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THE INTRINSIC DYNAMICS OF OPTIMAL TRANSPORT

BY RoBeRrT J. McCann & LLupovic Rirrorp

ApstracT. — The question of which costs admit unique optimizers in the Monge-Kantorovich
problem of optimal transportation between arbitrary probability densities is investigated. For
smooth costs and densities on compact manifolds, the only known examples for which the
optimal solution is always unique require at least one of the two underlying spaces to be
homeomorphic to a sphere. We introduce a (multivalued) dynamics which the transportation
cost induces between the target and source space, for which the presence or absence of a
sufficiently large set of periodic trajectories plays a role in determining whether or not optimal
transport is necessarily unique. This insight allows us to construct smooth costs on a pair of
compact manifolds with arbitrary topology, so that the optimal transportation between any
pair of probability densities is unique.

Résumié (La dynamique intrinséque du transport optimal). — Nous nous intéressons aux cotits
pour lesquels la solution du probléme de transport optimal de Monge-Kantorovitch entre deux
mesures de probabilités est unique. A Pheure actuelle, les seuls exemples connus de tels cotts
lisses sur des variétés compactes nécessitent que 'une des variétés soit homéomorphe & une
sphére. Nous introduisons une dynamique (multivaluée) associée au colt et exhibons des pro-
priétés suffisantes pour 'unicité d’un plan de transport optimal. Cette approche nous permet
de construire des cotts lisses sur des variétés compactes quelconques pour lesquels I'unicité d’un
plan de transport optimal est assurée.
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1. INnTRODUCTION

Let M and N be smooth closed manifolds (meaning compact, without boundary)
of dimensions m and n > 1 respectively, and ¢ : M x N — R a continuous cost
function. Given two probability measures p and v respectively on M and N, the
Monge problem consists in minimizing the transportation cost

(1.1) /MXNc(x,T(a:)) du(z),

among all transport maps from y to v, that is, such that Tyu = v. A classical way to
prove existence and uniqueness of optimal transport maps is to relax the Monge prob-
lem into the Kantorovitch problem. That problem is a linear optimization problem
under convex constraints, it consists in minimizing the transportation cost

(1.2) /M cla) dr(a.).

among all transport plans between p and v, meaning + belongs to the set II(u, ) of
non-negative measures having marginals p and v. By classical (weak) compactness
arguments, minimizers for the Kantorovitch problem always exist. A way to get ex-
istence and uniqueness of minimizers for the Monge problems is to show that any
minimizer of (1.2) is supported on a graph. Assuming that ¢ is Lipschitz and p is
absolutely continuous with respect to the Lebesgue measure, a condition which guar-
antees this graph property is the following non-smooth version [6] [22] of the TWIST
condition
D;c(~,y1)ﬂD;c(-,y2):® Vyr £Zys € N,V € M,

where D ¢(-,y;) denotes the sub-differential of the function z — c(z,y;) at z. In
this case, it is well-known how to use linear programming duality to prove that the
Kantorovich minimizer is unique, and that Monge’s infimum is attained [10] [16].

Examples of Lipschitz costs satisfying the non-smooth TWIST are given by any
cost coming from variational problems associated with Tonelli Lagrangians of class
C11 (see [3]), like the square of Riemannian distances (see [19]). Those costs are never
C" on compact manifolds such as M x N. As a matter of fact, any cost ¢ : M x N — R
of class C! admits a triple x € M,y; € N,y» € N, (take y; with ¢(z,y1) = min{c(z, )}
and yo with ¢(x,y2) = max{c(z,-)}) such that

oc dc

%(%yl) = 8?(% y2)7

violating the non-smooth TWIST condition. Indeed, we shall show the following holds.

Tueorewm 1.1 (Non-genericity of twist). — Let ¢: M x N — [0,00) be a cost function
of class C?. Assume that dim M = dim N and

2

[Capa—
(7,
p. 8y( Y)
Then there is a pair u,v of probability measures respectively on M and N which are
both absolutely continuous with respect to the Lebesque measure for which there is a

(1.3) 3(z, ) € M x N such that is invertible.

JLE.P — M., 2016, tome 3



THE INTRINSIC DYNAMICS OF OPTIMAL TRANSPORT 6()

unique optimal transport plan for (1.2) and such that this plan is not supported on a
graph. The set of costs c satisfying (1.3) is open and dense in C*(M x N;R).

The conclusion of Theorem 1.1 implies that solutions for the Monge problem with
smooth cost do not generally exist in a compact setting. The purpose of the present
paper is to study sufficient conditions on the cost for uniqueness of the Kantorovitch
optimizer, and to exhibit smooth costs on arbitrary manifolds for which optimal plans
are unique, despite the fact that such plans are not generally concentrated on graphs.
Some examples of such costs have been given in [12] [1] (see also [5]). However, if
uniqueness is to hold for arbitrary absolutely continuous g and » on M and N, all
previous examples which we are aware of that involve smooth costs have required at
least one of the two compact manifolds be homeomorphic to a sphere. Here we go far
beyond this, to construct examples of such costs on compact manifolds whose topol-
ogy can be arbitrary. Our main idea is to relate the uniqueness of the Kantorovitch
optimizer to a multivalued dynamics induced by the cost which does not seem to have
been considered previously.

Before stating our results, we need to introduce some definitions.

Denoting the non-negative integers by N = {0,1,2,...} and the positive integers
by N* = N\ {0}, we begin recalling the well-known notion of ¢-cyclical monotonicity.

Derinirion 1.2 (e-cyclical monotonicity). — A set S C M x N is c-cyclically monotone
when for all I € N* and (x;,y;) € S for i =1,...,I with x;11 = 21, we have

I
[c(®it1,yi) — c(xi, y:)] = 0.
=1

K2

For given p, v and ¢, it is also well-known [11] that some closed c-cyclically mono-
tone subset S C M x N contains the support of all optimizers to (1.2). Note that of
course, any subset of a c-cyclically monotone set is c-cyclically monotone as well. We
come now to the concepts which will play a major role.

Derintrion 1.3 (Alternant chains). — For each (z,y) € M X N assume c¢(z,-) and
¢(-,y) are differentiable. Fixing S € M x N, we call chain in S of length L > 1 (or
L-chain for short) any ordered family of pairs

((xlayl)) sy (ZUL»?JL)) S SL
such that the set
{(331791); cee (vayL)}

is c-cyclically monotone and for every £ = 1,..., L — 1 there holds, either

dc dc
(14) xp=wxpy1 and Yo # Yoy1 = Ymin{L,+2} and %(wlvyf) = %(xlvyl+l)v

or

dc dc
(1.5) ye=yer1 and xp # Tpp1 = Trin{re+2y and a*y(xé,ye) = 87;(”“’3”)'

JE.P. — M., 2016, tome 3



70 R. J. McCann & L. Rirrorp

The chain is called cyclic if its projections onto M and N each consist of L/2 distinct
points, in which case L must be even with y;, = y1 and zj, # 21 (or z, = 27 and

YL #y1)'

Note the existence of any cyclic chain ((z1,y1),... (2L, yr)) permits the construc-
tion of an infinite chain {(z¢,ye)}ren by

(1.6) (IkL+e,ykL+e) = (:Ire,yg) Vk>1,vVee{l,...,L}.

The concept of alternant chain is basically a refinement of Hestir and Williams
notion of azial path [15], to incorporate a choice ¢ of transportation cost. Our first
result is the following.

Turorem 1.4 (Optimal transport is unique if long chains are rare)

Fiz a cost c € C*(M x N). Choose Borel probability measures p on M and v
on N, both absolutely continuous with respect to Lebesque, and let Il denote the set
of all optimizers for (1.2) on II(u,v). Let Eg C M x N be a o-compact set which is
negligible for all v € gy, and denote its complement by S = (M x N)\ Ey. Let E
denote the set of points which occur in k-chains in gfor arbitrarily large k. Then Fo
and its projections 7™ (E.) and 7™V (E) are Borel. If v(Es) = 0 for every v € Iy,
then Iy is a singleton.

Revark 1.5 (Extension to singular marginals). — When ¢ € C%!) we can relax the
absolute continuity of x4 and v in the preceding theorem provided neither concentrates
positive mass on a ¢ — ¢ hypersurface. Here ¢ — ¢ hypersurface refers to one which can
be parameterized in local coordinates as the graph of a difference of convex functions
[25] [11] [13].

Cororrary 1.6 (Sufficient notions of rarity). — The condition y(Ew) = 0 in the state-
ment of the theorem, and therefore its conclusions, follow from either p(7™ (Es)) =0
or v(mV(Ey)) = 0.

If there is a uniform bound K on the length of all chains in M x N, then our
theorem applies a fortiori with S = M x N and Ey = &, since F, = &. We shall see
this occurs in many cases of interest, including for the smooth costs that we construct
on compact manifolds with arbitrary topology. The bound K will depend on the
topology. On the other hand, an obstruction to the uniqueness of optimal plans is the
existence of a non-negligible set of periodic orbits. As shown below, such a property
is not typical: it fails to occur for costs ¢ in a countable intersection C of open dense
sets. Such a countable intersection is called residual.

