With these definitions, we can integrate the equation in Lemma 4.13:

Lemva 5.4, — Fori=1,...,n,let D; = Zj Xi,j%i,5] be arbitrary degree zero divisors,
and mtroduce the notation D = {D;,...,D,}. Let Dpy1 = x2' + D', with D' an
arbitrary divisor of degree —x, for some x. Then:

k
po(z) GV, i (%D)

5.5
(5:5) x(z)lor—k+1] dz(z)k .
_ ) d (Géz,Lz(z;D,DnH))
X x(2)ler—k+1l dz(2) dz(z)k—1 2=z
(k=1)

pi(2)  Ggun(%D) K Pr(2)
+ ( )Lar—k-f-lj d.Z‘( )k—l +5g,05n,0(_1) x(z)[ar—k-HJ

Pl . 1) .
+ - > > . |J1\+1(z J1) Gy, 41(23 2)

I_a, k+1j k 1 dl’(Z)
JiwJo=D g1+g2=g
—ZZX (2) 1 Gé’?#)(z;D\{Di})
o | e T T e e
__ polayg) L Gz DN (D))
w(z,j) lor=rnl 2(z) — 2(25) da(zi )1
1 pr—1(2) pr—1(21,4)

0g,00m.1( _ , .

+ 04,0 1( Zle ( Z —33(2173‘) (x(z)Lar,Hlj x(zlﬂ-)Lo‘T*k“J)
Proof. — This is the straightforward integration of Lemma 4.13. O
5.1.2. Principal specialization. — Let us now principal specialize this equation by

setting all divisors equal. We get:
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Lemva 5.5. When all degree zero divisors are chosen equal, and all containing the
point z as:
(5.6) Di=D=xz+Y xiz,
i
we obtain

pO(Z) Gg n+1(z;D)

(5.7) 2] da(o)f

I G d (G_Sf SRCE D)y
x(n + )z(z)loer—ri1] da(z) dx(2')k-

k—1
pm(z) G N(zD)
w(z) o] da(z )k-l

: g1, m+1 ga,n—m+1
+ LaT k+1J Z Z m!(n —m)!  dz(z ) dx(z)
m=0g1+g2=g

1 Gy V(2 D)
) ”Z’“ [ tar = 2(2) A=)

z'=z

+

(z; D)

—z(z))
- po(zg) L Gy ;D)
)Lar k1) x( )_ I(Z]) dl‘( )k 1
. Po(2) Gé’“n NG e m(a)
nxdl’(z/) <m(zl)l_0¢7~k+1j d(E . + 69 0577, 0( ) .’L'(Z) [y —rt1]

p Pr-1(%5)
+ 8g,00n,1(—1)" 1{2361( (2) — 2(zy) ($ kLalr ey x(;)L;T,JkHJ))

v o)

Proof. — The specialization is straightforward from (5.5). Only the terms involving
derivatives require some care. Indeed as D; — D, 1/(z(2)—x(z ;) = 1/(z(2)—2z(z;)),
as long as z; # z. When z; ; — z, the limit with the denominator 1/(z(z) — 2(z; ;)

tends to the derivative, giving these terms. (|
5.1.3. Summing over g and n. We now sum over g and n. Let us define:
Derinition 5.6. — Form =1,...,r, we define

> 2g+n G(m 1 D
(5:8) Em(z D) = (=1)" 3 hn! gc?;( () |

g,m=0

We get §o(2; D) = 1, and define £ (2; D) = 0 for all k < 0. It is also clear that
&(z;D)=0forall k > r
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Remark 5.7. In the following, we will abuse notation and write &,,(x; D), even
though it is actually a multivalued function on the base. We will do so to lighten
notation and use for instance d/dx rather than d/dz(z).

Summing over g and n, (5.7) becomes

(5.9) 0 2Dy

plor—kt1]
pr(2) p1(2)

Er(asD) + g (@5 D) (@3 D)

T plev kil T plor kil plar—ky]
1 po(x) ) po(;) i
- hZX% —x; (:cLar—kﬂJ Se-1(@; D) = plar—rt1] Shr (i D))
K3 2
hd  po(a) ', d ( po(a) ..
(e D)) g (ST 6@ D)

_hzl:xzx—la%( pr—1(z)  pr—1(a) ) —hxi(m)

xLOér—k-HJ - mLOc7~—k+1J dx J;Lar—k-uj

We see that something nice happens if x = 1/x, i.e., x = £1. x may be called the
“charge”, and in analogy with CFTs, y = £1 would be called a “degenerate charge”.
In that case we get:

Levva 5.8. — If D = x[2]+> ", xi[2i] € Divo(X) with x = £1, we obtain the following
differential recursion relation for the &’s, k > 1 (and we recall that & =0 if k > r
and k <0, and § = 1):

¢x(z; D) — _pel@)

xLaT*k+1J

(5.10) %

xL’lr— +1J

po(x)
plor—ky1]

+ hZXix—lx' ( po(z) Eo—1(2; D) — M&cq(%;D))

x[ar—k+1J I_Otr—k+1j
Z;

B hZXix jxl ( pr—1(x)  pr-1(zi) )

plar—eia] — Tar—kpa]
Ty

e (B0 () - Pl

dr \ plor—ri1] plor—kt1]

__nix)
T pler—kg]

Ee—1(z; D) + §k—1(z; D)&1 (w5 D)

K2

5.2. QUANTUM CURVES. The non-linear differential system in Lemma 5.8 can be
linearized as in the Riccati equation. We assume that the z; are in generic position

(in particular they are not in R, so that the integrals converge). We let xo = x = +1
and zg = z.

Derinition 5.9. — Form =1,...,r, we define

1
x Lar—mj

(5.11) Ym(2; D) = ¢(D) [po(2)&m (x5 D) — pm ()],
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with

(5.12) w(D):eXp(%/ WOJ)

-exp( Ui 2/ / (21 2n) — 59,05%2m)>.

Note that the integral fD Wo,1 may need to be regularized. But this will play no
role in the following because changing the regularization of | p Wo,1 only amounts to
multiplying ¢ (D) by a constant.

(g:m)#(0,1)

Then we can prove:

Lemva 5.10. — Form =r,
Pr
(513 00 ) =~y ),
while for m =1,
. o po(r) d
(514) ¢1($7D) - plor—1] % (D)

Proof. The ,.(x; D) is trivial since &, = 0.
For the other case, we calculate:

(515) pola)h- (D)

h29+" 1 d d d
:po(z‘) / / g,mn 217.. Zn) _5g Q(Sng( I’(Zl) 17((2'2

e n! (21) — z(22

)

)

p() > K29+n dx(Z d:U(Z1)
g,n ~/D.../D(‘/ngHrl(ZaZl’'"’Z")_(557’05”’13325—))2)7

n'

where we are now integrating only over the variables z1, ..., z,; we are not integrating
over z. Then, recall that

(5.16) Wynti(2,21,...,2n) + U n+1(2 Zly--vy%n)

~ pi(x) dz(z)dx(z1)

" i) 0 ) e
Therefore,

d

(5.17) Po(ﬂf)h% (D) = xpo()§1(2; D) — xp1(x),
hence
(518) XPo()A-eap(D) = o D)alr) 0

Then, from lemma 5.8 we get
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Tueorem 5.11. Fork =2,...,r, we have the following system of linear differential
equations:

d Lo‘r kJ D LO‘T 1J
(5.19) hX% (Yg—1(z; D)) = m¢k(méD) k-1(2)0

_hZXz

Y1 (z; D)

pO (m)xl.‘% k1]

(Yr—1(2; D) — Yp_1(xs5 D)) .

We also get
d Pr(z) LaoJ pr(z)zter—
5.20 hx—vr(x; D) = h ! — - - ;D
620 ingin(eD) =i (240 (o D) = P 02 D)
Equivalently, in matriz form:
_p1(1’) plar—2]
Y1(z; D) po(@) glor—1] Y1 (23 D)
d : : e :
hx—— ’ = 2)glor—1] Lo ’
dz | ¢, (a; D) *% ST Yr—1(z; D)
Yr(z; D) _pe(@)aler=t) Po(x) _ Loo] V(23 D)
po(x)zleol pr(z) x
1 (z; D) 1 (zi; D)
Xi : Xi :
—-hy — ‘ +h :
zi:‘r_mi ¢7-—1($;D) Xi:x_xl ¢7—1(3f'i;D)
0 0

Proof. — The special case is straightforward. Since ¥, (z; D) = — 28 (D),

ﬁx%wr(ﬂc;l)) = —hx d (pr(x)w(D)>

dz \ xlool
(20 =~ (585~ Lool ) wi0) = 5y (D)
p/r(x) |_04J pT( )mlar 1]
= hx (pr(x) - xo )%( D) - W%( D),

where we used Lemma 5.10.
To prove cases k = 2,...,r, we start with (5.10) and multiply by (D) to get:

Lar k) Lar 1]

ﬁlﬂk@ D) = 7”1]1/11(37 D)&— 1(33 D)

rla xle
+ hZX’

+ (D )d (L( D) (o D) - L))

dx \ glar—k+1] plor—kt1]

(5.22)

- (Yk—1(z; D) — thp—1(zi3 D))

We rewrite the last term as
(5:28) I (1w D)) ~ b (o) (3 D) — pia (&) - 0(D).

rlar—ks]
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Using Lemma 5.10, this is equal to

alor-] Pr—1(z)

(fk—l(l“; D) — W)% (z; D).

