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EULER-POINCARÉ PAIRING, DIRAC INDEX AND

ELLIPTIC PAIRING FOR HARISH-CHANDRA MODULES

by David Renard

Abstract. — Let G be a connected real reductive group with maximal compact subgroup K
of equal rank, and let M be the category of Harish-Chandra modules for G. We relate three
differently defined pairings between two finite length modulesX and Y in M : the Euler-Poincaré
pairing, the natural pairing between the Dirac indices of X and Y , and the elliptic pairing of [2].
(The Dirac index IDir(X) is a virtual finite-dimensional representation of K̃, the spin double
cover of K.) We construct index functions fX for any finite length Harish-Chandra module X.
Each of these functions is very cuspidal in the sense of Labesse, and its orbital integral on elliptic
elements coincides with the character of X. From this we deduce that the Dirac index pairing
coincide with the elliptic pairing. Analogy with the case of Hecke algebras studied in [8] and [7]
and a formal (but not rigorous) computation led us to conjecture that the first two pairings
coincide. We show that they are both computed as the indices of Fredholm pairs (defined here
in an algebraic sense) of operators acting on the same spaces. Recently, Huang and Sun have
established the equality between the Euler-Poincaré and the elliptic pairing, thereby proving
directly the analogue of a result of Schneider and Stuhler for p-adic groups [25].

Résumé (Accouplement d’Euler-Poincaré, indice de Dirac et accouplement elliptique des modules
de Harish-Chandra)

Soit G un groupe réductif réel connexe et soit K un sous-groupe compact maximal que l’on
suppose de même rang. Nous relions trois accouplements entre modules de Harish-Chandra de
longueur finieX et Y : l’accouplement d’Euler-Poincaré, l’accouplement naturel entre les indices
de Dirac de X et Y et l’accouplement elliptique d’Arthur [2] (l’indice de Dirac IDir(X) est une
représentation virtuelle de dimension finie de K̃, le revêtement Spin à deux feuillets deK). Nous
construisons des fonctions indices fX pour tout module de Harish-Chandra de longueur finie X.
Chacune de ces fonctions est très cuspidale au sens de Labesse, et son intégrale orbitale coïncide
sur les éléments elliptiques avec le caractère de X. De ceci nous déduisons que l’accouplement
naturel des indices de Dirac coïncide avec l’accouplement elliptique. Une analogie avec le cas
des algèbres de Hecke considéré dans [8] et [7] et un calcul formel (mais non rigoureux) nous
ont amenés à conjecturer que les deux premiers accouplements coïncident eux aussi. Nous
montrons qu’ils peuvent tout deux être exprimés comme indices de paires de Fredholm (définis
ici dans un sens algébrique) d’opérateurs agissant sur les même espaces. Récemment Huang
et Sun ont établi l’égalité entre accouplement d’Euler-Poincaré et accouplement elliptique,
démontrant ainsi directement l’analogue d’un résultat de Schneider et Stuhler pour les groupes
p-adiques [25].

Mathematical subject classification (2010). — 22E46, 22E47.
Keywords. — Harish-Chandra module, elliptic representation, Euler-Poincaré pairing, elliptic pair-
ing, Dirac cohomology.
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1. Introduction

Let G be the group of rational points of a connected algebraic reductive group
defined over a local nonarchimedean field F of characteristic 0. Assume that G has
compact center. Let M = M (G) be the category of smooth representations of G. This
is also the category of non-degenerate modules over the Hecke algebra H = H (G)

of G. It is known from the work of J. Bernstein that M has finite cohomological
dimension. Furthermore, for any finitely generated module (π, V ) in M , Schneider
and Stuhler construct an explicit resolution of (π, V ) by finitely generated projective
modules. They also establish a general theory of Euler-Poincaré functions for modules
of finite length, generalizing results of Kottwitz ([20]). Namely, for any finite length
modules (π, V ), (π′, V ′) in M , one can define their Euler-Poincaré pairing:

(1.1) EP(π, π′) =
∑
i

(−1)i dim ExtiM (π, π′).

They construct functions fπ (Euler-Poincaré functions) in H such that

(1.2) EP(π, π′) = Θπ′(fπ),

where Θπ′ is the distribution-character of π′ (a linear form on H ). Following [9]
and [27], let us now give another point of view on these functions.

