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FRONT PROPAGATION DIRECTED BY

A LINE OF FAST DIFFUSION:

LARGE DIFFUSION AND LARGE TIME ASYMPTOTICS

by Laurent Dietrich & Jean-Michel Roquejoffre

Abstract. — The system under study is a reaction-diffusion equation in a horizontal strip,
coupled to a diffusion equation on its upper boundary via an exchange condition of the Robin
type. This class of models was introduced by H. Berestycki, L. Rossi and the second author in
order to model biological invasions directed by lines of fast diffusion. They proved, in particular,
that the speed of invasion was enhanced by a fast diffusion on the line, the spreading velocity
being asymptotically proportional to the square root of the fast diffusion coefficient. These
results could be reduced, in the logistic case, to explicit algebraic computations. The goal of
this paper is to prove that the same phenomenon holds, with a different type of nonlinearity,
which precludes explicit computations. We discover a new transition phenomenon, that we
explain in detail.

Résumé (Propagation de fronts dirigée par une ligne de diffusion rapide : limite en temps long
et grande diffusion)

Nous étudions une équation de réaction-diffusion posée dans une bande horizontale, couplée
à une équation de diffusion sur son bord supérieur à travers une condition de Robin. Cette
classe de modèles a été proposée par H. Berestycki, L. Rossi et le deuxième auteur afin d’étudier
l’influence d’une ligne de diffusion rapide (par exemple une route) sur les invasions biologiques.
Ils prouvent que la vitesse d’invasion est augmentée par une forte diffusivité sur la ligne, et plus
précisément asymptotiquement proportionnelle à la racine carrée de cette dernière. Dans le cas
d’une croissance logistique, ces résultats peuvent être réduits à des calculs algébriques. Le but
de cet article est de généraliser ce résultat à des non-linéarités différentes et pour lesquelles ces
calculs ne peuvent être accomplis. Nous mettons aussi en lumière un nouveau phénomène de
transition entre deux ondes progressives différentes, qu’on explique en détail.
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1. Introduction, statement of the problem

1.1. Model and question. — Let ΩL be the strip R× (−L, 0). The goal of this paper
is to study the large time asymptotics of the following system:

(1)


ut −Duxx + µu− v(t, x, 0) = 0 (t > 0, x ∈ R)

vt − d∆v = f(v) (t > 0, (x, y) ∈ ΩL)

dvy(t, x, 0) + v(t, x, 0) = µu(t, x) (t > 0, x ∈ R)

vy(t, x,−L) = 0 (t > 0, x ∈ R).

The unknowns are the functions (u(t, x), v(t, x, y)), respectively defined on R+ × R
and R+ ×ΩL. The positive numbers µ, d, D are given. The function f(v) is smooth,
and there is θ > 0 such that f ≡ 0 on [0, θ] and f(1) = 0. Moreover f > 0 on (θ, 1)

and f ′(1) < 0. Such a nonlinear term will sometimes be referred to as ignition type
nonlinearity, in reference to the mathematical literature on flame propagation models.
Of particular interest to us will be the large time asymptotics of (1), combined with
the limit D → +∞.

Remark 1.1. — All of the techniques used in this paper can be used for a bistable
nonlinearity by replacing f(v) > 0 by f(v) > −Lip(f)×v where needed. Nonetheless,
the applicability of the current paper depends on the existence of traveling waves for
the above system with speed

(2) c(D) ∼D→+∞ c∞
√
D

(see Theorem 2.2). In [11], the first author proves existence of traveling waves for
ignition and bistable nonlinearities, but the proof of the asymptotics (2) found in [12]
holds only for ignition type. Extending it to bistable type is still open.

The modeling for (1) can be found in [6]. We would like to point out that the
boundary condition for v at y = 0 is the only one that ensures total mass conservation
(
∫
R u(t, x)dx +

∫
ΩL

v(t, x, y)dxdy) in the absence of nonlinearity (f = 0), as can be
seen by integrating by parts the equation for v. We turn now to the motivation for
and the meaning of (1).

1.2. Motivation. — System (1) was proposed for the first time by Berestycki, Rossi
and the second author in [6], as a model for biological invasions in oriented habitats. It
was indeed observed in several instances that transportation networks tend to enhance
the speed of invasion. Let us mention two biological instances: the pine processionary
moves northwards faster than anticipated, and it is believed that the road network has
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Front propagation directed by a line of fast diffusion 143

a responsibility in the phenomenon, see for example [23]. The yellow-legged hornet
has invaded the whole South West of France, as is reported in the maps provided
in [24]: it first followed the main rivers, and from then colonized the inland areas.

Such boundary couplings between 3D-2D or 2D-1D equations to model transporta-
tion networks have been used extensively, see the introduction of [4] for various ex-
amples.

In [6], ΩL is replaced by the whole upper half-plane, and the nonlinearity f is a
Fisher-KPP type nonlinearity (f(0) = f(1) = 0, f > 0 concave between 0 and 1).
The line {y = 0} is named ’the road’, and the upper half-plane is named ’the field’.
This terminology will be freely used here. The authors showed the dramatic effect of
the road on the overall propagation: there is c∗(D) > 0 such that, for all c < c∗(D)

we have

lim
t→+∞

inf
|x|6ct

u(t, x) = 1/µ, lim
t→+∞

inf
|x|6ct

v(t, x, y) = 1, locally uniformly in y ∈ R,

and, for all c > c∗(D) we have

lim
t→+∞

sup
|x|>ct

u(t, x) = 0, lim
t→+∞

sup
|x|>ct

v(t, x, y) = 0, uniformly in y ∈ R.

Moreover, there is c∞ > 0 such that c∗(D) ∼ c∞
√
D, as D → +∞. Thus, the road

enhances and leads the propagation in its direction, even far away in the field where
the species diffuses only with a mobility d � D. This is in sharp contrast with the
classical and homogeneous propagation results for reaction-diffusion equations, such
as Aronson-Weinberger [2].

One could question whether this effect is due to the special structure of the Fisher-
KPP nonlinearity, or if it holds for more general terms f . Indeed, the Fisher-KPP
assumption f ′(0)v 6 f(v) enables to reduce the question of spreading speed to alge-
braic computations on the linearized equation near the (0, 0) state, whereas for more
general nonlinearities no such computations are available (for an ignition type non-
linearity the linearized would just be the heat equation) and the dynamics have to be
studied more carefully. This is the first motivation behind our choice for f . Moreover,
f has also an ecological meaning by itself, which is that of a weak Allee effect (see
[20, §2.2.1.1] for a precise description): broadly speaking, it models species for which
the per capita growth is positive but lowest for lowest densities.

In [12], the first author gives a first hint of the robustness of the phenomenon
discussed above, by constructing traveling waves (φ(x+ ct), ψ(x+ ct, y)) to (1) with
ignition type nonlinearity whose speed c satisfies indeed c(D)∼c∞

√
D, where c∞>0

is characterized in terms of a limiting problem obtained by rescaling x by
√
D and

sending D to infinity. In order to confirm the phenomenon of [6] for (1) with the igni-
tion type nonlinearity, one should now understand whether, and how, those traveling
waves attract the solutions of (1). This is the aim of this paper. Instead of presenting
the results now, we will show some numerical simulations, which reveal a transition
phenomenon in the propagation that we had not expected.
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144 L. Dietrich & J.-M. Roquejoffre

1.3. Some numerical simulations. — These simulations were produced using
FreeFem++. We used P2 finite elements on a mesh of 400 × 50 points. The time
scheme used is a two-step (to handle the coupling) explicit Euler, which seems
quite sufficient in terms of accuracy and speed for our context. Neumann boundary
conditions are imposed on the sides of a domain of size A×L with A� L. Finally, we
represented u as a function over the whole domain so that it is visible. The following
parameters were used:

µu0, v0 1(−3,3)(x)

d 0.1
D 100
µ 1.4
θ 0.3

f(v) 10× 1v>θ(v − θ)2(1− v)

A 500
L 50
∆t 0.1

Figure 1. Scale. u, v are solutions of (1). u is extended in a constant way
over the all ΩL for a clearer representation and comparison with v.

Figure 2. t = 0

Figure 3. t = 10∆t

Figure 4. t = 75∆t

Figure 5. t = 100∆t

J.É.P. — M., 2017, tome 4



Front propagation directed by a line of fast diffusion 145

Figure 6. t = 300∆t

Figure 7. t = 1000∆t

Figure 8. t = 1300∆t

The scenario that we would expect is thus the following: due to the large diffusiv-
ity D, u is quickly spread on all R and decays rapidly. Meanwhile, v grows slowly and
transmits mass to u. At some point, u has recovered enough mass and starts to lead
the propagation. The acceleration of the propagation is then transmitted downwards
from the road to the bottom of the field, reaching the regime dictated by the travel-
ing wave. The remainder of this paper is devoted to proving that this is indeed what
happens.

2. Main results, discussion

Let us reformulate System (1) in the following way, we hope that it will help the
reader visualize the problem.

(3)
d∂yv = µu− v

∂tu−D∂2
xxu = v − µu

∂tv − d∆v = f(v)

∂yv = 0

We also want to study the behaviour for large D, so the renormalization (x← x
√
D)

will often be used:

(4)
d∂yv = µu− v

∂tu− ∂2
xxu = v − µu

∂tv − d
D∂

2
xxv − d∂2

yyv = f(v)

∂yv = 0

Some results will be stated for Equation (3) and some for (4) and the proofs will
juggle between the two. We would like to emphasize that uniqueness as well as many
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properties of this system are a consequence of the monotone structure of (3) inherited
from the maximum principle investigated in [6, 11, 12]. The purpose of this paper is to
investigate the large-time and large-diffusion asymptotics of this solution. We briefly
mention existence and uniqueness of a solution and refer to [6] for the proof (where
the strip is replaced by a half-plane but the argument still holds).

Theorem 2.1 (Stated for Equation (3)). — Let (u0, v0) ∈ C(R) × C(ΩL), 0 6 µu0,
v0 6 1. There exists a global solution in the classical sense to (3) with initial data
(u0, v0). This solution is unique in the class of bounded classical solutions and satisfies
0 6 µu(t, x), v(t, x, y) 6 1 for all t > 0, x ∈ R, y ∈ ΩL.

As we will use them throughout the paper, we also mention the results of [11, 12]
about traveling waves.

Theorem 2.2. — There exists a unique speed c > 0 and a unique pair of smooth
increasing (in the x variable) profiles φ(x), ψ(x, y) up to translation in the x-direction,
connecting the states (0, 0) and (1/µ, 1) such that (φ(x+ct), ψ(x+ct, y)) is a traveling
wave solution of (3). Moreover, there exists c∞ > 0 such that c(D) ∼ c∞

√
D as

D → +∞.

2.1. First results. — The following theorems are natural consequences of the sta-
bility of front-like initial data, using an argument initiated by [15], and are not so
unexpected. They will, nevertheless, be useful for later purposes. A specificity of the
present computations is that they should be uniform in the large parameter D, this
is why they are detailed.

