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ON THE PERSISTENCE OF

HÖLDER REGULAR PATCHES OF DENSITY FOR

THE INHOMOGENEOUS NAVIER-STOKES EQUATIONS

by Raphaël Danchin & Xin Zhang

Abstract. — In our recent work dedicated to the Boussinesq equations [15], we established
the persistence of solutions with piecewise constant temperature along interfaces with Hölder
regularity. We here address the same question for the inhomogeneous Navier-Stokes equations
satisfied by a viscous incompressible and inhomogeneous fluid. We prove that, indeed, in the
slightly inhomogeneous case, patches of densities with C1,ε regularity propagate for all time.
Our result follows from the conservation of Hölder regularity along vector fields moving with
the flow. The proof of that latter result is based on commutator estimates involving para-
vector fields, and multiplier spaces. The overall analysis is more complicated than in [15], since
the coupling between the mass and velocity equations in the inhomogeneous Navier-Stokes
equations is quasilinear while it is linear for the Boussinesq equations.

Résumé (Persistance de la régularité höldérienne des poches de densité pour les équations de
Navier-Stokes inhomogène)

Dans notre travail récent consacré aux équations de Boussinesq [15], on a établi la persis-
tance de solutions avec température constante par morceaux le long d’interfaces à régularité
höldérienne. On aborde ici la même question pour les équations de Navier-Stokes inhomogène
satisfaites par un liquide visqueux incompressible à densité variable. On démontre que, dans le
cas légèrement non homogène, les poches de densité avec régularité C1,ε se propagent pour tout
temps. Notre résultat est conséquence de la conservation de la régularité höldérienne le long
des champs de vecteurs transportés par le flot de la solution. La preuve de ce dernier résultat
repose sur des estimations de commutateur mettant en jeu des para-champs et des espaces de
multiplicateurs. L’analyse est plus compliquée que dans [15], dans la mesure où le couplage
entre les équations de la masse et de la vitesse dans les équations de Navier-Stokes inhomogène
est quasilinéaire alors qu’il est linéaire pour les équations de Boussinesq.
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Introduction

We are concerned with the following inhomogeneous incompressible Navier-Stokes
equations in the whole space RN with N > 2:

(INS)


∂tρ+ u · ∇ρ = 0,

ρ(∂tu+ u · ∇u)− µ∆u+∇P = 0,

div u = 0,

(ρ, u)|t=0 = (ρ0, u0).

Above, the unknowns (ρ, u, P ) ∈ R+ × RN × R stand for the density, velocity vector
field and pressure, respectively, and the so-called viscosity coefficient µ is a positive
constant.

A number of recent works have been dedicated to the mathematical analysis of the
system (INS). In particular, it is well-known that if ρ0 is positive and bounded, and
√
ρ0 u0 is in L2(RN ), then the system (INS) admits a global weak solution with finite

energy (see [3] and the references therein). That result has been extended by J. Simon
in [25] to the case ρ0 > 0, and by P.-L. Lions in [23] to viscosity coefficients depending
on the density.

In [23], P.-L. Lions raised the so-called density patch problem. It may be stated as
follows: assume that ρ0 = 1D0

for some domain D0. Can we find conditions on u0

that ensure that

(0.1) ρ(t) = 1Dt for all t > 0

for some domain Dt with the same regularity as the initial one ?
Whenever √ρ0 u0 is in L2(RN ), the renormalized solutions theory in [16] by

R.DiPerna and P.-L. Lions for transport equations ensures that the global weak
solutions mentioned above have a volume preserving generalized flow ψ and that we
do have (0.1) with Dt being the image of D0 by ψ(t, ·). However, without assuming
more on u0, it is very unlikely that one can get information on the persistence of
regularity of Dt for positive times.

The present paper aims at making one more step toward solving Lions’ question,
by considering the case where

(0.2) ρ0 = η11D0
+ η21Dc0 ,

for some simply connected bounded domain D0 of class C1,ε.
Our goal is to find as general as possible conditions on u0, that guarantee that for

all time t > 0, the domain Dt := ψ(t,D0) remains C1,ε, and the density reads

(0.3) ρ(t, ·) = η11Dt + η21Dct .

Several recent works give a partial answer to that issue if |η1− η2| is small enough.
Indeed, the paper by the first author with P.B.Mucha [11] ensures that if ρ0 is given
by (0.2) and u0 belongs to the critical Besov space Ḃ(N/p)−1

p,1 (RN ) (see the definition
below in (1.2)), then (0.3) is fulfilled for small time (and for all time if u0 is small)

J.É.P. — M., 2017, tome 4



Density patches in the inhomogeneous Navier-Stokes equations 783

and the C1 regularity is preserved. Likewise, according to the work [18] by J.Huang,
M.Paicu and P. Zhang (see also [14]), one may solve (INS) if the initial density is
close (for the L∞ norm) to some positive constant and u0 belongs to

Ḃ(N/p)−1
p,r (RN ) ∩ Ḃ(N/p)+δ−1

p,r (RN )

for some 1 < r <∞. As the flow of the corresponding solution is C1,δ′ for all δ′ < δ,
one can deduce that if ρ0 is given by (0.2) then the C1,ε regularity of the boundary is
preserved provided that ε < δ (as the flow need not be in C1,δ).

Finally, as noticed in [12] then improved by M.Paicu, P. Zhang and Z. Zhang [24], in
the 2D case, if working within the energy framework, then one may avoid the smallness
condition on the density and solve (INS) globally if ρ0 and u0 just satisfy

(0.4) 0 < η1 6 ρ0 6 η2, u0 ∈ Hs(R2) for some s > 0.

As the constructed velocity field therein admits a C1 flow, one can readily deduce
that, if ρ0 is given by (0.2) with D0 ⊂ R2 then the C1 regularity of the boundary is
preserved.

The common point between the above works is that the hypotheses on u0 do
not take into account the non-isotropic structure of ρ0. Consequently, the maximal
regularity that can be propagated for the patch is limited by the overall regularity of
the initial velocity. In two recent papers [22, 21] devoted to the 2D case (see also [20]
for the 3-D case), X. Liao and P. Zhang pointed out that only tangential regularity
along the boundary of D0 was needed to propagate high Sobolev regularity of the
patch. They followed J.-Y.Chemin’s approach in his work [7] dedicated to the vortex
patches problem for the 2-D incompressible Euler equations, and characterized the
regularity of the boundary of the domain by means of one (or several) tangent vector
fields that evolve according to the flow of the velocity field.

More precisely, assume with no loss of generality that ∂D0 coincides with the level
set f−1

0 ({0}) of some (at least C1) function f0 : RN → R that does not degenerate in
a neighborhood of ∂D0, namely there exists some open neighborhood V0 of D0 such
that

(0.5) D0 = f−1
0 ({0}) ∩ V0 and ∇f0 does not vanish on V0.

Then Dt coincides with f−1
t ({0}), where ft ≡ f(t, ·) := f0 ◦ ψ−1

t with ψt := ψ(t, ·)
and ψ being the solution of the (integrated) ordinary differential equation:

(0.6) ψ(t, x) = x+

∫ t

0

u
(
τ, ψ(τ, x)

)
dτ.

Now, the tangent vector field Xt := ∇⊥ft coincides with the evolution of X0 := ∇⊥f0

along the flow of u, namely:(1)

(0.7) X(t, ·) := (∂X0
ψt) ◦ ψ−1

t ,

(1)For any vector field Y = Y k(x)∂k and function f in C1(RN ;R), we denote by ∂Y f the direc-
tional derivative of f along Y , that is, with the Einstein summation convention, ∂Y f := Y k∂kf =

Y · ∇f .

J.É.P. — M., 2017, tome 4



784 R. Danchin & X. Zhang

and thus satisfies the transport equation

(0.8)
{
∂tX + u · ∇X = ∂Xu,

X|t=0 = X0.

Consequently, the problem of persistence of regularity for the patch reduces to that
of the vector field X solution to (0.8).

In their first paper [22], X. Liao and P. Zhang justified that heuristics in the case
where the jump |η1 − η2| is small enough, and u0 ∈

(
W 1,p(R2)

)2 for 2 < p < 4.
Their proof was essentially based on weighted Lp −Lq estimates for the velocity and
allowed to propagate Sobolev regularity W k,p of the boundary, with k large enough
(in particular the boundary is at least C2,ε for some ε > 0). In a second paper [21],
after revisiting the approach of [24] (that is Sobolev spaces Hs with s > 0 and thus
finite energy framework), X. Liao and P. Zhang succeeded in proving a similar result
for general positive η1 and η2 in (0.2). The corresponding level set function f0 has
to be in W 2+k,p(R2) for some integer number k > 1 and p ∈ ]2, 4[, hence D0 is still
at least C2,ε. As regards the initial velocity field u0, it has to satisfy the following
striated regularity property along the vector field X0 := ∇⊥f0:(

∂`X0
u0 ∈ Bs+ε(k−`)/k2,1 (R2)

)2 for all ` ∈ {0, . . . , k}

with 0 < s < 1− ε and (s, p) in ]0, 1[× ]2,min{4, 2/(1− s)}[.
In the present paper, we propose a simpler approach that allows to propagate

just C1,ε Hölder regularity (for all ε ∈ ]0, 1[), within a critical regularity framework.
By critical, we mean that the solution space that we shall consider has the same
scaling invariance by time and space dilations as (INS) itself, namely:

(0.9) (ρ, u, P )(t, x) −→ (ρ, λu, λ2P )(λ2t, λx) and (ρ0, u0)(x) −→ (ρ0, λu0)(λx).

That framework is by now classical for the homogeneous Navier-Stokes equations
(that is ρ is a positive constant in (INS)) in the whole space RN (see e.g. [4, 19] and
the references therein). As observed by the first author in [10] (see also H.Abidi in [1]
and H.Abidi and M.Paicu in [2]), working in a suitable critical functional framework
is still relevant in the inhomogeneous situation.

Acknowledgements. — We are grateful to the referees for pointing out the work [17]
by F.Gancedo and E.García-Juárez that has been posted on arXiv a few weeks after
we submitted our paper. There, in the 2D case, the C1,ε regularity of the interface is
propagated whenever the density is given by (0.2) with η1 > 0 and η2 > 0, and u0 is
inHε′ for some ε′ > ε. That result relies on the nice observation that in that particular
case, the flow of the solution constructed in [24] has C1,ε regularity in all directions. In
the present paper, we are able to consider densities which are not piecewise constant
(like in (0.2) with a smooth variable η1 for example), and velocity fields that have
just critical regularity but we need the density to be close to some positive constant.
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Part of this work has been performed during a visit of the second author in Peking
University. Zhifei Zhang and Chao Wang are warmly thanked for their welcome and
stimulating discussions during this period.

1. Results

Before stating our main result, we need to introduce a few notations. First, we
recall the definition of Besov spaces: following [4, §2.2], we consider two smooth radial
functions χ and ϕ supported in {ξ ∈ RN : |ξ| 6 4/3} and {ξ ∈ RN : 3/4 6 |ξ| 6 8/3},
respectively, and satisfying∑

j∈Z
ϕ(2−jξ) = 1, ∀ ξ ∈ RN r {0}, χ(ξ) +

∑
j>0

ϕ(2−jξ) = 1, ∀ ξ ∈ RN .(1.1)

Then we define Fourier truncation operators as follows:

∆̇j := ϕ(2−jD), Ṡj := χ(2−jD), ∀j ∈ Z; ∆j := ϕ(2−jD), ∀j > 0, ∆−1 := χ(D).