Turorem 1.7 (Costs admitting cyclic chains are non-generic)

When dim M = dim N, there is a residual set C in C*°(M x N;R) such that no
cost in C admits cyclic chains, and for every cost ¢ € C, there is a nonempty closed
set ¥ C M x N of zero (Lebesgue) volume such that

d%c o :
m(m,y) is invertible for any (r,y) € M x N \ X.

JE.P — M., 2016, tome 3



THE INTRINSIC DYNAMICS OF OPTIMAL TRANSPORT Al

In the terminology of Hestir and Williams [15], the absence of cyclic chains is
sufficient to define (formally) a rooting set whose measurability would be sufficient
for uniqueness. We refer the reader to Section 3 for further details on their approach
and its aftermath [5] [1] [21]. We do not know if uniqueness of optimal plans between
all absolutely continuous measures holds for generic costs. However, elaborating on a
celebrated result by Maiié [18] in the framework of Aubry-Mather theory, we are able
to prove that uniqueness of optimal transport plans holds for generic costs in C* if
the marginals are fixed. In C?, such a result was known already to Levin [17].

Tureorem 1.8 (Optimal transport between given marginals is generically unique)

Fiz Borel probability measures on compact manifolds M and N. For each
k € NU {oo}, there erists a residual set C C C*(M x N;R) such that for every c € C,
there is a unique optimal plan between p and v.

The paper is organized as follows. We provide examples of costs satisfying the above
results in Section 2. We develop preliminaries on numbered limb systems and details
on Hestir and Williams’ rooting sets in Section 3. We give the proofs of Theorem 1.4
in Section 4, of Theorem 1.7 in Section 6, and finally of Theorem 1.8 in the appendix.

2. EXAMPLES AND APPLICATIONS

2.1. QUADRATIC COST ON A STRICTLY CONVEX SET. — Let us begin by recasting an ex-
ample of Gangbo and McCann [12] into the framework of (alternant) chains.

Fix N C R™*!. Let M be the boundary of a strictly convex body @ ¢ R™*! that
is, a closed set which is the boundary of a bounded open convex set and such that for
any z,2' € M,

[2,2]c M = 2z2=2,

where [z, /] is the segment joining z to z’. We aim to show that for any measures p
and v (u being absolutely continuous w.r.t. the Hausdorff m-dimensional measure H™
measure on M), we have uniqueness of optimal plans for the cost

1
C(l’,y):§|$—y‘2 V(.’E,y)GMXN

Let P(M x N) denote the Borel probability measure on M x N and 7™ : M x N — M
and 7V : M x N — N the projections onto the first and second variables. Let y and v
be probability measures on M and N. We recall that the support I' C M x N of any
plan ¥ € P(M x N) minimizing

(2.1) wi{ [ clarten [y e}

is c-cyclically monotone, which in the case c(z,y) = |y — z|?/2 reads

I

Z(yi,xi —xiy1) 20,

i=1

JE.P. — M., 2016, tome 3



72 R. J. McCann & L. Rirrorp

for all positive integer I, i=1,...,I, (x;,y;) € A, xr41 =21. The uniqueness of optimal
plans will follow easily from the next lemma.

Lemva 2.1 (Interior links are never exposed). — Fir a hypersurface M C R™*!
possibly incomplete. For any submanifold N C R™T! of dimension n < m + 1, let
c(z,y) denote the restriction Of%|:177y|2 to M x N. If ((zo,y), (x2,y), (x2,v), (x4,y"))
is a chain in M x N, then no hyperplane strictly separates xo from M ~ {x2}.

Proof. — To derive a contradiction, suppose ((zg,¥), (22,¥), (22,¥’), (x4,y")) forms a
chain in M x R™*L yet x4 is strictly separated from M \ {z2} by a hyperplane with
inward normal ng, i.e.,

(2.2) (x — x9,n9) >0

for all x € M ~\ {z2}. The chain conditions imply 3y’ — y = ang for some a € R.
On the other hand, pairwise monotonicity of the points in the chain imply

(x4 — 22,y —y) = alzy — 2,m2) >0
(zo — w0,y —y) = a(za — x0,n2) > 0.

Using (2.2) we deduce a > 0 from the first inequality and o < 0 from the second. But
a = 0 yields 3’ = y, contradicting the definition of a chain. O

As a consequence we have:

Cororrary 2.2 (Chain bounds for strictly convex hypersurfaces)

If c is the restriction of |x —y|? to M x N as above, where M C R™*1 is a strictly
convez hypersurface, then M x N contains no chain of length L > 5. Moreover, the
projection of any 4-chain in M x N onto N consists of three distinct points, while
its projection onto M consists of two distinct points. If N C R™*1 is also a strictly
convex hypersurface, then M x N contains no chain of length L > 4.

Proof. — If a chain of length L > 5 exists, it begins either with

(2.3) (71, 2), (x3,y2), (23, Y4), (75, Y4))

or ((z2,y1),(x2,93), (X4,Y3), (€4,Y5), (T6,y5)). Since M is strictly convex, each
point © € M is exposed, meaning it can be strictly separated from M ~ {z} by
a hyperplane. In the first case Lemma 2.1 would be violated by the chain (2.3)
since xo is an exposed point of M; in the second it would be violated by the chain
((x2,93), (z4,y3), (x4,ys5), (T6,ys5)) since x4 is an exposed point of M. We are forced
to conclude that no chain of length L > 5 can exist. Moreover, any chain of length
L =41in M x N must take the form ((z2,y1), (z2,y3), (24, y3), (x4, ys)) hence project
onto three points y; € N. The y; must all be distinct since y; # y3 # ys from the
definition of chain, while y5 = y; would make the chain cyclic, in which case it
can be extended to an infinite chain (1.6) contradicting non-existence of a chain of
length 5. The projection onto M therefore consists of the two points zo # x4, which
are distinct by the definition of chain.

JE.P — M., 2016, tome 3



THE INTRINSIC DYNAMICS OF OPTIMAL TRANSPORT 7‘%

If N ¢ R™*! is also a strictly convex hypersurface then by symmetry, M x N can
contain no chain which projects to more than two points on M and two points on IV,
hence no chain of length L > 4. O

Exampre 2.3. — Let us consider the example of the lake that already appeared in [12]
and [6]. Let M = N be the unit circle in the plane, that is, the circle centered at the
origin of radius 1 equipped with the quadratic cost c¢(z,y) = |y — x|?/2. Consider a
small auxiliary circle centered on the vertical axis, for example the circle centered at
(0,—5/2) of radius 1/8, denote by ¢ the distance function to the disc D enclosed by
the small circle (see Figure 2.1). By construction, ¢ is convex and differentiable at
every point of M with a gradient of norm 1.

D

Ficure 2.1. The lake

Then we set
Y(@) =B~ sla”  VeeM
and
¢(y) :== min{¢(z) + c(z,y) | v € M} Vye M.

By construction, we check that
(2.4) Y(z) = max{p(y) — c(z,y) |y € M} Vo e M.

Moreover, for every z € M, the gradient y(x) := VZ{E € R? belongs to the set
O (x) C M of optimizers for (2.4). As a matter of fact, we have by convexity of ¥,

(') —d(z) > (Gla),2’ —z) Va2’ € R
Which can be written as
b(x) < (') + %|x’ — ()] - %|x ~y@)|° Va2’ €R%
Taking the minimum over 2’ € M, we infer that (g(x) € M)

c(z.7(x)) < 0(7(@) —v(x) VaeeM

JE.P. — M., 2016, tome 3



74 R. J. McCann & L.. Rirrorp

which, because ¢ — 1 < ¢ implies that

c(,9(x) = 6(y(2)) — ()  VaeeM,
which means that 7(z) = V.1 always belongs to Octp(x). For every x € M, we set

y(x) :=7(x) + Mz)z € M,

where A(z) > 0 is the largest nonnegative real number A such that y(z) + Az belongs
to M (in other terms, g(z) is the intersection of the open semi-line starting from (x)
with vector z if the intersection is nonempty and y(z) = y(z) otherwise). For every
x € M, the point y(x) belongs to d.¢(z) as well. As a matter of fact, by convexity
of M, the fact that the normal to M at x is x itself and the convexity of 1, we have
for every z,x’ € M,

</y\($)71'/ - 1‘> = <y(l‘),$/ - {L‘> + )\(!)3)<{L‘7.Z‘/ - 1‘> < <y(l’),{L‘/ - :L‘> < /lZ(x/) - ’(Z({,C)
Proceeding as above we infer that g(x) belongs to d.1(xz). We can check easily that
for every point = close to the south pole (—1,0) the points g(x),7(x) are distinct (see

Figure 2.1). Proceeding as in the proof of Theorem 1.1, we can construct an example
of optimal transport plan which is not concentrated on a graph.