Let K (G) be the Grothendieck group of finitely generated projective modules
in M . Since M has finite cohomological dimension, this is also the Grothendieck
group of all finitely generated modules in M . Let R = R(G) be the Grothendieck
group of finite length modules in M . If (π, V ) is a finitely generated (resp. finite
length) module in M , we denote by [π] its image in Grothendieck group K (resp. R).
Set KC = K ⊗Z C and RC = R ⊗Z C. Let (π, V ) be a finite length module in M ,
and

· · · −→ Pi+1 −→ Pi −→ · · · −→ P1 −→ V −→ 0

be a resolution of π by finitely generated projective modules. Then

(1.3) EP : R −→ K , [π] 7−→
∑
i

(−1)i [Pi]
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Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules 211

is a well-defined map. Let H = H (G) = H /[H ,H ] be the abelianization of H .
The Hattori rank map

(1.4) Rk : K −→H

is defined as follows. Let P be a finitely generated projective module in M . Write P
as a direct factor of some H n and let e ∈ EndH (H n) be the projector onto P . Then
the trace of e is an element of H , and its image in H is well-defined. This defines
Rk([P ]). An alternative description of H as the “cocenter” of the category M gives
a natural definition of Rk for finitely generated projective modules (see [9, §1.3]).

Let D′(G) be the space of distributions on G, and let D′(G)G be the subspace of
invariant distributions. Fix a Haar measure on G, so that H is identified with the
convolution algebra of compactly supported smooth functions on G. The orthogonal
of D′(G)G in H for the natural pairing between D′(G) and H is exactly [H ,H ],
so there is an induced non-degenerate pairing:

D′(G)G ×H −→ C, (T, f) 7−→ 〈T, f〉 = T (f).

Let (π′, V ′) be a finite length module in M . Its distribution character Θπ′ is an
element of D′(G)G. This defines a pairing

(1.5) RC ×H −→ C, (π′, f) 7−→ 〈Θπ′ , f〉 = Θπ′(f).

With the notation above, we have the following identity: for all finite length modules
(π, V ), (π′, V ′) in M ,

(1.6) EP(π, π′) = 〈Θπ′ ,Rk ◦ EP(π)〉.

Thus, the image in H of the Euler-Poincaré function fπ constructed by Schneider
and Stuhler is Rk ◦ EP(π) ([9, Lem. 3.7]).

There is a third way of seeing the space H , namely, as the space of orbital integrals
on G. More precisely, recall that for a regular semisimple element x in G, one can
define the orbital integral of f ∈H at x as

Φ(f, x) =

∫
G/T

f(gxg−1) dġ,

where T is the unique maximal torus containing x, and dġ is an invariant measure
on G/T . When f is fixed, x 7→ Φ(f, x) is a smooth invariant function on Greg, and we
denote by I (G) the image of Φ : f ∈ H 7→ Φ(f, .) in the space of smooth invariant
functions on Greg. This space can be explicitly described (by properties of orbital
integrals, see [26]). Furthermore the kernel of Φ is exactly [H ,H ] (this is called the
geometric density theorem, i.e., the density of the space generated by the distributions
f 7→ Φ(f, x), x ∈ Greg, in D′(G)G). Thus, we have an exact sequence

0 −→ [H ,H ] −→H −→ I (G) −→ 0

and H is identified with the space I (G) of orbital integrals.
Let us denote by Gell the space of regular semisimple elliptic elements in G (i.e.,

elements whose centralizer is a compact maximal torus in G), and by Hc the sub-
space of functions f ∈ H such that Φ(f, x) = 0 when x is not elliptic. Accordingly,
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212 D. Renard

we write H c for the image of this subspace in H . This latter space is isomorphic to
the subspace I (G)c of orbital integrals which vanish outside Gell. The Selberg princi-
ple for Euler-Poincaré functions ([25, Rem. II.4.11]) asserts that the functions fπ are
in Hc. In fact, it is a theorem of Brylinski-Blanc [4], (see also [9] and [10]) that the
image Hattori rank map Rk is exactly H c.

Recall that by Harish-Chandra regularity theorem, the character Θπ′ of a finite
length module (π′, V ′) ∈M is given by a locally integrable function, denoted by θπ′ ,
on G, which is smooth on the open dense subset of regular semisimple elements Greg,
i.e., for all f ∈H ,

〈Θπ′ , f〉 =

∫
Greg

θπ′(x) f(x) dx.

(Once again, we have chosen a Haar measure on G).
Following Kazhdan [17], let us denote by Cell the set of regular semisimple elliptic

conjugacy classes in G. Then any orbital integral Φ(f, .) or any character function θπ′
can be viewed as functions on Cell. By [17, §3, Lem. 1], there is a unique measure dc
on Cell such that for all f ∈H with support in Gell,∫

G

f(x) dx =

∫
Cell

Φ(f, c) dc.

The elliptic pairing between two finite length modules (π, V ) and (π′, V ′) in M is
then defined by

(1.7) 〈π, π′〉ell =

∫
Cell

θπ(c) θπ′(c
−1) dc.

Let us now relate this elliptic pairing to the Euler-Poincaré pairing (1.1). On a regular
semisimple elliptic element x, the orbital integrals of the Euler-Poincaré functions fπ
at x coincide with the character θπ of π at x−1 ([25, Th. III.4.16]):

(1.8) (∀x ∈ Gell), Φ(fπ, x) = θπ(x−1).