For all triplet (s, p, r) ∈ R × [1,∞]2, the homogeneous Besov space Ḃsp,r(RN ) (just
denoted by Ḃsp,r if the value of the dimension is clear from the context) is defined by

(1.2) Ḃsp,r(RN ) :=
{
u ∈ S ′h(RN ) : ‖u‖Ḃsp,r :=

∥∥2js‖∆̇ju‖Lp
∥∥
`r(Z)

<∞
}
,

where S ′h(RN ) is the subspace of tempered distributions S ′(RN ) defined by

S ′h(RN ) :=
{
u ∈ S ′(RN ) : lim

j→−∞
Ṡju = 0

}
·

We shall also use sometimes the following inhomogeneous Besov spaces:

(1.3) Bsp,r(RN ) :=
{
u ∈ S ′(RN ) : ‖u‖Bsp,r :=

∥∥2js‖∆ju‖Lp
∥∥
`r(N∪{−1}) <∞

}
.

Throughout, we adopt the common notation bsp,r(RN ) to denote Bsp,r(RN ) or
Ḃsp,r(RN ).

It is well-known that Sobolev or Hölder spaces belong to the Besov spaces hierarchy.
For instance Ḃs2,2(RN ) coincides with the homogeneous Sobolev space Ḣs(RN ), and
we have

(1.4) Bs∞,∞(RN ) = C0,s(RN ) = L∞(RN ) ∩ Ḃs∞,∞(RN ) if s ∈ ]0, 1[.

To emphasize that connection, we shall often use the notation Ċ s := Ḃs∞,∞
(or C s := Bs∞,∞) for any s ∈ R.

When investigating evolutionary equations in critical Besov spaces, it is wise to use
the following tilde homogeneous Besov spaces first introduced by J.-Y.Chemin in [8]:
for any T ∈ ]0,+∞] and (s, p, r, γ) ∈ R× [1,+∞]3, we set(2)

L̃γT
(
Ḃsp,r

)
:=
{
u ∈ S ′(]0, T [×RN ) : lim

j→−∞
Ṡju = 0 in LγT (L∞) and ‖u‖L̃γT (Ḃsp,r) <∞

}
,

(2)For T ∈ ]0,+∞[, p ∈ [1,+∞] and E a Banach space, the notation Lp
T (E) denotes the space of

Lp functions on ]0, T [ with values in E, and Lp(R+;E) corresponds to the case T = +∞. We keep
the same notation for vector or matrix-valued functions.

J.É.P. — M., 2017, tome 4



786 R. Danchin & X. Zhang

where
‖u‖L̃γT (Ḃsp,r) :=

∥∥2js‖∆̇ju‖LγT (Lp)

∥∥
`r(Z)

<∞.

The index T will be omitted if equal to +∞, and we shall denote

C̃b(R+; Ḃsp,r) := L̃∞(R+; Ḃsp,r) ∩ C(R+; Ḃsp,r).

We also need to introduce the following spaces for (σ, p, T ) ∈ R× [1,∞]× ]0,∞]:

Ėσp (T ) :=
{

(v,∇Q) : v ∈ C̃b
(
[0, T [; Ḃ

(N/p)−1+σ
p,1 ), (∂tv,∇2v,∇Q) ∈ L1

T

(
Ḃ

(N/p)−1+σ
p,1

)}
,

endowed with the norm

‖(v,∇Q)‖Ėσp (T ) := ‖v‖
L̃∞T (Ḃ

(N/p)+σ−1
p,1 )

+ ‖(∂tv,∇2v,∇Q)‖
L1
T (Ḃ

(N/p)+σ−1
p,1 )

.

For notational simplicity, we shall omit σ or T in the notation Ėσp (T ) whenever σ is
zero or T =∞. For instance, Ėp := Ė0

p(∞).
Finally, we shall make use of multiplier spaces associated to pairs (E,F ) of Banach

spaces included in the set of tempered distributions. The definition goes as follows:

Definition. — Let E and F be two Banach spaces embedded in S ′(RN ). The mul-
tiplier space M(E → F ) (simply denoted by M(E) if E = F ) is the set of those
functions ϕ satisfying ϕu ∈ F for all u in E and, additionally,

(1.5) ‖ϕ‖M(E→F ) := sup
u∈E
‖u‖

E
61

‖ϕu‖F <∞.

It goes without saying that ‖ · ‖M(E→F ) is a norm on M(E → F ) and that one
may restrict the supremum in (1.5) to any dense subset of E.

The following result that has been proved in [11] is the starting point of our anal-
ysis:(3)

Theorem 1.1. — Let p ∈ [1, 2N [ and u0 be a divergence-free vector field with coef-
ficients in Ḃ

(N/p)−1
p,1 . Assume that ρ0 belongs to the multiplier space M

(
Ḃ

(N/p)−1
p,1

)
.

There exist two constants c and C depending only on p and on N such that if

‖ρ0 − 1‖M(Ḃ
(N/p)−1
p,1 )

+ ‖u0‖Ḃ(N/p)−1
p,1

6 c

then the system (INS) in RN with N > 2 has a unique solution (ρ, u,∇P ) satisfying

ρ ∈ L∞
(
R+;M

(
Ḃ

(N/p)−1
p,1

))
and (u,∇P ) ∈ Ėp.

Furthermore, the following inequality is fulfilled:

(1.6) ‖u‖
L̃∞(R+;Ḃ

(N/p)−1
p,1 )

+ ‖∂tu,∇2u,∇P‖
L1(R+;Ḃ

(N/p)−1
p,1 )

6 C‖u0‖Ḃ(N/p)−1
p,1

.

(3)As the viscosity coefficient µ will be fixed once and for all, we shall set it to 1 for notational
simplicity. Likewise, we shall assume the reference density at infinity to be 1.
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Density patches in the inhomogeneous Navier-Stokes equations 787

By classical embedding, having ∇2u in L1(R+; Ḃ
(N/p)−1
p,1 ) implies that ∇u is in

L1(R+; Cb). Therefore the flow ψ of u defined by (0.6) is in C1. Now, it has been
observed in [11] that for any uniformly C1 bounded domain D0, the function 1D0

belongs toM
(
Ḃsp,1

)
whenever −1 + 1/p < s < 1/p. Therefore, one may deduce from

Theorem 1.1 that if ρ0 is given by (0.2), if u0 is in Ḃ(N/p)−1
p,1 for some N −1 < p < 2N

and if
‖u0‖Ḃ(N/p)−1

p,1
+ |η2 − η1| is small enough

then the system (INS) admits a unique global solution (ρ, u,∇P ) with (u,∇P ) in Ėp
and ρ given by (0.3) with Dt in C1 for all time t > 0.

The (parabolic type) gain of regularity for u pointed out in Theorem 1.1 is opti-
mal, as well as the embedding of ḂN/pp,1 in the set of continuous bounded functions.
Therefore, one cannot expect the flow of u given by Theorem 1.1 to be in any Hölder
space C1,α for some α > 0, which prevents our propagating more than C1 regularity.
Following [22, 21], it is natural to make an additional tangential regularity assump-
tion on u0. This motivates the following general result of persistence of geometric
structures for (INS).

Theorem 1.2. — Let ε be in ]0, 1[ and p satisfy

(1.7) N/2 < p < min
{
N/(1− ε), 2N

}
·

Let u0 be a divergence-free vector field with coefficients in Ḃ(N/p)−1
p,1 . Assume that the

initial density ρ0 is bounded and belongs to the multiplier space

M
(
Ḃ

(N/p)−1
p,1

)
∩M(Ḃ

(N/p)+ε−2
p,1 ).

There exists a constant c depending only on p and N such that if

(1.8) ‖ρ0 − 1‖M(Ḃ
(N/p)−1
p,1 )∩M(Ḃ

(N/p)+ε−2
p,1 )∩L∞ + ‖u0‖Ḃ(N/p)−1

p,1
6 c,

then the system (INS) in RN has a unique global solution (ρ, u,∇P ) with

ρ ∈ L∞
(
R+;L∞ ∩M

(
Ḃ

(N/p)−1
p,1

)
∩M(Ḃ

(N/p)+ε−2
p,1 )

)
and (u,∇P ) ∈ Ėp.

Moreover, for any vector field X0 with C0,ε regularity (assuming in addition that
ε > 2−N/p if divX0 6≡ 0), if the following conditions are fulfilled

∂X0
ρ0 ∈M

(
Ḃ

(N/p)−1
p,1 −→ Ḃ

(N/p)+ε−2
p,1

)
and ∂X0

u0 ∈ Ḃ(N/p)+ε−2
p,1 ,

then the system (0.8) in RN has a unique global solution X ∈ Cw(R+; C0,ε), and we
have

∂Xρ ∈ L∞
(
R+;M

(
Ḃ

(N/p)−1
p,1 −→ Ḃ

(N/p)+ε−2
p,1

))
and (∂Xu, ∂X∇P ) ∈ Ėε−1

p .

Some comments are in order:

J.É.P. — M., 2017, tome 4



788 R. Danchin & X. Zhang

– The divergence-free property on X0 is conserved during the evolution because if
one takes the divergence of (0.8), then we get, remembering that div u = 0,

(1.9)

∂t divX + u · ∇ divX = 0,

divX|t=0 = divX0.

– In the case divX0 6= 0, the additional constraint on (ε, p) is due to the fact
that the product of a general C0,ε function with a Ḃ(N/p)−2

p,1 distribution need not be
defined if the sum of regularity coefficients, namely ε+ (N/p)− 2, is negative.

– The vector field X given by (0.8) has the Finite Propagation Speed Property.
Indeed, from the definitions of the flow and of the space Ėp, and from the embedding
of ḂN/pp,1 (RN ) in Cb(RN ), we readily get(4) for all t > 0 and x ∈ RN ,∣∣ψ(t, x)− x

∣∣ . √t ‖u‖
L2
t (Ḃ

N/p
p,1 )

6 C
√
t ‖u0‖Ḃ(N/p)−1

p,1
.

Therefore, if the initial vector field X0 is supported in the set K0 then X(t) is sup-
ported in some set Kt such that

diam(Kt) 6 diam(K0) + C
√
t ‖u0‖Ḃ(N/p)−1

p,1
.

– One can prove a similar result (only local in time) for large u0 in Ḃ
(N/p)−1
p,1 .

Moreover, we expect our method to be appropriate for handling Hölder regularity Ck,ε
if making suitable assumptions on ∂jX0

ρ0 and ∂jX0
u0 for j = 0, . . . , k. We refrained

from writing out here this generalization to keep the presentation as short as possible.
In the density patch situation (that is if ρ0 is given by (0.2)) the condition on ∂X0

ρ0

is trivially satisfied as the derivative of the density along any continuous vector field
that is tangent to ∂D0, vanishes. This implies the following statement of propagation
of Hölder regularity of density patches for (INS) in the plane:

Theorem 1.3. — Let D0 be a simply connected bounded domain of R2 satisfying (0.5)
for some function f0 ∈ C1,ε(R2;R) with ε in ]0, 1[. There exists a constant η0 depend-
ing only on D0 and such that if

(1.10) ρ0 := (1 + η)1D0
+ 1Dc0 with η ∈ ]− η0, η0[

and if the divergence free vector-field u0 ∈ S ′h(R2) has vorticity ω0 := ∂1u
2
0 − ∂2u

1
0

given by

(1.11) ω0 = ω0 + ω̃0 1D0 with div(ω0∇⊥f0) = 0 and
∫
R2

ω0 dx = 0

for some small enough compactly supported functions (ω0, ω̃0) in Lp(R2) × Cε′(R2)

with 0 < ε′ < ε and 1 < p < 2/(2 − ε), then the system (INS) has a unique solution

(4)All over the paper, we agree that A . B means A 6 CB for some harmless “constant” C, the
meaning of which may be guessed from the context.
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(ρ, u,∇P ) with the properties listed in Theorem 1.1. Moreover, if we denote by ψ(t, ·)
the flow of u then for all t > 0, we have

(1.12) ρ(t, ·) := (1 + η)1Dt + 1Dct with Dt := ψ(t,D0),

and Dt remains a simply connected bounded domain of class C1,ε.

