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TWISTED LIMIT FORMULA FOR TORSION AND

CYCLIC BASE CHANGE

by Nicolas Bergeron & Michael Lipnowski

Abstract. — Let G be the group of complex points of a real semi-simple Lie group whose
fundamental rank is equal to 1, e.g. G = SL2(C) × SL2(C) or SL3(C). Then the fundamental
rank of G is 2, and according to the conjecture made in [3], lattices in G should have ‘little’
— in the very weak sense of ‘subexponential in the co-volume’ — torsion homology. Using
base change, we exhibit sequences of lattices where the torsion homology grows exponentially
with the square root of the volume. This is deduced from a general theorem that compares
twisted and untwisted L2-torsions in the general base-change situation. This also makes uses
of a precise equivariant ‘Cheeger-Müller Theorem’ proved by the second author [23].

Résumé (Formule de multiplicité limite tordue pour la torsion et changement de base cyclique)
Soit G le groupe des points complexes d’un groupe de Lie semi-simple réel dont le rang fon-

damental est égal à 1, par exemple G = SL2(C)×SL2(C) ou SL3(C). Alors le rang fondamental
de G est égal à 2 et, selon la conjecture faite dans [3], les réseaux dans G devraient avoir « peu »
— dans le sens très faible de « sous-exponentiel en le co-volume » — de torsion homologique.
En utilisant le changement de base, nous exhibons des suites de réseaux le long desquelles la
torsion homologique croît exponentiellement avec la racine carrée du volume. Ce comportement
est déduit d’un théorème général qui compare les torsions L2 tordues et non tordues dans la
situation générale d’un changement de base. Nous utilisons également une version équivariante
précise du « Théorème de Cheeger-Müller » démontrée par le second auteur [23].
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436 N. Bergeron & M. Lipnowski

1. Introduction

1.1. Asymptotic growth of cohomology. — Let Γ be a torsion-free uniform lattice
in a semisimple Lie group G with maximal compact subgroup K. Let Γn ⊂ Γ be a
decreasing sequence of normal subgroups with trivial intersection. It is known that

lim
n→∞

dimHj(Γn,C)

[Γ : Γn]

converges to b(2)
j (Γ), the jth L2-Betti number of Γ. If b(2)

j 6= 0 for some j, it follows
that cohomology is abundant. However, it is often true that b(2)

j (Γ) = 0 for all j;
this is the case whenever δ(G) := rankCG − rankCK 6= 0. What is the true rate of
growth of bj(Γn) = dimHj(Γn,C) when δ(G) 6= 0? In particular, is bj(Γn) non-zero
for sufficiently large n?

We address this question for ‘cyclic base-change.’ Before stating a general result,
let’s give two typical examples of this situation.

Examples
(1) The real semisimple Lie group G = SL2(C) satisfies δ = 1. Let σ : G → G be

the real involution given by complex conjugation.
(2) The real semisimple Lie group G = SL2(C) × · · · × SL2(C) (n times) satisfies

δ = n. Let σ : G → G be the order 2n automorphism of G given by σ(g1, . . . , gn) =

(gn, g1, . . . , gn−1).

Now let Γn ⊂ Γ be a sequence of finite index, σ-stable subgroups of G. It follows
from the general Proposition 1.2 below that∑

j

bj(Γn)� vol(Γσn\SL2(R)).

Note that when the Γn’s are congruence subgroups of an arithmetic lattice Γ, then
vol(Γσn\SL2(R)) grows like vol(Γn\G)1/order(σ).

In this paper, we shall more generally consider the case where G is obtained from
a real algebraic group by ‘base change.’ Let G be a connected semisimple quasi-split
algebraic group defined over R. Let E be an étale R-algebra such that E/R is a cyclic
Galois extension with Galois group generated by σ ∈ Aut(E/R). Concretely, E is
either Rs or Cs. In the first case σ is of order s and acts on Rs by cyclic permutation. In
the second case σ is of order 2s and acts on Cs by (z1, . . . , zs) 7→ (zs, z1, . . . , zs−1). The
automorphism σ induces a corresponding automorphism of the group G of real points
of ResE/R G.(1) We will furthermore assume that H1(σ,G) = {1}; see Section 2.4 for
comments on this condition. The following proposition is ‘folklore’ (see e.g. Borel-
Labesse-Schwermer [6], Rohlfs-Speh [30] and Delorme [14]).

(1)The assumption that G/R is quasi-split is used in the case where E = C, where we quote
results of Delorme [14] concerning base change from G(R) to G(C). We emphasize that assuming
G/R is quasi-split is unnecessary in the case where E = Rs and σ acts by cyclic permutation. See
Section 5.
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Twisted limit formula for torsion and cyclic base change 437

1.2. Proposition. — Let Γn ⊂ Γ be a sequence of finite index, σ-stable subgroups
of G. Suppose that δ(Gσ) = 0. Then we have:∑

j

dim bj(Γn)� vol(Γσn\Gσ).

We prove Proposition 1.2 for certain families {Γn} in Section 4.6 but our real
interest here is rather how the torsion cohomology grows.

1.3. Asymptotic growth of torsion cohomology. — Let (ρ, F ) be a finite dimen-
sional representation of G defined over R and suppose that the Γn’s stabilize some
fixed lattice O ⊂ F . The first named author and Venkatesh [3] prove that for ‘strongly
acyclic’ [3, §4] representations ρ, there is a lower bound∑

j

log |Hj(Γn,O)tors| � c(G, ρ) · [Γ : Γn]

for some constant c(G, ρ). In fact, they prove a limiting identity

(1.3.1)
∑
j(−1)j log |Hj(Γn,O)tors|

[Γ : Γn]
−→ c(G, ρ)

and prove that c(G, ρ) is non-zero exactly when δ(G) = 1. The numerator of the left
side of (1.3.1) should be thought of as a ‘torsion Euler characteristic.’ The purpose of
this article is to prove an analogous theorem about ‘torsion Lefschetz numbers.’

To state one instance of our main result, we keep assuming that H1(σ,G) = {1}
and furthermore assume that:

(1) σ has prime order p and OFp is trivial.
(2) the Γn’s are σ-stable finite index subgroups of Γ such that

⋂
n Γn = {1} (or,

more generally, that satisfy the hypothesis of Section 4.3), and
(3) the representation ρ is strongly acyclic and can be extended to a finite dimen-

sional (twisted) representation ρ̃ of the twisted space G̃ = G o σ that is strongly
acyclic (see Section 2.6).

Under these hypotheses we shall prove the following:

1.4. Theorem. — We have:

(1.4.1) lim sup

∑
j log |Hj(Γn,O)|
vol(Γσn\Gσ)

> 0

whenever δ(Gσ) = 1.

Example. — Let E/Q be an imaginary quadratic extension. Let B be a division
algebra of dimension 9 over Q such that B is split at infinity and BE := B ⊗Q E is
a division algebra. Let o be a maximal order in B and let oE be its tensor product
over Z with the ring of integers of E. Then o×E embeds into PGL3(C). Let O be
the set of elements in oE of trace 0, considered as an o×E-module by conjugation.
Let Γ be a torsion free congruence subgroup of o×E such that Γ is contained in the
kernel of ρ mod 2. Then the local system OF2 is trivial. Given a prime q, we denote

J.É.P. — M., 2017, tome 4



438 N. Bergeron & M. Lipnowski

by Γq the kernel of the reduction map Γ 7→ (oE/qoE)
×. Theorem 1.4 applies to the

sequence {Γq} and we conclude that

(1.4.2) lim sup
1

q8

∑
j

log |Hj(Γq,O)| > 0.

Here, q8 is the growth rate of the log of torsion in H3 of the corresponding q-
congruence subgroups of o× embedded into PGL3(R). The cohomology classes that
contribute to (1.4.2) should conjecturally arise by base change transfer over Z. One
may regard (1.4.2) as a partial evidence for the existence of such a transfer.

Similarly, one can construct examples of lattices Γ in SL2(C)p (p > 1 prime), in
SL3(C) or in SL4(C) such that the torsion homology of level q congruence subgroups
of Γ grows exponentially with respectively q6, q8 or q15.

1.5. — Analogously to (1.3.1), Equation (1.4.1) follows from a limiting identity for
torsion Lefschetz numbers. For example, when σ2 = 1, conditional on an assumption
about the growth of the Betti numbers dimF2

Hj(Γσn,OF2
) we prove that

(1.5.1)
∑

(−1)j(log |Hj(Γn,O)+
tors| − log |Hj(Γn,O)−tors|)

|H1(σ,Γn)| vol(Γσn\Gσ)
−→ c(G, ρ, σ),

where the superscript ± denotes the ±1 eigenspace.
Assume that the maximal compact subgroup K ⊂ G is σ-stable and let X = G/K

and Xσ = Gσ/Kσ. The proof of (1.5.1) crucially uses the equivariant Cheeger-Müller
theorem, proven by Bismut-Zhang [5]. This enables us to compute the left side of
(1.5.1) (up to a controlled integer multiple of log 2) by studying the eigenspaces of the
Laplace operators of the metrized local system associated to ρ together with their σ
action. More precisely, the left side of (1.5.1) nearly equals the equivariant analytic
torsion log TσΓn\X(ρ); see (3.5.1) for a definition of the latter. Using the simple twisted
trace formula and results of Bouaziz [7], we prove a ‘limit multiplicity formula.’

1.6. Theorem. — Assume (1)–(3) above. Then we have:

(1.6.1)
log TσΓn\X(ρ)

|H1(σ,Γn)| vol(Γσn\Gσ)
−→ s2rt

(2)
Xσ (ρ),

where E = Rs or Cs, and r = 0 in the first case and r = rankR G(C) − rankR G(R)

in the second case.

Here, t(2)
Xσ (ρ) is the (usual) L2-analytic torsion of the symmetric space Xσ twisted

by the finite dimensional representation ρ. It is explicitly computed in [3]. Note that
it is non-zero if and only if δ(Gσ) = 1.

The authors hope that the limit multiplicity formula (1.6.1) together with the
twisted endoscopic comparison implicit in Section 7 will be of interest independent
of torsion in cohomology. These computations complement work by Borel-Labesse-
Schwermer [6] and Rohlfs-Speh [30].
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2. The simple twisted trace formula

Let G be a connected semisimple quasi-split algebraic group defined over R. Let E
be an étale R-algebra such that E/R is a cyclic Galois extension with Galois group
generated by σ ∈ Aut(E/R). The automorphism σ induces a corresponding automor-
phism of the group G of real points of ResE/R G. We furthermore choose a Cartan
involution θ of G that commutes with σ and denote by K the group of fixed points
of θ in G. Here we follow Labesse-Waldspurger [20].

2.1. Twisted spaces. — We associate to these data the twisted space

G̃ = Go σ ⊂ Go Aut(G).

The left action of G on G,
(g, xo σ) 7−→ gxo σ,

turns G̃ into a left principal homogeneous G-space equipped with a G-equivariant
map Ad : G̃→ Aut(G) given by

Ad(xo σ)(g) = Ad(x)(σ(g)).

We also have a right action of G on G̃ by

δg = Ad(δ)(g)δ (δ ∈ G̃, g ∈ G).

This enables us to define an action by conjugation of G on G̃ and yields a notion of
G-conjugacy class in G̃. The left and right actions of G on the twisted space G o σ

are induced by the left and right multiplications in the semi-direct product Go 〈σ〉.
In particular, taking δ = 1 o σ we have:

(1 o σ)g = δg = σ(g)δ = σ(g) o σ.

We similarly define the twisted space K̃ = K o σ.

2.2. Twisted representations. — A representation of G̃, in a vector space V , is the
data for every δ ∈ G̃ of a invertible linear map

π̃(δ) ∈ GL(V )

and of a representation of G in V :

π : G −→ GL(V )

such that for x, y ∈ G and δ ∈ G̃,

π̃(xδy) = π(x)π̃(δ)π(y).