22 QUADB:\TIC COST ON NESTED STRICTLY CONVEX SETS. — Let
(25) N CQyC---CQp.

be a nested family of strictly convex bodies with differentiable boundaries in R™*1,
Set M = UiL:1 U;, where U; = 9; . 9€;_1 is an embedding of (a portion of) the unit
sphere.

S3

So
Sy

Frcure 2.2. Nested convex sets

Lemma 2.4 (Chain length bounds for nested strictly convex boundaries)

If ¢(x,y) denotes the restriction Of%\x—y\Q to C' manifolds My, N C R™t!, and
My, = 0Q1 U---U90Qy is a union of boundaries of a nested sequence (2.5) of strictly
convez bodies Q; C R™FL then My x N contains no chain of length 4L +1. Moreover,
any chain of length 4L has projections onto My, (respectively N ) which consist of 2L
(respectively 2L + 1) distinct points.

JE.P — M., 2016, tome 3
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<1

Proof. We prove the result by induction on L. Corollary 2.2 gives the result for
L = 1. So assume that the property is proved for L > 1 and prove it for L + 1.
Note that although My may not be a submanifold of R™*! (if the boundaries of €);
and €2, intersect), it may be regarded as C'! embedding of the disjoint union Ule U;
of potentially incomplete manifolds U; = 0€2; ~ 9§2;_1.

Any chain in My 1 x N of length 4L + 5 takes one of the forms

(2.6) ((z1,92), (x3,Y2), (x3,Y4), .., (Tar+3, Yar+a), (Tar+5, Yar+4), (Tar45, Yar+6))
or
(2~7) ((952, yl)v (x27 y3), (964, yS)v Sy ($4L+47 y4L+3)7 ($4L+4, y4L+5)7 (x4L+6, y4L+5))~

Strict convexity of 9,1 shows any © € Q41 can be separated from My, 1~ {z} by
a hyperplane. Lemma 2.1 therefore implies {4, ...,24743} C M|, so that apart from
possibly the first and last pairs of points, the chains (2.6)—(2.7) above are contained
in My, x N. But this contradicts the inductive hypothesis, which asserts that My x N
contains no chain of length 4L + 1.

Similarly, if M. 1 x N contains a chain of length 2L 44, it must take the form of the
first 2144 points in (2.7) rather than (2.6); in the latter case {xs,...,z4r4+3} C ML
whence My, x N would contain a chain of length 4L+ 3, contradicting the inductive hy-
pothesis. In the former case, {z4,...,T4r12} C My, whence My, x N contains a chain
of length 4L which the inductive hypothesis asserts is comprised of 2L distinct points
XffLJrQ = {x4,x6,...,241+2} and 2L+1 distinct points Y34L+3 =A{yYs,Ys,---,Yar+3}
Now z9 and z471,+4 both lie outside XffLJrQ C My, since otherwise My, x N contains a
chain longer than 4L. Moreover xo # 4714, since otherwise we can form a cycle (of
length 4L + 2), hence an infinite chain in My, x N, contradicting the length bound

4L+3
}%

already established. Similarly, 11 # yar+5 are disjoint from since otherwise

we can extract a cycle and build an infinite chain in My 1 x N. O

)

2.3. CosTs ON MANIFOLDS

Lemma 2.5 (Diffeomorphism from interior of simplex to punctured sphere)
Fix the standard simplex

A= {(t03'~~7tm)|ti >0 and Z:ioti - 1)}

and unit ball @ = Byi(e1) C R™T! centered at e; = (1,0,...,0) € R™TL. There is a
smooth map E : A — 0Q which acts as a diffeomorphism from A~ OA to 9Q ~ {0}

such that E and all of its derivatives vanish on the boundary OA of the simplex:
E(0A) = {0}.

Proof. — Let f:[0,1]—[1,2] be a smooth function satisfying the following properties:

(a) f is non-decreasing,
(b) f(s) =1 for every s € [0,1/2],
(¢) f(1) = 2 and all the derivatives of f at s = 1 vanish.

JE.P.— M., 2016, tome 3



76 R. J. McCann & L. Rirrorp

Denote by D,, the closed unit disc of dimension m and by S™ C R™*! the unit
sphere. We also denote by expy : TnS"™ — S™ the exponential mapping from the
north pole N = (0,...,0,1) associated with the restriction of the Euclidean metric
in R™*! to S™. Then we set

F(v) = expy [g f (|v|)v] Vv € Dy

By construction, F' is smooth on D,,, F' is a diffeomorphism from Int(D,,,) to S™~{S},
where S denotes the south pole of S, F(9D,,) = {S} and all the derivatives of F'
on 0D, vanish. Therefore, in order to prove the lemma, it is sufficient to construct
a Lipschitz mapping G : A — D,, which is smooth on Int(A), is a diffeomorphism
from Int(A) to Int(D,,), and sends OA to dD,,.

The simplex A is contained in the affine hyperplane

H={X=(to,...,tm) | "o ti = 1}.

Let t := (1/(m +1),...,1/(m + 1)) be the center of A, we check easily that A is
contained in the disc centered at ¢ with radius y/1 — 1/(m + 1). For every t € A~ {t},
we set ug := (t —t)/|t — t] and

p(t) :=min{s > 0|t +su, € OA} Vte A {t}.

By construction, the function p : A \ {t} — [0, +00) is locally Lipschitz and satisfies
for every unit vector u € S™ N Hy (with H =t + Hy),

pt+ou) =a,—a Vae (0,a,],
where a, > 0 is the unique « > 0 such that ¢ + au € 9A. We note that since
A C B(t,\/1-1/(m+1)), we have indeed a, € (0,4/1—1/(m+1)] for every
u € S™ N Hy. We also observe that the m-dimensional ball H N B (£,1/(2(m +1))) is

contained in the interior of A and that p > 1/(2(m + 1)) on that set. Pick a smooth
function g : [0, +00) — [0, 1] satisfying the following properties:

(d) g is non-increasing,

(e) g(s) =1—3(m+ 1)s for every s € [0,1/(4(m + 1))],

(f) g(s) =0 for every s > 1/(2(m + 1)).
Let D be the m-dimensional unit disc in H centered at f, define the function G© :
A — D by

GUt) =t+[1—g(p®t)] (t %) +g(p(t)) ur.

By construction, G° is Lipschitz and smooth on each ray starting from Z. Namely, for
each unit vector u € S™ N Hy, we have

GYa) =G (tT+au) =t+ [l —g(a, —a)] (au)+g(ay—a)u  Vae (0,a
The derivative of G® on each ray  + Rt u is given by

oG?
Oa

(@)=[1-g(ay—a)+(a—1)g¢ (a, —a)] u Va e (0,

JE.P — M., 2016, tome 3



THE INTRINSIC DYNAMICS OF OPTIMAL TRANSPORT 77

and there holds
1—g(au—a)—|—(a—1)g/(au—a)

>1g(aua)+(\/1mi11)g'(aua)

> 1= glon =)+ (g ) (0w -0 > 1

by (d)—(f). Moreover, for every u € S™ N Hy, the ray t + R u is invariant by G°,
GY(ay) =T+ u, and in addition G°(t) = ¢ whenever t € HN B (£,1/(2(m +1))). In
conclusion, G° is Lipschitz and bijective from A to D. If we work in polar coordinates
z = (a,u) with @ > 0 and u € S™ N Hy, then G° reads

G(2) = G°(a,u) = (Gul@),u)

for every z € A, the domain of G in polar coordinates (since GO coincides with the
identity near A\ we do not care about the singularity at o = 0). Thus for every z
in the interior of A where GO is invertible, the Jacobian matrix of GO at z, Jzéo is
triangular and invertible. Recall that for every z in the interior of 5, the generalized
Jacobian of GO at z is defined as

TJ.G° = conv{liin Jzkéo | 2 T) z, G diff. at zk}.

By the above discussion and Rademacher’s Theorem, for every z in the interior of E,
jzéo is always a nonempty compact subset of M,,(R) which contains only invert-
ible matrices. In conclusion, for every ¢t € Int(A) the generalized Jacobian of G°
at t satisfies the same properties, it is a nonempty compact subset of M,,(R) which
contains only invertible matrices. Thanks to the Clarke Lipschitz Inverse Function
Theorem [8], we infer that the Lipschitz mapping G° : A — D is locally bi-Lipschitz
from Int(A) to Int(D). It remains to smooth G in the interior of A by fixing G° on
the boundary JA.

