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SOLUTIONS TO THE COLD PLASMA MODEL

AT RESONANCES

by Bruno Després, Lise-Marie Imbert-Gérard
& Olivier Lafitte

Abstract. — Little is known on the mathematical theory of hybrid and cyclotron solutions of
Maxwell’s equations with the cold plasma dielectric tensor. These equations arise in magnetized
plasmas to model an electromagnetic wave in a Tokamak. The solutions can behave extremely
differently from those in vacuum. This work contributes to the local theory of the hybrid
resonance by means of an original representation formula based on special functions, a certain
eikonal equation and with a careful treatment of the singularity.

Résumé (Solutions singulières résonantes pour un plasma). — La théorie mathématiques des
équations de Maxwell avec le tenseur du plasma froid en présence d’une résonance cyclotron ou
hybride est peu développée. Ces équations sont présentes pour modéliser la propagation d’une
onde électromagnétique dans un plasma magnétique tel que celui d’un Tokamak et les solutions
peuvent être très différentes de la propagation dans le vide. Ce travail contribue principalement
à la théorie locale de la résonance hybride avec des formules originales de représentation à partir
de fonctions spéciales. Ces formules sont obtenues au moyen d’une équation eikonale et d’un
traitement spécifique de la singularité.
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1. Introduction

The goal of this work is to identify singular solutions of the cold plasma model
at different resonances with an original mathematical method. Singular means here
that a function u satisfies |(x − x∗)u(x)| > c > 0 uniformly with respect to x in
a neighborhood of a point x∗. In a more general sense, a singularity can also be
a Dirac mass or a principal value. The problem comes from electromagnetic waves
modeling in strongly magnetized plasmas and from the so-called resonant heating
phenomenon. We more specifically consider the one species cold plasma model which
represents a collection of zero-temperature electrons immersed in a uniform static
magnetic field. Resonances correspond to limits of this model, and will be studied
in this work thanks to a term representing friction of electrons on the background
ions. With respect to the recent work [9], which was based on certain singular integral
kernels and representations, the novelty of the present one lies in the use of a local
representation of the solutions in terms of Bessel functions, and the introduction of
a new stretching function satisfying an eikonal equation. Moreover, with this new
simpler technique we are able to prove that the resonant heating is independent of
the tensorial nature of the dissipation regularization term. However, a restriction of
this approach is the local character of the results. In particular it is not possible
to discuss boundary conditions at finite distance or at infinity with the techniques
developed below. The reader interested by this topic may refer to [9], see also a recent
alternative technique in [6].

In time harmonic regime and slab geometry in dimension two, for (x, y) ∈ R2, there
is no resonance in the equation for the transverse magnetic polarization (also denoted
as O-mode equations in plasma physics), while the equations for the transverse electric
polarization (also denoted as X-mode) have two resonances. With the normalization
ω2/c2 = 1, the latter equations reduce to

(1.1)
{
− ∂2yE1 + ∂2xyE2 − ε11E1 − ε12E2 = 0,

∂2xyE1 − ∂2xE2 − ε21E1 − ε22E2 = 0.

The bulk magnetic field B0 is oriented along the third axis, the electric field (E1, E2)

is transverse to the bulk magnetic field and the third component of the electric field
is zero. The pulsation of the harmonic wave is ω > 0. As described in [18, 19, 22, 9],
a first order expansion in the cold plasma model yields the following dielectric tensor

(1.2) ε =


1− ω2

p

(ω2 − ω2
c )

i
ωcω

2
p

ω (ω2 − ω2
c )

−i ωcω
2
p

ω (ω2 − ω2
c )

1− ω2
p

(ω2 − ω2
c )

 ,

where the cyclotron frequency is defined by ωc = e|B0|/me while the plasma frequency
is defined by ωp =

√
e2Ne/ε0me. Here e is the electron charge,me is the electron mass

and ε0 is the vacuum permittivity. The physical validity of this model is discussed in
[4][p. 166] for waves such that |k‖|vth � |ω−nωc| and |k⊥|vth � ωc, where k‖ and k⊥
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Solutions to the cold plasma model at resonances 179

are the parallel and perpendicular components—with respect to the bulk magnetic
field B0—of the wave vector, vth is the electron thermal speed, and n is an integer.
Note that the model is not valid if the frequency ω matches an integer multiple of
the cyclotron frequency. Assume that the magnetic field and the electronic density
depend on the horizontal variable x only: that is B0 = B0(x) and Ne = Ne(x).
It corresponds to a wall facing a stratified plasma as depicted in Figure 1.1, as in
a Tokamak where an antenna sends an electromagnetic wave toward the plasma, in
order to probe or heat the plasma. The heating of a magnetized fusion plasma with

Antenna

incident wave

reflected wave

x

x = −L

Figure 1.1. X-mode in slab geometry: the domain. In a real physi-
cal device an antenna on the wall sends an incident electromagnetic
wave toward the plasma. Here, for simplicity, the domain is the half
plane {(x, y) ∈ R2, x > 0}. The medium is filled with a plasma with
dielectric tensor given by (1.2).

such devices is an important issue for the ITER project [12]. Idealized coefficients
representing the main features of the physical coefficients at the wall of a Tokamak
are described in Figure 1.2. More realistic plasma parameters may be much more
oscillating as illustrated in the numerical studies [16, 17].

Resonances correspond to a limit of the geometric optics, as the local wave number
approaches infinity. They require a careful examination since some of them are related
to singular behavior and absorption. The interested reader can refer to the physics
textbooks [18, 19] or to [22] for a historical paper on the topic. A recent reference
is [10]; it also provides a list of additional references. Singular solutions of wave equa-
tions appear in other applications, such as cloaking [21] and metamaterials [7, 2]. As
announced earlier, it is then natural to model the effect of collisions with a bath of
static ions by an additional friction term, since the energy is absorbed by the ions.
The validity of this modeling has been discussed in [3]. Describing the behavior of the
solutions as the friction parameter ν > 0 approaches zero will evidence the singularity
of the solutions to the limit problem for ν = 0. Indeed one obtains solutions which

J.É.P. — M., 2017, tome 4



180 B. Després, L.-M. Imbert-Gérard & O. Lafitte

B0

x

x = −L

Ne

Figure 1.2. Idealized parameters for the X-mode equations in slab
geometry. The electronic density x 7→ Ne(x) is low at the boundary,
and increases towards a plateau. The background magnetic field B0

is here constant for simplicity.

may behave like
Eν1 ≈

c

rx+ iν
with r, c 6= 0.

The singular solutions will be built by means of new explicit representation formulas,
allowing a careful extraction of the singularities. The singular behavior of the limit
solutions is strongly related to the structure of the dielectric tensor (1.2). This crucial
structure will be highlighted in Section 3.

The complex pulsation ων = ω+iν shifts the exact pulsation in the upper half-plane
by the factor ν > 0. With this shift, Equations (1.1)–(1.2) become

(1.3)

−∂
2
yE

ν
1 + ∂2xyE

ν
2 − εν11Eν1 − εν12Eν2 = 0,

∂2xyE
ν
1 − ∂2xEν2 − εν21Eν1 − εν22Eν2 = 0.

with the regularized dielectric tensor

(1.4) εν =


1− ωνω

2
p

ω (ω2
ν − ω2

c )
i

ωcω
2
p

ω (ω2
ν − ω2

c )

−i ωcω
2
p

ω (ω2
ν − ω2

c )
1− ωνω

2
p

ω (ω2
ν − ω2

c )

 ,

where ωp and ωc are still respectively the plasma and cyclotron frequencies, and the
regularized dielectric tensor is independent of the y-direction. The physical justifica-
tion of εν can be found in plasma physics textbooks [4, 18].

For a recent mathematical treatment of these equations by means of singular inte-
gral equations, refer to [9]. In fusion plasmas, the value of the friction parameter can
be extremely small. For example, relative values of ν/ω ≈ 10−7 are common. This
extremely small value shows that the frictionless limit regime ν → 0 is relevant for
some fusion applications. In such regimes the formal first order approximation of the
dielectric tensor reads

(1.5) εν = ε0 + iνD +O(ν2),
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Solutions to the cold plasma model at resonances 181

with

(1.6) ε0 =


1− ω2

p

ω2 − ω2
c

i
ωcω

2
p

ω (ω2 − ω2
c )

−i ωcω
2
p

ω (ω2 − ω2
c )

1− ω2
p

ω2 − ω2
c

 and D =

(
λ1 −iλ2
iλ2 λ1

)
.

The dissipation tensor D accounts for the underlying physical dissipation. Its coeffi-
cients are

(1.7) λ1 =
ω2
p

(
ω2 + ω2

c

)
ω (ω2 − ω2

c )
2 > 0 and λ2 =

2ωcω
2
p

(ω2 − ω2
c )

2 ∈ R.

Since λ1 − λ2 = ω2
p/ω (ω + ωc)

2
> 0, the matrix D = D∗ > 0 is indeed positive.

As previously mentioned, and stressed in Figure 1.2, the coefficients of these tensors
are a priori non-constant functions of the horizontal variable x.

The structure of the limit tensor (1.2) shows two different resonances in the limit
model ν = 0, defined thanks to the dispersion relation, see [18]. The first one appears
as a singularity in the coefficients of the equation, and is commonly referred to, in the
plasma physics community, as a cyclotron resonance

ωc(x) = ω,

where ωc is a function of the x variable, a priori non-constant. We will show that
mathematical solutions of Maxwell’s equations (1.3) actually have no singular behav-
ior at the cyclotron resonance: they are bounded in this regime, despite the fact that
the dielectric coefficients are not. The other interesting regime corresponds to the
vanishing of the diagonal part of ε0, that is to say

ω2
p(x) + ω2

c (x) = ω2.

It defines the hybrid resonance. In this regime the dielectric tensor is non-singular since
the denominator is non-zero, i.e., the coefficients of the dielectric tensor are bounded.
However, the solutions are known to be highly singular: they are not bounded near
the resonance. A local expansion of the horizontal electric field yields representation
formulas near isolated roots ω2

p(xh) + ω2
c (xh) = ω2: typically

Eν1 (x) =
gν(x)

ων −
√
ω2
p(x) + ω2

c (x)
,

where gν is a function which is proved to be regular enough so that one can pass to
the limit ν → 0+. One gets [9]

E+
1 = lim

ν→0+
Eν1 = αD(· − xh) + P.V.

g0(·)
ω −

√
ω2
p(·) + ω2

c (·)
,

D is the Dirac mass and α ∈ C.

J.É.P. — M., 2017, tome 4



182 B. Després, L.-M. Imbert-Gérard & O. Lafitte

This is a well-known behavior in the plasma physics community, but has not received
full attention by the mathematics community. One goal of this work is to develop a
local comprehensive analysis of this phenomenon.

As stressed in [9], a useful quantity to characterize the singular behavior of the
solutions is the resonant heating of the plasma. Up to a non-essential factor ω, the
resonant heating [4, 9] is defined, for any (a, b) such that −L 6 a < xh < b 6∞, by

(1.8) Q = lim
ν→0+

(
=
∫ b

a

(ενEν ,Eν) dx

)
, Eν =

(
Eν1
Eν2

)
,

where the Hermitian product of two complex vectors A and B is denoted as (A,B) =

A ·B. This formula has been justified in [9] where it is shown that Q > 0 in case of
resonant heating using the simplification εν = ε + iνI, i.e., in the ν expansion (1.5)
of εν the dissipation tensor is D = I. This simplification is mathematically justified
since it corresponds to the limiting absorption principle. In this work we will show
that the resonant heating is well-defined and takes the same value for a large class of
dissipation tensors that includes physically based tensors.

The analysis method uses W ν = ∂xE
ν
2 − ∂yEν1 which is, after linearization around

the bulk magnetic field, the parallel component of the magnetic field. System (1.3) is
then equivalent to the following first order system

∂yW
ν − εν11Eν1 − εν12Eν2 = 0,

− ∂xW ν − εν21Eν1 − εν22Eν2 = 0,

W ν + ∂yE
ν
1 − ∂xEν2 = 0.

Since the coefficients ενij depend only on x, one can perform a Fourier transform in y.
Denoting by iθ the Fourier coefficient, it yields

(1.9)


iθW ν − εν11Eν1 − εν12Eν2 = 0,

− d

dx
W ν − εν21Eν1 − εν22Eν2 = 0,

W ν + iθEν1 −
d

dx
Eν2 = 0.

The Fourier coefficient θ can be considered as a frozen parameter from now on, and ∂x
will be replaced by d/dx denoting the derivative with respect to x. In this system, the
derivative with respect to x appears only on W ν and Eν2 . The energy integral (1.8)
can be expressed for any (a, b) such that −L 6 a < b <∞ using the identity∫ b

a

(ενEν ,Eν) dx =

∫ b

a

(
iθW νEν1 −

d

dx
W νEν2

)
dx

=

∫ b

a

(
iθW νEν1 +W ν d

dx
Eν2

)
dx−W ν(b)Eν2 (b) +W ν(a)Eν2 (a)

=

∫ b

a

|W ν |2 dx−W ν(b)Eν2 (b) +W ν(a)Eν2 (a).
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It leads to

(1.10) =
∫ b

a

(ενEν ,Eν) dx = −=
(
W ν(b)Eν2 (b)

)
+ =

(
W ν(a)Eν2 (a)

)
,

which expresses a balance of energy.
It is convenient to consider a differential system with two unknowns Eν2 and W ν ,

while Eν1 can be computed thanks to the first equation of System (1.9) by

(1.11) Eν1 =
iθW ν − εν12Eν2

εν11
.