In particular
π̃(δx) = π(Ad(δ)(x))π̃(δ).

J.É.P. — M., 2017, tome 4



440 N. Bergeron & M. Lipnowski

Therefore π̃(δ) intertwines π and π ◦ Ad(δ). Note that π̃ is the restriction to G o σ

of a genuine representation of Go 〈σ〉. As such it determines π; we will say that π is
the restriction of π̃ to G.

Conversely π̃ is determined by the data of π and of an operator A which inter-
twines π and π ◦ σ:

Aπ(x) = (π ◦ σ)(x)A

and whose p-th power is the identity, where p is the order of σ. We reconstruct π̃ by
setting

π̃(xo σ) = π(x)A for x ∈ G.

Say that π̃ is essential if π is irreducible. If π̃ is unitary and essential, Schur’s
lemma implies that π determines A up to a p-th root of unity.

There is a natural notion of equivalence between representations of G̃— see e.g. [20,
§2.3]. This is the obvious one; beware however that, even if π̃ is essential, the class
of π does not determine the class of π̃ since the intertwiner A is only determined up
to a root of unity. We have a corresponding notion of a (g, K̃)-module.

If π̃ is unitary and f ∈ C∞c (G̃) we set

π̃(f) =

∫
G̃

f(y)π̃(y) dy :=

∫
G

f(xo σ)π̃(xo σ) dx.

It follows from [20, Lem. 2.3.2] that π̃(f) is of trace class. Moreover: trace π̃(f) = 0

unless π̃ is essential. In the following, we denote by Π(G̃) the set of irreducible unitary
representations π of G (considered up to equivalence) that can be extended to some
(twisted) representation π̃ of G̃. Note that the extension is not unique.

2.3. Twisted trace formula (in the cocompact case). — Let Γ be a cocompact lattice
of G that is σ-stable. Associated to Γ is the (right) regular representation R̃Γ of G̃
on L2(Γ\G), where the restriction RΓ of R̃Γ is the usual regular representation in
L2(Γ\G) and

(R̃Γ(σ))(f)(Γx) = f(Γσ(x)).

Note that

(R̃Γ(σ)RΓ(g))(f)(Γx) = f(Γσ(x)g) = (RΓ(σ(g))R̃Γ(σ))(f)(Γx).

Given δ ∈ G̃ we denote by Gδ its centralizer in G (for the (twisted) action by
conjugation ofG on G̃). Corresponding to Γ is a (non-empty) discrete twisted subspace
Γ̃ ⊂ G̃. Given δ ∈ Γ̃ we denote by {δ} its Γ-conjugacy class (where here again Γ acts
by (twisted) conjugation on Γ̃).

Let f ∈ C∞c (G̃). The twisted trace formula is obtained by computing the trace of
R̃Γ(f) in two different ways. It takes the following form (the LHS is the spectral side
and the RHS is the geometric side):

(2.3.1)
∑

π∈Π(G̃)

m(π, π̃,Γ) trace π̃(f) =
∑
{δ}

vol(Γδ\Gδ)
∫
Gδ\G

f(x−1δx) dẋ.

J.É.P. — M., 2017, tome 4



Twisted limit formula for torsion and cyclic base change 441

Here, π̃ is some extension of π to a twisted representation of G̃ and

m(π, π̃,Γ) =
∑

π̃′|G=π

λ(π̃′, π̃)m(π̃′)

= trace
(
σ|HomG(π̃, L2(Γ\G))

)
,

where m(π̃′) is the multiplicity of π̃′ in R̃Γ and λ(π̃′, π̃) ∈ C× is the scalar such that,
for all δ ∈ G̃, we have π̃′(δ) = λ(π̃′, π̃)π̃(δ).(2) Note that λ(π̃′, π̃) is in fact a p-th root
of unity.

The definition of trace π̃(f) depends on a choice of a Haar measure dx on G. On
the geometric side the volumes vol(Γδ\Gδ) depend on choices of Haar measures on
the groups Gδ. We will make precise choices later on. For the moment we just note
that the measure dẋ on the quotient Gδ\G is normalized by:∫

G

φ(x) dx =

∫
Gδ\G

∫
Gδ
φ(gx) dg dẋ.

2.4. Galois cohomology groups H1(σ,Γ). — Let Z1(σ,Γ) = {δ ∈ Γ̃ : δp = 1}; it
is invariant by conjugation by Γ. We denote by H1(σ,Γ) the quotient of Z1(σ,Γ) by
the equivalence relation defined by conjugation by elements of Γ. We have similar
definitions when Γ is replaced by G.

We will assume that

(2.4.1) H1(σ,G) = {1}.

Note that the setH1(σ,G) is the same as the nonabelian cohomology groupH1(〈σ〉,Γ)

or H1(E/R,Γ) if E/R is a cyclic Galois extension with Galois group generated by
σ ∈ Aut(E/R).

If E = Rp, Condition (2.4.1) is always satisfied. Indeed: in that case G = G(R)p

and an element
(g1, . . . , gp) o σ ∈ G̃

belongs to Z1(σ,G) if and only if g1g2 · · · gp = e. But then there is an equality

σ(g1, g1g2, . . . , g1 · · · gp)−1(g1, g1g2, . . . , g1 · · · gp) = (g1, . . . , gp).

Equivalently, (g1, . . . , gp) o σ is conjugated to σ in G̃ by some element in G.
We furthermore note that H1(C/R,SLn(C)) = H1(C/R,Spn(C)) = {1}, see

e.g. [32, Chap.X]. Therefore, Condition (2.4.1) holds if G is a product of factors SLn
or Spn or of factors whose group of real points is isomorphic to a complex Lie group
viewed as a real Lie group. Note however that H1(C/R,SOp,q(C)) is not trivial; it
is in bijective correspondence with the set of non degenerate real quadratic forms
that are equivalent to the standard quadratic form of signature (p, q) over C. We
emphasize that, in the introduction, we have assumed Condition (2.4.1) to hold.

(2)Note that m(π, π̃,Γ) trace π̃(f) does not depend on the chosen particular extension π̃ but only
on π.

J.É.P. — M., 2017, tome 4
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2.5. — Under assumption (2.4.1), the map

H1(σ,Γ) −→ H1(σ,G)

necessarily has trivial image. In other words: if δ represents a class in H1(σ,Γ) then δ
is conjugate to σ by some element of G. In particular, we have

vol(Γδ\Gδ) = vol(Γσ\Gσ) and
∫
Gδ\G

f(x−1δx) dẋ =

∫
Gσ\G

f(x−1σx) dẋ.

We may therefore write the geometric side of the twisted trace formula as:

(2.5.1) |H1(σ,Γ)| vol(Γσ\Gσ)

∫
Gσ\G

f(x−1σx) dẋ

+
∑
{δ}

δ/∈Z1(σ,Γ)

vol(Γδ\Gδ)
∫
Gδ\G

f(x−1δx) dẋ.

2.6. Finite dimensional representations of G̃. — Note that the complexification
of G may be identified with the complex points of ResE/R G, i.e., G(C)p. Every com-
plex finite dimensional σ-stable irreducible representation (ρ̃, F ) of G̃ can therefore be
realized in a space F = F⊗p0 , where (ρ0, F0) is an irreducible complex linear represen-
tation of G(C). The action of G is defined by the tensor product action ρ⊗p0 if E = Rp

and by ⊗p/2i=1(ρ0 ⊗ ρ0), where ρ0 is obtained by composing the complex conjugation
in G(C) by ρ0, if E = Cp/2. In both cases, we choose the action of σ on F = F⊗p0 to
be the cyclic permutation A : x1 ⊗ · · · ⊗ xp 7→ xp ⊗ x1 ⊗ · · · ⊗ xp−1. Note that

trace(σ | F ) = dimF0.

Let g be the Lie algebra of G. Say that (ρ̃, F ) is strongly twisted acyclic if there
exists a positive constant η depending only on F such that: for every irreducible
unitary (g, K̃)-module V for which

trace(σ | Cj(g(C),K, V ⊗ F )) 6= 0

for some j 6 dimG(C), the inequality

ΛF − ΛV > η

is satisfied. Here, ΛF , resp. ΛV , is the scalar by which the Casimir acts on F , resp. V .
Write ν for the highest weight of F0. The following lemma can be proven analo-

gously to [3, Lem. 4.1].

2.7. Lemma. — Suppose that ν is not preserved by the Cartan involution θ. Then ρ̃

is strongly twisted acyclic.

3. Lefschetz number and twisted analytic torsion

Let G, σ and Γ be as in Section 2.3 and let (ρ̃, F ) be a complex finite dimensional
σ-stable irreducible representation of G̃. We denote by g the Lie algebra of G.

J.É.P. — M., 2017, tome 4
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3.1. Twisted (g(C),K)-cohomology and Lefschetz number. — We can define an ac-
tion of σ on each cohomology group Hi(Γ\X,F ) and thus define a Lefschetz number

Lef(σ,Γ, F ) =
∑
i

(−1)i trace(σ | Hi(Γ\X,F )).

If V is a (g, K̃)-module, we have a natural action of σ on the space of (g,K)-
cochains C•(g(C),K, V ) which induces an action on the quotient H•(g(C),K, V ). We
denote by

trace(σ | H•(g,K, V ))

the trace of the corresponding operator. We then define the Lefschetz number of V by

Lef(σ, V ) =
∑
i

(−1)i trace(σ | Hi(g,K, V )).

If F is a finite dimensional representation of G̃ then F ⊗ V is still a (g, K̃)-module;
we denote by Lef(σ, F, V ) its Lefschetz number.

Labesse [19, §7] proves that there exists a compactly supported function Lρ ∈
C∞c (G̃) such that for every essential admissible representation (π̃, V ) of G̃ one has

Lef(σ, F, V ) = trace π̃(Lρ).

The function Lρ is called the Lefschetz function for σ and (ρ̃, F ).
We then have:

trace R̃Γ(Lρ) =
∑
i

(−1)i trace(σ | Hi(Γ\X,F ))

= Lef(σ,Γ, F ).

(3.1.1)

3.2. Twisted heat kernels. — Let

Hρ,i
t ∈

[
C∞(G)⊗ End(∧i(g/k)∗ ⊗ F )

]K×K
be the heat kernel for L2-forms of degree i with values in the bundle associated to
(ρ, F ). Note that we have a natural action of σ on ∧i(g/k)∗⊗F ; we denote by Aσ the
corresponding linear operator and let

hρ,i,σt : xo σ 7−→ trace(Hρ,i
t (x) ◦Aσ).

Eventually we shall apply the twisted trace formula to hρ,i,σt . The heat kernel Hρ,i
t

is not compactly supported. However, it follows from [2, Prop. 2.4] that it belongs to
all Harish-Chandra Schwartz spaces C q ⊗ End(∧i(g/k)∗ ⊗ F ), q > 0. This is enough
to ensure absolute convergence of both sides of the twisted trace formula.

3.3. Lemma. — Let π̃ be an essential admissible representation of G̃ and let V be its
associated (g, K̃)-module. We have:

trace π̃(hρ,i,σt ) = et(ΛV −ΛF ) trace(σ|[∧i(g/k)∗ ⊗ F ⊗ V ]K).
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Proof. — It follows from the K × K equivariance of Hρ,i
t and Kuga’s Lemma that,

relative to the splitting

∧i(g/k)∗ ⊗ F ⊗ V = [∧i(g/k)∗ ⊗ F ⊗ V ]K ⊕
(
[∧i(g/k)∗ ⊗ F ⊗ V ]K

)⊥
,

we have:

π(Hρ,i
t ) =

(
et(ΛV −ΛF )Id 0

0 0

)
.

We furthermore note that this decomposition is σ-invariant since K is σ-stable. We
conclude that we have:

π̃(Hρ,i
t ) :=

∫
G

(π(g) ◦A)⊗ (Hρ,i
t (g) ◦Aσ) dg =

(
et(ΛV −ΛF )Aσ ⊗A 0

0 0

)
.