To this aim, consider a mollifier # : R™ — R, that is, a smooth function satisfying
the following three conditions:

(g) 0>0,

(h) Supp(6) C Dy,

(1) fpm O(x)dx = 1.
The multivalued mapping A € Int(A) — J,G° € M,,(R) is upper-semicontinuous (its
graph is closed in Int(A) x M,,(R)) and is valued in the set of compact convex sets
of invertible matrices. Hence, there is a continuous function € : Int(A) — (0, 00) such
that for every t € Int(A) and every matrix A € M,,(R), the following holds

(2.8) d(A,conv ({JsG | B € B(t,e(t))})) <e(t) = A is invertible.
Consider also a smooth function v : H — R* such that:

(j) v(t) =0, for every t ¢ Int(A),

(k) 0 < v(t) < min{d(t,0A),e(t)}, for every t € Int(A),

(1) for every teInt(A), |Viv|<e(t)/K, where K > 0 is a Lipschitz constant for G°.
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Then, we define the function G : A — D by (we identify Hy with R™)
G(t) = 0(x) G° (t — v(t)r) da Vi e A.
RT”
By construction, G is Lipschitz on A, it coincides with G° on OA, it satisfies
G(Int(A)) C Int(D), and it is smooth on Int(A). For every t € Int(A), its Jacobian
matrix at ¢ is given by

JG = | 0@) Jiv@uG - (In =@+ (Yv)") da.
Rm
Hence, we have for every t € Int(A),
‘ JtG - 9(33) thy(t)zG dx < K |Vt1/|
R?‘n

and
/ 0(x) Ji—u (1) G dx € conv{J3G | B € B(t,v(t))}.
]Rm

Using (2.8) and (j)—(1), we infer that G is a local diffeomorphism at every point of
Int(A). Moreover, G is surjective. If not, there is y € D such that y does not belong
to the image of G. Since G = G on JA, y does not belong to dD. Thus there is
y € 0G(A) \ dD. Since G is a local diffeomorphism at any pre-image of y’, we
get a contradiction. In conclusion, G is a Lipschitz mapping from A to D which
sends bijectively A to 0D, which sends Int(A) to Int(D), which is surjective, and
which is a smooth local diffeomorphism at every point of Int(A). Moreover, D is
simply connected. Hence G : A — D is a Lipschitz mapping which is a smooth
diffeomorphism from Int(A) to Int(D). We conclude easily. O

Prorosirion 2.6 (Smooth costs on arbitrary manifolds leading to unique optimal trans-
port)

Fix smooth closed manifolds M, N. Then there exists a cost ¢ € C*°(M x N) such
that: for any pair of Borel probability measures y on M and v on N which charge no
¢ — ¢ hypersurfaces in their respective domains, the minimizer of (2.1) is unique.

@)

Ficure 2.3. A bouquet of nested convex sets
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Proof. Let m and n denote the dimensions of M and N, and assume m > n
without loss of generality. Due to their smoothness, it is a classical result that both
manifolds admit smooth triangulations [24] into finitely many (say ks and ky) sim-
plices (by compactness).

For each k € {1,2,...,kp}, dilating the map E of Lemma 2.5 by a factor of k
induces a smooth map from the k-th simplex of M to the sphere k9B (e;) of radius k
centered at (k,0,...,0) € R™*! Taken together, these kj; maps define a single
smooth map Ey; : M — M where M = Uifl 0y, and Qi = kBj(e;) C R™HL
This map acts as a diffeomorphism from the union of simplex interiors in M to
M ~ {0,,+1} while collapsing their boundaries onto the origin 0,,41 in R™*1. Set
MO = E;/Il(OmH).

Define the analogous map Ey : N— N C R™! where N = [J¥Y, kB (1) € R
and No = E5'(0,,41). In case n < m, we embed R"! into R™*! by identifying R"*!
with {(z1,...,Zms1) ER™ L |20 = =241 = 0}.

The cost

c(a,y) == |Em(z) — En(y)*/2
on M x N then satisfies the conclusions of the proposition. Its smoothness follows from
that of Fj; and Fy. Lemma 2.4 shows that no chains of length greater than 4k, lie
in (M~ Mj) x (N~ Np). On the other hand, the simplex boundaries My lies in a finite
union of smooth hypersurfaces, hence are u-negligible. Similarly, Ny is v-negligible.
The desired conclusion now follows from Theorem 1.4. g

3. PRELIMTN/\RIES ON NUMBERED LIMB SYSTEMS

3.1. CLASSICAL. NUMBERED LIMB SYSTEMS. The concept of numbered limb system
was introduced by Hestir and Williams in [15]. Like Benes and Stepan [2], their aim
was to find necessary and sufficient conditions on the support of a joint measure to
guarantee its extremality in the space of measures which share its marginals.

Derinition 3.1 (Numbered limb system). Let X and Y be subsets of complete
separable metric spaces. A relation S C X x Y is a numbered limb system if there
are countable disjoint decompositions of Xand Y,
o0 o0
X = U 12i+1 and Y = U Igi,
i=0 i=0

with a sequence of mappings

f2i : Dom(fgz) CY — X and f2i+1 : Dom(f2i+1) cX —Y

such that

(3.1) S = igl (Graph( f2;—1) U Antigraph( fs;))
and )

(3.2) Dom(f%) URan(fxy1) C I vk > 0.
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Frcure 3.1. A numbered limb system with NV = 10

The following statement from [1] extends and relaxes a celebrated characterization
by Hestir and Williams [15]. Here 7% (z,y) = z and 7Y (z,y) = .

Tueorewm 3.2 (Measures on measurable numbered limb systems are simplicial)
Let X and Y be Borel subsets of complete separable metric spaces, equipped with
o-finite Borel measures pn on X and v on'Y. Suppose there is a numbered limb system

(33) S = f_jl (Graph(fgi_l) U Antigraph(fgi))

with the property that Graph(fo;—1) and Antigraph(fo;) are v-measurable subsets of
X XY foreachi>1 and for every v € T'(u,v) vanishing outside of S. If the system
has finitely many limbs or u[X] < oo, then at most one v € I'(u,v) vanishes outside
of S. If such a measure exists, it is given by v = > p, i where for every i > 1,

(3.4) Yoic1 = (idx Xf2i71)u772i71a Yoi = (fai X idY)ﬁUQzﬁ
N2i—1 = (u - Wf’Yzi)\Domfzi_u N2i = (V - 73/’721'+1)|Domf2i~
Here ny, is a Borel measure on I, and fi is measurable with respect to the ny, completion

of the Borel o-algebra. If the system has N < oo limbs, v, = 0 for k > N, and ny
and v, can be computed recursively from the formula above starting from k = N.

The statement of Theorem 3.2 from Ahmad, Kim and McCann, like its antecedent
in [15], give a sufficient condition for extremality. It is separated from Benes and
Stepan [2] and Hestir and Williams’ [15] necessary conditions for extremality by the
~-measurability assumed for the graphs and antigraphs (which is satisfied, for ex-
ample, whenever the graphs and antigraphs are Borel.) For sets S of the form (3.3)
whose graphs and antigraphs fail to be measurable, there may exist non-extremal
measures vanishing outside of S, as shown by Hestir and Williams using the axiom
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of choice [15]. Such issues are further explored by Bianchini and Caravenna [5] and
Moameni [21], who arrive at their own criteria for extremality. Moameni’s is closest
in spirit to the approach developed below based on chain length: he gets his measur-
ability by assuming the existence of a measurable Lyapunov function to distinguish
different levels of the dynamics.

4. Proor oF THEOREM 1.4 AnD REMARK 1.5

Since the source and target spaces are closed manifolds and the cost ¢ € C1,
Gangbo and McCann [11] provide a c-cyclically monotone compact set S C M x N
and Lipschitz potentials 1 : M — R and ¢ : M — R which satisfy

(4.1) Y(z) =max{p(y) —c(z,y) |y € N} Vze M,
(4.2) ¢(y) =min{¢(z) + c(z,y) |z € M} VyeN,
(4.3) 8 C O = {(z,y) € M x N | c(z,y) = d(y) — ¥(2)},

such that any plan v € II(u,v) is optimal if and only if Supp(y) C S. Indeed, we
henceforth set S to be the smallest compact set with these properties.

We recall that the c-subdifferential of ¥ at x € M and the c-superdifferential of ¢
at y € N are defined using (4.3):

dcp(z) == {y € N | (z,y) € 00}
and 0“d(y _{$€M|($ Y) Eacd’}

Note that since both 1) and ¢ are Lipschitz and u and v are both absolutely continuous
with respect to Lebesgue, thanks to Rademacher’s theorem, 1 and ¢ are differentiable
almost everywhere with respect to g and v respectively. Let Dom di denote the subset
of M on which v is differentiable. Following Clarke [7], for every « € M (resp. y € N),
we denote by D*1(x) and 09 (x) (resp. D*¢(y) and 0¢(y)) the limiting and generalized
differentials of ¢ at x (resp. ¢ at y) which are defined by (we proceed in the same
way with ¢)

D) = { lim p | pr = d(wi), @ — 2,2 € Domdyp } < T M,
— 00
and
OY(x) = conv (D*¢(x)) C Ty M.

By Lipschitzness, for every x € M, the sets D*¢(z) and 9¢ are nonempty and com-
pact, and of course 0¥ (x) is convex. The next three propositions are relatively stan-
dard; the lemmas which follow them are new.