Putting everything together, we end up with the differential equation

(5.24) hx% (Yr-1(z; D)) —

plor—ki1]

ILQT‘—kJ pk_l(I)ILarilJ

po(x)aler—is]

FRY X (WD) — s (@ D). O

(525) il D) = I (s (@3 D)) + (2 D)

;I;La'r—kJrlJ

In the next subsection, we show that for special choices of integration divisors, this
system of differential equations can be turned into an order r differential equation
for ¢ which is a quantization of the original spectral curve. The key point to notice
here is that the quantum curve strongly depends on the choice of integration divisor;
different choices of integration divisor give rise to different quantum curves.

5.3. SPECIAL CHOICES OF INTEGRATION DIVISORS. — In this section we study special
choices of integration divisors that simplify the system of linear differential equations
obtained in Theorem 5.11.

5.3.1. Poles of x. The most interesting choice of integration divisor is
(5.26) D=[:]- (3]
that is x = 1, with 8 a simple pole of x (then it is not in R).

Remark 5.12. — Tt is also possible to integrate with base point S a pole of x of order
more than one. But then, 8 € R, hence one needs to check that the integrals converge,
since the correlation functions can have poles at 5. We however can do that explicitly
in some examples, as we will do in the next section.

In this case Theorem 5.11 reduces to (for k =2,...,7)

plor—k] ol D) — P (z)zlor—]

d
(527) h@ (¢k,1(1‘;D)) = m k ¢ ({L‘,D)

pole)atorrail ¥t

+ h lim
z1—3 .1'1(2:1)

VYr—1(z1(21); D).
We can say more about the limits. We can prove the following lemma:

Lemma 5.13. For 8 a simple pole of x (or a pole of x where the correlation functions
are all holomorphic), and k =1,...,r — 1,

62 T =) i SR

where the Pyy1(xz,y) were defined in (2.6). In particular, because of the admissibility
condition in Definition 2.7, these limits are finite.
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Proof. — First, we note that

(520)  u(z(21); D) = ¥(D)——

a7 Po(e(z21)&k (21 (21); D) — pr(z(21))) -
T(zp) Lot

As z; — f3, since (3 is a pole of x and the correlation functions are holomorphic at 3,
it follows that

i Dr(a(1):D)

z1—f .’E(Zl) 1 U(k)(z )p (.’I,'(Z ))
(5.30) = U(D) Jim, e ((—1)k = d;(;)k ' _pk(l’(21)))
— (D) lim Pii1(2(21),y(21)) -

z1—f ‘TE(Zl)LaT'*’“J+1

These limits are guaranteed to be finite for admissible spectral curves, by the
inequality (4.33). Let us denote

o Pei(x(z), (1)) _
(5.31) Ck_zln—{lﬁ (e o k=1,...,7r—1.

Then

Tr\z1); xLQOJ
M — Ckw(D) = —m0k¢r(x§D)v

and the system of differential equations can be rewritten as

.32 li
(5-32) leglﬁ x(21)

d plor—k] pkfl(ﬁ)xLarilJ
(5.33) h@ (Yr—1(z; D)) = ka(x’D) - W¢1($»D)
A D
- m k_ﬂ/)r(a?, )

We can then rewrite this system of differential equations as an order r differential
equation for (D). To this end, we define the differential operators

lei]l ¢
X .
(534) DZ:hm%’ Z—l,...,?".
Then we get the following result:
Lemva 5.14. — The system of differential equations is equivalent to the following
order r differential equation for ¢(D):
(5.35) [Dng .. DrAMDr + DDy D,«,QL@)DT,l
m[arj ;L'LarflJ
Lor—1]
+-F proa(@) D, + prle) hCyDyDy - Dy g
gloa] xlao] glor—2]
plor—2] ploal
— hCyD1 Dy - "Dr—3m - = hCr—lm]¢(D) =0.

After normal ordering, it is easy to see that this is a quantization of the original
spectral curve, according to Definition 1.1. Moreover, it has only a finite number of h
corrections, hence it is simple.
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Proof. — First, we notice that we can rewrite (5.33) as
(5.36)
LO‘T k+1J
1z
Yr(2; D) = Dy _py1thr—1(x; D) + MDT—HW(D) — h——Cr19(D),

xlor—ks] xlor

where we used the fact that
Y 2 €) oy polz) d
(5.37) Yr(x; D) = Ry (D) and q(x;D) = P Py h%w(D).
We start with (5.33) for k = r. We get:
prfl(m) ploal

(5.38) Yr(z; D) = Ditpr—a(2; D) + Dip(D) = h——Cr19(D).
gleal zleo]
At k=r—1, we get

Laz]
(539) ’@[Jrfl(x;D) :DZ’(/JT72($;D) br LiEJ)DﬂP( ) x[alj 'r72w(D)'

Substituting back in (5.38), we get

Dr— 2()

Dav(D) + p’“L;fJ)Dw D)

rlaz] loa]
_thxl_aJ r— 2¢( ) LaOJ T*lw(D)'

(5.40) (23 D) = Dy Doty _o(2; D) + Dy

We keep going like this until we can rewrite all terms in terms of (D), and we end

up with the statement of the Lemma. (|
In the special case where |a;| = 0,7 =0,...,r, the differential equation simplifies.
In this case, D; = h% forall i =1,...,r, hence the differential equation becomes
dr—1 d dr—2 d d
5.41 [hri 4 U R A
. dr 2 L, dr— 3

— WOy 2y = WOy =+ = KOy [ (D) = 0.

It is even simpler when C, =0, k= 1,...,r — 1, in which case it becomes

. dr—l d 1 dr— 2 d
(5:42) [ T—po(@) o + KT pi (o)

ot pea(@) o+ ()] w(D) =0,

which is the quantization of the spectral curve obtained through

d
o)

(5.43) (z,y) = (@,9) = (2, ]
and for the following choice of ordering;:

(5.44) (T Po@Y+7 Ppr(@)F + -+ pr—1 (2T + pr (7)) 0 = 0.
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Remark 5.15. We note here that we can generalize this choice of integration di-
visor slightly. If z has more than one poles, say 5;, i =,...,n, then we can take the
integration divisor to be

(545) D= [Z] - Z,ui [ﬁi],
i=1
for some constants p, ..., p, satisfying >, p; = 1. We can go through the same

steps as above to get the quantum curve. If we define the constants

i P
(5.46) ) = lim ECICVIC
21— 1’(21)Lar4€]+1
then we get the differential equation in Lemma 5.14, but with C} replaced by
Dy uiC’,iz). In a sense, this generalized choice of integration divisor interpolates
between the different quantizations corresponding to the poles of x.

5.3.2. Other choices of integration divisors. For some spectral curves, it may also
be interesting to choose an integration divisor of the form

D= [2] = [,

where 7 is not a pole of .
For instance, we could choose 7y to be zero of po(z) (if it is not in R, so that the
integrals converge). In this case, the system becomes

d . xLar—kJ . Pl (I)xLaT_lJ .
(5.47) fi% (Yp_1(x; D)) = mek(Q:,D) - le (z; D)
+ hz%x(’y) (Yr-1(23 D) = thp—1(2(7); D)).

To proceed further, we need to evaluate the objects ¢ (x(7v); D). Recall that

(.48 welz(): D) = v(D) lim (o (rol@(2)6ela(2): D) — pu(a(2)).

z—y

Evaluating these limits may be quite difficult in general. But if » = 2, then we only
need the case k = 1, which we can evaluate explicitly since

U(2(7): D) = (D) lim (< (po((2))6 (2(2): D) — pr (2(2))

Z—y x(z) Laa ]

(5.49) .
= 9(D) I (o e(2)u(=))

z—=y

We can then evaluate this limit and obtain a quantum curve in this particular case.

6. SOME EXAMPLES

In this section we consider many examples of quantum curves. We note that all of
these examples have also been verified on Mathematica for small order in A.
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6.1. y* —x = 0. Let us start by considering the spectral curve y* — xz = 0 for
a > 2. This spectral curve arises in the study of intersection numbers of the moduli
space of curves with a-spin structure. We will come back to this example in the next
section to explore its enumerative meaning. Here we only want to apply our Theorem
to find the quantum curve.

A parameterization of the curve is (z,y) = (2%, 2). « has a pole at z = co, which
is in R. But it is easy to show that the correlation functions do not have poles at
z = 00. Therefore we can choose the integration divisor to be D = [z] — [o0].

The Newton polygon for this curve is a line segment joining (1,0) and (0, a). Then
la;] =0fori=1,...,a,and |o]| = 1.

