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ON TREES INVARIANT UNDER EDGE CONTRACTION

by Olivier Hénard & Pascal Maillard

Abstract. — We study random trees which are invariant in law under the operation of con-
tracting each edge independently with probability p ∈ (0, 1). We show that all such trees can
be constructed through Poisson sampling from a certain class of random measured R-trees
satisfying a natural scale invariance property. This has connections to exchangeable partially
ordered sets, real-valued self-similar increasing processes and quasi-stationary distributions of
Galton–Watson processes.

Résumé (Au sujet des arbres invariants par contraction de leurs arêtes)
Nous étudions les arbres aléatoires dont la loi est invariante par la contraction indépendante

de leurs arêtes avec probabilité p ∈ (0, 1). Nous montrons que ces arbres peuvent être construits
par échantillonnage poissonnien à partir d’une classe de R-arbres aléatoires mesurés qui satisfont
à une propriété d’invariance naturelle. Cette étude est liée aux ordres partiels échangeables, aux
processus autosimilaires croissants à valeurs réelles et aux distributions quasi-stationnaires de
processus de Galton-Watson.
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366 O. Hénard & P. Maillard

1. Introduction

Take a random rooted tree T (in the graph sense) and contract each edge indepen-
dently with probability p ∈ (0, 1). Are there (necessarily infinite) random trees which
are invariant in law under this operation? Trivial examples are the (semi-)infinite ray,
i.e., the one-dimensional half-lattice N := {0, 1, . . .} and with root 0, or a (possibly
random) number of copies of this graph whose roots are identified. Slightly less trivial
examples are the previous graph with a bouquet of edges attached to each vertex, the
number of edges in each bouquet being independent and identically distributed (iid)
according to a geometric distribution (starting at 0). There are however many more
examples of such trees. Indeed, the following is the main result of this article, which
is an informal statement of Theorem 1:

Theorem. — There is a one-to-one correspondence between random trees invariant
under the above contraction operation and a certain class of continuum random trees
invariant under rescaling by the factor p.

The proof of this result will involve quite an extensive machinery of tools, including,
for instance, Gromov–Hausdorff–Prokhorov convergence of locally compact metric
spaces and random exchangeable partial orders. We furthermore give in this article
constructions of several examples of such trees and completely characterize the class
of the trees which are also invariant (in law) under translations along the spine.
This has connections with real-valued self-similar increasing processes and with quasi-
stationary distributions of subcritical Galton–Watson processes.

The study of this problem originates in a geometrically motivated question asked
to us by I. Benjamini: Is it possible to find a law on the space of trees and a suit-
able renormalization procedure, i.e., a suitable random coarse-graining operation that
preserves the tree structure, such that the law of the tree is invariant under this oper-
ation? The contraction operation is an example of such a renormalization procedure,
which has the pleasant feature of allowing to characterize all locally finite random
trees it leaves invariant.

We are not aware of any similar results in the random tree literature. The operations
that are usually considered on trees, for example random growth or pruning, always
operate on leaves or whole subtrees instead of single interior vertices, see [Rém85,
AP98]. There might be a good reason for that: The trees we obtain are indeed very
different from usual trees in the sense that they are very elongated, with long chains
of vertices of degree 2, to which might be attached some bouquets of edges as in the
above example. In particular, neither exponentially growing trees nor critical Galton–
Watson trees (conditioned on non-extinction) are amongst them.

Definitions and statements of the results. — The precise statements of our results
require a fair amount of definitions which we give in this section, occasionally referring
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On trees invariant under edge contraction 367

to the appendix for details. Very impatient readers might directly jump to the state-
ment of the main theorem (Theorem 1) and work their way backwards to understand
all the definitions.

In this article, we consider rooted, locally finite trees T = (V,E, ρ) in the graph-
theoretic sense; in combinatorics these are also known as unlabelled, unordered, non-
plane or Pólya trees [Sta97, FS09, Drm09]. We say that two such trees are equivalent
if there exists a root-preserving graph isomorphism between them and denote by T
the space of equivalence classes of trees. We usually identify an equivalence class with
its representatives. A path in T is a finite or infinite sequence of adjacent, pairwise
distinct vertices of T , and an end is an infinite path starting at the root. The spine
of T , denoted by Spine(T ), is the union of the ends of T , or {ρ} in case T has no end.
We denote by Te ⊂ T the subspace of trees with finitely many ends and by Tf ⊂ Te
the subspace of the finite trees.

We endow the space T (and its subspaces) with the topology of local convergence
defined as follows: For a tree T ∈ T and k ∈ N, denote by T6k its restriction to the
vertices at (graph) distance at most k from the root. A sequence (Tn)n>0 in T then is
said to converge to T ∈ T if for every k ∈ N, (T6k

n )n>0 converges to T6k in Tf . This
topology is metrizable in such a way that the space T is a complete separable metric
space, but not the space Te (see Section A.1). Note also that the induced topology
on Tf is indeed the discrete topology.

In order to deal with random trees, we endow the space T with the Borel-σ-field
induced by its topology. We then denote by M1(T) the space of probability measures
on T, endowed with the topology of weak convergence. We will often denote the
elements of M1(T) by T as well, and will refer to them as random trees. We similarly
define M1(Te) and M1(Tf ).

A rooted tree T = (V,E, ρ) ∈ T determines a partial order �T on its vertex set V
by v �T w if and only if v lies on the (unique) path from ρ to w. In this case, we say
that v is an ancestor of w, or that w is a descendant of v; accordingly, we call ≺T the
ancestral relation of the tree T . We also write v ≺T w when v �T w and v 6= w. Note
that the tree T can in fact be completely recovered from �T and ≺T .(1) This allows
us to formally define a generic contraction operation as follows:

Definition 1.1. — Let T = (V,E, ρ) ∈ Te and let V ′ ⊂ V be a subset of its vertices
containing the root and containing an infinite number of vertices on each infinite
path. The contracted tree C (T, V ′) is defined to be the rooted tree with vertex set V ′,
root ρ and whose partial order �C (T,V ′) is the restriction of �T to V ′. It is easy to
see that C (T, V ′) is indeed locally finite and has a finite number of ends only, i.e.
C (T, V ′) ∈ Te.

We then define the randomized contraction operation we will consider.

(1)In fact, the tree can be viewed as the transitive reduction of the (acyclic) directed graph
(V,≺T ).
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368 O. Hénard & P. Maillard

Definition 1.2. — Let p, q ∈ (0, 1). Let T = (V,E, ρ) ∈ Te. Set V0 = V r Spine(T )

and V1 = Spine(T ) r ρ. The random tree Cp,q(T ) ∈ M1(Te) is defined to be equal
to C (T, V ′), where V ′ is the random subset(2) of vertices containing ρ, every vertex
in V0 independently with probability p and every vertex in V1 independently with
probability q.

Note that if p 6= q, then the map Cp,q : Te → M1(Te) is not continuous, because
when a sequence of trees Tn converges to a tree T , non-spine vertices can become
spine vertices in the limit. However, if we define for M ∈ N the map CM

p,q, in which a
vertex is kept in V ′ with probability q if it has a descendant at distance M , and with
probability p otherwise, then this map is easily seen to be continuous. In particular,(3)

it extends to a continuous map CM
p,q : M1(T) → M1(T). Since Cp,q = limM→∞ CM

p,q,
we conclude that the map Cp,q is measurable and extends to a (measurable) map Cp,q :

M1(Te)→M1(Te). This allows us to write Cp,q(T ) for a random tree T ∈M1(Te).

Definition 1.3. — Let p, q ∈ (0, 1). We say that a random tree T ∈ M1(Te) is
(p, q)-self-similar, if T law

= Cp,q(T ).

Remark 1.4. — In defining the contraction operation Cp,q, we restricted our discussion
to trees in Te. This brings no restriction when studying locally finite self-similar
random trees, since there are no locally finite self-similar random trees with infinitely
many ends: when applying the contraction operation repeatedly to such trees, the
distance from the root to the branch points on the spine stochastically decreases,
hence the degree of the root goes to infinity in law. Therefore, the degree of the root
would have to be infinite in the first place.

We now extend the above definitions to R-trees,(4) and point the reader to Sec-
tion A.2 for precisions concerning the definitions below. We call T the space of com-
plete, locally compact, rooted, measured R-trees T = (V , d, ρ, µ), with µ boundedly
finite, modulo equivalence with respect to root- and measure-preserving isometries.
This space is endowed with the GHP-topology and with its induced Borel σ-field.
As above, we denote by Te ⊂ T the subspace of trees with finitely many ends (see
before Lemma A.14 for the definition of an end in this setting), and by Tf and T1 the
subspaces of Te for which the measure µ is finite or a probability measure, respectively.

Every R-tree T defines a length measure `T on its set of vertices, see (A.7). In
many cases of interest in probability theory, the length measure is not locally finite,(5)

(2)It is easy to show that this subset contains an infinite number of vertices on each infinite path.
(3)See Section B.
(4)We have been notified by an anonymous referee that one can maybe streamline some arguments

by working in the setting of 0-hyperbolic spaces which includes both discrete trees and R-trees. Since
we are not familiar with these notions, we did not pursue this direction.

(5)With respect to the topology on V induced by the metric d. One can define a finer topology
generated by open segments with respect to which the length measure is always locally finite. Note
that both topologies induce the same σ-algebra on the space of locally compact trees.
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for example in the case of Aldous’ Brownian continuum random tree. However, in this
article, we will be interested in those trees T = (V , d, ρ, µ) ∈ Te for which the measure
µ dominates the length measure `T , such that, in particular, the length measure is
boundedly finite and µ has full support. We therefore define the spaces

T`e = {T = (V , d, ρ, µ) ∈ Te : µ > `T }, T`f = Tf ∩ T`e, T`1 = T1 ∩ T`e,

The diameter of a tree T ∈ T`1 is at most 1 since µ dominates `T by definition. We
show below that T`e, T`f and T`1 are closed subspaces of Te, Tf and T1, respectively
(Lemma 3.4) and that the space T`1 is compact (Proposition 2.1).

We now define a (deterministic) rescaling operation Sp,q which will play the role of
Cp,q for R-trees. For a tree T = (V , d, ρ, µ) ∈ Te we denote by Spine(T ) the subset
of its vertices, called the spine, which lie on an end. If x ∈ V , we denote by ~x the most
recent ancestor of x on the spine, i.e., the vertex in Jρ, xK ∩ Spine(T ) with maximal
distance from the root. For two vertices x, y ∈ V , we then have

d(x, y) = d(x, ~x) + d(~x, ~y) + d(~y, y), if ~x 6= ~y.

Definition 1.5. — If T = (V , d, ρ, µ) ∈ T`e and p, q ∈ (0, 1), then we define the tree
T ′ = Sp,q(T ) = (V ′, d′, ρ′, µ′) by

– V ′ = V and ρ′ = ρ,
– d′(x, y) = pd(x, y) + (q − p)d(~x, ~y) and
– µ′ = pµ+ (q − p)`T (· ∩ Spine(T )).

In words, we shrink distances off the spine by a factor p and on the spine by a factor q
and scale the component µ− `T of the measure µ by a factor p.

As for Cp,q, the map Sp,q : T`e → T`e is not continuous when p 6= q, but is the limit
as R→∞ of continuous maps S R

p,q defined as follows: for T ∈ T`e and R > 0 consider
the subset SpineR(T ) ⊂ V of the vertices of T that have a descendant at distance
larger than R. Then define S R

p,q analogously to Sp,q, using SpineR instead of Spine.(6)

For every R > 0, the map S R
p,q is continuous, as can be shown by straightforward but

fairly technical arguments, see for example the proof of Lemma 2.6 (ii) in [EPW06]
for a similar situation. The map Sp,q = limR→∞S R

p,q is then measurable and extends
to a map Sp,q : M1(T`e)→M1(T`e), allowing us to write Sp,q(T ) for a random tree
T ∈M1(T`e).

Definition 1.6. — Let p, q ∈ (0, 1). We say that a random rooted measured R-tree
T ∈M1(T`e) is (p, q)-self-similar, if T

law
= Sp,q(T ).