Here, π is the restriction of π̃ to G and A is the intertwining operator between π and
π ◦ σ that determines π̃.

Now let {ξn}n∈N and {ej}j=1,...,m be orthonormal bases of V and ∧i(g/k)∗ ⊗ F ,
respectively. Then we have:

trace π̃(Hρ,i
t ) =

∞∑
n=1

m∑
j=1

〈π̃(Hρ,i
t )(ξn ⊗ ej), (ξn ⊗ ej)〉

=

∞∑
n=1

m∑
j=1

∫
G

〈(π(g) ◦A)ξn, ξn〉〈(Hρ,i
t (g) ◦Aσ)ej , ej〉 dg

=

∞∑
n=1

∫
G

〈(π(g) ◦A)ξn, ξn〉hρ,i,σt (g o σ) dg

= trace π̃(hρ,i,σt ).

The lemma follows. �

Denoting by H0
t ∈

[
C∞(G)⊗ End(∧0(g/k)∗)

]K×K the heat kernel for L2-functions
on X, the following proposition follows from [27, Prop. 5.3] and the definition of strong
twisted acyclicity.

3.4. Proposition. — Assume that (ρ̃, F ) is strongly twisted acyclic. Then there ex-
ist positive constants η and C such that for every x ∈ G, t ∈ (0,+∞) and i ∈
{0, . . . ,dimX}, one has:

|hρ,i,σt (xo σ)| 6 Ce−ηtH0
t (x).

We define the kernel kρ,σt by

kρ,σt (g) =
∑
i

(−1)iihρ,i,σt (g);

it defines a function in C q(G̃), for all q > 0.
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3.5. Twisted analytic torsion. — The twisted analytic torsion TσΓ\X(ρ) is then defi-
ned by

(3.5.1) log TσΓ\X(ρ)

=
1

2

d

ds

∣∣∣
s=0

(
1

Γ(s)

∫ ∞
0

ts−1

[
trace R̃Γ(kρ,σt )−

∑
i

(−1)ii · trace(σ | Hi(Γ\X,F ))

]
dt

)
.

Note that if (ρ̃, F ) is strongly twisted acyclic each trace(σ | Hi(Γ\X,F )) is trivial.
From now on we will assume that (ρ̃, F ) is strongly twisted acyclic. In particular, we
have:

log TσΓ\X(ρ) =
1

2

d

ds

∣∣∣
s=0

(
1

Γ(s)

∫ ∞
0

ts−1 trace R̃Γ(kρ,σt )dt

)
.

3.6. Twisted (g,K)-torsion. — If V is a (g, K̃)-module and F is a finite dimensional
representation of G̃ then F ⊗ V is still a (g, K̃)-module; we define the twisted (g,K)-
torsion of F ⊗ V by

Lef ′(σ, F, V ) =
∑
i

(−1)ii trace(σ | Ci(g,K, F ⊗ V ))

=
∑
i

(−1)ii trace(σ | [∧i(g/k)∗ ⊗ F ⊗ V ]K).

Remark. — We should explain the notation Lef ′. Given a group G and a G-vector
space V , we denote by det[1 − V ] the virtual G-representation (that is to say,
element of K0 of the category of G-representations) defined by the alternating sum∑
i(−1)i[∧iV ] of exterior powers. This is multiplicative in an evident sense:

(3.6.1) det[1− V ⊕W ] = det[1− V ]⊗ det[1−W ].

Now given g ∈ G, the derivative d
dt

∣∣
t=1

det(t1−g) is equal to the character of g acting
on
∑
i(−1)ii ∧i V . We therefore define det′[1− V ] =

∑
i(−1)ii ∧i V .

Considering the virtual K̃-representation det′[1− (g/k)∗] we have:

(3.6.2) Lef ′(σ, F, V ) = trace
(
σ | [det′[1− (g/k)∗]⊗ F ⊗ V ]

K
)
.

This explains our notation Lef ′ for the twisted (g,K)-torsion.
For future reference we note that we have:

(3.6.3) det′[1− V ⊕W ] = det′[1− V ]⊗ det[1−W ]⊕ det[1− V ]⊗ det′[1−W ].

We also note that Labesse’s proof of the existence of Lρ can easily be modified to
get a function L′ρ ∈ C∞c (G̃) such that for every essential admissible representation
(π̃, V ) of G̃ one has

Lef ′(σ, F, V ) = trace π̃(L′ρ).
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3.7. — It follows from Lemma 3.3 that the spectral side of the twisted trace formula
evaluated in kρ,σt is

(3.7.1) trace R̃Γ(kρ,σt ) =
∑

π∈Π(G̃)

m(π, π̃,Γ) Lef ′(σ, F, Vπ) et(Λπ−ΛF ),

where Vπ is the (g, K̃)-module associated to the extension π̃.

4. L2-Lefschetz number, L2-torsion and limit formulas

Let G, σ and Γ be as in Section 2.3 and let (ρ̃, F ) be as in the preceding sections.
Suppose that (ρ̃, F ) is strongly twisted acyclic. Let f ∈ C∞c (G̃).

4.1. — Given g ∈ G we define r(g) = dist(gK, eK) with respect to the Riemannian
symmetric distance of X = G/K. We extend r to Go 〈σ〉 by setting r(go σ) = r(g).
Note that r(gg′) 6 r(g) + r(g′).

Now, given x ∈ G we set `(x) = inf{r(gxg−1) : g ∈ G}; it only depends on the
conjugacy class of x in G. Recall that the injectivity radius of Γ,

rΓ =
1

2
inf{`(γ) : γ ∈ Γ− {e}},

is strictly positive. If δ ∈ Γ̃ with δ /∈ Z1(σ,Γ), then δp ∈ Γ − {1} and therefore
`(δp) > 2rΓ. In particular, for any x ∈ G we have:

(4.1.1) 2rΓ 6 `(δ
p) 6 r(xδpx−1) = r((xδx−1) · · · (xδx−1)) 6 p · r(xδx−1).

4.2. Lemma. — There exist constants c1, c2 > 0, depending only on G, such that for
any x ∈ G, we have:

N(x;R) :=
∣∣{δ ∈ Γ̃ : δ /∈ Z1(σ,Γ) and r(xδx−1) 6 R

}∣∣ 6 c1pdr−dΓ ec2R,

where d is the dimension of X.

Proof. — It follows from (4.1.1) that it suffices to prove the lemma for R > 2rΓ/p.
Set ε := rΓ/p. By definition of r(xδx−1) we have B(γ(σ(x)), ε) ⊂ B(x,R+ ε), for all
δ = γ o σ ∈ Γ̃ with δ /∈ Z1(σ,Γ) and r(xδx−1) 6 R. Now, since ε < rΓ, the balls
B(γ(σ(x)), ε), γ ∈ Γ, are all disjoint of the same volume. We conclude that

N(x;R) · volB(σ(x), ε) 6 volB(x,R+ ε) 6 volB(x, 2R).

We conclude using standard estimates on volumes of balls (see e.g. [1, Lem. 7.21] for
more details). �

4.3. — Now, let {Γn} be a normal chain with
⋂
n Γn = {1} or more generally a family

of finite index normal subgroups such that for every 1 6= γ ∈ Γ, the set {n : γ ∈ Γn}
is finite. We have:

4.4. Lemma. — Let δ /∈ Z1(σ,Γ). There exists a constant nδ such that for every
n > nδ,

|{γ ∈ Γn\Γ : γδγ−1 ∈ Γ̃n}| = 0.
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Proof. — Recall that for h ∈ Γ, we define

Norm(h) := hσ(h) · · ·σp−1(h).

Writing δ = ho σ, the condition δ /∈ Z1(σ,Γ) is equivalent to Norm(h) 6= 1. Suppose
that γδγ−1 ∈ Γ̃n for some γ ∈ Γn\Γ. Equivalently, ε := γhσ(γ−1) ∈ Γn. Therefore,

Norm(ε) = γNorm(h)γ−1 ∈ Γn.

Since Γn is normal in Γ, this implies that Norm(h) ∈ Γn. Since Norm(h) 6= 1, it
follows that Norm(h) ∈ Γn for at most finitely many n. Therefore,∣∣{γ ∈ Γn\Γ : γδγ−1 ∈ Γ̃n

}∣∣ = 0

for all but finitely many n. �

We will also need the following:

4.5. Lemma. — There is a uniform upper bound
|{γ ∈ Γn\Γ : γδγ−1 ∈ Γ̃n}|

[Γσ : Γσn] · |H1(σ,Γn)|
6 1.

Proof. — Write δ = hoσ. Let γ0 ∈ Γn\Γ satisfy γ0σγ
−1
0 ∈ Γ̃n. Equivalently, we have

γ0hσ(γ−1
0 ) ∈ Γn. Then we have

hσ(γ−1
0 )γ0 ∈ γ−1

0 Γnγ0 = Γn ⇐⇒ hΓn = γ−1
0 σ(γ0)Γn.

Suppose γ ∈ Γn\Γ is another element satisfying γδγ−1 ∈ Γ̃n. Then similarly hΓn =

γ−1σ(γ), from which it follows that σ(γγ−1
0 ) = γγ−1

0 . Conversely, if γ = gγ0 for some
g ∈ (Γn\Γ)

σ, then γhσ(γ−1) ∈ Γn. Therefore,

|{γ ∈ Γn\Γ : γδγ−1 ∈ Γ̃n}| = | (Γn\Γ)
σ |.

To estimate the size of (Γn\Γ)
σ, we use the long exact sequence of pointed sets

1 −→ Γσn −→ Γσ −→ (Γn\Γ)
σ d−−→ H1(σ,Γn) −→ H1(σ,Γ).

The fibers of the connecting map d are orbits of Γσ acting on (Γn\Γ)
σ [32, I, §5.4,

Cor. 1]. Because Γn is normal in Γ, the action of Γσ on (Γn\Γ)σ factors through Γσn\Γσ.
Therefore, all fibers of d have size at most #(Γσn\Γσ). Also,

#image(d) = # ker[H1(σ,Γn) −→ H1(σ,Γ)]

6 #H1(σ,Γn).

It follows that
|(Γn\Γ)σ|

[Γσ : Γσn] · |H1(σ,Γn)|
6

#image(d) ·#largest fiber
[Γσ : Γσn] · |H1(σ,Γn)|

6
#H1(σ,Γn) ·#(Γσn\Γσ)

[Γσ : Γσn] · |H1(σ,Γn)|
6 1. �

We next give a typical example of a sequence of σ-stable normal subgroups Γn C Γ

satisfying the hypotheses of Section 4.3.
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Example. — Let G/OF,S be a semisimple group, where OF,S denotes the ring
of S-integers in a number field F . Let E/F be a cyclic Galois extension with
Gal(E/F ) = 〈σ〉. We fix an integral structure on G so we may speak of G(OF )

and G(OE).
Fix a finite index, σ-stable subgroup Γ ⊂ G(OE). Let n ⊂ OF be an ideal. Let

(4.5.1) Γn := {γ ∈ Γ : γ ≡ 1 mod nOE}.

Every Γn ⊂ G = G(ER) is a Galois-stable lattice. If n varies through any sequence F

of ideals satisfying Norm(n) → ∞, then {Γn}n∈F satisfies the hypothesis of Sec-
tion 4.3.

4.6. Proposition. — Let f ∈ C∞c (G̃) and let {Γn} be a sequence of finite index
σ-stable subgroups of Γ that satisfies the hypothesis of Section 4.3. Then

trace R̃Γn(f)

|H1(σ,Γn)| vol(Γσn\Gσ)
−→

∫
Gσ\G

f(x−1σx) dẋ.