Remark 1.4. — Of course, one can take ω0 ≡ 0 or ω̃0 ≡ 0 in the above statement.
The zero average condition guarantees that u0 belongs to some homogeneous Besov

space Ḃ(2/p)−1
p,1 (so as to apply Theorem 1.2). It is not needed if we have constant

vortex pattern in R2 (see Theorem 2.3) or if the dimension N = 3 (see Theorem 2.4).

Remark 1.5. — We imposed the particular structure of the vorticity in Theorem 1.3
just to give an explicit example for which (0.3) with regularity C1,ε holds true. It goes
without saying that one can consider a much more general class of initial velocities:
according to Theorem 1.2, it suffices that u0 satisfies the smallness condition of Theo-
rem 1.1 and that div(∇⊥f0⊗u0) is in Ḃ(2/p)+ε−2

p,1 for some 1 < p < min{4, 2/(1− ε)}.
In other words, we just need “u0 to have ε more regularity in the direction that is
tangential to the patch of density.” This is of course satisfied if u0 vanishes in a neigh-
borhood of D0. However, one may consider much more singular examples like the case
where u0 is compactly supported and behaves locally near some x0 /∈ ∂D0, like the
function |x− x0|−1(− log |x− x0|)−(1+δ) with δ > 0.

Remark 1.6. — Similar results, only local in time, hold true for large u0 with critical
regularity.

We end this section with a short presentation of the main ideas of the proof of
Theorem 1.2. From Theorem 1.1, we have a global solution (ρ, u,∇P ) such that
ρ ∈ L∞

(
R+;M

(
Ḃ

(N/p)−1
p,1

))
and (u,∇P ) ∈ Ėp. As already explained, our main task

is to prove that X(t, ·) remains in C0,ε for all time. Now, in light of (0.8), we have

X(t, x) = X0

(
ψ−1
t (x)

)
+

∫ t

0

∂Xu
(
t′, ψt′

(
ψ−1
t (x)

))
dt′.

Therefore, because ψt is a C1 diffeomorphism of RN , it suffices to show that ∂Xu is
in L1

loc(R+; C0,ε). To this end, it is natural to look for a suitable evolution equation
for ∂Xu. Since (0.8) means that [Dt, ∂X ] = 0, where Dt := ∂t + u · ∇ stands for the
material derivative associated to u, differentiating the momentum equation of (INS)
along X yields

(1.13) ρDt∂Xu+ ∂XρDtu− ∂X∆u+ ∂X∇P = 0.

Even though (1.13) has some similarities with the Stokes system, it is not clear that it
does have the same smoothing properties, as its coefficients have very low regularity.
One of the difficulties lies in the product of the discontinuous function ρ with Dt∂Xu,
as having only ∂Xu in C0,ε suggests that Dt∂Xu has negative regularity. At the same
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time, the term with ∂Xρ is harmless as, owing to [Dt, ∂X ] = 0 and to the mass
equation, we have

(1.14) Dt∂Xρ = 0.

Hence any (reasonable) regularity assumption for ∂X0
ρ0 persists through the evolu-

tion.
Our strategy is to assume that ρ belongs to the multiplier space corresponding

to the space to which Dt∂Xu is expected to belong. As the flow is C1, propagating
multiplier information is straightforward (see Lemma A.3). This new viewpoint spares
us the tricky energy estimates and iterated differentiation along vector fields (requiring
higher regularity of the patch) that were the cornerstone of the work by X. Liao and
P. Zhang. In fact, under the smallness assumption (1.8) which, unfortunately, forces
the fluid to have small density variations, we succeed in closing the estimates using
only one differentiation along X. This makes the proof rather elementary and allows
us to propagate low Hölder regularity.

Whether one can differentiate terms like ∆u or ∇P along X within our critical
regularity framework is not totally clear, though. Therefore, as in our recent work [15]
dedicated to the incompressible Boussinesq system, we shall replace differentiation
along vector-fields by para-differentiation.

Let us briefly recall how it works. Fix some suitably large integer N0 and introduce
the following paraproduct and remainder operators (after J.-M. Bony in [5]):

Ṫuv :=
∑
j∈Z

Ṡj−N0
u∆̇jv and Ṙ(u, v) ≡

∑
j∈Z

∆̇ju
˜̇∆jv :=

∑
j∈Z

|j−k|6N0

∆̇ju∆̇kv.

Then any product may be formally decomposed as follows:

(1.15) uv = Ṫuv + Ṫvu+ Ṙ(u, v).

To overcome the problem with the definition of ∂X∆u and ∂X∇P , we shall change the
vector field X to the para-vector field operator ṪX · := ṪXk∂k· which, in our regularity
framework, will turn out to be the principal part of operator ∂X . Indeed, for any pair
(X, f), the decomposition (1.15) ensures that

(ṪX − ∂X)f = Ṫ∂kfX
k + ∂kṘ(f,Xk)− Ṙ(f, divX).

Therefore, taking advantage of classical continuity results for operators Ṫ and Ṙ

(see [4]), we discover that

(1.16) ‖(ṪX − ∂X)f‖
Ḃ

(N/p)+ε−2
p,1

. ‖f‖
Ḃ

(N/p)−1
p,1

‖X‖Ċ ε

whenever (ε, p) ∈ ]0, 1[× [1,+∞] fulfills:

(1.17) N/p ∈ ] 1− ε, 2 [ if divX = 0, and N/p ∈ ] 2− ε, 2 [ otherwise.

In our situation, we will apply (1.16) with f = ∇P or ∆u, which are in
L1
(
R+; Ḃ

(N/p)−1
p,1 (RN )

)
.
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Now, incising the term ∂Xu by the scalpel ṪX in (1.13) and applying ṪX to the
third equation of (INS) yield

(1.18)


ρDtṪXu−∆ṪXu+∇ṪXP = g,

div ṪXu = div(Ṫ∂kXu
k − ṪdivXu),

ṪXu|t=0 = ṪX0
u0

with

(1.19) g := −ρ[ṪX , Dt]u+ [ṪX ,∆]u− [ṪX ,∇]P + (∂X − ṪX)(∆u−∇P )

− ∂XρDtu+ ρ(ṪX − ∂X)Dtu.

This surgery leading to (1.18) is effective for three reasons. First, all the commutator
terms in (1.19) are under control (see the Appendix). Second, Dt∂Xu and DtṪXu
are in the same Besov space, and the multiplier type regularity on the density that
was pointed out before is thus appropriate. Last, the condition (1.8) ensures that
(ṪX − ∂X)u is a remainder term. Of course, the divergence free condition need not
be satisfied by ṪXu, but one can further modify (1.18) so as to enter in the standard
maximal regularity theory. Then, under the smallness condition (1.8), one can close
the estimates involving ∂Xu or ∂Xρ, globally in time.

The rest of the paper unfolds as follows. In the next section, we show that Theo-
rem 1.2 entails a general (but not so explicit) result of persistence of Hölder regularity
for patches of density in any dimension. We shall then obtain Theorem 1.3, and an
analogous result in dimension N = 3. Section 3 is devoted to the proof of our gen-
eral result of all-time persistence of striated regularity (Theorem 1.2). Some technical
results pertaining to commutators and multiplier spaces are postponed in appendix.

2. The density patch problem

This section is devoted to the proof of results of persistence of regularity for patches
of constant densities, taking Theorem 1.2 for granted. Throughout this section we shall
use repeatedly the fact (proved in e.g. [11, Lem.A.7]) that for any (not necessarily
bounded) domain D of RN with uniform C1 boundary, we have

1D ∈M
(
Ḃsp,r(RN )

)
whenever (s, p, r) ∈ ](1/p)− 1, 1/p[× ]1,∞[× [1,∞].

From that property, we deduce that if (ε, p) ∈ ]0, 1[× ]N−1, N−1
1−ε [, then the density ρ0

given by (1.10) belongs toM
(
Ḃ

(N/p)−1
p,r (RN )

)
∩M

(
Ḃ

(N/p)+ε−2
p,r (RN )

)
.

As a start, let us give a result of persistence of regularity, under rather general
hypotheses.

Proposition 2.1. — Assume that ρ0 is given by (1.10) with small enough η and
some C1,ε domain D0 of RN satisfying (0.5). Let u0 be a small enough divergence
free vector field with coefficients in Ḃ(N/p)−1

p,1 for some

(2.1) N − 1 < p < min
{

(N − 1)/(1− ε), 2N
}
·
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Consider a family (Xλ,0)λ∈Λ of C0,ε divergence free vector fields tangent to D0 and
such that ∂Xλ,0u0 ∈ Ḃ(N/p)+ε−2

p,1 for all λ ∈ Λ.
Then the unique solution (ρ, u,∇P ) of (INS) given by Theorem 1.1 satisfies the

following additional properties:

– ρ(t, ·) is given by (1.12),
– all the time-dependent vector fields Xλ solutions to (0.8) with initial data Xλ,0

are in L∞loc(R+; C0,ε) and remain tangent to the patch for all time.

Proof. — Assumptions (1.10) and (2.1) guarantee that ρ0 is in

M(Ḃ
(N/p)−1
p,1 ) ∩M(Ḃ

(N/p)−2+ε
p,1 ),

and that (1.8) is fulfilled if η and u0 are small enough. Of course, ∂Xλ,0ρ0 ≡ 0 for all
λ ∈ Λ because the vector fields Xλ,0 are tangent to the boundary. Therefore, applying
Theorem 1.2 ensures that all the vector fields Xλ are in L∞loc(R+; C0,ε). Now, if we
consider a level set function f0 in C1,ε associated to D0 as in (0.5), then ft := f0 ◦ ψt
is associated to the transported domain Dt = ψt(D0), and we have

(2.2) Dt∇f = −∇u · ∇f with (∇u)ij = ∂iu
j .

Therefore, as Xλ satisfies (0.8), we have

Dt(Xλ · ∇f) = (DtXλ) · ∇f +Xλ · (Dt∇f) = 0,

which ensures that Xλ remains tangent to the patch for all time. �

Example. As a consequence of Bony decomposition and of divXλ,0 ≡ 0, we have

∂Xλ,0u0 = ṪXλ,0u0 + Ṫ∂ku0X
k
λ,0 + div Ṙ(u0, Xλ,0).

Hence, if u0 ∈ Ḃ
(N/p)−1
p,1 ∩ Ḃ(N/p)+ε−1

p,1 with p satisfying (2.1), then the conditions
of Proposition 2.1 are fulfilled. In fact, the additional regularity Ḃ

(N/p)+ε−1
p,1 of u0

implies that the flow ψt is in C1,ε, because the solution (u,∇P ) lies in Ėεq for some
q > (N−1)/(1−ε). This is a consequence of the following result that may be obtained
along the lines of the proof of Theorem 1.2.

Proposition 2.2. — If the initial data (ρ0, u0) are as in Theorem 1.1 and if in addition
u0 is in Ḃ(N/q)+ε−1

q,1 and

‖ρ0 − 1‖
M
(
Ḃ

(N/q)+ε−1
q,1

) 6 c for small constant c, 0 < ε < 1 and N − 1

1− ε
< q 6∞,

then, beside the properties listed in Theorem 1.1, the unique global solution (ρ, u,∇P )

of the system (INS) satisfies

ρ ∈ L∞
(
R+;M

(
Ḃ

(N/q)+ε−1
q,1

))
and (u,∇P ) ∈ Ėεq .
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2.1. The two-dimensional case. — Here we prove Theorem 1.3. As a start, we have
to show that if the vorticity ω0 is given by (1.11) then u0 is in Ḃ

(2/p)−1
p,1 (R2). This

will be achieved by using the fact that u0 can be computed from ω0 by means of the
following Biot-Savart law:

(2.3) u0 = K2 ∗ ω0, with K2(x) :=
1

2π|x|2

(
−x2

x1

)
·

Recall that ω0 is in Lp(R2) and is supported in some ball B(0, R). Now, on the one
hand, one may write for all x in B(0, 2R),

|u0(x)| 6 1

2π

∫
B(0,3R)

|ω0(x− y)| dy
|y|
,

which, by convolution inequalities and our choice of p, implies that |u0|1B(0,2R) is in
Lr(R2) for any r satisfying

(2.4) r ∈
[
1, 2p/(2− p)

[
⊂
[
1, 2/(1− ε)

[
.