We now define a discretization operation on the space T`e, which will allow to turn
a self-similar R-tree into a self-similar discrete tree. For this, we recall that as for
discrete trees, every rooted R-tree T = (V , d, ρ) induces a partial order �T on its

(6)Formally, in the tree T ′ = S R
p,q(T ) = (V ′, d′, ρ′, µ′), one has d′(x, y) = pd(x, y) +

(q − p)d(~xR, ~yR) and µ′ = pµ+ (q − p)`T (· ∩ SpineR(T )) with ~xR the most recent ancestor of x in
SpineR(T ).
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370 O. Hénard & P. Maillard

set of vertices V by x �T y if and only if x ∈ Jρ, yK, where Jρ, yK is the range of
the geodesic from ρ to y (however, it is not true anymore that T can be recovered
from �T ). Again, we write x ≺T y when x �T y and x 6= y. We can now define the
following discretization operation:

Figure 1.1. An R-tree T (left) and a realization of its discretization
D(T ) (right). Black circles are vertices in V0, and white circles are
vertices in V1. The square corresponds to the root. A vertex in V1 is
never an ancestor in D(T ). The two neighbouring white circles on
the left indicate that two points have been sampled at the same spot;
since vertices in V1 are sampled according to the measure µ − `T ,
this is possible only if the measure µ has atoms.

Definition 1.7. — Let T = (V , d, ρ) be a rooted R-tree. Let V0 be a subset of V

containing ρ and V1 be a multiset of elements of V , formally, this can be defined as a
counting measure on V . Suppose that V0 and V1 are boundedly finite in the sense that
they contain a finite number of elements in each ball of finite radius. The discretized
tree D(T , V0, V1) is the rooted discrete tree T with vertex set V0 ∪ V1 and whose
ancestral relation ≺T is defined as follows:

∀v, w ∈ V0 ∪ V1 : v ≺T w ⇐⇒ v ≺T w and v ∈ V0.

See Figure 1 for a graphical illustration.

Example 1.8. — If T is the tree reduced to the root element ρ, V1 is the multi-set that
contains n times the root ρ, V0 is the empty set, and the discretized tree D(T , V0, V1)

has n edges adjacent to the root ρ.

Definition 1.9. — For a tree T = (V , d, ρ, µ) ∈ T`e, define a random, rooted, discrete
tree D(T ) ∈M1(Te) by D(T ) = D(T , V0 ∪ {ρ}, V1), where

– V0 is the set of atoms of a Poisson process on V with intensity measure `T , and
– V1 is the multiset of atoms of a Poisson process on V with intensity measure

µ− `T .
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On trees invariant under edge contraction 371

We will see below that the map D is actually continuous and thus can be extended
to a map D : M1(T`e) → M1(Te) (see Section B). Standard properties of Poisson
processes now yield the following commutation relation between Sp,q, Cp,q and D .

Lemma 1.10. — We have the following equality of maps from M1(T`e) to M1(Te):
D ◦Sp,q = Cp,q ◦D .

The (omitted) proof is based on the simple relation that exists between Poisson
processes on Sp,q(T ) and T : a Poisson process on Sp,q(T ) is distributed as a thin-
ning of a Poisson process on T , in which each atom is retained independently with
probability q if the atom lies on Spine(T ), and with probability p otherwise.

Lemma 1.10 gives a way of constructing self-similar discrete trees from self-similar
R-trees. The following theorem, the main result of this article, says that all self-similar
discrete trees arise this way.

Theorem 1. — Let p, q ∈ (0, 1). There exists a one-to-one correspondence between
(p, q)-self-similar random rooted discrete trees T ∈ M1(Te) and (p, q)-self-similar
random rooted measured R-trees T ∈M1(T`e) given by

T = D(T ).

The methods used to prove Theorem 1 will also allow to characterize compatible
sequences of random trees.

Definition 1.11. — For a random rooted tree T =(V,E, ρ)∈M1(Tf ) with #V =n+ 1

almost surely, define for m 6 n, C (T,m) = C (T, V ′ ∪ {ρ}), where V ′ is a uniformly
chosen subset of V r{ρ} with m (distinct) elements. A family of random rooted trees
(Tn)n∈N ∈ M1(Tf ) with #V (Tn) = n + 1 almost surely is called compatible, if for
each n > m > 1, we have Tm

law
= C (Tn,m).

Theorem 2. — There exists a one-to-one correspondence between compatible families
of random rooted trees (Tn)n∈N and random rooted measured R-trees T ∈ M1(T`1),
given by Tn = D(T , n) for n > 1, where D(T , n) is the tree D(T ) conditioned on
having n+ 1 vertices.

The cornerstone in the proof of Theorems 1 and 2 will be the study of the continuity
of the operator D and related topological issues. The following theorem summarizes
the results thus obtained:

Theorem 3. — The map D : T`e → M1(Te) as well as its extension D : M1(T`e) →
M1(Te) are continuous, closed, injective maps. In other words, they are homeomor-
phisms onto their images and these are closed subsets of M1(Te).

Overview of the paper. — We start by proving Theorem 3 in Sections 2 and 3. In
Section 2 we consider the space T`1 only, the main result here is Proposition 2.1 which
shows that T`1 is compact and that the restriction of D to T`1 is continuous, closed
and injective. The proof relies on the use of random distance matrices and certain

J.É.P. — M., 2016, tome 3



372 O. Hénard & P. Maillard

exchangeable partial orders,(7) together with a somewhat intricate analysis of the
continuity of a certain class of polynomial test functions.(8)

In Section 3, we prove Theorem 3 in full generality, i.e., on the space T`e of infinite
trees. This is probably the most technical section; we make use several different ways
of truncating the trees and some technical arguments to bound the number of ends
in the trees. Precompactness arguments play an important role.

In Section 4, Theorems 1 and 2 are proven. At the heart of the proofs is the
following idea: First, we turn a discrete tree into an R-tree by assigning length 1 to
each edge. We then show that rescaling and discretizing that R-tree yields with high
probability the same result as contracting the original tree, on an arbitrarily large
finite ball (Lemma 4.1). Together with Theorem 3, this allows to construct the real
trees T in Theorems 1 and 2 as scaling limits of the discrete tree T , respectively, the
sequence of discrete trees Tn.

In Section 5, motivated by the correspondence between self-similar discrete trees
and self-similar R-trees established in Theorem 1, we study examples of self-similar
R-trees. We give there an overview of the generality of examples that can be con-
structed. Like in the case of self-similar real-valued processes, see [OV85], it seems
out of reach to completely characterize this family. We therefore consider in Section 6
a specific class of (p, q)-self-similar trees, namely those that are invariant with respect
to translation along the spine (we suppose here for simplicity that the spine consists
of a single infinite ray). In particular, in the case of self-similar trees consisting of a
single spine to which iid subtrees are attached, we relate the construction of the corre-
sponding R-trees to the quasi-stationary distributions of linear-fractional subcritical
Galton–Watson processes, see Proposition 6.4 and Remark 6.6.

In the short Section 7, we describe another attempt to prove Theorem 2 using
exchangeability, which we initially pursued but dropped because of its drawbacks.

Finally, an appendix recalls some notions on the space of discrete trees and R-trees
that we consider in this work.

Acknowledgments. — We are grateful to Itai Benjamini for asking us a question
which motivated this study. We are also deeply indebted to Ohad Feldheim; Example 1
in Section 5 was found following discussions with him before the general statement of
Theorem 1 was clear to us. Further, we thank Tom Meyerovitch, Grégory Miermont
and Ron Peled for useful discussions. Finally, an anonymous referee gave several useful
comments and informed us about the article [ALW16].

(7)We remark that exchangeable partial orders have been previously studied in generality by
Janson [Jan11] who provided a limiting representation based on the dense graph limits introduced
by Lovász and Szegedy [LS06]. It is however not clear to us how to make an efficient use of this
representation for the questions studied here.

(8)A previous version of this article (published on the arXiv) contained a different, but incomplete
proof.
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On trees invariant under edge contraction 373

2. The map D : finite trees

In this section, we study the action of D on the space T`1, i.e., those measured
trees in T`e whose measure is a probability measure. The results are summarized in
the following proposition:

Proposition 2.1. — The restriction of the map D to T`1 is a homeomorphism onto
its image. Furthermore, the spaces T`1 and D(T`1) are compact.

D(i, j)i,j>0

T
T`1 (GHP)

M1([0, 1]N×N)

CT

ϕ(T`1) ⊂M1({0, 1}N×N)

D

D(T`1) ⊂M1(Tf )

D̃M

ϕ
DM

D(T )

hh−1

Figure 2.1. The different spaces used to prove Proposition 2.1 and
the maps between them.

For this we rely on two different representations of random rooted measured trees,
one in terms of its distance matrix distribution defined in Section A.2, the other in
terms of an exchangeable partial order on N (the relationships between these repre-
sentations is summarized in Figure 2.1). Set N∗ := {1, 2, . . .}. We recall that given a
tree T = (V , d, ρ, µ) ∈ T1, its distance matrix distribution DM(T ) is defined as the
push-forward of the probability measure δρ ⊗ µ⊗N

∗ by the map

(xi)i∈N 7−→ d(xi, xj)(i,j)∈N×N.

Since the distance between any two points of the tree T ∈ T`1 is less than or equal
to 1, its distance matrix distribution DM(T ) is a probability measure on [0, 1]N×N,
endowed with the product topology.

The usefulness of the distance matrix distribution comes from the fact that it is
convergence determining as recalled in the appendix. Here, we will use the following
fact, which follows from the second part of Lemma A.8 together with Lemma A.9:

Lemma 2.2. — A sequence Tn ∈ T`1 converges to a limit T ∈ T if and only if its
distance matrix distributions DM(Tn) converge. In this case, T ∈ T1 and DM(T ) =

limn→∞ DM(Tn).

Denote by P the space of random partial orders C on N which are invariant
under finite permutations of N∗ and such that 0 C n for every n ∈ N∗. P identifies
with a closed subspace of the space of probability measures on {0, 1}N×N through
the map C 7→ (1iCj)(i,j)∈N×N, therefore P is compact. Every tree T ∈ T`1 defines an
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374 O. Hénard & P. Maillard

element ϕ(T ) in P as follows: Fix a representative of the tree T , also denoted by T .
Let (X1, S1), (X2, S2), . . . be an iid sequence of random variables in V × {0, 1} with
law `T ⊗ δ0 + (µ− `T )⊗ δ1. This means that X1, X2, . . . are iid according to µ and
Si = 0 if Xi was drawn according to `T and Si = 1 otherwise. Set (X0, S0) = (ρ, 0).
We then define the transitive relation CT on N by

(2.1) i CT j ⇐⇒ Xi ≺T Xj and Si = 0,

and denote its law by ϕ(T ). The relation CT is not reflexive, therefore is not a partial
order.

Note that for a tree T ∈ T`1, the binary relation CT is in direct relation to
the discretization D(T ). Indeed, if one denotes by CNT the restriction of CT to
the elements {0, . . . , N}, with N ∼ Poi(1), then the random rooted tree on N + 1

vertices with ancestral relation CNT has the same distribution as D(T ). Conversely,
given D(T ), one can define the restrictions CnT , n = 1, 2, . . . by conditioning the
tree D(T ) on having n + 1 vertices, assigning random labels {1, . . . , n} to the non-
root vertices and then defining CnT as the ancestral relation of this tree. This uniquely
defines CT .

We thus have constructed a bijection h : ϕ(T`1) → D(T`1) such that D = h ◦ ϕ.
Moreover, this bijection is a homeomorphism because for every n, the map assigning
the law of D(T ) conditioned on having n+ 1 vertices to the law of CnT is continuous
(as well as its inverse) by finiteness of the corresponding spaces. We have thus proven
the following lemma:

Lemma 2.3. — There exists a homeomorphism h : ϕ(T`1)→D(T`1) such that D =h◦ϕ.

As a consequence of the previous result, in order to show Proposition 2.1, it will
be enough to prove the following lemma.

Lemma 2.4. — ϕ is a homeomorphism between T`1 and its image ϕ(T`1). Moreover,
both spaces are compact.