Theorem 2.3 (Stated for Equation (3)). — Let (u0, v0) be a front-like initial datum
for Equation (4), that is (u0, v0) ∈ Pα0 defined in the next section. There exists an
exponent ω > 0 that depends on the initial data only through α0, and for all ε > 0

small enough there exist two shifts ξ±1 ∈ R such that

µφ(x+ cξ−1 + ct)− Cεe−ωt 6 µu(t, x) 6 µφ(x+ cξ+
1 + ct) + Cεe−ωt

ψ(x+ cξ−1 + ct)− Cεe−ωt 6 v(t, x, y) 6 ψ(x+ cξ+
1 + ct) + Cεe−ωt,

where C is a constant that depends only on f , d and L. Moreover, ω does not depend
on D > d.

Remark 2.1. — The previous theorem does not give the convergence towards traveling
waves, but it gives a precise spreading velocity. In [21], this is the starting point of an
iterative argument showing a geometric decrease of the distance separating the two
shifts with respect to a fixed time step. One could think of adapting the argument of
[21] to (4), but this would not be uniform in D > d. We prefer to focus on the really
new features of the model.

We now turn to what happens for compactly supported initial data.
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Theorem 2.4 (Stated for Equation (3)). — Let (u0, v0) be non-negative smooth com-
pactly supported data. There exist δ > 0 and M = O(

√
D) such that if µu0, v0 > 1− δ

for (x, y) ∈ (−M,M)× [−L, 0] then µu, v stays trapped (in the sense of Theorem 4.1)
up to an exponentially decaying error between two shifts of a pair of traveling waves
evolving in both directions.

2.2. Data with O(1) support and additional effects. — Throughout the rest of the
paper, extinction will mean convergence of the solution towards (0, 0) locally uni-
formly in space as t→ +∞ and invasion or propagation, convergence of the solution
towards (1/µ, 1) locally uniformly in space as t → +∞. This vocabulary is inspired
by the ecological interpretation of the equations. Of special interest to us will be the
description of how invasion happens when it does.

In this section we state the results that account for the above numerical simulations.
This first result says that one only needs v0 to be close enough to 1 on a rectangle
(−M ′,M ′) × [−L, 0] independent of D to initiate propagation, and after a waiting
time tD one recovers fast propagation to the traveling wave speed as in Theorem 2.4.

Theorem 2.5 (Stated for Equation (3)). — Let L be large enough (independently
of D). There exist M ′, δ′ > 0 independent of D > d such that, if the initial datum
0 6 µu0, v0 6 1 satisfies

v0 > 1− δ′ for x ∈ (−M ′,M ′),

then the following holds: let h(D) be any infinitely increasing function as D →∞; then
after a time tD = D1/2h(D) + O(1), the functions µu and v satisfy the assumptions
of Theorem 2.4, in other words:

µu, v > 1− δ for x ∈ (−M
√
D,M

√
D).

As a consequence, starting from the time t = tD, propagation occurs as described
in Theorem 2.4. On the numerical simulations, this moment would be around 1000∆t,
see Figure 7, when the level lines of v are completely inclined. The solution actually
starts to accelerate before that – see Figure 6, around 300∆t – but this acceleration
takes also some time to propagate from y = 0 to y = −L. The waiting time tD
accounts for both the first slow propagation phase with flat level lines plus the time
needed to fully transmit the acceleration from the road.

One could argue that this happens in a much smaller time. The next theorem shows
that, even if the solution may not take all the time tD to fall into the assumptions
of Theorem 2.4, it stills needs a lot of time. To what extent the upper bound in the
above theorem, and the lower bound in the next theorem, can be reconciled, is a very
interesting question that we leave for future work.

Theorem 2.6 (Stated for Equation (3)). — Let M ′, δ′ > 0 be as in Theorem 2.5. For
every 0 < κ < 1/7 small, there exists Cκ > 0 such that, if

(5) t 6 CκD
1/7−κ,

J.É.P. — M., 2017, tome 4



148 L. Dietrich & J.-M. Roquejoffre

then (µu(t, .), v(t, ., .)) does not satisfy the assumptions of Theorem 2.4. More precisely
we have, uniformly in t satisfying (5):

lim
D→+∞

‖u(t, .)‖∞ = 0, lim
D→+∞

∣∣{(x, y) ∈ ΩL : v(t, x, y) > θ}
∣∣

√
D

= 0.

Finally, we investigate the situation of an initial datum supported only on the road.
The behaviour that we find does not at all look like what we have just discovered for
initial data supported in the field. If µu0 6 1 has a support of size 6 C

√
D there

will be extinction. On the other hand, we also provide conditions on µ for invasion to
happen.

Theorem 2.7 (Stated for Equation (4)). — Let v0 ≡ 0 and µu0 = 1(−a,a) be initial
data for (4) and u, v the associated solutions. We have the following :

– There exists a0 > 0 independent of D such that if a < a0, µu and v decay to 0

uniformly as t→ +∞.
– If a = +∞ there are thresholds µ± independent of D such that for µ < µ−

invasion occurs and for µ > µ+, µu and v converge uniformly to 1/(µ(L+ 1/µ)) 6 θ.
– More generally, provided µ < µ−, there exists a1 > 0 independent of D such that

if a > a1, invasion occurs.

Remark 2.2. — It is quite natural that µ too large leads to extinction: indeed, we
normalized u so that u 6 1/µ and moreover µ acts as a death rate in the equation
on u. Meanwhile, v sees the same initial boundary Robin condition ≡ 1 independently
of µ.

The case a = +∞ (fully crowded road) does not have much biological meaning by
itself, but we use it as a tool to study the case of large a, as the associated solutions
are close to each other in exponentially weighted spaces.

2.3. Bibliographical study and discussion. — The general issue of our work is that
of speed-up versus quenching. The first contribution concerning the behaviour of
compactly supported initial data in reaction-diffusion equation of ignition (or bistable)
type can be found in Kanel’ [18]. For the one dimensional equation

∂tv − ∂2
xxv = f(v)

the author shows the existence of two thresholds 0 < L0 6 L1 < +∞ such that if
v0 = 1(−l,l) with l < L0, v ends up below θ in finite time (and as a consequence,
decays to 0 uniformly) : we call this situation quenching. On the other hand, if l > L1

it is shown that v → t→+∞1 uniformly on compact sets. Zlatoš [26] showed L0 = L1,
and more generally Du and Matano [13] showed the existence of such thresholds for
general one-parameter families of initial data.

For equations in cylinders and in the presence of a parallel shear flow,

∂tv +Aα(y)∂xv −∆v = f(v)

an important issue is to understand how a large amplitude flow (i.e., A � 1) will
enhance spreading. This has been studied in various papers starting from [3], where
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Front propagation directed by a line of fast diffusion 149

it is shown in the case of a Fisher-KPP nonlinearity, a linear speed-up

c∗(A) ∼
A→+∞

kA.

In a more general setting, let us quote Constantin-Kiselev-Oberman-Ryzhik [7], who
introduce the notion of bulk burning rate. For ignition type nonlinearities, the same
result holds as proved by Hamel and Zlatoš [17] (see [12] for a comparison of their
result with our situation). As for whether propagation or quenching holds, Constantin-
Kiselev-Ryzhik [8] and Kiselev-Zlatoš [19] show that the price to pay for propagation
(hence, speed-up) also is a linear scaling in A for the initial size of temperature
distribution:

L0 ∼
A→+∞

k0A, L1 ∼
A→+∞

k1A,

provided that the flow is not constant on too large intervals. In other words, one
trades a linear (in the amplitude of the flow) speed up of propagation for a similar
linear growth in the critical size of initial data that leads to quenching.

In the case of cellular flows, the same phenomenon happens but with a scaling in
A1/4 (up to a logarithmic factor): the speed-up property was proved by Novikov and
Ryzhik [22] for the KPP case and more recently by Zlatoš [27] for combustion type
nonlinearities. On the other hand, Fannjiang-Kiselev-Ryzhik [14] proved (for flows
with small enough cells) that if L4 ln(L) < kA – where L represents the size of the
square supporting the initial datum – quenching happens. See also the numerical
simulations of [25].

A different type of mechanism is studied in Constantin-Roquejoffre-Ryzhik-
Vladimora [9] where the authors investigate a system coupling a reaction-diffusion
equation and a Burgers equation. They show different quenching results with respect
to a gravity parameter, one of them being that quenching happens independently of l
when the gravity is large enough.

In the light of this section, Theorem 2.5 may come up as a surprise since it shows
a speed-up of the propagation (to an asymptotic speed c = c∞

√
D) for free: D does

not appear in the threshold size of the initial data v0 whereas in the above described
context, the initial distribution of temperature really needs to be above a plateau large
enough whose size scales as the amplitude of the flow to some power. The trade-off in
our setting is the presence of a “two-speed” mechanism: propagation first happens at
a small speed that does not depend on D, but accelerates towards the full speed c(D).
On the other hand, if one tries to initiate the invasion only thanks to µu0 = 1(−l,l)
and v0 ≡ 0, Theorem 2.7 shows that quenching happens if l < a0D

1/2 (from the point
of view of (3)).

2.4. Organization of the paper. — Section 3 is devoted to proving Theorem 2.3 in
the more precise form Theorem 3.1, Section 4 provides the details for the proof of
Theorem 2.4 by proving the detailed Theorem 4.1. In section 5 we prove Theorem
2.5, and we prove Theorem 2.6 in Section 6. These two sections will describe more
precisely the mechanism that is at work. Finally, the last section investigates the case
of initial data supported on the road only.
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150 L. Dietrich & J.-M. Roquejoffre

3. Front-like initial data

Let us first trap the initial data between functions that will evolve in sub and
super-solutions traveling at the right speed.

3.1. Trapping the initial data. — We deal with bounded, uniformly continuous per-
turbations (ρ1, ρ2) such that there exist C and α0 > 0 such that ρi(x) 6 Ceα0x. Then
we assume

0 6 µu0, v0 6 1(6)
(u0, v0) = (φ(x+ ξ), ψ(x+ ξ)) + (ρ1, ρ2)(7)

for some (ρ1, ρ2) of the above form and some translation ξ ∈ R. Such initial data is
said to be in the class Pα0 . In this subsection, we prove that such initial data can be
trapped between two translates of the traveling front, which is conceptually simple
but necessary. Due to the degeneracy of f(v) as v 6 θ, we will have to use the following
weight function. Let L0 > 3 and

0 < α < min(α0, c).

Define Γ(x) to be a smooth non-decreasing function such that

(8) Γ(x) =

{
1 if x > L0

eα(x+L0) if x < −L0 − 1.