In this case, we need to evaluate the constants Cy, k =1,...,a — 1. We get:
P,
Cp = lim k+1(33((21)), y(z1))
21 —00 x(z
(6.1) !
y(21)" 2t
= lim = lim — =0.
n—oo x(21) 2100 2§

Therefore, the quantum curve is

da
6.2 (n =)o =
( ) dma z w
This is the straightforward quantization of the spectral curve y* — x = 0 through
PR d
(6.3) (x,y) — (Z,9) = (m,ﬁ%)

To help the reader’s understanding of Section 4, let us write down explicitly some
of the objects under study for ¢ = 3 and small g,n. We use the parameterization
(z,y) = (2%, 2). Then 7(2) = {2, pz, p?z}, where p = ¢>™/3. The level 2g —2 +n =1
meromorphic differentials constructed from the topological recursion are:

2 2 2
Wo.s(21, 22, 23) = dz1dzedz ( + + )
0,3( 1,42, 3) 102023 32%2:%2% 32’%2323 32%2%2’% )

lel(zl):dzl( 1 )

5
927

The most important result of section 4 is Theorem 4.12. Let us check that it is
satisfied for (g,n) = (1,0) and (g,n) = (0,2). First, for (g,n) = (1,0), we calculate
that

(6.4) M) = 0P =0 () =0.

This is exactly what is required by Theorem 4.12, since n = 0 and the right-hand-side
of (4.47) vanishes. Note that the statement that lei (z) = 0 is also expected from
Lemma 3.25.

Now for (g,n) = (0,2). First, we get that

(6.5) Q) (22, 23) = 0,
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as expected from both Lemma 3.25 and Theorem 4.12. Then, we get

QA7 20,25) dzadz
W@ 3 - A — )

)
. <2x(z)3(22 + 23) — 42 (2)? (25 + 2523 + 2025 + 23)

(6.6)

+ 22(2) (25 4 2523 + 32525 + 32325 4 2025 + 27)
— 2523 (525 + 82523 — 182222 4 82925 + 5z§‘)>.
First, we see that it is indeed a function of x(z), as expected. Then, it is easy to check
that it satisfies Theorem 4.12, using the fact that
22 4+ 42z + z%
(22 + 220 + 23)%
We can also check that Theorem 4.12 holds for k = 3. We get:

(6.7) Uég(z; z9) = —dzdzy

(6 8) Q(()?;(Zv 22, Z3) _ dZQng
' de(2)®  32325(x(2) — 23)%(a(2) — 23)?

(2020 = 40(22 (5 + ) + () (25 + 5) (224 + B2 + 2:)

— 22323 (20 + 23) (422 — Tzp23 + 425)),
which is again a function of z(z). It satisfies Theorem 4.12, since
323(2% — 2229 — 223)
(22 + 229 + 22)2

With these expressions we can also calculate the first few orders of the wave-

(6.9) US3 (23 22) = —dzdz

function. With the integration divisor D = [z] — [00], we get

(6.10) W(z) = exp(%So(z) £ 51(2) + BSa(2) + O(R)),
with
(6.11) So(z) = | Wha(z) = %z4 - %a4,

dx(z1)dx(z2) )
(x(21) — 2(22))?

1
= log(a® + az + 2°%) — i(log(SaQ) +log(32?%)),

z 1 Z rzorz 7
(6.13) 52(2):/ W171(2)+§/ / / Wo,3(21,zz,zs):%z4.

Here we regularized the first two integrals, but we will send a — oo shortly. Then it

(6.12) Si(z) = 1/: :(WO,Q(zl,zQ)

is easy to check that

) (hdj() ~al2))oe) = h

which indeed goes to zero as a — oo, as expected.

a+ 2z 9 3a + 4z
a?+ az + 22 3z4(a? + az + 22)

+O(h)?,
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6.2. y* —axy+1=0. Let us now consider the spectral curve y* —zy + 1 = 0,
for a > 2. Its Newton polygon is shown in Figure 6.1 for ¢ = 4. From the Newton
polygon we see that |a;| =0 for i =0,...,a.

Ficure 6.1. The Newton polygon of the curve y* — xy + 1 = 0.

The case a = 2 arises in the study of enumeration of ribbon graphs [53, 54|, while
the a > 2 case arises in the enumeration of a-hypermaps [22, 28].

6.2.1. a = 2. Let us first consider the case a = 2. A parameterization is (z,y) =
(#+1/z,2). Then R consists of the two points z = %1.

In this case x has two simple poles, at z = 0 and z = oo, that we can use for
integration divisor.

Pole ar z = co0. — We choose the integration divisor D = [z] — [0c]. We calculate:
C, = lim po(21)y(z1)

(6.14) anee aia)

. 22
= lim 3 =1.
z1—00 27 + 1
Then the quantum curve is
d? d
27 p— —_— —_ =
(6.15) (h s —he o+ 1 h)w 0,
which is equivalent to
d? d
1 P —h—ax+ 1) =
(6.16) ( 5 —hoa+ Ju =0,
This is the quantization
P d
(6.17) (x,y) — (Z,9) = (m,h%)7
with choice of ordering
(6.18) (PP —gz+1)y=
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Pole at z = 0. Now suppose that we consider instead the integration divisor D =
[2] — [0]. In this case,

2
21

(6.19) Ch = z111g10 | =

The quantum curve is then

(6.20) (h2 el 1)¢ 0

. — — hx— =
dx? dx ’

which corresponds to the other choice of ordering

(6.21) (¥*—2y+1)y =0.

This is the quantum curve that was obtained in [53].

Remark 6.1, It is interesting to note that by looking at the two integration divisors
of the form D = [z] — [f] where S is a simple pole of x, we recover the two possible
choices of ordering for the quantum curve.

Remark 6.2. — As an example of Remark 5.15, we note here that if we choose the

integration divisor D = [z] — p[oo] — (1 — 1)[0], then we obtain the quantum curve
d? d

6.22 (n2 = ho—— + 1= uh ) = 0.

(6.22) ol 0 L

Different choices of constant p interpolate between the two quantizations correspond-

ing to the poles at 0 and oc.

6.2.2. a> 2. We can do similar calculations for a > 2. In this case, a parameteri-
zation is (z,y) = ((2* +1)/z, 2), and R consists of the a solutions of z* = 1/(a — 1),
plus the point at infinity.

x has a simple pole at z = 0 and a pole of order a — 1 at z = co. The latter is in R,
but it is easy to see that the correlation functions have no poles at z = co. Thus the
integrals converge.

Pole at z = co. — We first consider the integration divisor D = [z] — [00].
We need to evaluate the limits
k ;
. pr—i(21)y(z1)"
6.23 Cp,=1 E —— k=1,...,a—1.
( ) k z1l—r>noo = IEl(Zl) ’ ’ @

Since po(z1) =1, pa—1(2z1) = —x(21), pa(21) = 1, with all other p;’s equal to zero, we
get that for k < a — 1,

k —a+k+1
(6.24) Cr— tm YC g 2,

Z1—00 Il(,?,’l) z21—00 Z;a+1

since k < a — 1. As for the k = a — 1 case,

a—1
(6.25) Cor= tim Y (7
z

Z1—>00 [L’l(Zl) zZ1—>00 ;
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Therefore, the quantum curve is

o ¢ d
(6.26) (h s —ah 1 - h)w —0,
which is equivalent to
de d
2 (h“ S 1) —0.
(6.27) 7 dxm +1)yp=0
This is the quantization
R d
with the choice of ordering
(6.29) H*—ygr+ 1)y =0.
Remark 6.3. — We note that this includes, as a special case when a = 3, the quantum

curve obtained by Safnuk in [56] — see also [1] — in the context of intersection numbers
on the moduli space of open Riemann surfaces. In this paper, he obtained the quantum

curve

ik d

3 J— — _— P
(6.30) (h e 2xhdx + 2h(Q 1))1/) 0,
which can be rewritten as
43 d

3 _ . =

(6.31) (h s 2hdx:c+2hQ)1/1 0.

If we let ¢ = Q@ be a 't Hooft parameter, that is, it is kept finite as i goes to zero,
then the above curve is a quantization of the classical spectral curve

(6.32) y® — 2y + 2t = 0.

What we have shown is that the standard topological recursion applied to this spectral
curve reconstructs the WKB expansion of the above quantum curve, for the choice of
integration divisor given by D = [z] — [00].

In [56], the point of view taken is however different; ¢ is not introduced, and the
spectral curve is then taken to be the reducible curve y® — 22y = 0. But then the
topological recursion needs to be modified to reconstruct the WKB expansion of the
differential operator. What we have shown is that this should be equivalent to using
the standard topological recursion, but for the spectral curve with 't Hooft parameter
t = hQ kept finite.

Pole at z = 0. Let us now consider the integration divisor D = [z] — [0].
We need to evaluate the limits

k .
. Pr—i(21)y(z1)"
6.33 Cp = lim S PEVGUYE) 1
(6.33) K ; 121

z1—0
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Since po(z1) =1, pa—1(2z1) = —x(21), pa(z1) = 1, with all other p;’s equal to zero, we
get that for k < a — 1,

k k+1
(6.34) Co— tim YE _ py A
z1—0 33‘1(2’1) 21 —>00 Z‘ll—|—1
since k < a — 1. As for the k = a — 1 case,
a—1 a
(6.35) Cocy = lim YT 1im( - ): 0.
210 x1(21) 21—0\ 2§ + 1
Therefore, the quantum curve is
d* d
. A 1) -0,
(6.36) ( dx® “ da:+ v

which corresponds to the other choice of ordering
(6.37) Y*—zy+ 1)y =0.