In order to prove Lemma 2.4, we will make a detour by the space of random distance
matrices. To wit, to every element C from P, we associate a random distance matrix
D̃(i, j)i,j>0 by

(2.2) D̃(i, j) = lim
n→∞

1

n

n∑
k=1

k 6∈{i,j}

1kCi, k 6Cj or kCj, k 6Ci.

The existence of the limit is provided by de Finetti’s theorem applied to the ex-
changeable sequence (1kCi, k 6Cj or kCj, k 6Ci)k 6=i,j . One easily verifies that D̃ satisfies the
triangle inequality almost surely, whence we call it a random distance matrix. We then
denote the map associating the law of the random distance matrix D̃ to (the law of) C
by D̃M : P →M1([0, 1]N×N). We have the following lemma.

Lemma 2.5. — DM = D̃M ◦ ϕ on T`1.
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Proof. — Fix a representative of a tree T = (V , d, ρ, µ) ∈ T`1. Let ((Xi, Si))i>0 be as
above and define D(i, j) = d(Xi, Xj), such that D follows the law DM(T ). By the law
of large numbers, this gives,

D(i, j) = `T (JXi, XjK) = lim
n→∞

1

n

n∑
k=1

k 6∈{i,j}

1Xk∈JXi,XjK, Sk=0

= lim
n→∞

1

n

n∑
k=1

k 6∈{i,j}

1kCT i, k 6CT j or kCT j, k 6CT i,

where the last equality follows from the definition of CT . Equation (2.2) then shows
that D follows the law D̃M(CT ), which proves the lemma. �

Lemma 2.6. — The space T`1 is compact.

Proof. — By the first part of Lemma A.8, the space T`1 is precompact in T. It thus
suffices to show that T`1 is closed.

We first introduce some more notation. Fix a representative of a tree T =

(V , d, ρ, µ) ∈ T1. Let (Xi)i>0 be as above and define D(i, j) = d(Xi, Xj), such that D
follows the law DM(T ). Now set for m ∈ N∗,

(2.3) M (m)(1, 2) =
1

m

m∑
k=3

1D(1,k)+D(k,2)=D(1,2).

By the law of large numbers, M(1, 2) = limm→∞M (m)(1, 2) exists almost surely and
equals µ(JX1, X2K). Moreover, conditioned on M(1, 2), the random variables Yk =

1D(i,k)+D(k,j)=D(i,j), k = 3, 4, . . . are iid Bernoulli with parameter M(1, 2). By the
conditional Chebychev inequality, we therefore have for every ε > 0,

(2.4) P(|M (m)(1, 2)−M(1, 2)| > ε|) 6 1

mε2
E[Var(Y3 |M(1, 2))] 6

1

4mε2
.

In other words, the convergence of M (m)(1, 2) to M(1, 2) is uniform in T .
Now, suppose there exist T1,T2, · · · ∈ T`1 such that Tn converges to T ∈ T as

n→∞. By Lemma 2.2, T ∈ T1 and DM(Tn)→ DM(T ) as n→∞. Define D, M(1, 2)

and M (m)(1, 2) as above and define Dn, Mn(1, 2) and M
(m)
n (1, 2) analogously for

every n ∈ N. By Skorokhod’s representation theorem we can and will assume that the
distance matrices Dn converge (pointwise) almost surely to D. We then have almost
surely, for every m ∈ N,

M (m)(1, 2) > lim
n→∞

M (m)
n (1, 2),

since the RHS in (2.3) is an upper semi-continuous function inD for everym. The uni-
form convergence of M (m)(1, 2) to M(1, 2) proven in (2.4) then shows that M(1, 2) >
limn→∞Mn(1, 2). Moreover, since Tn ∈ T`1 for every n, we have Mn(1, 2) > Dn(1, 2)

almost surely for every n, so that almost surely

M(1, 2) > lim
n→∞

Dn(1, 2) = D(1, 2).
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But since M(1, 2) = µ(JX1, X2K) and D(1, 2) = `T (JX1, X2K) with X1, X2 iid accord-
ing to µ, this implies that µ > `T on its support. By Lemma A.8, the measure µ
has full support, whence µ > `T . This shows that T ∈ T`1 and hence T`1 is a closed
subspace of the compact space T1. �

Lemma 2.7. — The map ϕ is continuous on T`1.

Proof. — We will show more in fact: we show that the map which to a tree T ∈ T`1
assigns the law of (DT ,CT ) is continuous, where DT is the distance matrix of the
tree T . For this, we will consider test functions of the form

(2.5) f(D,C) = C

n∏
i,j=0

D(i, j)βij
L∏
l=1

1alCbl ,

where C ∈ R, n ∈ N, βij ∈ N, L > 0 and al, bl ∈ {1, . . . , n}. Note that DT (i, j) 6 1

almost surely for all T ∈ T`1 and i, j ∈ N, whence we can formally see the pair (D,C)

as a random variable taking values in the compact space [0, 1]N×N × {0, 1}N∗×N∗ .
The vector space spanned by functions of the form (2.5) then forms an algebra of
continuous functions on this space which separates points. By the Stone-Weierstrass
theorem it is therefore enough to show that for a function f as in (2.5), the quantity
E[f(DT ,CT )] is continuous in T . We will show this by induction on L. If L = 0, the
assertion follows from the fact that the law of DT is continuous in T by Lemma A.9
and Fact A.11. If L > 0, define the sets

A = {al : l = 1, . . . , L} and B = {bl : l = 1, . . . L}.

We will distinguish two cases:

CaseA ⊂ B. — In this case, there must exist a cycle(9) l1, . . . , lk, lk+1 = l1, such that
ali = bli+1 for all i = 1, . . . , k. In particular, f(D,C) 6= 0 implies that

bl1 = blk+1
= alk C blk = alk−1

C · · · C bl1 ,

whence, by transitivity, bl1 C bl1 . But by (2.1), we have k 6CT k for all k ∈ N, whence
f(DT ,CT ) ≡ 0. In particular, E[f(DT ,CT )] is continuous in T .

Case A 6⊂ B. — In this case, let α ∈ ArB. Define the sets

Λ = {l ∈ {1, . . . , L} : al = α}, Λ = {1, . . . , L}r Λ.

Note that Λ 6= ∅, such that #Λ < L. We will show that we can express E[f(DT ,CT )]

as a sum of expressions of the same type, with functions of the form (2.5) containing
only the indicator functions corresponding to l ∈ Λ. This will allow us to complete
the induction step.

(9)To see this, start with l1 = 1 and let l2 be such that al1 = bl2 . Then let l3 be such that
al2 = bl3 and so on. Since the li’s take values in the finite set {1, . . . , L}, a cycle has to appear at
some point.
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Recall the construction of DT and CT from the sequence (X0, S0), (X1, S1), . . .

defined above. Since Λ 6= ∅, we have by definition,

(2.6)
∏
l∈Λ

1alCT bl = 1Sα=0

∏
l∈Λ

1Xα≺T Xbl
.

Now define BΛ = {bl : l ∈ Λ}. We can assume that α 6∈ BΛ, otherwise the function
1αCα would be a factor of f(D,C) and therefore f(DT ,CT ) ≡ 0. Let X ′ be the
most recent common ancestor of the vertices Xb, b ∈ BΛ, which is σ(Xb; b ∈ BΛ)-
measurable. By the definition of the sequence (Xi, Si)i>0, conditioned on (Xk, Sk)k 6=α,
the event {Sα = 0, Xα ≺T X ′} has probability dT (ρ,X ′) and conditioned on this
event, Xα is uniformly distributed on Jρ,X ′K. Furthermore, if X ′ ∧ Xi denotes the
most recent common ancestor of X ′ and Xi, then if Xα ∈ Jρ,X ′K, we have for every
i 6= α,

DT (α, i) = dT (Xα, Xi) = dT (Xα, X
′ ∧Xi) + dT (X ′ ∧Xi, Xi)

= |dT (ρ,Xα)− dT (ρ,X ′ ∧Xi)|+ dT (ρ,Xi)− dT (ρ,X ′ ∧Xi).

We now use this to calculate the expectation of the factors of f(DT ,CT ) involv-
ing α, conditioned on the remaining ones. Since DT is symmetric, we can assume
that βiα = 0 for all i 6= α, and furthermore, βαα = 0, since DT (α, α) = 0 almost
surely. From the above, we then have

(2.7) E
[ ∏
i∈{0,...,n}rα

D(α, i)βαi1(Sα=0, XαCT X′)

∣∣∣ (Xk, Sk)k 6=α

]
= EU

[ ∏
i∈{0,...,n}rα

(
|U − xi|+ yi

)βαi
1(U<z)

]
,

where U ∼ Unif(0, 1), EU denotes expectation w.r.t. U and xi, yi, z are

xi = dT (ρ,X ′ ∧Xi), yi = dT (ρ,Xi)− dT (ρ,X ′ ∧Xi), z = dT (ρ,X ′).

Each factor in the product on the RHS of (2.7) can be written as(
|U − xi|+ yi

)βαi
1(U<z) =

(
U − xi − 2(U − xi)1(U<xi) − yi

)βαi
1(U<z).

Expanding the powers and the product then gives that∏
i∈{0,...,n}rα

(
|U − xi|+ yi

)βαi
1(U<z) =

∑
ξ∈{xi,i6=α}∪{z}

Pξ(U, (xi)i 6=α, (yi)i 6=α)1(U<ξ),

where each Pξ is a polynomial in its arguments. Taking expectations and using the
fact that EU [Uk−1

1(U<ξ)] = ξk/k for every k > 1 and ξ ∈ [0, 1], we obtain that the
RHS of (2.7) is a polynomial in (xi)i 6=α, (yi)i 6=α and z.

Now note that for every i 6= α, dT (ρ,X ′) and dT (ρ,X ′∧Xi) are linear combina-
tions(10) of dT (Xi, Xj)=DT (i, j), i, j∈{0, . . . , n}r{α}. Together with the above, this
implies that the RHS in (2.7) is in fact a polynomial in DT (i, j), i, j∈{0, . . . , n}r{α}.

(10)For two vertices x, y, if z denotes their most recent common ancestor, dT (ρ, z) = 1
2

(dT (ρ, x)+

dT (ρ, y)− dT (x, y)). The statement follows easily from this by induction.
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Plugging this into (2.5) and using (2.6) yields that E[f(DT ,CT )] can be written as
the sum of expressions of the same type, with functions of the form (2.5) with L

replaced by #Λ < L. This finishes the induction step and therefore the proof of the
lemma. �

Proof of Lemma 2.4. — Since T`1 is compact by Lemma 2.6 and ϕ(T`1) is Hausdorff,
it is enough to show that ϕ is bijective and continuous [Dug66, Th.XI.2.1]. Continuity
follows from Lemma 2.7, and bijectivity follows from Lemma 2.5 and the fact that DM
is injective by Fact A.10. �

Proof of Proposition 2.1. — Follows immediately from Lemmas 2.3 and 2.4. �

3. The map D : infinite trees (proof of Theorem 3)

In this section, we prove Theorem 3. The proof uses a series of lemmas. The first
one concerns the continuity of the map D :

Lemma 3.1. — The map D : T`e →M1(Te) is continuous.

In view of Lemma 3.1 and Section B, we can extend D to a continuous map
D : M1(T`e)→M1(Te). The next lemma shows that this extension is injective.

Lemma 3.2. — The map D : T`e →M1(Te) and its extension D : M1(T`e)→M1(Te)
are injective.

The next lemma will be used to prove that the image D is closed in M1(Te):

Lemma 3.3. — If T1,T2, · · · ∈ T`e (resp., M1(T`e)), such that D(Tn) converges in law
to a random tree T supported on Te, then there exists T ∈ T`e (resp., M1(T`e)), such
that D(T ) = T and Tn → T .

The proof of Theorem 3 now directly follows from the previous results:

Proof of Theorem 3. — Continuity, injectivity and closedness of the map D and its
extension are exactly Lemmas 3.1, 3.2 and 3.3, respectively. �

One ingredient for Lemma 3.3 is the following lemma which is of independent
interest:

Lemma 3.4. — T`e, T`f and T`1 are closed subspaces of Te, Tf and T1, respectively.