We also recall the exponential convergence towards 0 or 1 as x→ ±∞ proved in [11],
[12]: there exist λ, λ̃ > 0 (bounded from below uniformly in D > d) and one can
enlarge L0 > 0 so that

(9)
∀x < −L0/2 µφ, ψ 6

θ

2
eλ(x+L0/2) 6

θ

2

∀x > L0/2 1− µφ, 1− ψ 6 1− θ1

2
e−λ̃(x−L0/2) 6

1− θ1

2
,

where θ < θ1 < 1 is chosen so that −f ′(s) > −f ′(1)/2 =: β > 0 when s > θ1. That
way, ahead of the front the system becomes linear and behind the front one controls
the monotonicity of f . We now assert the following.

Proposition 3.1. — Assume (6), (7). Then for any ε > 0, there exist ξ−0 < 0 and
ξ+
0 > 0 large enough such that

µφ(x+ ξ−0 )− εΓ(x+ ξ−0 ) 6 µu0(x) 6 µφ(x+ ξ+
0 ) + εΓ(x+ ξ+

0 )(10)
ψ(x+ ξ−0 , y)− εΓ(x+ ξ−0 ) 6v0(x, y) 6 ψ(x+ ξ+

0 , y) + εΓ(x+ ξ+
0 ).(11)

Proof. — We only prove (10). (11) is obtained simultaneously with the same argu-
ments (y-uniform limits, y-uniform exponential decay) by taking |ξ±0 | large enough.
We start with the right inequality. Let ε > 0. Thanks to the uniform limit of φ as
x→ +∞, there exists Bε independent of ξ+

0 such that for x > −ξ+
0 + L0 +Bε,

µφ(x+ ξ+
0 ) + εΓ(x+ ξ+

0 ) > 1− ε+ ε = 1 > µu0(x).
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On the other hand, when x 6 −ξ+
0 −L0−1, µu0(x) 6 Ceα0x, so here for the inequality

to be true one needs εeα(x+ξ+0 +L0) > Ceα0x. But since x+ξ+
0 +L0 < 0 and 0 < α < α0,

one just needs εeα0(x+ξ+0 +L0) > Ceα0x, which is ensured as soon as ξ+
0 > ln(C/ε)−L0.

Now only the compact region x ∈ [−ξ+
0 −L0− 1,−ξ+

0 +L0 +Bε] remains. Observe
that on this interval, µu0(x) goes uniformly to 0 as ξ+

0 →∞, whereas the right-hand
side in (10) has a fixed positive infimum, so that the desired order is obtained by
enlarging ξ+

0 .
For the existence of ξ−0 : observe that on x > −ξ−0 + L0 + 1

µφ(x+ ξ−0 )− εΓ(x+ ξ−0 ) 6 1− ε 6 µu0(x),

provided ξ−0 is negative enough, thanks to the uniform limit of u0 as x→ +∞. Now
for the rest of the proof, we need on x 6 −ξ−0 + L0 + 1

εeα(x+ξ−0 +L0) > µφ(x+ ξ−0 )− (µφ(x) + ρ(x)).

Because the exponential decay λ of φ and ψ satisfies λ > c > α (see [12]) this is true
on x 6 −ξ−0 − L0 −Bε with Bε > 0 large enough independent of ξ−0 so that here

εeα(x+ξ−0 +L0) > θeλ(x+ξ−0 ) > µφ(x+ ξ−0 ).

Again, we cover the compact region left around the interface by enlarging −ξ−0 . �

3.2. Wave-like sub and supersolution. — We adapt the original result of Fife-
McLeod [15] using the simplified notation and generalization of Mellet-Nolen-Ryzhik-
Roquejoffre [21]. The adaptation is computationally non trivial, so let us first explain
the changes that we expect to happen. Our objective is to build a supersolution
u, v to (4) that is close to the front (φ, ψ) (in the frame moving at speed c). In the
homogeneous case and for generalized transitions fronts the authors of [21] proposed
v = ψ(x + cξ(t)) + q(t)Γ(x + cξ(t)), where ψ is the front, ξ(t) is an increasing shift
starting from the initial one and converging to some finite limit, q(t) = εe−ωt and
Γ is defined above: this is a necessary correction to take into account the initial
perturbation and the degeneracy of f on v 6 θ. In our case, we will look for

(12)
{
µu = µφ(x+ cξ(t)) + qu(t)Γ(x+ cξ(t))

v = ψ(x+ cξ(t), y) + qv(t, y)Γ(x+ cξ(t))

and

(13)
{
µu = µφ(x− cξ(t))− qu(t)Γ(x− cξ(t))
v = ψ(x− cξ(t), y)− qv(t, y)Γ(x− cξ(t))

with ξ starting from ξ±0 . We will also use the fact that

∀M > 0,∃δM > 0 | ∂xφ, ∂xψ > δM when x ∈ (−M,M).

Now we reduce α a bit more and set α = min(α0, c/5), just so that the quantities

αc− d/Dα2 > αc− α2 > αc/4− α2 > 0
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cannot be zero. These quantities will play an important role in the following compu-
tations. Observe that this condition on α means that the decay correction obtained
through Γ is limited: solutions starting from large perturbations (i.e., small α0) will
be stabilized thanks to a correction with an α0 decay also, but solutions from very
small perturbations (i.e., very large α0) will still need a c/5 correction in the decay
at −∞ to be stabilized.

Since we still want an exponential decay of qv(t) we look for

(14)
{
qu(t) = εCe−ωt

qv(t, y) = εh(y)e−ωt

with separate variables. The boundary conditions yield h′(−L)=0 and h′(0)+h(0)=C

so that we have a large choice for h. Nonetheless, it will become clear in the following
computations that a good candidate is

(15) C = cosh
(√

κ/dL
)

+ sinh
(√

κ/dL
)
, h(y) = cosh

(√
κ/d

(
y + L

))
with

κ = min
(
β/2, (αc−d/Dα2)/2

)
> 0, ω = min

(
G(
√
κ/dL), β/2,Lip f, αc/4−α2

)
> 0

and G(x) = µ tanh(x)/(1 + tanh(x)). The role of these conditions will be clear in the
computations.

Observe that since G′(0) > 0, the decay exponent ω is then linearly small as β
or α0 or µ is small, but it should be noticed that it does not depend on D > d, and
that it depends on the initial data only through α0. We can now state the following.

Theorem 3.1. — Assume (6), (7) and let u, v denote the associated solutions of (4).
Let ε0 = min(θ/4, (1− θ1)/4, γ0) where

γ0 =
1

4B
, B =

(3 Lip f + |Γ|C2

cδL0+2

)
C max(1, 1/µ).

There exists a constant K0 that depends on the initial data only through α0 and such
that if ε ∈ (0, ε0), there exists ξ±1 with

(16) ξ+
1 6 ξ

+
0 + εK0, ξ−1 > ξ

−
0 − εK0

and for all t > 0,

φ(x+ cξ−1 )− qu(t)Γ(x+ cξ−1 ) 6 µu(t, x− ct)(17)
6 µφ(x+ cξ+

1 ) + qu(t)Γ(x+ cξ+
1 )

ψ(x+ cξ−1 )− qv(t, y)Γ(x+ cξ−1 ) 6 v(t, x− ct, y)(18)
6 ψ(x+ cξ+

1 ) + qv(t, y)Γ(x+ cξ+
1 ).

Proof. — Inequations (17), (18) are stated in the moving frame with variables
(t, x+ ct). As a consequence, in the computations one has to replace ∂t by ∂t + c∂x.
We now want to show that u, v as defined in (12) yields indeed a supersolution:

N
(
u

v

)
>

(
0

0

)
,
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u

u

u
c(1 + ξ̇) c(1 − ξ̇)

Figure 9. Trapping of the front-like data

where

N
(
u

v

)
=

(
ut − uxx + cux + µu− v(·, 0)

vt − d
Dvxx − dvyy + cvx − f(v)

)
and that u, v as defined in (13) yields a subsolution. Then (17), (18) will follow by an
application of the comparison principle, Proposition 3.1, and the monotonicity of ξ.
Indeed, this will show that in the original frame u, v stays trapped between the fronts
shifted initially by ξ±0 and moving at speed resp. c(1± ξ̇) (or speed c± ξ̇ in the moving
frame). This deformation becomes of course exponentially small over time due to the
e−ωt factor. Observe also that ξ̇ 6 1/4 and is exponentially decaying over time, so u, v
will propagate at least and at most with speed c+ o(1).

We divide this computation in three zones concerning x+ ξ(t). In the following, φ
and ψ will always mean φ(x + cξ(t)) and ψ(x + cξ(t), y), qu will always mean qu(t),
qv will mean either qv(t, 0) or qv(t, y) and Γ will always mean Γ(x+ cξ(t)), all of these
functions being defined as above in (8) and (14)-(15).

3.2.1. Behind the front: x+ ξ(t) > L0 + 1. — Here Γ≡1 and ψ, v>(1 + θ1)/2, so that

N
(
u

v

)
1

= cξ̇φx + q̇u/µ− φxx + cφx + µφ+ qu − ψ − qv(t, 0)

= cξ̇φx + q̇u/µ+ qu − qv
> q̇u/µ+ qu − qv
= εe−ωt

(
− Cw/µ+ C − cosh(

√
κ/dL)

)
= εe−ωt

(
−
(

cosh(
√
κ/dL) + sinh(

√
κ/dL)

)
w/µ+ sinh(

√
κ/dL)

)
> 0

The first inequality holds because we look for ξ̇ > 0 and the last because ω 6 G(
√
κL).

N
(
u

v

)
2

= cξ̇ψx + q̇v − d/Dψxx + cψx − dψyy − d∂2
yyqv − f(ψ) + f(ψ)− f(v)

= cξ̇ψx + q̇v + f(ψ)− f(v)− d∂2
yyqv

> q̇v − d∂2
yyqv + βqv = εe−ωth(y)(−ω − κ+ β)

> εe−ωth(y)(−ω + β/2) > 0.

The last inequality holds because w 6 β/2 and the next to last because κ 6 β/2.
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3.2.2. Ahead of the front: x + ξ(t) < −L0 − 1. — Heres Γ(x + ξ(t)) = eα(x+ξ(t)+L0),
ψ 6 θ/2 and v 6 ψ + ε 6 3θ/4 6 θ, so f(v ≡ 0.

N
(
u

v

)
1

= cξ̇φx +
( q̇u
µ

+
qu
µ
αcξ̇ − qu

µ
α2 + c

qu
µ
α+ qu − qv(·, 0)

)
eα(x+ξ+L0)

>
1

µ
(q̇u + quαcξ̇ − quα2 + cαqu)eα(x+ξ+L0)

>
1

µ

(
−ω + αc− α2

)
eα(x+ξ+L0)qu > 0.

The last inequality holds because ω 6 (αc − α2)/2, and the first because qu(t) >
qv(t, 0).

N
(
u

v

)
2

= cξ̇ψx + eα(x+ξ+L0)
(
q̇v + qv(α(cξ̇ + c)− d/Dα2)− d∂2

yyqv
)

> eα(x+ξ+L0)qv(−ω + αcξ̇ + αc− d/Dα2 − κ)

> eα(x+ξ+L0)qv(−ω + (αc− d/Dα2)/2) > 0.