Eliminating Eν1 , the reduced system then reads

(1.12) d

dx

(
Eν2 (x)

W ν(x)

)
= Mν(x, θ)

(
Eν2 (x)

W ν(x)

)
, −L < x,

where the matrix is defined as follows.

Definition 1. — The matrix Mν(x, θ) is constructed from the dielectric tensor by

(1.13) Mν(·, θ) =


− iθε

ν
12

εν11
1− θ2

εν11

− d
ν

εν11
− iθε

ν
21

εν11

 ,

where the coefficient dν is the determinant of the dielectric tensor εν :

(1.14) dν = εν11ε
ν
22 − εν12εν21.

The determinant Dν(·, θ) of the matrix can be simplified as follows

Dν(·, θ) = detMν(·, θ) = −
( iθεν21
εν11

)2
+
dν

εν11

(
1− θ2

εν11

)
=

dν

εν11
− θ2 ε

ν
22

εν11
=

dν

εν11
− θ2.

(1.15)

It is already foreseeable that the roots of εν11 will play a crucial part in some cases.
The analysis of singular solutions around the hybrid resonance x = x∗ relies on
the analyticity of the coefficients of the dielectric tensor. This assumption is very
useful to study the problem with a convenient shift in the complex plane. The main
results of this paper stem from a precise local study of the solution of the reduced
system (1.12) when the entries of Mν have a simple pole at x∗, and the determinant
of the matrix has a simple pole as well. The mathematical method of singularity
extraction is completely new to our knowledge.

Our main results can be summarized as follows:

Lemma 2. — In our geometry, the cyclotron singularity of the dielectric tensor,
defined by ω = ωc, is only an apparent singularity in the sense that the electromag-
netic field is bounded and the resonant heating is zero Qcyc = 0.
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184 B. Després, L.-M. Imbert-Gérard & O. Lafitte

Theorems 1 and 2. — The hybrid resonance, defined by ω2 = ω2
c+ω2

p, yields a singular
horizontal component of the electric field, i.e., |(x−x∗)Eν=0

1 | > c > 0 uniformly with
respect to x in a neighborhood of x∗, and a generic positive resonant heating Qhyb > 0.
The limit of the horizontal component of the electric field can be expressed as the
sum of a Dirac mass, of a Principal Value and of a bounded term, as in [9].

Corollary 1. — The hybrid resonant heating value is independent of the local dissi-
pation tensor, and moreover the local dissipation tensor can be non-physical as well.
The limit value for ν = 0+ of the electromagnetic unknowns is independent of the
local dissipation tensor. The uniqueness of the limit solution with respect to the lo-
cal dissipation tensor is established. This is a new result since in [9] the limit was
established only for D = I.

Numerical section. — We provide numerical evidence of our claims with the help of a
numerical method that can be used to treat other problems with the same structure.

Extension to multi-species. — We finally provide some formulas extending the method
of singularity extraction to multi-species models, to model ions as a fluid as well. These
formulas can be compared with similar formulas [4, 23] for the cyclotron resonance
and the hybrid resonance.

The work is organized as follows. The cyclotron singularity of the dielectric tensor
is studied in Section 2, where the electromagnetic field is shown to stay bounded
in the neighborhood of this singularity. The hybrid resonance is studied in detail
in Section 3, where the singularity of the solution is carefully extracted thanks to
convenient representation formulas with Bessel functions. We prove both the generic
resonant heating formula and the fact that its value is independent of the local dis-
sipation tensor. Numerical results are provided in Section 4. Some technical material
is postponed to the appendix together with a particular analytical solution and the
generalization to multi-species.

We will use the notations R∗ = R− {0} and C∗ = C− {0}.

Acknowledgements. — The authors deeply thank the anonymous reviewers for their
remarks, which helped a lot to improve the present work.

2. The cyclotron resonance

The cyclotron singularity corresponds to a formal singularity in the denominator of
(1.4). We consider the situation where there exists at least one xc in the domain such
that ωc(xc) = ω. For the simplicity of the analysis, we will assume that d

dxωc(xc) 6= 0

so that xc is isolated. Clearly the singularity at xc in the dielectric tensor (1.4) in the
limit case ν = 0+ disappears in the regularized case ν 6= 0. In order to focus on the
cyclotron resonance, it has to be away from the hybrid resonance, that is ωp(xc) 6= 0.

Definition 2. — A point xc is referred to as an isolated cyclotron singularity if
ωc(xc) = ω and d

dxωc(xc) 6= 0.
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Solutions to the cold plasma model at resonances 185

Note that such a singularity does not depend on ν, since ωc does not depend on ν.
Let us now consider the reduced system (1.12), where the system’s matrix Mν(·, θ)
is defined with the physical dielectric tensor (1.4). The system is well-defined at a
cyclotron resonance for all ν ∈ R, and one can pass to the limit in the following sense.

Lemma 1. — Assume that the magnetic field B0 and the density Ne are smooth.
Assume an isolated cyclotron singularity occurs at xc, and assume there is no hybrid
resonance on some neighborhood [xc − r, xc + r] for some r > 0. Assume (Eν2 ,W

ν)

solves the reduced system (1.12) on [xc− r, xc + r] for all ν ∈ R, with a given Cauchy
data which admits a finite limit when ν goes to 0 written as (Eν2 ,W

ν)(xc−r)→ (α, β).
Then (Eν2 ,W

ν) tends to a bounded limit
(
E0

2 ,W
0
)
as ν tends to zero, and (E0

2 ,W
0)

solves the limit system (1.12) on [xc − r, xc + r] with ν = 0, with the same Cauchy
data (E0

2 ,W
0)(xc − r) = (α, β).

Proof. — Definition 1 with the physical tensor (1.4) yields after some careful calcu-
lations

(2.1) Mν(x, θ)

=
1

αν(x)

 θωcω
2
p (1− θ2)ω(ων

2 − ω2
c )− ωνω2

p

−ω(ων
2 − ω2

c ) + 2ωνω
2
p −

ω4
p

ω
−θωcω2

p

 (x, θ),

where αν(·) = ω(ων
2 − ω2

c ) − ωνω2
p. The determinant (1.15) of this matrix can be

recast as

Dν(·, θ) =
dν

εν11
− θ2 =

ω(ων
2 − ω2

c )− 2ωνω
2
p + ω4

p/ω

αν
(·)− θ2.

The limit value of αν(·) as ν approaches 0+ is α0(·) = ω
(
ω2 − ω2

c − ω2
p

)
. Since the

cyclotron resonance is not a hybrid resonance, that is |ωp| > C > 0 uniformly on
(xc − r, xc + r), one has that

(2.2) α0(xc) = −ωω2
p 6= 0,

since ω = ωc(xc) 6= 0 as consequence of the normalization ω2/c2 = 1. In this situation
the matrix Mν(·, θ) is locally bounded and smooth. So the solutions of the reduced
system (1.12) are smooth locally around xc and one can pass to the limit in this
system. �

Note that there is still a particular behavior in the neighborhood of this cyclotron
resonance, known as “turning point behavior” [8, 13]. However, this does not induce
any singular regime, except in the limit ω → +∞, which is not considered here. The
consequences of the representation (2.1) on physical quantities are characterized in
the following result.
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186 B. Després, L.-M. Imbert-Gérard & O. Lafitte

Lemma 2. — Under the assumptions of Lemma 1, the component Eν1 tends pointwise
to a bounded limit E0

1 as ν tends to zero and the value of the resonant heating is zero:

(2.3) lim
ν→0+

(
=
∫ xc+r

xc−r
(ενEν ,Eν) dx

)
= 0.

Proof. — The horizontal component of the electric field can be evaluated thanks to
(1.11). The coefficients in (1.11) can be expressed as

iθ

εν11
=
iθω

(
ω2
ν − ωc(·)2

)
αν(·, θ) and −εν12

εν11
=
−iωc(·)ω2

p

αν(·, θ) .

Using (2.2), the limit ν = 0 value of these coefficients at xc is

(2.4)
(
iθ

ε011

)
(xc) = 0 and

(−ε012
ε011

)
(xc) = i.

So one can pass to the limit in (1.11) since the coefficients are bounded in the interval
[xc−r, xc+r]. Therefore the horizontal part of the electric field Eν1 admits a bounded
and smooth limit E0

1 .
Consider now the heating term. On the one hand we notice that the electric field

can be split into two parts

Eν = Eν2

(
i

1

)
+

(
Eν1 − iEν2

0

)
,

the first vector being an eigenvector of the dielectric tensor:

εν
(
i

1

)
= µ

(
i

1

)
.

The corresponding eigenvalue µ = 1 − ω2
p/ω (ων + ωc) is bounded so non-singular

at xc. The second vector is Eν1 − iEν2 = (ων − ωc)F ν , with
F ν =

[
iθ(ων + ωc)ωW

ν − i((ων + ωc)ω − ω2
p)Eν2

]
/αν ,

admits a finite limit for ν → 0, due to (1.11) and (2.4). So the second vector is
O (ν + |x− xc|), which means that it counterbalances the singularity of the dielectric
tensor. This shows that ενEν is bounded uniformly on [xc−r, xc+r] with respect to ν.
Since Eν is also uniformly bounded, it yields that (ενEν ,Eν) is bounded uniformly
on [xc − r, xc + r] with respect to ν.

On the other hand the tensor εν tends almost everywhere (that is for x 6= xc)
to a Hermitian tensor, so that = (ενEν ,Eν) tends almost everywhere to zero. The
Lebesgue dominated convergence theorem states that

lim
ν→0+

(
=
∫ xc+r

xc−r
(ενEν ·Eν) dx

)
= 0.

The proof is ended. �

It evidences the fact that there is no resonant cyclotron heating in our model. This
result is compatible with the literature [18, 19, 22] where a resonant cyclotron heating
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is possible, but only in another configuration with wave number parallel to the bulk
magnetic field. This yields ∂x = 0 and so is excluded from our discussion.

3. The hybrid resonance

This section gathers the main theoretical contributions of this work. The structural
hypotheses on the general dielectric tensor

(3.1) εν(x) =

(
εν11(x) εν12(x)

εν21(x) εν22(x)

)
∈ C2×2, ∀ ν ∈ R,

for the following work to hold will be emphasized in Assumptions 1, 2 and 3.
The hybrid resonance corresponds to a singularity in the limit problem ν = 0.

More precisely it corresponds to the vanishing of ε011. The singularity occurs when ε011
appears in a denominator: in the expression of the x component of the electric field E0

1 ,
see (1.11), as well as in the matrix of the (E0

2 ,W
0) system, see (1.13) with ν = 0.

Definition 3. — A point xh is referred to as a local hybrid resonance for the limit
ν = 0 of the system (1.3)–(3.1) if the limit diagonal coefficient of εν11(x) is such that

(3.2) ε011(xh) = 0 and ∂xε
0
11(xh) ∈ R∗,

and if the extra-diagonal part is locally non-zero

(3.3) ε012(xh) 6= 0.

We will moreover assume that

(3.4) i∂νε
0
11(xh) ∈ R∗.

We denote by s ∈ {−1, 1} the sign of −∂xε011(xh).

Going back to the physical dielectric tensor (1.4), one sees that ε011(xh) = 0 corre-
sponds to

ω2 = ω2
c (xh) + ω2

p(xh).

This case is referred to as hybrid regime in the literature, see [18, 19, 22]. Unlike in
the cyclotron resonance case, there exist singular solutions at the hybrid resonance.
This is known since the seminal work of Budden [5], for an extremely particular
case where ε011 = 1 + x/xh. A recent mathematical analysis, performed in [9] with a
singular integral equation, has evidenced the role of the limit resonant heating. Our
main objective here is to provide additional understanding of the resonant heating by
means of a local extraction of the singularity.

Hereafter follows the list of some assumptions on the general regularized tensor
(3.1). They are sufficient to carry out the upcoming analysis.

Assumption 1 (Uniqueness and analyticity of the coefficients)
Assume xh is a local hybrid resonance. There exists Λ1 > 0 such that
– the dielectric tensor εν is analytic in the ball x ∈ B(xh,Λ1) for all ν ∈ [−Λ1,Λ1],
– xh is the unique root of ε011 in B(xh,Λ1).
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Note that, for F satisfying this assumption of analyticity, F (z) =
∑
n>0 an(z−xh)n,

with an ∈ C2×2 a matrix with the summability condition
∑ |an|Rn < +∞ for R < Λ1.

One shall denote the derivative as usual by F ′(z) =
∑
n>0 nan(z−xh)n−1. The chain

rule reads d
dx (F (φ(x))) = F ′(φ(x))dφdx (x) for φ a function from an interval I ⊂ R to C.

Assumption 2 (Structure of the dielectric tensor). — The dielectric tensor εν is such
that

(3.5) εν11 = εν22 and εν12 = −εν21, ∀ ν ∈ [−Λ1,Λ1].

As a result, the trace of the matrix Mν(x, θ) defined in (1.13) is identically zero on
its domain. Moreover, ε0 = (ε0)∗ is a Hermitian matrix.