Again, choosing the more general integration divisor D = [z] — u[oo] — (1 — w)[0]
gives the family of quantum curves

d° d
(6.38) (h“ s —aho 41— ,m)z/} —0,

which interpolates between the two quantizations.

6.3. zy®*+y+1 =0. — The case a = 2 arises in the study of monotone Hurwitz
numbers [21]. The Newton polygon for the case a = 4 is shown in Figure 6.2. We
sill study the general case a > 2, although we are not aware of an enumerative
interpretation for a > 2.

Ficure 6.2. The Newton polygon of the curve zy* +y + 1 = 0.

From the Newton polygon we see that |«;| =0fori=0,...,a—1, while |a,| = 1.
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6.3.1. a = 2. Let us start with @ = 2. In this case, a parameterization is (z,y) =
(=(z+1)/2%,2). R consists of the zero of dz at z = —2 and the double pole of z at
z=0.

We can use the double pole at z = 0 for integration divisor. We can also use the
zeros of po(x) = x, which are at z = —1 and z = oo, since those are not in R.

Pole at = = 0. — The only pole of z is the double pole at z = 0, which is in R.
However, it is easy to see that the correlation functions have no poles at z = 0, so we
can choose the integration divisor D = [2] — [0].(4)

Then
(6.39) Cr = tim PGV )
z1—0 Il(Zl) z1—0
The quantum curve is
(6.40) (hQixi wnd g 1)w ~0
' dr” dx dx -
This is the quantization
SN d
(6.41) (x,y) — (Z,9) = (m’h%%
with choice of ordering
(6.42) FET+7+1) % =0.
Zeroat z = —1. — We choose the integration divisor D = [z] — [—1], since z = —1 is

a zero of po(x) = x.
This is in fact the choice that is made in [21]. In this case, we need to evaluate the

limit
(6.43) lim ¢1(x(21); D) =¥(D) lim po(z1(2z1))y(z1) = 0.
z1——1 z1——1
Then the system of differential equations becomes
d 1 1
(6.44) hdfl/ﬁ(m; D) = 1pa(x; D) — =1 (w; D) + h—1p1 (x; D).
x x x
Since ¥y (2; D) = ha L (D) and ¢o(x; D) = —1b(D), we get
d d d d
2 & a4 a .20 _
(6.45) [ﬁ o+ h 1}1/)(1)) 0.
This is equivalent to
(6.46) {hQ:cd—Q +rd oy 1]¢(D) =0
' da? dx -
which corresponds to the choice of ordering
(6.47) (@P*+7+1)y=0.

This is the quantum curve that was obtained in [21].

(1n fact this is not quite true here. All integrals converge, except as usual the integral of Woy 1,
dxidzo
(z1—w2)?
needs to be regularized by letting the divisor be D = [z] — [a] for that particular integral. However,

and, more importantly, the integral [}, [}, (Wo,g(zl, 29) — ) The latter diverges, hence it

its derivatives are finite at a = 0, hence we can take the limit a — 0 for the WKB expansion.
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Zeroat z = 0. po(x) = x has another simple zero at co. We can choose the divisor
D = [z] — [o0]. In this case, we need to evaluate the limit

111_I>HOO Y1(21(21); D) = (D) lei_{noo (po(z1(21))y(21))

z

=u(D) lim (~27) = v(0)
Then the system of differential equations becomes
d 1 1
(6.49) h%wl(x; D) = is(z; D) — Ewl(x; D)+ h; (Y1(x; D) + (D)) .
Since 11 (z; D) = ha-L4)(D) and ¢o(z; D) = —1p(D), we get
d d d d h

. W —g— +h——h— +1— —|y(D)=0.
(6.50) [ o dz + dz der x}d}( )=0
This is equivalent to

d? d h
20 _ —_ — =

(6.51) [h a5+ 41 xW(D) 0,

This is still a quantization of the spectral curve, although it is not as straightforward
as the previous ones. However, if we define a new ¢ = %1/}, then the quantum curve

for {E becomes

(6.52) (h2d—2x+hi+1){/?—o
' da? dx -
which corresponds to the remaining choice of ordering
(6.53) @Pz+y+1)p=0.

6.3.2. @ > 2. — A parameterization is (x,y) = (—(2+1)/2%,2). For a > 2, the
ramification points are at the simple zeros of dz at z = a/(1 —a) and oo, and the
pole of x at z = 0.

It is easy to see that the correlation functions do not have poles at z = 0. Therefore,
the only interesting choice of integration divisor here is the pole at z = 0. The zeros
of po(x) = x are not so interesting here because the curve has degree a > 2, hence
it is not so straightforward to calculate explicitly a quantum curve for this choice of
integration divisor.

Pole ar z = 0. — We choose the integration divisor D = [z] — [0]. We need to evaluate
the limits
~ pii(21)y(20)’
6.54 Cp = li P k=1,...,a—1.
( ) k 2111’_)1’1(); I (Zl) ) ’ ,

Here, po(z1) = 2(21), pa—1(21) = 1, pa(21) = 1, and all other py’s are zero. Thus, for
k=1,...,a—1, we get

— 1 k _ 7; k _
(6.55) Cr = lelgo y(z1)" = zlllgo z7 = 0.

JE.P.— M., 2017, tome 4



892 V. Boucnarp & B. EyNnarp

Therefore, the quantum curve is

(e ot e d

(6.56) a Hh 1)y =0,

This is the quantization

(6.57) (@.0) > @9) = (2.5 ),

with the choice of ordering

(6.58) 'z +y+1) v =0.

6.4. zy®—1=0. The case a = 2 has been called the Bessel curve, and was studied

in [23]. The general case has not been studied yet from an enumerative geometric
perspective.

The Newton polygon is a line segment joining (0,0) and (1,a). Thus |«;| = 0 for
i=0,...,a—1, while |a,] = 1.

A parameterization is (z,y) = (2%,1/z). Then R = {0,00}. z has only one pole
at 0o. The correlation functions do not have poles at co however so we can use it as
an integration divisor.

po(x) = x has a zero at z = 0, but it is in R, so we cannot use it for the integration
divisor since the integrals will not converge.

Pole ar z = co. — We choose the integration divisor D = [z] — [oo]. Then we need to
evaluate the limits

(21)

Here po(2z) = 2(z), pi(2) =0fori=1,...,a — 1 and p,(z) = —1. Thus

L pri(z1)y(21)’
(6.59) Cp= lim Y PECEUIAU g a1
Z1—>O<Ji=1 I

k
(6.60) Cp = tim PCVVCDT gk g,

2100 xl(zl) Z1—00

Therefore, the quantum curve is

dafl de
6.61 (hi o _ 1) o,
(6.61) dza—1" dza v
which corresponds to the choice of ordering
(6.62) (y*'zy—1)¢ =0.
6.5. zy> —xzy +1 = 0. — This spectral curve arises in the enumeration of dessins

d’enfants [23]. It is related to the previous case with a = 2. Its Newton polygon is
shown in Figure 6.3. From the Newton polygon, we see that |a;] = 0 for i = 0,1
while |as] = 1.

A parameterization is (z,y) = (2?/(z — 1),1/z). Then R = {0,2}. x has two simple
poles at z = 1 and z = 00. po(x) = x has a zero at z = 0, but it is in R, thus we
cannot use it for the integration divisor since the integrals will not converge.
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Ficure 6.3. The Newton polygon of the curve xy? — zy + 1 = 0.

Simple pole at z = 1. — We choose the integration divisor D = [z] — [1].
Then
(6.63) Cr = tim PCYCD (7) ~ 1
z1—1 ,]’,'1(21> z1—1 z1

The quantum curve is

d d d
o (et pet et n)en
(6.64) hdxxdx ﬁxd$+ Ry =0
which is equivalent to
d d d
27 —_— —_— =
(6.65) (h —a —hor+ 1)¢ 0,
This is the quantization
U d
with choice of ordering
(6.67) (G55 — G5+ 1) 6 =0.
This is the quantum curve that was obtained in [23].
Simple pole at z = co. — We choose the integration divisor D = [z] — [o0].
Then
1
(6.68) Cr= lim POCVYED (7) = 0.
Z1—00 ],‘1(21) 2100\ 21
The quantum curve is
d d d
27 —_— — =
(6.69) (h —a —ho——+ 1)w 0,
which corresponds to the choice of ordering
(6.70) (yzy—2y+ 1)y =0.

The ordering is different only for the second term.

Choosing the more general integration divisor D = [z] — p[1] — (1 — p)[o0] gives the

family of quantum curves

d d d
27 —_— — _— g
(6.71) (h —a —ha——+1 ,uh)d) 0,

which interpolates between the two quantizations.

JEP

M., 2017, tome 4



894 V. Boucnarp & B. Ey~arp

6.6. 2%y +2rxy—y+1=0. This example is the first that we encounter that is not
linear in z. The Newton polygon is shown in Figure 6.4. From the Newton polygon,
we see that |a;] =0, 7=0,1, while |as] = 2.