The last inequality holds because of the condition on ω, and the next to last because
of the condition on κ and because ξ̇ > 0.

3.2.3. The middle region: |x+ ξ(t)| < L0 + 2. — We have

N
(
u

v

)
1

= cξ̇φx +
q̇u
µ

Γ + cξ̇
qu
µ

Γx −
qu
µ

Γxx + c
qu
µ

Γx + (qu − qv)Γ

> cξ̇φx +
q̇u
µ

Γ− qu
µ

Γxx > cξ̇δL0+2 − (ω + |Γ|C2)
qu
µ
> 0,

provided

(19) ξ̇ >
ω + |Γ|C2

cδL0+2
qu.

We also have

N
(
u

v

)
2

> cξ̇ψx − qv Lip f + q̇vΓ + cξ̇qvΓx − d/DqvΓxx + cqvΓx − d∂2
yyqvΓ

> cξ̇δL0+2 − qv Lip f − ωqv − d/D|Γ|C2qv − κqv > 0,

provided

(20) ξ̇ >
Lip f + ω + d/D|Γ|C2 + κ

cδL0+2
qv.

We obtain conditions (19), (20) by remarking that κ 6 β < Lip(f), ω < Lip(f)

and d/D < 1 and then we take ξ̇(t) = Bεe−ωt, so that

ξ(t) = ξ+
0 +

Bε(1− e−ωt)
ω

, K0 = B/ω
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answer our queries. One should observe that the condition Bε 6 1/4 has not been
used yet as well as ω 6 cα/4 − α2 rather than just 1/2(cα − α2). Observe that the
computations concerning the subsolution (13) with this time

ξ(t) = −ξ−0 +
Bε(1− e−ωt)

ω

are exactly symmetric, except for a cα(1− ξ̇) term (instead of cα(1+ ξ̇)) that appears
ahead of the front and in the middle region, which is treated thanks to the above still
unused assumptions:

−ω + cα(1− ξ̇)− d/Dα2 − κ > −ω +
3cα

4
− d/Dα2 − κ

> −ω +
3cα

4
− α2 − κ

> −ω +
cα

4
− α2

2

> −ω +
cα

4
− α2 > 0.

On the other hand, we have

−ω + cα(1− ξ̇)− α2 > −ω +
3cα

4
− α2 > −ω +

cα

4
− α2 > 0.

This ends the construction. �

4. Compactly supported initial data

In this section, we go back to the fixed original frame. Seeing the problem in the
light of [15] it is natural to test:(

u

v

)
=

(
φ(x+ ct+ cξ(t)) + φ(−x+ ct+ cξ(t))− 1/µ

ψ(x+ ct+ cξ(t)) + ψ(−x+ ct+ cξ(t))− 1

)
as a subsolution to (4), i.e., a pair of waves evolving in opposite directions. Of course,
in light of the previous section, for this to be a subsolution one needs a well chosen
correction in time and in space (in the degeneracy regime of f). Let us define the
symmetrized fronts

φ̃(·) = φ(−·), ψ̃(·) = ψ(−·).

In the sequel we will always use the following notation:

φ = φ(x+ ct+ ξ0 − cξ(t)), φ̃ = φ̃(x− ct− ξ0 + cξ(t)),

and the same will hold for ψ, ψ̃,Γ, Γ̃. Here ξ0 will be a large initial shift and ξ(t)

a time-increasing shift with ξ(0) = 0 and cξ(+∞) 6 1, which will be realized as a
smallness condition on ε0. In this section we set

(21) α = min(λ, λ̃, c/5),
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where λ and λ̃ are already defined in (9) so that α yields the same inequations as
above and moreover α < λ, λ̃. Γ is defined as above, only with a little more margin.
Precisely, let us set this time:

(22) Γ(x) =

{
1 if x > L0 − 1,

eα(x+L0) if x < −L0 + 1.

We will set the following:

u = max
(
0, φ+ φ̃− 1/µ− qu(t)/µmin(Γ, Γ̃)

)
,

v = max
(
0, ψ + ψ̃ − 1− qv(t, y) min(Γ, Γ̃)

)
.

The proof will consist in adapting the previous computations. We shall see that (u, v)

yields a subsolution provided only a size condition on the initial shift ξ0 (independently
of D > d). This condition is important, because then for the initial data to lie above
(u(0), v(0)) it has to be large enough on a large enough interval. Moreover, we would
like to insist on the fact that to retrieve the original model (3) one has to change the
variable x ← x/

√
D. As a consequence, when stated for (3), our result assumes that

u0, v0 are large enough on an interval with length of order
√
D. Theorem 2.4 will be

proved as soon as we have proved the

Theorem 4.1
(1) There exist ε0 > 0 small enough and two constants B, ξ0 > 0 large enough

such that for all 0 < ε < ε0, there exist a small δ > 0 and M > 0 such that if
0 6 µu0, v0 6 1 satisfy µu0, v0 > 1− δ on x ∈ (−M,M), then

u = max(0, φ+ φ̃− 1/µ− qu/µmin(Γ, Γ̃)), v = max(0, ψ + ψ̃ − 1− qv min(Γ, Γ̃))

where qu = εCe−ωt and qv = εh(y)e−ωt are defined as above and this time

ξ(t) =
Bε(1− e−ωt)

ω

defines a subsolution to (4) with initial data u0, v0 for all times. By the comparison
principle, we then have at all times

u 6 u, v 6 v.

As a consequence, (4) propagates the initial data u0, v0 along the x-axis with speed at
least as c+ o

t→+∞
(1) in both directions.

(2) Using the notation of Section 2, we have the following: let ũ, ṽ denote the same
functions as in (12) with φ, ψ and Γ replaced by φ̃, ψ̃, Γ̃. As a consequence, ũ, ṽ will be
a supersolution for decreasing front-like initial data. Up to enlarging the initial shifts,
we assert that

(min(u, ũ),min(v, ṽ))

is a supersolution to (4) with initial data u0, v0 for all times. Again, this implies that

u 6 min(u, ũ), v 6 min(v, ṽ)

J.É.P. — M., 2017, tome 4



Front propagation directed by a line of fast diffusion 157

and so that the level lines of u, v propagate at most as c+ξ̇ = c+o(1) in both directions
along the x-axis.

Remark 4.1

(i) As noticed above, observe that one needs to replaceM ←M
√
D when Theorem

4.1 is stated for the original system (3).
(ii) The size condition on u0, v0 is far from optimal and ensures only that u0 >

u(0), v0 > v(0). It could be sharpened by replacing 1− δ with θ and by waiting long
enough for the reaction to put u, v above 1− δ.

M

u

min(u, ũ)

u

1 − δ

c(1 + ξ̇) c(1 + ξ̇)c(1 − ξ̇) c(1 − ξ̇)

Figure 10. Trapping of the compactly supported data

Proof. — The second part of Theorem 4.1 is easy because the minimum of two su-
persolutions is a supersolution and any front like initial data can be translated above
any compactly supported initial data.

The first part is more intricate. Observe that u(0), v(0) are zero except on a set
of length (−M,M) (with M proportional to ξ0) and that on (−M,M) they are less
than some 1 − δ: this directly gives the largeness condition asked so that u0 > u(0),
v0 > v(0). We now detail the computation of N (u, v) in the following subsections by
splitting the computations in three zones concerning x+ ct+ ξ0.

4.1. x+ ct+ cξ0 < −L0. — In this zone, one has necessarily x+ ct+ ξ0− ξ(t) < −L0

and also x−ct−ξ0+ξ(t) < −L0 (by asking 2ξ0 > 1). As a consequence, in this zone we
have µφ, ψ, v 6 θ/2 and µφ̃, ψ̃ > (1 + θ1)/2. Also min(Γ, Γ̃) ≡ Γ ≡ eα(x+ct+ξ0−ξ(t)+L0)

will be denoted eα(··· ) from now on. Then

N
(
u

v

)
1

= −cξ̇φx + cξ̇φ̃x −
q̇u
µ
φ̃xe

α(··· ) − qu
µ
cαeα(··· ) +

qu
µ
cαξ̇eα(··· ) +

qu
µ
α2eα(··· )

− queα(··· ) + qve
α(··· )

6 −qu
µ
eα(··· )(− ω + cα(1− ξ̇)− α2

)
+ (qv − qu)eα(··· ).

Both terms are already negative thanks to the conditions stated in Section 2. Then
a computation similar to the one in the previous section – thus not detailed here –
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leads to

N
(
u

v

)
2

6 −qveα(··· )(− ω + cα(1− ξ̇)− d/Dα2 − κ
)

+ f(ψ̃).

This quantity can be made negative provided ω 6 2αc (which is already the case): in-
deed, using the exponential decay of f(ψ̃) in this zone, the above expression can be fac-
torized as −qveα(··· )×(·) with (·) having the sign of −ω + cα(1− ξ̇)− d/Dα2 − κ > 0

provided only that ξ0 is large enough (but depending on the initial data only
through α0).

4.2. x + ct + ξ0 ∈ (−L0, L0). — First, we ensure cξ 6 1 by asking that cBε/ω 6 1

so by taking ε0 6 ω/cB. As a consequence, x + ct + ξ0 − cξ(t) ∈ (−L0 − 1, L0) and
x− ct− ξ0 + cξ(t) < −L0. Since ω < 2αc, the computations of Section 3.2.3 still hold
by enlarging the constant B enough.

4.3. x + ct + ξ0 > L0. — Here three subcases can appear concerning x − ct − ξ0.
By exchanging φ, ψ and φ̃, ψ̃ and since α < λ, the cases x − ct − ξ0 ∈ (−L0, L0)

and x − ct − ξ0 > L0 are already covered by the computations above. Only the case
x − ct − ξ0 < −L0 remains. In this zone, x − ct − ξ0 + cξ(t) < −L0 + 1, so here
min(Γ, Γ̃) ≡ 1 and both ψ and ψ̃ are close to 1.

Observe that the computations of section 2 still hold by splitting this zone in two
subzones: x < 0 and x > 0. In the first one, one will bound f(ψ) + f(ψ̃) − f(v) by
Lip f(1− ψ)− β(1− ψ̃ + qv) and in the second one by Lip f(1− ψ̃)− β(1− ψ + qv).
Then, since ω < min(λ, λ̃)c there holds

N
(
u

v

)
2

6 −qv × (·),

with (·) being positive provided ξ0 is large enough. This proves Theorem 4.1. �

5. Initial data with O(1) compact support

We now go back to the original Equation (3) and state the following: if v0 is large
enough, independently on D, then after a waiting time large enough that depends
on D, (u, v) falls in the assumptions of the previous theorem.

Theorem 5.1. — Let L be large enough (independently of D). There exist M ′, δ′ > 0

independent of D > d such that if the initial data of (3) satisfies

v0 > 1− δ′ for x ∈ (−M ′,M ′)

then after a finite time tD = D1/2h(D) + O(1) one has µu and v satisfying the
assumptions of Theorem 4.1, i.e.,

µu, v > 1− δ for all x ∈ (−M
√
D,M

√
D)

As a consequence, starting from the time t = tD, propagation occurs as described in
Theorem 4.1.