The proofs of the four lemmas follow.

Proof of Lemma 3.1. — The continuity on the space T`1 follows from Proposition 2.1.
There is the map:

T`f −→ T`1 × R+, T 7−→
(
Sµ(V )−1(T ), µ(T )

)
that is continuous, therefore the continuity extends to the space T`f . We now turn
to T`e. We consider Tn ∈ T`e with limit T , and we need to prove that

(3.1) D(Tn)6m −→ D(T )6m, for every m ∈ N.
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The convergence of Tn implies by A.13 for each R > 0 the existence of a sequence
Rn > R converging to R and such that T 6Rn

n → T 6R . The convergence

(3.2) D(T 6Rn
n ) −→ D(T 6R)

follows since the truncated trees T 6Rn
n ,T 6R belong to T`f , on which the map D is

continuous. Fixm ∈ N and ε > 0. Throughout the rest of the proof, we write T∞ = T

and let n take values in N ∪ {∞}. The convergence in (3.1) now follows from (3.2),
Rn > R and the following claim: there exist R,n0 <∞, such that

(3.3) P(D(Tn)6m ⊂ D(T 6R
n )) > 1− ε for n > n0.

To establish the claim, consider the paths in Tn of length R starting from the root.
The number of these paths that have a distinct restriction to a distance r from the
root, r 6 R, is Nr,R(Tn) defined before Lemma A.14. By that lemma, for every r > 0,
there exist R,n0 < ∞ such that Nr,R(Tn) 6 N for n > n0, where N only depends
on the family (Tn)n∈N∪{∞} and not on m, r,R, n0. Now, the number of points in V0

in a path of length r (in the discretization of Tn) is a Poi(r)-distributed random
variable X, and we can take r large enough, so that P(X < m) < ε/N . A union
bound then shows that, with probability at least 1 − ε, the restriction to distance r
of any path in Tn of length R starting from the root has at least m points in V0, for
n > n0. This proves (3.3), and (3.1) follows. �

Proof of Lemma 3.2. — Since D(T ) = D(δT ) for every T ∈ T`e, it suffices to show
the injectivity of the extension only. The map DM is injective on the space M1(T`1) by
Fact A.10. By Lemma 1.10, the extension of the map ϕ to M1(T`1) then is injective as
well. Furthermore, the bijective correspondence between ϕ(T ) and D(T ) for T ∈ T`1
described before Lemma 2.4 readily extends to random trees. This immediately shows
injectivity of D on M1(T`1).

The injectivity of D on M1(T`f ) follows using the rescaling argument in the proof
of Lemma 3.1.

To prove the injectivity of D on M1(T`e), we introduce two pruning operations,
on R-trees and on discrete trees, that commute with D . Let T be a random tree
in T`e. For λ > 0, let T λ be the random tree obtained by cutting the tree T at the
atoms of a Poisson process with intensity λ`T |Spine(T ), and keeping the component
containing the root. Also, let T be a random tree in Te. For λ > 0, let Tλ be the
random tree obtained from T by first marking every vertex on the spine independently
with probability λ/(1 + λ), then removing all the marked vertices (together with the
adjacent edges) and keeping the component containing the root. There is the equality
in distribution(11)

D(T λ) = D(T )λ.

(11)This relies on the fact that in the discretization operation the spine vertices are necessarily
in V0 and thus have been sampled according to the length measure `T .
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We are now ready to complete the proof. Consider T1 and T2 two random trees
in T`e that satisfy D(T1) = D(T2). We then have:
(3.4) D(T λ

1 ) = D(T1)λ = D(T2)λ = D(T λ
2 ).

Also, T λ
1 and T λ

2 are elements of M1(T`f ). This may be justified as follows (for T1,
say): the tree D(T1) has an almost surely finite number of infinite paths starting
from the root and every one of them is truncated in D(T1)λ at a finite distance from
the root, therefore the tree D(T1)λ has a finite diameter and, being locally finite,
it has finitely many vertices. Since the number of non-root vertices in D(T1)λ is a
Poi(µ(T λ

1 ))-distributed random variable, this entails that µ(T λ
1 ) <∞ almost surely,

and since µ > `T1 , that T λ
1 ∈M1(T`f ) almost surely. From (3.4) and the injectivity

of D on M1(T`f ), we deduce that T λ
1 = T λ

2 , and the identity T1 = T2 follows taking
the λ→ 0 limit. �

Proof of Lemma 3.4. — The space T`1 is compact according to Lemma 2.6. In par-
ticular, it is closed in T1. It remains to prove that T`e, T`f are closed subspaces of
Te, Tf . For T`f , this follows by rescaling as in the proof of Lemma 3.1. For T`e, we
use truncation: If Tn ∈ T`e converge to T ∈ Te, then, by A.13, for every R > 0,
there exists a sequence Rn > R converging to R such that T 6Rn

n → T 6R, with
T 6Rn
n ∈ T`f and T 6R ∈ Tf . Since T`f is closed in Tf , we have that T 6R ∈ T`f for

every R, whence µ dominates `T on every ball of radius R around the root in T .
Hence, µ > `T everywhere and thus T ∈ T`e. �

Proof of Lemma 3.3. — We only prove the Lemma for M1(T`e), the proof for T`e is
similar. Assume that (Tn = (Vn, dn, ρn, µn))n>0 is a sequence of random trees taking
values in M1(T`e), such that D(Tn) converges as n→∞ to a random tree in Te. It is
enough to show that the sequence (Tn)n>0 is precompact in M1(Te). Suppose indeed
this holds. Let T ∗ ∈M1(Te) be a limit point of the sequence (Tn)n>0. By Lemma 3.4,
we actually have that T ∗ ∈M1(T`e). By Lemma 3.1, D(T ∗) = lim D(Tn). Lemma 3.2
now gives that T ∗ is unique, whence Tn → T ∗ in law as n → ∞, which was to be
proven.

We now show precompactness of (Tn)n>0 in M1(Te). From the characterization of
precompactness in Lemmata A.8 and A.14, there are two points to show:

(1) For every r > 0, the family of random variables µn(T 6r
n ) is tight.

(2) For every r > 0, there exist R = R(r) and n0 = n0(r), such that the family of
random variables (Nr,R(r)(Tn))r>0,n>n0(r) is tight.
We prove these two points by contradiction.
First point. — Assume that there exists t > 0 such that the family of random variables
Mn := µn(T 6r

n ) is not tight. Restricting to a subsequence and conditioning on suit-
able events, we may assume that limn→∞Mn = +∞, in law. Under this assumption,
we aim to show that there exists an integer t′ such that
(3.5) the sequence (#D(Tn)6t

′
)n∈N is not tight.

By Lemma A.8, this will lead to the required contradiction.
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Denote the set of vertices of the tree D(T 6t
n ) by Un and set Nn = #Un. We label

the vertices in Un at random by elements of {1, . . . , Nn}, and define, for k ∈ N, the
random variable Ik by: Ik = 1 if k 6 Nn and the vertex k has more than 4t non-root
ancestors (that is, ancestors distinct from the root) below, and Ik = 0 otherwise. The
sum N I

n =
∑
k Ik then gives the number of those vertices that have more than 4t non-

root ancestors. The number of non-root ancestors of a vertex in Un is, conditionally
given Nn, dominated by a Bin(Nn − 1, t/Mn)-distributed random variable, since the
length measure of the path from this vertex to ρ in T 6t

n cannot exceed t by definition.
We first compute the conditional expectation of N I

n given Nn:

E(N I
n|Nn) = Nn E(I1|Nn) 6 Nn P

(
Bin
(
Nn − 1,

t

Mn

)
> 4 t

∣∣∣Nn)
6 Nn

(Nn − 1)

4Mn
,

(3.6)

using the conditional Markov inequality for the last estimate. Another application of
the same inequality now gives:

P(N I
n > Nn/2) = E(P(N I

n > Nn/2|Nn)) 6 2E
(E(N I

n|Nn)

Nn

)
6 1/2,

using (3.6) and the fact that Nn is a Poi(Mn)-distributed random variable for the last
inequality. Notice this inequality is equivalent to:

P(Nn −N I
n > Nn/2) = P(N I

n 6 Nn/2) > 1/2.

Now, fix an arbitrary k ∈ N. Our assumption that Mn diverges in law implies that
the sequence P(Nn/2 > k) has limit 1, and in particular is larger than 3/4 for n large
enough. This gives, for these values of n,

P(Nn −N I
n > k) > P(Nn −N I

n > Nn/2, Nn/2 > k)

> P(Nn −N I
n > Nn/2) + P(Nn/2 > k)− 1

> 1/4,

and, together with the inequality #D(Tn)6t
′
> Nn − N I

n valid for t′ = 4t + 1, this
proves (3.5).

Second point. — Assume that for all choices of R = R(r) and n0 = n0(r) the family
of random variables (Nr,R(Tn))r>0,n>n0

is not tight. This means that there exists
c > 0, such that for every N ∈ N, for some r = r(N),

lim sup
n→∞

P(Nr,R(Tn) > N) > c ∀R > r,

where we used the fact that Nr,R is decreasing in R. Since Nr,R is also increasing in r,
we may assume without loss of generality that r(N) → ∞ as N → ∞. Under this
assumption, we show that for large N ,

(3.7) lim sup
n→∞

P(N2r,R/2(D(Tn)) > N/2) > c/2, ∀R > 8r.

J.É.P. — M., 2016, tome 3



382 O. Hénard & P. Maillard

By Proposition A.4, one readily checks that this implies that D(Tn) is not precompact
in M1(Te), which will yield the required contradiction.

In order to show (3.7), it is enough to show that for large r and N , for every tree
T ∈ T`e,

(3.8) ∀R > r : Nr,R(T ) > N =⇒ ∀R > 8r : P(N2r,R/2(D(T )) > N/2) > 1/2.

For this, fix R > 8r and consider the vertices of T at distance r from the root
that contribute to the quantity N := Nr,R(T ). To each such vertex v, associate a
single path (among possibly many) of length R that links the root ρ to a vertex at
distance R, and contains v. Let Fv be the event that this path has less than 2r vertices
in V0 at distance 6 r from the root, but more than R/2 vertices in V0 at distance
6 R from the root. For a vertex v, the probability P(Fv) is independent of v, and
arbitrary close to 1 for large r, so in particular larger than 3/4 for r large enough.

Now let N F be the number of vertices v contributing to N that satisfy the
complementary event F v. Then E(N F |N ) = N (1 − P(Fv)), and by the Markov
inequality, for N and r large enough,

P(N F > N /2) 6 2(1−P(Fv)) 6 1/2 or, equivalently, P(N −N F > N /2) > 1/2.

Together with the pointwise inequality N2r,R/2(D(Tn)) > N −N F this proves (3.8)
and finishes the proof. �

4. Tree rescaling: proofs of Theorems 1 and 2

In this section, we will prove a coupling lemma (Lemma 4.1 below), which, together
with Theorem 3, will yield Theorems 2 and 1.

The space of discrete trees Te is naturally embedded into the space T`e via the
following embedding ι: given T ∈ Te, we define ι(T ) = (V , d, ρ, µ) as follows:

– The set of vertices is given by V = {(i, x), i ∈ T r {ρ}, x ∈ [0, 1)} ∪ {(ρ, 0)}.
– The distance is defined by d((i, x), (j, y)) = dT (i, j)−x−y if (i 6�T j and j 6�T i)

and d((i, x), (j, y)) = dT (i, j)− x+ y if j �T i, and it is symmetric in its arguments.
– µ is the Lebesgue measure `T .

Informally, the tree ι(T ) is defined from T by adding segments of length 1 between
adjacent vertices of T , and the element (i, x) of V is at distance x of (i, 0) on the
path Jρ, iK to the root.

Lemma 4.1. — Let (pn)n>0 and (qn)n>0 be sequences of positive numbers such that
pn → 0 and qn → 0 as n → ∞. Let Tn ∈ M1(Te) be a sequence of random rooted
trees. Then the following statements are equivalent:

(1) The sequence (Cpn,qn(Tn))n>0 is tight in(12) T.
(2) The sequence (D(Spn,qn(ι(Tn))))n>0 is tight in T.