On the other hand, for |x| > 2R, owing to the zero average condition for ω0, we
have

u0(x) =
1

2π

∫
|y|6R

(
K2(x− y)−K2(x)

)
ω0(y) dy.

Therefore, by computing K2(x− y)−K2(x), it is not difficult to see that we have for
some constant CR depending only on R,

|u0(x)| 6 CR
|x|2
‖ω0‖L1 for all x such that |x| > 2R.

Then putting the two information together, we get u0 in Lr for all r given by (2.4).
Next, let us write that

u0 = Ṡ0u0 + (Id− Ṡ0)u0.

To handle the first term, we infer from the embedding of Lr in Ḃ
2/p−2/r
p,∞ for all

1 < r < p < 2,

‖Ṡ0u0‖Ḃ(2/p)−1
p,1

. ‖Ṡ0u0‖Ḃ2/p−2/r
p,∞

. ‖Ṡ0u0‖Lr . ‖u0‖Lr . ‖ω0‖Lp .

As regards the high frequency part of u0, the Fourier multiplier (Id− Ṡ0)∇⊥(−∆)−1

is homogeneous of degree −1 away from a neighborhood of 0, which yields
‖(Id− Ṡ0)u0‖Ḃ(2/p)−1

p,1
= ‖(Id− Ṡ0)∇⊥(−∆)−1ω0‖Ḃ(2/p)−1

p,1

. ‖(Id− Ṡ0)ω0‖Ḃ(2/p)−2
p,1

. ‖ω0‖Lp .
(2.5)

Next, consider the divergence free vector field X0 = ∇⊥f0, where f0 is given
by (0.5) and is (with no loss of generality) compactly supported. If it is true that

(2.6) ∂X0
u0 ∈ Ḃ(2/p)−2+ε

p,1 ,

then one can apply Proposition 2.1 which ensures that the transported vector field Xt

remains in C0,ε for all t > 0. Now, it is classical that we have Xt = (∇ft)⊥ with
ft = f0 ◦ ψ−1

t . Hence Dt has a C1,ε boundary.
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Let us establish (2.6). First note that

(2.7) X0 ∈ C ε
c ↪−→ bεp,∞ ∩ bαp,r provided 1 6 r 6∞ and − 2/p′ < α < ε

due to Proposition A.2 and Proposition A.1. Now, (1.16) ensures that

(2.8) ‖ṪX0
u0−∂X0

u0‖Ḃ(2/p)+ε−2
p,1

. ‖u0‖Ḃ(2/p)−1
p,1

‖X0‖Ċ ε for any 1 < p < 2/(1− ε)·

Then thanks to (2.3), we obtain

ṪX0
u0 = ṪX0

(−∆)−1∇⊥ω0 = (−∆)−1∇⊥ṪX0
ω0 + [ṪX0

, (−∆)−1∇⊥]ω0,

whence using Lemma B.1 and (2.5),

(2.9) ‖ṪX0u0 − (−∆)−1∇⊥ṪX0ω0‖Ḃ(2/p)+ε−2
p,1

. ‖X0‖Ċ ε‖ω0‖Lp .

Next, we notice that

ṪX0ω0 − div(X0ω0) = −div
(
Ṫω0X0 + Ṙ(ω0, X0)

)
.

Therefore, taking advantage of standard continuity results for Ṫ and Ṙ, we have

(2.10) ‖ṪX0
ω0 − div(X0ω0)‖

Ḃ
(2/p)+ε−3
p,1

. ‖ω0‖Lp‖X0‖Ċ ε , as 1 < p < 2/(2− ε)·

Since div(X0 ω0) ≡ 0 by assumption, it is sufficient to study div(X0 ω̃0 1D0
). Recall

that ω̃0 ∈ C ε′

c for some 0 < ε′ < ε, and that divX0 = 0. As we have ∂X0
1D0

= 0,
Corollary B.5 implies that

div(X0 ω̃0 1D0
) ∈ Ḃ(2/p)+ε−3

p,1 .

Putting (2.8), (2.9) and (2.10) together, we conclude that (2.6) is fulfilled, which
completes the proof of Theorem 1.3. �

If dropping off the zero average condition for the function ω0 in Theorem 1.3, then
the corresponding initial velocity field u0 cannot be in Lr(R2) for any r ∈ ]1, 2]. Still,
one can get a similar statement in the particular case where (ω0, ω̃0) ≡ (0, η′) for
some small enough η′. Indeed, from (2.3) and Hardy-Littlewood-Sobolev inequality,
we deduce that u0 belongs to all spaces Lr(R2) with r ∈ ]2,∞[. Repeating the first
part of the proof of Theorem 1.3 thus yields u0 ∈ Ḃ(2/p)−1

p,1 (R2) for any 2 < p < ∞.
Now, as ω0 is bounded and compactly supported, it is in Ḃ

(2/q)+ε−2
q,1 (R2) for any

0 < ε < 1 and 1 < q < ∞, which implies that u0 ∈ Ḃ
(2/q)+ε−1
q,1 . Hence, applying

Proposition 2.2, and using the fact that the flow of the solution constructed therein
is in C1,ε, we conclude to the following generalization of of [22, Rem. 1.1].

Theorem 2.3. — Let D0 satisfy (0.5) for some ε in ]0, 1[. There exists a constant η0

depending only on D0 so that for all η, η′ ∈ ]− η0, η0[ if

ρ0 := (1 + η)1D0 + 1Dc0 ,

and if the divergence free vector-field u0 in W 1,p(R2) for some p > 2 is given by

u0 := (−∆)−1∇⊥(η′1D0
),
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then the system (INS) has a unique solution (ρ, u,∇P ) with the properties listed in
Proposition 2.2 for some suitable In addition, (0.3) is fulfilled for all t > 0, and Dt
remains a simply connected bounded domain of class C1,ε.

2.2. The three-dimensional case. — As another application of Proposition 2.1, one
can generalize Theorem 1.3 to the three-dimensional case. Our result reads as follows.

Theorem 2.4. — Let D0 be a C1,ε simply connected bounded domain of R3 with ε ∈
]0, 1[. Let ρ0 be given by (1.10) with small enough η. Assume that the initial velocity
u0 has coefficients in S ′h(R3) and vorticity(5)

Ω0 := ∇∧ u0 = Ω̃01D0 ,

for some small enough Ω̃0 in C0,δ(R3;R3) (δ ∈ ]0, ε[) with div Ω̃0 = 0 and
Ω̃0 · ~nD0

|∂D0
≡ 0 (here ~nD0

denotes the outwards unit normal of the domain D0).
There exists a unique solution (ρ, u,∇P ) to the system (INS) with the properties

listed in Theorem 1.1 for some suitable p satisfying

(2.11) 2 < p < min
{

2/(1− ε), 6
}
·

Furthermore, for all t > 0, we have (1.12) and Dt remains a simply connected bounded
domain of class C1,ε.

Proof. — With no loss of generality, one may assume that Ω̃0 is compactly supported.
Like in the 2D case, we first have to check that u0 fulfills the assumptions of Propo-
sition 2.1. As it is divergence free and decays at infinity (recall that u0 ∈ S ′h), it is
given by the Biot-Savart law:

(2.12) u0 = (−∆)−1∇∧ Ω0, with Ω0 = Ω̃0 1D0 .

We claim that u0 belongs to Ḃ(3/p)−1
p,1 for some p satisfying (2.11). Indeed, the char-

acteristic function of any bounded domain with C1 regularity belongs to all Besov
spaces B1/q

q,∞ with 1 6 q 6 ∞ (see e.g. [26]). Hence combining Proposition A.1 and
the embedding (A.1) gives

(2.13) 1D0
∈ E ′ ∩B1/q

q,∞ ↪−→ Ḃ
(3/q)−2
q,1 for any q ∈ ]1,∞[.

Now, using Bony’s decomposition and standard continuity results for operators Ṙ
and Ṫ , we discover that

Ω̃0 ∈ C δ
c ↪−→M

(
Ḃ

(3/q)−2
q,1

)
for any q ∈

]
3/2, 3/(2− δ)

[
.

Hence the definition of Multiplier space and (2.13) yield

(2.14) Ω0 = Ω̃0 1D0
∈ Ḃ(3/q)−2

q,1 for any q ∈
]
3/2, 3/(2− δ)

[
.

(5)For any point Y ∈ R3, we set X ∧ Y := (X2Y 3 − X3Y 2, X3Y 1 − X1Y 3, X1Y 2 − X2Y 1),
where X stands for an element of R3 or for the ∇ operator.
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As u0 is in S ′h and (−∆−1)−1∇∧ in (2.12) is a homogeneous multiplier of degree −1,
one can conclude that

u0 ∈ Ḃ(3/q)−1
q,1 ↪−→ Ḃ

(3/p)−1
p,1 , for any p > q.

Note that for any δ in ]0, 1[, one can find some p satisfying the above conditions and
(2.11) altogether.

Next, consider some (compactly supported) level set function f0 associated to ∂D0,
and the three C0,ε vector-fields Xk,0 := ek ∧∇f0 with (e1, e2, e3) being the canonical
basis of R3. It is clear that those vector-fields are divergence free and tangent to ∂D0.
Let us check that we have ∂Xk,0u0 ∈ Ḃ(3/p)−2+ε

p,1 for some p satisfying (2.11). As in the
two-dimensional case, this will follow from Biot-Savart law and the special structure
of Ω0. Indeed, from (1.16) and divXk,0 = 0, we have

‖ṪXk,0u0 − ∂Xk,0u0‖Ḃ(3/p)+ε−2
p,1

. ‖u0‖Ḃ(3/p)−1
p,1

‖X0‖Ċ ε , ∀ p ∈
]
3/2, 3/(1− ε)

[
.

Then (2.12) yields

ṪXk,0u0 = ṪXk,0(−∆)−1∇∧ Ω0 = (−∆)−1∇∧ ṪXk,0Ω0 + [ṪXk,0 , (−∆)−1∇∧] Ω0.

Thanks to Lemma B.1 and homogeneity of (−∆−1)−1∇∧, it is thus sufficient to
verify that ṪXk,0Ω0 belongs to Ḃ(3/p)+ε−3

p,1 for some p satisfying (2.11). In fact, from
the decomposition

ṪXk,0Ω0 − div(Xk,0Ω0) = −div
(
ṪΩ0

Xk,0 + Ṙ(Ω0, Xk,0)
)
,

and continuity results for Ṙ and Ṫ , we get

‖ṪXk,0Ω0 − div(Xk,0Ω0)‖
Ḃ

(3/q)+ε−3
q,1

. ‖Ω0‖Ḃ(3/q)−2
q,1

‖Xk,0‖Ċ ε , ∀ q ∈
]
3/2, 3/(2− ε)

[
.

Thus, remembering (2.14) and 0 < δ < ε, we have to choose some p satisfying (2.11),
such that the following standard embedding holds

(2.15) Ḃ
(3/q)+ε−3
q,1 ↪−→ Ḃ

(3/p)+ε−3
p,1 for some q ∈

]
3/2, 3/(2− δ)

[
with q 6 p.

Now, because ∂Xk,01D0 ≡ 0 and Ω̃0 is in Cδ, Corollary B.5 yields for all 0 < δ? < δ,

∂Xk,0Ω0 = div(Xk,0 ⊗ Ω0) = div(Xk,0 ⊗ Ω̃0 1D0
) ∈ Ḃδ?−1

q,1 for all q > 1.