Proof. — It follows from (2.5.1) that we have:

trace R̃Γn(f) = |H1(σ,Γn)| vol(Γσn\Gσ)

∫
Gσ\G

f(x−1σx) dẋ

+
∑
{δ}Γn

δ/∈Z1(σ,Γn)

vol(Γδn\Gδ)
∫
Gδ\G

f(x−1δx) dẋ

= |H1(σ,Γn)| vol(Γσn\Gσ)

∫
Gσ\G

f(x−1σx) dẋ

+
∑
{δ}Γ

δ/∈Z1(σ,Γ)

cΓn(δ) vol(Γδ\Gδ)
∫
Gδ\G

f(x−1δx) dẋ,

where
cΓn(δ) =

∣∣{γ ∈ Γn\Γ : γδγ−1 ∈ Γ̃n
}∣∣.

Since f is compactly supported, the last sum above is finite: choosing R > 0 so that
the support of f is contained in

BR = {g o σ ∈ G̃ : r(g) 6 R},

we may restrict the sum on the right side of the above equation to the δ’s that are
contained in BR. It follows from Lemma 4.2 that the corresponding sum is finite. We
conclude the proof of Proposition 4.6 by applying Lemma 4.4 to the finitely many δ’s
appearing in this finite sum. �

Remark. — In the untwisted case, the condition
|{γ ∈ Γn\Γ : γδγ−1 ∈ Γn}|

[Γ : Γn]
−→ 0

is equivalent to the BS-convergence of the compact quotients Γn\X towards the sym-
metric space X. See [1].
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4.7. L2-Lefschetz number. — Proposition 4.6 motivates the following definition of
the L2-Lefschetz number associated to the triple (G, σ, ρ):

Lef(2)(σ,X, F ) =

∫
Gσ\G

Lρ(x
−1σx) dẋ.

4.8. Corollary. — Let {Γn} be a normal chain of finite index σ-stable subgroups of Γ

that satisfies the hypothesis of Section 4.3. Then we have:
Lef(σ,Γn, F )

|H1(σ,Γn)| vol(Γσn\Gσ)
−→ Lef(2)(σ,X, F ).

Proof. — Apply Proposition 4.6 to the Lefschetz function Lρ. �

4.9. Twisted L2-torsion

Analogously we define the twisted L2-torsion T (2)σ
Γ\X (ρ)∈R+ by

(4.9.1) log T
(2)σ
Γ\X (ρ) = |H1(σ,Γ)| vol(Γσ\Gσ)t

(2)σ
X (ρ),

where t(2)σ
X (ρ) — which depends only on the symmetric space X, the involution σ,

and the finite dimensional representation ρ — is defined by

(4.9.2) t
(2)σ
X (ρ) =

1

2

d

ds

∣∣∣
s=0

(
1

Γ(s)

∫ ∞
0

∫
Gσ\G

kρ,σt (x−1σx) dẋ ts−1dt

)
.

Note that kρ,σt is not compactly supported and that we have to prove that the
RHS of (4.9.2) is indeed well-defined. Recall however that kρ,σt belongs to C q(G̃).
Lemma 4.2 therefore implies that the series∑

δ∈Γ̃

kρ,σt (x−1δx)

converges absolutely and locally uniformly. This implies that the integral of this series
along a (compact) fundamental domain D for the action of Γ on G is absolutely
convergent. Restricting the sum to the δ’s that belong to the (twisted) Γ-conjugacy
class of σ we conclude in particular that, for every positive t, the integral∫

Gσ\G
kρ,σt (x−1σx) dẋ =

1

vol(Γσ\Gσ)

∫
D

∑
δ∈{σ}

kρ,σt (x−1δx) dx

is absolutely convergent. We postpone the proof of the fact that (4.9.2) is indeed
well-defined until sections 6 and 7 where we will explicitly compute t(2)σ

X (ρ). In the
course of the computations we will also prove the following lemma.

4.10. Lemma. — There exist constants C, c > 0 such that

(4.10.1)
∣∣∣∣∫
Gσ\G

kρ,σt (x−1σx) dẋ

∣∣∣∣ 6 Ce−ct, t > 1.

Taking this lemma for granted, we conclude this section by the proof of the following
‘limit multiplicity theorem’.
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4.11. Theorem. — Assume that (ρ̃, F ) is strongly twisted acyclic. Let {Γn} be a se-
quence of finite index σ-stable subgroups of Γ that satisfies the hypothesis of Sec-
tion 4.3. Then

log TσΓn\X(ρ)

|H1(σ,Γn)| vol(Γσn\Gσ)
−→ t

(2)σ
X (ρ).

Proof. — Since kρ,σt ∈ C q(G̃), for all q > 0, we still have:

trace R̃Γn(kρ,σt ) = |H1(σ,Γn)| vol(Γσn\Gσ)

∫
Gσ\G

kρ,σt (x−1σx) dẋ

+
∑
{δ}Γ

δ/∈Z1(σ,Γ)

cΓn(δ) vol(Γδ\Gδ)
∫
Gδ\G

kρ,σt (x−1δx) dẋ.

Note that at this point it is not clear that the sum on the right (absolutely) converges.
This is however indeed the case: it first follows from (4.1.1) that if δ /∈ Z1(σ,Γ) and
x ∈ G we have r(xδx−1) > 2rΓ/p. Now, recall from [3, Lem. 3.8] or [27, Prop. 3.1 and
(3.14)] that we have, for t ∈ (0, 1],

(4.11.1) |kρ,σt (x−1δx)| 6 Ct−d exp
(
−cr(xδx

−1)2

t

)
6 Ce−c

′/t exp
(
−c′′r(xδx−1)2

)
.

(Here, c′ depends on rΓ.) From this and Lemma 4.2, it follows that the geometric
side of the trace formula evaluated in kρ,σt indeed absolutely converges. Moreover, it
follows from (4.11.1) together with the uniform bound of Lemma 4.5 that we have:

(4.11.2) trace R̃Γn(kρ,σt )

|H1(σ,Γn)| vol(Γσn\Gσ)
=

∫
Gσ\G

kρ,σt (x−1σx) dẋ+O(e−c
′/t) (0 < t 6 1),

where the implied constant in the O(e−c
′/t) is uniform in n. We conclude that∫ 1

0

ts−1

(
trace R̃Γn(kρ,σt )

|H1(σ,Γn)| vol(Γσn\Gσ)
−
∫
Gσ\G

kρ,σt (x−1σx) dẋ

)
dt

is holomorphic is s in a half-plane containing 0, so that

1

2

d

ds

∣∣∣
s=0

1

Γ(s)

∫ +∞

0

ts−1

(
trace R̃Γn(kρ,σt )

|H1(σ,Γn)| vol(Γσn\Gσ)
−
∫
Gσ\G

kρ,σt (x−1σx) dẋ

)
dt

=

∫ +∞

0

(
trace R̃Γn(kρ,σt )

|H1(σ,Γn)| vol(Γσn\Gσ)
−
∫
Gσ\G

kρ,σt (x−1σx) dẋ

)
dt

t
.

Now it follows from Proposition 3.4 that there exists some positive η such that
|kρ,σt (x o σ)| � e−ηtH0

t (x). In particular, |kρ,σt (x o σ)| � e−ηtH0
1 (x) if t > 1 and

we have:
| trace R̃Γn(kρ,σt )|

|H1(σ,Γn)| vol(Γσn\Gσ)
� e−ηt

∑
{δ}Γ

∫
Gδ\G

H0
1 (x−σδx) dẋ.

The sum on the right-hand-side splits into an infinite sum over the δ’s not in Z1(σ,Γ)

and the finite sum of the remaining terms. By (4.11.1) the infinite sum is absolutely
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convergent and independent of t and n. We use Lemma 4.10 to bound the finite sum.
And we get:

| trace R̃Γn(kρ,σt )|
|H1(σ,Γn)| vol(Γσn\Gσ)

� e−ηt,

where the implicit constant does not depend on n. Using Lemma 4.10, we conclude
that both∫ +∞

1

trace R̃Γn(kρ,σt )

|H1(σ,Γn)| vol(Γσn\Gσ)

dt

t
and

∫ +∞

1

∫
Gσ\G

kρ,σt (x−1σx) dẋ
dt

t

are absolutely convergent uniformly in n.
It follows from Equation (4.11.2) and the last paragraph (the former for 0 < t 6 1

and the latter for t > 1) that

trace R̃Γn(kρ,σt )

|H1(σ,Γn)| vol(Γσn\Gσ)
−
∫
Gσ\G

kρ,σt (x−1σx) dẋ

is bounded by a function of t which does not depend on n and is absolutely integrable
on (0,+∞). From this and Lebesgue’s dominated convergence theorem, we conclude
that Proposition 4.6 implies Theorem 4.11. �

5. Computations on a product

In this section we compute the L2-Lefschetz numbers and twisted L2-torsion and
in particular prove Lemma 4.10 in the case where E = Rp (the product case).

Here, we suppose that E = Rp. Then G is the p-fold product of G(R) and σ cycli-
cally permutes the factors of G. We will abusively denote by Gσ the group G(R). Let
(ρ0, F0) be an irreducible complex linear representation of G(C). We denote by (ρ̃, F )

the corresponding complex finite dimensional σ-stable irreducible representation of G̃.
Recall that F = F⊗p0 , that G acts by the tensor product representation ρ⊗p0 and that σ
acts by the cyclic permutation A : x1 ⊗ · · · ⊗ xp 7→ xp ⊗ x1 ⊗ · · · ⊗ xp−1. We finally
let X and Xσ be the symmetric spaces corresponding to G and Gσ respectively, so
X = (Xσ)p.

5.1. Heat kernels of a product. — The heat kernels Hρ,j
t decompose as

(5.1.1) Hρ,j
t (g1, · · · , gp) =

∑
a1+···+ap=j

Hρ0,a1

t (g1)⊗ · · · ⊗Hρ0,ap
t (gp).

Now the twisted orbital integral of Hρ,j
t associated to the class of the identity element

is given by (∫
Gσ\G

Hρ,j
t (g−σg) dg

)
◦Aσ.

But becauseHρ,j
t (g−σg) preserves all of the summands in the decomposition of (5.1.1)

and σ maps the (a1, . . . , ap)-summand to the (ap, a1, . . . , ap−1)-summand, only those
summands for which j = pa and a1 = · · · = ap = a can contribute to the trace of the
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above twisted orbital integral. Furthermore, by a computation identical to that done
for scalar-valued functions in [21, §8], we see that(∫

Gσ\G
Hρ0,a
t (g−1

p g1)⊗· · ·⊗Hρ0,a
t (g−1

p−1gp) dg

)
◦Aσ = (−1)a

2(p−1)Hρ0,a
t ∗· · ·∗Hρ0,a

t (e).

This implies that∫
Gσ\G

hρ,pat (x−1σx) dẋ = trace

[(∫
Gσ\G

Hρ0,a
t (g−1

p g1)⊗ · · · ⊗Hρ0,a
t (g−1

p−1gp) dġ

)
◦Aσ

]
= (−1)a

2(p−1) trace (Hρ0,a
t ∗ · · · ∗Hρ0,a

t (e))

= (−1)a
2(p−1) trace

(
Hρ0,a
pt (e)

)
= (−1)a

2(p−1)hρ0,a
pt (e).

Here, Hρ0,a
pt is an untwisted heat kernel on Xσ. Lemma 4.10 therefore follows from

standard estimates (see e.g. [3]). Moreover, computations of the L2-Lefschetz number
and of the twisted L2-torsion immediately follow from the above explicit computation.

5.2. Theorem (L2-Lefschetz number of a product). — We have:

Lef(2)(σ,X, F ) =

(−1)
1
2 dimXσ (dimF0)

χ(Xσ
u )

vol(Xσ
u )

if δ(Gσ) = 0,

0 if not.

Here, Xσ
u is the compact dual of Xσ whose metric is normalized such that multipli-

cation by i becomes an isometry TeKσ (Xσ) ∼= p→ ip ∼= TeKσ (Xσ
u ).

Proof. — First note(3) that

Lef(2)(σ,X, F ) = lim
t→+∞

∫
Gσ\G

kρt (x−1σx) dẋ

= lim
t→+∞

∑
a

(−1)pa
∫
Gσ\G

hρ,pat (x−1σx) dẋ

= lim
t→+∞

∑
a

(−1)ahρ0,a
pt (e).