Also note that as a consequence of this assumption, the determinant of Mν is
less singular than expected: since all the entries of the matrix are O((εν11)−1), the
determinant would be expected to be O((εν11)−2); however (3.5) shows that it actually
is only O((εν11)−1). For the sake of clarity, consider the following notation:

Definition 4. — Define for all ν ∈ [−Λ1,Λ1]

(3.6) aν = − iθε
ν
12

εν11
, bν = 1− θ2

εν11
, cν = − d

ν

εν11
,

so that under Assumption 2, the matrix Mν introduced in Definition 1 reads

(3.7) Mν(x, θ) =

(
aν(x, θ) bν(x, θ)

cν(x) −aν(x, θ)

)
.

These quantities are well-defined except possibly at the roots of εν11.

Remark 1. — In the model case εν = ε0 + iνD with a diagonal dissipation tensor
D = I, one can use the notations of [9] so that εν11 = α(x) + iν and εν12 = iδ(x). In
this case the coefficients are

aν(x, θ) =
θδ(x)

α(x) + iν
,

bν(x, θ) = 1− θ2

α(x) + iν
,

cν(x) =
δ2(x)

α(x) + iν
− (α(x) + iν).

So cν does not depend on θ which can be deduced also in the general case from (3.6).

Assumption 3. — The regularized dielectric tensor εν(z) is locally analytic with respect
to both variables z and ν.

As announced, it is straightforward to verify that these assumptions are satisfied
by the physical tensor introduced in (1.4).

Stemming directly from Definition 3 and Assumption 2, a first property of the 2×2

differential system (1.12) is the following:

J.É.P. — M., 2017, tome 4



Solutions to the cold plasma model at resonances 189

Lemma 3. — Assume xh is a local hybrid resonance. Then for ν = 0 the determinant
(1.14) of the dielectric tensor satisfies

(3.8) d0(xh) = −
∣∣ε012(xh)

∣∣2 < 0.

Proof. — Assumption 2 yields that ε012(xh) = ε021(xh) since the matrix is Hermitian.
Using (3.2) and (3.5), one gets

d0(xh) = ε011(xh)2 −
∣∣ε012(xh)

∣∣2 = −
∣∣ε012(xh)

∣∣2 < 0,

which is indeed a non-zero number in view of (3.3). �

Note that moreover due to (3.5), one has

ε012(xh) = −ε012(xh) ∈ iR∗.
The techniques developed in this work are direct consequences of these properties. The
study that follows is performed in two steps: the analysis of the regularized problem,
with ν 6= 0, then the study of the limit as ν approaches zero, leading back to the
original problem. To this purpose it is crucial to develop uniform tools with respect
to the regularization parameter ν, so that their properties still hold as ν goes to zero.

3.1. A convenient second order equation. — System (1.13) with matrix (3.7) can
provide two different second order equations, by elimination of either of the two
unknowns. In order to choose which of these two equations to study, consider the
following properties of our problem.

Lemma 4. — Assume that xh is a local hybrid resonance. Then, under Assumption 2,
the dielectric tensor εν (3.1) is such that:

– There exists Λ2 satisfying 0 < Λ2 6 Λ1 (with Λ1 defined in Assumption 1) and
C > 0 independent of the angle of incidence θ such that

(3.9)
∣∣∣aν(x, θ)

cν(x)

∣∣∣ 6 C|θ| for x ∈ B(xh,Λ2) and for |ν| 6 Λ2.

– The quantity ∣∣∣aν(xh, θ)

bν(xh)

∣∣∣ =
∣∣∣εν12(xh)

θ

∣∣∣
is unbounded for θ → 0.

The upper extra diagonal coefficient bν does not dominate the diagonal part aν
for vanishing θ results in a singularity in this regime, and as a result the analysis
is trickier for the equation on Eν2 . Therefore the formulation considered is the one
on W ν :

(3.10) d

dx

( 1

cν

d

dx
W ν
)

=
(a2ν
cν

+ bν −
(aν
cν

)′)
W ν .

Remark 2. — At the resonance, the limit equation (3.10) has a “regular singular
point” [8, 13]. Indeed, thanks to Definition 3 and Lemma 4, the 1/cν term is bounded
while the a2ν/cν and bν terms behave asO((εν11)−1) at the resonance. The term (aν/cν)

′

is locally bounded.
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A consequence of Assumption 3 provides a unique complex root of the coefficient εν11
in a neighborhood of the root of the limit coefficient ε011, thanks to the open mapping
theorem:

Lemma 5. — Under Assumptions 1 and 3, there exists Λ3 satisfying 0 < Λ3 6 Λ2

(with Λ2 defined in Lemma 4) such that if |ν| 6 Λ3 there exists a unique point
Xν ∈ B(xh,Λ3) ⊂ C (in a complex neighborhood of xh) solution of

(3.11) εν11(Xν) = 0.

A first order expansion is

(3.12) Xν = xh −
∂νε

0
11(xh)

∂xε011(xh)
ν +O(ν2),

which shows that, choosing adequately Λ3, for 0 < |ν| 6 Λ3: Xν 6∈ R and Xν → xh
for ν → 0.

Proof. — Define, in order to use the analytical implicit function theorem (Theorem
10.32 of [15]) the function

ε(x, ν) = εν11(x).

There exists Λ4 such that it is an analytic function in the ball B((xh, 0),Λ4) ⊂ C2.
One has ε(xh, 0) = 0, ∂xε(xh, 0) = ∂xε

0
11(xh) 6= 0, hence we can apply the implicit

function theorem. There exists Λ5 6 Λ4 such that, for (x, ν) ∈ B((xh, 0),Λ5), there
exists a unique solution of ε(x, ν) = 0, which is denoted by Xν . In addition

Xν = xh −
∂νε(xh, 0)

∂xε(xh, 0)
ν +O(ν2).

The assumptions of Definition 3 ensure that i∂νε(xh, 0)/∂xε(xh, 0) ∈ R∗. �

Definition 5. — The unique point Xν ∈ C solution of (3.11) is called the translated
hybrid resonance.

The case εν11 = α(x) + iν mentioned in Remark 1 satisfies these hypotheses, with
α(xh) = 0, α′(xh) < 0. For this case one has, at first order, Xν = −iν/α′(xh)+O(ν2),
which means that the dominant part of the translated resonance is pure imaginary
with non-zero imaginary part for ν 6= 0. An adequate scaling in (3.10) of the un-
known W ν then provides an equation with no first order term. However, as the coeffi-
cient that is introduced for this scaling is the square root of cν , we must use caution.
We define the square root of x−Xν as the principal square root on complex numbers
(which means that the branch cut is on x ∈ R−). For the reader’s convenience, the
explicit expressions for the square root are:
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(a) for x−<Xν > 0,

√
x−Xν =

√
1

2

(
((x−<Xν)2 + (=Xν)2)1/2 + x−<Xν

)
− i =Xν√

2
(
((x−<Xν)2 + (=Xν)2)1/2 + x−<Xν

) ;

(b) for x−<Xν 6 0,√
x−Xν =

|=Xν |√
2
(
((x−<Xν)2 + (=Xν)2)1/2 + <Xν − x

)
− i sign (=Xν)

√
1

2

(
((x−<Xν)2 + (=Xν)2)1/2 + <Xν − x

)
.

Check that −scν(x)(x−Xν) has a strictly positive limit when ν → 0, hence locally
in ν the square root of this quantity is well-defined. The rescaled unknown y is defined
for x in a real neighborhood of xh by

(3.13) y(x) =

√
x−Xν√

−scν(x)(x−Xν)
W ν(x) ∈ C.

From (3.10) it satisfies on this neighborhood the equation

(3.14) d2y(x)

dx2
=

(
aν(x)2 + bν(x)cν(x)− cν(x)

(aν(x)

cν(x)

)′
+

√
−scν(x)(x−Xν)√

x−Xν

( √
x−Xν√

−scν(x)(x−Xν)

)′′)
y(x).

The complicated coefficient
√
x−Xν/

√
−scν(x)(x−Xν) is the principal root of

(−scν)−1/2 In order to solve Equation (3.14), it is then crucial to isolate the sin-
gularity of the solution. We propose here to first understand the singular structure of
the equation’s coefficient. In the case of a local hybrid resonance, we notice that the
most singular term of the coefficient is√

−scν(x)(x−Xν)√
x−Xν

( √
x−Xν√

−scν(x)(x−Xν)

)′′
.

We then consider the following quantity.

Definition 6. — Under Assumptions 1, 2 and 3, we define the coefficient-function Rν
in B(xh,Λ3) as:

Rν(x) = (x−Xν)

(
a2ν(x) + bν(x)cν(x)− cν(x)

(aν
cν

)′
(x)

+

√
−scν(x)(x−Xν)√

x−Xν

( √
x−Xν√

−scν(x)(x−Xν)

)′′
(x) +

1

4(x−Xν)2

)
.
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With this notation, Equation (3.14) reads

(3.15) d2y(x)

dx2
=
(
− 1

4(x−Xν)2
+

Rν(x)

x−Xν

)
y(x), x ∈ R.

Since the function Rν can also be defined by continuity at Xν , as stated in the
following result, this form of the equation evidences the singularity of the coefficient.

Remark 3. — Note that the method described below is valid in a more general
case than the hybrid resonance introduced in Definition 3, namely when ε011(xh) =

∂xε
0
11(xh) = 0 and ∂2x2ε011(xh) ∈ R∗. We denote by s̃ the sign of ∂2x2ε011(xh). In this

case one considers the limit kν , for x→ Xν , of

(x−Xν)2
(
a2ν + bνcν − cν

(aν
cν

)′
+
√
s̃cν

(
1/
√
s̃cν

)′′)
,

which is finite. The value of kν will generate the family of approximate solutions
needed for the subsequent study.

Returning to the situation described in Definition 3, one has

Lemma 6. — Under Assumptions 1, 2 and 3, there exists Λ6 satisfying 0 < Λ6 6 Λ3

(with Λ3 defined in Lemma 5) such that the coefficient function z 7→ Rν(z) is analytic
on a ball z ∈ B(xh,Λ6) uniformly for |ν| < Λ6. Moreover,

Rν(Xν) =

[
− iθ(ε

ν
12)′ + (εν12)2

(εν11)′
− (εν12)′

εν12
+

1

4

(εν11)′′

(εν11)′

]
(Xν),

where Xν is the translated resonance. This makes sense by continuity for ν small
since (εν11)′(Xν) = ∂xε

ν
11(Xν) 6= 0 from (3.2).

The proof of this Lemma is given in Section A. Since Rν(Xν) is bounded, as ex-
pected, the singularity is explicit in Equation (3.15): there is a (x−Xν)−2 singularity,
and only if Rν(Xν) 6= 0 then there is also a (x−Xν)−1 singularity.

Xν

xh

R

iR
iR

R

Figure 3.1. Illustration of the shift technique, with indication of the
branch cuts for a correct definition of the square root. On the left:
physical setting in the complex plane. On the right: mathematical
setting for the study of the Bessel functions.

Since Rν is bounded and analytic, one can formally shift the equation and the
unknown in the complex plane. This is illustrated in Figure 3.1. So we consider the
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function

(3.16) ỹ(z) =

√
z√

−scν(z +Xν)z
W ν(z +Xν), z ∈ C∗.

which is a shit of (3.13) and write the equation for this new unknown. It can be
justified that W ν , solution of (3.10), admits a convenient extension in a complex
neighborhood of the hybrid resonance xh. It provides a rewriting of Equation (3.14)
with these new variables.

Definition 7 (Shifted equation). — The shifted equation writes

(3.17) d2ỹ(z)

dz2
=
(
− 1

4z2
+
Rν(z +Xν)

z

)
ỹ(z), z ∈ C∗.

Our strategy is first to construct an explicit quasi-solution of the shifted equa-
tion (7) which is more general than the original equation (3.14)–(3.15) because it
is a complex equation, so as to provide an explicit quasi-solution of (3.14)–(3.15).
The modifications to obtained exact solutions of the original equation (3.15) will be
performed in a second step.

3.2. Freezing and defreezing the coefficient-function. — This section focuses on
Equation (3.17) for all ν 6= 0. We require that the function R(·) = Rν(x + Xν) is
locally analytic with coefficients uniform with respect to ν. We consider the more
general from

(3.18) d2ỹ(z)

dz2
=
(
− 1

4z2
+

R(z)

z

)
ỹ(z), z ∈ C∗.

Equation (3.18) will be linked to Bessel’s equation, replacing the coefficient func-
tion R by its value at the singularity. Indeed, consider the resulting new equation

(3.19) d2Y (z)

dz2
=
(
− 1

4z2
+

R(0)

z

)
Y (z), z ∈ C∗.

This equation is presented in the chapter on Bessel functions in the classical text-
book [1], see Equation (9.1.50). According to this reference, solutions are then ex-
pressed in terms of the Bessel functions J0 and Y0. Even if the equation is singular at
the origin, its solutions are locally bounded as stressed below.

Lemma 7. — If R(0) 6= 0, a pair of independent solutions of (3.19) can be expressed
with Bessel functions as {

z 7−→ √zJ0
(
λ
√
z
)
, z ∈ C,

z 7−→ √zY0
(
λ
√
z
)
, z ∈ C,

where λ = 2
√
−R(0).