(12)Here, and below, we say that a family of random trees on Te is tight in T if the family of their
laws, seen as laws on T, are tight.

J.É.P. — M., 2016, tome 3



On trees invariant under edge contraction 383

In this case, for every m > 1 and ε > 0, there exists an integer n0 and for every
n > n0 a coupling between Cpn,qn(Tn) and D(Spn,qn(ι(Tn))), such that

(4.1) P
(

[Cpn,qn(Tn)]
6m

= [D(Spn,qn(ι(Tn)))]
6m
)
> 1− ε.

Proof. — Recall that by definition of the topology of local convergence on Te, a
sequence of random discrete trees T̃n in M1(Te) is tight in T if and only if for every
m > 1, the sequence (#V (T̃6m

n ))n>1 is tight. In order to apply this, we first need
to define a suitable coupling between the operations Cp,q and Sp,q and certain one-
dimensional stochastic processes.

Let T ∈ Te. Recall that in the construction of Cp,q(T ), the vertices are colored
with two colors, say black and white; the black vertices (and the root) are retained,
whereas the white vertices are discarded. Given a tree T ∈ Te we can couple this
operation with two infinite sequences (Bi)i>1 and (B′i)i>1 of iid random variables dis-
tributed according to the Bernoulli distribution with parameter p and q, respectively:
we perform a breadth-first traversal of the vertices of the tree starting from the root
and color the vertex visited at step i according to Bi (1 = black and 0 = white) if it is
an off-spine vertex, and according to B′i if it is a spine vertex. Given an integer m > 1,
we add an additional rule: When a black vertex is visited which has exactly m black
ancestors, then the subtree above it is subsequently ignored by the algorithm. The
restriction of the tree T to the black vertices then exactly gives the tree Cp,q(T )6m.
Note that this algorithm terminates almost surely since Cp,q(T ) is locally finite by
definition, hence Cp,q(T )6m is finite and the breadth-first traversal only has to go to
a certain (random, but finite) depth in the tree T .

In order to construct the tree D(Sp,q(ι(T )))6m one can proceed in a similar man-
ner, but using now two Poisson processes (Pt)t>0 and (P ′t )t>0 with intensity p and q
(respectively) defined on the R-tree ι(T ). We omit the details.

For everyM > 0, we now couple the sequences (Bi)i>1 and (B′i)i>1 with the Poisson
processes (Pt)t>0 and (P ′t )t>0 in such a way that with probability 1−O(M(p∨q)), for
every i 6M/p, Bi = 1 if and only if Pi−Pi−1 = 1 and for every i 6M/q, B′i = 1 if and
only if P ′i−P ′i−1 = 1. It is now easy to check that for largeM and small p and q, on the
event that (either) #V (Cp,q(T )6m) 6 M/2 or #V (D(Sp,q(ι(T )))6m) 6 M/2, both
trees agree with high probability. This implies that if the first or second statement
of the lemma holds, then (4.1) is true, which in turn implies equivalence of the two
statements. This finishes the proof of the lemma. �

Proof of Theorem 2. — We start with the easy direction: Let T ∈M1(T`1). The family
Tn = D(T , n) is a compatible family of random rooted trees since, for n > m > 1:

C (Tn,m) = C (D(T , n),m) = D(T ,m) = Tm.

Now let (Tn)n∈N be a compatible family of random trees and let (Bn)n∈N be a sequence
of Bin(n, 1/n)-distributed random variables, independent of (Tn)n∈N. We then have
the following equality,

C (Tn, Bn) = TBn .
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On the RHS, there is convergence towards TB as n→∞, where B is a Poi(1)-distri-
buted random variable independent of (Tn)n∈N. On the LHS, we have C (Tn, Bn) =

C1/n(Tn), and by Lemma 4.1 there exists a coupling such that the equality

C1/n(Tn) = D(S1/n(ι(Tn)))

holds with high probability as n → ∞. The space T`1 is compact by Lemma 2.6,
therefore the sequence (S1/n(ι(Tn)))n>1 ∈ M1(T`1) is tight. Since the map D is
continuous and injective by Theorem 3, every subsequential limit T has TB = D(T )

and is thus unique. Furthermore, conditioning on B = m yields Tm = D(T ,m) for
each m ∈ N. �

Proof of Theorem 1. — One direction is obvious: Let T ∈ M1(T`e) be a (p, q)-self-
similar random R-tree. Lemma 1.10 then yields

Cp,q(D(T )) = D(Sp,q(T )) = D(T ),

whence the discrete tree D(T ) is (p, q)-self-similar as well.
For the other direction, let T ∈M1(Te) be a (p, q)-self-similar random rooted tree,

i.e., Cp,q(T ) = T . Iterating this equality yields for each integer n > 1,

(4.2) Cpn,qn(T ) = C n
p,q(T ) = T.

In particular, the sequence (Cpn,qn(T ))n>1 is tight in T. Lemma 4.1 now yields that
the sequence (D(Spn,qn(ι(T ))))n>1 is tight in T and that every subsequential limit
equals T . By Theorem 3, the sequence (Spn,qn(ι(T )))n>1 then converges in law to
a random tree T taking values in T`e and such that D(T ) = T . This uniquely
determines the tree T by injectivity of the map D . Furthermore, by Lemma 1.10
and the self-similarity of T , we have D(Sp,q(T )) = Cp,q(T ) = T = D(T ), whence,
again by injectivity of D , Sp,q(T ) = T . This finishes the proof of the theorem. �

5. Examples of self-similar trees

In this section, we construct some examples of (p, q)-self-similar R-trees. We do
not believe it is possible to completely characterize this family, similarly to the situa-
tion for self-similar real-valued processes. For simplicity, we restrict ourselves to trees
whose spine consists of a single infinite ray only.

1. Subordination of a real-valued self-similar process. — If (T , d, ρ, µ) is a (p, q)-
self-similar R-tree, then let Vt be the subset consisting of the vertices whose most
recent ancestor on the spine is at distance at most t from the root. Setting

(5.1) X(t) = µ(Vt)− t
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defines a (semi)-self-similar real-valued non-decreasing process with Hurst expo-
nent(13) H = log p/ log q, i.e.

(5.2) (q−HX(qt), t > 0)
law
= (X(t), t > 0).

On the other hand, if we are given such a process X(t), we can construct from it a
(p, q)-self-similar R-tree T ∈M1(T`e). Write Xc(t) for its continuous part and Xj(t)

for its jump part. Let T ′ ∈M1(T`1) be an arbitrary random tree. The random tree T

is then constructed as follows:
– Spine(T ) consists of a single infinite ray, and µ(Spine(T ) ∩ [0, t]) = Xc(t) + t,
– For every jump time t of Xj , we attach an independent copy of T ′ to the spine

at distance t of the root, rescaled by the size of the jump Xj(t)−Xj(t−).
It is easy to show that the resulting tree is indeed (p, q)-self-similar.

One can easily generalize the above construction. For example, instead of attach-
ing independent rescaled copies of the same tree T ′ to the spine, one can take
a |log q|-stationary process (T ′(s), s ∈ R) of rooted, probability-measured R-trees
(|log q|-stationary means that (T (s), s ∈ R) is equal in law to (T (s+ |log q|), s ∈ R)),
and attach a rescaled copy of T ′(log t) at the point t on the spine. One can also in-
troduce a stronger dependency between the process X(t) and the trees. For example,
let X(t) be as above and suppose for simplicity that it is a pure-jump process. Let R

be the set of its record jumps, i.e. r ∈ R if and only if X(r)−X(r−) > X(s)−X(s−)

for all s < r. Write R = {· · · < r−1 < r0 < r1 < . . .}, with r0 6 1 < r1 and let T ′n be
a sequence of iid copies of a probability-measured rooted R-tree. We then construct a
(p, q)-self-similar tree as follows: For every t, let N(t) be such that rN(t) 6 t < rN(t)+1.
Then for each jump time t of X(t), add the tree T ′N(t) to the spine, rescaled by the
size X(t)−X(t−) of the jump. One readily checks that the resulting process is (p, q)-
self-similar.

2. Rescaling along the spine. — Given a (p, q)-self-similar R-tree T , one can easily
construct a whole family of self-similar R-trees: Let β > 0. First, one can rescale the
tree along the spine: define a new R-tree T ′ obtained from T by mapping a point t on
the spine to tβ . The mass process of this new tree is Xβ(t) = X(t1/β), and therefore
(p−1Xβ(qβt); t > 0)

law
= (Xβ(t); t > 0). Since we have not changed the structure of

the subtrees, it follows that the resulting tree is (p, qβ)-self-similar.
For γ ∈ R, one can also define a new mass process by setting Xγ(t) =

∫ t
0
sγdX(s),

as long as this quantity is finite for some (hence, any) t > 0. The tree defined by
this process in the canonical way (i.e., by rescaling the subtrees of the spine and the
measure µ on the spine) is then (pqγ , q)-self-similar.

Finally, one can apply the previous scaling to the continuous part Xc(t) of the
mass process only, and scale the jump process Xj(t) instead by setting Xδ

j (t) =∑
s6t(Xj(s)−Xj(s−))δ for some δ > 0. If δ and γ are such that pqγ = pδ, then the

(13)The exponent H is called the Hurst exponent after the study in hydrology [HBS65], see also
the paper [MVN68].
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mass process Xγ,δ(t) = Xγ
c (t) +Xδ

j (t), if it exists, defines a (pδ, q)-self-similar tree in
the canonical way.

6. Translation invariant self-similar trees

In this section, we study self-similar trees which are invariant under translation
along the spine. For simplicity, we restrict ourselves to one-ended self-similar trees.
We denote the corresponding subspaces of Te and T`e by T and T

`, respectively.
Throughout the section, T ∈ M1(T) will denote a one-ended (p, q)-self-similar tree
and T = (V , d, ρ, µ) ∈ M1(T

`
) the limiting R-tree obtained from Theorem 1. We

define a shift operator Θ : M1(T) →M1(T) which maps T to the subtree rooted at
the vertex on the spine at distance 1 from the root. We say T is translation invariant,
if ΘT

law
= T . Similarly, for t > 0, we define a shift operator Θt : M1(T

`
) → M1(T

`
)

mapping T to its subtree rooted at the vertex on the spine at distance t from the
root. Note that (Θt)t>0 is a semigroup. We then say that T is translation invariant
if ΘtT = T for every t > 0. The following proposition says that the two notions are
equivalent:

Proposition 6.1. — T is translation invariant if and only if T is translation invariant.

Lemma 6.2. — The semigroup (Θt)t>0 is strongly left-continuous, i.e., for every T ∈
M1(T

`
), the function t 7→ Θt(T ) is left-continuous.

Proof. — It is enough to check the lemma for a deterministic tree T ∈ T
`. Consider

the subtrees T1 = Θt−ε(T ) and T2 = Θt(T ) rooted at the spine vertices at distance
t−ε and t from ρ, respectively denoted by ρ1 and ρ2. From the definition (A.6) of the
GHP distance and the dominated convergence Theorem, it is enough to prove that
the GHP distance between the compact trees T 6r

1 and T 6r
2 has a null ε → 0 limit

for any fixed value of r > 0. We let µ1 and µ2 be the measures associated with T 6r
1

and T 6r
2 respectively. We have d(ρ1, ρ2) = ε, and, with V <r the restriction of V to

the open ball of radius r centered at ρ, it holds

dcP (µ1, µ2) 6 µ(V <t r V <t−ε) + µ(V <t+r r V <t+r−ε),

and the last expression has a null ε→ 0 limit since the two sets on the RHS decrease
to the null set. These elements combined with Lemma A.9 now allow to conclude
since:

dcGHP (T 6r
1 ,T 6r

2 ) 6 3 dcGP (T 6r
1 ,T 6r

2 ) 6 d(ρ1, ρ2) + dcP (µ1, µ2). �

Proof of Proposition 6.1. — By Theorem 1, the tree T is obtained from T by sampling
vertices according to a Poisson process on T with intensity µ. By definition of the
sampling procedure, the vertices on the spine are those which are sampled according
to `Spine, where `Spine = `T |Spine(T ) is the restriction of the length measure `T to the
spine. It follows that

(6.1) ΘnT = D(ΘE1+···+EnT ),
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where E1, . . . , En are independent exponential random variables with parameter 1,
independent from T . Setting n = 1 in (6.1) directly yields the “if” statement of the
proposition.