The computation then reduces to the untwisted case for which we refer to [28]. �

The computation of the twisted L2-torsion similarly reduces to the untwisted case:

5.3. Theorem (Twisted L2-torsion of a product). — We have:

t
(2)σ
X (ρ) = p · t(2)

Xσ (ρ).

(3)Beware that ρ is not assumed to be strongly acyclic here!
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6. Computations in the case E = C

In this section we compute the L2-Lefschetz numbers and twisted L2-torsion and
in particular prove Lemma 4.10 in the case where E = C. The general case easily
reduces to this case and the one of the preceding section.

Throughout this section, E = C. Then G = G(C) is the group of complex points,
σ : G → G is the real involution given by the complex conjugation and Gσ = G(R).
Recall that we fix a choice of Cartan involution θ of G that commutes with σ.

6.1. Irreducible σ-stable tempered representations of G. — Choose θ-stable rep-
resentatives h0

1, . . . , h
0
s of the G(R)-conjugacy classes of Cartan subalgebras in the Lie

algebra g0 of G(R). For each j ∈ {1, . . . , s} we write h0
j = tj ⊕ aj for the decomposi-

tion of h0
j w.r.t. θ, i.e., aj is the split part of h0

j and tj is the compact part of h0
j . We

denote by hj the complexification of h0
j ; note that aj ⊕ itj and tj ⊕ iaj are resp. the

split and compact part of hj .
We now fix some j. To ease notation we will omit the j index. Choose a Borel

subgroup B of G = G(C) containing the torus H which corresponds to hj . Let A
and T be resp. the split and compact tori corresponding to a⊕ it and t⊕ ia. Write µ
for the differential of a character of T and λ for the differential of a character of A.
Note that µ is σ-stable if and only if µ is zero on ia.

Associated to (µ, λ) is a representation

πµ,λ = indGB(µ⊗ λ⊗ 1).

6.2. Proposition (Delorme [14]). — Every irreducible σ-stable tempered representa-
tion of G is equivalent to some πµ,λ as above (for some j) where µ is zero on iaj
and λ is zero on tj and has pure imaginary image.

Note that if λ is zero on tj we may think of λ as a real linear form a → C.
We denote by Iµ,λ the underlying (g,K)-module. It is σ-stable and Delorme [14, §5.3]
defines a particular extension to a (g, K̃)-module, but we won’t follow his convention
here (see Convention I below).

6.3. Computations of the Lefschetz numbers. — If G(R) has no discrete series
Delorme [14, Prop. 7] proves that for any admissible (g, K̃)-module and any finite
dimensional representation (ρ̃, F ) of G̃, we have:

Lef(σ, F, V ) = 0.

Even if G(R) has discrete series, Delorme’s proof — see also [30, Lem. 4.2.3] — shows
that

Lef(σ, F, Iµ,λ) = 0

unless h0 = t is a compact Cartan subalgebra (so that it is the split part of h). In
the latter case λ = 0 (recall that Iµ,λ is assumed to be σ-stable); we will simply
denote by Iµ the (g, K̃)-module Iµ,0. The following proposition — due to Delorme
[14, Th. 2](4) — computes the Lefschetz numbers in the remaining cases. Denote by ρ

(4)Note that Delorme considers σ-invariants rather than traces, this introduces a factor 1/2.
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the half-sum of the roots of h(C) in B.(5) And recall that ν is a highest weight of F
that is dominant with respect to the positive weights defined by B.

6.4. Proposition. — We have:

Lef(σ, F, Iµ) =

{
±2dim t if wµ = 2(ν + ρ)|t (w ∈W ),

0 otherwise.

Here, W is the Weyl group of (g, h) and the sign depends on the chosen extension
of Iµ to a (g, K̃)-module.

Convention I. — In the following we will always assume that the extension of a
σ-discrete Iµ to a (g, K̃)-module is such that that the sign in Proposition 6.4 is
positive. (See [30, §4.2.5] for more details.)

6.5. Computations of the twisted (g,K)-torsion. — Consider an arbitrary irre-
ducible σ-stable tempered representation of G associated to some j and some (µ, λ)

as in Proposition 6.2. Let P be the parabolic subgroup of G whose Levi subgroup
M = 0MAP is the centralizer in G of a. We have B ⊂ P(C) and we may write πµ,λ
as the induced representation

πµ,λ = ind
G(C)
P(C) (π

0M(C)
µ,0 ⊗ λ),

where
π

0M(C)
µ,0 = ind

0M(C)
B∩0M(C)(µ|t ⊗ 0)

is a tempered (σ-discrete) representation of 0M(C) and we think of λ — seen as real
linear form a→ C — as (the differential of) a character of AP (C).

Convention II. — In the following we fix the extension of Iµ,λ to a (g, K̃)-module to
be the one associated to the interwining operator AG = ind

G(C)
P(C) (AM ⊗ 1), where AM

is chosen according to Convention I.
Let KM = K ∩ 0M(C). Since σ stabilizes 0M(C), µ, etc. it follows from Frobenius

reciprocity and (3.6.2) that we have:

(6.5.1) Lef ′(σ, F, Iµ,λ) = trace
(
σ |
[
det′[1− (g/k)∗]⊗ F ⊗ π

0M(C)
µ,0

]KM)
.

Write
g/k = 0m/kM ⊕ a⊕ n.

It follows from (3.6.3) that — as a K̃M -module — we have:

det′[1− (g/k)∗] = det[1− (0m/kM )∗]⊗ det′[1− a∗ ⊕ n∗]

⊕ det′[1− (0m/kM )∗]⊗ det[1− a∗ ⊕ n∗],

with

(6.5.2) det[1− a∗ ⊕ n∗] = det[1− a∗]⊗ det[1− n∗]

(5)Beware not to confuse the half-sum with the finite dimensional representation...
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and

det′[1− a∗ ⊕ n∗] = det[1− n∗]⊗ det′[1− a∗]⊕ det′[1− n∗]⊗ det[1− a∗].

Now two simple lemmas:

6.6. Lemma

(1) We have det[1− a∗] = 0 as a virtual K̃M -module unless aσ = 0.
(2) We have det′[1− a∗] = 0 as a virtual K̃M -module unless dim aσ 6 1.

Proof. — For any δ ∈ K̃M ,

trace(δ|det[1− a∗]) = det(1− δ|a∗), trace(δ|det′[1− a∗]) =
d

dt

∣∣∣
t=1

det(t · 1− δ|a∗),

cf. Section 3.1. Write δ = σk, with k ∈ KM .
For any X ∈ a∗,

δX = σkX = σX

since KM centralizes a∗. Thus,

dim{+1-eigenspace of δ} > dim(a∗)σ.

In particular,
(1) if dim aσ > 0, then

det(1− δ|a∗) = 0.

(2) if dim aσ > 1, then det(t ·1− δ|a∗) vanishes to order at least 2 at t = 1, whence

d

dt

∣∣∣
t=1

det(t · 1− δ|a∗) = 0. �

6.7. Lemma. — Let V be a finite dimensional K̃M -module and τ any admissible
K̃M -module, i.e., a K̃M -module all of whose KM -isotypic subspaces are finite dimen-
sional. Suppose V is virtually trivial. Then [V ⊗ τ ]KM is finite dimensional and

trace(σ|[V ⊗ τ ]KM ) = 0.

Proof. — Finite dimensionality is immediate since τ is admissible. Let ζ be a finite
dimensional subrepresentation of τ such that [V ⊗ τ ]KM = [V ⊗ ζ]KM .

Since KM is compact, taking KM -invariants is an exact functor from the category
of finite dimensional KM -modules to the category of finite dimensional σ-modules.
Virtually trivial K̃M -modules therefore map to virtually trivial σ-modules. Thus,
[V ⊗ ζ]KM is virtually trivial. In particular,

trace(σ|[V ⊗ τ ]KM ) = trace(σ|[V ⊗ ζ]KM ) = 0. �

In particular, we conclude that (6.5.1) is zero unless dim a 6 1. In the following we
compute (6.5.1) in the two remaining cases.
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6.8. Computation of (6.5.1) when dim a = 1. — Assume that dim a = 1. It then
follows from Lemmas 6.6 and 6.7 that

trace(σ | det′[1− (g/k)∗]) = trace(σ | det[1− (0m/kM )∗]⊗ det′[1− a∗ ⊕ n∗]).

We can therefore compute

Lef ′(σ, F,Iµ,λ)

= trace
(
σ |
[
det[1− (0m/kM )∗]⊗ det′[1− a∗ ⊕ n∗]⊗ F ⊗ π

0M(C)
µ,0

]KM)
(6.8.1)

= Lef(σ, det′[1− a∗ ⊕ n∗]⊗ F, I
0M(C)
µ ).

For each w ∈W we let νw be the restriction of w(ρ+ν) to t. Let [WKM \W ] be the
set of w ∈ WU such that νw is dominant as a weight on t (with respect to the roots
of t on kM ), i.e.,

[WKM \W ] = {w ∈W : 〈νw, β〉 > 0 for all β ∈ ∆+(t, kM )}.

This is therefore a set of coset representatives for WKM in W .

6.9. Proposition. — Assume dim a = 1. Then we have:

Lef ′(σ, F, Iµ,λ) =

{
sgn(w)2dim t if µ = 2νw for some w ∈ [WKM \W ],

0 otherwise.

Proof. — We shall apply Proposition 6.4 to the twisted space associated to 0M(C)

to compute (6.8.1). To do so directly, we would need to decompose the virtual repre-
sentation

(6.9.1) det′[1− a∗ ⊕ n∗]⊗ F

into irreducibles. This can be done by hand by reducing to the cases where G is simple
of type SO(p, p) with p odd, or of type SL(3). Instead we note that Proposition 6.4
implies that only the essential σ-stable subrepresentations of (6.9.1) contribute to
the final expression in (6.8.1). We may therefore reduce to considering the virtual
representation

(det′[1− a∗0 ⊕ n∗0]⊗ (det′[1− a∗0 ⊕ n∗0])σ)⊗ (F0 ⊗ Fσ0 )

= (det′[1− a∗0 ⊕ n∗0]⊗ F0)⊗ (det′[1− a∗0 ⊕ n∗0]⊗ F0)σ.

Here, we have realized the K̃M -representations a and n as representations in a0 ⊗ aσ0
and n0 ⊗ nσ0 , resp.

Now, it follows from Proposition 6.4 that Lef(σ, F, Iµ,λ) = 0 unless µ = 2µ0, where
µ0−ρ is the highest weight of a finite dimensional representation of 0M(R). Equation
(6.8.1) therefore implies that Lef ′(σ, F, Iµ,λ) is equal to 2dim t times the number N of
irreducible σ-stable 0M(C)-subrepresentations of det′[1− a∗⊕ n∗]⊗F with the same
infinitesimal character as I2µ0,0. Since det′[1− a∗ ⊕ n∗]⊗ F decomposes as

(det′[1− a∗0 ⊕ n∗0]⊗ F0)⊗ (det′[1− a∗0 ⊕ n∗0]⊗ F0)σ,
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the number N is the number of irreducible 0M(R)-subrepresentations of

det′[1− a∗0 ⊕ n∗0]⊗ F0

with infinitesimal character equal to that of θ0.
Next, we use that, if θ0 denotes the discrete series of 0M(R) with infinitesimal

character µ0 and H0 a finite dimensional representation of 0M(R) of highest weight ν,
then the (untwisted) Euler-Poincaré characteristic

χ(H0, θ0) = dim
[
θ0 ⊗ det[1− (0m(R)/kM,R)∗]⊗H0

]Kσ
M

of the (0m,Kσ
M )-complex of θ0 ⊗ H0 is given by the following formula (see e.g. [28,

Prop. 3.1 & 3.2]):

χ(H0, θ0) =

{
(−1)

1
2 dim(0m(R)/kM,R) if wµ0 = ν + ρ (w ∈WM ),

0 otherwise.