If R(0) = 0, a pair of independent solutions of (3.19) can be expressed with the
simpler expression {

z 7−→ √z, z ∈ C,
z 7−→ √z log (z) , z ∈ C.
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Remark 4. — The function J0(z) admits a infinite converging expansion in powers
of z2

(3.20) J0(z) =

∞∑
k=0

(
− 1

4z
2
)k

(k!)2
,

and the function
Y0(z)− 2

π
log (z/2) J0(z)

admits a infinite converging expansion in powers of z2

(3.21) T0(z) := Y0(z)− 2

π
log (z/2) J0(z) = − 2

π

∞∑
k=0

ψ(k + 1)

(k!)2

(
−1

4
z2
)k
,

where ψ(1) = −γ and ψ(k) = −γ +
∑k−1
`=1 `

−1 for all k ∈ N such that k > 2, and γ is
the Euler constant.

Therefore a more convenient pair of independent solutions of (3.19) also valid for
λ = 0 reads

(3.22)

z 7−→
√
z J0

(
λ
√
z
)
, z ∈ C,

z 7−→ √z
[
Y0
(
λ
√
z
)
− 2

π
log (λ/2) J0

(
λ
√
z
) ]
, z ∈ C.

Unlike the one proposed in Lemma 7, the pair of independent solutions (3.22) is
uniform with respect to λ, for any function R continuous in the neighborhood of the
origin. So when applied to the case

(3.23) R = Rν(·+Xν),

it will be uniform with respect to ν. Indeed in this case, the parameter λ will depend
on ν since then λ = 2

√
−Rν(Xν). We will therefore denote by λν the value of λ =

2
√
−Rν(Xν) to emphasize its dependence with respect to ν. So the second function

from Lemma 7 has a logarithmic divergence when λν
√
z ≈ 0, which means that it

diverges if either λν ≈ 0 or
√
z ≈ 0. On the other hand the logarithmic divergence of

the second function of (3.22) is by construction only for
√
z ≈ 0. As a result Functions

(3.22) are well-defined for z 6= 0 as ν goes to zero, as well as for ν = 0.
The Bessel function (3.21) recasts as Y0(z) = T0(z) + 2

π log (z/2) J0(z) and the
second function in (3.22) then reads

(3.24) z 7−→ √z
[
T0
(
λ
√
z
)

+
1

π
log (z) J0

(
λ
√
z
) ]
.

The functions J0 and T0 are odd, so do not need a branch cut. On the other hand
a branch cut is needed for the logarithm function to be defined in a non ambiguous
way. We take the branch cut

Arg(z) ∈ (−π, π)⇐⇒ z ∈ C− (−∞, 0].

The Bessel based functions, solutions of the equation with frozen coefficient (3.19),
provide the formal dominant behavior of the solutions of Equation (3.18). Nevertheless
the rigorous justification of this statement is not evident, mainly because the frozen
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coefficient R(0) is only a first order local approximation of the coefficient function R.
Indeed the singularity of the 1/4z2 term is of second order, so any naive iteration
technique aiming at controlling the approximation error between both may diverge
like O

(
z−1
)
.

Overcoming this difficulty is the purpose of the next paragraph, which presents
a technical process to control these errors. The idea is to explicit the link between
Equation (3.18) and the frozen coefficient equation (3.19). Yet the singularity of the
equation requires specific attention, and the process is two-fold: an intermediate equa-
tion is introduced to focus first on the singularity, before finally going back to the
desired equation, namely (3.18).

3.2.1. Eikonal equation and stretching function. — Consider first another intermediate
equation by reintroducing a varying coefficient in Equation (3.19):

Definition 8 (Stretching procedure). — Let ρ be an arbitrary smooth function de-
fined in a complex neighborhood of the origin, such that ρ(0) = 0 and ρ′(0) 6= 0.
We will refer to it as the stretching function. This name comes, in particular, from
McKelvey [14].

Let u be a given function. The stretching of u is the function ũ defined by

ũ(z) = (ρ′(z))−1/2u(ρ(z)).

No branch cut of the square root is needed for small |z| since we impose ρ′(0) 6= 0.
The equation for the stretched function is the following.

Lemma 8. — Assume ρ is a stretching function and u solves the frozen coefficient
Equation (3.19). Set s =

(
(ρ′)−1/2

)′′
/(ρ′)−1/2. Then the stretched unknown satisfies

(3.25) d2ũ(z)

dz2
=

(
− ρ
′(z)2

4ρ(z)2
+

R(0)ρ′(z)2

ρ(z)
+ s(z)

)
ũ(z), z ∈ C∗.

Proof. — The proof relies on the scaling of the stretched unknown: the coefficient of
the first order derivative term in the computation of ũ′′ is ((ρ′)−1/2)′ρ′ + ((ρ′)1/2)′,
which happens to be zero. �

Note that the function s is a priori bounded around 0 since ρ′(0) 6= 0, so that, like
Equation (3.18), Equation (3.25) evidences the singularities of its coefficient.

At this point the stretching function is a tool that will be designed for the approx-
imation of Equation (3.18). Indeed, although Equation (3.25) is different from the
initial equation, namely (3.15), an adequate choice of stretching function leads the
way back to it. We choose a stretching function as a solution of the following eikonal
equation

(3.26) ρ′(z)2
(
− 1

4ρ(z)2
+

R(0)

ρ(z)

)
= − 1

4z2
+

R(z)

z
, z in a neighborhood of 0.
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We call this equation the “eikonal” equation for the similar equation for φ if one seeks
a solution of the wave equation (∆− c−2(x)∂2t2)u = 0 under the form

u(x, t) = a(x, k)eik(φ(x)−t).

Note that (3.26) implies

ρ′(z)

ρ(z)
= ±1

z

√
1− 4zR(z)

1− 4ρ(z)R(0)

for z, ρ(z) non-zero. As we choose ρ bounded in the neighborhood of 0, only the +

sign is relevant. So one can write(ρ(z)

z

)′
(z) =

ρ′(z)

z
− ρ(z)

z2
=
ρ(z)

z2

(√
1− 4zR(z)

1− 4ρ(z)R(0)
− 1

)

=
ρ(z)

z2

√
1− 4zR(z)−

√
1− 4ρ(z)R(0)√

1− 4ρ(z)R(0)
.

Use of the conjugate quantity of the numerator yields the equation

(3.27)
(ρ(z)

z

)′
(z) =

ρ(z)

z
F
(
z,
ρ(z)

z

)
, z in a neighborhood of 0,

where F is defined by

F (z, a) =
4 [R(0)a−R(z)]√

1− 4zR(z)
√

1− 4zR(0)a+ (1− 4zR(0)a)
.

Equation (3.27) is defined also at z = 0. Since F (0, a) = 2 [R(0)a−R(0)] is well-
defined, then F (z, a) makes sense at least for small z and for bounded R.

We now reintroduce R = Rν(· + Xν) and consider the more general equation in
the complex plane

(3.28) σ′ν(z) = σν(z)Fν (z, σν(z)) , ρν(z) = zσν(z), z in a neighborhood of 0,

where Fν is defined by

Fν(z, a) =
4 [Rν(Xν)a−Rν(z +Xν)]√

1− 4Rν(z +Xν)
√

1− 4Rν(Xν)a+ (1− 4Rν(Xν)a)
.

Note that thanks to the fact that the denominator is 1 for (z, a) = (0, 0), F is analytic
in a neighborhood of (0, 0) with coefficients uniform with respect to ν.

Lemma 9 (Solution of the eikonal equation). — Under Assumptions 1, 2 and 3, con-
sider Equation (3.28).

Then there exists a constant Λ7 ∈ (0,Λ6] (with Λ6 defined in Lemma 6) such that:
– For all |ν| 6 Λ7 there exists a solution to Equation (3.28) on a maximal interval

Iν =]aν , bν [⊂]− Λ3,Λ3[ (with Λ3 defined in Lemma 5).
– A solution of the eikonal equation (3.28) is ρν(z)/z for z ∈ B(0,Λ7) with

(3.29) ρν(z) = z exp

(
z

∫ 1

0

Fν(zt, σν(zt))dt

)
.
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It is the unique solution such that ρ′ν(0) = 1. Note that F is evaluated on the straight
line from 0 to z.

– This function is analytic in the ball z ∈ B(0,Λ7).

Proof. — Note that ] − Λ3,Λ3[ is not necessarily the maximal existence interval of
the ordinary differential equation (3.26).

The function σν = ρν/z is solution to the equation

(3.30) σ′ν(z) = σν(z)Fν(z, σν(z)), z in a neighborhood of 0.

The value of Fν(0, a) = 4Rν(Xν) (a− 1) is a well-defined (i.e., bounded, or non-
singular) real number. Equation (3.30) can be solved in the complex plane using
a theorem from Coddington-Levinson [8, Th. 8.1, p. 34]. For simplicity consider the
initial data σν(0) = 1 which yields σ′ν(0) = Fν(0, 1) = 0. This choice is arbitrary.

Since σ′ν(0) = 0, one has the Taylor expansion ρν(z) = z + Oν(z3), where the
constant in

∣∣Oν(z3)
∣∣ 6 C|z|3 is uniform with respect to ν. All other coefficients of

the Taylor expansion of the stretching function ρν can be easily computed from the
integral representation in the complex plane (3.29), where the path of integration is the
straight line. The analyticity is provided by the Coddington-Levinson theorem. �

Thanks to the stretching function described in Lemma 9, we can now express
explicitly the solutions of Equation (3.25), where, in view of Lemma 7 and Equation
(3.23), one needs to set

λν = 2
√
−Rν(Xν) = 2

√
−R(0).

Definition 9. — Under Assumptions 1, 2 and 3, consider Λ7 defined in Lemma 9, and
for all |ν| 6 Λ7 the stretching function ρν described in Lemma 9. A pair (Uν , Vν) of
independent solutions of Equation (3.25) is defined for all (ν, z) ∈ (−Λ7,Λ7)×B(0,Λ7)

by 

Uν(z) =

√
ρν(z)

ρ′ν(z)
J0

(
λν
√
ρν(z)

)
,

Vν(z) =

√
ρν(z)

ρ′ν(z)

[
Y0

(
λν
√
ρν(z)

)
− 2

π
log (λν/2) J0

(
λν
√
ρν(z)

)]
,

=

√
ρν(z)

ρ′ν(z)

[
T0

(
λν
√
ρν(z)

)
+

1

π
log (ρν(z)) J0

(
λν
√
ρν(z)

)]
.

We adopt the convention (as one did before for the root of −scν) that√
ρν(z)

ρ′ν(z)
=

(∫ 1

0
ρ′ν(tz)dt

ρ′ν(z)

)1/2√
z

is defined in C− (−∞, 0], that is apart from the branch cut (−∞, 0].

These functions are uniformly bounded with respect to ν.
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Lemma 10. — Under Assumptions 1, 2 and 3, consider the stretching function ρν
(3.29) for |ν| 6 Λ7 defined in Lemma 9.

Then the functions Uν and Vν are bounded in a complex neighborhood of the res-
onance xh ∈ C, uniformly for small ν: there exists a constant Λ8 ∈ (0,Λ7) (with Λ7

defined in Lemma 9) such that for all (ν, z) ∈ [−Λ8,Λ8]×B(0,Λ8)

(3.31) |Uν(z)|+ |Vν(z)| 6 C.
Moreover, Λ8 can be determined such that there exists δ > 0 with

|ρ′ν(z)| > δ > 0, ∀ ν ∈ B(0,Λ8)

in the same neighborhood.

Proof. — The property on ρν is immediate since σν(0) = 1. The uniform bounded-
ness of Uν stems from the boundedness of J0 (3.20). Concerning Vν , the log λν term
has been carefully removed, see (3.21), so that the boundedness is achieved even for
vanishing λν : the remaining log ρν(z) is controlled by the

√
z contribution that comes

from
√
ρν(z). �

It is then possible to apply the reverse shift.

Lemma 11. — The functions g(x) = Uν(x−Xν) or g(x) = Vν(x−Xν) are solutions
of the equation on the real line

(3.32) d2

dx2
g(x) =

[
− 1

4(x−Xν)2
+
Rν(x)

x−Xν
+sν(x−Xν)

]
g(x), ∀x ∈ B(xh,Λ8)∩R,

where sν =
(
(ρ′ν)−1/2

)′′
/(ρ′ν)−1/2.

Proof. — By definition, all these functions are analytic in the ball B(xh,Λ8)− {Xν}
(that is except at Xν) which is uniform with respect to ν. But, when ρν satisfies
the eikonal relation (3.26) with R(z) = Rν(z + Xν), the functions without the shift
z 7→ Uν(z) and z 7→ Vν(z) are solutions of (3.25). Therefore the result holds for
analytic functions on B(xh,Λ8)∩R for 0 < |ν| 6 Λ3. So this relation is true everywhere
by analytic continuation. The proof is ended. �

3.2.2. General solution with a Duhamel’s principle and a limit process. — In order to
go back to the equation with a variable coefficient, let us now consider the original
problem (3.15). One can rewrite this equation as

(3.33) d2

dx2
y(x) =

[
− 1

4(x−Xν)2
+

Rν(x)

x−Xν
+ sν(x−Xν)

]
y(x)

− sν(x−Xν)y(x), x ∈ R.