We will divide the proof in several steps.
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Step 1. — Since D > d is ought to be large, u should be very small for small times.
Thus we first investigate the equation for v in (3) where u is replaced by 0, and we
not only expect to use its solution as a subsolution but we really expect that it will
reflect the dynamics of the full solution for some time:

(23)

d∂yv + v = 0

∂tv − d∆v = f(v)

∂yv = 0

Step 2. — Let p(y) be the largest y-dependent steady solution to (23). The traveling
wave for (23) connecting 0 and p(y) will serve to build a subsolution for (23) prop-
agating just as in Theorem 4.1 but here at speed cp = O(1). This will give a lower
bound on the boundary data v(x,−L) > v(x,−L) > · · · . This will be the purpose of
Lemma 5.2.

Step 3. — Using this lower bound, we then go back to (4): we show that even without
the reaction term, this lower bound suffices to have µu, v > 1− δ on (−M,M) within
a finite time tD. As a consequence, this is the case also for the nonlinear problem.
This will be proved in a final step. Observe that here we use f > 0. If we were looking
for instance at a bistable nonlinearity this would still be true but we would need to
add a positive zero-order term in these computations.

We recall the following elementary fact, that we will freely use in the sequel.

Lemma 5.1. — There exists L0 > 0 such that if L > L0, there exists a solution p(y) to
−dp′′ = f(p)(24a)
p′(−L) = 0(24b)
dp′(0) + p(0) = 0(24c)

with p > 0 concave decreasing and p(0) > p(−L) = 1− δ′′ > 1− δ. Moreover δ′′ → 0

as L→ +∞.

Let us now prove the following:

Lemma 5.2. — Let v be a solution of (23). There exist δ′,M ′ > 0 independent of D
such that if v0 > 1− δ′ for x ∈ (−M ′,M ′), there holds

v(t, x,−L) > (1− δ′′)ϕt(x)− Ce−bt,

where C, b > 0 do not depend on D and (ϕt) is bounded in C3 such that ϕt(x) = 1 for
|x| 6 cp

2 t and ϕt(x) = 0 for |x| > cpt for some speed cp > 0 independent of D.

Proof. — First, that there exists a traveling wave solution of (23) with speed cp > 0

independent of D connecting 0 and p(y) has to be established: for this we refer to
Berestycki-Nirenberg [5] which gives the existence of an increasing (in x) traveling
front ψ(x, y) with exponential convergence towards 0 and p(y) as x→ ±∞.
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Now we notice that the subsolution argument in Theorem 4.1 can be used but in a
simpler fashion for the Robin homogeneous boundary value problem (23): on the one
hand, the structure of the problem is simpler than the one studied in Theorem 4.1 since
here we deal with a single equation, the original construction of [15] with qv = εe−ωt

will suffice. On the other hand, 1 is not a steady state for the problem so one has
to replace 1 by p(y) in the computations. Nonetheless, one can check that the above
computations still hold with the suitable subsolution

ψ + ψ̃ − p− qv min(Γ, Γ̃).

As a consequence, just as in Theorem 4.1, provided v0 is above an initial shift of a pair
of waves – hence the existence of δ′ and M ′ – its level lines will be pushed by below
by the pair of waves traveling as ±cpt∓O(1). This implies the desired bound. �

End of the proof of Theorem 5.1. — Let (uD, vD) be the solution of (4) starting from
compactly supported 0 6 µu0, v0 6 1 and let v0 satisfy the rescaled assumptions of
Theorem 5.1. First, let h(D) be any positive function such that h(D) grows to infinity
as D →∞, and set TD = D1/2h(D). We now show the following

(25) lim inf
t→+∞

inf
D>d

min
(x,y)∈ΩL,M

{µuD(TD + t, x), vD(TD + t, x, y)} > 1− δ′′ > 1− δ,

where ΩL,M = (−M,M) × (−L, 0). First, it is an easy but tedious exercise to see
that the left hand-side of (25) can be characterized as the limit as n→ +∞ of some
µuDn(TDn + tn, xn) or vDn(TDn + tn, xn, yn), where tn → +∞, Dn > d, (xn, yn) ∈
ΩL,M . We then extract from (tn, Dn, xn, yn) a subsequence so that xn → x∞ and
yn → y∞. Our objective is to extract from (u, v) a subsequence converging to some
limiting (u∞, v∞) to which the maximum principle will apply and force the above limit
to be > 1− δ′′. The difficulty comes from the fact that (Dn) might be unbounded, so
that standard parabolic estimates and the usual maximum principle might fail at the
limit. Two cases can appear.

Case 1. (Dn) is unbounded. — Then we extract again so that Dn → +∞. Let

un(t, x) := uDn(tDn + tn + t, x∞ + x), vn(t, x, y) := vDn(tDn + tn + t, x∞ + x, y).

Since f > 0 and thanks to Lemma 5.2 above, the comparison principle implies that
(un, vn) > (un, vn), where (un, vn) is the solution of

(26)
d∂yvn = µun − vn

∂tun − ∂2
xxun = vn − µun

∂tvn −
d

Dn
∂2
xxvn − d∂2

yyvn = 0

vn = (1 − δ′′)ϕTDn+tn(x∞ + x) − Ce−b(tn+t)

with any initial data compatible with the boundary conditions and below the one of
(un, vn).
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Since d/Dn → 0, the standard parabolic estimates (see [16, Chap. 6]) applied to vn
will fall concerning the x-derivatives. We overcome this difficulty since Equation (26) is
linear and the boundary data vn(t, x,−L) is bounded in C3: the maximum principle
applied to x-derivatives of (un, vn) up to order 3 gives that they are all bounded
independently of n:

|∂2
xxun|∞, |∂3

xxxun|∞, |∂2
xxvn|∞, |∂3

xxxvn|∞ 6 C1

Now concerning the y-derivatives, even though d/Dn → 0 the standard estimates
hold: indeed since vn 6 1, standard Lp parabolic estimates (see [16, Chap. 9.5]) with p
large enough applied to un give that un is bounded in Cα,1+α by some C2. Now rescale
by x← x

√
Dn so that |un(t, x/

√
Dn)|Cα,1+α 6 C3 (the semi-norms of the derivatives

even go to zero since 1/Dn → 0). Moreover, under this rescaling −d/Dn∂
2
xx − d∂2

yy

becomes −d∆, so that standard parabolic estimates up to the Robin boundary apply
and give that |vn(t, x/

√
Dn, y)|C1+α/2,2+α 6 C4. Since this rescaling does not impact ∂y

or ∂t, this gives
|∂tvn|α/2, |∂yvn|α, |∂2

yyvn|α 6 C4

The bound on ∂2
xyvn follows by combining the two arguments above, and finally by

plugging the estimate on v in the equation for u, standard Schauder estimates yield
that un is bounded in C1+α/2,2+α. In the end one can extract from (un, vn) some
subsequence converging in C1,2

loc to some (u∞, v∞) global in time (since tn → +∞)
solving

(27)
d∂yv∞ = µu∞ − v∞

∂tu∞ − ∂2
xxu∞ = v∞ − µu∞

∂tv∞ − d∂2
yyv∞ = 0

v∞ = (1 − δ′′)

Indeed, v∞(t, x,−L) ≡ 1− δ′′ since

1− δ′′ > vn(t, x,−L) > 1− δ′′ − Ce−b(tDn+tn+t)

for x ∈ (− cp2 h(Dn),
cp
2 h(Dn)) by Lemma 5.2 above and by use of TDn .

Since (u∞, v∞) are global in time, there is no initial data anymore and the maxi-
mum principle applies to give

µu∞, v∞ ≡ 1− δ′′.

Indeed, no value different than 1− δ′′ can be reached, because then (u, v) would have
an infimum smaller or a supremum larger than 1−δ′′. By translating over time (which
is possible since the solution is global) this infimum or supremum would become a
minimum or maximum, that cannot be reached by u because of the strong parabolic
maximum principle, and neither by v by the strong parabolic maximum principle and
Hopf’s lemma applied to the suitable y-slice.
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Case 2. (Dn) is bounded. — Then one extracts so that Dn → D∞ > d and the above
proof is much simpler since standard regularity and maximum principle apply. More-
over TD is not necessary.

In both cases, the lim inf above is > u∞(0, 0) = 1− δ′′ or > v∞(0, 0, y∞) = 1− δ′′,
thus (25) holds. Theorem 5.1 follows easily: indeed, there exists t1 independent of D
such that after tD = TD + t1, µu, v > 1− δ on (−M,M). �

6. Lower bound on the waiting time

In this subsection, (u, v) denotes the solution of (4). Let ε := D−1/2 and v0 solve

(28)

d∂yv
0 + v0 = 0

∂tv
0 − dε2∂2

xxv
0 − d∂2

yyv
0 = f(v0)

∂yv
0 = 0

sharing the same initial data as v: v0(0) = v0 with 0 6 v0 6 1. Observe that v0 is
the rescaling of the subsolution v already introduced in Equation (23). The aim of
this subsection is to give an estimate on the time during which v is close to v0. More
precisely we will show the following.

Theorem 6.1. — Let α ∈ (0, 1) and define

Tα,ε := sup{ T > 0 | |v − v0| < εα for all 0 < t < T and (x, y) ∈ ΩL}.

Then for all 0 < δ < min
(
α, 2/7, 2

5 (1− α)
)
one has

lim
ε→0

εδTα,ε = +∞.

Remark 6.1. — We would like to insist on the fact that v0 is not the initial data here
but the solution of the above described problem. The limiting case is δ = α = 2/7.
Indeed, picking α = 2/7 + κ, we can chose δ lower and as close to 2/7 − κ as we
want. This theorem thus states that for every small κ > 0, by waiting a time of order
ε−2/7+κ = D1/7−κ/2 we are still as close as we want to v0 – which propagates at a speed
independent from D – and u is as close as we want to zero. This is Theorem 2.6.

Let us define w = v − v0. Observe that (u,w) solves

(29)
d∂yw + w = µu

∂tu− ∂2
xxu+ µu− w = v0

∂tw − dε2∂2
xxw − d∂2

yyw = f ′(·)w

∂yw = 0
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where · ∈ [v, v0] ∪ [v0, v] (by Taylor’s formula). The idea of the proof is to decouple
Equation (29) by decomposing w in two parts. Let us set w = w1 + w, where

(30)

d∂yw
1 + w1 = 0

∂tw
1 − dε2∂2

xxw
1 − d∂2

yyw
1 = f ′(·)w

∂yw
1 = 0

and

(31)
d∂yw + w = µu

∂tu− ∂2
xxu+ µu− w = w1 + v0

∂tw − dε2∂2
xxw − d∂2

yyw = 0

∂yw = 0

Observe that Tε,α exists by continuity. We now work by contradiction to show that
if Tα,ε = (1/ε)δ, then |w| stays of order less than εα′ with α′ > α. During the rest of
the proof, this will be abbreviated with “� εα”.