We can extend χ(·, θ0) to any virtual representation. Applying this to

H0 = det′[1− a∗0 ⊕ n∗0]⊗ F0,

we conclude that the number N is equal to

(−1)
1
2 dim(0m(R)/kM,R)χ(det′[1− a∗0 ⊕ n∗0]⊗ F0, θ0).

Now by definition of the Euler-Poincaré characteristic the latter is equal to

(−1)
1
2 dim(0m(R)/kM,R) dim

[
θ0 ⊗ det[1− (0m(R)/kM,R)]⊗ det′[1− a∗0 ⊕ n∗0]⊗ F0

]Kσ
M ,

which, as in (6.8.1) (but in an untwisted setting), is equal to

(−1)
1
2 dim(0m(R)/kM,R)+1 dim

[
Iµ0 ⊗ det′[1− (g(R)/kR)∗]⊗ F0

]Kσ

.

The computation of the latter is made in [3, §5.6]:

dim[Iµ0
⊗ det′[1− (g(R)/kR)∗]⊗ F0]K

σ

=

{
(−1)

1
2 dim(0m(R)/kM,R)+1 sgn(w) if µ = 2νw for some w ∈ [WKM \W ],

0 otherwise.

We conclude that

Lef ′(σ, F, Iµ,λ) = 2dim tN =

{
sgn(w)2dim t if µ = 2νw for some w ∈ [WKM \W ],

0 otherwise.

�

It is natural to introduce the untwisted analogue of Lef ′(σ, F, Iµ,λ). With the nota-
tion of Proposition 6.9 we shall therefore denote by det′(F0, Iµ0

) the dimension

dim[Iµ0
⊗ det′[1− (g(R)/kR)∗]⊗ F0]K

σ

.
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Remarks
(1) The proof above and the transfer of infinitesimal characters under base change

shows that

(twisted heat kernel for F )(2t)

transfer−−−−−→ 2dim t(−1)
1
2 dim(0m(R)/kM,R) × (heat kernel for F0)(t)

for base change C/R.
(2) Note that this base change calculation includes, as a special case, that of a

product G = G′ ×G′. But we’ve worked out separately that

Lef ′(σ, F0 ⊗ F0, π ⊗ π) = 2 det′(F0, π).

There is no contradiction here: if either side is non-zero then dim a = 1, but in that
special case dim a = dim t since the real group is in fact a complex group.

6.10. Computation of (6.5.1) when dim a = 0. — We now assume that dim a = 0 and
follow an observation made by Müller and Pfaff [27]. In that case M = G, KM = K

and πµ,λ = πµ,0 is σ-discrete. Now dim g(C)/k equals 2d, where d is the dimension of
the symmetric space associated to G(R). Note that — as K̃-modules — we have

∧i(g/k)∗ ∼= ∧2d−i(g/k)∗, i = 0, . . . , 2d.

It follows that as K̃-representations we have:

det′[1− (g/k)∗] = ddet[1− (g/k)∗].

This implies that
Lef ′(σ, F, Iµ,0) = d Lef(σ, F, Iµ,0).

Proposition 6.4 therefore implies:

6.11. Proposition. — Let πµ be a σ-discrete representation of G. Then we have:

Lef ′(σ, F, Iµ) =

{
2dim t dim(g0/k0) if wµ = 2(ν + ρ)|t (w ∈W ),

0 otherwise.

6.12. Proof of Lemma 4.10. — If φ is any smooth compactly supported function
on G, Bouaziz [7] shows that

(6.12.1)
∫
Gσ\G

φ(x−1σx) dẋ = φG(e),

where φG ∈ C∞c (G(R)) is the transfer of φ. Now we can use the Plancherel theorem
of Herb and Wolf [16] (as in [30, Prop. 4.2.14]) and get

φG(e) =
∑

π discrete

d(π) traceπ(φG) +

∫
tempered

traceπ(φG)dπ.
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We can group the terms into stable terms since all terms in a L-packet have the
same Plancherel measure [15]. We write πϕ for the sum of the representations in an
L-packet ϕ and dπϕ = dπ for the corresponding measure. We then obtain

φG(e) =
∑

elliptic
L−packets ϕ

d(ϕ) traceπϕ(φG) +

∫
non elliptic

bounded L−packets ϕ

traceπϕ(φG)dπϕ.

Now we use transfer again. Indeed, Clozel [13] shows that if ϕ is a tempered L-packet
and π̃ϕ the sum of the twisted representations of G̃ associated to ϕ by base-change,
we have:

traceπϕ(φG) = trace π̃ϕ(φ).

We conclude:

(6.12.2)
∫
Gσ\G

φ(x−1σx) dẋ

=
∑

elliptic
L−packets ϕ

d(ϕ) trace π̃ϕ(φ) +

∫
non elliptic

bounded L−packets ϕ

trace π̃ϕ(φ)dπϕ.

We want to apply this to the function φ = kρ,σt . To do so we will use

6.13. Lemma. — Equation (6.12.2) holds for functions φ in the Harish-Chandra
Schwartz space.

Proof. — We first note we have already checked (in Section 4.8) that the distribution

φ 7−→
∫
Gσ\G

φ(x−1σx) dẋ

extends continuously to the Harish-Chandra Schwartz space, i.e., it defines a tempered
distribution. Now, for φ compactly supported, Bouaziz [7, Th. 4.3] proves that we have
(recall that we suppose that H1(σ,G) = {1}):

(6.13.1)
∫
Gσ\G

φ(x−1σx) dẋ =

∫
(g∗a/G)σ

(
1

2

∑
τ∈X(f)

Qσ(f, τ) trace Πf,τ (φ)

)
dm(G · f).

We refer to [7] for all undefined notations and simply note that
– the Πf,τ are tempered (twisted) representation, and
– if φ belongs to the Harish-Chandra Schwartz space, the (twisted) characters

Θf,τ (φ) = trace Πf,τ (φ)

define rapidly decreasing functions of f .
Bouaziz does not explicitly compute the function Qσ(f, τ) but proves however that

it grows at most polynomially in f . It therefore follows that the distribution defined
by the right hand side of (6.13.1) also extends continuously to the Harish-Chandra
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Schwartz space.(6) We conclude that (6.13.1) still holds when φ belongs to the Harish-
Chandra Schwartz space.

We may now group the characters Θf,τ into finite packets to get (all) stable tem-
pered characters, as in [7, §7.3] and denoted Θ̃λ there. Then the right hand side of
(6.13.1) becomes∑

a∈Car(g0)/G0

2−
1
2 (dimGσ+rankGσ)|W (G, a)|−1

∫
a∗
pσ,σ(λ)Πσ

g0(λ)Θ̃λ(φ)dηa(λ).

Here again, we refer to [7] for notations. Then [7, Eq. (3), (4), (5) and (6) p. 287] imply
that the right hand side of (6.13.1) is equal to∑

a∈Car(g0)/G0

|W (G, a)|−1

∫
a∗
p1,1(λ)Πg0/a(λ)Θ̃2λ(φ)dηa(λ).

Here, the stable character Θ̃2λ is the transfer of the character of a tempered packet,
see [7, 7.3(a)]) that is parametrized by λ there. Finally in this parametrization the
measure against which we integrate Θ̃2λ(φ) can be identified with the Plancherel
measure (see the very beginning of the proof of [7, Th. 7.4]) and we conclude that
(6.12.2) extends to the Harish-Chandra Schwartz space. �

We can now conclude the proof of Lemma 4.10. It follows from Lemma 6.13 that
Equation (6.12.2) holds with φ = kρ,σt . Using Lemma 3.3 and Propositions 6.9 and
6.11 we can express each twisted trace trace π̃ϕ(φ) as non-twisted trace. Moreover:
Proposition 6.11 implies that only representations with the same infinitesimal char-
acter as F0 can contribute to the (finite) first sum. Since (ρ̃, F ) is supposed to be
strongly acyclic, it follows that the elliptic L-packets do not contribute. We therefore
conclude that

(6.13.2)
∫
Gσ\G

kρ,σt (x−1σx) dẋ = 2dim t

∫
tempered

e−t(Λρ−Λπ) det′(F0, π)dπ.

Lemma 4.10 therefore follows from the untwisted case for which we refer to [3].
We furthermore deduce from (6.13.2) (and the computation in the untwisted case)

the following theorem.

6.14. Theorem. — We have:

t
(2)σ
X (ρ̃) = 2dim tt

(2)
Xσ (ρ).

Similarly:

6.15. Theorem. — We have:

Lef
(2)σ
X (ρ̃) = 2dim t · χ(2)

Xσ (ρ).

(6)In fact, we need that (twisted) tempered characters are rapidly decreasing in the parameters
“Schwartz-uniformly” in φ. But this holds because of known properties of discrete series characters
combined with the fact that the constant term operator φ 7→ φ(P ) are all Schwartz-continuous.
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Remark. — It follows from Theorems 5.2 and 6.15 that if δ(Gσ) = 0 then Lef
(2)σ
X (ρ̃) is

non-zero. Proposition 1.2 of the Introduction therefore follows from the limit formula
proved in Corollary 4.8.

7. General base change

7.1. Twisted torsion of product automorphisms. — Let G/R be semisimple, σ be
an automorphism of G, and ρ a σ-equivariant representation of G. Let G′/R be
semisimple, σ′ be an automorphism of G′, and ρ′ a σ′-equivariant representation
of G′.

7.2. Lemma. — There is an equality

t
(2)σ×σ′
XG×G′

(ρ� ρ′) = t
(2)σ
XG

(ρ) · Lef
(2)σ′

XG′
(ρ′) + Lef

(2)σ
XG

(ρ) · t(2)σ′

XG′
(ρ′).

Proof. — Let M,M ′ be compact Riemannian manifolds together with equivariant
metrized local systems L→M and L′ →M ′. Lück [25, Prop. 1.32] proves that

tσ×σ
′
(M ×M ′;L� L′) = tσ(M,L) · Lef(σ′,M ′, L′) + Lef(σ,M,L) · tσ

′
(M ′, L′).

Furthermore, Theorem 4.11 shows that

t
(2)σ×σ
XG×G′

(ρ� ρ′) = lim
n→∞

log τσ×σ
′
(Υn\XG×G′)

vol(Υn\G×G′)
for any sequence of subgroups Υn satisfying the hypotheses therein. The sequence
Υn = Γn × Γ′n, where Γn (resp. Γ′n) is a chain of σ-stable (resp. σ′-stable) normal
subgroups of G (resp. G′) with trivial intersection, satisfies the hypotheses of Propo-
sition 4.6 and Theorem 4.11. Therefore,

t
(2)σ×σ′
XG×G′

(ρ� ρ′) = lim
n→∞

tσ(Γn\XG, ρ)

vol(Γσn\Gσ)
· Lef(σ′,Γ′n\XG′ , ρ

′)

vol(Γ′σ′n \G
′σ′)

+
Lef(σ,Γn\XG, ρ)

vol(Γσn\Gσ)
· t
σ′(Γn\XG′ , ρ

′)

vol(Γ′σ′n \G
′σ′)

= t
(2)σ
XG

(ρ) · Lef
(2)σ′

XG′
(ρ′) + Lef

(2)σ
XG

(ρ) · t(2)σ′

XG′
(ρ′). �

7.3. — Now let E be an étale R-algebra; concretely, E = Rr×Cs. Fix σ ∈ Aut(E/R).
The automorphism σ permutes the factors of E and so induces a decomposition of
the factors of E into its set of orbits O : E =

∏
o∈O Eo. Each orbit is either

(a) a product of real places acted on by cyclic permutation,
(b) a product of complex places acted on by cyclic permutation, or
(c) a single complex place acted on by complex conjugation.
Let G be a semisimple group over R. Let ρ be a representation of G/R and ρ̃o

the corresponding representation of ResEo/R. In particular, ρ̃ = ρ ⊗ ρ is the corre-
sponding representation of ResC/R G. The automorphism σ induces a corresponding
automorphism of the group ResE/R G. There is a decomposition

ResE/R G =
∏
o∈O

ResEo/R G
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with respect to which σ acts as a product automorphism.
– Theorem 5.3 shows that

t
(2)σ
XG(Eo)

(ρ̃o) = |o| · t(2)
XG(R)

(ρ) and Lef
(2)σ
XG(Eo)

(ρ̃o) = χ
(2)
XG(R)

(ρ)

for the orbits of type (a).
– Theorem 5.3 shows that

t
(2)σ
XG(Eo)

(ρ̃o) = |o| · t(2)
XG(C)

(ρ̃) and Lef
(2)σ
XG(Eo)

(ρ̃o) = χ
(2)
XG(C)

(ρ̃)

for the orbits of type (b).
– Theorem 6.14 proves that

t
(2)σ
XG(Eo)

(ρ̃o) = 2dim tt
(2)
XG(R)

(ρ) and Lef
(2)σ
XG(Eo)

(ρ̃o) = χ
(2)
XG(R)

(ρ)

for the orbits of type (c).
The aggregate of these three examples, together with Theorem 7.2, enables us to

compute the twisted L2-torsion for arbitrary base change.