The last term is a perturbation with respect to Equation (3.32). As usual for such
problems, this term is treated by means of the Duhamel’s principle, where we will
make major profit of the fact that the fundamental solutions of the singular equation
(3.32) are bounded.
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Lemma 12. — Suppose Assumptions 1, 2 and 3 hold. Consider for all ν a given
reference point x∗ ∈ R close to xh in the ball of analyticity B(xh,Λ8), where Λ8 is
defined in Lemma 10. Then the function

(3.34) y(x) = Aν(x)Uν(x−Xν) +Bν(x)Vν(x−Xν)

is a solution of (3.33) for all (ν, x) ∈ (−Λ8,Λ8) × B(xh,Λ8) ∩ R if and only if Cν ,
defined by

(3.35) Cν(x) =

(
Aν(x)

Bν(x)

)
, x ∈ B(xh,Λ8) ∩ R,

is a solution of the integral equation

(3.36) Cν(x) = Cν(x∗) + π

∫ x

x∗
Mν(t)Cν(t)dt,

where the matrix

(3.37) Mν(t) = sν(t−Xν)

(
−Uν(t−Xν)Vν(t−Xν) −Vν(t−Xν)2

Uν(t−Xν)2 Uν(t−Xν)Vν(t−Xν)

)
is uniformly bounded in L∞ for (ν, t) ∈ (−Λ8,Λ8)×B(xh,Λ8) ∩ R.

As usual for such Volterra integral equations, the initial point x∗ ∈ R can be chosen
arbitrarily.

Proof. — This is the standard procedure of variation of parameters. Consider

(3.38) y′′ −
[
− 1

4(x−Xν)2
+

Rν(x)

x−Xν
+ sν(x−Xν)

]
y = f,

with f(x) = −sν(x −Xν)y(x). The solution y can be expressed as a combination of
Uν(x−Xν) and Vν(x−Xν), with appropriate coefficients Aν(x) and Bν(x)

y(x) = Aν(x)Uν(x−Xν) +Bν(x)Vν(x−Xν).

To construct the coefficients Aν(x) and Bν(x), we first assume that

(3.39) A′ν(x)Uν(x−Xν) +B′ν(x)Vν(x−Xν) = 0.

So the first derivative of y is

(3.40) y′(x) = Aν(x)U ′ν(x−Xν) +Bν(x)V ′ν(x−Xν).

The second derivative reads

y′′(x) = Aν(x)U ′′ν (x−Xν)+Bν(x)V ′′ν (x−Xν)+A′ν(x)U ′ν(x−Xν)+B′ν(x)V ′ν(x−Xν).

Using (3.32), one gets

y′′(x) =
[
− 1

4(x−Xν)2
+

Rν(x)

x−Xν
+ sν(x−Xν)

]
y(x)

+A′ν(x)U ′ν(x−Xν) +B′ν(x)V ′ν(x−Xν).

Since y is solution of (3.38), one gets

(3.41) A′ν(x)U ′ν(x−Xν) +B′ν(x)V ′ν(x−Xν) = f,
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with
f(x) = −sν(x−Xν) (Aν(x)Uν(x−Xν) +Bν(x)Vν(x−Xν)) .

One can solve now the linear system made of (3.39) and (3.41). To compute the
determinant of this linear system consider the Wronskian of Uν and Vν . Elementary
calculations and the identity W(J0,Y0)(x) = 2/πx yield

W(Uν ,Vν)(x) =
ρν(x−Xν)

ρ′ν(x−Xν)
λν

ρ′ν(x−Xν)

2
√
ρν(x−Xν)

W(J0,Y0)

(
λν
√
ρν(x−Xν)

)

=
λν
√
ρν(x−Xν)

2
W(J0,Y0)

(
λν
√
ρν(x−Xν)

)
=

1

π

where the convention is that√
ρν(x−Xν) =

√∫ 1

0

ρ′ν(t(x−Xν))dt
√
x−Xν

is defined apart from the branch cut x−Xν ∈ (−∞, 0] ⊂ C thanks to ρ′ν(0) = 1. By
analytic continuation the determinant of the linear system (3.39)–(3.41) is also equal
to the same value.

Therefore the solution readsA
′
ν(x) = −πsν(x−Xν) [Aν(x)Uν(x−Xν) +Bν(x)Vν(x−Xν)]Vν(x−Xν),

B′ν(x) = πsν(x−Xν) [Aν(x)Uν(x−Xν) +Bν(x)Vν(x−Xν)]Uν(x−Xν).

After integration, it yields the representation formula (3.36). The boundedness of the
kernel comes from the properties of sν , Uν and Vν in Lemma 10. It completes the
proof. �

Under the same conditions, one can define the integral operator Kν

(3.42) Kν(f)(x) = π

∫ x

x∗
Mν(t)f(t)dt,

so that the integral equation (3.36) reads Cν −Kν(Cν) = Cν(x∗), with a constant
vector right hand side. Classically for this Volterra second type integral equation
(see [20]), the solution is expressed with the resolvent kernel

(3.43) Qν [f ] =
∑
n>1

K (n)
ν (f),

under the form

(3.44) Cν(x) = Cν(x∗) + Qν [Cν(x∗)](x) =
(

Id + Qν

)
[Cν ](x∗),

∀x ∈ B(xh,Λ8) ∩ R,

where Cν(x∗) is the initial condition.
Foreseeing the limit process, the following results state the limit properties of ρν

and Mν , and of other useful quantities, as ν approaches zero.
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Lemma 13. — Under Assumptions 1, 2 and 3, consider for all |ν| 6 Λ7 the stretch-
ing function ρν described in Lemma 9. One has that limν→0± ρν(z) = zσ0(z) on
B(xh,Λ7), where σ0 is the solution of Equation (3.30) such that σ0(0) = 1. This limit
function will naturally be called ρ0.

Then the log and square root terms have limits which depend on the sign of ν:
we set

log ρ0(x− xh)
±

= lim
ν→0±

log ρν(x−Xν)

=

{
log (ρ0(x− xh)) , for xh < x,

log (−ρ0(x− xh))∓ iπs, for x < xh,

(3.45)

where s = sign (i∂νε
ν
11(x)/∂xε

ν
11(x))|x=xh,ν=0 , and

(3.46)
√
ρ0(x− xh)

±
= lim
ν→0±

√
ρν(x−Xν) =


√
ρ0(x− xh), for xh < x,

∓is
√
−ρ0(x− xh), for x < xh.

Proof. — The claim on ρ0 is evident. The limit of the log term comes from the
principal value of the logarithm: log z = a(z) + ib(z), where a(z) = log |z| and b(z) ∈
(−π, π]. And the limit of the square root term comes from the principal value of
the complex square root:

√
z =

√
|z| eiθ(z)/2, where θ(z) ∈ (−π, π] is the argument

of z. �

Lemma 14. — Under Assumptions 1, 2 and 3, the matrix Mν defined in (3.37) has a
limit in the following sense. For all Λ9 ∈ (0,Λ8) (where Λ8 is defined in Lemma 10),
one has that

– Mν(x)
C0[xh − Λ9, xh + Λ9]−−−−−−−−−−−−−−−−−−→

ν→0+
M+(x)

– Mν(x)
C0[xh − Λ9, xh + Λ9]−−−−−−−−−−−−−−−−−−→

ν→0−
M−(x)

– The continuous kernels M+ and M− are such that: M+ −M− = 0 vanishes
on [xh, xh + Λ9], while M+ −M− 6= 0 is non-identically zero on [xh − Λ9, xh].
Consider (for simplicity) a Cauchy data Cν(x∗) which admits a finite (given) limit in ν
in the representation (3.44) of the solution of integral equation. Then the functions Aν
and Bν also converge in C0[xh−Λ9, xh+Λ9] to continuous limit functions A±0 and B±0 .

Proof. — The continuous limits of the kernel Mν are given by application of
Lemma 13 since the kernel entries only depend on the functions Uν and Vν which
are locally bounded, see (3.31), and continuous. The limit of functions Aν and Bν
then directly stem from the limit of (3.44), where the kernel defined by (3.37)–
(3.42)–(3.43) has a limit which is bounded. Since the limits are solutions of the limit
integral equation with a bounded and continuous kernel, the limits A±0 and B±0 are
continuous. It ends the proof. �
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Definition 10. — Recall that s = − sign
(
(ε011)′(xh)

)
. We define three additional

functions as follows:

W ν
1 (x) =

√
−scν(x)

ρν(x−Xν)

ρ′ν(x−Xν)
J0
(
λν
√
ρν(x−Xν)

)
,

W ν
2 (x) =

√
−scν(x)

ρν(x−Xν)

ρ′ν(x−Xν)(
T0
(
λν
√
ρν(x−Xν)

)
+

1

π
log(ρν(x−Xν))J0

(
λν
√
ρν(x−Xν)

))
,

W ν
3 (x) =

√
−scν(x)

ρν(x−Xν)

ρ′ν(x−Xν)
T0
(
λν
√
ρν(x−Xν)

)
.

Since cν(x)ρν(x−Xν) is bounded, the functions W ν
1 and W ν

3 are uniformly bounded.
On the other hand, the function

W ν
2 (x) = W ν

3 (x) +
1

π
log(ρν(x−Xν))W ν

1 (x)

is not bounded, due the log term.

The analyticity of these functions is described below.

Lemma 15. — Under Assumptions 1, 2 and 3, consider that 0 < |ν| < Λ9 so that the
stretching function ρν inherits of the properties described in Lemma 9. One has

(3.47) lim
ν→0±

W ν
1 (x) = W1(x) :=

√
d0(x)ρ0(x− xh)

sε011(x)ρ′0(x− xh)
J0(λ0

√
ρ0(x− xh)),

∀x ∈ B(xh,Λ9) ∩ R,

where the limit function W1 is analytic on B(xh,Λ9) ∩ R. Similarly

lim
ν→0±

W ν
3 (x) = W3(x) :=

√
d0(x)ρ0(x− xh)

sε011(x)ρ′0(x− xh)
T0(λ0

√
ρ0(x− xh)),

∀x ∈ B(xh,Λ9) ∩ R,

and W3 is analytic on B(xh,Λ9) ∩ R.

Proof. — Take the limit in the series (3.20) that defines J0 is straightforward. Only
even terms appear in this series, so that J0(λ0

√
zσ0(z)) is analytic. For small x− xh

one uses (3.6) to show that the weight√
−scν(x)

ρν(x−Xν)

ρ′ν(x−Xν)

is close to √
d0(x)ρ0(x− xh)

sε011(x)ρ′0(x− xh)
.
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It is away from the branch cut of the square root since

(3.48) d0(x)ρ0(x− xh)

sε011(x)ρ′0(x− xh)
≈ d0(xh)

s(ε011)′(xh)
=
−|ε12(xh)|2
s(ε011)′(xh)

=
|ε12(xh)|2
|(ε011)′(xh)| > 0

by (3.8) and the value of s recalled in Definition 10. So W1 is analytic in the neigh-
borhood of xh. Mutatis mutandis the proof is the same for the function W ν

3 . �

Considering the logarithmic part in Definition (3.21) of Y0, the situation is a little
more involved concerning W ν

2 since the limits depend on the sign of ν.

Lemma 16. — Under Assumptions 1, 2 and 3, consider for all 0 < |ν| < Λ9 the
stretching function ρν described in Lemma 9. One has

lim
ν→0±

W ν
2 (x) = W±2 (x), ∀x ∈ B(xh,Λ9) ∩ R,

where the limit functions are

(3.49) W±2 =

√
d0(x)ρ0(x− xh)

sε011(x)ρ′0(x− xh)

·
(
T0
(
λ0
√
ρ0(x− xh)

)
+

1

π
log (ρ0(x− xh))

±
J0
(
λ0
√
ρ0(x− xh)

))
,

and s defined in Definition 10. The limit functions W+
2 and W−2 are equal on the

interval (xh, xh + Λ9), but are different on the interval (xh − Λ9, xh), where they
satisfy the jump relation

(3.50) W+
2 −W−2 = −2isW1.

Proof. — Formula (3.49) is an immediate consequence of the definition of W ν
3 . The

second relation comes from (3.45): we note that a similar relation has been proved
in [9]. �

3.3. Representation of the physical unknowns. — Being particularly careful about
the various singularities encountered, one can now obtain meaningful representation
formulas for the physical quantities (E1, E2,W ).

Proposition 1. — Assumptions 1, 2 and 3 hold. Consider for all |ν| 6 Λ9 the stretch-
ing function ρν described in Lemma 9. Consider for all ν a given reference point
x∗ ∈ R close to xh in the ball of analyticity B(xh,Λ9), as well as a Cauchy data
Cν(x∗) =

(Aν(x∗)
Bν(x

∗)

)
given through

(3.51) Cν(x∗) = π

(
V ′ν(x∗ −Xν) −Vν(x∗ −Xν)

−U ′ν(x∗ −Xν) Uν(x∗ −Xν)

)
Gν(x∗)

(
Eν2 (x∗)

W ν(x∗)

)
,
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where the matrix Gν(x∗) is given by

Gν(x)=


0

√
x−Xν√

−scν(x)(x−Xν)

−
√
−scν(x)(x−Xν)√

x−Xν

d

dx

( √
x−Xν√

−scν(x)(x−Xν)

)
− aν(x)

√
x−Xν√

−scν(x)(x−Xν)

 .