The scheme is as follows. First, we derive an L1 estimate on w1 by Duhamel’s
formula. This, inserted in estimate (51), yields the desired estimate on u and then
on w. We then go back to w1 to obtain the desired estimate, by a more intricate
supersolution argument.

6.1. L1 bound on w1. — By definition, up to time Tε,α one has |w| 6 εα. By
Duhamel’s formula and the maximum principle for Equation (30), this yields

(32) |w1| 6 εα
∫ t

0

edε
2(t−s)∂xxed(t−s)∂NRyy f ′(·)ds,

where ∂NRyy denotes ∂yy endowed with the Neuman-Robin boundary condition of (30).
Since · 6 v0 + εα, using the above results and rescaling them, one knows that v0 6 θ
for x 6 (a+ cpt)ε for some constant a > 0. As a consequence,

|f ′(·)| 6 Lip f × 1((−a−cps)ε,(a+cps)ε).

Also, by the maximum principle, there exist C(d) > 0 and λ1(d) > 0 such that

ed(t−s)∂NRyy 1((−a−cps)ε,(a+cps)ε) 6 Ce
−λ1(t−s)1((−a−cps)ε,(a+cps)ε).

Using both estimates in (32), the maximum principle yields

(33) |w1| 6 C Lip fεα
∫ t

0

edε
2(t−s)∂xxe−λ1(t−s)1((−a−cps)ε,(a+cps)ε)ds.

Since edε2(t−s)∂xx preserves the L1 norm, this gives the estimate, for some constants
C1, C2 that do not depend on ε:

(34) |w1(·, y)|L1(R) 6 C Lip fεα
∫ t

0

e−λ1(t−s)2(cps+ a)εds = εα+1(C1 + C2t)� εα,

since δ < 1.
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6.2. Estimate on u and w. — Using the appendix estimate (51) and Duhamel’s for-
mula one gets

|u| 6 C3

∫ t

0

(∫
R

e−(x′−x)2/(4a(t−s))√
4πa(t− s)

|w1 + v0|(s, x′, 0)dx′
)

ds(35)

+ C4

∫ t

0

e−ω(t−s)|(w1 + v0)(s, ·, 0)|L1(R)ds.(36)

First observe that due to the above results and the rescaling, one has

|v0(s, ·, y)|L1 6 (C5 + cps)ε.

Using this and estimate (34), we deal with the second term:

(36) 6 C4

∫ t

0

e−ω(t−s) (εα+1(C1 + C2s) + ε(C5 + cps)
)

ds 6 (C6+C7t)(ε
α+1+ε)� εα

since 1− δ > α. We now deal with the first term:

(35) 6 C3

∫ t

0

1√
4πa(t− s)

|(w1+v0)(s, ·, 0)|L1(R)ds 6 (C8t
1/2+C9t

3/2)(εα+1+ε)� εα

since 1 − 3
2δ > α. As a consequence, |u| � εα. Now seeing Equation (31) as a

boundary value problem for w, we see that the above estimate on µu provides an easy
supersolution that stays above w, that is

w 6 µ
(
C6 + C7t+ C8t

1/2 + C9t
3/2
) (
εα+1 + ε

)
� εα.

6.3. Back to w1. — Using w = w1 + w we rewrite Equation (30) as a linear non-
homogeneous problem:

(37)

d∂yw
1 + w1 = 0

∂tw
1 − dε2∂2

xxw
1 − d∂2

yyw
1 − f ′(·)w1 = f ′(·)w

∂yw
1 = 0

Since w1(0) = 0, Duhamel’s formula gives

(38) w1(t) =

∫ t

0

wsh(t− s)ds

where wsh solves

(39)

d∂yw
s
h + ws

h = 0

Lwsh := ∂tw
s
h − dε2∂2

xxw
s
h − d∂2

yyw
s
h − f ′(·)wsh = 0

∂yw
s
h = 0
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along with the initial condition wsh(0) = (f ′(·)w)(s). Inspired by the linearization and
a rescaling of the supersolution to the non-linear equation in the previous section,
and using the same notation as in it, we look for a supersolution with the form

wsh(t) = ξ(t)∂xψ(x+ cpεt+ xs0)− ξ(t)∂xψ̃(x− cpεt− xs0) + Ce−ωt min(Γ, Γ̃)

for some ξ(t) increasing in time and initial shift xs0. First of all, we need to ensure
ordering of the initial data. That is: wsh(0) > (f ′(·)w)(s), which is obtained provided

wsh(0) > Lip fεα+ν1((−a−cps)ε,(a+cps)ε)

for some ν < 1 − 3/2δ − α (since w 6 Kε1− 3
2 δ thanks to the computations above).

We achieve this by asking

(40) C = (Lip f)εα+ν , xs0 > (a+ cp)sε+ L0.

We will also see below that we need δ < ν. Combining both these conditions imposes
δ < 1− 3

2δ − α, i.e., the assumption δ < 2
5 (1− α) of Theorem 6.1.

Now, straightforward computations give

Lwsh = ξf ′(ψ)∂xψ − ξf ′(ψ̃)∂xψ̃ + ξ̇∂xψ − ξ̇∂xψ̃ − f ′(·)(ξ∂xψ − ξ∂xψ̃)

− ωCe−ωt min(Γ, Γ̃) + Ce−ωt∂t min(Γ, Γ̃)

+ Ce−ωt∂xx min(Γ, Γ̃)− f ′(·)Ce−ωt min(Γ, Γ̃).

As in Section 3.2, we analyze the sign of this quantity in three separate zones. Observe
that due to the rescaling between (3) and (4), decay exponents Θ,Θ0 (resp. the α and
α0 from Sec. 3.2) and λ, λ̃ scale here as 1/ε as well as the lower bounds on the
derivatives δL. Remember also that we are looking only at times t 6 ε−δ, so we only
need to find a supersolution up to this time. We also reinitialize the constants Ci
and Ki which will be positive constants independent of ε.

6.3.1. x+cpεt+x
s
0 < −L0. — As before, in this zone we have ψ 6 θ/2, ψ̃ > (1+θ1)/2,

ψ, ∂xψ 6 C1e
−λ(x+cpεt+x

s
0+L0), 1 − ψ̃, ∂xψ̃ 6 C1e

−λ̃(x−cpεt−xs0+L0) and min(Γ, Γ̃) ≡
Γ = eΘ(x+cpεt+x

s
0) =: eΘ(··· ). As a consequence and since Θ < λ̃, one has

Lwsh > ξ̇∂xψ − ξ̇∂xψ̃

+ Lip fεα+νe−ωteΘ(··· )
[ (
−ω + cpΘε+ Θ2

)
− ξ

εα+ν
e(ω−2Θcpε)te−2xs0Θ

]
.

The first term inside the brackets is positive provided ω < Θ2 (which is not a con-
straint since Θ grows as 1/ε) and we can make the whole bracket positive provided

(41) ω < 2Θcpε

(observe that the right-hand side in (41) is bounded from above and below by positive
constants that do not depend on ε) by taking

(42) xs0 > −
1

2Θ
ln
( (
−ω + cpΘε+ Θ2

) εα+ν

ξ(ε−δ)

)
.

This will be a constraint on our future choice of ξ(t), to be kept in mind.
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6.3.2. x+ cpεt+ xs0 ∈ (−L0, L0). — Here x− cpεt− xs0 < −L0, and ψ̃ > (1 + θ1)/2,
1− ψ̃, ∂xψ̃ 6 C2e

−λ̃(x−cpεt−xs0+L0), f ′(ψ̃) 6 −β and min(Γ, Γ̃) = Γ.

Lwsh > ξf
′(ψ)∂xψ − ξf ′(ψ̃)∂xψ̃ + 2δ2L0

ξ̇ − εα+νe−ωt (ω + |Γ|C2)

− f ′(·)
[
ξ∂xψ − ξ∂xψ̃

]
− f ′(·)εα+νe−ωtΓ

> ξf ′(ψ)∂xψ − ξf ′(ψ̃)∂xψ + 2δ2L0
ξ̇ − εα+νe−ωt (ω + |Γ|C2 + Lip(f ′)|Γ|C2)︸ ︷︷ ︸

C3

− f ′(·)
[
ξ∂xψ − ξ∂xψ̃

]
.

We make this positive by counterbalancing the negative terms thanks to δ2L0 ξ̇, by
asking

(43) ξ̇ >
2

δ2L0

εα+νe−ωtC3 =: K1ε
α+ν+1e−ωt.

Moreover by using Θ < λ̃, ω < 2Θcpε and the previous expression of e−2Θxs0 one
obtains

−ξf ′(·)∂xψ̃, −ξf ′(ψ̃)∂xψ̃ > −εα+νC4e
−ωt,

so that we ask also for
ξ̇ > K2ε

α+ν+1e−ωt,

which is implied by (43) by takingK1 large enough. The last term to counterbalance is

ξ∂xψ[f ′(ψ)− f ′(·)] > −ξ∂xψ Lip(f) (|v0 − ψ|+ εα)

by the triangle inequality and the definition of ·. But we also know that

|ψ − v0| 6 |ψ − (ψ + ψ̃ − 1)|+ |(ψ + ψ̃ − 1)− v0| 6 |1− ψ̃|+ C5e
−ω0t

by Section 5 for some C5, ω0 > 0 independent of ε. Now just as above, one can use
the exponential decay of 1− ψ̃ in the current zone to prove that there exists C6 > 0

such that |1− ψ̃| 6 C6e
−ωt. In the end

ξ∂xψ[f ′(ψ)− f ′(·)] > −Lip(f)ξ∂xψ
[
C6e

−ωt + C5e
−ω0t + εα

]
.

We can reduce ω and change the constants so that

ξ∂xψ[f ′(ψ)− f ′(·)] > −Lip(f)ξ∂xψ
[
C7e

−ωt + εα
]

and we counterbalance this term by asking (remember the additional power of ε factor
due to the scaling of δ2L0

)

(44) ξ̇ > K2εξe
−ωt, ξ̇ > K3ξε

α+1.

We now have to find a suitable increasing function t 7→ ξ(t) satisfying (43), (44) and
that should not increase too much so that w1(ε−δ) � εα. Since the order between
the right-hand sides in (44) changes at some point in time, we define ξ in two parts
as a continuous but only piecewise C1 function. This is not a problem since one can
apply the maximum principle a second time starting from the junction. We propose

ξ(t) :=

ε
α+νe−K2(ε/ω)e−ωt if t < 1

ω ln
(
K3

K2
ε−α

)
B(ε)εα+νeK3ε

α+1t if t > 1
ω ln

(
K3

K2
ε−α

)
,
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with B(ε) > 0 uniformly bounded from above and by below in ε is chosen so that ξ
is continuous:

B(ε) = e
K3ε

α+1(1/ω) ln
(
K3
K2

ε−α
)
eK2(ε/ω)

K2
K3

εα .