Proposttion 4.1. — For ¢ € C!, the potentials ¢ and ¢ of (4.1)~(4.2) satisfy:

(i) The mappings © € M +— 0Y(z) and y € N — 9¢(y) have closed graph.

(ii) For every x € M, ¢ is differentiable at x if and only if OY(x) is a singleton.
(iii) For every y € N, ¢ is differentiable at y if and only if 0p(y) is a singleton.
(iv) The singular sets My := M ~ Domdiy and Ny := N ~ Domd¢ are o-compact.
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Proof'of Proposition 4.1. — Assertion (i) is well-known [7], and follows easily from
the definitions of 9y and d¢. Let x € M be such that 1 is differentiable at z. From
(4.1)—(4.3) we have

oc
(4.4) ~ gy y) =did(z) Yy € oy(z).
Argue by contradiction and assume that 9¢(z) is not a singleton. This means that
D*y(x) is not a singleton too, let p # ¢ be two one-forms in D*t(z). Then there are
two sequences {xy }x, {x}, % converging to x such that 1 is differentiable at x) and ),
and

lim d(x) =p,  lim dy(a}) = g.

k—oco
For each k, there are yi, € 0.9 (zk), y). € Oc9(x},) such that
dc oc
—%(l‘k,yk) =dip(zy)  and - %(aﬁg,y;) = dy(z},).

By compactness of N, we may assume that the sequences {yj }r, {y} }x converge re-

spectively to some 7 € 9.9 (x) and ¥’ € 0.1(x). Passing to the limit, we get
—%(m,y) =p and — %(m,y’) =q,

which contradicts (4.4). On the other hand, if 9y (z) is a singleton, then v is differ-

entiable at x (indeed, di : Domdy — T*M is continuous at x, so = is a Lebesgue

point for dip € L).

(iv) The set of = such that di(x) is not a singleton is o-compact because the multi-
valued mapping x — 9 (z) has a closed graph, and the mapping x — diam(dy(x))
is upper semicontinuous. For every whole number ¢, this implies those x with
diam(9¢(x)) > 1/q form closed subset of the compact manifold M. The singular
set M ~ Domdy is the union of such subsets over ¢ = 1,2,... o-compactness of
N~ Domd¢ = ;2 {y € N | diam(d¢(y)) > 1/q} follows by symmetry. O

Prorosition 4.2 (Differentiability a.e.) — The sets
My := M ~ Domdy, Ny:=N ~Domd¢p and Myx Ny
are o-compact, and pu(Mg) = v(Ny) = v(Mo x No) = 0 for every plan v € I(p,v).

Proof of Proposition 4.2. — Since S is compact, the o-compactness of My x Ny follows
from that shown in Proposition 4.1(iv) for My and Ny (a product of unions being the
union of the products). If 4 and v are absolutely continuous with respect to Lebesgue,
Rademacher’s theorem asserts u[My] = 0 and v[Ng] = 0. Otherwise ¢ € C11, in which
case Gangbo and McCann show the potentials ¢ and —1) are semi-convex [11], meaning
their distributional Hessians admit local bounds from below in L*°. In this case the
conclusion of Rademacher’s theorem can be sharpened: Zajicek [25] shows My and Ny
to be contained in countably many ¢ — ¢ hypersurfaces, on which p and v are assumed
to vanish. Finally v(My x Ng) < v(Mo x N) = u(My) = 0. O

JE.P — M., 2016, tome 3



THE INTRINSIC DYNAMICS OF OPTIMAL TRANSPORT 83

Since our manifolds M and N are compact, any open subset is o-compact; in partic-
ular the complement of S is o-compact. In view of this fact and the proposition preced-
ing it, by enlarging Ej if necessary we may henceforth assume (i) (M x N\ S) C Ey
and (i) (Mo x N)U (M x Ng) C Ep. Then S := M x N ~ Ey ensures that for all pairs
(z,y) € S we have differentiability of ¢ at = and of ¢ at y.

Proposition 4.3 (Marginal cost is marginal price). — For every (z,y) € S, (4.1)~(4.3)
imply

Oc Oc

(45) di(r) =~ 5o (e.y) and do(z) = 3 (x.v).

Proof of Proposition 4.3. — Let (z,y) € S, then we have by (4.1)-(4.2),

oY) —c(z,y') <d(x) Yy e N and ¢(y) — c(z,y) = (x)
Y(') +c(@'y) = o(y) Vo' € M and o(x) + c(z,y) = ¢(y).

We conclude easily since both ¢ and ¢ are differentiable respectively at  and y. 0O

A\VARV/AN

We call L-chain in & any ordered family of pairs

((3317y1)7 v (xImyL)) - gL
such that for every £ = 1,..., L — 1 there holds, either

Ty = Tp+1, or Yo = y[-‘rla
Yo # Yoy1 = Ymin{L,0+2} Tp # Tpp1 = Tmin{L,0+2}-

Note that by construction, the set of pairs of any L-chain in Sis c-cyclically monotone
as a subset of S, so by (4.5), any L-chain in S is indeed an L-chain with respect to ¢
(Definition 1.3). We define the level £(z, ) of each (z,y) € S to be the supremum of all
natural numbers L € N* such that there is at least one chain ((z1,1), ... (zz,yz)) in S
of length L such that (x,y) = (xr,yr). Moreover, given a chain ((z1,y1),...(zL,yr))
with L > 2 in g, we say that (zr,yr) is a horizontal end if y;, = yr,—1 and a vertical
end if x;, = x_1. We set

Sy = {(x,y)€§|€(x,y)>L} VL eN",

and denote by §}L’ (resp. g’z) the set of pairs (z,y) € Sy, such that there exists a
L-chain ((z1,41),-.-(zr,y5)) in S such that (z,y) = (xr,yr) and yr_1 = yr, (resp.
zr—1 = x1). Although projections of Borel sets are not necessarily Borel (see [23]),
the following lemma holds.

Lemva 4.4 (Borel measurability). — The sets S = S and 55,55,,5’5,5; are
Borel: each takes the form U;O:1 ﬂ;il Up,q, where the sets U1 and Up—1,4 C Up 4 C
Up,q—1 are open for each p,q > 2.

Proof of Lemma 4.4. — Given L > 3 odd, we shall show that S has the asserted
structure. The other cases are left to the reader. Endow the manifolds M and N with
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Riemannian distances dj; and dy, and let d;, denote the product distance on the
product manifold (M x N)E. For every integer p > 1, denote by S, the set of L-tuples
((xl,yl)a cee (xLayL)) c SL

satisfying for every ¢ =1,..., L — 1,

1/p,

for £ even: xyy1 = xp and dn (Ye+1, Ye)
1/p.

=
for £ odd: ye41 =y and dps(2pq1,20) >

Since S is compact, the set .S, is compact too.

On the other hand, o-compactness of Ey yields (M x N) \ Ey = ﬂgozl Vy for a
monotone sequence of open sets V; C V,_1. For every integer ¢ > 1, we denote by S{I
the open set of L-tuples

L
((Ihyl)? cee (x[nyL)) - (Vq) :
A pair (z,y) € M x N belongs to gz if and only if there is p > 1 such that

(z.y) € Proj, (N (5,1 5})),
q
where the projection Proj; : (M x N) — & is defined by

Proj, ((z1,11), .- (xL,yr)) == (zL,y1)-

For integers p,q > 1, let S] the set of points which are at distance d, < 1/q from S,
in (M x N)E. Since S, is compact, for every p we have

NSNS, =N(SEnsy).

Moreover since for every p, the sequence of sets {Sg N S[I} is non-increasing with
respect to inclusion, we have for every p,

Proj, (N (S¢1S;)) = NProj, (S408;) -
q q

The open sets U, = Proj, (Sg N S;) then have the asserted monotonicities Up_1 4 C
Up.q C Upg—1 with respect to p and ¢, and we find S} = U2, ;2 Up,q is the desired

countable union of Gy sets. O
Cororrary 4.5 (Borel measurability of projections). — For i > 1, the projections
™ (S;) and 7N (S;) of Si (and of S, S} if i > 1) take the form U~ ;2 Vias

where Vi1 and Vp—1,4 C Vp,q C Vpg—1 are open for each p,q = 2.

Proof. — If gz—h/v =U,N, U;f/qv for i > 1 with U:_/iq C U,’f,{lv C U;’{Zv_l then setting

Vpq = ™ (Up,q) with Uy q = Ul UUY , shows ™(8;) = U, N, Vp,q as desired. The
other cases are similar. ]

We recall that a set S C M x N is called a graph if for every (x,y) € S there
is no 3’ # y such that (z,y') € S. A set S C M x N is called an antigraph if for

every (x,y) € S there is no ' # x such that (2’,y) € S. Any graph is the graph of a
function defined on a subset of M and valued in N while any antigraph is the graph
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of a function defined on a subset of N and valued in M. We call Borel graph or Borel
antigraph any graph or antigraph which is a Borel set in M x N. We are now ready
to construct our numbered limb system.