One can thus conclude that ∂Xk,0u0 ∈ Ḃ
(3/p)−2+ε
p,1 for any index p satisfying p > q

with q satisfying the condition (2.15) and (3/q) + ε− 2 = δ∗ ∈ ]0, δ[.
As one can require in addition p to fulfill (2.11), Proposition 2.1 applies with the

family (Xk,0)16k63. Denoting by (Xk)16k63 the corresponding family of divergence
free vector fields in C0,ε given by (0.8) with initial data X0,k, and introducing Y1 :=

X3 ∧X1, Y2 := X3 ∧X1 and Y3 = X1 ∧X2, we discover that for α = 1, 2, 3,

(2.16)

∂tYα + u · ∇Yα = −∇u · Yα,

(Yα)|t=0 = ∂αf0∇f0.
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From (2.2), it is clear that the time-dependent vector field
(
∂αf0(ψ−1

t )
)
∇ft also

satisfies (2.16), hence we have, by uniqueness, Yα(t, ·) =
(
(∂αf0)(ψ−1

t )
)
∇ft. So finally,

∣∣∇f0 ◦ ψ−1
t

∣∣2∇ft =

3∑
α=1

Yα(t, ·) ∂αf0 ◦ ψ−1
t .

As ψ−1
t is C1 and as both Yα and ∇f0 are in C0,ε, one can conclude that ∇ft is C0,ε

in some neighborhood of ∂D0. Therefore Dt remains of class C1,ε for all time. �

Remark 2.5. — In contrast with the 2D case, one cannot consider constant vortex
patterns for the condition Ω̃0 · ~nD0

|∂D0
≡ 0 is not fulfilled. One can define directly u0

through u0 = (−∆)−1∇ ∧ e, where e is a constant vector of R3 (as we did for the
Boussinesq system in [15]), but then, ∇∧ u0 does not coincides with e.

3. The proof of persistence of striated regularity

That section is devoted to the proof of Theorem 1.2. The first step is to ap-
ply Theorem 1.1. From it, we get a unique global solution (ρ, u,∇P ) with ρ ∈
Cb
(
R+;M(Ḃ

(N/p)−1
p,1 )

)
and (u,∇P ) ∈ Ėp, satisfying (1.6). Because the product of

functions maps Ḃ(N/p)−1
p,1 × ḂN/pp,1 to Ḃ(N/p)−1

p,1 , we deduce that Dtu = ∂tu+ u · ∇u is
also bounded by the right-hand side of (1.6). So finally,

(3.1) ‖(u,∇P )‖Ėp + ‖Dtu‖L1
t (Ḃ

(N/p)−1
p,1 )

6 C‖u0‖Ḃ(N/p)−1
p,1

.

In order to complete the proof of the theorem, it is only a matter of showing
that the additional multiplier and striated regularity properties are conserved for all
positive times. We shall mainly concentrate on the proof of a priori estimates for the
corresponding norms, just explaining at the end how a suitable regularization process
allows to make it rigorous.

3.1. Bounds involving multiplier norms. — As already pointed out in the introduc-
tion, because ∇u is in L1(R+; Ḃ

N/p
p,1 ) and Ḃ

N/p
p,1 is embedded in Cb, the flow ψ of u

is C1 and we have for all t > 0, owing to (1.6),

(3.2) ‖∇ψ±1
t ‖L∞ 6 exp

(∫ t

0

‖∇u‖L∞ dτ
)
6 C

for a suitably large universal constant C.
Now, from the mass conservation equation and (1.14), we gather that

ρ(t, ·) = ρ0 ◦ ψ−1
t and (∂Xρ)(t, ·) = (∂X0ρ0) ◦ ψ−1

t .

Hence ‖ρ(t, ·)‖L∞ is time independent, and Lemma A.3 (keeping in mind the condition
(1.7)) guarantees that for all t ∈ R+,

‖ρ(t)− 1‖M(Ḃ
(N/p)−1
p,1 )

6 C‖ρ0 − 1‖M(Ḃ
(N/p)−1
p,1 )

,(3.3)

‖ρ(t)− 1‖M(Ḃ
(N/p)+ε−2
p,1 )

6 C‖ρ0 − 1‖M(Ḃ
(N/p)+ε−2
p,1 )

,(3.4)

‖(∂Xρ)(t)‖M(Ḃ
(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )
6 C‖∂X0

ρ0‖M(Ḃ
(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )
.(3.5)
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3.2. Estimates for the striated regularity. — Recall that ṪXu satisfies the Stokes-
like system (1.18). As ṪXu need not be divergence free, to enter into the standard
theory, we set

v := ṪXu− w with w := Ṫ∂kXu
k − ṪdivXu.

Denoting g̃ := g − ρu · ∇ṪXu − (ρ∂tw −∆w) with g defined in (1.19), we see that v
satisfies:

(S)


ρ∂tv −∆v +∇ṪXP = g̃,

div v = 0,

v|t=0 = v0.

We shall decompose the proof of a priori estimates for striated regularity into three
steps. The first one is dedicated to bounding g̃ (which mainly requires the commutator
estimates of the appendix). In the second step, we take advantage of the smoothing
effect of the heat flow so as to estimate v. In the third step, we revert to ṪXu and
eventually bound X.

First step: bounds of g̃. — Recall that g̃ := g − ρu · ∇ṪXu− (ρ∂tw −∆w) with

g = −ρ[ṪX , Dt]u+ [ṪX ,∆]u− [ṪX ,∇]P + (∂X − ṪX)(∆u−∇P )

− ∂XρDtu+ ρ(ṪX − ∂X)Dtu.

The first term of g may be bounded according to Proposition B.3 and to the
definition of multiplier spaces. We get, under assumption (1.17),

(3.6) ‖ρ[ṪX , Dt]u‖Ḃ(N/p)+ε−2
p,1

. ‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

(
‖u‖Ċ−1‖ṪXu‖Ḃ(N/p)+ε

p,1

+ ‖u‖
Ḃ

(N/p)+1
p,1

‖ṪXu‖Ċ ε−2 + ‖u‖
Ḃ

(N/p)+1
p,1

‖u‖
Ḃ

(N/p)−1
p,1

‖X‖Ċ ε

)
.

Next, thanks to the commutator estimates in Lemma B.1, we have

‖[ṪX ,∆]u‖
Ḃ

(N/p)+ε−2
p,1

. ‖∇X‖Ċ ε−1‖∇u‖ḂN/pp,1
,(3.7)

‖[ṪX ,∇]P‖
Ḃ

(N/p)+ε−2
p,1

. ‖∇X‖Ċ ε−1‖∇P‖Ḃ(N/p)−1
p,1

.(3.8)

Bounding the fourth term of g stems from (1.16): we have

(3.9) ‖(ṪX − ∂X)(∆u−∇P )‖
Ḃ

(N/p)+ε−2
p,1

. ‖(∆u,∇P )‖
Ḃ

(N/p)−1
p,1

‖X‖Ċ ε .

Then the definition of multiplier spaces yields

(3.10) ‖∂XρDtu‖Ḃ(N/p)+ε−2
p,1

. ‖∂Xρ‖M(Ḃ
(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )
‖Dtu‖Ḃ(N/p)−1

p,1
.

Finally, using again (1.16) and the definition of multiplier spaces, we may write

(3.11) ‖ρ(ṪX − ∂X)Dtu‖Ḃ(N/p)+ε−2
p,1

. ‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

‖X‖Ċ ε‖Dtu‖Ḃ(N/p)−1
p,1

.

J.É.P. — M., 2017, tome 4



Density patches in the inhomogeneous Navier-Stokes equations 799

Putting together (3.6) – (3.11) and integrating with respect to time, we end up with

(3.12) ‖g‖
L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

(
‖u‖Ċ−1‖ṪXu‖Ḃ(N/p)+ε

p,1
+‖∇u‖

Ḃ
N/p
p,1
‖ṪXu‖Ċ ε−2

)
dt′

+

∫ t

0

‖X‖Ċ ε

((
‖∇u‖

Ḃ
N/p
p,1
‖u‖

Ḃ
(N/p)−1
p,1

+ ‖Dtu‖Ḃ(N/p)−1
p,1

)
‖ρ‖M(Ḃ

(N/p)+ε−2
p,1 )

+ ‖(∇2u,∇P )‖
Ḃ

(N/p)−1
p,1

)
dt′

+

∫ t

0

‖∂Xρ‖M(Ḃ
(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )
‖Dtu‖Ḃ(N/p)−1

p,1
dt′.

Bounding the second term of g̃ is obvious: taking advantage of Bony’s decomposi-
tion (1.15) and remembering that (N/p) + ε > 1 and that div u = 0, we get

(3.13) ‖ρu · ∇ṪXu‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

(
‖u‖Ċ−1‖ṪXu‖Ḃ(N/p)+ε

p,1
+ ‖u‖

Ḃ
(N/p)+1
p,1

‖ṪXu‖Ċ ε−2

)
dt′.

To bound the last term of g̃, we use the decomposition

ρ∂tw −∆w = ρ(W1 +W2) +W3, with


W1 := Ṫ∂kX∂tu

k − ṪdivX∂tu,

W2 := Ṫ∂k∂tXu
k − Ṫdiv ∂tXu,

W3 := ∆
(
ṪdivXu− Ṫ∂kXuk

)
.

Continuity results for the paraproduct and the definition of M(Ḃ
(N/p)+ε−2
p,1 ) ensure

that

‖ρW1‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

‖∇X‖Ċ ε−1‖∂tu‖Ḃ(N/p)−1
p,1

dt′,(3.14)

‖ρW2‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

‖∂tX‖Ċ ε−2‖u‖Ḃ(N/p)+1
p,1

dt′,(3.15)

‖W3‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖∇X‖Ċ ε−1‖u‖Ḃ(N/p)+1
p,1

dt′.(3.16)

To estimate ∂tX in (3.15), we use the fact that

∂tX = −u · ∇X + ∂Xu = −div(u⊗X) + ∂Xu.

Hence using (1.15), and continuity results for the remainder and paraproduct opera-
tors, we get under the condition (1.17),

‖∂tX‖Ċ ε−2 . ‖u‖Ḃ(N/p)−1
p,1

‖X‖Ċ ε + ‖∂Xu‖Ċ ε−2 .

Therefore, taking advantage of (1.16) yields

(3.17) ‖ρW2‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

(‖X‖Ċ ε‖u‖Ḃ(N/p)−1
p,1

+ ‖ṪXu‖Ċ ε−2)‖∇u‖
Ḃ
N/p
p,1

dt′.
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Combining (3.14), (3.15) and (3.17), we eventually obtain

(3.18) ‖ρ∂tw −∆w‖
L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ṪXu‖Ċ ε−2‖∇u‖ḂN/pp,1
‖ρ‖M(Ḃ

(N/p)+ε−2
p,1 )

dt′

+

∫ t

0

‖X‖Ċ ε

((
‖ρ‖M(Ḃ

(N/p)+ε−2
p,1 )

‖u‖
Ḃ

(N/p)−1
p,1

+ 1
)
‖∇u‖

Ḃ
N/p
p,1

+ ‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

‖∂tu‖Ḃ(N/p)−1
p,1

)
dt′,

whence, putting together estimate (3.12), (3.13) and (3.18),

(3.19) ‖g̃‖
L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
∫ t

0

‖ρ‖M(Ḃ
(N/p)+ε−2
p,1 )

(
‖u‖Ċ−1‖ṪXu‖Ḃ(N/p)+ε

p,1
+‖∇u‖

Ḃ
N/p
p,1
‖ṪXu‖Ċ ε−2

)
dt′

+

∫ t

0

‖X‖Ċ ε

(
‖∇u‖

Ḃ
N/p
p,1
‖u‖

Ḃ
(N/p)−1
p,1

+ ‖(∂tu,Dtu)‖
Ḃ

(N/p)−1
p,1

)
‖ρ‖M(Ḃ

(N/p)+ε−2
p,1 )

dt′

+

∫ t

0

‖X‖Ċ ε‖(∇2u,∇P )‖
Ḃ

(N/p)−1
p,1

dt′

+

∫ t

0

‖∂Xρ‖M(Ḃ
(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )
‖Dtu‖Ḃ(N/p)−1

p,1
dt′.

