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HEIGHT, GRADED RELATIVE HYPERBOLICITY AND

QUASICONVEXITY

by François Dahmani & Mahan Mj

Abstract. — We introduce the notions of geometric height and graded (geometric) relative
hyperbolicity in this paper. We use these to characterize quasiconvexity in hyperbolic groups,
relative quasiconvexity in relatively hyperbolic groups, and convex cocompactness in mapping
class groups and Out(Fn).

Résumé (Hauteur, hyperbolicité relative graduée, et quasiconvexité). — Nous introduisons
les notions de hauteur géométrique d’un sous-groupe, et d’hyperbolicité relative graduée d’un
groupe, avec une version géométrique de cette dernière. Nous utilisons ensuite ces notions pour
caractériser la quasiconvexité des sous-groupes des groupes hyperboliques, la quasiconvexité
relative des sous-groupes des groupes relativement hyperboliques, et le fait d’être convexe-
cocompact dans un groupe modulaire de surface, ou dans un groupe d’automorphismes exté-
rieurs de groupe libre.
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516 F. Dahmani & M. Mj

1. Introduction

It is well-known that quasiconvex subgroups of hyperbolic groups have finite height.
In order to distinguish this notion from the notion of geometric height introduced
later in this paper, we shall call the former algebraic height: Let G be a finitely
generated group and H a subgroup. We say that a collection of conjugates {giHg−1

i },
i = 1, . . . , n are essentially distinct if the cosets {giH} are distinct. We say that H
has finite algebraic height if there exists n ∈ N such that the intersection of any (n+1)

essentially distinct conjugates of H is finite. The minimal n for which this happens
is called the algebraic height of H. Thus H has algebraic height one if and only if it
is almost malnormal. This admits a natural (and obvious) generalization to a finite
collection of subgroups Hi instead of one H. Thus, if G is a hyperbolic group and H
a quasiconvex subgroup (or more generally if H1, . . . ,Hn are quasiconvex), then H

(or more generally the collection {H1, . . . ,Hn}) has finite algebraic height [GMRS98].
(See [Dah03, HW09] for generalizations to the context of relatively hyperbolic groups.)
Swarup asked if the converse is true:

Question 1.1 ([Bes04]). — Let G be a hyperbolic group and H a finitely generated
subgroup. If H has finite height, is H quasiconvex?

An example of an infinitely generated (and hence non-quasiconvex) malnormal
subgroup of a finitely generated free group was obtained in [DM15] showing that
the hypothesis that H is finitely generated cannot be relaxed. On the other hand,
Bowditch shows in [Bow12] (see also [Mj08, Prop. 2.10]) the following positive result:

Theorem 1.2 ([Bow12]). — Let G be a hyperbolic group and H a subgroup. Then G is
strongly relatively hyperbolic with respect to H if and only if H is an almost malnormal
quasiconvex subgroup.

One of the motivational points for this paper is to extend Theorem 1.2 to give a
characterization of quasiconvex subgroups of hyperbolic groups in terms of a notion
of graded relative hyperbolicity defined as follows:

Definition 1.3. — Let G be a finitely generated group, d the word metric with respect
to a finite generating set and H a subgroup. Let Hi be the collection of intersections
of i essentially distinct conjugates of H, let (Hi)0 be a choice of conjugacy represen-
tatives, and let CHi be the set of cosets of elements of (Hi)0. Let di be the metric
on (G, d) obtained by electrifying(1) the elements of CHi. We say that G is graded
relatively hyperbolic with respect to H (or equivalently that the pair (G, {H}) has
graded relative hyperbolicity) if

(1) H has algebraic height n for some n ∈ N,

(1)The second author acknowledges the moderating influence of the first author on the more
extremist terminology electrocution [Mj14, Mj10]
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(2) each element K of Hi−1 has a finite relative generating set SK , relative to
H ∩Hi(:= {H ∩Hi : Hi ∈ Hi}); further, the cardinality of the generating set SK is
bounded by a number depending only on i (and not on K),

(3) (G, di) is strongly hyperbolic relative to Hi−1, where each element K of Hi−1

is equipped with the word metric coming from SK .

The following is the main theorem of this paper (see Theorem 6.4 for a more
precise statement using the notion of graded geometric relative hyperbolicity defined
later) providing a partial positive answer to Question 1.1 and a generalization of
Theorem 1.2:

Theorem 1.4. — Let (G, d) be one of the following:
(1) G a hyperbolic group and d the word metric with respect to a finite generating

set S.
(2) G is finitely generated and hyperbolic relative to P, S a finite relative gener-

ating set, and d the word metric with respect to S ∪P.
(3) G is the mapping class group Mod(S) and d a metric that is equivariantly

quasi-isometric to the curve complex CC(S).
(4) G is Out(Fn) and d a metric that is equivariantly quasi-isometric to the free

factor complex Fn.
Then (respectively)

(1) if H is quasiconvex, then (G, {H}) has graded relative hyperbolicity; conversely,
if (G, {H}) has geometric graded relative hyperbolicity then H is quasiconvex,

(2) if H is relatively quasiconvex then (G, {H}, d) has graded relative hyperbolic-
ity; conversely, if (G, {H}, d) has geometric graded relative hyperbolicity then H is
relatively quasiconvex,

(3) if H is convex cocompact in Mod(S) then (G, {H}, d) has graded relative hy-
perbolicity; conversely, if (G, {H}, d) has geometric graded relative hyperbolicity and
the action of H on the curve complex is uniformly proper, then H is convex cocompact
in Mod(S),

(4) if H is convex cocompact in Out(Fn) then (G, {H}, d) has graded relative hy-
perbolicity; conversely, if (G, {H}, d) has geometric graded relative hyperbolicity and
the action of H on the free factor complex is uniformly proper, then H is convex
cocompact in Out(Fn).

Structure of the paper. — In Section 2, we will review the notions of hyperbolicity
for metric spaces relative to subsets. This will be related to the notion of hyperbolic
embeddedness [DGO17]. We will need to generalize the notion of hyperbolic embed-
dedness in [DGO17] to one of coarse hyperbolic embeddedness in order to accomplish
this. We will also prove results on the preservation of quasiconvexity under electrifi-
cation. We give two sets of proofs: the first set of proofs relies on assembling diverse
pieces of literature on relative hyperbolicity, with several minor adaptations. We also
give a more self-contained set of proofs relying on asymptotic cones.

J.É.P. — M., 2017, tome 4



518 F. Dahmani & M. Mj

In Section 3.1 and the preliminary discussion in Section 4, we give an account of two
notions of height: algebraic and geometric. The classical (algebraic) notion of height of
a subgroup concerns the number of conjugates that can have infinite intersection. The
notion of geometric height is similar, but instead of considering infinite intersection,
we consider unbounded intersections in a (not necessarily proper) word metric. This
naturally leads us to dealing with intersections in different contexts:

(1) Intersections of conjugates of subgroups in a proper (Γ, d) (the Cayley graph
of the ambient group with respect to a finite generating set).

(2) Intersections of metric thickenings of cosets in a not necessarily proper (Γ, d).
The first is purely group theoretic (algebraic) and the last geometric. Accordingly,

we have two notions of height: algebraic and geometric. In line with this, we investigate
two notions of graded relative hyperbolicity in Section 4 (cf. Definition 4.3):

(1) Graded relative hyperbolicity (algebraic).
(2) Graded geometric relative hyperbolicity.
In the fourth section, we also introduce and study a qi-intersection property, a

property that ensures that quasi-convexity is preserved under passage to electrified
spaces. The property exists in both variants above.

In the fifth and the sixth sections, we will prove our main results relating height
and geometric graded relative hyperbolicity. On a first reading, the reader is welcome
to keep the simplest (algebraic or group-theoretic) notion in mind. To get a hang of
where the paper is headed, we suggest that the reader take a first look at Sections 5
and 6, armed with Section 3.3 and the statements of Proposition 4.5, Theorem 4.6,
Theorem 4.10, Theorem 4.14 and Proposition 4.15. This, we hope, will clarify our
intent.

Acknowledgments. — This work was initiated during a visit of the second author to
Institut Fourier in Grenoble during June 2015 and carried on while visiting Indian
Statistical Institute, Kolkata. He thanks the Institutes for their hospitality.

We thank the referee for a detailed and careful reading of the manuscript and for
several extremely helpful and perceptive comments.

2. Relative hyperbolicity, coarse hyperbolic embeddings

We shall clarify here what it means in this paper for a geodesic space (X, d), to be
hyperbolic relative to a family of subspaces Y = {Yi, i ∈ I}, or to cast it in another
language, what it means for the family Y to be hyperbolically embedded in (X, d).
There are slight differences from the more usual context of groups and subgroups
(as in [DGO17]), but we will keep the descending compatibility (when these notions
hold in the context of groups, they hold in the context of spaces).

We begin by recalling relevant constructions.

2.1. Electrification by cones. — Given a metric space (Y, dY ), we will endow
Y × [0, 1] with the following product metric: it is the largest metric that agrees

J.É.P. — M., 2017, tome 4
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with dY on Y × {0}, and each {y} × [0, 1] is endowed with a metric isometric to the
segment [0, 1].

Definition 2.1 ([Far98]). — Let (X, d) be a geodesic length space, and

Y = {Yi, i ∈ I}

be a collection of subsets of X. The electrification (Xel
Y , d

el
Y ) of (X, d) along Y is

defined as the following coned-off space:

Xel
Y = X t

{⊔
i∈I Yi × [0, 1]

}
/ ∼

where ∼ denotes the identification of Yi × {0} with Yi ⊂ X for each i, and the
identification of Yi × {1} to a single cone point vi (dependent on i).

The metric del
Y is defined as the path metric on Xel

Y for the natural quotient metric
coming from the product metric on Yi × [0, 1] (defined as above).

Let Yi ∈ Y . The angular metric d̂Yi (or simply, d̂, when there is no scope for
confusion) on Yi is defined as follows:

For y1, y2 ∈ Yi, d̂Yi(y1, y2) is the infimum of lengths of paths in Xel
Y joining y1 to y2

not passing through the vertex vi. (We allow the angular metric to take on infinity as
a value).

If (X, d) is a metric space, and Y is a subspace, we write d|Y the metric induced
on Y .

Definition 2.2. — Consider a geodesic metric space (X, d) and a family of subsets
Y = {Yi, i ∈ I}. We will say that Y is coarsely hyperbolically embedded in (X, d), if
there is a function ψ : R+ → R+ which is proper (i.e., lim+∞ ψ(x) = +∞), and such
that

(1) the electrified space Xel
Y is hyperbolic,

(2) the angular metric at each Y ∈ Y in the cone-off is bounded from below by
ψ ◦ d|Y .

Remark 2.3. — This notion originates from Osin’s [Osi06a], and was developed fur-
ther in [DGO17] in the context of groups, where one requires that each subset Yi ∈ Y

is a proper metric space for the angular metric. This automatically implies the weaker
condition of the above definition. The converse is not true: if Y is a collection of uni-
formly bounded subgroups of a group X with a (not necessarily proper) word metric,
it is always coarsely hyperbolically embedded, but it is hyperbolically embedded in
the sense of [DGO17] only if it is finite.

As in the point of view of [Osi06a], we say that (X, d) is strongly hyperbolic relative
to the collection Y (in the sense of spaces) if Y is coarsely hyperbolically embedded
in (X, d).

As we described in the remark, unfortunately, it happens that some groups (with a
Cayley graph metric) are hyperbolic relative to some subgroups in the sense of spaces,
but not in the sense of groups.

J.É.P. — M., 2017, tome 4



520 F. Dahmani & M. Mj

Note that there are other definitions of relative hyperbolicity for spaces. Druţu
introduced the following definition: a metric space is hyperbolic relative to a collection
of subspaces if all asymptotic cones are tree graded with pieces being ultratranslates
of asymptotic cones of the subsets.

2.2. Quasiretractions

Definition 2.4. — If (X, d) is a metric space, and Y ⊂ X is a subset endowed with
a metric dY , we say that dY is λ-undistorted in (X, d) if for all y1, y2 ∈ Y ,

λ−1d(y1, y2)− λ 6 dY (y1, y2) 6 λd(y1, y2) + λ.

We say that dY is undistorted in (X, d) if it is λ-undistorted in (X, d) for some λ.

For the next proposition, define the D-coarse path metric on a subset Y of a path-
metric space (X, d) to be the metric on Y obtained by taking the infimum of lengths
over paths for which any subsegment of length D meets Y .

The next proposition is the translation (to the present context) of Theorem 4.31
in [DGO17], with a similar proof.

Proposition 2.5. — Let (X, d) be a graph. Assume that Y is coarsely hyperbolically
embedded in (X, d). Then, there exists D0 such that for all Y ∈ Y , the D0-coarse
path metric on Y ∈ Y is undistorted (or equivalently the D0-coarse path metric on
Y ∈ Y is quasi-isometric to the metric induced from (X, d)).

We will need the following lemma, which originates in Lemma 4.29 in [DGO17].
The proof is the same; for convenience we will briefly recall it. The lemma provides
quasiretractions onto hyperbolically embedded subsets in a hyperbolic space.

Lemma 2.6. — Let (X, d) be a geodesic metric space. There exists C > 0 such that
whenever Y is coarsely hyperbolically embedded (in the sense of spaces) in (X, d),
then for each Y ∈ Y , there exists a map r : X → Y which is the identity on Y and
such that d̂(r(x), r(y)) 6 Cd(x, y).

Proof. — Let p the cone point associated to Y , and for each x, choose a geodesic [p, x]

and define r(x) to be the point of [p, x] at distance 1 from p. Then r(x) is in Y , and
to prove the lemma, one only needs to check that there is C such that if d(x, y) = 1,
then d̂(r(x), r(y)) 6 C. The constant C will be 10(δ+1)+1. Assume that x and y are
at distance > 5(δ+ 1) from the cone point. By hyperbolicity, one can find two points
in the triangle (p, x, y) at distance 2(δ+ 1) from r(x), r(y) at distance 6 2δ from each
other. This provides a path of length at most 6δ + 4. Hence d̂(r(x), r(y)) 6 6δ + 4.
If x and y are at distance 6 5(δ + 1) from the cone point, then

d̂(r(x), r(y)) 6 d(r(x), x) + d(x, y) + d(y, r(y)) 6 2× 5(δ + 1) + 1. �

We can now prove the proposition.

J.É.P. — M., 2017, tome 4
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Proof. — Choose D0 = ψ(C): for all y0, y1 ∈ Y at distance 6 D0, their angular
distance is at most C (where C is as given by the lemma above). Consider any path
in X from y0 to y1, call the consecutive vertices z0, . . . , zn, and project that path by r.
One gets r(z0), . . . , r(zn) in Y , two consecutive ones being at distance at most D0.
This proves the claim. �

Corollary 2.7. — If (X, d) is hyperbolic, and if Y is coarsely hyperbolically embed-
ded, then there is C such that any Y ∈ Y is C-quasiconvex in X.