Now suppose that T is translation invariant. Then, for every n > 0 and k > 0, we
have

D(T ) = T by hypothesis on T and T

= C k
p,qT by the self-similarity of T

= C k
p,qΘ

nT by translation invariance of T

= C k
p,qD(ΘE1+···+EnT ) by (6.1)

= D(S k
p,qΘE1+···+EnT ) by Lemma 1.10

= D(ΘqkE1+···+qkEnS k
p,qT ) by definition

= D(ΘqkE1+···+qkEnT ) by the self-similarity of T .

Since D is injective by Lemma 3.2, this implies for every n > 0 and k > 0,

T = ΘqkE1+···+qkEnT .

By the law of large numbers, for any t > 0, we can now let k, n → ∞ in such a way
that qkE1 + · · ·+ qkEn converges from the left to t almost surely. By Lemma 6.2, this
yields the statement. �

We now show that for translation invariant trees, the range of possible values for p
and q is restricted. The mass process X(t) defined in 5.1 is real-valued, increasing,
and semi-self-similar process with Hurst exponent H = log p/ log q. Recall Xc(t) and
Xj(t) denote respectively the continuous part and the jump part of X(t), and note
that Xc(t) = µ(Spine(T ) ∩ [0, t])− t.

Proposition 6.3. — Suppose T ∈M1(T
`
) is (p, q)-self-similar, translation invariant

and non-degenerate (i.e., it is not isometric to R+). Then q > p. Moreover, if q > p,
then Xc ≡ 0 almost surely, and if q = p, then Xj ≡ 0 almost surely and Xc(t) = X(1) t

for every t > 0.

Proof. — This proposition is essentially a corollary of results of Vervaat [Ver85].
X satisfies the hypotheses 1.4 in [Ver85], except for one: Equation (5.2) does not
hold for every p, q > 0 with log p/ log q = H in our case. This is the only missing
assumption in Theorem 3.3 in [Ver85]. We claim that the conclusion of that theorem
still hold under (5.2). To justify this claim, we observe that the proof of Theorem 3.3
relies on Theorem 3.1, items a and b for H 6 1, and on Theorem 3.5 for H > 1. The
proof of the latter is not affected by our assumption. We therefore have to verify that
the conclusions of Vervaat’s Theorem 3.1, items a and b still hold under (5.2).
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Let I be the invariant σ-field of the stationary sequence (X(t)−X(t− 1), t ∈ N).
In the proof of Theorem 3.1, Vervaat establishes the following for a truly semi-self-
similar process:

tH−1X(1)
law
=

X(t)

t
=
X(t)−X(0)

t
=

1

t

∑
16s6t

X(s)−X(s− 1)

−→ E(X(1)−X(0) |I ) = E(X(1) |I ),

using respectively semi-self-similarity, X(0) = 0 a.s., and Birkhoff’s ergodic theorem
in a version that allows for infinite means, like the one presented in Theorem 3.7 of
[Ver85]. Because the integer t is not necessarily of the form q−m, the left-most equality
has to be replaced in our case by:

X(qmt)

pmt

law
=

X(t)

t
·

Now, the sequence of integers t = t(m) = dq−me satisfies qmt > 1 and qmt → 1

as m → ∞. Since the process X has càdlàg sample paths (this may be seen using
arguments similar as in the proof of Lemma 6.2), X(qmt) converges to X(1) a.s.
as m → ∞. From that point on, the proof of Theorem 3.1, items a and b, follows
unchanged.

Therefore the conclusion of Theorem 3.3 holds, and that conclusion implies the
statement of our proposition, since the event A (in that theorem) that X has locally
bounded variation has probability 1 in our case due to the monotonicity of the sample
paths of X. �

We now want to study the (p, q)-self-similar discrete trees T which are translation
invariant and for which the subtrees along the spine are independent (hence, iid).

Proposition 6.4. — The subtrees of T along the spine are iid if and only if q > p

and T is constructed as follows:
– If q > p, then µ| Spine = `R+ , and the point process with atoms (t,Tt), where Tt

is the subtree rooted at the spine vertex at distance t from the root, is a Poisson point
process with intensity dt⊗ ν(dT ), with the measure ν decomposing as follows: There
exists a measurable family (σx)x>0 of probability measures on the space T`1 such that
σx = σpx for every x, and a measure Λ(dx) on (0,∞) satisfying Λ(A) = qΛ(pA)

for every Borel A ⊂ (0,∞), such that ν decomposes as the semi-direct product ν =

Λ(dx)σxx, where σxx is the push-forward of the measure σx under the map Sx.
– If q = p, then T is the non-negative real line with a (deterministic) multiple of

Lebesgue measure: V = R+, ρ = 0 and there exists λ > 1 such that µ = λ `R+ .

Proof. — By Proposition 6.3, we either have q > p and the mass process X(t) is a
pure-jump process, or q = p and the mass process is continuous with X(t) = tX(1).
The statement in the case q = p now follows from the fact that the subtrees of T are
independent if and only if X(1) is a deterministic constant.
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Now consider the case q > p. By Proposition 6.3, the mass process X(t) is then a
pure-jump process, i.e., the restriction of µ to the spine equals the length measure.
Denote by T i for every i > 0 the off-spine subtree of the i-th vertex on the spine of T .
Furthermore, for s 6 t, denote by T s,t the concatenation of the off-spine subtrees
of the tree T rooted at vertices v on the spine with s 6 d(0, v) < t. Here, the
concatenation of a collection of rooted trees is defined to be the rooted tree obtained
from the disjoint union of the trees by identification of the roots. By the definition of
the discretization operation D , we then have

(6.2) (T 0, T 1, T 2, . . . )
law
= (D(T ξ0,ξ1),D(T ξ1,ξ2), . . . ),

where ξ0 = 0 and for n ∈ N∗, ξn =
∑n
k=1Ek, with E1, E2, . . . a sequence of indepen-

dent exponential random variables with parameter 1, independent from T . Equation
(6.2) now shows that if the point process with atoms (t,Tt) is a translation invariant
Poisson process, then the trees (T i)i>0 are iid.

Now assume that the trees (T i)i>0 are iid. Fix 0 = t0 < t1 < t2 < · · · . We first
notice that:

D(T t0,t1)
law
= D(S k

p,q(T )t0,t1) by the self-similarity of T

= D(S k
p,q(T

t0q
−k,t1q

−k
)) by definition

law
= C k

p,q(D(T t0q
−k,t1q

−k
)) by Lemma 1.10.(6.3)

Fix an integer i, and real numbers t′1, . . . , t′i satisfying tj−1 < t′j < tj for every
j ∈ {1, . . . i}. Let j be in this set. By the law of large numbers, we may find integers
nj(k) such that, for k large enough,

(6.4) t′jq
−k < ξnj < tjq

−k,

with the (ξn) distributed as above. Set also n0 = 0. Applying (6.3) with t0 and t1 re-
placed by tj−1 and t′j , and recalling (6.4) and (6.2), we deduce that that the discretized
tree D(T tj−1,t

′
j ) is a function of Tnj−1 , ..., Tnj , for j ∈ {1, . . . , i}. Therefore the col-

lection of trees (T t0,t
′
1 , . . . ,T ti−1,t

′
i) is independent. The numbers t′1, . . . , t′i being ar-

bitrary, this implies the collection (T t0,t1 , . . . ,T ti−1,ti) is independent, therefore the
point process (t,Tt) is a Poisson process. By translation invariance, its intensity mea-
sure is of the form dt⊗ ν for some measure ν. By the (p, q)-self-similarity, ν = q−1νp,
where νp is the push-forward of the measure under the map T 7→ pT . Disintegrating
the measure ν with respect to the mass of the tree yields the decomposition stated in
the theorem. �

In case q = p and the subtrees of T along the spine are iid, their common dis-
tribution is that of a rooted tree with a Geo(1/λ)-distributed number(14) of edges
adjacent to the root. In case q > p, there is the following corollary that follows from
Proposition 6.4 and standard properties of Poisson processes. Recall that we define

(14)Our geometric distribution starts at 0, P(Geo(γ) = k) = (1 − γ)kγ, for each k ∈ N, for
γ ∈ (0, 1].
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the concatenation of a collection of rooted trees to be the rooted tree obtained from
the disjoint union of the trees by identification of the roots.

Corollary 6.5. — In case q > p and the subtrees of T along the spine are iid, their
distribution is characterized as follows: There exists a constant γ ∈ (0, 1], as well as a
measurable family of probability measures σx and a measure Λ(dx) as in the statement
of Proposition 6.4, such that

– T 0 is the concatenation of copies of Geo(c)-distributed number of independent
copies of a tree T ′, where c = 1/(1 + d) and d =

∫∞
0

(1− e−x)Λ(dx), and
– E[F (T ′)] = d−1

∫∞
0

Λ(dx)
∫
σx(dT )E[F (D(T ,Poi(x)))] for every bounded mea-

surable function F with F (ρ) = 0.

If a measure Λ(dx) satisfies the condition in Proposition 6.4, any measure propor-
tional to Λ(dx) again satisfies this condition, so the parameter c of the Geometric
random variable in Corollary 6.5 may indeed take arbitrary values in (0, 1].

Remark 6.6. — The number of edges in the tree T ′ that appears in the statement of
Corollary 6.5 follows the law

P[N(T ′) = k] = d−1

∫ ∞
0

P(Poi(x) = k)Λ(dx), ∀k > 1.

The laws of this form with d and Λ as in the statement of Proposition 6.4 are exactly
the quasi-stationary distributions of the Markov chain (Z(log p−1)n;n = 0, 1, 2, . . . ),
where (Zt; t > 0) is the standard pure death process (i.e., Zt− → Zt−1 with rate Zt−)
killed at 0 [Maiar]. If P denotes the substochastic transition matrix (on N∗) of this
discrete time Markov chain, they are the distributions η on N∗ that satisfy:

η P = qη.

7. A different approach to Theorem 2

We now explain a proof idea of Theorem 2 that we initially pursued but then
dropped in favour of the current proof. The approach builds on an idea, popularized
by David Aldous [Ald93], of using exchangeability to construct concrete represen-
tations of (a priori abstractly defined) inverse (or projective) limits of compatible
sequences.(15)

There is a correspondence between a partial order �Tn on {1, . . . , n} and a (graph-
theoretic) rooted tree Tn with n labelled non-root vertices: assuming w.l.o.g. that the
non-root vertices of Tn are labelled by {1, . . . , n}, this correspondence writes:

i �Tn j iff vertex i is an ancestor of vertex j in Tn.

Let (Tn)n∈N be a sequence of random trees that is compatible in the sense of
Definition 1.11, and assume that the n non-root vertices of Tn are labelled by an inde-
pendent random permutation of {1, . . . , n}. The induced random partial orders �Tn

(15)For examples of other settings see e.g. [Jan11] and [FHP11] and the references therein.
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on the label set {1, . . . , n} are then exchangeable and compatible (for the restriction
of a partial order) as n varies. By Kolmogorov’s extension theorem, there exists an
exchangeable partial order � on N∗ := {1, 2, . . .} whose restriction to {1, . . . , n} is �Tn
for each n ∈ N∗.

Call i ∧ j the most recent common ancestor of i and j for �, for two integers i
and j: De Finetti’s theorem then implies the existence of the almost sure limit

d(i, j) := lim
n→∞

1

n

∑
k6n,k 6=i,j

1k�i,k�j,k 6�i∧j .

The map d(., .) a.s. is a random pseudo-metric on N∗, and the metric completion of
(N∗, d) then defines a random R-tree (V , d) that is naturally rooted at its minimal
element ρ. This metric space also supports a probability measure µ given by:

µ(Ji, jK) := lim
n→∞

1

n

∑
k6n,k 6=i,j

1d(i,k)+d(k,j)=d(i,j),

that dominates the length measure in the sense that µ(Ji, jK) > d(i, j) for any
(i, j) ∈ (N∗)2. The resulting random R-tree T = (V , d, ρ, µ) defines an element
of M1(T`1), whose discretization D(T , n) to a discrete tree with n + 1 vertices is
distributed as Tn: this is the correspondence exposed in Theorem 2.