Second step: bounds of v. — We now want to bound v in

L̃∞t (Ḃ
(N/p)+ε−2
p,1 ) ∩ L1

t (Ḃ
(N/p)+ε
p,1 ),

knowing (3.19). This will follow from the smoothing properties of the heat flow. More
precisely, introduce the projector P over divergence-free vector fields, and apply P∆̇j

(with j ∈ Z) to the equation (S). We get∂t∆̇jv −∆∆̇jv = P∆̇j(g̃ + (1− ρ)∂tv)

∆̇jv|t=0 = ∆̇jv0.

Lemma 2.1 in [8] implies that if p ∈ [1,∞],

‖∆̇jv(t)‖Lp 6 e−ct2
2j

‖∆̇jv0‖Lp + C

∫ t

0

e−c(t−t
′)22j

‖∆̇j(g̃ + (1− ρ)∂tv)(t′)‖Lp dt′.

Therefore, taking the supremum over j ∈ Z, using the fact that

∂tv = ∆v + P
(
g̃ + (1− ρ)∂tv

)
and that P : Ḃ

(N/p)+ε−2
p,1 → Ḃ

(N/p)+ε−2
p,1 , we find that

(3.20) ‖v‖
L̃∞t (Ḃ

(N/p)+ε−2
p,1 )

+ ‖v‖
L1
t (Ḃ

(N/p)+ε
p,1 )

+ ‖∂tv‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

. ‖v0‖Ḃ(N/p)+ε−2
p,1

+ ‖g̃‖
L1
t (Ḃ

(N/p)+ε−2
p,1 )

+ ‖(1− ρ)∂tv‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.
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The smallness condition (1.8) combined with Inequality (3.4) ensure that the last
term of (3.20) may be absorbed by the left-hand side, and we thus end up with

‖v‖
L̃∞t (Ḃ

(N/p)+ε−2
p,1 )∩L1

t (Ḃ
(N/p)+ε
p,1 )

+ ‖∂tv‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

. ‖v0‖Ḃ(N/p)+ε−2
p,1

+ ‖g̃‖
L1
t (Ḃ

(N/p)+ε−2
p,1 )

.

Next, we use the fact that by definition of v0,

v0 = ṪX0
u0 − Ṫ∂kX0

uk0 + ṪdivX0
u0

= ∂X0u0 − Ṫ∂ku0X
k
0 − ∂kṘ(Xk

0 , u0) + Ṙ(divX0, u0)− Ṫ∂kX0u
k
0 + ṪdivX0u0.

Hence continuity results for the paraproduct yield, under the condition (1.17),

‖v0‖Ḃ(N/p)+ε−2
p,1

. ‖∂X0
u0‖Ḃ(N/p)+ε−2

p,1
+ ‖X0‖Ċ ε‖u0‖Ḃ(N/p)−1

p,1
.

Thus

(3.21) ‖v‖
L̃∞t (Ḃ

(N/p)+ε−2
p,1 )∩L1

t (Ḃ
(N/p)+ε
p,1 )

+ ‖∂tv‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

. ‖∂X0u0‖Ḃ(N/p)+ε−2
p,1

+ ‖X0‖Ċ ε‖u0‖Ḃ(N/p)−1
p,1

+ ‖g̃‖
L1
t (Ḃ

(N/p)+ε−2
p,1 )

.

Third step: bounds for striated regularity. — Remembering that

ṪXu = v + w with w = Ṫ∂kXu
k − ṪdivXu,

it is now easy to bound the following quantity:

H (t) := ‖ṪXu‖L̃∞t (Ḃ
(N/p)+ε−2
p,1 )

+ ‖ṪXu‖L1
t (Ḃ

(N/p)+ε
p,1 )

+ ‖∇ṪXP‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

.

Indeed, we have

(3.22) ∇ṪXP = (Id− P)(g̃ − ρ∂tv),

and thus ‖∇ṪXP‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

may be bounded by the right-hand side of (3.21).
Note also that continuity results for paraproduct operators guarantee that

‖w‖
L̃∞t (Ḃ

(N/p)+ε−2
p,1 )

. ‖u‖
L̃∞t (Ḃ

(N/p)−1
p,1 )

‖X‖L∞t (Ċ ε),

‖w‖
L1
t (Ḃ

(N/p)+ε
p,1 )

.
∫ t

0

‖u‖
Ḃ

(N/p)+1
p,1

‖∇X‖Ċ ε−1 dt
′.

Hence we have

(3.23) H (t) . ‖∂X0
u0‖Ḃ(N/p)+ε−2

p,1
+ ‖X0‖Ċ ε‖u0‖Ḃ(N/p)−1

p,1
+ ‖g̃‖

L1
t (Ḃ

(N/p)+ε−2
p,1 )

+ ‖u‖
L̃∞t (Ḃ

(N/p)−1
p,1 )∩L1

t (Ḃ
(N/p)+1
p,1 )

‖X‖L∞t (Ċ ε).

Because X satisfies (0.8), standard Hölder estimates for transport equations imply
that

‖X‖L∞t (Ċ ε) 6 ‖X0‖Ċ ε +

∫ t

0

‖∇u‖L∞‖X‖Ċ ε dt
′ +

∫ t

0

‖∂Xu‖Ċ ε dt
′.

Now, recall that
∂Xu− ṪXu = Ṫ∂kuX

k + Ṙ(∂ku,X
k).
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Hence, using standard continuity results for operators Ṫ and Ṙ, and embedding,

(3.24) ‖ṪXu− ∂Xu‖Ċ ε . ‖ṪXu− ∂Xu‖Ḃ(N/p)+ε
p,1

. ‖∇u‖
Ḃ
N/p
p,1
‖X‖Ċ ε .

Therefore we have

(3.25) ‖X‖L∞t (Ċ ε) 6 ‖X0‖Ċ ε +

∫ t

0

‖∇u‖
Ḃ
N/p
p,1
‖X‖Ċ ε dt

′ + ‖ṪXu‖L1
t (Ḃ

(N/p)+ε
p,1 )

.

Then, using (3.1) and plugging the above inequality in (3.23), we get

H (t) . ‖∂X0
u0‖Ḃ(N/p)+ε−2

p,1
+ ‖X0‖Ċ ε‖u0‖Ḃ(N/p)−1

p,1
+ ‖g̃‖

L1
t (Ḃ

(N/p)+ε−2
p,1 )

+‖u0‖Ḃ(N/p)−1
p,1

(
‖ṪXu‖L1

t (Ḃ
(N/p)+ε
p,1 )

+

∫ t

0

‖∇u‖
Ḃ
N/p
p,1
‖X‖Ċ ε dt

′
)
·

Choosing c small enough in (1.8), we see that the first term of the second line may
be absorbed by the left-hand side. Therefore, setting

K (t) := H (t) + ‖X‖L∞t (Ċ ε)

and using again (3.25) and the smallness of u0,

K (t) . ‖∂X0
u0‖Ḃ(N/p)+ε−2

p,1
+ ‖X0‖Ċ ε + ‖g̃‖

L1
t (Ḃ

(N/p)+ε−2
p,1 )

+

∫ t

0

‖∇u‖
Ḃ
N/p
p,1
‖X‖Ċ ε dt

′.

In order to close the estimates, it suffices to bound g̃ by means of (3.19). Then
the above inequality becomes, after using (3.4) and (3.5) (and the fact that
‖ρ0 − 1‖M(Ḃ

(N/p)+ε−2
p,1 )

is small implies that ‖ρ0‖M(Ḃ
(N/p)+ε−2
p,1 )

is of order one),

K (t) . ‖∂X0u0‖Ḃ(N/p)+ε−2
p,1

+ ‖X0‖Ċ ε

+

∫ t

0

(
‖u‖Ċ−1‖ṪXu‖Ḃ(N/p)+ε

p,1
+‖∇u‖

Ḃ
N/p
p,1
‖ṪXu‖Ċ ε−2

)
dt′

+

∫ t

0

‖X‖Ċ ε

(
‖∇u‖

Ḃ
N/p
p,1
‖u‖

Ḃ
(N/p)−1
p,1

+ ‖(∂tu,Dtu,∇2u,∇P )‖
Ḃ

(N/p)−1
p,1

)
dt′

+ ‖∂X0
ρ0‖M(Ḃ

(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )

∫ t

0

‖Dtu‖Ḃ(N/p)−1
p,1

dt′.

The smallness of u0 and (1.6) imply that all the terms of the right-hand side (except
for the ones pertaining to the data), may be absorbed by the left-hand side. Therefore
using the bounds for Dtu in (3.1), we eventually get

(3.26) K (t) . ‖∂X0u0‖Ḃ(N/p)+ε−2
p,1

+ ‖X0‖Ċ ε

+ ‖∂X0
ρ0‖M(Ḃ

(N/p)−1
p,1 →Ḃ(N/p)+ε−2

p,1 )
‖u0‖Ḃ(N/p)−1

p,1
.

From (3.24), we gather that ∂Xu is bounded by the right-hand side of (3.26).
Next, in order to control the whole nonhomogeneous Hölder norm of X, it suffices to
remember that

‖X‖C0,ε = ‖X‖L∞ + ‖X‖Ċ ε

and that Relation (0.7) together with (3.2) directly yield

‖Xt‖L∞ 6 ‖∂X0ψt‖L∞ 6 C‖X0‖L∞ .
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Finally, to estimate ∂X∇P , we use Inequality (1.16) and get

‖∂X∇P −∇ṪXP‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

. ‖X‖L∞t (Ċ ε)‖∇P‖L1
t (Ḃ

(N/p)−1
p,1 )

.

Therefore ‖∂X∇P‖L1
t (Ḃ

(N/p)+ε−2
p,1 )

may be bounded like K (t).

3.3. The regularization process. — In all the above computations, we implicitly as-
sumed that X and ∂Xu were in L∞loc(R+; C0,ε) and L1

loc(R+; C0,ε), respectively. How-
ever, Theorem 1.1 just ensures continuity of those vector-fields, not Hölder regularity.

To overcome that difficulty, one may smooth out the initial velocity (not the density,
not to destroy the multiplier hypotheses) by setting for example un0 := Ṡnu0. Then
the condition (1.8) is satisfied by (ρ0, u

n
0 ) and, as in addition un0 belongs to all Besov

spaces Ḃ(N/p)−1
p̃,r with p̃ > p and r > 1, one can apply(6) [14, Th. 1.1] for solving (INS)

with initial data (ρ0, u
n
0 ). This provides us with a unique global solution (ρn, un,∇Pn)

which, among others, satisfies

∇un ∈ Lr(R+; Ḃ
N/p
p̃,r ) for all r ∈ ]1,∞[ and max

(
p,

Nr

3r − 2

)
6 p̃ 6

Nr

r − 1
·

By taking r sufficiently close to 1 and using embedding, we see that this implies that
∇un is in L1

loc(R+; Ċ 0,δ) for all 0 < δ < 1 and thus the corresponding flow ψn is
(in particular) in C1,ε. This ensures, thanks to (0.7), that Xn is in L∞loc(R+; C0,ε) and
thus that ∂Xnun is in L1

loc(R+; C0,ε).
From the previous steps and the fact that the data (ρ0, u

n
0 ) satisfy (1.8) uniformly,

we get uniform bounds for ρn, un, ∇Pn and Xn, and standard arguments thus allow
to show that un tends to u in L1

loc(R+;L∞) and thus (ψn −ψ)→ 0 in L∞loc(R+;L∞).
Interpolating with the uniform bounds and using standard functional analysis argu-
ments, one can conclude that Xn → X in L∞loc(R+; C0,ε′) for all ε′ < ε (and similar
results for (un)n∈N) and that all the estimates of the previous steps are satisfied. The
details are left to the reader. �

Appendix A. Multiplier spaces

The following relationship between the nonhomogeneous Besov spaces Bsp,r(RN )

and the homogeneous Besov spaces Ḃsp,r(RN ) for compactly supported functions or
distributions has been established in [13, §2.1].