7.4. Theorem. — We have
t
(2)σ
XG(E)

(ρ̃E) 6= 0

if and only if δ(G(E)σ) = 1.

Proof. — Suppose that there are n orbits. Using Lemma 7.2, we expand t(2)σ
XG(E)

(ρ̃E) as
a sum of n terms. Each summand is a product of Lef

(2)σ
XG(Eo)

(ρ̃o) for n−1 of the orbits o
and of t(2)σ

XG(Eo)
(ρ̃o) for the remaining orbit o. Thus, exactly n− 1 of the Lef(2)σ’s must

be non-zero and the remaining t(2)σ must be non-zero; say t(2)σ
XG(Eo∗ )

(ρo∗) 6= 0. But by
the preceding computations relating t(2)σ and Lef(2)σ to their untwisted analogues,
this is possible if and only if δ(G(Eo∗)σ) = 1 and δ(G(Eo)σ) = 0 for all o 6= o∗. This
is equivalent to δ(G(E)σ) = 1. �

8. Application to torsion in cohomology

8.1. Generalities on Reidemeister torsion and the Cheeger-Müller theorem

Let A• be a finite chain complex situated in degree > 0 of K-vector spaces for a
fieldK. Suppose the chain groups Ai and the cohomology groupsHi(A•) are equipped
with volume forms, i.e., with non-zero elements ωi ∈ det(Ai)∗ and µi ∈ (det(Hi(A•))∗.
These define elements ω in det(A•)∗ and µ in det(H(A•))∗, where

det(A•) := det(A0)⊗ det(A1)−1 ⊗ det(A2)⊗ · · ·

and similarly for det(H(A•)).
There is a natural isomorphism [18, §1]

(8.1.1) det(A•)⊗ det(H(A•)) ∼= K.

We let sA• denote the preimage of 1 under the above isomorphism.
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8.2. Definition (Reidemeister torsion of a complex with volume forms)
The Reidemeister torsion RT (A•, ω•, µ•) is defined to be

ω ⊗ µ−1(sA•).

It is readily checked that if µ′i = ciµi for some non-zero constants ci, then

(8.2.1) RT (A•, ω, µ′) =
c0c2 · · ·
c1c3 · · ·

·RT (A•, ω, µ).

8.3. Example. — Suppose K = C and A• = C• ⊗ C for some finite complex of
free abelian groups C•. A Z-basis (e1, . . . , en) of Ci determines a volume form ωi on
Ai = Ci ⊗Z C by the formula

ωi(e1 ∧ · · · ∧ en) = 1.

The volume form ωi is well-defined up to sign. We endow A• with such a volume form
ωZ ∈ det(A•)∗. Using that Hi(A•) = Hi(C•)C we can similarly endow H(A•) with a
volume form µZ ∈ det(H(A•))∗. Then

|RT (A•, ωZ, µZ)| = |H
1(C•)tors| · |H3(C•)tors| · · ·

|H0(C•)tors| · |H2(C•)tors| · · ·
.

8.4. Definition. — Fix a triangulation T of a Riemannian manifold (M, g) together
with a metrized local system of free abelian groups L → M . Let Ci(M,L;T ) be the
corresponding cochain (free abelian) groups. We can endow A• := C•(M,L;T ) ⊗ C
with a combinatorial volume form ωZ as defined in Example 8.3. Identifying each
Hi(M,LC) with the vector space of harmonic LC-valued i-forms on M we define a
volume form µg on H•(M,LC) = H(A•). We finally define

RT (M,L) := RT (A•, ωZ, µg).

It follows from Example 8.3 and (8.2.1) that we have:

(8.4.1) |RT (M,L)| = |H
1(M,L)tors| · |H3(M,L)tors| · · ·

|H0(M,L)tors| · |H2(M,L)tors| · · ·
× R0(M,L)R2(M,L) · · ·
R1(M,L)R3(M,L) · · ·

,

where Ri(M,L) is the volume vol(Hi(M,L)free), with respect to the volume forms
obtained by identifyingHi(M,LC) with the space of harmonic L-valued i-forms onM .

Note that it follows in particular from (8.4.1) that |RT (M,L)| does not depend on
the triangulation T . The following beautiful theorem relates |RT (M,L)| to the ana-
lytic torsion TM (L) = exp(tM (L)) that we have already considered in the particular
case of locally symmetric spaces(7), see [26] for the general definition.

8.5. Theorem (Cheeger-Müller theorem for unimodular local systems [26])
Let L → M be a unimodular local system over a compact Riemannian manifold.

There is an equality
TM (L) = |RT (M,L)|.

(7)In fact we have more generally considered the twisted analytic torsion that we deal with below.
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8.6. Twisted local system over locally symmetric spaces. — Let G be a connected
semisimple quasi-split algebraic group defined over R. Let E be an étale R-algebra such
that E/R is a cyclic Galois extension with Galois group generated by σ ∈ Aut(E/R).
The automorphism σ induces a corresponding automorphism of the group G of real
points of ResE/R G. We assume that Condition (2.4.1) holds, namely: H1(σ,G) = {1}.

Choose a Cartan involution θ of G that commutes with σ and denote by K the
group of fixed points of θ in G and let X = G/K be the associated symmetric space
and. The involution σ acts on G and X; we denote by Gσ and Xσ the corresponding
sets of fixed points.

As above we denote by G̃ the twisted space G o σ. Now, let Γ be a torsion free
cocompact lattice of G that is σ-stable and let (ρ̃, F ) be a complex finite dimensional
σ-stable irreducible representation of G̃ defined over R such that

(1) ρ(Γ) stabilizes some fixed lattice O in the real points of F ;
(2) the representation ρ̃ is strongly twisted acyclic (see Section 2.6).
The group Γ acts on X and diagonally on X ×O (through the representation ρ on

the second factor). We let
M = Γ\X and L = Γ\(X × O)

be the corresponding quotients. Projection on the first factor gives a unimodular local
system L →M of free abelian groups; it is moreover equivariant with respect to an
automorphism of M of finite order.(8) From now on we shall furthermore assume that
the order p of σ is prime.

We shall consider a family of covering manifolds Mn associated to a sequence {Γn}
of finite index σ-stable subgroups of Γ that satisfies the hypothesis of Section 4.3.

8.7. Equivariant Reidemeister torsion. — Let P (x) = xp−1 + xp−2 + · · ·+ 1. For a
polynomial h ∈ Z[x] and a Z[σ]-module A, we define Ah(σ) := {a ∈ A : h(σ) · a = 0}.
We shall denote by A[p−1] the localization S−1A, where S is the multiplicative subset
{pn : n ∈ Z} ⊂ Z ⊂ Z[σ] and let A[p∞] = {a ∈ A : pna = 0 for some n > 0}, the
p-power torsion subgroup of A. Finally if K is a field we set LK := L ⊗Z K.

In particular, LC defines a flat complex bundle on M and the action of σ on M

lifts to the flat vector bundle LC. We shall apply results of Bismut and Zhang to
relate equivariant combinatorial and analytical torsions of LC →M .

First recall that it is a general result of Wasserman that there exists a σ-invariant
Morse function f : M → R. We shall in fact work with particular choices of Morse
functions on the Mn’s. By [17] there exists an equivariant CW-triangulation on M .
It lifts to an equivariant CW-triangulation on each Mn. By a standard construction
there correspond to these triangulations natural Morse functions fn : Mn → R such
that the set of critical points of fn is exactly the set of barycenters of the simplexes of
the CW-triangulation of Mn. One verifies easily that these constructions can be made

(8)We shall use the notation M for manifolds with an involution and the notation M when there
is no involution.
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Γ/Γn-equivariantly and that the resulting functions fn can be made σ-invariant. The
proof of [5, Th. 1.10] moreover implies that one can construct these fn’s such that:

for any critical point x ∈ Crit(fn) ∩M σ
n ,

the Hessian d2fn(x) is positive definite on Nx.
(8.7.1)

Here, N denotes the normal bundle to M σ
n in Mn.

It then follows from [5, Th. 1.8] that one can modify the locally symmetric metric g
on Mn to get a metric g′ which equals g in a neighborhood of all critical points of fn
in such a way that the corresponding gradient vector field Xn = ∇g′(fn) satisfies the
Smale transversality condition.

To ease notation we shall now concentrate of M and f and explain when needed
what happens when (M , f) is replaced by (Mn, fn). Let MS(M ,LC) be the Morse-
Smale complex [4, §1.6] associated to the σ-invariant Morse function f and the as-
sociated invariant transversal gradient vector field X. We endow the chain groups
of MS(M ,LC)σ−1 and MS(M ,LC)P (σ) with volume forms induced from the metric
on LC and the combinatorial volume forms induced by the unstable cells of the gra-
dient vector field [23, §1.4]. We endow the cohomology groups Hi(M ,LC)σ−1 and
Hi(M ,LC)P (σ) with the metric induced by the L2-metric on LC-valued harmonic
i-forms on M [23, Def. B.4].

8.8. Definition. — The equivariant Reidemeister torsion of the equivariant local sys-
tem LC →M of C-vector spaces is defined by

logRTσ(M ,LC; f,X) := log |RT (MS(M ,LC)σ−1)|
− 1

p− 1
log |RT (MS(M ,LC)P (σ))|.

Remarks
(1) Equivariant Reidemeister torsion a priori depends on the choice of Morse the-

oretic data; see the remark following Theorem 8.12 for further discussion. However,
the discrepancy between equivariant Reidemeister torsion and a purely cohomological
quantity can be bounded independently of the Morse theoretic data for local systems
endowed with integral structure; see Theorem 8.10 below.

(2) Let G be the finite group generated by σ. We can define a Reidemeister
torsion logRTG(M ,LC; f,X) with values in the complex representation ring of G.
We could then have alternatively defined logRTσ(M ,LC; f,X) as the trace of σ in
logRTG(M ,LC; f,X); this viewpoint is closer to that of [5]. Both definitions agree:
indeed if C is a finite dimensional Z[σ]-module, its complexification A = CC decom-
poses as a direct sum ⊕χAχ of isotypical subspaces indexed by characters of Z/pZ,
and we have

Cσ = A1 and CP (σ) = ⊕χ 6=1Aχ.

We conclude that the trace of σ in C is equal to

dimCσ + (ζ + · · ·+ ζp−1)
1

p− 1
dimCP (σ) = dimCσ − 1

p− 1
dimCP (σ).

(Here, ζ is some primitive pth root of unity.)
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8.9. Definition. — LetRi(M,L )σ−1denote the covolume of the latticeHi(M,L )σ−1

in the real vector space Hi(M ,LR)σ−1 with inner product induced by that on har-
monic forms. Define Ri(M ,L )P (σ) similarly. The equivariant regulator Riσ(M ,L )

is defined to be

Riσ(M ,L ) :=
Ri(M ,L )σ−1(

Ri(M ,L )P (σ)
)1/(p−1)

.