Ficure 6.4. The Newton polygon of the curve 22y + 2zy —y + 1 = 0.

A parameterization is (z,y) = (—(1 + 2)/2%, 2%). There are two ramification points;
z = —2, the zero of dz, and z = 0, the double pole of x. x also has simple zeros at
z=—1and z = oc0.

Here the correlation functions do have poles at z = 0, so we cannot use the double
pole of z for the integration divisor. But pg(x) = 22 has two zeros at z = —1 and
z = oo that are not in R. We can use those for the integration divisor.

Zero at z = —1. — We choose the integration divisor to be D = [z] — [~1]. Then we
need to evaluate:

lim 41 (x(21); D) = (D) lim (po(z1)y(z1))

z1——1 z1——1
(6.72) (1+ 21)2
= zb(D)legI}l(iz% ) =0.
Then the system of differential equations becomes
d 25(5
(6.73) h— (1(z; D)) = 2 (x; D) — 1/11(5C D)+ h— ¢1(33 D).
But 91 (z; D) = 2?h-L (D) and v (x; D) = —1(D), thus the equation becomes
d 5d d
A 2 & o = B2 +1 D) = 0.
(6.74) |1 =a? = + (22— )h K- +1]Y(D) =0
This is equivalent to
d d d
2 J— R —_ —_— =
(6.75) (h 72— +h2a — 1) + 1)¢(D) 0,
which is the quantization
N d

with choice of ordering

(6.77) @JEg+ (28— 1)g+ 1) = 0.
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Zero at z = 00. We choose the integration divisor to be D = [z] — [oc]. Then we
need to evaluate:
. . 1+ 2)?
(6.78) lim 4y (21(21); D) = (D) lim (%) — (D).
21 —00 21 —>00 Zl

Then the system of differential equations becomes

(679) b (a(; D)) =l D) — 22 (a3 D) + B (da(as D) — (D)).

But ¢ (z; D) = xzh% (D) and vo(x; D) = —(D), thus the equation becomes
d d d h
. 2——2-15—1%1}:0
(6.80) [hxdxa:dxﬂx Y 14+ (D) =0,
which is a quantization, albeit not straightforward, (if the spectral curve.
However, if we rewrite it in terms of the rescaled ¢ = %1#, then the quantum curve
becomes

d d d ~
81 (hQ—— (20 — 1 1) —0,
(6:81) dycxdﬂcer dm(x J+1)v
which corresponds to the choice of ordering
(6.82) (yzyz+y2z — 1)+ 1)y =0.
6.7. 4y> — 22 +4 =0.  This curve appears as the spectral curve of the Gaussian

matrix model (see [50, 57]). We will say more about this application below.
A parameterization is (x,y) = (z +1/z, %(z - 1/2)) Its Newton polygon is shown

Frcure 6.5. The Newton polygon of the curve 4y? — 22 +4 = 0.

in Figure 6.5. We see that |a;| =0, i =0,1,2. We can choose the two simples poles
of x at z = 0, o for the integration divisor.

Simple pole at z = 0. — We choose the integration divisor to be D = [z] — [0]. Then
we need to evaluate:

o Po(z)y(z) 71 _
(6.83) R 2211@0( ) )

The quantum curve is then

d2
(6.84) (4712@ e 271)1/} —0,

which is a non-trivial quantization of the original spectral curve.
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Simple pole at z = cc. The calculation for this case is similar. We get
21
(6.85) = tim PEVED _y gy (5—) -2
21 —00 x(zl) z1—oo\zi + 1

The quantum curve is then
d2
(6.86) (4h2@ — 4= 2m)u =0,

which can be obtained from the other quantum curve by i — —h.
Choosing the more general integration divisor D = [z] — p[0] — (1 — p)[o0] gives the
family of quantum curves

d2
(6.87) (4n° 5 —@® + 4+ 20— Dh)y = 0,

which interpolates between the two quantizations. In particular, for p = 1/2 we get
the straightforward quantization

(6.88) (49 -2 +4)y =0.

Relation to the Gaussian matrix model. Let us now explain the relation between this
curve and the Gaussian matrix model. Consider the Gaussian matrix integral

(6.89) In = / dM e—(1/2R) Tr M2
Hy
It is known [50, 57] that the expectation value of the characteristic polynomial
1
(6.90) pn(z) = (det(z — M)) = — / det(z — M) dM e~(1/20) Tr M?
ZN Juy

—z2%/2h

is the monic orthogonal polynomial with respect to the measure e . It is therefore

the Hermite polynomial of degree N, in the variable x/\/ﬁ, ie.,
(6.91) pn(z) = BN 2Hy (2 /Vh).

From it we define

(6.92) Py (z) = e Ahpp ().

The differential equation obeyed by Hermite polynomials, H, — 2Hjy + NHy = 0
implies for ¢ the equation

(6.93) 4Rl = (22 — 4RN — 2h) Yy .
The choice N = 1/h gives

(6.94) 4PN = (22 — 4 — 2h)Y .
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On the other hand, we have
(det(z — M))

<6N lna:+Trln(17M/z)>

z dx’ dx’
N
p— T —_— —
x <exp/m/_oo i :c'>

>~ 1 [° v i dx’ !
P— N — .. 2
-7 Zn!/w,zoo /w,_OO<HTrx’.—M>

n=0 1 h i=1 i

r dz’ dz’
:xNeXI)(//_ <TI'$/_M—?>

oo

(6.95)

n

AL (i)
n= 1= n = ¢

i=1

@ Ndz' =1 [* ¢
:q;Nexp< Wl(.’L‘)— ] -‘rZE/ Wn(xa,,x;)>,
n=2 " Jxj=00

' =00 x ], =00

where in the third line, (-)’ means that we should replace dz}/(z; — M) by
dx}/(z; — M) — dz/z; (i.e., we regularize the behavior at oo, which is where
the choice of the divisor matters). In the Gaussian matrix model, all W,,’s have a
series expansion

(o)
(6.96) Wil@1,. o) = > W972FMW (2, a),

g=0
and each coefficient W, ,, satisfies the topological recursion with the spectral curve
dy? = 22 — 4.

In other words, with our method we have recovered that the orthogonal polyno-
mials associated to the Gaussian matrix model are Hermite polynomials, and our
quantum spectral curve is nothing but the differential equation satisfied by Hermite
polynomials.

6.8. 2y + (1 —x)y —c = 0. This curve arises in the Laguerre Random Matrix
ensemble. Its quantum curve is associated to Laguerre polynomials. A parametrization

is (z,y) = ((c = 2)/2(z = 1),2). Then R = {(c+ V% —¢),(c— V% —¢)}.

Ficure 6.6. The Newton polygon of the curve xy? + (1 — x)y —c = 0.
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2 has simple poles at z = 0,1, and po(z) = = vanishes at z = ¢, 00. We can use all
four of these points for the integration divisor.

Its Newton polygon is shown in Figure 6.6. We see that |«; | = 0 for ¢ = 0,1, and
\_agj =1.

Simple pole ar z = 0. — We choose the integration divisor D = [z] — [0]. We calculate
(6.97) Oy = lim POEWE)
z1—0 fL‘(Zl) z1—0

The quantum curve is then

d d d
2
. e bl - 2) 5 - )i =
(6.98) (h o+ h(l =)= —c)i =0,
which is the quantization
PR d
with choice of ordering
(6.100) (yzy+ (1 —2)y—c)y =0.
This is indeed the Laguerre equation.
Simple pole at z = 1. — We choose the integration divisor D = [z] — [1]. Evaluating
the limit at z; — 1, we get C; = 1, thus the quantum curve is
d d d
6.101 (hz—— A1 - z)— — —h) —0,
( ) dxmdx +h(l - ) dx ¢ v
which is equivalent to
d d d

102 (rCa 4 A (1= 2) = e} =0,
(6.102) dazxdaz—i_ dx( x)—clb=0
This corresponds to the choice of ordering
(6.103) (G35 + (1 —F) — ) ¥ = 0.

With the more general integration divisor D = [z] — u[1] — (1 — u)[0], we get the
family of quantum curves

d d d

104 (ff—— (1 — 7*7;1):,
(6.104) Tplay T —2) —c—ph)yp=0
which interpolates between the two quantizations.
Zero at z = c¢. — We choose the integration divisor D = [z] — [¢]. Then we need to
evaluate
(6.105) lim ¢y (21(21); D) = ¥(D) lim z(21)y(z1) = 0.

z1—1 z1—cC

The system becomes

(6.106) h%wl (z; D) = 4o(x; D) — xz/)l (z; D) + hélﬁ (z; D).

X
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But ¥9(z; D) = ep(D) and ¢y (x; D) = xhd%w(D), thus we get the quantum curve

d d d d
20 a4 o b 520 _
(6.107) (h a4+ (L= o)h — WP c)w 0,
which is equivalent to
d? d
2 —_— — _— —
(6.108) (h 71— + (1 —a)h— c)z/; 0.
This corresponds to the choice of ordering
(6.109) @+ 1 -2)F—c)v=0.
Zero at z = 0o. — We choose the integration divisor D = [z] — [00]. In this case we
get
(6.110) Zlhgloo Y1(z1(21); D) = ¢(D) Z}gllmx(zl)y(zl) = —(D).