Observe that (44) is automatically satisfied since we just integrated the stronger
differential equation between the two on the associated time-intervals. Observe that
(43) is indeed satisfied provided K2,K3 > K1 and ε is small.

Now with this choice of ξ – since ξ � εα+ν up to time ε−δ – observe that the
remaining condition on xs0 (42) is void since xs0 > 0 and it reduces to the initial one
(40). Finally, the only condition on ω is (41).

6.3.3. x + cpεt + xs0 > L0. — As before, we deal with this last zone by using sym-
metry and by repeating the arguments above: no stronger condition appears and the
computations above hold (by eventually changing the constants).

6.4. End of the proof of Theorem 6.1. — We now estimate w1 thanks to the super-
solution. Coming back to (38) with t = ε−δ one gets

w1(t) 6 K6

∫ t

0

ξ(s)ds+K7

∫ t

0

εα+νe−ωsds.

The second term is bounded by K7ε
α+ν/ω � εα. For the first term, we divide the

integral in two parts. Call

tj =
1

ω
ln
(K3

K2
ε−α

)
the junction time.∫ t

0

ξ(s)ds 6
∫ tj

0

ξ(s)ds+

∫ t

tj

ξ(s)ds 6 K8ε
α+ν ln(ε−α) +

Bεα+ν

K3εα+1

[
eK3ε

α+1t − 1
]

by using a crude upper bound for the first part in the definition of ξ(t). Now since
δ < α+ 1,

Bεα+ν

K3εα+1

[
eK3ε

α+1t − 1
]
∼
ε→0

Bεα+νt = Bεα+ν−δ � εα

because ν > δ. In the end, both w and w1 are � εα up to time t = ε−δ so we have a
contradiction.

7. Initial data supported on the road only

In this section we investigate the behaviour of solutions starting from (u0, v0) =

(1(−a,a), 0). We still denote ε := 1/
√
D.

7.1. a is small

Theorem 7.1. — There exists a0 > 0 such that for a < a0, the solution of (4) starting
from (1(−a,a), 0) decays to 0 uniformly.
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The proof relies on a suitable reformulation of Equation (3) and a crude bound
on f . Observe that, if we replace v by its even extension on R× [−L,L], we have

(45)
{
∂tv − dε2∂2

xxv − d∂2
yyv = f(v) + 2d(µu− v)(x, 0)dλy=0

∂tu− ∂2
xxu+ µu = v(x, 0)

where dλy=0 denotes the Lebesgue measure on the line {y = 0}.

Lemma 7.1. — Let C = max(Lip f, 2d). Then

v(t, x, y) 6 C(t+ 2C ′
√
t),

where C ′ is a constant that depends only on d and L.

Proof. — This is basically an Aronson type inequality (see [1]), we give a quick com-
putation here. By Duhamel’s formula,

(46) v(t, x, y) =

∫ t

0

es∆d,ε
N

[f(v(t− s, x, y)) + 2d(µu− v)(t− s, x, 0)dλy=0]ds,

where ∆N
d,ε = dε2∂2

xx+d∂2
yy endowed with Neumann boundary conditions on y = ±L.

Since R × (−L,L) is a product domain and since ∂2
xx and ∂2

yy commute, we can
compute this heat kernel as follows. Denote λk = d(kπ/(2L))2 the eigenvalues of d∂2

yy

on (−L,L) with Neumann conditions and φk the associated eigenfunctions. Then the
heat kernel is

K2(t, y, y′) =
∑
k>0

e−λktφk(y)φk(y′).

For dε2∂2
xx on R the heat kernel is

K1(t, x, x′) =
1√

4πdε2t
e−(x−x′)2/(4dε2t).

As a consequence,

es∆d,ε
N

dλy=0 =

∫
R
K1(s, x, x′)K2(s, y, 0)dx′ =

∑
k>0

e−λksφk(y)φk(0),

which of course depends only on y and is even in y (the φk being even or odd). Observe
that this is nothing more than the fundamental solution of the diffusion equation in y
on (−L,L). Because the φk are uniformly bounded by C ′ depending only on d and L
one gets

es∆d,ε
N

dλy=0 6 C
′
∑
k>0

e−λks 6 C ′/
√
s

for another constant C ′. The last inequality comes from the growth of λk as Ck2.
Going back to (46) and using f(v) 6 Lip f as well as µu− v 6 1 and the positivity

of the integral, one gets

v(t, x, y) 6 C
∫ t

0

(1 + C ′/
√
s)ds 6 C(t+ 2C ′

√
t),

which implies the lemma. �
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Lemma 7.2. — We have

u(t, x) 6
2e−µt√

4πt
a+

Ct2

2
+

4CC ′

3
t3/2.

Proof. — We insert the previous estimate on v(t, x, 0) in the equation satisfied by u
and solve it using Duhamel’s formula. By the maximum principle, this gives the
following upper bound:

u(t, x) 6 e−µtet∂
2
xxu0 + C

∫ t

0

e−µ(t−s)e(t−s)∂2
xx(s+ 2C ′

√
s)ds

= e−µt
∫ a

−a

1√
4πt

e−(x−x′)2/4tdx′ + C
( t2

2
+

4

3
C ′t3/2

)
which gives the desired result. �

Proof of Theorem 7.1. — Chose t′1 such that C(t′21 + 2C ′t
′3/2
1 ) = θ/2 and set t1 =

max(1, t′1). As a consequence, at time t = t1 one has v 6 θ/2 and

µu(t, x) 6 2e−µt1
1√

4πt1
a+

θ

2
6

2θ

3
,

if a < a0 for some a0. Then the maximum principle yields that from this time µu, v
will always stay below the constant solution 2θ/3 of (3). And so, µu and v will tend
to 0. �

7.2. Best case scenario: a = +∞. — In this subsection we take µu0 ≡ 1. Since both
the initial data and Equation (4) enjoy here a translation invariance in the x direction,
u and v do not depend on x. We prove the following

Theorem 7.2. — There exist µ± > 0 such that:
(a) If µ > µ+, µu and v converge uniformly to 1/(µ(L+ 1/µ)) as t→ +∞.
(b) If µ < µ−, µu and v converge uniformly to 1 as t→ +∞.

Proof of (a). — Using Lemma 7.1 one gets, for t 6 1: v(t, x, y) 6 C
√
t (for some

constant C different than the C in the afore mentioned Lemma). Using this in the
equation for u, one gets

µu(t, x) 6 e−µt + Cµ

∫ t

0

e−µ(t−s)√s ds 6 e−µt + Cµt3/2.

So, at tµ = (θ/(2C)/µ)
2/3, provided µ is large enough so that e−µtµ 6 θ/2 and v 6 θ,

i.e.,

µ > max
(

(2C/θ)
2 | ln(θ/2)|3, 1

2
(C/θ)

2
)

=: µ+,

one has µu, v 6 θ. By the comparison principle, this will hold for all t > tµ and v

never gets above θ anywhere. As a consequence, µu(t), v(t, y) converge to a common
limit l 6 θ satisfying (L+ 1/µ)l = 1/µ (conservation of mass). �
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Proof of (b). — The idea of the proof is simple: we investigate whether the sole diffu-
sion is able to transfer enough mass from u to v so that in finite time v is above θ on
a large enough interval (−L0, 0). The quantity L0 is linked to Kanel’ and Aronson-
Weinberger [18, 2]. Using v > 0 and the strong parabolic maximum principle one gets
µu > e−µt. So that setting θ′ = (1 + θ)/2 and tM = 1

µ ln (1/θ′) one has µu > θ′ while
t 6 tM , so that, by the maximum principle, Hopf’s lemma and the positivity of f , up
to time tM we have v > v the solution of

(47)

d∂yv + v = θ′

∂tv − d∂2
yyv − dε2∂2

xxv = 0

∂yv = 0

starting from v0 = 0. Observe that v is independent of x, so we will call it v(t, y) from
now on. The function w = θ′ − v is easily decomposed as

w(t, y) =
∑
k>0

e−λktw̃k(0) cos
(√

λk/d (y + L)
)
,

where the λk/d > 0 solve
√
x = cotan(

√
xL) and

∑
w̃k(0) cos

(√
λk/d(y + L)

)
= θ′.

By the maximum principle we have, for y ∈ (−L0, 0):

w 6 θ′e−λ1t
cos
(√

λ1/d (L− L0)
)

cos
(√

λ1/d L
) =: Ke−λ1t,

so that for y ∈ (−L0, 0), v(tM , y) > θ′ −Ke−λ1tM > (1 + 3θ)/4 provided

(48) µ 6 λ1
ln(1/θ′)

ln (4K/(1− θ))
=: µ−

Chose L0 large enough in the beginning so that an initial condition µu(tM ), v(tM , y) >
(1 + 3θ)/4, for all y ∈ (−L0, 0), leads to invasion: µu, v → 1 as t→∞. The existence
of such an L0 follows from Kanel’, Aronson-Weinberger [18, 2] on R. In our context,
it is in fact simpler since total mass is confined in (−L, 0) and a single point whereas
in [18, 2] it can be spread on all R. �

7.3. Large a < +∞. — We use the best case scenario described above to prove the
existence of large but finite a that will lead to invasion. Our proof relies on the fact
that 1(−a,a) and 1(−∞,∞) are close in L∞ weighted by some ρ(x) with tails e−|x| and
that such a weight preserves the semi-linear parabolic and monotone structure of the
system (4). In particular, the “weighted equation” will have a locally (in time) Lips-
chitz continuous flow. Going back to the original solutions, this Lipschitz continuity
becomes a uniform continuity on every compact subset.

Lemma 7.3. — There exists a smooth weight ρ(x) > 0 such that ρ(x) = e−|x| for |x|>1

and such that the following holds. Denote ‖(f, g)‖X = max
(
‖ρf‖L∞(R), ‖ρg‖L∞(ΩL)

)
.
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For every T,M > 0, there is CT,M > 0 independent of D such that

sup
06t6T

x∈(−M,M)

(|u− ũ|+ |v − ṽ|) 6 CT,M‖(u0 − ũ0, v0 − ṽ0)‖X

for every (u, v) and (ũ, ṽ) solutions of (4) starting from respectively (u0, v0) and
(ũ0, ṽ0).

Remark 7.1. — Observe that the above Lemma could be stated for any ρα(x) =

e−α|x| (with α > 0) by changing the constants: this is due to the scaling invariance
(t, x, y)→ (Λt,

√
Λx,
√

Λy) of Equation (4); indeed, ρα becomes ρ1 in the rescaling by
Λ = α2.

End of the proof of Theorem 2.7. — Once Lemma 7.3 is proved, the end of Theorem
2.7 follows easily. Indeed, let u0 = 1(−a,a) and v0 = 0 as well as ũ0 = 1(−∞,+∞) and
ṽ0 = 0. Observe that if a > 1, we have

‖(u0 − ũ0, v0 − ṽ0)‖X = e−a.