When ν goes to 0, this Cauchy data has a finite limit which can be any value in C2.
Then the unique solution (Eν1 , E

ν
2 ,W

ν) of the regularized system (1.9) on B(xh,Λ9)∩R
is given by

(3.52)



W ν = AνW
ν
1 +BνW

ν
3 +Bν

1

π
log ρν(· −Xν)W ν

1 ,

Eν2 = Aν

[ iθεν12
dν

W ν
1 −

εν11
dν

d

dx
W ν

1

]
+Bν

[ iθεν12
dν

W ν
3 −

εν11
dν

d

dx
W ν

3

]
+Bν

1

π
log ρν(· −Xν)

[ iθεν12
dν

W ν
1 −

εν11
dν

d

dx
W ν

1

]
−Bν

1

π

ρ′ν(· −Xν)

ρν(· −Xν)

εν11
dν
W ν

1 ,

Eν1 = Aν

[ iθεν11
dν

W ν
1 +

εν12
dν

d

dx
W ν

1

]
+Bν

[ iθεν11
dν

W ν
3 +

εν12
dν

d

dx
W ν

3

]
+Bν

1

π
log ρν(· −Xν)

[ iθεν11
dν

W ν
1 +

εν12
dν

d

dx
W ν

1

]
+Bν

1

π

ρ′ν(· −Xν)

ρν(· −Xν)

εν12(x)

dν
W ν

1 .

Proof. — The expression of

W ν =
√−scν (AνUν(· −Xν) +BνVν(· −Xν))

is immediate from Lemma 12, since it gives the general solution (3.34) of the corre-
sponding second order equation. It yields the first identity of (3.52).

Concerning the second identity of (3.52), one can start from

Eν2 =
aν
cν
W ν +

1

cν

d

dx
W ν

by means of (1.12) and (3.7). From (3.6) one has 1/cν = −εν11/dν and aν/cν =

iθεν12/d
ν . So one can write

(3.53) Eν2 =
iθεν12
dν

W ν − εν11
dν

d

dx
W ν .

To compute d
dxW

ν we directly differentiate all terms in the expression already ob-
tained for W ν (first line of (3.52)). We observe that the derivatives of Aν and Bν
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vanish since A′νUν(· − xh) +B′νVν(· − xh) = 0, see (3.39). It yields

(3.54) d

dx
W ν = Aν

d

dx
W ν

1 +Bν

(
d

dx
W ν

3 +
1

π
log ρν(· −Xν)

d

dx
W ν

1

)
+Bν

1

π

ρ′ν(· −Xν)

ρν(· −Xν)
W ν

1 .

It is then sufficient to plug this expression into (3.53), and to reorganize the sum to
get the Eν2 formula in the second line of (3.52).

From (1.9), summing the first equation multiplied by εν11 and the second equation
by −εν12, and from Assumption 2, one gets

(3.55) Eν1 =
iθεν11
dν

W ν +
εν12
dν

d

dx
W ν .

Even if very simple, this algebra seems to be important since various cancellations
of potential singular terms have been performed. It is then sufficient to plug the
representation formulas for W ν and d

dxW
ν in (3.55) to obtain the last part of the

claim. The Cauchy data Cν(x∗) is equal to
(Aν(x∗)
Bν(x

∗)

)
, where Aν and Bν are known

through (3.34)–(3.40). This gives(
Aν(x∗)

Bν(x∗)

)
= π

(
V ′ν(x∗ −Xν) −Vν(x∗ −Xν)

−U ′ν(x∗ −Xν) Uν(x∗ −Xν)

)(
y(x∗)

y′(x∗)

)
.

This linear system can be inverted to obtain y(x∗), y′(x∗). Then, use Definition (3.13)
for y as well as the equation on W ν , Eν2 given in Definition 1 to get y(x∗), y′(x∗) in
terms ofW ν(x∗), Eν2 (x∗), which leads to (3.51). Since Aν(x∗), Bν(x∗) is arbitrary, the
Cauchy data is any vector in C2. �

From Formulas (3.52) it is clear that the convergence with respect to ν is not the
same for Eν2 and Wν on the one hand, and for Eν1 on the other hand. Indeed the most
singular term in Eν2 and Wν is the logarithm log ρν(· −Xν): the last term in Eν2 is
non-singular since εν11/ρν(· −Xν) is the ratio of two terms vanishing at order one at
Xν—so is non-singular.

So Eν2 and Wν are bounded in Lploc(xh − Λ9, xh + Λ9) for p < ∞ and pass to the
limit pointwise except at the singularity xh = limν→0Xν . This result was already
obtained for the slab geometry with a completely different technique in [9, Prop. 5.14]
and is generalized here. So we state without detail the representation formulas for the
limits.

Proposition 2. — Suppose Assumptions 1, 2 and 3 hold. Consider for all |ν| 6 Λ9

the stretching function ρν described in Lemma 9, and the Cauchy data Cν(x∗) (given
by (3.51)) which goes to a finite limit when ν goes to 0. Consider the unique solution
(Eν1 , E

ν
2 ,W

ν) of the regularized system (1.9) on B(xh,Λ9).
Then for all 1 6 p <∞ the Lp−limits as ν → 0± of W ν and Eν2 are

(3.56) W± = A±0 W1 +B±0 (x)W3 +B±0
1

π
log ρ0(· − xh)±W1,
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and

E±2 = A±0

[ iθε012
d0

W1 −
ε011
d0

d

dx
W1

]
+B±0

[ iθε012
d0

W3 −
ε011
d0

d

dx
W3

]
+B±0

1

π
log ρ0(· − xh)±

[ iθε012
d0

W1 −
ε011
d0

d

dx
W1

]
−B±0

1

π

ρ′0(· − xh)

ρ0(· − xh)

ε011
d0

W1,

(3.57)

where log ρ0(· − xh)± is defined in (3.45). The limits also hold in R−{xh}∩B(xh,Λ9)

pointwise.

The situation is different for the Eν1 component of (3.52) since the division by
ρν(· −Xν) in the last term yields a singularity as ν approaches zero because

W1(xh) =

√
d0(xh)

sε′11(xh)
6= 0.

This behavior is the same that already demonstrated in [9] using a singular integral
equation technique. The difference is that we have now an explicit representation of
this singular behavior for small ν. To express the limit of the singular term, the more
efficient way is to use principal value and Dirac mass. Since the result is essentially the
same as in [9] and all calculations are now evident starting from the representation
formula (3.52) we state the result without details of the proof. The notations are that
s = sign (i∂νε

ν
11(x)/∂xε

ν
11(x))|x=xh,ν=0 , D is the Dirac mass and the principal value

is defined by

〈P.V.(α), φ〉 = lim
τ→0+

∫
x 6∈[xh−τ,xh+τ ]

α(x)φ(x)dx.

Theorem 1. — Suppose Assumptions 1, 2 and 3 hold. Consider for all |ν| 6 Λ9 the
stretching function ρν described in Lemma 9, and Cν(x∗) (given by (3.51)) which
goes to a finite limit when ν → 0. Consider the unique solution (Eν1 , E

ν
2 ,W

ν) of the
regularized system (1.9) on B(xh,Λ9). Then the limit of Eν1 , in D ′(B(xh,Λ9)),

E±1 = A±0

[ iθε011
d0

W1 +
ε012
d0

d

dx
W1

]
+B±0

[ iθε011
d0

W3 +
ε012
d0

d

dx
W3

]
+B±0

1

π
log ρ0(· − xh)±

[ iθε011
d0

W1 +
ε012
d0

d

dx
W1

]
± is B±0

ε012(xh)

d0
W1(xh)D(· − xh)

+ P.V.
(
B±0

1

π

ρ′0(· − xh)

ρ0(· − xh)

ε012(x)

d0
W1

)
.

Of course the right hand side terms on the first line converge also in the space
Lploc(xh − Λ9, xh + Λ9) as in the previous proposition, and the pointwise limit holds
away from the hybrid singularity xh.
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3.4. Resonant heating term. — The heating was defined in Formula (1.10). For a < b

in B(xh,Λ9) ∩ R∗ and ν ∈ (−Λ9,Λ9) we note

Qν(a, b) = =
∫ b

a

(εν(x)Eν(x),Eν(x)) dx

= −=
(
W ν(b)Eν2 (b)

)
+ =

(
W ν(a)Eν2 (a)

)
,

(3.58)

where (Eν1 , E
ν
2 ,W

ν) is the regularized solution system (1.9) on B(xh,Λ9). The limit
value for ν = 0 is the resonant heating and can be characterized as follows.

Theorem 2 (Resonant heating). — Suppose Assumptions 1, 2 and 3 hold. Consider
for all |ν| 6 Λ9 the stretching function ρν described in Lemma 9, and Cν(x∗) given
by (3.51) which goes to a finite limit when ν goes to 0.

For a, b ∈ B(xh,Λ9) ∩ R\{xh}, one can pass to the limit with respect to ν:
(i) If (a− xh)(b− xh) > 0, then limν→0Q

ν(a, b) = 0.
(ii) If a < xh < b, then

(3.59) lim
ν→0±

Qν(a, b) = ± 1

π
|B±0 (xh)|2

∣∣ε012(xh)
∣∣2 sign

(
=
(
∂νε

0
11(xh)

))
.

Proof. — There are many possibilities to compute this limit value from the previous
representation formulas.

First case. — This is a direct consequence on the fact that a and b are on the same
side of xh, that the solution is smooth away from xh and that =

(
ε0(x)X,X

)
= 0 for

any complex vector X since ε0(x) is Hermitian.

Second case. — Our proof of the result relies on three arguments which are a decom-
position of the solution between a regular part and a singular part, an adapted decom-
position of the resonant heating Qν(a, b) where some terms naturally tend to zero,
and a careful analysis of the remaining singular part.

Step 1: decomposition of the solution. — Let us decompose the electric field in two
parts, a regular part Rν and a singular part Sν . The regular part Rν is regular
enough, for example bounded in L2(−Λ9,Λ9) uniformly with respect to ν and with a
pointwise limit for x 6= xh. The singular part Sν is such that (x−Xν)Sν is bounded
in L∞(−Λ9,Λ9). One can choose

Sν(x) =
(
Bν

1

π

ρ′ν(· −Xν)

ρν(· −Xν)

εν12
dν

W ν
1 , 0
)
.

Consider on the one hand (3.3)–(3.4) and (3.12) which yield an estimate of the shift
of Xν in the complex plane, and on the other hand of the representation formulas
for Eν2 and Eν1 . Then one has the estimates in L2

(3.60) ‖Rν‖L2(a,b) 6 C and ‖Sν‖L2(a,b) 6
C√
|ν|
,
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for some constant C > 0 independent of ν. The regular part is estimated using the
integrability in space of the logarithm function. The singular part is estimated thanks
to the basic bound

∫ b
a
|1/x+ iν|2 dx 6 π/|ν|.

Step 2: decomposition of Q(a, b). — Let us introduce the Hermitian matrix

(3.61) Dν =
εν − (εν)

∗

2iν
= (Dν)∗.

This Hermitian matrix is uniformly bounded in view of all assumptions, that is

(3.62) ‖Dν‖L∞(a,b) 6 K,

for a constant uniform with respect to ν. The decomposition writes

Q(a, b) = =
∫ b

a

(εν(x)Eν(x),Eν(x)) dx

= ν<
∫ b

a

(Dν(x) (Rν(x) + Sν(x)) ,Rν(x) + Sν(x)) dx

= ν<
∫ b

a

(Dν(x)Rν(x),Rν(x)) dx+ 2ν<
∫ b

a

(Dν(x)Rν(x),Sν(x)) dx

+ ν<
∫ b

a

(Dν(x)Sν(x),Sν(x)) dx

= ν<
∫ b

a

(Dν(x)Rν(x),Rν(x)) dx+ 2ν<
∫ b

a

(Dν(x)Rν(x),Sν(x)) dx

+ =
∫ b

a

(εν(x)Sν(x),Sν(x)) dx.

Step 3: estimate of all terms. — The two first terms of this expression tend to zero
with ν in view of (3.60) and (3.62). Let us study the remaining term, which is

Gν = =
∫ b

a

(εν(x)Sν(x),Sν(x))

= =
∫ b

a

εν11(x)
∣∣∣Bν(x)

1

π

ρ′ν(x−Xν)

ρν(x−Xν)

εν12(x)

dν(x)
W ν

1 (x)
∣∣∣2dx.(3.63)

Define

zν(x) =
εν11(x)

x−Xν
and Kν(x) = (x−Xν)Bν(x)

1

π

ρ′ν(x−Xν)

ρν(x−Xν)

εν12(x)

dν(x)
W ν

1 (x).

These two terms are regular and have a natural limit as ν → 0±. One has

(3.64) Gν = =
∫ b

a

zν(x)|Kν(x)|2 x−Xν

|x−Xν |2
dx.

Introduce

Mν = =
∫ b

a

zν(Xν)|Kν(Xν)|2 x−Xν

|x−Xν |2
dx.

One can check that there exists a regular function Hν(x) such that

zν(x)|Kν(x)|2 − zν(Xν)|Kν(Xν)|2 = (x−Xν)Hν(x).
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Note that Mν(x) ∈ R. We thus deduce that

Gν −Mν = =
∫ b

a

Hν(x)
(x−Xν)2

|x−Xν |2
dx.