The system becomes

1—=z

(6A11) Aoy (a; D) = n(a: D) — +—pa(a; D) + A (4 (2 D) + (D).

xT

But 12 (z; D) = cyp(D) and ¢ (2; D) = zh-L4p(D), thus we get the quantum curve

d d d d 1
112 e Ll 2l e pa e =
(6.112) ( dmzder( ?) dx de € q:)dj 0,
which is equivalent to
d? d 1
2 e~ - - - _ =
(6.113) (h 1+ (L —2)h— —c hz)w 0.

This is another quantization of the spectral curve, although not as straightforward.

6.9. x%y?+22y+1=0. — This curve is an interesting example that is of higher degree
in 2. A parameterization is (z,y) = ((z —1)/2%,—2°/(z — 1)). Then R = {0, 2}. The
Newton polygon is shown in Figure 6.7. We see that |ag| =0, |a1] =2 and |az| = 5.

Ficure 6.7. The Newton polygon of the curve z°y? + 2%y + 1 = 0.

The only pole of z is at z = 0. It is a double pole, hence is in R. In fact, the
correlation functions have poles at z = 0, so we cannot use it for the integration
divisor since the integrals would not converge.

However, po(x) = 2° has zeros at z = 1 and z = oo that we can use.
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Zeroat z = 1. We choose the integration divisor D = [z] —[1]. We need to evaluate

lim 41 (z(21); D) = 4(D) lim (M)

(6.114) B a1\ a(z) ]
' . (21 —1)3 20
= ~o(D) lim,( e 1)3) = —v(D)

Then the differential equation becomes

(6.115) B (0102 D) = 5l D) — Sy (D) + b (04 (@: D)+ ¥(D)).

But 11 (z; D) = 23h-L (D) and 2 (x; D) = —1h(D), hence we get

d d d d 1 h
11 ?— 2 — 4+ h— —2*h?—+ = — = |¢(D) =0.
(6.116) [h d:cx dx +hdx vh dx + 2 x}w( )=0

This is equivalent to

d ,d d
2,34 o204 2 @ _ _
(6.117) [h v + hx . +1 hm}w(D) 0,

which is a non-trivial quantization of the original spectral curve.

Zero at z = oo. — We choose the integration divisor D = [z] — [00]. We need to
evaluate

. e N VA _
(6.118) lim_ 4 (2(1): D) = =4 (D) llgnoo( p 1)3)_ 0.

Then the differential equation becomes

d 4
(6.119) A (17 D)) = g9l D) — tba (a5 D) + g 5 D).

But 11 (z; D) = 23h-L (D) and 2 (z; D) = —1p(D), hence we get

d 5d d d 1
6.120 |72t b — a2 4 — (D) = 0.
( ) daﬁxdchr dr deerq/}( )
This is equivalent to
d ,d d
121 [hQ 3828 g2l 1} D) =0,
(6 ) xdxxdm+xdx+ ¥(D) =0
which is the quantization
PN d
(6.122) (x,y) — (Z,9) = (ac,h%)7
with choice of ordering
(6.123) (92’7 + 2%y + 1)y = 0.
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Ficure 6.8. The Newton polygon of the curve z*y* — z3y% + x4+ 3 = 0.

6.10. z*y*—23y?+2+3 = 0. — Thisis a fun curve since it is of degree 4 in y and it has
non-zero |a;]. A parameterization is (z,y) = ((2* +3)/(22 — 1), 2(2% — 1) /(z* + 3)).
Then R = {0,i,—4,v/3,—/3,00}. = has poles at z = #+1 and at oco. Its Newton
polygon is shown in Figure 6.8. We see that |co;| = for i =0,...,4.

We can use the two poles of x at z = +1 for the integration divisor. As for the pole
at 0o, it is in R, but we can still use it since the correlation functions have no pole at
this point, hence the integrals converge.

Simple pole at z = 1. — We choose the integration divisor D = [z] — [1]. We calculate:

T po(21)y(21) T _
(6.124) C, = lelinl (gl F zlfgﬁ y(z1) =0,

po(21)y(21)? + p1(z1)y(z1)

(6.125) Cy = lim, (1)Ll 1 = 211131150(21)3/(21)2 =0,
and
Oy = lim po(20)y(21)* + p1(21)y(21)* + p2(21)y(21)
(6.126) a1 a(z)leal+
= lim (2(21)%y(21)° = 2(21)y(21)) = L.

The quantum curve is then

d d d d d d
6.127 Mr—zr—z—z— — Po—a®— 3+hx)y=0
( ) ( Tt dr iz dx T " dx+x+ + x)z/J ’

which is a quantization of the spectral curve.

Simple pole at z = —1. — The calculation is very similar for the integration divisor
D = [z] — [-1]. Evaluating the limits at z; — —1, we get C; =0, C2 = 0 and C3 = 1.
Therefore, the quantum curve is
d d d d d 5d
L L L~ L 2 771):
( Yz de de d Tzt dz tetd—he)y=0,

which can be obtained from the previous quantum curve by i — —h.

(6.128)
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Pole at . This case is a little different. We choose the integration divisor D =
[2] — [00]. Calculating the limits at z; — oo, we get C; = 0, Co = 1 and C3 = 0.
Therefore, in this case the quantum curve is

d d d d d d d
h4 I 7_h2 i 27—h2 i =0.
( xdxxdxxdxxdx xdarx dx :dex—i—x—i—?))w 0

This can be rewritten as

(6.129)

d d d d d d
4, @ @ a4 a4 .o 4 4 _
(6.130) (FL R et b h xdxasdxx—i—x—l—?)) P =0,

which is the quantization

with choice of ordering
(6.132) (Zyzyzyzy — Tyryr + T+ 3) ¢ = 0.

We can choose the more general integration divisor D = [z] — pq[1] — pe[—1] —
(1 = p1 — pa)[oo]. We get the two-parameter family of quantum curves

d d d d d 5d
6.133 he—a—2—x— — RPo—z—
( ) ( Yae " da Tiz” dx

d
—(1=p— MQ)ﬁQJS%SC +ax4+3+ (u1 — ug)hx)w =0,

which interpolates between the three quantizations above.

7. T-SPIN INTERSECTION NUMBERS AND T-AAIRY CURVE

In this section we study in more detail a particularly interesting example of a
spectral curve, namely:

(7.1) y —x=0,

which we call the r-Airy curve. We proved that ¢ as constructed in (5.12) for the
r-Airy curve is the WKB asymptotic solution to the differential equation

r

(7.2) (Wif—ﬁwzo

On the one hand, this differential equation is intimately related to the r-KdV
integrable hierarchy. On the other hand, Witten’s conjecture [58], which was proven

in [34], states that certain generating functions for r-spin intersection numbers satisfy
the m-KdV integrable hierarchy. From these two statements we can deduce that the
meromorphic differentials constructed from the topological recursion on the r-Airy
curve should be generating functions for r-spin intersection numbers. More precisely,
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Tueorem 7.1. Let Wy n(21,...,2,) be the meromorphic differentials constructed
from the topological recursion applied to the spectral curve y" — x = 0, with parame-
terization y = z,x = 2". Then

(7.3) Wyn(z1,...,2n)

—_ (_T)g—l(_l)n Z H Cmi,js T:qzrjjfiQ 1)de <H7—mi,ji> 7
g9

0<J1,--sin<r—21=1 i=1
0<my,...,mp

where the ([T, Tmi’ji>g are intersection numbers over the moduli space of r-spin

curves (in standard notation) and

L(m+(G+1)/r)
L(G+1D/r)

We note that the intersection numbers are non-vanishing only if

(7.4) Cm,j = (—1)™ j=0,...,r—=2.

n

(7.5) > (rmi+ji+1) = (r+1)(2g — 2+ n).

=1

This theorem was announced in September 2014 [13]. A detailed proof of this
theorem based on matrix model analysis will be provided in a future publication [7].
Meanwhile, an alternative proof was presented recently in the preprint [27] by relating
the topological recursion to Dubrovin’s superpotential.