2.3. Gluing horoballs. — Given a metric space (Y, dY ) , one can construct several
models of combinatorial horoballs over it. We recall a construction (similar to that of
Groves and Manning [GM08] for a graph).

We consider inductively on k ∈ N r {0} the space Hk(Y ) = Y × [1, k] with the
maximal metric dk that

– induces an isometry of {y} × [k − 1, k] with [0, 1] for all y ∈ Y , and all k > 1,
– is at most dk−1 on Hk−1(Y ) ⊂Hk(Y ),
– coincides with 2−k × d on Y × {k}.

Then H (Y ) is defined as the inductive limit of the Hk(Y )’s and is called the horoball
over Y . Let (X, d) be a graph, and Y be a collection of subgraphs (with the induced
metric on each of them). The horoballification of (X, d) over Y is defined to be
the space Xh

Y = X t {
⊔
i∈I H (Yi)}/ ∼i, where ∼i denotes the identification of the

boundary horosphere of H (Yi) with Yi ⊂ X. The metric dhY is defined as the path
metric on Xh

Y .
One can electrify a horoballification Xh

Y of a space (X, d): one gets a space quasi-
isometric to the electrification Xel

Y of X. We record this observation in the following.

Proposition 2.8. — Let X be a graph, and Y be a family of subgraphs. Let Xel
Y

and Xh
Y be the electrification, and the horoballification as above. Let (Xh)el

H (Y ) be
the electrification of Xh

Y over the collection of horoballs H (Yi) over Yi, i ∈ I.
Then there is a natural injective map Xel

Y ↪→ (Xh)el
H (Y ) which is the identity on X

and sends the cone point of Yi to the cone point of H (Yi).
Consider the map e : ((Xh)el

H (Y ))
(0) → Xel

Y that
– is the identity on X,
– sends each vertex of H (Yi) of depth > 2 to vi ∈ Xel

Y ,
– sends each vertex (y, n) ∈H (Yi) of depth n 6 2 to y ∈ Yi ⊂ X,
– sends the cone point of ((Xh)el

H (Y )) associated to H (Yi) to the cone point of Xel
Y

associated to Yi.
Then e is a quasi-isometry that induces an isometry on Xel

Y ⊂ (Xh)el
H (Y ).

Proof. — First, note that a geodesic in (Xh)el
H (Y ) between two points of X never

contains an edge with a vertex of depth > 1. If it did, the subpath in the corresponding
horoball would be either non-reduced, or would contain at least 3 edges, and could be
shortened by substituting a pair of edges through the cone attached to that horoball.

J.É.P. — M., 2017, tome 4
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Thus the image of such a geodesic under e is a path of the same length. In other
words, there is an inequality on the metrics dXel

Y
6 d(Xh)el

H (Y )
(restricted to Xel

Y ). On
the other hand, there is a natural inclusion Xel

Y ⊂ (Xh)el
H (Y ), and therefore on Xel

Y ,
d(Xh)el

H (Y )
6 dXel

Y
. Thus e is an isometry on Xel

Y . Also, every point in (Xh)el
H (Y ) is at

distance at most 2 from a point in X, hence also from a point of the image of Xel
Y . �

2.4. Relative hyperbolicity and hyperbolic embeddedness. — Recall that we say
that a subspace Q of a geodesic metric space (X, d) is C-quasiconvex, for some number
C > 0, if for any two points x, y ∈ Q, and any geodesic [x, y] in X, any point of [x, y]

is at distance at most C from a point of Q.

Definition 2.9 ([Mj10, Def. 3.5]). — A collection H of (uniformly) C-quasiconvex
sets in a δ-hyperbolic metric space X is said to be mutually D-cobounded if for all
Hi, Hj ∈ H , with Hi 6= Hj , πi(Hj) has diameter less than D, where πi denotes a
nearest point projection of X onto Hi. A collection is mutually cobounded if it is
mutually D-cobounded for some D.

The aim of this subsection is to establish criteria for hyperbolicity of certain spaces
(electrification, horoballification), and related statements on persistence of quasi-
convexity in these spaces. We also show that hyperbolicity of the horoballification
implies strong relative hyperbolicity, or coarse hyperbolic embeddedness.

Two sets of arguments are given. In the first set of arguments, the pivotal statement
is of the following form: Electrification or de-electrification preserves the property of
being a quasigeodesic. The arguments are essentially existent in some form in the
literature, and we merely sketch the proofs and refer the reader to specific points in
the literature where these may be found.

The second set of arguments uses asymptotic cones (hence the axiom of choice) and
is more self-contained (it relies on Gromov-Cartan-Hadamard theorem). We decided
to give both these arguments so as to leave it to the the reader to choose according
to her/his taste.

2.5. Persistence of hyperbolicity and quasiconvexity

2.5.1. The statements. — Here we state the results for which we give arguments in
the following two subsubsections.

Proposition 2.10. — Let (X, d) be a hyperbolic geodesic space, C > 0, and Y be a
family of C-quasiconvex subspaces. Then Xel

Y is hyperbolic. If moreover the elements
of Y are mutually cobounded, then Xh

Y is hyperbolic.

In the same spirit, we also record the following statement on persistence of quasi-
convexity.

Proposition 2.11. — Given δ, C there exists C ′ such that if (X, dX) is a δ-hyperbolic
metric space with a collection Y of C-quasiconvex, sets. then the following holds:

J.É.P. — M., 2017, tome 4
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If Q(⊂ X) is a C-quasiconvex set (not necessarily an element of Y ), then Q is
C ′-quasiconvex in (Xel

Y , de).

Finally, there is a partial converse. We need a little bit of vocabulary. If Z is a
subset of a metric space (X, d), a (d,R)-coarse path in Z is a sequence of points of Z
such that two consecutive points are always at distance at most R for the metric d.

Let H and Y two subsets of X. We will denote by H+λ the set of points at distance
at most λ from H. We will say that H (∆, ε)-meets Y if there are two points x1, x2

at distance > ∆ from each other, and at distance 6 ε∆ from Y and H, and if for
all pair of points at distance 20δ from {x1, x2}, either H or Y is at distance at least
ε∆− 2δ from one of them.

The two points x1, x2 are called a pair of meeting points in H (for Y ). We shall
say that a subset H of X is coarsely path connected if there exists c > 0 such that
the c-neighborhood Nc(H) is path connected.

Proposition 2.12. — Let (X, d) be hyperbolic, and let Y be a collection of uniformly
quasiconvex subsets. Let H be a subset of X that is coarsely path connected, and
quasiconvex in the electrification Xel

Y .
Assume also that there exists ε ∈ (0, 1), and ∆0 such that for all ∆ > ∆0, wher-

ever H (∆, ε)-meets an item Y in Y , there is a path in H+ε∆ between the meeting
points in H that is uniformly a quasigeodesic in the metric (X, d).

Then H is quasiconvex in (X, d). The quasiconvexity constant of H can be chosen to
depend only on the constants involved for (X, d),Y ,∆0, ε, the coarse path connection
constant, and the quasi-geodesic constant of the last assumption.

2.5.2. Electroambient quasigeodesics. — We recall here the concept of electroambient
quasigeodesics from [Mj10, Mj14].

Let (X, d) be a metric space, and Y a collection of subspaces. If γ is a path in (X, d),
or even in (Xel

Y , d
el
Y ), one can define an elementary electrification of γ in (Xel

Y , d
el
Y ) as

follows:
For x1, x2 in γ, both belonging to some Yi ∈ Y , and at distance > 1, replace the

arc of γ between them by a pair of edges (x1, vi)(vi, x2), where vi is the cone-point
corresponding to Yi.

A complete electrification of γ is a path obtained after a sequence of elementary
electrifications of subarcs, admitting no further elementary electrifications.

One can de-electrify certain paths. Given a path γ in (Xel
Y , d

el
Y ), a de-electrification

of γ is a path σ in (X, d) such that

(1) γ is a complete electrification of σ,
(2) (σ r γ) ∩ Yi is either empty or a geodesic in Yi.

A (λ, µ)-de-electrification of a path γ in (Xel
Y , d

el
Y ), is a path in X such that

(1) γ is a complete electrification of σ,
(2) (σ r γ) ∩ Yi is either empty or a (λ, µ)-quasigeodesic in Yi.

J.É.P. — M., 2017, tome 4



524 F. Dahmani & M. Mj

Observe that, given a path σ in Xel, there might be several ways to de-electrify it,
but these ways differ only in the choice of the geodesic (or the quasi-geodesic) in the
family of subspaces Yi corresponding to the successive cone points vYi on the path σ.
It might also happen that there is no way of de-electrifying it, if the spaces in Y are
not quasiconvex.

We say that a path γ in (X, d) is an electroambient geodesic if it is a de-
electrification of a geodesic.

We say that it is a (λ, µ)-electroambient quasigeodesic if it is the (λ, µ)-de-
electrification of a (λ, µ)-quasigeodesic in (Xel

Y , d
el
Y ).

We begin by discussing Proposition 2.10.

Proof. — The first part is fairly well-known. In some other guise it appears in [Bow12,
Prop. 7.4] [Szc98, Prop. 1] [Mj10]. In the first two, the electrification by cones is re-
placed by collapses of subspaces (identifications to points) which of course requires
that the subspaces to electrify are disjoint and separated.

However this is only a technical assumption (as explicated in [Mj10]). Indeed,
by replacing (or augmenting) any Y ∈ Y by Y × [0, D] glued along Y × {0}, and
replacing Y by the family {Y ×{D}, Y ∈ Y }, we achieve a D-separated quasiconvex
family. �

Next, we discuss Proposition 2.11.

Proof. — The proofs of Lemma 4.5 and Proposition 4.6 of [Far98], Proposition 4.3
and Theorem 5.3 of [Kla99] (see also [Bow12]) furnish Proposition 2.11.

The crucial ingredient in all these proofs is the fact that in a hyperbolic space,
nearest point projections decrease distance exponentially. Farb proves this in the setup
of horoballs in complete simply connected manifolds of pinched negative curvature.
Klarreich “coarsifies” this assertion by generalizing it to the context of hyperbolic
metric spaces. �

The rest of this (subsub)section is devoted to discussing Proposition 2.12. Towards
doing this, we will obtain an argument for showing a variant of the second point of
Proposition 2.10, namely that in a hyperbolic space (X, d), a family Y of uniformly
quasi convex subspaces that is mutually cobounded defines a strong relative hyperbolic
structure on (X, d). The second point of 2.10 as it is stated will be however proved
in the next subsection.

We shall have need for the following Lemma [Mj10, Lem. 3.9] (see also [Kla99,
Prop. 4.3] [Mj14, Lem. 2.5]).

Lemma 2.13. — Suppose (X, d) is δ-hyperbolic. Let H be a collection of C-quasiconvex
D-mutually cobounded subsets. Then for all P > 1, there exists ε0 = ε0(C,P,D, δ)

such that the following holds:
Let β be an electric (P, P )-quasigeodesic without backtracking (i.e., β does not

return to any H1 ∈ H after leaving it) and γ a geodesic in (X, d), both joining x, y.
Then, given ε > ε0 there exists D = D(P, ε) such that
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(1) Similar Intersection Patterns 1: if precisely one of {β, γ} meets an ε-neigh-
borhood Nε(H1) of an electrified quasiconvex set H1 ∈H , then the length (measured
in the intrinsic path-metric on Nε(H1) ) from the entry point to the exit point is at
most D,

(2) Similar Intersection Patterns 2: if both {β, γ} meet some Nε(H1) then the length
(measured in the intrinsic path-metric on Nε(H1) ) from the entry point of β to that
of γ is at most D; similarly for exit points.

Note that Lemma 2.13 above is quite general and does not require X to be proper.
The two properties occurring in Lemma 2.13 were introduced by Farb [Far98] in the
context of a group G and a collection H of cosets of a subgroup H. The two together
are termed ‘bounded coset penetration’ in [Far98].

Remark 2.14. — In [Mj10], the extra hypothesis of separatedness was used. However,
this is superfluous by the same remark on augmentations of elements of Y that we
made in the beginning of the proof of Proposition 2.10. Lemma 2.13 may be stated
equivalently as the following (compare with 2.23 below) .

If X is a hyperbolic metric space and H a collection of uniformly quasiconvex mu-
tually cobounded subsets, then X is strongly hyperbolic relative to the collection H .

We give a slightly modified version of [Mj10, Lem. 3.15] below by using the equiv-
alent hypothesis of strong relative hyperbolicity (i.e., Lemma 2.13).

Lemma 2.15. — Let (X, d) be a δ-hyperbolic metric space, and H a family of subsets
such that X is strongly hyperbolic relative to H . Then for all λ, µ > 0, there exist
λ′, µ′ such that any electroambient (λ, µ)-quasi-geodesic is a (λ′, µ′)-quasi-geodesic in
(X, d).

The proof of Lemma 2.15 goes through mutatis mutandis for strongly relatively
hyperbolic spaces as well, i.e., hyperbolicity of X may be replaced by relative hyper-
bolicity in Lemma 2.15 above. We state this explicitly below:

Corollary 2.16. — Let (X, d) be strongly relatively hyperbolic relative to a collec-
tion Y of path connected subsets. Then, for all λ, µ > 0, there exists λ′, µ′ such that
any electroambient (λ, µ)-quasi-geodesic is a (λ′, µ′)-quasi-geodesic in (X, d).

We include a brief sketch of the proof-idea following [Mj10]. Let γ be an electroam-
bient quasigeodesic. By lemma, its electrification γ̂ is a quasi-geodesic in Xel

Y . Let σ
be the electric geodesic joining the end-points of γ. Hence σ and γ̂ have similar in-
tersection patters with the sets Yi [Far98], i.e., they enter and leave any Yi at nearby
points. It then suffices to show that an electroambient representative of σ is in fact a
quasigeodesic in X. A proof of this is last statement is given in [McM01, Th. 8.1] in
the context of horoballs in hyperbolic space (see also Lemmas 4.8, 4.9 and their proofs
in [Far98]). The same proof works after horoballification for an arbitrary relatively
hyperbolic space. �
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The proof of Proposition 2.12 as stated will be given in the next subsubsection. We
shall provide here a proof that suffices for the purposes of this paper. We assume, in
addition to the hypothesis of the proposition that there exists an integer n > 0, and
D0 > 0 such that for all distinct Y1, . . . , Yn ∈ Y ,

⋂
i Y

+ε
i has diameter at most D.