Motivated by the inclusion §k+1 C g‘k, we set By := §1 ~ gg,

El = E,nS8", E!' =E.\8,
(4.6)  Ep:=8\Sip1and { BV :=E,NSY, E=E, NS  Vk>2
EM = E} N EY,

Notice that Ej consists precisely of the points in S at level k. All these sets are Borel
according to Lemma 4.4. Letting E := (), Sk gives a decomposition

(4.7) §—EOOUE1U<U (E,’;—UE,QWUE,:—))
k=2

of § into disjoint Borel sets. The next lemma implies the E,’; are graphs and the E}
are antigraphs; F; is simultaneously a graph and an antigraph, as are the Epv.

Lemma 4.6 (Graph and antigraph properties)

(a) Let (z,y;) € E; and (z,y;) € E; with j > i > 1 and y; # y;. Then i > 2.
Moreover, if j > i then (x,y;) € E" and (z,y;) € E{[, so j =i+ 1; otherwise j =i
and both (‘rayi)’ (mvyj) € Ez?)_'

(b) Similarly, suppose (z;,y) € E; and (z,y) € Ej with j > i > 1 and x; # ;.
Then i =2 and if j > i then (z;,y) € EY and (xj,y) € Ef_;lso j =14 1; otherwise
Jj =1 and both (z,y;), (x,y;) € Ezh*,

Proof’

(a) Let (z,y;) € E;and (z,y;) € Ej withj >4 > 1and y; # y;. Then (z, y;), (2, y;)
form a 2-chain and both points lie in gg, forcing i > 2. If (z,y;) € Ejh, there is a j-
chain in & terminating in the horizontal end (z,y;). Appending (z,¥;) to this chain
produces a chain of length j + 1 with vertical end (z,y;), whence ¢ = £(x,y;) > j + 1.
This contradicts our hypothesis i < j. We therefore conclude (z,y;) € E] ™. Note that
if (z,y;) € EI', the same argument shows

(48) j=ta,yy) > i+l
Whether or not this is true, S contains a j-chain
(4.9) (@1 91)s 0 (25, 95)
terminating in the vertical end (z,y;), so

T=2T; = 93,/7'—17 and y; = ZU; # ZU,;'—1~

Now either (c) (x,:) € E}' or (d) (z,y:) € E/™. In case (c), we claim y;_; = y;.
Otherwise the sequence

((xllvyi% R (Z‘;‘—lvy}—l): (xvyi))
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would be a j-chain in S of length j < £(z,y;) = i, contradicting (4.8). Thus y;_; = y;
and i = ¢(x,y;) > j — 1, which implies equality holds in (4.8).

In case (d), (=,y;) € B, we replace (27,y}) with (z,3;) in (4.9) to produce a
chain of length j < ¢(x,y;) = 1, forcing i = j as desired.

Part (b) of the lemma now follows from part (a) by symmetry. O

We define the graphs and antigraphs of our numbered limb system.

G, :=E UE!,
(4.10) Goi := EYT UEN UFEY, pir1 = By UEy 4,
and Gaitr = Egz?—l U E21+1 U E 2i4+2 = E2z+1 U E;:—Z

for all integers i € N*, and adopt the convention Gy = &.

Levwva 4.7 (Disjointness of domains and ranges). — For k € N set
: aM(Gr U Gry1) if k odd and
k =
N(GrUGry1) if k even.
Then the subsets {Izi11}2, of M are disjoint, as are the subsets {I2;}5°, of N.

(4.11)

Proof. For i € N, we shall show the sets Iy;11 C M are disjoint. Disjointness of
the subsets {I3;}32; of N is proved similarly, using Lemma 4.6(b).

To derive a contradiction, suppose x € I;41 N ;41 with ¢ < j. Depending on
whether ¢ = 0 or ¢ > 1, there exist

h—
(z,y) € E1UE}" UEY; U E21+2 UES o UEy 5
and (x, y)EE2]+1UEZJ+2UE2J+2UE2]+3

Since 2i 4+ 2 < 25 + 1 disjointness of the Ej imply y # y'. Lemma 4.6(a) then asserts
(z,y') € By;UEy; , — the desired contradiction. Thus the subsets {I2;11}$2, of M
are disjoint. O

Levmva 4.8 (Numbered limbs). — The Borel sets {Ga,11}52, of (4.10) form the graphs
and {G2;}32, form the antigraphs of a numbered limb system: Ga;+1 = Graph(fo;41)
and Go; = Antigraph(fa;), with Dom f, URan fr11 C Ij, from (4.11) for all k € N.

Proof. — The sets Gy, are Borel by their construction (4.6), (4.10) and Lemma 4.4.
If i > 0 we claim Goi1 = Bl , UER, UEL" | is a graph: Let (z,y) # (z,y') be
distinct points in Gg;41. Lemma 4.6(a) asserts that at least one of the two points lies
in By, or Ey 5, — a contradiction. The fact that Go; is an antigraph follows by
symmetry, and the fact that G; is a graph is checked similarly.

We can therefore write Ga;11 = Graph(fo; 1) and Go; = Antigraph(fy;) for some
sequence of maps fr : Dom f; — Ran f; with domains Dom f; C M and ranges
Ran fr, € N if k odd, and Dom fy C N and Ran f, C M if k even. The fact that
Dom frURan fr4+1 C I follows directly from (4.11), while Lemma 4.7 implies disjoint-
ness of the Ir; 11 C M and of the I5; C N. If M = M2 Iaiy1 or N = N\Ui2o I2i
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is non-empty, we replace Iy by Iy U N and I by I U M to complete our verification
of the properties of a numbered limb system (Definition 3.1). g

Proof of Theorem 1.4 and Remark 1.5. — To recapitulate: Gangbo and McCann [11]
provide a c-compact set S containing the support of every optimizer v € Iy, and a
pair of Lipschitz potentials (4.1)—(4.3) such that S C 0.1. We take S to be the min-
imal such set without loss of generality. Proposition 4.2 shows My := M ~ Dom dv
to be p-negligible and Ny := N \ Dom d¢ to be v-negligible; both are o-compact by
Proposition 4.1. Without loss of generality, we therefore assume My x Ny C Ey and
M x N S C FEy, the y-negligible o-compact set. Lemma 4.8 provides a decomposi-
tion (4.7) of S := M x N < Ej into a numbered limb system consisting of Borel graphs
and antigraphs — apart from a Borel set Fo, = ﬂSk But we have v(E) = 0 for
each v € Iy by hypothe51s Theorem 3.2 therefore asserts that at most one v € I
vanishes outside S E,. But since all v € IIp have this property, Il must be a
singleton. Finally, since Spq1 C S we see 7 (EL) = MNreq 7M(8;,) and 7V (EL.) are
Borel using Corollary 4.5. |

5. Proor or TaeEoreEMm 1.1

Noting dim M = dim N, let (Z,5) € M x N be such that a(;acm (Z,7) is invertible.

The mapping
0
F:yeN+— a—c(f,y)ETgM
x

is C' and since its differential at % is not singular, its image contains an open set in
Tz M. By Sard’s theorem (see [9, §3.4.3]), the image of critical points of F has Lebesgue
measure zero, so we may assume without loss of generality that F'(7) is a regular value
of F', meaning there is no y with fy—zcm(ﬁ y) singular such that F(y) = F(y). The next
lemma then follows from topological arguments.

Lemva 5.1 (Generic failure of twist). — Fiz (Z,5) € M x N such that F(y) is a
regular value of F(y) = Br S(Z,y). There is y € N such that F(y) = F(y), i.e.,

Oc Oc
1 —(Z,y) = —(7,y).
(5 ) oz (l‘, y) ox (.Z’, y)
Proofof Lemma5.1. — We argue by contradiction and assume that

VyeN, y#y = F(y)# F(@®).

Note that since F' is a local diffeomorphism in a neighborhood of 7, the above condition
still holds if we replace F' by F a smooth (of class ) regularization of F sufficiently
close to F. So without loss of generality we may assume that F' is smooth. Define the
mapping G : N ~ {g} — S"~! by

Fly) - F(y)

W) = 1F ) —F )

Yy e N~ {7y}
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The mapping G is smooth, so by Sard’s Theorem it has a regular value A\. Then the
set

G ={ye N\ {7} |Gly) = A}
is a one dimensional submanifold of N\ {7}. Moreover, since the differential of F at j
is invertible, there are a open neighborhood U of 3 and a C* curve v : [—¢,¢] — N
with v(0) =7 and 4(0) # 0 such that

G(y(£t)) =X Ve (0,¢]
and G'N)NU=~((0,¢)).

This shows that the closure of G71()\) is a compact one dimensional submanifold
whose boundary is 7. But the boundary of any compact submanifold of dimension
one is a finite set with even cardinal (see [20]), a contradiction. O

We need now to construct a c-convex function whose c-subdifferential at each point
near T takes values near both 7 and §. We note that since F(7) is a regular value
of Fy) = %(E y) and F(y) = F(y), both linear mappings D,F(7), D,F(y) are
invertible.