7.1. CALCULATIONS. We can use this result to calculate r-spin intersection numbers.
Here are a few example calculations.

711, r=3. Let us list some results for r = 3. The first few meromorphic differ-
entials are:

2 2 2
Wi = dz1dzad
0:8(21,22, %) F102202 (323232,22 + 3212322 * 3212323) ’

10 8 3
W074(Zl, 294,23, Z4) = d21d22d2’3d24( 6.2.9 D) + 5.9
929222322 922232322 923202322
10 n 8 n 8 n 8 8
2 3 3 5 5.2
922282222 922222322 922282322 0 923232822 923232323
10 8 8 16 8
922222822 + 920222223 1 022222223 923232373 + 927222323
1737472 1437472 1737472 1437472 1737472

s+ s+ s+
2 2 3 2,6
923222225 922232325 922222325 0 922222228

Wii(z1) = dz (%)’

7 4 7
Wi a(21,22) = dz1d ( )
1,2(21, 22) = dz1dzy 27252 + 272327 + 272328

8 3 8 10 )

Wai(z1) =0,
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)04

770 605 680
Waa(21, 22) = dzrd (— . -
22(21,22) = dadze( ~ 7507155 — 750.125 ~ 729299
605 770
729282127 729;:3215)
W (z)_dz(_ 32725) 2 2
ST 0T 19683221 )
From these we can extract intersection numbers for » = 3. We get, at genus 0:
1
(7.6) (fo0)0 =1, (5om)o=1, (Gom0a7000 =1 (T91)0= 3
At genus 1,
_ 1 9 1 9 1
(7 7) <7'1,0>1 ~ 19 <TO,07'2,0>1 ~ 19 <7'1,0>1 ~ 19 <To,o7'3,0>1 ~ 19
’ 1 1 1
(TGameih = 35, (omomoht =5 (oAt = g5 (o = ¢
At genus 2,
1 11 17
7.8 S = (m2)e =
(7.8) (T0,17a,1)2 TR (T1,173,1) 1320° (T3,1)2 1320
And finally, at genus 3,
1
7.9 = —.
(7.9) (T6.1)s = 39954
Those results agree with known r-spin intersection numbers (see for instance [17]).
7.1.2. r = 4. — The first few meromorphic differentials are
1 3 1

Wo.3(z1, 22, 23) = ledZQdZ?,( + + +
321, 72, 23) 4252222 232322 4222522 0 232223

1 3
T 2a5 T 4)7

: 2 2
252327 4z3232]

Wia(z1) = dz (%»

( ) = dord ( 45 21 N 25 21 n 45
Wi2(z1,22) = dz1dz - -
1,2141, <2 12821022 128282F T 1282628 1282425 T 12822210
2079
W —d (_7)
21(21) = da ~grgy.m

from which we extract the following intersection numbers.

At genus 0,

(7.10) (T60m02)0 =1, (70075100 = 1.
At genus 1,

1 1 1 1
(7.11) (T1.001 = 3’ (0,072,001 = 3 (To2T12)1 = 96’ (TPo)1 = 3
and at genus 2,

3

7.12 = 55an”
(7.12) (ms.2)2 = 3565

These again match known results, such as in [17].
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We also calculated higher order meromorphic differentials and intersection num-
bers, and they match with known results. Calculations and results are available upon

request.
7.1.3. r=5. For r = 5, we get the following meromorphic differentials:
6 6 4 6
Wos (21,2, 28) = dzrdzadzs (
03(21, 22, 28) = dardzadzs 5252323 * 5252523 + 5232327 * 5232523 * 5252323
8 L 6 i 6 n 6 . 4 )
5232323 B23z323  ba3z2z1  b2lzdzt 5232320 )7
1
Wit =i ).
1,1(21) = dz1 57
11 9 8 6
Wi o(z1,20) = dzid ( _ _
12(21, 72) = dz1dzg 2523222 2523021 252927 * 252327
8 9 11 )
252520 2528210 2522212 )7
429
Voo = (5 22).
21(21) = da1 (~ o
The corresponding intersection numbers are as follows. At genus 0,
(713) <Tg707'0,3>0 = 1, <T070T0717'072>0 = 17 <Tg71>0 =1.
At genus 1,
1 1
(T1.001 = 5 (T0,0T2,0)1 = 5
(7.14)
(T0,27T1,3)1 = L (T0,37T1,2)1 = S (TP = =
0,271, 607 s s 607 1,0 6)
and at genus 2,
11
7.15 = —.
(7.15) (rs2)2 = 505

These also match known results, such as in [17].

We also calculated higher order meromorphic differentials and intersection num-
bers, and they match with known results. Calculations and results are available upon
request.

REFERENCES

[1] A. Arexanprov — “Open intersection numbers, Kontsevich-Penner model and cut-and-join oper-
ators”, J. High Energy Phys. (2015), no. 8, arXiv:1412.3772.

[2] J. E. Anpersen, L. O. Cuexknov, P. Norsury & R. C. Pexner — “Models of discretized moduli spaces,
cohomological field theories, and Gaussian means”, arXiv:1501.05867, 2015.

, “Topological recursion for Gaussian means and cohomological field theories”, arXiv:
1512.09309, 2015.

[4] H. F. Baker — “Examples of applications of newton’s polygon to the theory of singular points of
algebraic functions”, Trans. Cambridge Philos. Soc. 15 (1893), p. 403-450.

[5] P.BeeLEN — “A generalization of Baker’s theorem”, Finite Fields Appl. 15 (2009), no. 5, p. 558—
568.

[6] P.BeeLen & R. Periikaan — “The Newton polygon of plane curves with many rational points”,
Des. Codes Cryptogr. 21 (2000), no. 1-3, p. 41-67.

JE.P.— M., 2017, tome 4


http://arxiv.org/abs/1412.3772
http://arxiv.org/abs/1501.05867
http://arxiv.org/abs/1512.09309
http://arxiv.org/abs/1512.09309

906

[7]
(8]

(9]
(10]

(11]

(21]

[22

23]
(24]
25]

[26]

JLEP

V. Boucnarp & B. EyNnarp

R. Berriarp & B. Eynarp — To be published.
M. Bercire & B. Evnarp — “Determinantal formulae and loop equations”, arXiv:0901.3273,
2009.
, “Universal scaling limits of matrix models, and (p,q) Liouville gravity”, arXiv:
0909.0854, 2009.
G. Boror & B. Eynarp — “Geometry of spectral curves and all order dispersive integrable system”,
SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), arXiv:1110.4936.
, “All order asymptotics of hyperbolic knot invariants from non-perturbative topological
recursion of A-polynomials”, Quantum Topol. 6 (2015), no. 1, p. 39-138, arXiv:1205.2261.
V. Boucnarp & B. Evnarp — “Think globally, compute locally”, J. High Energy Phys. (2013),
no. 2, arXiv:1211.2302v2.

, talk given at the workshop “Quantum curves, Hitchin systems, and the Eynard-Orantin
theory” at the American Institute of Mathematics, Sept. 2014.
V. Boucnarp, D. HErRNANDEZ SErRRANO, X. Livu & M. Murase — “Mirror symmetry for orbifold Hurwitz
numbers”, J. Differential Geom. 98 (2014), no. 3, p. 375-423, arXiv:1301.4871.
V. Boucnarp, J. Hurchinson, P. Loviencar, M. Merers & M. Rupert — “A generalized topological
recursion for arbitrary ramification”, Ann. Henri Poincaré 15 (2014), no. 1, p. 143-169.
V. Boucnarp, M. KLemm, M. MariXo & S. Pasquerti — “Remodeling the B-model”, Comm. Math.
Phys. 287 (2009), no. 1, p. 117-178.
L. Brezin & S. Hikamr — “Intersection numbers of Riemann surfaces from Gaussian matrix mod-
els”, J. High Energy Phys. (2007), no. 10, arXiv:0709.3378.
L. Cuexnov, B. Eynarp & N. Orantin — “Free energy topological expansion for the 2-matrix
model”, J. High Energy Phys. (2006), no. 12, arXiv:math-ph/0603003.
S. Cobesipo, A. Grasst & M. Marivo — “Spectral theory and mirror curves of higher genus”, Ann.
Henri Poincaré 18 (2017), no. 2, p. 559-622, arXiv:1507.02096.
R. Dukcraar, H. Fust & M. Manase — “The volume conjecture, perturbative knot invariants, and
recursion relations for topological strings”, Nuclear Phys. B 849 (2011), no. 1, p. 166-211,
arXiv:1010.4542.
N. Do, A. Dyer & D. Maruews — “Topological recursion and a quantum curve for monotone
Hurwitz numbers”, J. Geom. Phys. 120 (2017), p. 19-36, arXiv:1408.3992.
N. Do & D. Manescu — “Quantum curves for the enumeration of ribbon graphs and hypermaps”,
Commun. Number Theory Phys. 8 (2014), no. 4, p. 677701, arXiv:1312.6869.
N. Do & P. Norsury — “Topological recursion for irregular spectral curves”, arXiv:1412.8334,
2014.
O. Dumrtrescu & M. Murase — “Quantization of spectral curves for meromorphic Higgs bundles
through topological recursion”, arXiv:1411.1023, 2014.

, “Quantum curves for Hitchin fibrations and the Eynard-Orantin theory”, Lett. Math.

Phys. 104 (2014), no. 6, p. 635-671, arXiv:1310.6022.