The existence of such a number n will translate into the notion of finite geometric
height later in the paper.
Proof. — We prove the statement by inducting on n. For n = 1 there is nothing to
show; so we start with n = 2. Note that in this case, the hypothesis is equivalent to the
assumption that the Yi’s are cobounded. Assume therefore that the elements of Y are
uniformly quasiconvex in (X, d); and that they are uniformly mutually cobounded.
We shall show that H is also quasiconvex for a uniform constant.

First, since (X, d) is hyperbolic it follows by Proposition 2.10 that (Xel
Y , d

el) is
hyperbolic.

Let x, y ∈ H. By assumption, there exists C0 > 0 such that H is (C0, C0)-qi embed-
ded in (G, del). Denote by P the set of cone points corresponding to elements of Y

and let γ be a (C,C)-quasi-geodesic without backtracking in (X, del) with vertices in
H∪P joining x, y ∈ H. By assumption, the collection Y is uniformly C-quasiconvex.
Further, by assumption, there exists ε ∈ (0, 1), and ∆0 such that for all ∆ > ∆0, wher-
ever H (∆, ε)-meets an item Y in Y , there is a path in H+ε∆ between the meeting
points in H that is uniformly a quasigeodesic in the metric (X, d). Hence, for some
uniform constants λ, µ, we may (coarsely) (λ, µ)-de-electrify γ to obtain a (λ, µ)-
electroambient quasigeodesic γ′ in (X, d), that lies close to H. [Note that the meeting
points of H with elements of Y are only coarsely defined. So we are actually replacing
pieces of γ by quasigeodesics in H+ε∆ rather than in H itself.]

Note that by assumption Y are uniformly quasiconvex in (X, d); and further that
they are uniformly mutually cobounded. Hence the space X is actually strongly hy-
perbolic relative to Y . By Corollary 2.16, it follows that γ′ is a quasi-geodesic in
(X, d), for a uniform constant.

Since this was done for arbitrary x, y ∈ Hi,`, we obtain that H is D-quasiconvex
in (X, d). This finishes the proof of Proposition 2.12 for n = 2.

The induction step is now easy. Assume that the statement is true for n = m.
We shall prove it for n = m+ 1. Electrify all pairwise intersections of Y +ε

i to obtain
an electric metric d2. Then the collection {Yi} is cobounded with respect to the
electric metric d2. Here again, the space (X, d2) is strongly hyperbolic relative to the
collection {Yi}. By the argument in the case n = 2 above, H is quasiconvex in (X, d2).
The collection of pairwise intersections of the Y +ε

i ’s in X satisfies the property that
an intersection of any m of them is bounded. We are then through by the induction
hypothesis. �

2.5.3. Proofs through asymptotic cones. — The repeated use of different references
coming from different contexts in the previous subsubsection might call for more
systematic self-contained proofs of the statements of subsection 2.5.1. This is our
purpose in this subsubsection.
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In this part we will use the structure of an argument originally due to Gromov, and
developed by Coulon amongst others (see for instance [Cou14, Prop. 5.28]), which uses
asymptotic cones in order to show hyperbolicity or quasiconvexity of constructions.

We fix a non-principal ultrafilter ω and will use the construction of asymptotic
cones with respect to this ultrafilter ω. A few observations are in order here.

In all the following, (XN , xN ) is a sequence of pointed δN -hyperbolic spaces,
with δN converging to 0. Recall then that the asymptotic cone limω(XN , xN ) is an
R-tree, with a base point.

If YN is a family of cN -quasiconvex subsets of XN (for cN tending to 0), we want
to consider the asymptotic cone limω((XN )el

YN
, xN ) and relate it to limω(XN , xN ).

Let us define the following equivalence relation on the set of sequences in XN .
Two sequences (uN ), (vN ) are equivalent if dXN (uN , vN ) = O(1) for the ultrafilter ω
(more precisely, if there exists a constant C such that for ω-almost all values of N ,
dXN (uN , vN ) 6 C). Let us consider the set of equivalence classes of sequences, and
let us only keep those that have some (hence all) representative (uN ) such that the
electric distance dXel

N
(xN , uN ) is O(1). Let us call C this set of equivalence classes.

For a sequence u = (uN ) we write ∼u for its class in C. We also allow ourselves to
write limω(XN ,∼u) for limω(XN , uN ) to avoid cluttered notation.

Lemma 2.17. — There is a natural inclusion from the disjoint union⊔
∼u∈C

lim
ω

(XN ,∼u)

into limω((XN )el
YN
, xN ).

Proof. — By definition of C we have a well defined map

lim
ω

(XN ,∼u) −→ lim
ω

((XN )el
YN , xN )

for each class ∼u in C. Given two sequences (yN ), and (zN ) in the same class ∼u∈ C,
if dXN (zN , yN ) is not o(1) for ω, then in the electric metric, it is not o(1), since the
added edges all have length 1. Thus this map is injective. If (yN ), and (zN ) are not
in the same class in C, then dXN (zN , yN ) is not o(1) for ω, and again, in the electric
metric, it is not o(1). The map of the lemma is thus injective. �

Note that the inclusion is continuous, as inclusions along the sequence are distance
non-increasing. But it is not isometric. We need to describe what happens with the
cone off.

Consider a sequence (YN ) of subsets of Y . One says that the sequence is visible
in limω(XN , uN ) if dXN (uN , YN ) 6 O(1). In that case, limω(YN , uN ) is a subset of
limω(XN , uN ), consisting of the images of all the sequences of elements of YN that
remain at O(1)-distance from uN . Note that given a sequence (YN ), it can be visi-
ble in several limits limω(XN , uN ) (for several non-equivalent (uN )). In those classes
where (YN ) is not visible, limω(YN , uN ) is empty. Let us define limω(YN , ∗) to be⊔
∼u∈C limω(YN , uN ) in

⊔
∼u∈C limω(XN , uN ). By the previous lemma, this is natu-

rally a subset of limω((XN )elYN
, xN ).
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We define Y ω to be the collection of all sets limω(YN , ∗), for all possible sequences
(YN ) ∈

∏
N>0 YN . This is a family of subsets of limω((XN )elYN

, xN ).
Let us define

[⊔
∼u∈C limω(XN , uN )

]el to be the cone-off (of parameter 1) of[⊔
∼u∈C limω(XN ,∼u)

]
over each limω(YN , ∗). Note that there is a natural copy of

[limω(XN ,∼u)]
el in

[⊔
∼u∈C limω(XN ,∼u)

]el.

Lemma 2.18. — limω((XN )el
YN
, xN ) is isometric to

[⊔
∼u∈C limω(XN ,∼u)

]el.

Proof. — First there is a natural bijection

lim
ω

((XN )el
YN , xN )

∼−→
[ ⊔
∼u∈C

lim
ω

(XN ,∼u)

]el

.

Indeed, for any sequence (yN ) with yN ∈ XN at distance O(1) from xN in the elec-
tric metric, Lemma 2.17 provides an image in

[⊔
∼u∈C limω(XN ,∼u)

]el. For any se-
quence (cN ) with cN a cone-point in Xel

N r XN , at distance O(1) from xN in the
electric metric, cN is in the cone electrifying a certain YN , which is therefore at dis-
tance O(1) from xN for the electric metric. Choose uN ∈ YN , then the equivalence
class of (uN ) is in C, and of course YN is visible in this class. Thus, there is a cone point
c ∈

[⊔
∼u∈C limω(XN ,∼u)

]el at distance 1 from limω(YN , ∗). We choose this point as
the image of the sequence (cN ) in limω((XN )el

YN
, xN ). This is well defined, and injec-

tive, for if c′N is another sequence of cone-points ω-almost everywhere different from
cN , then it defines an ω-almost everywhere different sequence Y ′N , and a different
set limω(Y ′N , ∗). We also can extend our map to all limω((XN )el

YN
, xN ) linearly on the

cone-edges. This produces a bijection limω((XN )el
YN
, xN )→

[⊔
∼u∈C limω(XN ,∼u)

]el.
To show that it is an isometry, consider two sequences (yN ), (zN ) both in XN , such

that the distance in Xel
YN

converges (for ω) to `. Then there is a path of length `N
(converging to `) in Xel

YN
with, eventually, at most `/2 cone points on it. It follows

from the construction that their images in
[⊔
∼u∈C limω(XN ,∼u)

]el are at distance
at most `. Conversely, assume (yN ) and (zN ) are sequences in XN giving points
in limω(XN ,∼u) and limω(XN ,∼v), for ∼u,∼v∈ C, and take a path γ between
these points in limω((XN )el

YN
, xN ) '

[⊔
∼u∈C limω(XN ,∼u)

]el, of length ` > 0. It
has finite length, so it contains finitely many cone points ci (i = 1, . . . , r), coning
limω(Y

(i)
N , ∗), for which Y (i)

N is visible in both ∼ui ,∼ui+1
. This easily produces a path

in limω((XN )el
YN
, xN ) of length `, by using the corresponding cone points and the

path between the spaces Y (i)
N given by the restriction of γ.

We have thus observed that the bijection we started with is 1-Lipschitz as is its
inverse. It is therefore an isometry. �

We finally describe a tree-like structure on [
⊔

C limω(XN ,∼u)]
el where the pieces are

the subspaces [limω(XN ,∼u)]
el for ∼u∈ C, which are electrifications of limω(XN ,∼u)

over the subsets of the form limω(YN ,∼u), for all sequences (YN ) ∈
∏

(YN ) that are
visible in ∼u.
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Let us say that two classes ∼u and ∼v are joined by a sequence (YN ) if the latter
sequence is visible in both of them.

First we describe a simpler case of this tree-like structure.

Lemma 2.19. — Assume that YN consists of cN -quasiconvex subsets of XN with cN
tending to 0.

For any pair of different classes ∼u,∼v in C, the subspaces [limω(XN ,∼u)]
el and

[limω(XN ,∼v)]el of
[⊔
∼w∈C limω(XN ,∼w)

]el have intersection of diameter at most 2.

Proof. — Note that by Lemma 2.17 the intersection consists of cone points. Thus
consider two sequences (YN ), (Y ′N ) both visible in ∼u and ∼v. Consider then
yN (u), yN (v) ∈ YN such that yN (u) is visible in ∼u (hence not in ∼v) and symmetri-
cally yN (v) is visible in ∼v (hence not in ∼u), and take y′N (u), y′N (v) ∈ Y ′N similarly.
The distances dXN (yN (u), y′N (u)) and dXN (yN (v), y′N (v)) both are O(1) whereas
dXN (yN (u), yN (v)) and dXN (y′N (u), y′N (v)) both go to infinity (for ω). The space XN

being a δN -hyperbolic space (for δN → 0), the quadrilateral with these four vertices
have their sides [yN (u), yN (v)] and [y′N (u), y′N (v)] getting o(1)-close to each other,
on sequences that are visible for ∼u and sequences that are visible for ∼v. But these
sides are close to YN and Y ′N respectively. It follows that in limω(XN ,∼u) and in
limω(XN ,∼v), the limit of YN and of Y ′N share a point. Thus the cone point of their
electrifications are at distance 2. �

Note that if there is a bound on the diameter of the projection of YN on Y ′N , then
there is only one point in the intersection.

Lemma 2.20. — If there is a cycle of classes ∼u1 ,∼u2 , . . . ,∼uk ,∼uk+1
=∼u1 , where

∼ui is joined to ∼ui+1
by a sequence (Y

(i)
N ), then there is 1 < i0 < k + 1 such

that (Y
(i0)
N ) is visible in ∼u1 ,∼u2 and the cone points of (Y

(i0)
N ) and of (Y

(1)
N ) are at

distance 2 from each other in [limω(XN ,∼u1)]
el, and in [

⊔
C limω(XN ,∼u)]

el.

As a corollary, limω((XN )el
YN
, xN ) is a quasi-tree of the spaces [limω(XN ,∼)]

el, and
more precisely, all paths from [limω(XN ,∼u)]

el to [limω(XN ,∼v)]el, if ∼u 6=∼v have
to pass through the 2-neighborhood of a certain cone point of [limω(XN ,∼u)]

el.

Proof. — The number k is fixed, and the argument will generalize the one of the pre-
vious lemma. For each i, let (y

(i)
N ) and (z

(i)
N ) be sequences of points of Y (i)

N respectively
visible in∼ui and in∼ui+1

. One has dXN (y
(i)
N , z

(i)
N ) unbounded, and dXN (z

(i)
N , y

(i+1)
N ) =

O(1). Therefore in the 2k-gon (y
(1)
N , z

(1)
N , y

(2)
N , z

(2)
N , . . . , y

(k)
N , z

(k)
N ), using the approxima-

tion by a finite tree (for hyperbolic spaces), we see that one of the segments [y
(i)
N , z

(i)
N ]

(i 6= 1) must come kδN -close to [y
(1)
N , z

(1)
N ], and at distance O(1) from y

(1)
N .

After extracting a subsequence, one can assume that i is constant in N , and we
choose it to be our i0. It follows that the sequence (Y

(i0)
N ) is visible for ∼u1

and
the limit of (Y

(i0)
N ) and of (Y 1

N ) share a point in limω(XN ,∼u1
). The conclusion

that the cone points of (Y
(i0)
N ) and of (Y

(1)
N ) are at distance 2 from each other in
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[limω(XN ,∼u1
)]

el follows, and this also implies that they are at distance at most 2 in
[
⊔

C limω(XN ,∼u)]
el. �

Note that if the subsets of YN are cn-mutually cobounded, with cn going to 0

(or even bounded) then one can improve the lemma by saying that eventually
Y

(i0)
N =Y

(1)
N .

From the previous lemmas we get:

Corollary 2.21. — The space [
⊔

C limω(XN ,∼u)]
el is the union of spaces of the form

[limω(XN ,∼u)]
el for ∼u∈ C, with some cone points identified.

Moreover, if ∼u 6=∼v, and if γ1, γ2 are any (finite) paths from [limω(XN ,∼u)]
el

to [limω(XN ,∼v)]el, then for each i ∈ {1, 2}, there exists a cone point ci ∈
[limω(XN ,∼u)]

el in γi such that the distance between c1 and c2 is at most 2.

Indeed, such a pair of paths provides us with a certain finite cycle of classes, starting
with ∼u, and we may apply the previous lemma.

We say that the space [
⊔

C limω(XN ,∼u)]
el is a 2-quasi-tree of spaces of the form

[limω(XN ,∼u)]
el for ∼u∈ C.

Let us prove Proposition 2.10.