The construction outlined has several advantages: it is direct, in the sense that
it quickly points to the right objects to be used like T`1, whose introduction may
otherwise seem ad-hoc to the reader. Sticking closer to the objects of interest than
our abstract topological considerations, it is also arguably more natural. Last, it may
be pushed to build scaling limits of (infinite) random rooted trees of Te that are
invariant under the contraction operation Cp,q.

Implementing this program, we encountered several difficulties, one of which being
that the proper definition of the completion of a random metric space requires to
identify an appropriate σ-field (and a certain subspace of R-trees) with respect to
which the completion is measurable. Once the subspace of R-trees and the σ-field were
identified, compactness was in easy reach, and the compactness property provides us
with a candidate for the limit of a compatible sequence of random trees without
effort—in particular, without using the de Finetti theorem, so crucial to the above
construction, in an extensive way. These reflexions convinced us to finally drop the
exchangeability arguments above in favour of the topological considerations developed
in Section 2, 3 and 4: besides being more precise and rigorous, these considerations are
also comparatively more robust, with statements concerning compactness and closure
that could be useful to attack further problems in the domain.

Appendix A. Tree spaces

In this appendix, we collect some properties of the tree spaces that we work with
in this paper, namely, the space of locally finite (graph-theoretic) trees and the space
of locally compact measured R-trees.
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A.1. Discrete trees. — In this section, we consider rooted, locally finite trees T =

(V,E, ρ) in the graph-theoretic sense. We recall from the introduction that two such
trees are called equivalent if there exists a root-preserving graph isomorphism between
them. For simplicity, we will always identify an equivalence class with its representa-
tives. We then denote by T the space of (equivalence classes of) trees and by Tf ⊂ T
the subspace of finite trees, both endowed with the topology of local convergence (see
introduction). Also recall that a tree T ∈ T determines and is determined by a partial
order �T on its vertex set V (T ) called the ancestral relation.

For a tree T ∈ T, denote by VR(T ), R > 0 the set of vertices at (graph) distance at
most R from the origin. The following well-known precompactness criterion is easily
proven by a diagonalization argument:

Proposition A.1. — A family S ⊂ T is precompact in T if and only if for every
R > 0,

sup
T∈S

#VR(T ) <∞.

From Proposition A.1, it is easy to see that the space T is not locally compact.
However, it is topologically complete, as can be seen by defining the following metric:

dT(T1, T2) =

∞∑
k=0

2−k1
(T

6k
1 6=T6k

2 )
.

Proposition A.2. — The metric dT generates the topology of local convergence in T.
Furthermore, the space T is complete and separable.

Proof. — Let (Tn)n>0 be a sequence of trees in T and T ∈ T. By definition,
dT(Tn, T )→ 0 as n→∞ if and only if for every k > 0, T6k

n → T6k in Tf . This shows
the first statement. For the separability, we note that by definition, T6k → T in T as
k →∞ for every T ∈ T. Since every T ∈ T is locally finite, T6k ∈ Tf for every k > 0.
Hence, the space Tf is dense in T and obviously countable, which proves separability.
As for the completeness, let (Tn)n>0 be a Cauchy sequence in T. By definition of
the metric dT, for each k > 0, there exists N(k) < ∞, such that T6k

n = T6k
n′ for

every n, n′ > N(k). By diagonalization, we can construct T ∈ T, such that for every
k > 0, T6k

n = T6k for all n > N(k). This implies that Tn → T as n→∞ and proves
completeness of the space T. �

For two trees T, T ′ ∈ T, write T ↪→ T ′, if there exists a root-preserving graph
homomorphism from T to T ′. By restricting to balls around the root, one easily sees
that T = T ′ if and only if T ↪→ T ′ and T ′ ↪→ T .

An end of a tree T = (V,E, ρ) ∈ T is by definition an infinite path from the
root, i.e., a sequence of pairwise distinct vertices v0, v1, . . . , such that v0 = ρ and
{vn, vn+1} ∈ E for all n. The spine of the tree T , denoted by Spine(T ) is then
defined to be the set of vertices that lie on an end, with Spine(T ) = {ρ} if the tree
has no end. We also set

Te = {T ∈ T : T has finitely many ends}.
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The following proposition is included for completeness:

Proposition A.3. — The space Te is not topologically complete.

Proof. — By [Dug66, Th.XIV.8.3], a subspace of a complete metric space is topo-
logically complete if and only if it is a countable intersection of open sets. Assume
that this is the case and let G1, G2, . . . be open subsets of T, such that Te =

⋂
nGn.

Assume w.l.o.g. that the sequence (Gn)n is decreasing, otherwise set G′n =
⋂n
k=1Gk.

In order to get a contradiction, we will construct a tree T which is an element of
every Gn but with an infinite number of ends.

For a tree T ∈ T and r > 0, denote by Br(T ) the (open) ball of radius r around T ,
i.e.,

Br(T ) = {T ′ ∈ T : dT(T ′, T ) < r}.
Note by the definition of dT,

(A.1) ∀r > 0 ∃R ∈ N : Br(T ) = {T ′ ∈ T : (T ′)6R = T6R} =: AR(T ).

We now construct the tree T mentioned above by diagonalization: start with the
tree T1 which consists of a single infinite ray. Since T1 ∈ Te ⊂ G1, and since G1 is
open, there exists by (A.1) R1 ∈ N, such that AR1(T1) ⊂ G1. Construct the tree T2

from T1 by gluing an infinite ray to the vertex at distance R1 from the root. Then
T2 ∈ AR1

(T1) and obviously T2 ∈ Te. This construction can be repeated ad infinitum:
given the tree Tn ∈ Te, consisting of n infinite rays glued together, let Rn ∈ N such
that ARn(Tn) ⊂ Gn. Then construct a tree Tn+1 by gluing an infinite ray to a vertex
at distance Rn from the root, such that Tn+1 ∈ ARn(Tn). Note that we can and will
assume that the sequence (Rn)n is increasing. This gives a sequence (Tn)n of trees
in Te, such that

∀n ∈ N ∀k, l > n : T6Rn
k = T6Rn

l .

By diagonalization, this sequence now defines a tree T with T6Rn = T6Rn
n for all

n ∈ N. Hence, T ∈ ARn(Tn) ⊂ Gn for all n ∈ N, so that T ∈
⋂
nGn = Te. However,

by construction, the number of ends in the tree T is infinite, such that T /∈ Te. This
is the contradiction mentioned above and therefore finishes the proof. �

Since the space Te is not topologically complete, we cannot make use of Prokhorov’s
theorem for measures on Te. For this reason, we formulate in the following proposition
a precompactness criterion for a family of such measures. For a tree T ∈ T and
0 6 r 6 R, denote by Nr,R(T ) the number of vertices at distance r of the root in T
that have a descendant at distance R from the root. Note that Nr,R(T ) is increasing
in r and decreasing in R, with Nr,R(T ) → Nr,∞(T ) as R → ∞, where Nr,∞(T )

denotes the number of spine vertices at distance r of the root in T .

Proposition A.4. — A sequence of random trees T1, T2, · · · ∈ M1(Te) is precompact
in M1(Te) if and only if it is precompact in M1(T) and for every r ∈ N there exist
R = R(r) and n0 = n0(r), such that

the family of random variables (Nr,R(r)(Tn))r∈N,n>n0(r) is tight.
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Proof. — Let T1, T2, . . . be a sequence of random trees converging to a limit
T ∈M1(T). In order to show the proposition it suffices to show that T is supported
on Te if and only if the second condition of the statement holds. Note that by
Skorokhod’s representation theorem we can and will assume that the convergence
holds almost surely on a suitable probability space. In particular, this implies that

(A.2) ∀ε > 0 ∀R > 0 ∃n0 ∈ N ∀n > n0 : P(T6R
n = T6R) > 1− ε.

We first show the “only if” statement, i.e. we assume that T is supported on Te.
Fix ε > 0 and r ∈ N. Since Nr,R(T ) → Nr,∞(T ) as R → ∞, there exists R = R(r),
such that

(A.3) P(Nr,R(T ) = Nr,∞(T )) > 1− ε.

Together with (A.2), this yields the existence of n0 = n0(r), such that

∀n > n0 : P(Nr,R(Tn) = Nr,∞(T )) > 1− 2ε.(A.4)

Since Nr,∞(T ) is bounded by the number of ends of T for every r, the family of
random variables (Nr,∞(T ))r∈N is tight. Together with (A.4) this shows that the
family of random variables (Nr,R(Tn))r∈N,n>n0 is tight, which proves the “only if”
statement.

In order to show the “if” statement, assume that for every r ∈ N there exist
R = R(r) and n0 = n0(r) such that the family of random variables (Nr,R(Tn))r∈N,n>n0

is tight. This entails that the family (Nr,R(r)(T ))r∈N is tight by (A.2), whence the
family (Nr,∞(T ))r∈N is tight as well, since Nr,R(T ) > Nr,∞(T ) for every r. But since
Nr,∞(T ) converges to the number of ends in T as r → ∞, this number must be
almost surely finite, whence T is supported on Te. This finishes the proof of the “if”
statement and of the proposition. �

A.2. Measured R-trees. — There are several equivalent definitions of an R-tree, see
[Dre84, Eva08]. We follow here the treatment in [ADH13],

Definition A.5. — An R-tree is a metric space (V , d) with the following properties:
(1) It is geodesically linear, i.e., for every x, y ∈ V , there is a unique isometry

fx,y : [0, d(x, y)]→ V such that fx,y(0) = x and fx,y(d(x, y)) = y.
(2) It is “without loops”, i.e., for every x, y ∈ V , if r and q are continuous injective

maps from [0, 1] to V such that q(0) = x and q(1) = y, and r(0) = x and r(1) = y,
then q([0, 1]) = r([0, 1]).

Elements of V are called the vertices of the R-tree. If x, y ∈ V , we use the notation
Jx, yK, respectively Jx, yJ, to denote the image of [0, d(x, y)], resp. [0, d(x, y)), under
the map fx,y.

A rooted R-tree T = (V , d, ρ) is an R-tree (V , d) together with a distinguished
vertex ρ ∈ V called the root. In this context, a partial order �T on V is defined
by: x �T y if and only if x ∈ Jρ, yK, in which case x is an ancestor of y, and y is a
descendant of x. Also we write x ≺T y when x �T y and x 6= y.
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A rooted measured R-tree is a quadruple T = (V (T ), dT , ρT , µT ) where (V , d, ρ)

is a rooted R-tree and µ is a Borel measure on V . Two measured rooted R-trees are
said to be equivalent if there exists a root- and measure-preserving isometry between
them. As usual, we identify a tree with its equivalence class.

Definition A.6. — We define T the space of (equivalence classes of) rooted measured
R-trees T = (V , d, ρ, µ), where

(1) the metric space (V , d) is complete and locally compact,
(2) the measure µ is boundedly finite, i.e.µ(A) <∞ for every bounded Borel set A.

We further denote by Tf the subspace of compact trees (in particular, the measure µ
is then finite), and by T1 the subspace of Tf where µ is a probability measure.

Note that by the Hopf–Rinow–Cohn–Vossen theorem, every T ∈ T is a proper
metric space, i.e., every bounded closed set is compact. In particular, every T ∈ T is
separable (it is well-known and easy to show that this is true for every proper metric
space). Also, a measure on T is boundedly finite if and only if it is locally finite (i.e.,
every point has a neighbourhood of finite measure), but we won’t need this fact here.

We now define a metric on the space T, which will be called the Gromov–Hausdorff–
Prokhorov (GHP) metric dGHP . We first recall the definition of the Hausdorff
(pseudo-) metric between two subsets of a metric space (Z, dZ):

dZH(A,B) = inf{ε > 0 : A ⊂ Bε and B ⊂ Aε}, A,B ⊂ Z,

where for A ⊂ Z we define

Aε = {x ∈ Z : dZ(x,A) < ε}, where dZ(x,A) = inf
y∈A

dZ(x, y).