P. Dunin-Barkowski, M. Murase, P. Norsury, A. Pororitov & S. Snabpriy — “Quantum spectral
curve for the Gromov-Witten theory of the complex projective line”, J. reine angew. Math. 726
(2017), p. 267289, arXiv:1312.5336.
P. Dunin-Barkowski, P. Norsury, N. Orantin, A. Pororitov & S. Suaprin — “Dubrovin’s superpo-
tential as a global spectral curve”, arXiv:1509.06954, 2015.
P. Dunin-Barkowski, N. Orantin, S. Suaprin & L. Seirz — “Identification of the Givental formula
with the spectral curve topological recursion procedure”, Comm. Math. Phys. 328 (2014), no. 2,
p. 669-700, arXiv:1211.4021.
B. Eynarp — “Topological expansion for the 1-Hermitian matrix model correlation functions”,
J. High Energy Phys. (2004), no. 11, arXiv:hep-th/0407261.
B. Eyxarp & M. Mario — “A holomorphic and background independent partition function for
matrix models and topological strings”, J. Geom. Phys. 61 (2011), no. 7, p. 1181-1202, arXiv:
0810.4273.
B. Eyxarp & N. Orantin — “Invariants of algebraic curves and topological expansion”, Commun.
Number Theory Phys. 1 (2007), no. 2, p. 347-452, arXiv:math-ph/0702045v4.

, “Algebraic methods in random matrices and enumerative geometry”, arXiv:0811.3531,
2008.

M., 2017, tome 4


http://arxiv.org/abs/0901.3273
http://arxiv.org/abs/0909.0854
http://arxiv.org/abs/0909.0854
http://arxiv.org/abs/1110.4936
http://arxiv.org/abs/1205.2261
http://arxiv.org/abs/1211.2302v2
http://arxiv.org/abs/1301.4871
http://arxiv.org/abs/0709.3378
http://arxiv.org/abs/math-ph/0603003
http://arxiv.org/abs/1507.02096
http://arxiv.org/abs/1010.4542
http://arxiv.org/abs/1408.3992
http://arxiv.org/abs/1312.6869
http://arxiv.org/abs/1412.8334
http://arxiv.org/abs/1411.1023
http://arxiv.org/abs/1310.6022
http://arxiv.org/abs/1312.5336
http://arxiv.org/abs/1509.06954
http://arxiv.org/abs/1211.4021
http://arxiv.org/abs/hep-th/0407261
http://arxiv.org/abs/0810.4273
http://arxiv.org/abs/0810.4273
http://arxiv.org/abs/math-ph/0702045v4
http://arxiv.org/abs/0811.3531

ReconstrucTING WKB FROM TOPOLOGICAL RECURSTON 907

, “Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topo-
logical recursion, a proof of the BKMP conjecture”, Comm. Math. Phys. 337 (2015), no. 2,
p. 483-567, arXiv:1205.1103.
C. FaBEer, S. Suaprin & D. Zvonkine — “Tautological relations and the r-spin Witten conjecture”,
Ann. Sci. Ecole Norm. Sup. (4) 43 (2010), no. 4, p. 621-658, arXiv:math/0612510.
B. Fang, C.-C. M. Liv & Z. Zo~e — “All genus open-closed mirror symmetry for affine toric Calabi-
Yau 3-orbifolds”, arXiv:1310.4818, 2013.
H. Fuit, S. Gukov & P. Surkowskr — “Volume conjecture: refined and categorified”, Adv. Theo.
Math. Phys. 16 (2012), no. 6, p. 16691777, arXiv:1203.2182.
__, “Super-A-polynomial for knots and BPS states”, Nuclear Phys. B 867 (2013), no. 2,
p. 506-546, arXiv:1205.1515.
S. Garouraripis — “Difference and differential equations for the colored Jones function”, J. Knot
Theory Ramifications 17 (2008), no. 4, p. 495-510, arXiv:math/0306229.
S. Garouraripis, P. Kucnarskr & P Surkowskr — “Knots, BPS states, and algebraic curves”, Comm.
Math. Phys. 346 (2016), no. 1, p. 75-113, arXiv:1504.06327.
A. Grasst, Y. Harsupa & M. Marizo — “Topological strings from quantum mechanics”, Ann. Henri
Poincaré 17 (2016), no. 11, p. 3177-3235, arXiv:1410.3382.
J. Gu, A. Kuemm, M. Marivo & J. Reuter — “Exact solutions to quantum spectral curves by
topological string theory”, J. High Energy Phys. (2015), no. 10, arXiv:1506.09176.
S. Gukov & P. Surkowskr — “A-polynomial, B-model, and quantization”, J. High Energy Phys.
(2012), no. 02, arXiv:1108.0002.
R. Kasnagev & M. Marixo — “Operators from mirror curves and the quantum dilogarithm”, Comm.
Math. Phys. 346 (2016), no. 3, p. 967-994, arXiv:1501.01014.
R. Kasaaev, M. Marizo & S. Zakany — “Matrix models from operators and topological strings, 2”,
Ann. Henri Poincaré 17 (2016), no. 10, p. 2741-2781, arXiv:1505.02243.
A. Kasnani-Poor — “Quantization condition from exact WKB for difference equations”, J. High
Energy Phys. (2016), no. 06, arXiv:1604.01690.
M. Kazarian & P. Zocrar — “Virasoro constraints and topological recursion for Grothendieck’s
dessin counting”, Lett. Math. Phys. 105 (2015), no. 8, p. 1057-1084, arXiv:1406.5976.
X. Liu, M. Murase & A. Sorkin — “Quantum curves for simple Hurwitz numbers of an arbitrary
base curve”, arXiv:1304.0015, 2013.
M. Mariko — “Open string amplitudes and large order behavior in topological string theory”,
J. High Energy Phys. (2008), no. 03, arXiv:hep-th/0612127.
, “Spectral theory and mirror symmetry”, arXiv:1506.07757, 2015.
M. L. Meura — Random matrices, third ed., Pure and Applied Mathematics, vol. 142, Else-
vier/Academic Press, Amsterdam, 2004.
T. Miranov — “The Eynard-Orantin recursion for the total ancestor potential”, Duke Math. J.
163 (2014), no. 9, p. 1795-1824, arXiv:1211.5847.
M. Murase, S. Suaprin & L. Seirz — “The spectral curve and the Schrodinger equation of double
Hurwitz numbers and higher spin structures”, Commun. Number Theory Phys. 7 (2013), no. 1,
p.- 125-143, arXiv:1301.5580.
M. Murase & P. Surkowskr — “Spectral curves and the Schrédinger equations for the Eynard-
Orantin recursion”, Adv. Theo. Math. Phys. 19 (2015), no. 5, p. 955-1015, arXiv:1210.3006.
P. Norsury & N. Scorr — “Polynomials representing Eynard-Orantin invariants”, Q. J. Math. 64
(2013), no. 2, p. 515-546, arXiv:1001.0449.
N. OranTIN — “Symplectic invariants, Virasoro constraints and Givental decomposition”, arXiv:
0808.0635, 2008.
B. Sarnuk — “Topological recursion for open intersection numbers”, Commun. Number Theory
Phys. 10 (2016), no. 4, p. 833-857, arXiv:1601.04049.
. P. Wiener — “On the statistical distribution of the widths and spacings of nuclear resonance
levels”, Proc. Cambridge Phil. Soc. (4) 47 (1951), p. 790-798.
. Wirtten — “Algebraic geometry associated with matrix models of two-dimensional gravity”,
in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish,
Houston, TX, 1993, p. 235-269.

JE.P.— M., 2017, tome 4


http://arxiv.org/abs/1205.1103
http://arxiv.org/abs/math/0612510
http://arxiv.org/abs/1310.4818
http://arxiv.org/abs/1203.2182
http://arxiv.org/abs/1205.1515
http://arxiv.org/abs/math/0306229
http://arxiv.org/abs/1504.06327
http://arxiv.org/abs/1410.3382
http://arxiv.org/abs/1506.09176
http://arxiv.org/abs/1108.0002
http://arxiv.org/abs/1501.01014
http://arxiv.org/abs/1505.02243
http://arxiv.org/abs/1604.01690
http://arxiv.org/abs/1406.5976
http://arxiv.org/abs/1304.0015
http://arxiv.org/abs/hep-th/0612127
http://arxiv.org/abs/1506.07757
http://arxiv.org/abs/1211.5847
http://arxiv.org/abs/1301.5580
http://arxiv.org/abs/1210.3006
http://arxiv.org/abs/1001.0449
http://arxiv.org/abs/0808.0635
http://arxiv.org/abs/0808.0635
http://arxiv.org/abs/1601.04049

908 V. Boucnarp & B. EyNnarp

Manuscript received October 4, 2016
accepted July 25, 2017

Vincent Boucuarp, Department of Mathematical & Statistical Sciences, University of Alberta, 632
CAB

Edmonton, Alberta, Canada T6G 2G1

E-mail : vincent .bouchard@ualberta.ca

Url : https://sites.ualberta.ca/~vbouchar/

Bertranp Evnarp, Institut de Physique Théorique, CEA Saclay
91191 Gif-sur-Yvette cedex, France

E-mail : bertrand.eynard@cea.fr

Url : http://ipht.cea.fr/Pisp/33/bertrand.eynard.html

JEP M., 2017, lome /4


mailto:vincent.bouchard@ualberta.ca
https://sites.ualberta.ca/~vbouchar/
mailto:bertrand.eynard@cea.fr
http://ipht.cea.fr/Pisp/33/bertrand.eynard.html

	1. Introduction
	2. The geometry
	3. Topological recursion
	4. Pole analysis
	5. Quantum curves
	6. Some examples
	7. r-spin intersection numbers and r-Airy curve
	References