Proof. — We claim that, for all ρ, there exists δ0 < ρ/1014 and C0 < ρ/1014 such
that if X is δ0-hyperbolic, and if Y is a collection of C0-quasiconvex subsets, then
every ball of radius ρ of Xel

Y is 10-hyperbolic.
For proving the claim, assume it false, and consider a sequence of counterex-

amples (XN ,YN ) for δ0 = C0 = 1/N , N = 1, 2, . . . . This means that (XN )el
YN

fails to be 10-hyperbolic. There are four points xN , yN , zN , tN , all at distance at
most 2ρ from xN , such that (xN , zN )tN 6 inf{(xN , yN )tN , (yN , zN )tN }− 10. We pass
to the ultralimit for ω. In limω(Xel

N , xN ), each sequence xN , yN , zN , tN converges,
since these points stay at bounded distance from xN , and the inequality persists.
Hence one gets four points falsifying the 10-hyperbolicity condition in a pointed space
limω((XN )el

YN
, xN ).

But the asymptotic cone limω((XN )el
YN
, xN ) is, by Corollary 2.21, a 2-quasi-tree of

spaces that are electrifications (of parameter 1) of real trees limω(XN , x
′
N ), for some

base point x′N over the family Y ω, consisting of convex subsets (i.e., of subtrees). This
space (limω(XN , x

′
N ))el

Y ω has 2-thin geodesic triangles, therefore limω((XN )el
YN
, xN )

itself is 10-hyperbolic, a contradiction. The claim hence holds: Xel
Y is ρ-locally

10-hyperbolic.
We now claim that, under the same hypothesis, it is (2 + 10C0 + 10δ0)-coarsely

simply-connected, that is to say that any loop in it can be homotoped to a point by
a sequence of substitutions of arcs of length < (2 + 10C0 + 10δ0) by its complement
in a loop of length < (2 + 10C0 + 10δ0). Indeed, any time such a loop passes through
a cone point associated to some Y ∈ Y , one can consider a geodesic in X between its
entering and exiting points in Y , which stays in the C0 neighborhood of Y . Therefore,
a (2 + 10C0)-coarse homotopy of the loop transforms it into a loop in X, which is
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δ-hyperbolic. Since a δ-hyperbolic space is 10δ-coarsely simply-connected, the second
claim follows.

The final ingredient is the Gromov-Cartan-Hadamard theorem [Cou14, Th.A.1],
stating that, if ρ is sufficiently large compared to µ, any ρ-locally 10-hyperbolic space
which is µ-coarsely simply connected is (globally) δ′-hyperbolic, for some δ′. We thus
get that there exists δ0 < ρ/1014 and C0 < ρ/1014 such that if X is δ0-hyperbolic,
and if Y is a collection of C0-quasiconvex subsets, then Xel

Y is δ′-hyperbolic.
Now let us argue that this implies the first point of the proposition. If X and Y

are given as in the statement, one may rescale X by a certain factor λ > 1, so that
it is δ0-hyperbolic, and such that Y is a collection of C0-quasiconvex subsets. Let us
define Xelλ

Y to be
Xelλ

Y = X t
{⊔

i∈I Yi × [0, λ]
}
/ ∼,

where ∼ denotes the identification of Yi × {0} with Yi ⊂ X for each i, and the
identification of Yi×{1} to a single cone point vi (dependent on i), and where Yi×[0, λ]

is endowed with the product metric as defined in the first paragraph of 2.1 except that
{y}× [0, n] is isometric to [0, λ]. The claim ensures that Xelλ

Y is hyperbolic. However,
it is obviously quasi-isometric to Xel

Y . We have the first point.
For the second part, one can proceed with a similar proof, with horoballs. The

claim is then that for all ρ, there exist δ0, C0 and D0 such that if X is δ0-hyperbolic,
and if Y is a collection of C0-quasiconvex subsets, D0-mutually cobounded, then any
ball of radius ρ of the horoballification Xh

Y is 10-hyperbolic.
The proof of the claim is similar. Consider a sequence of counterexamples XN ,YN ,

for the parameters δ = C = D = 1/N for N going to infinity, with the four points
xN , yN , zN , tN in (XN )hY , in a ball of radius ρ, falsifying the hyperbolicity condition.

There are two cases. Either xN (which is in (XN )hY ) escapes from XN , i.e., its
distance from some basepoint in XN tends to ∞ for the ultrafilter ω, or it does not.
In the case that it escapes from XN , then, when it is larger than ρ all four points
xN , yN , zN , tN are in a single horoball, but such a horoball is 10-hyperbolic hence a
contradiction.

The other case is when there is x′N ∈ XN whose distance to xN remains bounded
(for the ultrafilter ω). Note that {xN , yN , zN , tN} converge in the asymptotic cone
limω((XN )hYN , x

′
N ) of the sequence of pointed spaces ((XN )hYN , x

′
N ). It is also im-

mediate by definition of limω YN that limω((XN )hYN , x
′
N ) is the horoballification of

the asymptotic cone of the sequence (XN , x
′
N ) over the family limω(YN , x′N ) defined

above.
This family limω(YN , x′N ) consists of convex subsets (hence subtrees), such that

any two share at most one point. This horoballification is therefore a tree-graded space
in the sense of [DS05], with pieces being the combinatorial horoballs over the subtrees
constituting limω YN . As a tree of 10-hyperbolic spaces, this space is 10-hyperbolic,
contradicting the inequalities satisfied by the limits limω{xN , yN , zN , tN}. Therefore,
Xh

Y is ρ-locally 10-hyperbolic. As before, one may check that (under the same assump-
tions) Xh

Y is (2 + 10C0 + 10δ0)-coarsely simply connected, and again this implies by
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the Gromov-Cartan-Hadamard theorem that (under the same assumptions) Xh
Y is

hyperbolic.
This implies the second point. Indeed, let us denote by 1

λX the space X with metric
rescaled by 1/λ.

The previous claim shows that, under the assumption of the second point of the
proposition, there exists λ > 1 such that λ( 1

λX)h1
λY

is hyperbolic. Consider the map
η between Xh

Y → λ( 1
λX)h1

λY
that is identity on X and that sends {y} × {n} to

{y} × {λ× (n+ blog2 λc)} for all y ∈ Yi and all Yi (and all n). All paths in Xh
Y that

have only vertical segments in horoballs have their length expanded (under the map
η) by a factor between 1 and λ + log2 λ. But the geodesics in Xh

Y and λ( 1
λX)h1

λY

are paths whose components in horoballs consist of a vertical (descending) segment,
followed by a single edge, followed by a vertical ascending segment (see [GM08]).
Hence η is a quasi-isometry, and the space Xh

Y is hyperbolic. �

We continue with the persistence of quasi-convexity of Proposition 2.11.

Proof. — The strategy is similar to that in the previous proposition. The main claim
is that for all ρ, there is δ0 < 1, C0 < 1 such that if (X, dX) is δ0-hyperbolic, if Y is a
collection of C0-quasiconvex subsets and if Q is another C0-quasiconvex subset of X,
then Q is ρ-locally 10-quasiconvex in Xel

Y (of course δ0, C0 will be very small).
To prove the claim, again, by contradiction, consider a sequence XN ,YN , QN of

counter examples for δN = CN = 1/N for N = 1, 2, . . . . There exist two points xN , yN
in QN , at distance 6 ρ from each other (for the electric metric), and a geodesic
[xN , yN ] in Xel

Y with a point zN on it at distance > 10 from Q. We record a point z′N
in Q at minimal distance (6 ρ in any case) from zN .

With a non principal ultrafilter ω, we may take the asymptotic cone of the fam-
ily of pointed spaces (Xel

N , xN ). In limω((XN )el
Y , xN ), the sequences (yN ), ([xN , yN ])

and (zN ) have limits for which the distance inequalities persist, and we get that
limω(QN , xN ) is not ρ-locally 10-quasiconvex in limω((XN )el

Y , xN ). But as we no-
ticed in Corollary 2.21 limω((XN )el

Y , xN ) is a 2-quasi-tree of spaces of the form
(limω(XN , x

′
N ))el

Y ω , which are the electrifications of R-trees limω(XN , x
′
N ) over a

family of convex subsets (i.e., subtrees). In this space, limω(QN , xN ) is also a sub-
forest of

⊔
(uN )∈C limω(XN , uN ). Also observe that if (QN ) is visible in two adjacent

classes, then limω(QN , xN ) is adjacent to their common cone point over sequences
(Y

(i)
N ), (Y

(j)
N ). Hence limω(QN , xN ) is 2-quasiconvex in limω((XN )el

Y ω , xN ), and this
contradicts the inequalities satisfied by limω{xN , yN , zN , z′N}. The claim is established
for all ρ.

Now there exists ρ0 such that, in any 1-hyperbolic space, any subset that is
ρ0-locally 10-quasiconvex is 1014-globally quasiconvex (this classical fact, perhaps
found elsewhere with other (better!) constants, follows also from the Gromov-Cartan-
Hadamard theorem for instance). So, by choosing an appropriate ρ, we have proven
that there is δ0 < 1, C0 < 1 and C1, such that if (X, dX) is δ0-hyperbolic, if Y is a
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collection of C0-quasiconvex subsets and if Q is another C0-quasiconvex subset of X,
then Q is C1-quasiconvex in Xel

Y .
Coming back to the statement of the proposition, by rescaling our space, we

have proven that if (X, dX) is a δ-hyperbolic metric space with a collection Y of
C-quasiconvex sets, and if Q is C-quasiconvex, then Q is λC1-quasiconvex in Xelλ

Y

(as defined in the previous proof) for λ = max{δ/δ0, C/C0}. Since Xelλ
Y is quasi-

isometric to Xel
Y , by a (λ, λ)-quasi-isometry, it follows that Q is C ′-quasiconvex in Xel

Y

for C ′ depending only on δ, C. �

Finally, we consider the proposed converse in Proposition 2.12. We use the same
strategy again. The claim is now the lemma below. To state it, we need to define the
m-coarse path metric on an m-coarse path connected subspace of a metric space. A
subset Y ⊂ X of a metric space is m-coarse path connected if for any two points
x, y in it there is a sequence x0 = x, x1, . . . , xr = y for some r such that xi ∈ Y

and dX(xi, xi+1) 6 m for all i. We call such a sequence an m-coarse path or a path
with mesh 6 m. The length of the coarse path (x0, . . . , xr) is

∑
dX(xi, xi+1). The

m-coarse path metric on Y is the distance obtained by taking the infimum of lengths
of coarse paths between its points. An m-coarse geodesic is a coarse path realizing
the coarse path metric between two points.

Lemma 2.22. — Fix Cel
H , R > 0, Q > 1, ε > 0, and ∆ > 10ε. Then there exists

δ0, C0,m0 > 0, such that the following holds:
Assume that (X, d) is geodesic, δ0-hyperbolic, with a collection Y of C0-quasiconvex

subsets. Further suppose that H is an m0-coarsely connected subset of X which is
Cel
H-quasiconvex in the electrification Xel

Y . Equip H+ε∆ with its m0-coarse path met-
ric dH .

Assume also that whenever H (∆, ε)-meets a set Y ∈ Y , there is a (Q,C0)-quasi-
geodesic path, which is an (m0/10)-coarse path, in H+ε∆ joining the meeting points
in H.

Then for all a, b ∈ H+ε∆ at dH-distance at most R from each other, any m0-coarse
δ0-quasi-geodesic of H+ε∆ (for its coarse path metric) between a, b is (∆×Cel

H)-close
to a geodesic of X.

Proof. — Suppose that the claim is false: For all choice of δ, C,m there is a coun-
terexample. Set δN = CN = 1/N .

For each ε, there existsN such that, in a (1/N)-hyperbolic space, for any two points
x, y, and any (Q, 1/N)-quasigeodesic p which is a (1/N)-coarse path between these
two points, the ε-neighborhood of p contains the geodesics [x, y]. (This, for instance,
is visible on an asymptotic cone).

Thus, it is possible to choose a sequence mN > 10/N decreasing to zero,
such that pairs of (9∆/10)-long (Q, 1/N)-quasigeodesics with mesh 6 1/N in a
(1/N)-hyperbolic spaces, with starting points at distance 6 ∆/10 from each other,
and ending points at distance 6 ∆/10 from each other, necessarily lie at distance
(mN/10) from one another.
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Let thenXN , HN ,YN be a counterexample to our claim for these values: for each N
there is aN , bN in H+∆

N , R-close to each other for dHN , and a point cN ∈ H+∆
N in a

coarse δN -quasi-geodesic in [aN , bN ]dHn at distance at least (∆×Cel
H) from a geodesic

[aN , bN ] in XN . However cN is Cel
H -close to a geodesic [aN , bN ]el in Xel. Passing to

an asymptotic cone, we find a map pω from an interval [0, R] to a continuous path
in limω(HN , aN ) from aω to bω (which can be equal to aω) that passes through a
point cω at distance > (∆× Cel

H) from the arc [aω, bω] in limω(XN , aN ).
However, it is at distance 6 Cel

H in the electrification of limω(XN , aN ) by Y ω.
It follows that on the path in limω(XN , aN ) from [aω, bω] to cω, there must exist a
segment of length > ∆ belonging to the same Y ω ∈ Y ω . Let us say that Y ω is the
limit of a sequence YN . Note that the limit path pω crosses this segment at least twice
(once in either direction).

Thus, for N large enough, HN (∆, ε)-meets YN , with two pairs of meeting
points (r1, r2), (s1, s2) in HN , where d(r1, r2) > 9∆/10 (and (s1, s2) > 9∆/10) and
d(r1, s1) 6 3∆/10 and d(r2, s2) 6 3∆/10. By assumption, there is a (Q, 1/N)-quasi-
geodesic path in H+ε∆ from s1 to s2 and another from r1 to r2, with mesh < mN/10.
They have to fellow travel on a large subpath, and pass at distance 6 mN/10 from
each other, by choice of mN . One can therefore find a shortcut that is still a path in
H+∆ of mesh 6 mN , a contradiction. �

From the claim, we can prove the statement of the proposition. Consider a situation
as in the statement. We may choose the coarse path connectivity constant of H
to be more than 10 times the quasigeodesic constant of the last assumption there.
Take ε, given by the assumption of the proposition, and ∆ > max{100ε,∆0}. Let Q
be the quasi-geodesic constant given by the the assumption of the proposition on
(∆, ε)-meetings, and Cel

H be as given by the assumption. Take R larger (how large will
be made clear in the proof).

Rescale the spaceX so that the hyperbolicity constant, the quasiconvexity constant
of items of Y , and the constant of coarse path connection ofH are respectively smaller
than δ0, C0,m0 of the lemma above.

Note that the assumption of the proposition on (∆, ε)-meetings is invariant under
rescaling (except for the value of ∆0). Thus, this assumption still holds, with the
same ε, and for the specified ∆ chosen above. The lemma applies, and H+ε∆ is
R-locally quasiconvex for the rescaled metric. By the local to global principle (in δ0
hyperbolic spaces), with a suitable preliminary (large enough) choice of R, H+ε∆

is then globally quasiconvex. After rescaling back to the original metric of X, H+λ

is still quasiconvex for some λ (depending on ε∆, and the coefficient of rescaling);
hence H is quasiconvex.