Proposition A.1. — Let (p, r) ∈ [1,∞]2 and s > −N/p′ := −N(1 − 1/p) (or just
s > −N/p′ if r =∞). For any u in the set E ′(RN ) of compactly supported distributions
on RN , we have

u ∈ Bsp,r(RN )⇐⇒ u ∈ Ḃsp,r(RN ).

Moreover, there exists a constant C = C(s, p, r,N,Suppu) such that

C−1‖u‖Ḃsp,r 6 ‖u‖Bsp,r 6 C‖u‖Ḃsp,r .

(6)That paper concerns the half-space; having the same result in the whole space setting is much
easier.
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A simple consequence of Proposition A.1 and of standard embeddings for nonho-
mogeneous Besov spaces is that for any (s, p, r) as above, we have

(A.1) E ′(RN ) ∩ Ḃs+δp,r (RN ) ↪−→ E ′(RN ) ∩ Ḃsp,r(RN ) for any δ > 0.

We also used the following statement:

Proposition A.2. — Let (s, p, r) be arbitrary in R × [1,∞]2. Then for all u ∈
Bs∞,r(RN )∩E ′(RN ), we have u ∈ Bsp,r(RN ) and there exists C = C(s, p,Suppu) such
that

‖u‖Bsp,r 6 C‖u‖Bs∞,r .

Proof. — Let u be in Bs∞,r(RN ) with compact support. Fix some smooth cut-off
function φ so that φ ≡ 1 on Suppu. Being compactly supported and smooth, φ belongs
to any nonhomogeneous Besov space. Then, using (the nonhomogeneous version of)
the decomposition (1.15) and that u = φu, we get

u = Tφu+ Tuφ+R(u, φ).

Because φ is in Lp and u in Bs∞,r, standard continuity results for the paraproduct
ensure that Tφu is in Bsp,r. For the second term, we just use that u is in C−|s|−1 and φ
in B|s|+1+s

p,r hence Tuφ is in Bsp,r. For the remainder term, we use for instance the fact
that φ is in C |s|+1. Putting all those information together completes the proof. �

The following result was the key to bounding the density terms in our study of
(INS).

Lemma A.3. — Let (s, sk, p, pk, r, rk)∈ ]−1, 1[2×[1,∞]4 with k=1, 2, and Z :RN→RN

be a C1 measure preserving diffeomorphism such that DZ and DZ−1 are bounded.
When we consider the homogeneous Besov space Ḃsp,r(RN ) or Ḃskpk,rk(RN ), we assume
in addition that s ∈ ] − N/p′, N/p[ and sk ∈ ] − N/p′k, N/pk[ for k = 1, 2. Then we
have:

(i) If bsp,r(RN ) stands for Bsp,r(RN ) or Ḃsp,r(RN ), then the mapping u 7→ u ◦ Z is
continuous on bsp,r(RN ): there is a positive constant CZ,s,p,r such that

(A.2) ‖u ◦ Z‖bsp,r 6 CZ,s,p,r‖u‖bsp,r .

(ii) If bskpk,rk with k = 1, 2, denote the same type of Besov spaces, then the mapping
ϕ 7→ ϕ ◦ Z is continuous onM

(
bs1p1,r1(RN )→ bs2p2,r2(RN )

)
, that is

‖ϕ ◦ Z‖M(b
s1
p1,r1

→bs2p2,r2 ) 6 CZ−1,s1,p1,r1CZ,s2,p2,r2‖ϕ‖M(b
s1
p1,r1

→bs2p2,r2 ).

(iii) We have the following equivalence for any ϕ ∈ E ′(RN ),

ϕ ∈M
(
Bs1p1,r1(RN ) −→ Bs2p2,r2(RN )

)
⇐⇒ ϕ ∈M

(
bs1p1,r1(RN ) −→ bs2p2,r2(RN )

)
.

Here bs1p1,r1 and bs2p2,r2 can be different type of Besov spaces but obey our convention
on the index sk for homogeneous Besov space.
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Proof. — Item (i) in the case b = Ḃ has been proved in [13, Lem. 2.1.1]. One may
easily modify the proof to handle nonhomogeneous Besov spaces: use the finite dif-
ference characterization of [26, p. 98] if s > 0, argue by duality if s < 0 and in-
terpolate for the case s = 0. We get CZ,s,p,r ≈ 1 + ‖DZ‖s+N/rL∞ if s > 0, and
CZ,s,p,r ≈ 1 + ‖DZ−1‖−s+N/r

′

L∞ if s < 0.
Part (ii) is immediate according to (1.5) and (A.2). Indeed we may write:

‖ϕ ◦ Z‖
M
(
b
s1
p1,r1

→bs2p2,r2
) = sup

‖u‖
b
s1
p1,r1

61

‖(ϕ ◦ Z)u‖bs2p2,r2

= sup
‖u‖

b
s1
p1,r1

61

‖(ϕ (u ◦ Z−1)) ◦ Z‖bs2p2,r2

6 CZ,s2,p2,r2 sup
‖u‖

b
s1
p1,r1

61

‖ϕ (u ◦ Z−1)‖bs2p2,r2

6 CZ,s2,p2,r2‖ϕ‖M(b
s1
p1,r1

→bs2p2,r2 ) sup
‖u‖

b
s1
p1,r1

61

‖u ◦ Z−1‖bs1p1,r2

6 CZ−1,s1,p1,r1CZ,s2,p2,r2‖ϕ‖M(b
s1
p1,r1

→bs2p2,r2 ).

To prove the last item, it suffices to check that if ϕ belongs to E ′∩M(Bs1p1,r1→Bs2p2,r2),
then ϕ is also in the multiplier space between the general type Besov spaces. Take
u ∈ bs1p1,r1 with compact support, and some smooth and compactly supported nonneg-
ative cut-off function ψ satisfying ψ ≡ 1 on Suppϕ. Then from Proposition A.1 and
(1.5), we have

‖ϕu‖bs2p2,r2 = ‖ϕψu‖bs2p2,r2 . ‖ϕψu‖Bs2p2,r2 . ‖ϕ‖M(B
s1
p1,r1

→Bs2p2,r2 )‖ψu‖Bs1p1,r1
. ‖ϕ‖M(B

s1
p1,r1

→Bs2p2,r2 )‖ψu‖bs1p1,r1
. ‖ϕ‖M(B

s1
p1,r1

→Bs2p2,r2 )‖ψ‖M(b
s1
p1,r1

)‖u‖bs1p1,r1 .

For the last inequality, we used C∞c ↪→M(bs1p1,r1) (see [13, Cor. 2.1.1]). �

Appendix B. Commutator Estimates

We here recall and prove some commutator estimates that were crucial in this pa-
per. All of them strongly rely on continuity results in Besov spaces for the paraproduct
and remainder operators, and on the following classical result (see e.g. [4, §2.10]).

Lemma B.1. — Let A : RNr{0} → R be a smooth function, homogeneous of degree m.
Let (ε, s, p, r, r1, r2, p1, p2) ∈ ]0, 1[× R× [1,∞]6 with 1

p = 1
p1

+ 1
p2
, 1
r = 1

r1
+ 1

r2
and

s−m+ ε < N/p or {s−m+ ε < N/p and r = 1}·

There exists a constant C depending only on s, ε,N and A such that,

‖[Ṫg, A(D)]u‖Ḃs−m+ε
p,r

6 C‖∇g‖Ḃε−1
p1,r1
‖u‖Ḃsp2,r2 .

If the integer N0 in the definition of Bony’s paraproduct and remainder is large
enough (for instance N0 = 4 does), then the following fundamental lemma holds.
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Lemma B.2 (Chemin-Leibniz Formula). — Let (ε, sk, p, pk, p3, r, rk)∈ ]0, 1[×R×[1,∞]5

for k = 1, 2 satisfying

1

p
=

1

p1
+

1

p2
+

1

p3
and 1

r
=

1

r1
+

1

r2
·

(i) If s2 < 0 and s1 + s2 + ε− 1 < N/p or {s1 + s2 + ε− 1 = N/p and r = 1}, then
we have

‖ṪX Ṫgf − ṪgṪXf − ṪṪXgf‖Ḃs1+s2+ε−1
p,r

6 C‖X‖Ḃεp3,∞‖g‖Ḃ
s2
p2,∞
‖f‖Ḃs1p1,r .

The above inequality still holds for s2 = 0, if one replaces ‖g‖Ḃ0
p2,∞

by ‖g‖Lp2 .
(ii) If s1 + s2 + ε−1 ∈ ]0, N/p[ or {s1 + s2 + ε−1 = N/p and r = 1}, then we have

‖ṪXṘ(f, g)− Ṙ(ṪXf, g)− Ṙ(f, ṪXg)‖
Ḃ
s1+s2+ε−1
p,r

6 C‖X‖Ḃεp3,∞‖f‖Ḃ
s1
p1,r1
‖g‖Ḃs2p2,r2 .

The above inequality still holds for s1 + s2 + ε− 1 = 0, r =∞ and 1
r1

+ 1
r2

= 1.

Proof. — This is a mere adaptation of [15] to the homogeneous framework. The proof
is based on a generalized Leibniz formula for para-vector field operators which was
derived by J.-Y.Chemin in [6]. More precisely, define the following Fourier multipliers

∆̇k,j := ϕk(2−jD) with ϕk(ξ) := iξkϕ(ξ) for k ∈ {1, . . . , N} and j ∈ Z.

Then we have

ṪX Ṫgf =
∑
j∈Z

(Ṡj−N0
gṪX∆̇jf + ∆̇jf ṪX Ṡj−N0

g) +
∑
j∈Z

(Ṫ1,j + Ṫ2,j)

= ṪgṪXf + ṪṪXgf +
∑
j∈Z

α=1,...,4

Ṫα,j ,

where

Ṫ1,j :=
∑

j6j′6j+1
j−N0−16j′′6j′−N0−1

2j
′
∆̇j′′X

k
(
∆̇k,j′(∆̇jfṠj−N0

g)− ∆̇k,j′∆̇jfṠj−N0
g
)
,

Ṫ2,j :=
∑

j′6j−2
j′−N06j

′′6j−N0−2

2j
′
∆̇j′′X

k(∆̇jf)∆̇k,j′ Ṡj−N0
g,

Ṫ3,j := Ṡj−N0g[ṪXk , ∆̇j ]∂kf,

Ṫ4,j := ∆̇jf [ṪXk , Ṡj−N0
]∂kg.

Bounding Ṫ1,j and Ṫ2,j stems from the definition of Besov norms, and Lemmas 2.99,
2.100 of [4] allow to bound Ṫ3,j and Ṫ4,j provided ε < 1.

In order to prove the second item, let us set

Aj,j′ :=
{
j −N0 − 1, . . . , j′ −N0 − 1

}
∪
{
j′ −N0, . . . , j −N0 − 2

}
·
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We have

ṪXṘ(f, g) =
∑
j∈Z

( ˜̇∆jgṪX∆̇jf + ∆̇jf ṪX ˜̇∆jg) +
∑
j∈Z

(Ṙ1,j + Ṙ2,j)

= Ṙ(ṪXf, g) + Ṙ(f, ṪXg) +
∑
j∈Z

α=1,...,4

Ṙα,j ,

where, denoting ˜̇∆j := ∆̇j−N0 + · · ·+ ∆̇j+N0 ,

Ṙ1,j :=
∑

|j′−j|6N0+1
j′′∈Aj,j′

sgn(j′ − j + 1)2j
′
∆̇j′′X

k
(
∆̇k,j′(∆̇jf

˜̇∆jg)− ∆̇jf∆̇k,j′
˜̇∆jg

)
+

∑
j−16j′6j

j′−N06j
′′6j−N0

2j
′
∆̇j′′X

k(∆̇k,j′∆̇jf) ˜̇∆jg,

Ṙ2,j :=
∑

j′6j−N0−2
j′−N06j

′′6j−N0−2

2j
′
∆̇j′′X

k∆̇k,j′(∆̇jf
˜̇∆jg),

Ṙ3,j := ˜̇∆jg[ṪXk , ∆̇j ]∂kf,

Ṙ4,j := ∆̇jf [ṪXk ,
˜̇∆j ]∂kg.