Moreover, since µ < µ−, by Theorem 7.2 above, there exists T > 0 such that

µũ(T, x), ṽ(T, x, y) > 1− δ/2,

with δ as in Theorem 4.1. By choosing

a > max{1,− ln(δ/(2CT,M ))} =: a1

(which does not depend on D), and applying Lemma 7.3 on [0, T ]× [−M,M ] (withM
as in Theorem 4.1), one has

|µu(T, x)− µũ(T, x)|+ |v(T, x, y)− ṽ(T, x, y)| 6 δ/2 for all −M < x < M.

As a consequence, µu(T, x), v(T, x, y) > 1− δ for all −M < x < M . �

Proof of Lemma 7.3. — The proof relies only on the parabolic maximum principle
applied to a weighted equation. Let ρ(x) define a positive C2 function such that
ρ(x) = e−|x| for |x| > 1. Let (u, v) solve system (4). Observe that (u, v) := (ρu, ρv)

satisfies

(49)

d∂yv = µu− v

∂tu + 2(ρ′/ρ)∂xu− ∂2
xxu = v−

(
µ+ (ρ′′/ρ)− 2 (ρ′/ρ)

2 )
u

∂tv + 2(dρ′/Dρ)∂xv− (d/D)∂2
xxv− d∂2

yyv

= ρf (v/ρ)− (d/D)
(
(ρ′′/ρ)− 2

(
ρ′/ρ

)2 )
v

∂yv = 0

Equation (49) is a semilinear parabolic system, and thanks to the definition of ρ, has
bounded coefficients. Moreover, the non-linearity g(v) := ρf (v/ρ) is Lipschitz with
Lipschitz constant Lip f . Let

C := Lip f − inf
R

(
(ρ′′/ρ)− 2 (ρ′/ρ)

2 )
> Lip f − d

D
inf
R

(
(ρ′′/ρ)− 2 (ρ′/ρ)

2 )
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Now define similarly (ũ, ṽ) = (ρũ, ρṽ) and let

U := e−Ct (u− ũ) , V := e−Ct
(
v− ṽ

)
.

Observe that (U,V) satisfies

(50)

d∂yV = µU−V

∂tU + 2(ρ′/ρ)∂xU− ∂2
xxU = V− µU−

(
(ρ′′/ρ)− 2 (ρ′/ρ)

2
+ C

)
U

∂tV + 2(dρ′/Dρ)∂xV− (d/D)∂2
xxV− d∂2

yyV

+
(

(d/D)
(
(ρ′′/ρ)− 2(ρ′/ρ)2

)
+
g(v)− g(ṽ)

v− ṽ
+ C

)
V = 0

∂yV = 0

By choice of C, the 0-order terms in parentheses in Equation (50) are positive, thus
Equation (50) enjoys the maximum principle and the maximum and minimum values
of (µU,V) are reached at initial time. Indeed, as usual if the maximum is reached
by V, then either it is reached at initial time or it has to be reached on y = 0 but
there Hopf’s lemma gives the contradiction µU > V. It U reaches it, a contradiction is
obtained at this point by seeing that the left-hand side in the equation satisfied by U

is non-negative: thus V > µU. In the end we have for all 0 6 t < T :

max(|(u− ũ)(t)|L∞(R), |(v− ṽ)(t)|L∞(ΩL))

6 eCT max
(
|(u− ũ)(0)|L∞(R), |(v− ṽ)(0)|L∞(ΩL)

)
,

i.e., for all t < T , x ∈ R, y ∈ [−L, 0]:

ρ(x) (|u− ũ|(t, x) + |v − ṽ|(t, x, y)) 6 2eCT ‖(u0 − ũ0, v0 − ṽ0)‖X

and Lemma 7.3 follows by taking CT,M = 2eCT supx∈(−M,M) 1/ρ(x), which is 2eCT eM

when M is large. Observe that CT,M depends only on T , M and Lip f . �

Appendix: the heat kernel

We compute here the large time asymptotics of the solution (u(t, x), v(t, x, y)) to

(51)
ut − uxx + µu− v(t, x, 0) = 0 (t > 0, x ∈ R)

vt − ε2vxx − vyy = 0 (t > 0, x ∈ R, y ∈ (−L, 0))

vy(t, x, 0) = µu(t, x)− v(t, x, 0) (t > 0, x ∈ R)

with initial datum

(52) (u(0, x), v(0, x, y)) = (u0(x), 0).

Notice that we have, without loss of generality, set d = 1. We limit ourselves to
u(t, x), as this is The quantity that will be useful to us. the method that we use
is quite standard, a computationally much more involved case being treated in [10],
where the diffusion on the road is represented by the fractional Laplacian.
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Proposition A.1. — Set a = (1 + µε2)/(1 + µ). There are two constants C > 0 and
ω > 0, and a function δ(t) tending to 0 as t→ +∞ such that we have, for t > 1∣∣∣∣u(t, x)− (1 + δ(t))

∫
R

e−(x−x′)2/4at
√

2πat
u0(x′) dx′

∣∣∣∣6 Ce−ωt‖u0‖L1(R).

Proof. — Let (û(t, ξ), v̂(t, ξ, y)) be the Fourier transform in x of (u, v); we have

(53)
ût + ξ2û+ µû− v̂(t, x, 0) = 0 (t > 0, ξ ∈ R)

v̂t − ε2v̂ − v̂yy = 0 (t > 0, ξ ∈ R, y ∈ (−L, 0))

v̂y(t, ξ, 0) = µu(t, ξ)− v(t, ξ, 0) (t > 0, ξ ∈ R)

with initial datum (û(0, ξ), v̂(0, ξ, y)) = (û0(x), 0).

1. The case of large |ξ|. — Let A(ξ) be the operator acting on C((−L, 0)) with domain
the set of all functions w(y) ∈ C2((−L, 0)) such that wy(−L) = wy(0) + w(0) = 0,
and defined by A(ξ)w = −wyy + ε2ξ2w. Its first eigenvalue is (as is given by a simple
computation) λ0 + ε2ξ2, with λ0 being the first positive root of

√
λL tan

√
λL = 1;

an eigenfunction is cos(
√
λ0L (y+L), that we may bound from below by a real num-

ber δ0. Thus the solution w(t, ξ, y) of

wt−wyy+ε2ξ2w = 0, (t > 0,−L < y < 0), wy(t, ξ,−L) = wy(t, ξ, 0)+w(t, ξ, 0) = 0,

with initial datum w0(ξ, y) satisfies

(54) |w(t, ξ, y)| 6 δ−1
0 ‖w0(ξ, .)‖L∞((−L,0)).

Now, multiply the equation for û by û/|û|, this yields

∂t|û|+ (ξ2 + µ)|û| 6 µ|v̂(t, ξ, 0)|.

From (54) and the Duhamel formula we obtain

∂t|û|+ (ξ2 + µ)|û| 6 µδ−1
0

∫ t

0

e−λ0(t−s)|û(s, ξ)|ds.

Choose any ω0 ∈ (0, λ0), we will prove the inequality

(55) |û(t, ξ)| 6 C|û0(ξ)|e−ω0t

ξ4 −A
+ |û0(ξ)|e−(ξ2+µ)t,

for a universal C, a suitably chosen A > 0 and |ξ| > 10A1/4. Set

U(t, ξ) = eω0t(|û(t, ξ)| − |û0(ξ)|e−(ξ2+µ)t),

we have

(56) ∂tU + (ξ2 + µ− ω0)U 6 µδ−1
0

∫ t

0

e−λ0(t−s)U(s, ξ) ds+
µ0δ
−1|û0(ξ)|e−(λ0−ω0)t

ξ2 − (λ0 − ω0)
,

The function t 7→ U(t, ξ) is either decreasing or has positive maxima. In the first case,
because U(0, ξ) = 0 we have |û(t, ξ)| 6 |û0(ξ)|e−(ξ2+µ)t, so (55) is proved. Let us

J.É.P. — M., 2017, tome 4



174 L. Dietrich & J.-M. Roquejoffre

assume the contrary, and let t0 such that U(t, ξ) 6 U(t0, ξ) for all t 6 t0. In such a
case we have, from (56):(

ξ2 + µ− µδ−1
0

λ0 − ω0

)
U(t0, ξ) 6

µ0δ
−1|û0(ξ)|e−(λ0−ω0)t0

ξ2 − (λ0 − ω0)
.

So, (55) is once again proved.

2. The case of intermediate |ξ|. — We consider the range ε0 6 |ξ| 6 A, A being
chosen so that (55) holds. Let us this time consider the operator L(ξ), acting on
C × C((−L, 0)), its domain being all couples (u, v) in C × C2((−L, 0)) such that
wy(−L) = 0 and wy(0) + w(0) = µu, and its action being given by

(57) L(ξ)(u,w) = (ξ2 + µ)u− w(0),−www + ε2ξ2w).

The family L(ξ) is a family if sectorial operators with uniformly bounded coefficients.
Moreover, by Krein-Rutman’s theorem, for |ξ| ∈ ε0, A), and ε ∈ (0, 1), L(ξ) has a
bottom eigenvalue λ0(ξ). Possibly, it depends on ε, but with a common positive lower
bound depending on ε0 that we call ω0. So, there is θ0 ∈ (0π/2) such that the path
γ = ω0 + Reiθ0 encloses σ(L(ξ)), for all ξ in the range that we consider. We have

(58) e−tL(ξ)(û0, v̂0) =
1

2iπ

∫
γ

e−λt(λI − L(ξ))−1(û0, 0) dλ,

an expression that admits a bound of the form

(59) ‖e−tL(ξ)(û0(ξ), 0)‖L∞((−L,0)) 6 Ce
−ω0t|û0(ξ)|.

3. The case of small |ξ|. — Fix ε0 > 0 small so that the following (finite set of)
considerations are true. Here we simply perform a Laplace transform of (53) and
we still call û(λ, ξ) the unknown in the new variables (λ, ξ). This leads (after some
standard algebra) to the system

(60)
(
ξ2 − λ−

µ
√
λ− ε2ξ2 tan(L

√
λ− ε2ξ2)

1−
√
λ− ε2ξ2 tan(L

√
λ− ε2ξ2)

)
û(λ, ξ) = û0(ξ).

The factor before û(λ, ξ) vanishes, for |ξ| 6 ε0, at a unique λ(ξ) satisfying:

(61) λ(ξ) ∼ (1 + µε2)ξ2

1 + µ
,

the next zeroes being further away, uniformly in ξ, by the principle of isolated zeroes.
Then, (58) remains valid and a standard inverse Laplace transform computation yields
the existence of a function δ(t) = ot→+∞(1) such that

(62) û(t, ξ)− (1 + δ(t))e−tλ(ξ)û0 = O(e−ω0t)|û0|.

The proposition is proved by taking the inverse Fourier transform of û, and putting
together estimates (55), (59), (61) and (62). �
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