By construction, we also have the statement on the dependence of the quasicon-
vexity constant. �

2.5.4. Coarse hyperbolic embeddedness and strong relative hyperbolicity. — The follow-
ing proposition establishes the equivalence of coarse hyperbolic embeddedness and
strong relative hyperbolicity in the context of this paper.
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Proposition 2.23. — Assume that (X, d) is a metric space, and that Y is a collection
of subspaces.

If the horoballification Xh
Y of X over Y is hyperbolic, then Y is coarsely hyper-

bolically embedded in the sense of spaces.
If X is hyperbolic and if Y is coarsely hyperbolically embedded in the sense of

spaces, then Xh
Y is hyperbolic.

We remark here parenthetically that the converse should be true without the as-
sumption of hyperbolicity of X. However, this is not necessary for this paper.

Proof. — Assume that the horoballification Xh
Y of X over Y is δ-hyperbolic. The

horoballs Y h (corresponding to Y ) are thus 10δ-quasiconvex. Therefore, by Proposi-
tion 2.10, the electrified space obtained by electrifying (coning off) the horoballs Y h
is hyperbolic.

Since by Proposition 2.8 this space is quasi-isometric to (Xel
Y , d

el
Y ), it follows that

the later is hyperbolic. This proves the first condition of Definition 2.2.
We want to prove the existence of a proper increasing function ψ : R+ → R+, such

that the angular metric at each cone point vY (for Y ∈ Y ) of (Xel
Y , d

el
Y ) is bounded

below by ψ ◦ d|Y . Define

ψ(r) = inf
Y ∈Y

inf
y1,y2∈Y
d(y1,y2)6r

d̂(y1, y2).

Of course, the angular metric at vY is bounded below by ψ ◦ d|Y . The function ψ
is obviously increasing. We need to show that it is proper, i.e., that it goes to +∞.

If ψ is not proper, then there exists θ0 > 0 such that for all D, there exist Y ∈ Y

and y, y′ ∈ Y at d-distance greater than D but d̂(y, y′) 6 θ0 (where d̂ is the angular
metric on Y ). We choose D � θ0δ (for instance D = exp(100(θ0 + 1)(δ + 1))).

Consider a path in (Xh
Y )el of length less than θ0 from y to y′ avoiding the cone

point of Y . Because D � θ0, this path has to pass through other cone points. It can
thus be chosen as a concatenation of N + 1 geodesics whose vertices are y, y′ and
some cone points v1, . . . , vN (corresponding to Y1, . . . , YN with N < θ0). Adjoining
the (geodesic) path [y, vY ] ∪ [vY , y

′] (where vY corresponds to the cone point for Y ),
we thus have a geodesic (N+2)-gon σ. Next replace each passage of σ through a cone
point (vi or vY ) in Xel

Y by a geodesic (µi or µY respectively) in the corresponding
horoball (Y hi or Y h respectively) in Xh

Y to obtain a geodesic (2N + 2)-gon P in Xh
Y .

The geodesic segments µi or µY comprise (n + 1) alternate sides of this geodesic
(2N + 2)-gon.

Since Xh
Y is δ-hyperbolic, it follows that the mid-point m of µY is at distance

6 (2N+2)δ from another edge of P . Note that m is in the horoball of Y , and because
the distance in Y between y and y′ is larger than D, we have that dh(m,Y ) is at least
log(D)/2.

Since no other edge of P enters the horoball Y h, this forces log(D) (and hence D)
to be bounded in terms of θ0 and δ: D 6 exp(4(N + 1)δ). Since N 6 θ0, this is a

J.É.P. — M., 2017, tome 4



536 F. Dahmani & M. Mj

contradiction with the choice of D. We can conclude that ψ is proper, and we have
the first statement.

Let us consider the second statement. If X is hyperbolic and if Y is coarsely
hyperbolically embedded in the sense of spaces, then elements of Y are uniformly
quasiconvex in (X, d) by 2.7, and, by the property of the angular distance on any
Y ∈ Y , they are mutually cobounded. The statement then follows by Proposition
2.10. �

3. Algebraic height and intersection properties

3.1. Algebraic height. — We recall here the general definition for height of finitely
many subgroups.

Definition 3.1. — Let G be a group and {H1, . . . ,Hm} be a finite collection of sub-
groups. Then the algebraic height of this collection is n if (n+1) is the smallest number
with the property that for any (n+ 1) distinct left cosets g1Hα1

, . . . , gn+1Hαn+1
, the

intersection
⋂

16i6n+1 giHαig
−1
i is finite.

We shall describe this briefly by saying that algebraic height is the largest n for
which the intersection of n essentially distinct conjugates of H1, . . . ,Hm is infinite.
Here ‘essentially distinct’ refers to the cosets of H1, . . . ,Hm and not to the conjugates
themselves.

For hyperbolic groups, one of the main theorems of [GMRS98] is the following:

Theorem 3.2 ([GMRS98]). — Let G be a hyperbolic group and H a quasiconvex sub-
group. Then the algebraic height of H is finite. Further, there exists R0 such that if
H∩gHg−1 is infinite, then g has a double coset representative with length at most R0.

The same conclusions hold for finitely many quasiconvex subgroups {H1, . . . ,Hn}
of G.

We quickly recall a proof of Theorem 3.2 for one subgroup H in order to generalize
it to the context of mapping class groups and Out(Fn).

Proof. — Let G be hyperbolic, X(= ΓG) a Cayley graph of G with respect to a
finite generating set (assumed to be δ-hyperbolic), and H a C0-quasiconvex subgroup
of G. Suppose that there exist N essentially distinct conjugates {Hgi}, i = 1, . . . , N ,
of H that intersect in an infinite subgroup. The N left-cosets giH are disjoint and
share an accumulation point p in the boundary of G (in the limit set of

⋂
iH

gi).
Since all giH are C0-quasiconvex, there exist N disjoint quasi-geodesics σ1, . . . , σN
(with same constants λ, µ depending only on C0, δ) converging to p such that σi
is in giH. Since X is δ-hyperbolic, there exists R(= R(λ, µ, δ) = R(C0, δ)) and a
point p0 sufficiently far along σ1 such that all the quasi-geodesics σ1, . . . , σN pass
through BR(p0). Hence N 6 #(BR(p0)) giving us finiteness of height.

Further, any such σi furnishes a double coset representative g′i of gi (say by taking a
word that gives the shortest distance betweenH and the coset giH) of length bounded
in terms of R. This furnishes the second conclusion. �
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Remark 3.3. — A word about generalizing the above argument to a family H of
finitely many subgroups is necessary. The place in the above argument where H

consists of a singleton is used essentially is in declaring that the N left-cosets giH
are disjoint. This might not be true in general (e.g. H1 < H2 for a family having two
elements). However, by the pigeon-hole principle, choosing N1 large enough, any N1

distinct conjugates {Hgi
i }, i = 1, . . . , N , Hi ∈H must contain N essentially distinct

conjugates {Hgi}, i = 1, . . . , N of some H ∈ H and then the above argument for a
single H ∈H goes through.

Remark 3.4. — A number of other examples of finite algebraic height may be obtained
from certain special subgroups of relatively hyperbolic groups, mapping class groups
and Out(Fn). These will be discussed after we introduce geometric height later in the
paper.

3.2. Geometric i-fold intersections. — Given a finite family of subgroups of a
group we define collections of geometric i-fold intersections.

Definition 3.5. — Let G be endowed with a left invariant word metric d. Let H be
a finite family of subgroups of G.

For i ∈ N, i > 2, define the geometric i-fold intersection, or simply the i-fold
intersection of cosets of H , Hi, to be the set of subsets J of G for which there exist
H1, . . . ,Hi ∈H and g1, . . . , gi ∈ G, and ∆ ∈ N satisfying:

J =

(⋂
j

(gjHj)
+∆

)
and

⋂
j (gjHj)

+∆ is not in the 20δ-neighborhood of
⋂

(gjHj)
+∆−2δ, and the diameter

of J is at least 10∆.

Geometric i-fold intersections are thus, by definition, intersections of thickenings
of cosets. The condition that the diameter of the intersection is larger than 10 times
the thickening is merely to avoid counting myriads of too small intersections.

The next proposition establishes that the collection of such intersections is again
closed under intersection.

Proposition 3.6. — Consider J ∈ Hj, and K ∈ Hk for j < k and let ∆J ,∆K

be constants as in Definition 3.5 for defining J and K respectively. Write J =(⋂
i

(
giHi

)+∆J
)
and K =

(⋂
i (g′iH

′
i)

+∆K
)
, and let ∆0 > max(∆J ,∆K).

Assume that J and K (∆, ε)-meet, for some ∆ > 20∆0, and for ε < 1/50.
Then either K ⊂ J , or for any pair of (∆, ε)-meeting points of J and K, there is

L ∈Hj+1 contained in J , that contains it.

Proof. — Let x, y be (∆, ε)-meeting points of J and K. If K 6⊂ J , we can assume
that x, y are in (g′1H

′
1)

+∆K+ε∆ for some g′1H ′1 not contained in the collection {giHi}.
Notice that x, y are in

⋂
i (giHi)

+∆J+ε∆∩ (g′1H
′
1)

+∆K+ε∆, hence in
⋂
i (giHi)

+∆′
∩

(g′1H
′
1)

+∆′
for ∆′ the greater of ∆K + ε∆ and ∆J + ε∆.
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We argue by contradiction. Suppose that x, y are contained in the 20δ-thickening
of a 2δ-lesser intersection. It follows that there are x′, y′ such that d(x, x′) 6 20δ,
d(y, y′) < 20δ and still d(x′, J) 6 ε∆− 2δ, and d(y′, J) 6 ε∆− 2δ. But by definition
of (∆, ε)-meeting, this is a contradiction.

Finally, the diameter of the intersection of ∆′-thickenings of our cosets, is larger
than ∆. Since the thickening constant is ∆′ 6 ∆0 + ε∆, the ratio of the thickening
constant by the diameter is at most (∆0 + ε∆)/∆ which is less than 1/10, hence the
result. �

Let (G, d) be a group with a word metric and H < G a subgroup. The restriction
of d on H will be called the induced metric on H from G.

Proposition 3.7. — Let (G, d) be a group with a δ-hyperbolic word metric (not nec-
essarily locally finite).

Assume that A1, . . . , An are C-quasiconvex subsets of G. Then for all ∆ > C+20δ,
the intersection

⋂
A+∆
i is (4δ)-quasiconvex in (G, d).

Moreover, if A and B are C-quasiconvex subsets of G, and if ΠB(A) denotes
the set of nearest points projections of A on B, then, either ΠB(A) ⊂ A+3C+10δ

or diam ΠB(A) 6 4C + 20δ.

Proof. — Consider x, y ∈
⋂
A+∆
i and take ai, bi some nearest point projection on Ai.

On a geodesic [x, y] take p at distance greater than 4δ from x and y. Hyperbolicity
applied to the quadrilateral (x, ai, bi, y) tells us that x is 4δ-close to [x′i, ai]∪ [ai, bi]∪
[bi, y

′
i], where x′i and y′i are the points of, respectively [x, ai] and [y, bi], at distance 4δ

from, respectively, x and y.
Let us call [x′i, ai], [bi, y

′
i] the approaching segment, and [ai, bi] the traveling seg-

ments. Hence for each i, p is closed to either an approaching segment, or the traveling
segment, with subscript i.

– If p is close to an approaching segment of index i, then it is in A+∆
i .

– If x is close to the traveling segment of index i, then it is at distance at most
C + 10δ from Ai, hence in A+∆

i because ∆ > C + 10δ.
We thus obtain that [x, y] remains at distance 4δ from

⋂
A+∆
i .

To prove the second statement, take a0, b0 in A and B respectively realizing the
distance (up to δ if necessary). Let b ∈ ΠB(A), and assume that it is the projection
of a. In the quadrilateral a, a0, b, b0, the geodesic [a, a0] stays in A+C and [b, b0] is
in B+C . Since b is a projection, [b, a] fellow-travels [b, b0] for less than 2C + 10δ,
and similarly for [b0, a0] with [b0, b]. By hyperbolicity [b, b0] thus stays 10δ close to
[a, a0] except for the part (2C + 10δ)-close to either b or b0. It follows that either
b ∈ A+(3C+10δ) or b is at distance 6 4C + 20δ from b0. Thus ΠB(A) ⊂ A+3C+10δ or
diam ΠB(A) 6 4C + 20δ. �

3.3. Algebraic i-fold intersections. — We provide now a more algebraic (group
theoretic) treatment of the preceding discussion. This is in keeping with the more
well-known setup of intersections of subgroups and their conjugates, cf. [GMRS98].

J.É.P. — M., 2017, tome 4



Height, graded relative hyperbolicity and quasiconvexity 539

Given a finite family of subgroups of a group we first define collections of i-fold
conjugates or algebraic i-fold intersections.

Definition 3.8. — Let G be endowed with a left invariant word metric d. Let H be
a family of subgroup of G. For i ∈ N, i > 2, define Hi to be the set of subgroups J
of G for which there exists H1, . . . ,Hi ∈H and g1, . . . , gi ∈ G satisfying:

– the cosets gjHj are pairwise distinct (and hence as in [GMRS98] we use the
terminology that the conjugates {gjHjg

−1
j , j = 1, . . . , i} are essentially distinct)

– J is the intersection
⋂
j gjHjg

−1
j .

– J is unbounded in (G, d).
We shall call Hi the family of algebraic i-fold intersections or simply, i-fold conjugates.

The second point in the following definition is motivated by the behavior of near-
est point projections of cosets of quasiconvex subgroups of hyperbolic groups on
each other. Let (G, d) be hyperbolic and H1, H2 be quasiconvex. Let aH1, bH2 be
cosets and c = a−1b. Then the nearest point projection of bH2 onto aH1 is the (left)
a-translate of the nearest point projection of cH2 onto H1. Let ΠB(A) denote the
(nearest-point) projection of A onto B. Then ΠH1

(cH2) lies in a bounded neighbor-
hood (say D0-neighborhood) of Hc

2 ∩H1 and so ΠaH1
(bH2) lies in a D0-neighborhood

of bH2b
−1a ∩ aH1. The latter does lie in a bounded neighborhood of (H2)b ∩ (H1)a,

but this bound depends on a, b and is not uniform. Hence the somewhat convoluted
way of stating the second property below. The language of nearest-point projections
below is in the spirit of [Mj10, Mj14] while the notion of geometric i-fold intersections
discussed earlier is in the spirit of [DGO17].