Furthermore, we recall the definition of the Prokhorov metric on the space Mf (Z) of
finite Borel measures on Z:

dZP (µ, ν) = inf{ε > 0 : µ(F ) 6 ν(F ε)+ε and ν(F ) 6 µ(F ε)+ε for all closed F ⊂ Z}.

We can now define the GHP metric on the space Tf of compact trees. For T =

(V , d, ρ, µ),T ′ = (V ′, d′, ρ′, µ′) ∈ Tf , set

(A.5) dcGHP (T ,T ′)

= inf
ϕ,ϕ′,Z

[
dZ(ϕ(ρ), ϕ′(ρ′)) + dZH(ϕ(V ), ϕ′(V ′)) + dZP (ϕ∗µ, ϕ

′
∗µ
′)
]
.

Here, the infimum is taken over all isometric embeddings ϕ : V ↪→ Z, ϕ′ : V ′ ↪→ Z into
some common complete separable metric space (Z, dZ) and ϕ∗µ is the push-forward
of the measure µ by the map ϕ.

We now extend the GHP metric to the space T. For a tree T ∈ T and r > 0, denote
by T 6r its restriction to the closed ball of radius r around the root (i.e., restriction
of the underlying metric space as well as of the measure). Then T 6r is compact as
explained above. We define the GHP metric dGHP on T by

(A.6) dGHP (T1,T2) =

∫ ∞
0

e−r
(

1 ∧ dcGHP
(
T 6r

1 ,T 6r
2

))
dr.
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The following facts are, respectively, Corollary 3.2 and Proposition 2.10 in [ADH13].

Fact A.7
(1) The space (T, dGHP ) is a complete separable metric space.
(2) The metrics dGHP and dcGHP induce the same topology on Tf and T1.

In what follows, we will always endow the space T and its subspaces with the metric
dGHP and its induced topology and Borel σ-algebra, unless mentioned otherwise.

The length measure of a rooted R-tree T = (V , d, ρ) is by definition the unique
σ-finite measure `T on V , such that [Eva08, §4.3.5]

(A.7) ∀a, b ∈ V : `T (Ka, bJ) = d(a, b) and `T (V rV ◦) = 0, where V ◦ =
⋃
x∈V

Jρ, xJ.

We then define the spaces T`, T`f and T`1 as follows:

T` = {T = (V , d, ρ, µ) ∈ T : µ > `T }, T`f = Tf ∩ T`, T`1 = T1 ∩ T`.

The following lemma collects some properties of the space T`. Note that a refined
version of the second part is proved in the main text (Lemma 3.4). In the lemma,
V 6r denotes the restriction of V to the closed ball of radius r around the root.

Lemma A.8
(1) A family S ⊂ T` is precompact in T if and only if for every r > 0,

sup
T =(V ,d,ρ,µ)∈S

µ(V 6r) <∞.

(2) Let T = (V , d, ρ, µ) ∈ T be a limit point of a sequence in T`1. Then µ is
a probability measure (hence T ∈ T1) and it has full support (i.e., suppµ = V ),
furthermore, the convergence holds with respect to the dcGHP metric as well.

Proof. — The first part follows from combining Theorems 2.11 or 2.6 in [ADH13] and
Lemma 4.37 in [Eva08].

For the second part, let T = (V , d, ρ, µ) ∈ T be a limit point of a sequence
Tn = (Vn, dn, ρn, µn) ∈ T`1. Observe that every tree Tn, n ∈ N, has diameter bounded
by one, so that the convergence holds with respect to the dcGHP metric. This readily
implies that the masses of the measures µn converge to the mass of µ, which thus has
mass one.

We now show that the measure µ has full support. For this, it is enough to prove
that, for 0 < ε 6 2 and x ∈ V , the closed ball Dε(x) of radius ε in V centered at x
verifies

(A.8) µ(Dε(x)) > ε/4.

To prove this, we fix ε ∈ (0, 2] and n large enough so that dcGHP (Tn,T ) < ε/4.
There is an embedding of Tn and T into a common metric space (Z, d) such that
the following two properties hold (for simplicity, we do not distinguish the trees from
their embedding): (1) the Hausdorff distance satisfies dH(Vn,V ) < ε/4 and (2) the
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Prokhorov distance satisfies dP (µ, µn) < ε/4. The following chain of inequalities then
holds:

ε/2 6 µn(Dε/2(xn)) 6 µn(D3ε/4(x)) 6 µ((D3ε/4)ε/4(x)) + ε/4 6 µ(Dε(x)) + ε/4.

For the first inequality, we distinguish according to whether the set V ∩(ZrDε/2(xn))

is empty or not. In the first case, T ⊆ Dε/2(xn), therefore µn(Dε/2(xn)) = 1 > ε/2

given our choice of ε. In the second case, there is a path of length at least ε/2 from xn
to the boundary of Dε/2(xn), and the µ-measure of this path is larger than or equal to
its length, therefore µn(Dε/2(xn)) > ε/2 is again valid. The second inequality follows
since d(x, xn) < ε/4 according to (1). The third inequality is a consequence of (2),
and the fourth inequality is plain. Subtracting ε/4 then proves (A.8). �

On the previously defined spaces, the Hausdorff distance appearing in the GHP
metric is actually unnecessary. This is shown by the following lemma, that can also be
seen as a consequence of the general results exposed in [ALW16] (this article appeared
after a first version of our work paper was published on the arXiv).

Define the Gromov–Prokhorov (GP) metric dcGP on T`f by

dcGP (T ,T ′) = inf
ϕ,ϕ′,Z

[
dZ(ϕ(ρ), ϕ′(ρ′)) + dZP (ϕ∗µ, ϕ

′
∗µ
′)
]
,

where the infimum is over ϕ, ϕ′ and Z as specified in (A.5).

Lemma A.9. — We have dcGP 6 dcGHP 6 3dcGP on T`f .

Proof. — The first inequality is immediate. For the second one, we fix ε > 0 and
consider T = (V , d, ρ, µ) and T ′ = (V ′, d′, ρ′, µ′) two element of T`f such that
dcGP (T ,T ′) < ε. Without loss of generality, we may assume that the trees T

and T ′ are subsets of a complete separable metric space (Z, d), on which: d(ρ, ρ′) +

dP (µ, µ′) < ε. We call η a number such that dP (µ, µ′) < η < ε. It is enough, from the
definition of dcGHP , to show that

(A.9) dH(V ,V ′) 6 2ε

to prove the second inequality. We set W = V ∩(ZrV ′2ε), and prove by contradiction
W = ∅. By symmetry, the same statement will then hold changing the role of V

and V ′, and (A.9) will be proved. If W 6= ∅, there exists x ∈ W , that is x ∈ V

such that Dε+η(x) ∩ V ′ = ∅. Using the bound on the Prokhorov distance and the
fact that µ′ has support V ′, we deduce µ(Dε(x)) 6 µ′(Dε+η(x)) + η 6 η < ε.
But we also have ε 6 µ(Dε(x)), reasoning as in the proof of Lemma A.8. This is a
contradiction. �

The metric dcGP gives rise to a topology on Tf called the Gromov–Prokhorov
topology. We now give an equivalent definition of this topology on the space T1. We
follow [GPW09] (which is influenced by Chapter 3 1

2 in [Gro07]). They consider the
case of unrooted trees (or metric spaces), but the results can be easily generalized
to the rooted case, for example by identifying the rooted, probability measured tree
T = (V , d, ρ, µ) ∈ T1 with the unrooted, probability measured tree (V , d, 1

3µ+ 2
3δρ).
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Given a tree T = (V , d, ρ, µ) ∈ T1, we define a distance matrix distribution DM(T ),
i.e., a probability measure on [0, 1]N×N, as the push-forward of the probability measure
δρ ⊗ µ⊗N

∗ by the map
(xi)06i6n 7−→ d(xi, xj)06i,j6n.

Proposition 2.6 and Corollary 3.1 in [GPW09] now imply the following:

Fact A.10. — A tree T = (V , d, ρ, µ) ∈ T1 (resp., a random tree T = (V , d, ρ, µ) ∈
M1(T1)) whose measure µ has full support (resp., has full support almost surely) is
uniquely determined by its distance-matrix distribution DM(T ).

Furthermore, by Theorem 5 in [GPW09], we have:

Fact A.11. — Let T ,T1,T2, · · · ∈ T1. Then dcGP (Tn,T ) → 0 if and only if
DM(Tn) → DM(T ) as n → ∞ (the latter convergence is weak convergence on
M1(RN×N) and RN×N is equipped with the product topology).

Fact A.11 and Lemma A.9 yield the following corollary:

Corollary A.12. — Let T ,T1,T2, · · · ∈ T`1. Then dcGHP (Tn,T ) → 0 if and only if
DM(Tn)→ DM(T ) as n→∞.

For r > 0, the restriction map T → T 6r is not necessarily continuous in the GHP
topology. However, there is the following

Lemma A.13. — Let r > 0 and let T ,T1,T2, · · · ∈ T satisfy dGHP (Tn,T ) → 0.
There exists a sequence (rn)n>1 that satisfies:

rn > r, rn −→ r and dcGHP (T 6rn
n ,T 6r) −→ 0 as n −→∞.

Proof. — Define a sequence of functions on (0,∞) by fn(s) = dcGHP
(
T 6s
n ,T 6s

)
∧1.

Fix r > 0 and set, for n > 1, ε(n) := (er+1
∫

(0,∞)
fn(s)e−s ds)1/2. First, the definition

(A.6) of dGHP gives limn→∞ ε(n) = 0. Second, for n > 1, we have
∫

(r,r+1)
fn(s) ds 6

ε(n)2 and fn > 0, thus there exists rn satisfying

r 6 rn 6 (r + ε(n)) ∧ (r + 1) and 0 6 fn(rn) 6 ε(n) ∨ ε(n)2.

The sequence (rn)n>1 then satisfies the first two requirements of the lemma;
also the sequence dcGHP (T 6rn

n ,T 6rn) has a null limit. To control the remaining
dcGHP (T 6rn ,T 6r) term, we observe that the function r → T 6r is right-continuous:
this follows from Lemma 5.2 in [ADH13] and the right-continuity of r → µ(T 6r). �

Analogously to discrete trees, we call an end of a tree T = (V , d, ρ, µ) ∈ T an
infinite ray starting from the root, i.e., the union

⋃
nJρ, xnK, where x1, x2, · · · ∈ V are

such that xn �T xn+1 for all n and d(ρ, xn) → ∞ as n → ∞. For a tree T ∈ T,
we denote by Spine(T ) the union of its ends, called the spine. We further define the
subspaces Te ⊂ T and T`e ⊂ T` of trees having only a finite number of ends.

If 0 6 r 6 R, we denote by Nr,R(T ) the number of vertices at distance r of
the root in T that have a descendant at distance R from the root. The analogue to
Proposition A.4 for R-trees is the following, whose proof we omit:
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Lemma A.14. — A sequence of random trees T1,T2, · · · ∈ M1(Te) is precompact in
M1(Te) if and only if it is precompact in M1(T) and for every r > 0 there exist
R = R(r) and n0 = n0(r), such that

the family of random variables (Nr,R(r)(Tn))r∈N,n>n0(r) is tight.

Appendix B. An extension of continuous maps

Let X and Y be separable metric spaces endowed with the Borel σ-field and denote
by M1(X) and M1(Y ) the spaces of probability measures on X and Y , respectively,
endowed with the topology of weak convergence, i.e., µn ⇒ µ in M1(X) if and only if∫

f(x)µn(dx) −→
∫
f(x)µ(dx), ∀f : X −→ R bounded, continuous.

The following basic fact is used several times in the article and mentioned for com-
pleteness: every continuous function g : X → M1(Y ), x 7→ gx can be naturally
extended to a continuous function ĝ : M1(X)→M1(Y ), µ 7→ ĝµ, where∫

f(y) ĝµ(dy) =

∫
µ(dx)

(∫
f(y) gx(dy)

)
, ∀f : Y −→ R bounded, measurable.

The fact that this map is well defined and continuous directly follows from the above
definition of weak convergence.
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