8.10. Theorem (Concrete relationship between twisted RT and cohomology)
Suppose that the fixed point set M σ has Euler characteristic 0. Then, for an

arbitrary choice of invariant Morse function f and invariant transversal gradient
vector field X,

logRTσ(M ,LC; f,X)

= −
∑
i

(−1)i
(

log
∣∣Hi(M ,L )tors[p

−1]σ−1
∣∣− 1

p− 1
log
∣∣Hi(M ,L )tors[p

−1]P (σ)
∣∣)

+
∑
i

(−1)i logRiσ(M ,L )

+O
(

log |H∗(M ,L )tors[p
∞]|+ log |H∗(M ,LFp)|+ log |H∗(M σ,LFp)|

)
.

Proof. — For LC acyclic, this is proven in [23, Corollary 3.8]. As described in [23,
Prop. B.6], almost exactly the same proof applies even to those L for which LC is
not acyclic. �

Remark. — It follows from the proof given in [23] that the implicit constant in O(·)
only depends on the dimension of Mn. In particular, it is independent of n.

8.11. The equivariant Cheeger-Müller theorem. — Recall that we have defined in
(3.5.1) the twisted analytic torsion of a locally symmetric space equipped with an
equivariant, metrized, unimodular local system of complex vector spaces acted on
equivariantly and isometrically by σ of finite order. Alternatively this is equal to

log Tσ(M ,g)(LC) :=
1

2

∂θLC

∂s
(0)(σ),

where the function θLC(s)(σ) is defined in [5, Def. 2.2] and g denotes the locally
symmetric metric on M . The following theorem will be easily deduced from the deep
work of Bismut and Zhang [5].

8.12. Theorem (Equivariant Cheeger-Müller theorem). — Suppose that Xσ is odd-
dimensional. Then we have:

log Tσ(M ,g)(LC) = logRTσ(M ,LC; f,X).

Proof. — First observe that it follows from [29, Prop. 2.3] that the set of fixed points

M σ = (Γ\X)σ
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is a finite disjoint union of its connected components that are parametrized by
H1(σ,Γ). Since, under our assumption (2.4.1), the map

H1(σ,Γ) −→ H1(σ,G)

has obviously trivial image, it moreover follows that each connected component is iso-
metric to Γσ\Xσ. In particular, it is odd dimensional. Moreover, splitting the complex
vector space F = ⊕jFαj according to the eigenvalues of σ yields a decomposition of
the complex vector bundle LC over Γσ\Xσ as a direct sum of complex vector bundles
Γσ\(Xσ × Fαj ) that are all unimodular (note that by hypothesis Γσ is torsion-free).
The differential form θσ(LC, h

LC) defined in [5, Def. 2.5] therefore vanishes. And, by
[5, Th. 0.2], we conclude that

(8.12.1) 2[logRTσ(M ,LC; f,X)− log Tσ(M ,g)(LC)]

= −1

4

∑
x∈Crit(f)∩Mσ

(−1)ind(f |Mσ ,x)
∑
j

(n+(βj , x)− n−(βj , x)) · Cj · trace[σ|Lx],

where:
– the integers n+(βj , x) and n−(βj , x) respectively denote the number of positive

and negative eigenvalues of the Hessian d2f(x) acting on N(βj)x, where N(βj) is the
subbundle of the normal bundle N to M σ on which σ acts by e±iβj ;

– the constant Cj is related to the equivariant torsion of a sphere. See [24, §11].
Now, for our particular choice of Morse data and replacing the locally symmetric
metric g by the modified metric g′, we deduce from (8.7.1) that the expression∑

j

(n+(βj , x)− n−(βj , x)) · Cj · trace[σ|Lx]

is constant for critical points x in a single connected component M0 of the fixed point
set M σ. Indeed, n+(βj , x) = dimN(βj)|M0

, n−(βj , x) = 0, and, since σ preserves the
flat connection, trace(σ|Lx) is also constant. Therefore,

− 1

4

∑
x∈Crit(f)∩Mσ

(−1)ind(f |Mσ ,x)
∑
j

(n+(βj , x)− n−(βj , x)) · Cj · trace[σ|Lx]

=
∑

M0∈π0(Mσ)

constant(M0)
∑

x∈Crit(f)∩M0

(−1)ind(f |M0
,x)

=
∑

M0∈π0(Mσ)

constant(M0)χ(M0) = 0.

Thus,
logRTσ(M ,LC; f,X)− log Tσ(M ,g′)(LC) = 0.

To conclude, note that by the anomaly formula of Bismut-Zhang [5, Th. 0.1],(9)

Tσ(M ,g′)(LC) = Tσ(M ,g)(LC)

when all components of the fixed point set are odd-dimensional. �

(9)Here again, we use that the differential form θσ(L , hL ) vanishes.
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8.13. Growth of torsion in cohomology of locally symmetric spaces. — Under the
hypotheses of Section 8.6 — in particular the hypothesis that ρ̃ is strongly twisted
acyclic — it follows from Theorem 4.11 that

(8.13.1)
log TσΓn\X(ρ)

|H1(σ,Γn)| vol(Γσn\Gσ)
−→ t

(2)σ
X (ρ).

From now on we will furthermore assume that δ(Gσ) = 1; note that this forces Xσ

to be odd dimensional. Theorem 8.12 therefore implies that

log TσΓn\X(ρ) = logRTσ(Mn,LC; fn, Xn).

Then Theorem 8.10, the remark following it, and Equation (8.13.1) imply the following

8.14. Corollary. — Under the above hypotheses (in particular with σ of prime or-
der p) suppose furthermore that

log |H∗(Γn,O)[p∞]| = o(|H1(σ,Γn)| vol(Γσn\Gσ))

log |H∗(Γσn,OFp)| = o(vol(Γσn\Gσ)).and

Then
1

|H1(σ,Γn)| vol(Γσn\Gσ)

[∑
i

(−1)i logRiσ(Γn, ρ)

−
∑
i

(−1)i
(

log
∣∣Hi(Γn,O)[p−1]σ−1

∣∣− 1

p− 1
log
∣∣Hi(Γn,O)[p−1]P (σ)

∣∣)]
n→∞−−−−→ t

(2)σ
X (ρ).

In particular, if ρ is strongly acyclic, then

−
∑
i(−1)i

(
log
∣∣Hi(M ,L )[p−1]σ−1

∣∣− 1
p−1 log

∣∣Hi(M ,L )[p−1]P (σ)
∣∣)

|H1(σ,Γn)| vol(Γσn\Gσ) n→∞−−−−→ t
(2)σ
X (ρ).

One can deduce from this an unconditional cohomology growth result:

8.15. Corollary. — Enforce the same notations and hypotheses as in Corollary 8.14,
with no a priori cohomology growth assumptions. Furthermore, assume that ρ is
strongly acyclic and that OFp is trivial. Then

lim sup

∑
i log |Hi(Γn,O)tors|

vol(Γσn\Gσ)
> 0.

Remark. — The local system (Γn\X,OFp) is trivial if and only if Γn is contained in
the kernel of ρ mod p. We can therefore construct many examples using Proposition
4.5 relative to the over group Γ = ker(ρ mod p).

Proof. — Suppose that not both of the growth hypotheses of Corollary 8.14 hold.
– If lim sup log |H∗(Γn,O)[p∞]|/vol(Γσn\Gσ) > 0, we are done.
– Suppose the mod p cohomology of ((Γn\X)σ,OFp) is large, i.e.,

log |H∗((Γn\X)σ,OFp)|
|H1(σ,Γn)| vol(Γσn\Gσ)

9 0.
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Because OFp |(Γn\X)σ is trivial, the latter implies that
log |H∗((Γn\X)σ,Fp)|
|H1(σ,Γn)| vol(Γσn\Gσ)

9 0.

The conclusion follows by Smith theory [8, §III]. Indeed [8, §III.4.1],
dimFp H

∗((Γn\X)σ,Fp) 6 dimFp H
∗(Γn\X,Fp)

=
1

rank O
dimFp H

∗(Γn\X,OFp),
(8.15.1)

where the final equality follows because OFp is trivial. Because ρ is strongly acyclic,
(Γn\X,O) has no rational cohomology. The desired conclusion then follows by the
universal coefficient theorem.

Otherwise, both a priori cohomology growth hypotheses from Corollary 8.14 are
satisfied. We thus apply Corollary 8.14, whose conclusion is more refined. Note that
it follows from Theorems 5.3 and 6.14 (and the computations in the non-twisted case
done in [3]) that t(2)σ

X (ρ) 6= 0 whenever δ(Gσ) = 1. �

Remark. — Corollaries 8.14 and 8.15 were one major source of inspiration for this pa-
per. We sought to understand when t(2)σ

X (ρ) 6= 0 in order to detect torsion cohomology
growth. Theorem 1.4 of the Introduction follows from Corollary 8.15.

8.16. Comparison with p-adic methods. — LetG be an algebraic group over Z which
is smooth over Z[N−1] and for which GQ is semisimple. As a byproduct of their
study of completed cohomology [10], Calegari and Emerton are able to prove non-
trivial upper and lower bounds on cohomology growth for the family of groups Γpn =

ker (G(Z)→ G(Z/pnZ)) for any prime p - N . Using Poincaré duality for completed
cohomology, they show

dimFp H
∗(Γpn ,Fp)� [Γ1 : Γpn ]1−α,

where α = dim(G/K)/dimG; Calegari and Emerton prove this when {Γpn} is a family
of 3-manifold groups in [11] and Calegari extends this to general G in [9]. For any
local system L arising from a representation of G defined over Q with LQ acyclic,
they deduce that

(8.16.1) log |H∗(Γpn ,L )tors| > log |H∗(Γpn ,L )[p∞]| � [Γ1 : Γpn ]1−α

as an immediate consequence. It is noteworthy that α = 1/2 if G is a complex Lie
group and 1−α > 1/3 for arbitrary G. The resulting lower bound obtained by (8.16.1)
is of the same quality as that proven in Corollary (8.15) for quadratic base change of
groups with δ(Gσ) = 1 and is always strictly larger for cyclic base change of degree
greater than two for groups with δ(Gσ) = 1. Nonetheless, these lower bounds do not
subsume our main theorems on torsion cohomology growth.

– Suppose δ(Gσ) = 1. By Corollary 8.15, any family of groups satisfying the hy-
potheses of Theorem 4.11 exhibits torsion cohomology growth. As shown in Propo-
sition 4.5, fairly general families {Γ′q} of congruence subgroups which grow horizon-
tally, e.g. as q varies through a sequence of primes, satisfy these hypotheses. However,
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(8.16.1) does not give any information concerning cohomology growth for such families
of horizontally growing congruence subgroups.

– Suppose δ(Gσ) = 1 and consider the family of congruence subgroups {Γpn} of full
level pn. Both Corollary 8.14 and (8.16.1) yield lower bounds on torsion cohomology
growth. However, their origins should be regarded as very distinct.

Cohomology classes accounted for by (8.16.1) are an aggregate of mod p congru-
ences between (mod p) automorphic representations of G of arbitrary level.

On the other hand, the cohomology classes accounted for by Corollary 8.14 conjec-
turally arise by base change transfer over Z [12, 22]. Partial evidence for this transfer
occurs in Theorem 6.14, which may be regarded as ‘numerical base change trans-
fer over Z at infinite level’ (see [22] for some special cases of numerical base change
transfer over Z at finite level).

Base change for torsion cohomology leads us to expect that torsion witnessed in
Corollary 8.14 is supported at the same primes as torsion in the cohomology of locally
symmetric spaces for Gσ; computations suggest that the latter primes are large and
irregular [31]. On the other hand, torsion witnessed through (8.16.1) is supported
at a single prime p and gives no information about the prime-to-p part of torsion
cohomology.
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