Lemva 5.2. — There is a pair of functions ¢ : M — R, ¢ : N — R such that

(5.2) Y(x) max{qS c(z,y)} VeeM
and
(5.3) ¢(y) = min{¢(z) + c(z,y) |z € M} Yy € N,

together with an open nezghborhood U of T, two open neighborhoods V.C N of i and
VCN of § with V N V= @, and two C* diffeomorphisms

y:U—V, y:U—)V

with
y(@) =y and y=7y@),
such that
(5.4) dp(x)n (VUV) = {g(x),5(x)} Vzel.
Proofof Lemma 5.2. — Since we work locally in neighborhoods of Z, § and ¥, taking

charts, we may assume that we work in R™. For every symmetric n X n matrix @,
there is a function f: M — R of class C? such that

dc ,_ _ dc ,_
(5.5) dsf = —50(7,7) = — 5 (7,7)
and
(5.6) Hessz f = Q.
Let @ be fixed such that
0%, _ D¢,
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we claim that there is a c-convex function ¢ : M — R which coincides with f in an
2
neighborhood of f and which satisfies the required properties. Since both ;Tgy(f, 7)

and %(E, y) are invertible and (55) holds with § # ¥, the Implicit Function The-
orem yields a open neighborhood U C M of T, two disjoint open neighborhoods

V, V C N of 7,7 respectively, and two functions of class C*

2eUr—y) eV, zeUrjg)eV

such that
D 96 (o g(@)) = —do f
(5.8) {g(x) B g and Oz i) VreU.
o) =3 o (0 @) — duf
Taking one derivative at T in the latter yields
0% &c ,_ 9y &%c &%c N

522 (P0) + 555 B 9) 5,0 = 5 (B:0) + 5.5, (7.5) 5, (7) = ~ Hess /.

which can be written as

520 =~y e9) [+ 5 00)
50 (i e9) e + 50

Therefore, by (5.6)—(5.7) we infer that %(E) and g—g(T) are invertible. Then restricting
U,V, ‘7 if necessary, we may assume that the mappings

zeUr—yx) eV, zeUrj) eV

are diffeomorphisms. Moreover, the functions of class C2 given by
iz €U v f(2) = f(Z) + c(2,7(x)) — ¢ (T, 7(x))
and cx €U — f(z) — f(@) +c(z,y(x) — c(T,y(z))
G@@) =G@) =0, dsG=d:G =0, Hess3G = HesszG = — [Q + @(E, @)} <0,
So we may also assume that
59 {f(w’) — (@) + e (@5 — e (@5() <0

f@) = f(@) + e (2, y(2') — c(z,y(a") <0
As a matter of fact, freezing x in the first line of (5.9) and setting

Go(a') = f(@') = f(@) + c (@', 7(2))) —c(z,7(a") Vo' €U,

we check that for every z € U, we have

Vo' e U~ {z},Vz el.

) =0, d.To = daf + o (2.5(2)) = 0
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and for every ' € U

o — @/71 @/717@7/@/

Ao =dof + 5 («,56) + [ (#.76) = 5 (@ 96) | 526
which implies
= 0%c . &%¢ . ay
Hess, G = Hess, f + @(z, y(z)) + m(m,y(z))%(:ﬂ)
Define the functions ¢y : N — R and ¢ : M — R by
F@ W) +e(@ vy ifyeV
Po(y) = f (T W) +e(@ ).y ifyeV VyeN

—00 ify¢vuv
and
= — ¢(x, Vo e M.
¥(z) = max{do(y) —c(z,y)}  Va
We observe that we have for every = € U,

0 (y(@)) — c(z,7(x)) = ¢o(9(2)) — c(z,5(2)).

Then we have

Y(x) = mag{gbo (y(a:’)) — c(x,y(x'))} = ma§{¢0 (ﬂ(x’)) — c(x,:f](x'))} Vae M.

z’'elU z'elU
By the above construction and (5.9), we have for every € U and any 2’ € U \ {z},
0 (7(@)) — c(2,5(2)) = f(x)
> f(@') + c(,5(2") — e(2, () = ¢o(5(2)) — c(z,7(a")).-
We infer that
U(@) = do(H(2)) — c(z,5(x)) = ¢o(J(@)) — c(z,9(x)) = f(z) Vaxel.
Setting
o(y) = min{z/)(a:) +e(z,y) |z € M} Yy € N,
we check that (5.2)—(5.4) are satisfied.

¥(z) = max{d(y) —c(z,y)}  VaeM. 0

Returning to the proof of the second case, let us consider an absolutely continu-
ous probability measure p on M whose support is contained in U. Then define the
nonnegative measures 7,7 on N by

_ 1 4 7 1
U= = and 7U:= -

and set

S
I
N
+
<)
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Since the functions i and y are diffeomorphism, v is an absolutely continuous prob-
ability measure on N whose support in contained in V U V. Moreover, the plan %
defined by

1 1
vi=5Udgyut 5 (dY)n

has marginals p and v and is concentrated on the set of (z,y) € M x N with z € U
and y € 9.4(x)N(VUV). By (5.2)—(5.3), any plan v with marginals p and v satisfies

/MxN c(x,y) dy(z,y) > /MxN [P(y) — ¥ (2)] dvy(z,y)

/¢> ) duly /w ) du(a

= / Y(2) dp(z
VUV

- / () d7(x, ),
Mx N

with equality in the first inequality if and only if v is concentrated on the set of
(v,y) € M x N with x € U and y € 9.4(x)N(V U V). This shows that ¥ is the unique
optimal plan with marginals p and v.

It remains to show that the set of costs satisfying (1.3) is open and dense in
C?(M x N;R). The openness is obvious. Let us prove the density. Let ¢ be fixed in
C?(M x N;R) such that (1.3) is not satisfied. Let 7 € {0,...,n— 1} be the maximum
of the rank of 82%(1:, y) for (z,y) € M x N, pick some (Z,y) € M x N such that

9%c

rank(ayax (z, y)) =T

Since the rank mapping is lower semicontinuous, there are two open sets U C M and
V' C N such that the rank of %(z, y) is equal to 7 for any (z,y) € U x V. Moreover
restricting U and V if necessary and taking local charts, we may assume that we work
in R™. Let X : V. — R"” be the mapping defined by X(y) = %(f, y), for any y € V.
Doing a change of coordinates in x and y if necessary, we may assume that the 7 x 7

G= (66;(; @)) 1<i,j<F

is invertible. Define the mapping G : V. — R" by
Gy, yn) = (XW1, -, XW)m yrs1, - yn) VY eV

The function G is of class C' and by construction the differential of G’ at 7 is invertible.
Then G is a local diffeomorphism from a open neighborhood V' C V of 7 onto an
open neighborhood Z of Z := G(¥). The function X in z coordinates is given by

X(2) =X, (G7'(2)) VzeZ

matrix

By construction, we have

X(2); =2z Vi=1,...,7,Vz€ Z.

JE.P. — M., 2016, tome 3



92 R. J. McCann & L. Rirrorp

Therefore, since X has rank 7, the coordinates ()?;_H, e ,)?n) do not depend upon
the variables 2711, ..., 2,. Let § : R” X R” — R be the smooth function defined by

oz, z) = Z ;% Vz,zeR"
i=T+1
and let ¢ : R™ — [0,1] be a cut-off function which is equal to 1 in a neighborhood
of G(y) and 0 outside Z. Then for every £ > 0 the function

¢ (z,2) — c(z,G7H(2)) +ep(z)d(x, 2)

has a mixed partial derivative which is invertible at (Z,%) and tends to ¢ (in (z, z)
coordinates) in C? topology as € > 0 goes to zero.

6. GENERIC COSTS IN SMOOTH TOPOLOGY

The proof of Theorem 1.7 follows by classical transversality arguments. We refer
the reader to [14] for further details on the results from Thom transversality theory
that we use below.

Recall that dim M = dim N = n. Denote by J?(M x N;R) the smooth manifold of
2-jets from M x N to R and denote by V the set consisting of 2-jets ((x,y), A\, p, H)
where H is a symmetric matrix consisting of four n x n blocks

I — oy H ’
H3 H,y

with Hs of corank > 1. The set V is closed and stratified by the smooth submanifolds
Ve = {((z,y), A\, p, H) | rank(H;) = r} Vr=0,...,n—1,

of codimension > 1. By the Thom Transversality Theorem (see [14, Th. 4.9, p. 54]), the
set Cy of costs ¢ € O°°(M x N;R) such that j2¢(M x N) is transverse to V is residual.
For these costs the set ¥ := (j2¢)~}(V) € M x N is stratified of codimension > 1 and
it is nonempty. As a matter of fact, for every x € M, the mapping %(w, )N —=>T*M
is smooth and its image 7 is a compact subset of 17y M. Thus for every boundary point
p € JZ, the function %(w, -) cannot be a local diffeomorphism in a neighborhood of
any y € N such that %(z,y) = p, which shows that for such y the linear mapping
Bay%(x, y) cannot be invertible. This shows that ¥ is not empty. The fact that ¥ is
stratified of codimension > 1 (and so of zero measure) comes from the fact that it
is the inverse image by j%c : M x N — J?(M x N;R) of V which is transverse to
j2(M x N) (see [14, Th. 4.4,p.52]).