Definition 3.9. — Let G be a group and d a word metric on G.
A finite family H = {H1, . . . ,Hm} of subgroups of G, each equipped with a

word-metric di is said to have the uniform qi-intersection property if there exist
C1, . . . , Cn, . . . such that

(1) for all n, and all H ∈Hn, H has a conjugate H ′ such that if d′ is any induced
metric on H ′ from some Hi ∈H , then (H ′, d′) is (C1, C1)-qi-embedded in (G, d),

(2) for all n, let (Hn)0 be a choice of conjugacy representatives of elements of Hn

that are C1-quasiconvex in (G, d); Let C Hn denote the collection of left cosets of
elements of (Hn)0; for all A,B ∈ C Hn with A = aA0, B = bB0, and A0, B0 ∈ (Hn)0,
ΠB(A) either has diameter bounded by Cn for the metric d, or ΠB(A) lies in a (left)
a-translate translate of a Cn-neighborhood of A0 ∩Bc0, where c = a−1b.

In keeping with the spirit of the previous subsection, we provide a geometric version
of the above definition below.

Definition 3.10. — Let G be a group and d a word metric on G.
A finite family H = {H1, . . . ,Hm} of subgroups of G, each equipped with a word-

metric di is said to have the uniform geometric qi-intersection property if there exist
C1, . . . , Cn, . . . such that
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(1) for all n, and all H ∈Hn, (H, d) is Cn-coarsely path connected, and (C1, C1)-
qi-embedded in (G, d) (for its coarse path metric),

(2) for all A,B ∈Hn either diamG,d(ΠB(A)) 6 Cn, or ΠB(A) ⊂ A+Cn for d.

Remark 3.11. — The second condition of Definition 3.10 follows from the first con-
dition if d is hyperbolic by Proposition 3.7. Further, the first condition holds for such
(G, d) so long as ∆ is taken of the order of the quasiconvexity constants (again by
Proposition 3.7).

Note further that if G is hyperbolic (with respect to a not necessarily locally
finite word metric) and H is C-quasiconvex, then by Proposition 3.6 the collection of
geometric n-fold intersections Hn is mutually cobounded for the metric of (G, d)el

Hn+1

(as in Definition 2.9).

3.4. Existing results on algebraic intersection properties. — We start with the
following result due to Short.

Theorem 3.12 ([Sho91, Prop. 3]). — Let G be a group generated by the finite set S.
Suppose G acts properly on a uniformly proper geodesic metric space (X, d), with
a base point x0. Given C0, there exists C1 such that if H1, H2 are subgroups of G
for which the orbits Hix0 are C0-quasiconvex in (X, d) (for i = 1, 2) then the orbit
(H1 ∩H2)x0 is C1-quasiconvex in (X, d).

We remark here that in the original statement of [Sho91, Prop. 3], X is itself the
Cayley graph of G with respect to S, but the proof there goes through without change
to the general context of Proposition 3.12.

In particular, for G (Gromov) hyperbolic, or G = Mod(S) acting on Teichmüller
space Teich(S) (equipped with the Teichmüller metric) and Out(Fn) acting on Outer
space cvN (with the symmetrized Lipschitz metric), the notions of (respectively) qua-
siconvex subgroups or convex cocompact subgroups of Mod(S) or Out(Fn) (see Sec-
tions 4.3 and 4.4 below for the lemmas) are independent of the finite generating sets
chosen. Hence we have the following.

Theorem 3.13. — Let G be either Mod(S) or Out(Fn) equipped with some finite
generating set. Given C0, there exists C1 such that if H1, H2 are C0-convex cocompact
subgroups of G, then H1 ∩H2 is C1-convex cocompact in G.

The corresponding statement for relatively hyperbolic groups and relatively quasi-
convex groups is due to Hruska. For completeness we recall it.

Definition 3.14 ([Osi06b, Hru10]). — Let G be finitely generated hyperbolic relative
to a finite collection P of parabolic subgroups. A subgroup H 6 G is relatively
quasiconvex if the following holds.

Let S be some (any) finite relative generating set for (G,P), and let P be the union
of all Pi ∈P. Let Γ denote the Cayley graph of G with respect to the generating set
S ∪P and d the word metric on G. Then there is a constant C0 = C0(S, d) such that
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for each geodesic γ ⊂ Γ joining two points of H, every vertex of γ lies within C0 of H
(measured with respect to d).

Theorem 3.15 ([Hru10]). — Let G be finitely generated hyperbolic relative to P.
Given C0, there exists C1 such that if H1, H2 are C0-relatively quasiconvex subgroups
of G, then H1 ∩H2 is C1-relatively quasiconvex in G.

4. Geometric height and graded geometric relative hyperbolicity

We are now in a position to define the geometric analog of height. There are two
closely related notions possible, one corresponding to the geometric notion of i-fold
intersections and one corresponding to the algebraic notion of i-fold conjugates. The
former is relevant when one deals with subsets and the latter when one deals with
subgroups.

Definition 4.1. — Let G be a group, with a left invariant word metric d(= dG) with
respect to some (not necessarily finite) generating set. Let H be a family of subgroups
of G.

The geometric height, of H in (G, d) (for d) is the minimal number i > 0 so that
the collection Hi+1 of (i+ 1)-fold intersections consists of uniformly bounded sets.

If H is a single subgroup, its geometric height is that of the family {H}.

Remark 4.2 (Comparing notions of height)
– Geometric height is related to algebraic height, but is more flexible, since in the

former, we allow the group G to have an infinite generating set. We are then free to
apply the operations of electrification, horoballification in the context of non-proper
graphs.

– In the case of a locally finite word metric, algebraic height is less than or equal to
geometric height. Equality holds if all bounded intersections are uniformly bounded.

– For a locally finite word metric, finiteness of algebraic height implies that i-fold
conjugates are finite (and hence bounded in any metric) for all sufficiently large i.
Hence finiteness of geometric height follows from finiteness of algebraic height and of
a uniform bound on the diameter of the finite intersections.

– When the metric on a Cayley graph is not locally finite, we do not know of
any general statement that allows us to go directly from finiteness of diameter of an
intersection of thickenings of cosets (geometric condition) to finiteness of diameter of
intersections of conjugates (algebraic condition). Some of the technical complications
below are due to this difficulty in going from geometric intersections to algebraic
intersections.

We generalize Definition 1.3 of graded relative hyperbolicity to the context of geo-
metric height as follows.

Definition 4.3. — Let G be a group, d the word metric with respect to some (not
necessarily finite) generating set and H a finite collection of subgroups. Let Hi

be the collection of all i-fold conjugates of H . Let (Hi)0 be a choice of conjugacy
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representatives, and C Hi the set of left cosets of elements of (Hi)0 Let di be the
metric on (G, d) obtained by electrifying the elements of C Hi. Let C HN be the
graded family (C Hi)i∈N.

We say that G is graded geometric relatively hyperbolic with respect to C HN if
(1) H has geometric height n for some n ∈ N, and for each i there are finitely

many orbits of i-fold intersections,
(2) for all i 6 n+ 1, C Hi−1 is coarsely hyperbolically embedded in (G, di),
(3) there is Di such that all items of C Hi are Di-coarsely path connected in (G, d).

Remark 4.4 (Comparing geometric and algebraic graded relative hyperbolicity)
Note that the second condition of Definition 4.3 is equivalent, by Proposition 2.23,

to saying that (G, di) is strongly hyperbolic relative to the collection Hi−1. This is
exactly the third (more algebraic) condition in Definition 1.3. Also, the third condition
of Definition 4.3 is the analog of (and follows from) the second (more algebraic)
condition in Definition 1.3.

Thus finite geometric height along with (algebraic) graded relative hyperbolicity
implies graded geometric relative hyperbolicity.

The rest of this section furnishes examples of finite height in both its geometric
and algebraic incarnations.

4.1. Hyperbolic groups

Proposition 4.5. — Let (G, d) be a hyperbolic group with a locally finite word metric,
and let H be a quasiconvex subgroup of G. Then H has finite geometric height.

More precisely, if C is the quasi-convexity constant of H in (G, d), and if δ be
the hyperbolicity constant in (G, d), and if N is the cardinality of a ball of (G, d) of
radius 2C+10δ, and if g0H, . . . , gkH are distinct cosets of H for which there exists ∆

such that the total intersection
⋂k
i=0(giH)+∆ has diameter more than 10∆, and more

that 100δ, then there exists x ∈ G such that each giH intersects the ball of radius N
around x.

First note that the second statement implies the first in the (by the third point of
Remark 4.2). We will directly prove the second. The proof is similar to the finiteness
of the algebraic height. Also note that the second statement can be rephrased in
terms of double cosets representatives of the gi: under the assumption on the total
intersection, and if g0 = 1, there are double coset representatives of the gi of length
at most 2(2C + 10δ).

Proof. — Assume that there exists ∆ > 0, and elements 1 = g0, g1, . . . , gk for which
the cosets giH are distinct, and

⋂k
i=0(giH)+∆ has diameter larger than 10∆ and than

100δ.
First we treat the case ∆ > 5δ. Pick y1, y2 ∈

⋂k
i=0(giH)+∆ at distance 10∆ from

each other, and pick x ∈ [y1, y2] at distance larger than ∆ + 10δ from both yi. For
each i an application of hyperbolicity and quasi-convexity tells us that x is at distance
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at most 2C + 10δ from each of giH. The ball of radius 2C + 10δ around x thus meets
each coset giH.

If ∆ 6 5δ, we pick y1, y2 ∈
⋂k
i=0(giH)+∆ at distance 100δ from each other, and

take x at distance greater than 10δ from both ends. The end of the proof is the
same. �

4.2. Relatively hyperbolic groups. — If G is hyperbolic relative to a collection of
subgroups P, then Hruska and Wise defined in [HW09] the relative height of a
subgroup H of G as n if (n + 1) is the smallest number with the property that
for any (n+ 1) elements g0, . . . , gn such that the giH are (n+ 1)-distinct cosets, the
intersections of conjugates

⋂
i giHg

−1
i is finite or parabolic.

The notion of relative algebraic height is actually the geometric height for the
relative distance, which is given by a word metric over a generating set that is the
union of a finite set and a set of conjugacy representatives of the elements of P.
Indeed, in a relatively hyperbolic group, the subgroups that are bounded in the relative
metric are precisely those that are finite or parabolic. We give a quick argument.
It follows from the lemma of relative quasiconvexity that a subgroup having finite
diameter in the electric metric on G (rel. P) is relatively quasiconvex. It is also true
[DGO17] that the normalizer of any P ∈P is itself and that the subgroup generated
by any P and any infinite order element g ∈ G r P contains the free product of
conjugates of P by gkn, k ∈ Z. Since any proper supergroup of P necessarily contains
such a g, it follows that no proper supergroup of P can be of finite diameter in the
electric metric on G (rel. P). It follows that bounded subgroups are precisely the
finite subgroups or those contained inside parabolic subgroups.

The notion of relative height can actually be extended to define the height of a
collection of subgroups H1, . . . ,Hk, as in the case for the algebraic height.

Hruska and Wise proved that relatively quasiconvex subgroups have finite relative
height. More precisely:

Theorem 4.6 ([HW09, Th. 1.4, Cors. 8.5-8.7]). — Let (G,P) be relatively hyperbolic,
let S be a finite relative generating set for G and Γ be the Cayley graph of G with
respect to S. Then for σ > 0, there exists C > 0 such that the following holds.

Let H1, . . . ,Hn be a finite collection of σ-relatively quasiconvex subgroups of
(G,P). Suppose that there exist distinct cosets {gmHαm} with αm ∈ {1, . . . , n},
m = 1, . . . , n, such that

⋂
m gmHαmg

−1
m is not contained in a parabolic P ∈P. Then

there exists a vertex z ∈ G such that the ball of radius C in Γ intersects every coset
gmHαm .

Further, for any i ∈ {1, . . . , n}, there are only finitely many double cosets of the
form HigiHαi such that Hi ∩

⋂
i giHαig

−1
i is not contained in a parabolic P ∈P.

Let G be a relatively hyperbolic group, and let H be a relatively quasiconvex sub-
group. Then H has finite relative algebraic height.

This allows us to give an example of geometric height in our setting.
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Proposition 4.7. — Let (G,P) be a relatively hyperbolic group, and (G, d) a relative
word metric d (i.e., a word metric over a generating set that is the union of a finite set
and of a set of conjugacy representatives of the elements of P, and hence, in general,
not a finite generating set). Let H be a relatively quasiconvex subgroup. Then, H has
finite geometric height for d.

This just a rephrasing of Hruska and Wise’s result Theorem 4.6. The proof is
similar to that in the hyperbolic groups case, using for instance cones instead of balls.

4.3. Mapping class groups. — Another source of examples arise from convex-
cocompact subgroups of mapping class groups, and of Out(Fn) for a free group Fn.
We establish finiteness of both algebraic and geometric height of convex cocompact
subgroups of mapping class groups in this subsubsection. In the following S will be a
closed oriented surface of genus greater than 2, and Teich(S) and CC(S) will denote
respectively the Teichmüller space and Curve Complex of S.

Definition 4.8 ([FM02]). — A finitely generated subgroup H of the mapping class
group Mod(S) for a surface S (with or without punctures) is σ-convex cocompact if
for some (any) x ∈ Teich(S), the Teichmüller space of S, the orbit Hx ⊂ Teich(S) is
σ-quasiconvex with respect to the Teichmüller metric.

Kent-Leininger [KL08] and Hamenstädt [Ham08] prove the following:

Theorem 4.9. — A finitely generated subgroup H of the mapping class group Mod(S)

is convex cocompact if and only if for some (any) x ∈ CC(S), the curve complex of S,
the orbit Hx ⊂ CC(S) is qi-embedded in CC(S).

One important ingredient in Kent-Leininger’s proof of Theorem 4.9 is a lifting of
the limit set of H in ∂ CC(S) (the boundary of the curve complex) to ∂ Teich(S) (the
boundary of Teichmüller space). What is important here is that Teich(S) is a proper
metric space unlike CC(S). Further, they show using a theorem of Masur [Mas80],
that any two Teichmüller geodesics converging to a point on the limit set ΛH (in
∂ Teich(S)) of a convex cocompact subgroup H are asymptotic. An alternate proof
is given by Hamenstädt in [Ham10]. With these ingredients in place, the proof of
Theorem 4.10 below is an exact replica of the proof of Theorem 3.2 above:

Theorem 4.10 (Height from the Teichmüller metric). — Let G be the mapping class
group of a surface S, and Teich(S) the corresponding Teichmüller space with the
Teichmüller metric, and with a base point z0. Then for σ > 0, there exists C > 0,
and D > 0 such that the following holds.