As the limit exists in L1, we use the dominated convergence theorem to deduce that

(3.65) lim
ν=0±

(Gν −Mν) = =
∫ b

a

H0(x)dx = 0.

Therefore it is sufficient to pass to the limit for Mν . Use
x−Xν

|x−Xν |2
=

x−<Xν − i=Xν

(x−<Xν)2 + (=Xν)2
.

The change of variable t = x−<Xν/=Xν yields

Mν = =
(
zν(Xν)|Kν(Xν)|2

∫ (b−<Xν)/=Xν

(a−<Xν)/=Xν

t− i
t2 + 1

dt

)
.

After integration
Mν = =

(
zν(Xν)|Kν(Xν)|2[Aν − iBν ]

)
= =

(
zν(Xν)|Kν(Xν)|2Aν

)
−=

(
zν(Xν)|Kν(Xν)|2iBν

)
,

(3.66)

where

Aν =
1

2
ln

(b−<Xν)2 + (=Xν)2

(a−<Xν)2 + (=Xν)2
,

Bν = tan−1
(b−<Xν

=Xν

)
− tan−1

(a−<Xν

=Xν

)
.

We claim that all terms have a natural limit in (3.66). One has

lim
ν=0±

zν(Xν) = ∂xε
0
11(xh) ∈ R.

Moreover, Aν → 1
2 ln (b− xh)2/(a− xh)2 ∈ R. So

lim
ν=0±

(
=
(
zν(Xν)|Kν(Xν)|2Aν

))
= 0.

When a < xh < b, the limit of (a−<Xν)/=Xν is −∞ when =Xν goes to 0 by
positive values, and the limit of (a−<Xν)/=Xν is +∞ when =Xν goes to 0 by
negative values. The sign of the imaginary part sign(=Xν) is given by (3.12)

sign(=Xν) = − sign

(
=
(∂νε011(xh)

∂xε011(xh)

))
sign(ν).

We thus deduce
lim
ν=0±

Bν = ∓π sign

(
=
(∂νε011(xh)

∂xε011(xh)

))
.

Hence

lim
ν=0±

=
(
zν(Xν) |Kν(Xν)|2 iBν

)
= ∂xε

0
11(xh)

∣∣∣B±0 (xh)W1(xh)
ε012(xh)

πd0(xh)

∣∣∣2(∓π sign

(
=
(∂νε011(xh)

∂xε011(xh)

)))
.
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Using d0(xh) = ε012(xh)2 thanks to ε012(xh) = −ε021(xh), one obtains that

lim
ν=0±

Mν = ± 1

π
∂xε

0
11(xh)

∣∣∣B±0 (xh)W1(xh)

ε012(xh)

∣∣∣2 sign

(
=
(∂νε011(xh)

∂xε011(xh)

))
.

One more simplification is |W1(xh)|2 =
∣∣ε012(xh)

∣∣2/∣∣∂xε011(xh)
∣∣ as a consequence of

(3.47)–(3.48). One gets

(3.67) lim
ν=0±

Mν = ± 1

π
|B±0 (xh)|2

∣∣ε012(xh)
∣∣2 sign

(
=
(
∂νε

0
11(xh)

))
.

The claim (3.59) is obtained as a consequence of (3.63)–(3.64)–(3.65)–(3.67). The
proof is ended. �

An interesting and evident corollary is the following.

Corollary 1. — Consider any dielectric tensor satisfying (3.1) and Assumption 2,
not necessarily with the exact form (1.4) but with the linearized form (1.5)–(1.7).
Assume ε0 is a smooth Hermitian matrix, and assume xh = 0 is a hybrid resonance.
Define the local dissipation tensor

D = −i (∂νε)
0

(xh) =

(
d1 d2
−d2 d1

)
with d1 6= 0 and d2 ∈ iR.

Then the value of the resonant heating is independent of D. The same for the
pointwise limits of the electric field, the magnetic field and the numerical value of the
resonant heating.

Proof. — It is sufficient to realize that the major assumption that was made, that is
(3.2)–(3.4), is independent of the exact value of d1 6= 0, and that the other coefficients
in D do not appear in the proof of the previous theorem. This is also clear in view of
the value of the resonant heating (3.59). �

An interesting consequence is that the initial dielectric tensor (1.4) can be replaced
by the linear approximation ε0 + iνD with D defined in (1.6). If one is interested only
in the limit value, which is a reasonable assumption for fusion plasmas where ν ≈ 10−7

may be encountered, this is a valid assumption.
One notices that the positivity condition d21 > |d2|2 that stems from the physics

(1.7) is not mandatory for the mathematical results to hold, since this condition was
never used in the proof. It is possible to modify even further the dissipation matrix
which therefore becomes non-physical. One may consider for example an artificial
tensor

(3.68) Dart =

(
d1 d2
−d2 d3

)
with d1 6= 0, d2 ∈ iR and d3 ∈ R.

Since only d1 really matters in εν11 which is the only quantity in the denominators
visible in the matrix Mν defined in (1.13), the results of this work are still valid.
We did not elaborate on such a matrix in this work since the condition d3 6= d1 is
non-physical and of less interest, nevertheless it must be stressed that the numerical
results in next section with tensor D2 validate this statement.
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4. Numerical illustrations

4.1. Numerics. — We show numerical results which illustrate some of the theoretical
results. These results have been computed with the Matlab solver developed by Lise-
Marie Imbert-Gérard during her PhD [11]. The code solves the system under the form
(1.12) with the ode23s subroutine of Matlab. This routine is adapted to stiff problems.

We use three different dielectric tensors that all have the same limit ε0 for ν = 0.
The three dielectric tensors are defined by three different dissipation tensors. The first
one denoted as D0 corresponds to the exact formula (1.4). The second one D1 =

(
1 0
0 1

)
corresponds to the linear approximation ε0 + iνD1. One can notice that D1 = I
corresponds to the limiting absorption principle that was studied in [9]. The last
D2 = D∗2 =

(
1 −2i
2i 5

)
is a Hermitian and positive matrix as is required on the physical

basis (see (1.6) for example). These three methods satisfy the main hypothesis of
Corollary 1 that is (Di)11 > 0 for i = 0, 1, 2. In each case, the matrix Mν(x, θ) is
constructed and the problem solved numerically in the interval [−5, 5] with arbitrary
Cauchy data Eν2 (5) = 1 and W ν(5) = 0. Notice that the Cauchy data is prescribed
on the right boundary inside the non-propagative zone, and is propagated from the
right to the left by the Matlab solver. With this, the numerical method naturally
captures an exponentially growing term (from the right to the left) which is therefore
exponentially decreasing from the left to the right in the propagative region and so
models correctly the condition at infinity.

ν .5 .5× 10−1 .5× 10−2 .5× 10−3 .5× 10−4 .5× 10−5

D0 9898 19484 18724 18623 18604 18590
D1 1534268 36976 20272 18771 18613 18588
D2 109836517 89603 22761 19001 18637 18591

Table 4.1. Values of the heating calculated with Formula (3.58) with
different ν and different dissipation tensors. As predicted by the the-
ory, the limit resonant heating in the last column is independent of
the dissipation tensor.

On the contrary if the numerical Cauchy data is prescribed on the left boundary in
the propagative zone, it inevitably captures a non-physical exponentially increasing
function at infinity. Finally, note that the Cauchy data Eν2 (5) = 1 is extremely small
with respect to the order of magnitude of the numerical solutions inside the domain.
All calculations are performed with different but positive values of the regularization
parameter ν > 0. The other parameters are chosen so that xh = 0 is a local hybrid
resonance, x < 0 is the propagative region and x > 0 is the non-propagative region.

The convergence as ν goes to the 0 of the heating term appears clearly in Table 4.1.
In Figure 4.1 we display the real part of Eν1 , Eν2 ,W ν for four different values of ν, and
for the linear models with D1 and D2. We observe the numerical convergence: even if
the results for ν = 0.5 are very different, the functions converge numerically to the
same limit for ν = 0.5×10−3. Figure 4.2 confirms this analysis for the imaginary part

J.É.P. — M., 2017, tome 4



212 B. Després, L.-M. Imbert-Gérard & O. Lafitte

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

Figure 4.1. Real part of V ν = Eν2 , W ν and Uν = Eν1 . Parameters
are as follows: D1 on the left, D2 on the right; from top to bottom
ν = .5, .5 · 10−1, .5 · 10−2, .5 · 10−3. One observes the convergence to
the same limit.
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Figure 4.2. Imaginary part of V ν = Eν2 , W ν and Uν = Eν1 . Parame-
ters are as follows: D1 on the left, D2 on the right; from top to bottom
ν = .5, .5 · 10−1, .5 · 10−2, .5 · 10−3. One observes the convergence to
the same limit.

J.É.P. — M., 2017, tome 4



214 B. Després, L.-M. Imbert-Gérard & O. Lafitte

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Im V
ν

Im W
ν

Im U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Im V
ν

Im W
ν

Im U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Im V
ν

Im W
ν

Im U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Re V
ν

Re W
ν

Re U
ν

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x

 

 

Im V
ν

Im W
ν

Im U
ν

Figure 4.3. Real part of V ν = Eν2 , W ν and Uν = Eν1 on the
left, imaginary part on the right. The diffusion tensor is the same
and equal to D0. Regularization parameter from top to bottom
ν = .5, .5 · 10−1, .5 · 10−2, .5 · 10−3. For the smallest value of ν, the
results are almost the same as in Figures 4.1 and 4.2 computed with
the linear models D1 and D2.
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of the electromagnetic field. Finally Figure 4.3 shows the same results but computed
with the “real” dissipation tensor. One clearly observes the same limit as in Figures 4.1
and 4.2, perhaps with smaller oscillations for larger values of ν.

4.2. A short conclusion. — All our numerical results confirm the singular solution
predicted by the theoretical results. It allows us now to have a comprehensive un-
derstanding of the local structure of the hybrid singular solutions. The connection of
the local structure near the singularity to the condition at infinity, this problem was
addressed in [9], can also be addressed starting with the tools of the present work and
using the methods developed in [13].

Appendix A. Proof of Lemma 6

Proof. — From Definition 6, the function Rν(x) is a priori a Laurent series in x, with
bounded coefficients in ν. Hence we will show that there exists Λ6 > 0 such that Rν(x)

is uniformly bounded, i.e., bounded for x ∈ B(xh,Λ6) uniformly for ν ∈ B(0,Λ6). And
such a Λ6 can be replaced by Λ3 in case this one was smaller. This will prove that it
is an analytic function with a uniform radius of convergence.

The function Rν is the product of x−Xν times a contribution which is the sum of
four terms. The first term is a2ν + bνcν = −Dν = cν + θ2, with Dν defined in (1.15),
which is at most O

(
(εν11)−1

)
. The product by x−Xν is bounded and admits a finite

limit for x → Xν . The second term depends on aν/cν which is locally bounded, so
does not yield any difficulty either: its contribution to Rν is bounded. The third term
can be written as√

x−Xν√
−scν(x)(x−Xν)

d2

dx2

(√−scν(x)(x−Xν)√
x−Xν

)
= −1

2

(c′ν(x)

cν(x)

)′
+

1

4

(c′ν(x)

cν(x)

)2
.

Considering the bounded function kν(x) = cν(x)(x−Xν), such that

kν(x) = − d
ν(x)

εν11(x)
(x−Xν) = − dν(x)∫ 1

0
∂xεν11(Xν + s(x−Xν))ds

.

Note that kν is analytic in B(xh,Λ5), whit Λ5 defined in Lemma 5, and that

kν(Xν) = − dν(Xν)

∂xεν11(Xν)
= − (εν12(Xν))2

∂xεν11(Xν)
,

hence kν is analytic and non-vanishing in a ball B(xh,Λ6). In addition, one checks
that k′ν/kν is analytic in B(xh,Λ6) hence bounded and its derivative is also bounded.
Hence one has√

x−Xν√
−scν(x)(x−Xν)

d2

dx2

(√−scν(x)(x−Xν)√
x−Xν

)
= −1

2

(
k′ν(x)

kν(x)

)′
− 1

2

1

(x−Xν)2
+

1

4

(
k′ν(x)

kν(x)
− 1

x−Xν

)2

= −1

4

1

(x−Xν)2
− 1

2

k′ν(x)

kν(x)

1

x−Xν
− 1

2

(
k′ν(x)

kν(x)

)′
+

1

4

(
k′ν(x)

kν(x)

)2

.

J.É.P. — M., 2017, tome 4



216 B. Després, L.-M. Imbert-Gérard & O. Lafitte

It yields that
√
x−Xν√

−scν(x)(x−Xν)

d2

dx2

(√−scν(x)(x−Xν)√
x−Xν

)
= − 1

4(x−Xν)2
+

τν(x)

x−Xν
,

where the function τν is uniformly bounded in the sense that |τν(x)| 6 C, i.e., bounded
for x ∈ B(xh,Λ6) uniformly for ν ∈ B(0,Λ6). It shows that the most singular part of
the two last terms cancel in the definition of Rν . The exact value of Rν(Xν) may be
computed as follows using dν defined in (1.14). From aν/cν = iθεν12/d

ν , one has by
elimination of εν22 = εν11 (aν

cν

)′
(Xν) = −iθ (εν12)′

(εν12)2
(Xν).