Using a similar argument, we next show that the set of costs without periodic

chains is residual in C*°(M x N;R).

Lemma 6.1 (Cyclic chains yield optimal alternatives). Let

((z1,91),- .- (zr,y)) € (M x N)*
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be a chain with xo = x1,xp # x1, and yp = y1. Then L = 2K for some integer K > 2
and

=

K-1
C($2k+1ay2k+1) = Z C($2k+1,y2k+2)-
k=0

S
I

0

Proof of Lemma 6.1. — The fact that £ = 2K is obvious from the definition of cycle
and the fact that o = 21, 1, # 21 and yr, = y1. We have for any k € {0,..., K — 1},

Tok42 = Toag+1  and  Yopyz = Ya2k+2-

Then, since the set {(z1,41),...(xL,yr)} is c-cyclically monotone, we have

K-1 K-1
Z C($2k+1,y2k+1) < Z C($2k+1,y2k+3)
k=0 k=0
K—1 K—-1
= C($2k+17y2k+2) = Z C(x2k+27y2k+2)
k=0 k=0
K—1 K-1
< c(@2, o) + c(zory2, yor) = c(Tak41, Yor+1)-
k=1 k=0
We conclude easily. O

We need now to work with 1-multijets of smooth functions from M x N to R. For
every even integer L = 2K > 4, we denote by W, the set of tuples

(), @rown)), Qs M), (05,50, 0 01))
satisfying
(i, yi) # (25,9;) Vi#je{l,..., L},
{$2k+2 = T2k+1 {pgzcmz = DPakt1
Y2k+3 = Y2k+2,
for all k € {0, K — 1} and

y .y
Dok13 = Pogya

K-1 K-1
> Aok =3 Aawga.
k=0 k=0
The set Wy, is a submanifold of J} (M x N;R) of dimension
D=4Kn+L—1=(2n+1)L—1

and J} (M x N;R) has dimension (4n + 1)L. Thus Wy, has codimension 2nL + 1.

By the Multijet Transversality Theorem (see [14, Th.4.13,p.57]), for every
K =2,3,..., the set Cx of costs ¢ for which jl.c is transverse to Wak is residual.
The intersection

C:cm<ﬁ cK)
K=2

satisfies the conclusions of Theorem 1.7.
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ArpENDIX. GENERIC UNIQUENESS OF OPTIMAL PLANS FOR FIXED MARGINALS

Elaborating on a celebrated result by Maiié [18] in the framework of Aubry-Mather
theory, it is possible to prove that for fixed marginals the set of costs for which
uniqueness of optimal transport plans holds is generic. Such a result was first obtained
by Levin [17]. We include an argument here for comparison.

Let M and N be smooth closed manifolds (meaning compact, without boundary)
of dimension n > 1, ¢ : M x N — R be a cost function in C¥(M x N;R) with
k € NU {oo}, and u,v be two Borel probability mesures, we recall that II(u,v)
denotes the set of probability measures in M x N with first and second marginals p
and v. By the way, a measure on M X N is a continuous linear functional on the set of
continuous functions C°(M x N;R) and the set E = C°(M x N;R)* of such measures
is equipped with the topology of weak-* convergence saying that some sequence (/)¢
in E converges to m € F if and only if

lim fdm:/ fdm,
=00 Jprx N MxN

for every f € CY(M x N;R). The following is classical.
Levma AT The set II(u,v) is a nonempty compact convex set in E.

The following will also be useful. We refer the reader to [14] for the definition of
the C*-topology.

Lemma A2 The mapping

(m,¢) € Ex C*(M x N;R) —» cdm
MXxN

is continuous with respect to the weak-x topology on E and the C*-topology on
CF(M x N;R). Moreover, for every mi,mo € U(p,v) with m # mo, there is
c € CF(M x N;R) such that

/ cdm # cdmsy.
MxN MxN

For every ¢ € CF(M x N;R) let M(c) be the set of optimal transport plans
between p and v, that is,

M(c) == {weﬂ(u,y) | cdﬂg/ cdw’,Vw’GH(,u,z/)}.
MxN MxN
By construction, M(c) is a nonempty compact convex subset of IT(u, v).

Turorem A.3 (Levin). — There ewists a residual set C C C*(M x N;R) such that for
every c € C, the set M(c) is a singleton.

Here residual refers to a countable intersection of open dense sets. Theorem A.3
follows easily from results of Mafé [18] (or from arguments developed subsequently
by Bernard and Contreras [4]). For sake of completeness we provide its proof which
is based (following the approach of Bernard and Contreras [4]) on the next lemma. It
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shows that near any given cost function can be found another for which the minimizing
facet of K :=II(u,v) has arbitrarily small diameter.

Lemma A4, — The weak-x topology on K can be metrized by a distance d with the
following property. Let co € C*(M x N;R) be fized. For every neighborhood U of cg
in C*(M x N;R) and every e > 0, there is ¢ € U such that

diam(M(c)) <e.

Proofof Lemma A.4. — Let U and & > 0 be fixed. By compactness of K := II(u,v)
with respect to the weak-x topology, there is a sequence {f;}sen of continuous func-
tions that defines a metric d on II(u, v) by

/ f@dm—/ fedmy
MxN MxN

which is compatible with the weak topology. We claim that there is an integer £ > 0
and

o0

~ 1
d(my,me) = Z 5

£=0

V7-‘—177-(-2 € H(,”ﬁ”)?

ct,...,c; € CH(M x N;R)
such that the continuous map

Py : T(p,v) — R’

defined by
Py(m) == (/ cldw,...7/ czdw) Ve Il(p,v),
MXxN MxN
satisfies
(A.1) diam(P; '(p)) <e  VpeR’.

where the latter refers to the diameter with respect to d of the set of measures in
II(u, v) sent to p through P;. For every ¢ € C*(M x N;R), let

W, = {(7‘(1,7‘(’2) | / cdmy # Cdﬂ'z}.
MxN MxN

By Lemma A.2, the sets W, are open and their union covers the complement of the
diagonal D = {(m,7) | # € K}. Since this complement is open in the metrizable
set K x K, we can extract a countable subcovering from this covering. So there is a
sequence {c¢}sen such that

(A.2) KxK~D=JW,,.
eN

We need to check that P; satisfies (A.1) if ? is large enough. If not, there are two
sequences {7} }¢, {77}, in K such that

Py(n}) = Pg(ﬂ'?) and 67(71'},77?) >e€ Ve
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Then up to taking subsequences, {m}}, and {77}, converge respectively to some
7!, 72 € K with d(7!,72) > e. But by (A.2), there is m such that

/ Cr dmt # em dm?.
MxN MXxN

Pm(w}) = Pm(ﬁ?) Vi>=m,

But we have

which passing to the limit gives P, (7r1) =P, (71'2), a contradiction.
Let K’ := P;(K) which is a nonempty convex compact set in R, denote by ¥ :
R — R the function defined by

min{foNcodereKs.t. Pz(w):x} ifz e K’
+00 if v ¢ K'

U(z) = Ve R,

and denote by @ : RY 5 R its conjugate, that is,

®(y) := sup {(y, z) — ¥(2)} = max{(y,z) — ¥(z)}

R’ zEK
13
= max yecp dm — W (Ps(m }7
71'EK{~/M><N5§_:1 ( Z( )>

for every y € RY. By construction, ® is convex and finite on RZ, moreover for every
7 € R and every 7 € R such that <I>(y) = (y,7) — \Il(f), we have

() + ly—7.7) = (3.7) —¥(T) <D(y) VyeR"

This means that Z belongs to 0P (g), the subdifferential of ® at . If in addition 7 € K
satisfies Pz(ﬁ) =7 and

3 13
co — YoCo dﬁg/ (co— yq) dm VreK,
/MXN( ; ¢ > MxN Z ¢

then by definition of ¥, we have

‘ ‘
/ Z@;cedﬂ—\I/(Pz(ﬂ)) </ Z]ced?—\ll(f), VreK.
M MxN

XN g—1 =1

This means that
13
M (co - ZW) c P (02(7))
=1

By Rademacher’s theorem, for almost every 7 € RY the set 9% (7) is a singleton. We
conclude by (A.1). O
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Let us now prove Theorem A.3.

Proofof Theorem A.3. — For every integer £ > 0, let us denote by C, the set of
c € CF(M x N;R) such that

diam(M(c)) < %

By the continuity part in Lemma A.2, each set Cy is open and by Lemma A.4, it is
dense as well. Then the set

C=N G
¢EN*
does the job. O
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