Let H1, . . . ,Hn be a finite collection of σ-convex cocompact subgroups of G. Suppose
that there exist distinct cosets {gmHαm} with αm ∈ {1, . . . , n}, m = 1, . . . , n, such
that, for some ∆,

⋂
m(gmHαm)+∆ is larger than max{10∆, D}. Then there exists a

point z ∈ Teich(S) such that the ball of radius C in Teich(S) intersects every image
of z0 by a coset gmHαmz0.
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Further, for any i ∈ {1, . . . , n}, there are only finitely many double cosets of the
form HigiHαi such that Hi ∩

⋂
i giHαig

−1
i is infinite.

The collection {H1, . . . ,Hn} has finite algebraic height.

A more geometric strengthening of Theorem 4.10 can be obtained as follows using
recent work of Durham and Taylor [DT15], who have given an intrinsic quasi-convexity
interpretation of convex cocompactness, by proving that convex cocompact subgroups
of mapping class groups are stable: in a word metric, they are undistorted, and quasi
geodesics with end points in the subgroup remain close to each other [DT15].

Theorem 4.11 (Height from a word metric). — Let G be the mapping class group
of a surface S and d the word metric with respect to a finite generating set. Then
for σ > 0, and any subgroup H that is σ-convex cocompact, the group H has finite
geometric height in (G, d).

Moreover, any σ-convex cocompact subgroup H has finite geometric height in
(G, d1), where d1 is the word metric with respect to any (not necessarily finite)
generating set.

Proof. — Assume that the theorem is false: there exists σ such that for all k, and
all D, there exists a σ-convex cocompact subgroup H, with a collection of distinct
cosets {gmH,m = 0, . . . , k} (with g0 = 1), satisfying the property that

⋂
m(gmH)+∆

has diameter larger than max{10∆, D}.
Let a, b be two points in

⋂
m(gmH)+∆ such that d(a, b) > max{10∆, D}. For each i,

let ai, bi in giH be at distance at most ∆ from a and b respectively. Consider γi
geodesics in H from g−1

i ai to g−1
i bi. Consider also a′i and b′i-nearest point projections

of a0 and b0 on giγi. Finally, denote by giγ′i the subpath of giγi between a′i and b′i
By [DT15, Prop. 5.7], H is quasiconvex in G (for a fixed chosen word metric), and

for each i, giγi is a f(σ)-quasi-geodesic (for some function f).
We thus obtain from a0 to b0 a family of k+ 1 paths, namely γ0 and (one for all i),

the concatenation ηi = [a0, a
′
i] · giγ′i · [b′i, b0]. For D large enough, the paths ηi are

2f(σ)-quasigeodesics in G.
Stability of H ([DT15, Th. 1.1]) implies that, there exists R(σ) such that in G, the

paths remain at mutual Hausdorff distance at most R(σ). This is thus also true in
the Teichmüller space by the orbit map. Hence it follows that all the subpaths giγ′i
are at distance at most 2R(σ) from each other, but are disjoint, and all lie in a thick
part of the Teichmüller space, where the action is uniformly proper. This leads to a
contradiction.

Since the diameter of intersections can only go down if the generating set is in-
creased, the last statement follows. �

4.4. Out(Fn). — Following Dowdall-Taylor [DT14], we say that a finitely generated
subgroup H of Out(Fn) is σ-convex cocompact if

(1) all non-trivial elements of H are atoroidal and fully irreducible,
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(2) for some (any) x ∈ cvn, the (projectivized) Outer space for Fn, the orbit
Hx ⊂ cvn is σ-quasiconvex with respect to the Lipschitz metric.

Remark 4.12. — The above lemma, while not explicit in [DT14], is implicit in Section
1.2 of that paper.

Also, a word about the metric on cvn is in order. The statements in [DT14] are
made with respect to the unsymmetrized metric on outer space. However, convex
cocompact subgroups have orbits lying in the thick part; and hence the unsymmetrized
and symmetrized metrics are quasi-isometric to each other. We assume henceforth,
therefore, that we are working with the symmetrized metric, to which the conclusions
of [DT14] apply via this quasi-isometry.

The following theorem gives a characterization of convex cocompact subgroups in
this context and is the analog of Theorem 4.9.

Theorem 4.13 ([DT14]). — Let H be a finitely generated subgroup of Out(Fn) all
whose non-trivial elements are atoroidal and fully irreducible. Then H is convex co-
compact if and only if for some (any) x ∈ Fn (the free factor complex of Fn), the
orbit Hx ⊂ Fn is qi-embedded in Fn.

Dowdall and Taylor also show [DT14, Th. 4.1] that any two quasi-geodesics in cvn
converging to the same point p on the limit set ΛH (in ∂cvn) of a convex cocom-
pact subgroup H are asymptotic. More precisely, given λ, µ and p ∈ ΛH there exists
C0(= C0(λ, µ, p)) such that any two (λ, µ)-quasi-geodesics in cvn converging to p are
asymptotically C0-close. As observed before in the context of Theorem 4.10, this is
adequate for the proof of Theorem 4.10 to go through:

Theorem 4.14. — Let G = Out(Fn), and cvn the Outer space for G with a base
point z0. Then for σ > 0, there exists C > 0 such that the following holds.

Let H1, . . . ,Hn be a finite collection of σ-convex cocompact subgroups of G. Suppose
that there exist distinct cosets {gmHαm} with αm ∈ {1, . . . , n}, m = 1, . . . , n, such
that

⋂
m gmHαmg

−1
m is infinite. Then there exists a point z ∈ cvn such that the ball of

radius C in cvn intersects every image of z0 by a coset gmHαmz0.
Further, for any i ∈ {1, . . . , n}, there are only finitely many double cosets of the

form HigiHαi such that Hi ∩
⋂
i giHαig

−1
i is infinite.

The collection {H1, . . . ,Hn} has finite algebraic height.

Since an analog of the stability result of [DT15] in the context of Out(Fn) is missing
at the moment, we cannot quite get an analog of Theorem 4.11.

4.5. Algebraic and geometric qi-intersection property: Examples

In the proposition below we shall put parentheses around (geometric) to indicate
that the statement holds for both the qi-intersection property as well as the geometric
qi-intersection property.
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Proposition 4.15
(1) Let H be a quasiconvex subgroup of a hyperbolic group G, endowed with a

locally finite word metric. Then, {H} satisfies the uniform (geometric) qi-intersection
property.

(2) Let H be a relatively quasiconvex subgroup of a relatively hyperbolic group
(G,P). Let P0 be a set of conjugacy representatives of groups in P, and d a word
metric on G over a generating set S = S0∪P0, where S0 is finite. Then {H} satisfies
the uniform (geometric) qi-intersection property with respect to d.

(3) Let H be a convex-cocompact subgroup of the Mapping Class Group Mod(Σ) of
an oriented closed surface Σ of genus > 2. If d is a word metric on Mod(Σ) that makes
it quasi-isometric to the curve complex of Σ, then H satisfies the uniform (geometric)
qi-intersection property with respect to d.

(4) Let H be a convex-cocompact subgroup of Out(Fn) for some n > 2. If d is a
word metric on Out(Fn) that makes it quasi-isometric to the free factor complex of Fn,
then H satisfies the uniform (geometric) qi-intersection property with respect to d.

Proof. — All four cases have similar proofs. Consider the first point.
Case 1: G hyperbolic, H quasiconvex. — Let h be the height of H (which is finite by
Theorem 3.2): every h+1-fold intersection of conjugates of H is finite, but some h-fold
intersection is infinite.

– The first conditions of Definition 3.9 and Definition 3.10 follow from this finite-
ness and Proposition 4.5 and Theorem 3.12.

– The second condition of Definition 3.10 follows from Proposition 3.7.
– We prove the second condition of Definition 3.9 (on mutual coboundedness of

elements of C Hi) iteratively.
By Theorem 3.12, there exists Ch such that two elements of C Hh are Ch-quasiconvex
in (G, d). LetD > 0. If A and B are two distinct such elements such that the projection
of A on B has diameter greater than D, then there are D/Ch pairs of elements (ai, bi)

in A × B, such that a−1
i bi are elements of length at most 20δCh. Choose N0 larger

than the cardinality of finite subgroups of G. By a standard pigeon hole argument,
if D is large enough, there are N0 such pairs for which a−1

i bi take the same value.
It follows that there are two essentially distinct conjugates of elements of Hh that
intersect on a subset of at least N0 elements, hence on an infinite subgroup. This
contradicts the definition of height, and it follows that D is bounded, and elements
of C Hh are mutually cobounded.

We continue by descending induction. Assume that the second property of Defi-
nition 3.9 is established for C Hi+1. By Proposition 2.10 it follows that (G, di+1) is
hyperbolic. Let δi+1 be its hyperbolicity constant. By Proposition 2.11, there exists Ci
such that two elements of C Hi are Ci-quasiconvex in (G, di+1).

Again take A and B two distinct elements of C Hi such that the projection of A
on B has diameter greater than D > 1000δi+1 for di+1. Then there are at least D/Ci
pairs of elements (ai, bi) in A × B, such that a−1

i bi is an element of length at most
20δi+1Ch for the metric di+1, and for all i there exists i′ such that the segments
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[ai, bi], [ai′ , bi′ ] are (200δi+1)-far from one another. Apply the Proposition 2.12 to
each geodesic [ai, bi] to find quasi-geodesics qi from ai to bi in (G, d) (this can also
be done by Lemma 2.15). We know that in (G, d), A and B are quasiconvex (for the
constant Ch). By their definition, and by hyperbolicity, the paths qi end at bounded
distance of a shortest-point projection of ai to B (for d). Therefore, since (G, d) is
hyperbolic, and since the qi are far from one another for d, it follows that the qi
are actually short for the metric d (shorter than (200δCh)). Since there are D/Ci
pairs of elements (ai, bi), by the pigeon hole argument, there is an element g0 (of
length at most (200δCh) in the metric d) such that for D/(Ci ×BG,d(200δCh)) such
pairs, the difference a−1b equals g0. If D is large enough, D/(Ci × BG,d(200δCh)) is
larger than the cardinality of the finite order elements of G. It follows that the two
essentially distinct conjugates of elements of Hi, corresponding to the cosets A and B,
intersect on a set of size larger than any finite subgroup of G (and of diameter larger
than 3 in di+1). Thus the intersection is an infinite subgroup of G. This subgroup is
necessarily among the conjugates of some Hj for j > i + 1, but therefore must have
diameter 2 in the metric di+1.
Case 2:G relatively hyperbolic,H relatively quasiconvex. — The geometric height of H
for the relative metric is finite, by Proposition 4.7. Let h be its value. The first points
of Definition 3.9 follows from this finiteness and Theorem 3.15.

The second point has a similar proof as the first case, except that the pigeon hole
argument needs to be made precise because the relative metric (G, d) is not locally
finite.

Let D > 0. If A and B are two distinct elements of C Hh such that the projection
of A on B has diameter greater than D, then there are D/CH pairs of elements
(ai, bi) in A×B, such that a−1

i bi are elements of length at most 20δCh. Moreover, if
D > 100δCh, for each [ai, bi], there is [aj , bj ] such that both segments are short (for d)
and are at distance at least (50δCh) from each other. It follows that, in the Cone-off
Cayley graph of G, the maximal angle of [ai, bi] at the cone vertices is uniformly
bounded by (100δCh) + 2(2Ch + 5δ). Indeed, consider α and β quasi-geodesic paths
in A and B respectively, from ai to aj and from bi to bj . By hyperbolicity and quasi-
geodesy, at distance 30δCh from ai and bi, there is a path of length 2(2Ch + 5δ)

joining α to β. Being too short, this path cannot possibly intersect [ai, bi]. There is
thus a path from ai to bi of length at most 2× (30δCh) + 2(2Ch + 5δ) that does not
intersect [ai, bi] outside its end points. It follows indeed that the maximal angle of
[ai, bi] is at most 2× (30δCh) + 2(2Ch + 5δ) + 20δCh.

From this bound on angles, we may use the fact that the angular metric at each
cone point is locally finite (by definition of relative hyperbolicity) and the bound
on the length in the metric d, to get that all the elements a−1

i bi are in a finite set,
independent of D. We can now use the pigeon hole argument, as in the hyperbolic
case, and conclude similarly that D is bounded.

The rest of the argument is also by descending induction. Assume that the second
property of Definition 3.9 is established for C Hi+1. We proceed in a very similar
way as in the hyperbolic case, with the difference is that, after establishing that the
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paths qi are small for the metric d, one needs to check that their angles at cone points
are bounded, which is done by the argument we just used. We provide the details now.

By Proposition 2.10 it follows that (G, di+1) is hyperbolic. Let δi+1 be its hyper-
bolicity constant. By Proposition 2.11, there exists Ci such that two elements of C Hi

are Ci-quasiconvex in (G, di+1).
Take A and B two distinct elements of C Hi such that the projection of A on B

has diameter greater than some constant D for di+1. Take a quasigeodesic in the
projection of A on B, of length D. Then there are at least D/Ci pairs of elements
(ai, bi) in A×B, with bi on that quasigeodesic, and such that a−1

i bi is an element of
length at most 20δi+1Ch for the metric di+1, and for all i there exists i′ such that the
segments [ai, bi], [ai′ , bi′ ] are (200δi+1)-far from one another. Apply the Proposition
2.12 (or alternatively 2.15) to each geodesic [ai, bi] to find quasi-geodesics qi from ai
to bi in (G, d). We know that in (G, d), A and B are quasiconvex (for the constant Ch).
By their definition, and by hyperbolicity, the paths qi end at bounded distance of a
shortest-point projection of ai to B (for d). Therefore, since (G, d) is hyperbolic, and
since the qi are far from one another for d, it follows that the qi are actually short
for the metric d (shorter than (200δCh)). By the argument used at the initial step
of the descending induction, we also have an uniform upper bound on the maximal
angle of these paths, and therefore on the number of elements of G that label one of
the paths qi.

Since there are D/Ci pairs of elements (ai, bi), if D is large enough, by the pigeon
hole argument, there is an element g0 (of length at most (200δCh) in the metric d), and
a pair (ai0 , bi0), such that a−1

i bi = g0 and such that for 1000δi+1Ci other such pairs
(aj , bj), the difference a−1

j bj is also equal to g0. The intersection of two essentially
distinct conjugates of elements of Hi, corresponding to the cosets A and B, thus
contains a−1

i0
aj for all those indices j. There are indices j for which a−1

i0
aj labels a

quasi-geodesic paths in A of length at least 1000δi+1Ci. Such an element is either
loxodromic, or elliptic with fixed point at the midpoint [ai0 , aj ]. But if all of them are
elliptic, for two indices j1, j2, we get two different fixed points, hence the product of
the elements a−1

i0
aj1a

−1
i0
aj2 is loxodromic.

This element is in the intersection of conjugates of elements of Hi, thus is in a
subgroup among the conjugates of some Hj for j > i + 1, but therefore must have
diameter 2 in the metric di+1, and cannot contain loxodromic elements. This is thus
a contradiction.