To obtain an explicit expression for the term Rν(Xν) we check that

k′ν
kν

(Xν) = 2
(εν12)′

εν12
(Xν)− 1

2

(εν11)′′

(εν11)′
(Xν).

It completes the proof since

Rν(Xν) = kν(Xν)

(
1−

(aν
cν

)′)
(Xν)− 1

2

k′ν
kν

(Xν)

=

[
− iθ(ε

ν
12)′ + (εν12)2

(εν11)′
− (εν12)′

εν12
+

1

4

(εν11)′′

(εν11)′

]
(Xν). �

Appendix B. Analytic solutions

In this section, we intend to construct analytic solutions to the cold plasma model
solution. Analytic solutions are of interest because they can be used as reference
solutions for testing numerical codes. The solutions we construct here are easily
computable, using special functions. They improve model solutions of the literature
(Chen-White, [22], [7] for example) in the sense that they have a richer behavior in
the neighborhood of the points studied (namely the hybrid resonance mode).

B.1. A first family without singularity. — The first case of interest is such that
the function s in equation (3.25) is identically 0. It greatly simplifies the algebra. In
this case ρ(x) = x/(1 + `−10 x), `0 being an arbitrary length, does not depend on ν.
The matrix Mν shall depend on ν through an arbitrary choice of Xν depending on ν,
(such as Xν = −iν). Consider

cν(x) = −ρ
′(x−Xν)

ρ(x−Xν)
= − 1

(x−Xν)(1 + `−10 (x−Xν))
,

aν(x) = −cν(x),

bν(x) = −cν(x)− 1

4

λ2ν
(1 + `−10 (x−Xν))2

,
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where λ, `0 are arbitrary constants. For the simplicity of notations, the sign in Defi-
nition 10 is assume to be positive, that is s = 1. We define U0

ν and V 0
ν the functions

(B.1)


U0
ν (z) =

√
ρ(z)

ρ′(z)
J0
(
λ
√
ρ(z)

)
,

V 0
ν (z) =

√
ρ(z)

ρ′(z)

[
Y0
(
λ
√
ρ(z)

)
− 2

π
log (λ/2) J0

(
λ
√
ρ(z)

)]
.

For λ = λν , the functions U0
ν and V 0

ν correspond to the functions Uν and Vν in
Definition 9.

Lemma 17. — The family of solutionsW ν and Eν2 of (1.12), with the above coefficients
of Mν defined in (3.7) can be written as

W ν(x) = (−cν(x))1/2(AU0
ν (x−Xν) +BV 0

ν (x−Xν)),

Eν2 (x) = A
[
cν(x)−1

(
((−cν(x))1/2U0

ν (x−Xν))′ + aν(x)(−cν(x))1/2U0
ν (x−Xν)

)]
+ B

[
cν(x)−1

(
((−cν(x))1/2V 0

ν (x−Xν))′ + aν(x)(−cν(x))1/2V 0
ν (x−Xν)

)]
,

where A and B are two given arbitrary constants. The solutions are non singular.

Proof. — Recall that U0
ν and V 0

ν solve
d2

dx2
U0
ν =

(
−
( ρ′ν

2ρν

)2
− (ρ′ν)2λ2

4ρν
+ sν

)
U0
ν

with ρν := ρ and sν := 0. One checks that (ρν)′(x) = 1/(1 + `−10 (x−Xν))2, hence
(ρ′ν(x))−1/2 is a polynomial of degree 1, hence sν = 0 as announced.

Consider

W ν(x) = (−cν(x))1/2(AU0
ν (x−Xν) +BV 0

ν (x−Xν)).

Eν2 is obtained through

(W ν)′ = cνE
ν
2 − aνW ν = cνE

ν
2 + cνW

ν .

As one has ( 1

cν
(−cν)1/2

)′
+

1

cν

(
(−cν)1/2

)′
= 0,

one gets

(Eν2 )′ − aνEν2 = (Eν2 )′ + cνE
ν
2

=
( 1

cν
((−cν)1/2)′′

)
(AU0

ν +BV 0
ν ) +

1

cν
(−cν)1/2(AU0

ν +BV 0
ν )′′

=
( 1

cν
((−cν)1/2)′′ +

1

cν
(−cν)1/2

(
−1

4
c2ν −

λ2ρν
4

c2ν

))
(AU0

ν +BV 0
ν ).

It is enough to call bν the coefficient such that (Eν2 )′ − aνEν2 = bνW
ν using

(AU0
ν +BV 0

ν )′′ =
(
− (ρ′ν)2

4ρ2ν
− λ2(ρ′ν)2

4ρν

)
(AU0

ν +BV 0
ν ).
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The solutions are non singular since the log contribution in V 0
ν is counterbalanced by

the different square roots in front of it. �

B.2. A second family with singularity. — The second case corresponds to a solu-
tion. It writes as a combination of Bessel functions with ρ(x) = x(1 + `−20 x2) inde-
pendent of ν. One may choose in this case

cν(x) = K
ρ′(x−Xν)

ρ(x−Xν)
and bν(x) = cν(x)

(aν(x)

cν(x)

)2
−
(aν(x)

cν(x)

)′
− 1

K
ρρ′(x−Xν).

It yields

cν(x) = K
[ 1

x−Xν
+

2(x−Xν)

`20 + (x−Xν)2

]
, aν(x) = C0cν(x)

and

bν(x) = −C2
0cν(x)− 1

K
ρ′(x−Xν)ρ(x−Xν)

= −C2
0cν(x)− 1

K
(x−Xν)(1 + `−20 (x−Xν)2)(1 + 3`−20 (x−Xν)2).

With a convenient choice of Xν 6∈ R, one has

Lemma 18. — The solutions ofEν2

W ν

′ =

C0cν −C2
0cν −

1

K
ρρ′(x−Xν)

cν(x) −C0cν(x)

Eν2

W ν

 ,

with
cν(x) = K

ρ′

ρ
(x−Xν) and ρ(z) = z(1 + `−20 z2),

are

W ν(x) = AJ0(ρ(x−Xν)) +BY0(ρ(x−Xν)),

Eν2 (x) = K−1ρ(x−Xν)(AJ ′0(ρ((x−Xν)) +BY ′0(ρ((x−Xν)))

+ C0(AJ0(ρ(x)) +BY0(ρ(x))),

where A and B are two arbitrary positive constants. The solutions are singular for
B 6= 0.

Proof. — The proof of this Lemma is constructive, namely we will deduce from the
fact that W ν = AJ0(ρ(x−Xν)) +BY0(ρ(x−Xν)). We drop all the indices ν.

The two equations are (using a = C0c, where C0 is a given positive constant)
W ′ = cE2 −C0cW , E′2 = C0cE2 + bW . We replace E2 by W ′/c+C0W in the second
equation, to obtain (W ′/c)′ = (C2

0c+ b)W . Note that W = J0(ρ) is a solution of this
equation, hence

(C2
0c+ b)J0(ρ) =

(ρ′
c
J ′0(ρ)

)′
=
(ρ′
c

)′
J ′0(ρ) +

(ρ′)2

c
J ′′0 (ρ).

Our aim is to remove all the terms containing J ′0(ρ), using in particular

J ′′0 (ρ) = −1

ρ
J ′0(ρ)− J0(ρ).
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Hence one deduces

(C2
0c+ b)J0(ρ) =

((ρ′
c

)′
− (ρ′)2

ρc

)
J ′0(ρ)− (ρ′)2

c
J0(ρ).

The equation that must be satisfied by c in order to have J0(ρ) as a solution is
(ρ′/c)′ = (ρ′)2/ρc, which is equivalent to ρ′/ρc is constant, namely c = Kρ′/ρ. The
coefficient b can thus be identified thanks to

b = −C2
0c−

(ρ′)2

c
= −C2

0K
ρ′

ρ
−K−1ρρ′,

which is the given coefficient b in the matrix Mν . The solutions are singular because
the log term in Y0 is nude. This ends the proof. �

Appendix C. Multi species

Our aim here is to show that our method can be used to study the resonances in
the case of multi-species.

For simplicity, let us consider the case of the electron-ion system. After elementary
calculations based on the fundamental equations that one may find in [4] for the cold
plasma model (from which the author deduces expressions (17.6) and (17.7) for the
effective dielectric tensor), one obtains the generalization of (3.7)

(C.1) Mν(x, θ) =
1

Dν(x)

(
Aν(x, θ) Bν(x, θ)

Cν(x) −Aν(x, θ)

)
.

Here Dν satisfies
– D0(x) vanishes at points xhi such that A0(xhi), B0(xhi), C0(xhi) do not vanish

and (A2
0 +B0C0)(xhi) = 0

– i∂νDν(xhi)|ν=0 ∈ R 6= 0

which are the unique conditions needed for the theoretical set-up of our main result.
This coefficient Dν is analogous to εν11.

Note that the method described above does not need expressions (17.6) and (17.7)
of [4], these expressions classically derive the effective dielectric tensor as the sum of
the effective dielectric tensors of each species, hence introducing artificial poles in the
dielectric tensor at all the cyclotron resonances. The formulation we introduce here
avoids introducing these poles.

We describe a two species case, one is electrons and one is ions with Z protons and
just give the main ideas. To obtain (C.1), one can start from the Maxwell equations

∇∧ E = iωB, c2∇∧B = −iωE + ε−10 j.

Thanks to the electro-neutrality, the ions density is Z−1Ne(x), Ne(x) being the elec-
trons density, hence the current j is given by

j = −eNe(x)ve + eZ(Z−1Ne(x))v,

v being the ion velocity, ve being the electron velocity, hence one has

j = eNe(x)(v − ve).
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The external magnetic field is B0 = B0(x)b, b is a unit vector. The so-called fluid
equations are given through Newton’s law

me(−iω + ν)ve = −e(E +B0(x)ve ∧ b), mi(−iω + ν)v = Ze(E +B0(x)v ∧ b)
from which one deduces the equation for the electric current thanks to ve = v− 1

eNe(x)
j:

(−iω + ν)j = ε0ω
2
p(1 + p)(E +B0(x)v ∧ b)− eB0(x)

me
j ∧ b, p =

Zme

mi
∈ (0, 1).

Introduce the ion cyclotron frequency and the electron cyclotron frequency

ωic(x) =
ZeB0(x)

mi
, ωec(x) =

eB0(x)

me
.

The traditional approach is to calculate v in terms of E (which introduces a singularity
at x such that ωic(x) = ω), then to deduce j (or ve) in terms of E (which introduces
a singularity at x such that ωec(x) = ω) and finally to replace j in Maxwell equations.
This structure is not the natural one in the sense that the dielectric tensor that one
obtains has singularities when ν goes to 0. Instead of using this approach, we seek the
TE field (E2(x), B3(x) := W (x))eiθy. Let (j1, j2) be the components of the electric
current transverse to b. The TE field being solution of{

c2W ′ = iωE2 − ε−10 j2,

E′2 = iθE1 + iωW,

we have thus to obtain (j2, E1) in terms of E2,W . It can be checked that
j1, j2, v1, v2, E1 are solutions of

(−iω + ν)j2 − ωecj1 + ε0ω
2
p(1 + p)B0v1 = ε0ω

2
p(1 + p)E2,

ωecj2 + (−iω + ν)j1 − ε0ω2
p(1 + p)B0v2 − ε0ω2

p(1 + p)E1 = 0,

(−iω + ν)v1 − ωicv2 −
Ze

mi
E1 = 0,

ωicv1 + (−iω + ν)v2 =
Ze

mi
E2,

ε−10 j1 − iωE1 = c2iθW,

where (v1, v2) are the components of the ion velocity transverse to b. Treating this
system globally leads to a determinant Dν :

Dν(x) = −iω((ωic)
2+(iω−ν)2)((ωec)

2+(iω−ν)2)+(−iω+ν)((iω−ν)2+ωicω
e
c)ω

2
p(1+p).

For the purpose of finding the hybrid mode associated with this system, one checks
that

−D0(x)

iω
= (p2(ωec)

2 − ω2)((ωec)
2 − ω2) + (1 + p)ω2

p(p(ωec)
2 − ω2).

Note that: for ω = ωic, −D0(x)/iω is equal to (1 + p)ω2
pω

i
c(ω

e
c − ωic) > 0; while for

ω = ωec , −D0(x)/iω is equal to (1 + p)ω2
pω

e
c(ω

i
c−ωec) < 0, which has an opposite sign.

If one denotes X = (ω/ωec)
2, we note that

− D0(x)

iω(ωec)
4

= (p2 −X)(1−X) + (1 + p)
(ωp(x))2

(ωec)
4

(p−X),
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hence the hybrid resonances, in this case, correspond to X solution of

X2 −
(
p2 + 1 + (p+ 1)

ω2
p

(ωec)
2

)
X + p

(
p+ (1 + p)

ω2
p

(ωec)
2

)
= 0.

This polynomial in X has two strictly positive roots, one root X− between p2 and 1,
the other root X+ greater than 1. For any ω > 0, this gives rise to two hybrid
resonances Xh

− and Xh
+ such that ωec(Xh

−) = ωX
1/2
− and ωec(Xh

+) = ωX
1/2
+ . They give

rise to the behavior described in this paper. Other formulas can be sought for.
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