Here again, bounding Ṙ1,j and Ṙ2,j follows from the definition of Besov norms, while
Lemma 2.100 of [4] allows to bound Ṙ3,j and Ṙ4,j . �

Proposition B.3. — Let (ε, p) be in ]0, 1[ × [1,∞]. Consider a pair of vector fields
(X, v) in (

L∞loc(R+; Ċ ε)
)N × (L∞loc(R+; Ḃ

(N/p)−1
p,1 ) ∩ L1

loc(R+; Ḃ
(N/p)+1
p,1 )

)N
,

satisfying div v = 0 and the transport equation

(B.1)

(∂t + v · ∇)X = ∂Xv,

X|t=0 = X0.

If in addition

(B.2) N/p > 2− ε, or N/p > 1− ε and divX ≡ 0,

then there exists a constant C such that:

(B.3) ‖[ṪX , ∂t + v · ∇]v‖
Ḃ

(N/p)+ε−2
p,1

6 C(‖X‖Ċ ε‖v‖Ḃ(N/p)+1
p,1

‖v‖
Ḃ

(N/p)−1
p,1

+ ‖v‖Ċ−1‖ṪXv‖Ḃ(N/p)+ε
p,1

+ ‖v‖
Ḃ

(N/p)+1
p,1

‖ṪXv‖Ċ ε−2).

Proof. — This is essentially the proof of [15, Prop.A.5]. For the reader convenience,
we here give a sketch of it. Because div v = 0, we may write

[ṪX , ∂t + v`∂`]v = −v`∂`ṪXk∂kv − Ṫ∂tXk∂kv + ṪXk∂k(v`∂`v)

= −Ṫ∂tXk∂kv + ∂`ṪX(v`v)− Ṫ∂`X(v`v)− v`∂`ṪXv.
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Hence, decomposing v`v according to Bony’s decomposition, we discover that

[ṪX , ∂t + v`∂`]v =

α=5∑
α=1

Ṙα

with
Ṙ1 := −Ṫ∂tXk∂kv, Ṙ2 := ∂`(ṪX Ṫv`v + ṪX Ṫvv`), Ṙ3 := ∂`ṪXṘ(v`, v),

Ṙ4 := −Ṫ∂`X(v`v), Ṙ5 := −v`∂`ṪXv.

It suffices to check that all the terms Ṙα may be bounded by the right-hand side
of (B.3).

Bound of Ṙ1. — From the equation (B.1), we have

Ṙ1 = Ṫv·∇Xk∂kv − Ṫ∂Xvk∂kv.

Hence using standard continuity results for the paraproduct, we deduce that

‖Ṙ1‖Ḃ(N/p)+ε−2
p,1

. ‖∇v‖
Ḃ
N/p
p,1

(
‖v · ∇X‖Ċ ε−2 + ‖∂Xv‖Ċ ε−2

)
.

Keeping in mind (B.2), the last term may be bounded according to (1.16), after using
the embedding Ḃ(N/p)+ε−2

p,1 (RN ) ↪→ Ċ ε−2(RN ). We get

‖∂Xv − ṪXv‖Ċ ε−2 . ‖∇v‖Ḃ(N/p)−2
p,1

‖X‖Ċ ε .

As for the first term, we use the fact div v = 0 and the following decomposition

v · ∇X = ṪvX + Ṫ∂`Xv
` + ∂`Ṙ(v`, X),

which allow to get, as long as (B.2) holds

‖Ṙ1‖Ḃ(N/p)+ε−2
p,1

. ‖∇v‖
Ḃ
N/p
p,1

(
‖v‖

Ḃ
(N/p)−1
p,1

‖X‖Ċ ε + ‖ṪXv‖Ċ ε−2

)
.

Bound of Ṙ2. — Due to Lemma B.2 (i) and continuity of paraproduct operator, we
have

‖Ṙ2‖Ḃ(N/p)+ε−2
p,1

. ‖X‖Ċ ε‖v‖Ḃ(N/p)+1
p,1

‖v‖Ċ−1

+ ‖v‖Ċ−1‖ṪXv‖Ḃ(N/p)+ε
p,1

+ ‖v‖
Ḃ

(N/p)+1
p,1

‖ṪXv‖Ċ ε−2 .

Bound of Ṙ3. — Applying Lemma B.2 (ii) and continuity of remainder operator under
the condition (N/p) + ε− 1 > 0 yields

‖Ṙ3‖Ḃ(N/p)+ε−2
p,1

. ‖X‖Ċ ε‖v‖Ḃ(N/p)+1
p,1

‖v‖Ċ−1 + ‖v‖
Ḃ

(N/p)+1
p,1

‖ṪXv‖Ċ ε−2 .

Bound of Ṙ4. — From Bony decomposition (1.15), it is easy to get

‖vlv‖
Ḃ
N/p
p,1
. ‖v‖Ċ−1‖v‖Ḃ(N/p)+1

p,1
.

Hence
‖Ṙ4‖Ḃ(N/p)+ε−2

p,1
. ‖∇X‖Ċ ε−1‖v‖Ċ−1‖v‖Ḃ(N/p)+1

p,1
.
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Bound of Ṙ5. — Applying Bony decomposition and using that div v=0 and N
p +ε>1

give
‖Ṙ5‖Ḃ(N/p)+ε−2

p,1
. ‖v‖Ċ−1‖ṪXv‖Ḃ(N/p)+ε

p,1
+ ‖v‖

Ḃ
(N/p)+1
p,1

‖ṪXv‖Ċ ε−2 .

Combining the above estimates for all Ṙα, with α = 1, . . . , 5 yields (B.3). �

Another consequence of Lemma B.2 is the following estimate of div(Xfg):

Proposition B.4. — Let (s, p, r) be in ]0, 1[ × [1,∞]2 and η in ]0, 1 − s[. Consider a
bounded vector field X and two bounded functions f, g satisfying

X ∈
(
Ḃsp,r(RN ) ∩ C s+η

)N
, (f, g) ∈ Ḃsp,r(RN )× Ḃ−ηp,r (RN ) and ∂Xg ∈ Ḃs−1

p,r (RN ).

If in addition divX belongs to M
(
Ḃsp,r(RN ) → Ḃs−1

p,r (RN )
)
, and there exists some

q ∈ [1, p[ such that

(B.4) divX ∈ Ḃsp,qq,r (RN ) with sp,q := s− 1 +N(1/q − 1/p) > 0,

then we have div(Xfg) ∈ Ḃs−1
p,r (RN ), and the following estimate holds true:

‖ div(Xfg)‖Ḃs−1
p,r
. ‖X‖Ḃsp,r∩C s+η‖f‖L∞∩Ḃsp,r‖g‖L∞∩Ḃ−ηp,r + ‖f‖L∞‖∂Xg‖Ḃs−1

p,r

+ ‖divX‖Ḃsp,qq,r ∩M(Ḃsp,r→Ḃ
s−1
p,r )‖g‖L∞‖f‖Ḃsp,r∩L∞ .

Proof. — In light of Bony’s decomposition (1.15), and denoting Ṫ ′gf := Ṫgf+Ṙ(f, g),
we can decompose div(Xfg) into

div(Xfg) = div
(
Ṫ ′fgX+ ṪX(fg)

)
=

4∑
α=1

Ḟα, where
{
Ḟ1 :=div(Ṫ ′fgX), Ḟ3 := ṪX Ṫ ′gf,
Ḟ2 := ṪdivX(fg), Ḟ4 := ṪX Ṫfg.

Bound of Ḟ1. — As s > 0, standard continuity results for Ṫ and Ṙ yield

‖Ḟ1‖Ḃs−1
p,r
. ‖Ṫ ′fgX‖Ḃsp,r . ‖f‖L∞‖g‖L∞‖X‖Ḃsp,r .

Bound of Ḟ2. — Thanks to continuity results for Ṫ , we have for s < 1,

‖Ḟ2‖Ḃs−1
p,r
. ‖ divX‖Ḃs−1

p,r
‖f‖L∞‖g‖L∞ .

Bound of Ḟ3. — Because X and g are bounded and s > 0, we readily have

‖Ḟ3‖Ḃs−1
p,r
. ‖X‖L∞‖Ṫ ′gf‖Ḃsp,r . ‖X‖L∞‖g‖L∞‖f‖Ḃsp,r .

Bound of Ḟ4. — Because 0 < s < s + η < 1, Lemma B.2 and continuity results for
the paraproduct Ṫ imply that

‖ṪX Ṫfg‖Ḃs−1
p,r
. ‖X‖Ċ s+η‖f‖L∞‖g‖Ḃ−ηp,r + ‖Ṫf ṪXg‖Ḃs−1

p,r
+ ‖ṪṪXfg‖Ḃs−1

p,r

. ‖X‖Ċ s+η‖f‖L∞‖g‖Ḃ−ηp,r + ‖f‖L∞‖ṪXg‖Ḃs−1
p,r

+ ‖g‖L∞‖ṪXf‖Ḃs−1
p,r

.

To bound the last term, one may use the decomposition

ṪXf = div(ṪXf)− f divX + Ṫf divX + Ṙ(f, divX).

J.É.P. — M., 2017, tome 4



810 R. Danchin & X. Zhang

Hence using continuity results for Ṙ and Ṫ and the fact that (sp,q, q) satisfies (B.4),

‖ṪXf‖Ḃs−1
p,r
. ‖f‖Ḃsp,r

(
‖X‖L∞ + ‖ divX‖M(Ḃsp,r→Ḃ

s−1
p,r )

)
+ ‖f‖L∞‖divX‖Ḃsp,qq,r

.

Finally, to bound the term with ṪXg, we use the fact that

∂Xg − ṪXg = Ṫ∇g ·X + div Ṙ(X, g)− Ṙ(divX, g),

whence

(B.5) ‖∂Xg − ṪXg‖Ḃs−1
p,r
. ‖g‖L∞

(
‖X‖Ḃsp,r + ‖ divX‖Ḃsp,qq,r

)
.

This completes the proof of the proposition. �

Proposition B.4 above reveals that the bounded function g may behave like some
element inM(Ḃs−1

p,∞) under a suitable additional structure assumption. If in addition g
has compact support, then one can relax a bit the regularity of X and f to study
∂X(fg), and get the following generalization of [9, Lem.A.6].

Corollary B.5. — Consider a divergence-free vector field X with coefficients in C ε,
and some function f in C ε′ with 0 < ε, ε′ < 1. Let g ∈ L∞ be compactly supported
and satisfy ∂Xg ∈ Ḃα−1

p,r for some (p, r) ∈ [1,∞]2 and α ∈ ]0,min{ε, ε′}[. Then
div(Xfg) = ∂X(fg) ∈ Ḃα−1

p,r .

Proof. — Let ψ ∈ C∞c be a cut-off function such that ψ ≡ 1 near Supp g. Denote
(X̃, f̃) := (ψX,ψf). From Proposition A.1 and the proof of Proposition A.2, we know
that

(X̃, f̃ , g) ∈ (Bεq,∞)N ×Bε
′

q,∞ ×B−ηq,r ↪−→ (Ḃαq,1 ∩ L∞)N+1 × Ḃ−ηq,r ,
for any q ∈ [1,∞] and some η ∈ ]0,min{N/q′, ε− α}[. It is also clear that ∂X(fg) =

div(X̃f̃g) and ∂X̃g = ∂Xg. Hence applying Proposition B.4 gives the result. �
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