Cases 3 and 4: G = Mod(Σ) or Out(Fn), H convex cocompact. — Consider the Teich-
müller metric on Teichmüller space (Teich(Σ), dT ) and the (symmetrization of the)
Lipschitz metric on Outer space (cvn, dS) respectively for Mod(Σ) and Out(Fn).
Though Teich(Σ) and cvn are non-hyperbolic, they are proper metric spaces.

For the mapping class group Mod(Σ), the curve complex (CC Σ), d) is hyperbolic
and quasi-isometric to (Mod(Σ), d), where d is the word-metric on Mod(Σ) obtained
by taking as generating set a finite generating set of Mod(Σ) along with all elements
of certain sub-mapping class groups (see [MM99]).
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Similarly for Out(Fn), the free factor complex (Fn, d) is hyperbolic, and is quasi-
isometric to (Out(Fn), d) for a certain word metric over an infinite generating set
([BF14]). This establishes that the hypotheses in the statements of Cases 3 and 4 are
not vacuous.

Recall that if a subgroupH of Mod(Σ) or Out(Fn) is C-convex co-compact, then by
Theorem 4.9 (and 4.13) the orbit of a base point in CC Σ) (or Fn) is a quasi-isometric
image of the orbit of a base point in Teichmüller space.

Finiteness of height of convex cocompact subgroups follows from Theorems 4.11
and 4.14 for G = Mod(Σ) and Out(Fn) respectively. The first condition of Defini-
tion 3.9 now follows from Theorems 3.13.

We now proceed with proving the second condition of Definition 3.9. We first
remark that, given C, there exists ∆, C ′ such that if A,B are cosets of C-convex
co-compact subgroups, and if a1, a2 ∈ A, b1, b2 ∈ B are such that, in CC Σ), d(a1, b1)

and d(a2, b2) are at most 10Cδ and that d(a1, a2) and d(b1, b2) are larger than ∆

then, dT (ai, bi) 6 C ′ for both i = 1, 2. Indeed, by definition of convex cocompactness,
the segment [a1, a2] in Teichmüller space maps on a parametrized quasi-geodesic in
the curve complex. A result of Dowdall Duchin and Masur ensures that Teichmüller
geodesics that make progress in the curve complex, are contracting in Teichmüller
space [DDM14, Th.A] (see the formulation done and proved in [DH15, Prop. 3.6]).
Thus the segment [a1, a2] is contracting in Teichmüller space: any Teichmüller geodesic
whose projection in the curve complex fellow-travels that of [a1, a2] has to be uniformly
close to [a1, a2]. Applying that to the segment [b1, b2], it follows that it must remain
at bounded distance (for Teichmüller distance) from [a1, a2], as demanded.

A similar statement is valid for Out(Fn) with the objects that we introduced, it
suffice to use [DH15, Prop. 4.17], an arrangement of Dowdall-Taylor’s result [DT14],
in place of the Dowdall-Duchin-Masur criterion.

With this estimate, one can easily adapt the proof of the first case to get the
result. �

5. From quasiconvexity to graded relative hyperbolicity

Recall that we defined graded geometric relative hyperbolicity in Definition 4.3.

5.1. Ensuring geometric graded relative hyperbolicity

Proposition 5.1. — Let G be a group, d a word metric on G with respect to some (not
necessarily finite) generating set, such that (G, d) is hyperbolic. Let H be a subgroup
of G. If {H} has finite geometric height for d and has the uniform qi-intersection
property, then (G, {H}, d) has graded geometric relative hyperbolicity.

Proof. — As in Definition 3.9, Hn denotes the collection of intersections of n essen-
tially distinct conjugates of H. Let (Hn)0 denote a set of conjugacy representatives
of (Hn) that are C1-quasiconvex, and let C Hn denote the collection of cosets of el-
ements of (Hn)0. Let dn be the metric on X = (G, d) after electrifying the elements
of C Hn.
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By Definition 3.9 and Remark 3.11, for all n, all elements of C Hn and of C Hn+1

are C1-quasiconvex in (G, d). Therefore, by Proposition 2.11, all elements of C Hn are
C ′1-quasiconvex in (G, dn+1) for some C ′1 depending on the hyperbolicity of d, and
on C1.

By Definition 3.9, C Hn is mutually cobounded in the metric dn+1. Proposition 2.10
now shows that the horoballification of (G, dn+1) over C Hn is hyperbolic, for all n.
Proposition 2.23 then guarantees that C Hn is coarsely hyperbolically embedded in
(G, dn+1). Since H is assumed to have finite geometric height, (G, {H}, d) has graded
geometric relative hyperbolicity. �

5.2. Graded relative hyperbolicity for quasiconvex subgroups

Proposition 5.2. — Let H be a quasiconvex subgroup of a hyperbolic group G, with
a word metric d (with respect to a finite generating set). Then the pair (G, {H}) has
graded geometric relative hyperbolicity, and graded relative hyperbolicity.

Proof. — For the word metric d with respect to a finite generating set, graded geo-
metric relative hyperbolicity agrees with the notion of graded relative hyperbolicity
(Definition 1.3).

By Theorem 3.2, H has finite height. By Proposition 4.15 it satisfies the uniform qi-
intersection property 3.9. Therefore, by Proposition 5.1, the pair (G, {H}) has graded
relative hyperbolicity.

Finally, note that since the word metric we use is locally finite, and all i-fold
intersections are quasiconvex, graded relative hyperbolicity follows. �

Proposition 5.3. — Let (G,P) be a finitely generated relatively hyperbolic group.
Let H be a relatively quasiconvex subgroup. Let S be a finite relative generating set of G
(relative to P) and let d be the word metric with respect to S ∪P. Then (G, {H}, d)

has graded relative hyperbolicity as well as graded geometric relative hyperbolicity.

Proof. — The proof is similar to that of Proposition 5.2. By Theorem 4.6, H has
finite relative height, hence it has finite geometric height for the relative metric (see
Example 4.7).

Next, by Proposition 4.15, H satisfies the uniform qi-intersection property for a rel-
ative metric, and graded geometric relative hyperbolicity follows from Proposition 5.1.

Again, since G has a word metric with respect to a finite relative generating set,
and H and all i-fold intersections are relatively quasiconvex as well, the above argu-
ment furnishes graded relative hyperbolicity as well. �

Similarly, replacing the use of Theorem 3.2 by Theorems 4.10 and 4.14, one obtains
the following.

Proposition 5.4. — Let G be the mapping class group Mod(S) (respectively Out(Fn)).
Let d be a word metric on G making it quasi-isometric to the curve complex CC(S)

(respectively the free factor complex Fn). Let H be a convex cocompact subgroup of G.
Then (G, {H}, d) has graded relative hyperbolicity.
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Again, replacing the use of Theorem 3.2 by Theorem 4.11, we obtain:

Proposition 5.5. — Let G be the mapping class group Mod(S). Let d be a word
metric on G making it quasi-isometric to the curve complex CC(S). Let H be a convex
cocompact subgroup of G. Then (G, {H}, d) has graded geometric relative hyperbolicity.

Remark 5.6. — Since we do not have an exact (geometric) analog of Theorem 4.11
for Out(Fn) (more precisely an analog of the stability result of [DT15]) as of now, we
have to content ourselves with the slightly weaker Proposition 5.4 for Out(Fn).

6. From graded relative hyperbolicity to quasiconvexity

6.1. A sufficient condition

Proposition 6.1. — Let G be a group and d a hyperbolic word metric with respect to
a (not necessarily finite) generating set. Let H be a subgroup such that (G, {H}, d)

has graded geometric relative hyperbolicity. Then H is quasiconvex in (G, d).

Proof. — Assume (G, {H}, d) has graded geometric relative hyperbolicity as in Defi-
nition 4.3. Then H has finite geometric height in (G, d). Let k be this height. Thus,
Hk+1 is a collection of uniformly bounded subsets, and dk+1 is quasi-isometric to d.
It follows that (G, dk+1) is hyperbolic.

Further, by Definition 4.3, Hk is hyperbolically embedded in (G, dk+1). This means
in particular that the electrification (G, dk+1)el

Hk
is hyperbolic. Since (G, dk) is quasi-

isometric to (G, dk+1)el
Hk

(being the restriction of the metric on G) it follows that
(G, dk) is hyperbolic as well. Further, by Corollary 2.7 the elements of Hk, are uni-
formly quasiconvex in (G, dk+1).

We now argue by descending induction on i.

The inductive hypothesis for (i + 1). — We assume that di+1 is a hyperbolic metric
on G, and that there is a constant ci+1 such that, for all j > 1 the elements of Hi+j

are uniformly ci+1-quasiconvex in (G, d).
We assume the inductive hypothesis for i+ 1 (i.e., as stated), and we now prove it

for i.
Of course, we also assume, as in the statement of the proposition, that Hi is

coarsely hyperbolically embedded in (G, di+1). Hence di is a hyperbolic metric on G.
We will now check that the assumptions of Proposition 2.12 are satisfied for

(X, d) = (G, di+1), Y = Hi+1, and Hi,` arbitrary in Hi.
Elements of Hi in (G, di+1) are uniformly quasiconvex in (G, di+1): this follows

from Corollary 2.7. We will write Ci for their quasiconvexity constant.
A second step is to check that, for some uniform ∆0 and ε, for all ∆ > ∆0, when an

element Hi,` of Hi (∆, ε)-meets an item of Hi+1, then H+ε∆ contains a quasigeodesic
between the meeting points in H. Thus, fix ε < 1/100, and take ∆0 larger than 20

times the thickening constants for the definition of elements in Hi (which is possible
by finiteness of number of orbits of i-fold intersections). Assume Hi,` (∆, ε)-meets
Y ∈ Hi+1. Then, by definition of i-fold intersections 3.5, and Proposition 3.6, either
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the pair of meeting points is in an item of Hi+1 inside Hi,`, or Y ⊂ Hi,`. In both cases,
by the inductive assumption, there is a path in H+ε∆

i,` between the meeting points
in Hi,` that is a quasigeodesic for d. Hence the second assumption of Proposition 2.12
is satisfied.

We can thus conclude by that proposition that Hi,` is quasiconvex in (G, d) for a
uniform constant, and therefore the inductive assumption holds for i.

By induction it is then true for i = 0, hence the first statement of the proposition
holds, i.e., quasiconvexity follows from graded geometric relative hyperbolicity. �

We shall deduce various consequences of Proposition 6.1 below. However, before we
proceed, we need the following observation since we are dealing with spaces/graphs
that are not necessarily proper.

Observation 6.2. — Let X be a (not necessarily proper) hyperbolic graph. For all
C0 > 0, there exists C1 > 0 such that the following holds:

Let H be a hyperbolic group acting uniformly properly on X, i.e., for all D0 there
exists N such that for any x ∈ X, any D0 ball in X contains at most N orbit points
of Hx.

Then a C0-quasiconvex orbit of H is (C1, C1)-quasi-isometrically embedded in X.

Combining Proposition 6.1 with Observation 6.2 we obtain the following:

Proposition 6.3. — Let G be a group and d a hyperbolic word metric with respect to
a (not necessarily finite) generating set. Let H be a subgroup such that

(1) (G, {H}, d) has graded geometric relative hyperbolicity,
(2) The action of H on (G, d) is uniformly proper.

Then H is hyperbolic and H is qi-embedded in (G, d).

Proof. — Quasi-convexity of H in (G, d) was established in Proposition 6.1. Qi-em-
beddedness of H follows from Observation 6.2. Hyperbolicity of H is an immediate
consequence. �

6.2. The main theorem. — We assemble the pieces now to prove the following main
theorem of the paper.

Theorem 6.4. — Let (G, d) be one of the following:
(1) G a hyperbolic group and d the word metric with respect to a finite generating

set S.
(2) G is finitely generated and hyperbolic relative to P, S a finite relative gener-

ating set, and d the word metric with respect to S ∪P.
(3) G is the mapping class group Mod(S) and d the metric obtained by electrify-

ing the subgraphs corresponding to sub mapping class groups so that (G, d) is quasi-
isometric to the curve complex CC(S).
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(4) G is Out(Fn) and d the metric obtained by electrifying the subgroups corre-
sponding to subgroups that stabilize proper free factors so that (G, d) is quasi-isometric
to the free factor complex Fn.
Then (respectively)

(1) H is quasiconvex if and only if (G, {H}) has graded geometric relative hyper-
bolicity,

(2) H is relatively quasiconvex if and only if (G, {H}, d) has graded geometric
relative hyperbolicity,

(3) H is convex cocompact in Mod(S) if and only if (G, {H}, d) has graded geo-
metric relative hyperbolicity and the action of H on the curve complex is uniformly
proper,

(4) H is convex cocompact in Out(Fn) if and only if (G, {H}, d) has graded geomet-
ric relative hyperbolicity and the action of H on the free factor complex is uniformly
proper.

Proof. — The forward implications of quasiconvexity to graded geometric relative
hyperbolicity in the first 3 cases are proved by Propositions 5.2, 5.3, 5.4 and 5.5 and
case 4 by Proposition 5.4. In cases (3) and (4) properness of the action of H on the
curve complex follows from convex cocompactness.

We now proceed with the reverse implications. Again, the reverse implications
of (1) and (2) are direct consequences of Proposition 6.1.

The proofs of the reverse implications of (3) and (4) are similar. Proposition 6.3
proves that any orbit of H on either the curve complex CC(S) or the free factor
complex Fn is qi-embedded. Convex cocompactness now follows from Theorems 4.9
and 4.13. �

6.3. Examples. — We give a couple of examples below to show that finiteness of
geometric height does not necessarily follow from quasiconvexity.

Example 6.5. — Let G1 = π1(S) and H = 〈h〉 be a cyclic subgroup corresponding
to a simple closed curve. Let G2 = H1 ⊕H2, where each Hi is isomorphic to Z. Let
G = G1 ∗H=H1 G2. Let d be the metric obtained on G with respect to some finite
generating set along with all elements of H2. Then G1 is quasiconvex in (G, d), but G1

does not have finite geometric height.

Note however, that the action of G1 on (G, d) is not acylindrical. We now fur-
nish another example to show that graded geometric relative hyperbolicity does not
necessarily follow from quasiconvexity even if we assume acylindricity.

Example 6.6. — Let G = 〈ai, bi : i ∈ N, abi2i = a2i−1〉 and let F be the (free) subgroup
generated by {ai}. Then F bi ∩ F = 〈a2i−1〉 for all i. Let d be the word metric on G
with respect to the generators ai, bi. Then the action of F on (G, d) is acylindrical
and F is quasiconvex. However there are infinitely many double coset representatives
corresponding to bi such that F bi ∩ F is infinite.
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