Therefore, the following formula is established ([25, Th. III.4.21]):

EP(π, π′) = 〈Θπ′ , fπ〉 =

∫
Gell

θπ′(x) fπ(x) dx

=

∫
Cell

θπ′(c) θπ(c−1) dc = 〈π, π′〉ell.
(1.9)

Let us mention that it is explained in [9] how these results can be formulated and
proved when the center of G is not compact.

Many of the objects and results described above make sense over an Archimedean
field as well. So assume now that G is a real reductive group, connected (as a
Lie group). Fix a maximal compact subgroup K of G and also assume that G
and K have same rank, i.e., G admits discrete series representations. The category
of representations we are now considering is the category of Harish-Chandra modules
M = M (g,K) ([18]). It is also known that M has finite cohomological dimension,
and furthermore resolutions of finite length modules by explicit finitely generated pro-
jective modules can be constructed ([18, §II.7]). Thus, the Euler-Poincaré pairing of
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two modules of finite length is well-defined by (1.1). The elliptic pairing (1.9) is also
defined, and the purpose of this paper is to relate these two pairings by construct-
ing Euler-Poincaré functions in that case, i.e., compactly supported smooth functions
on G satisfying (1.2), but also (1.8), so that the formula (1.9) is valid. An interesting
aspect is that this relation involves a third pairing defined through Dirac cohomology.

Dirac cohomology of Harish-Chandra modules was introduced by D.Vogan(see [15]).
Dirac cohomology of a Harish-Chandra module X of finite length consists in a finite
dimensional representation HDir(X) of the compact group K̃, the spin cover of K.
In fact, HDir(X) is Z/2Z-graded, and a slightly more refined invariant, the Dirac
index IDir(X) can be defined as the formal difference IDir(X) = HDir(X)0 −HDir(X)1

between the even and odd part of HDir(X), a virtual finite-dimensional representation
of K̃. If [σ, σ′]K̃ is the usual pairing between two virtual finite-dimensional represen-
tations σ, σ′ of K̃, then the third pairing between two Harish-Chandra modules X
and Y of finite length that we introduce is

(1.10) 〈X,Y 〉Dir = [IDir(X), IDir(Y )]K̃ .

In Section 3, we use Labesse “index” functions ([21]) to construct index functions fX
for any finite length Harish-Chandra module X, i.e., fX is a smooth compactly sup-
ported function on G satisfying

〈X,Y 〉Dir = ΘY (fX)

for any finite length Harish-Chandra module Y . These functions are very cuspidal
in the sense of Labesse, thus their orbital integrals Φ(fX , x) vanish on non-elliptic
elements. In Section 4, we show that when x is an elliptic element in G, the formula
(1.8) is valid in this context. This easily implies that the elliptic pairing coincide with
the Dirac pairing. The proof uses the density of tempered characters in the space of
invariant distributions to reduce the problem to the case of limits of discrete series.
In the case of discrete series, the relevant results are well-known and their extension
to the case of limits of discrete series is relatively easy.

A formal (but not rigorous) computation given in Section 5 of the paper led us to
conjecture that

(1.11) EP(X,Y ) = 〈X,Y 〉Dir,

for any Harish-Chandra modules X, Y of finite length. Interestingly enough finding
a direct proof of this equality seems much more intricate than it seems at first sight.

Recently, Jing-Song Huang and Binyong Sun have established directly the equality
between the elliptic and Euler-Poincaré pairings [16], thereby proving the conjecture.
Jing-Song Huang also obtained independently (by a different computation) the equal-
ity between the Dirac and elliptic pairings [12]. Nevertheless, we still believe that a
direct approach to prove (1.11) could be of some interest. We show that both sides
of (1.11) are indices of suitable Fredholm pairs defined on the same spaces. We found
the definition of Fredholm pairs (and some properties of their indices) in [1] and we
adapted it to our purely algebraic setting. Let us just say here that the index of
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214 D. Renard

a Fredholm pair is a generalization of the index of a Fredholm operator. The relevant
material is exposed in an appendix. The first of these Fredholm pair is given by the
complex computing the Ext groups and its differential, and its index is the Euler-
Poincaré characteristic of the complex, i.e. the left-hand side of (1.11). The second
Fredholm pair is given (on the same space) by actions of Dirac operators and its
index is the right-hand side of (1.11). The conjecture thus boils down to the equality
of these two indices.

The idea that the elliptic pairing for Harish-Chandra modules is related to Dirac
index originates in the papers [8] and [7] where the result is established for Hecke
algebra. The role of the group K̃ is played in that context by the spin cover W̃ of the
relevant Weyl group. Since modules for the Hecke algebra are finite-dimensional, the
difficulties we met in proving (1.11) do not appear.

We learned from G. Zuckerman that he obtained results on Euler-Poincaré pairing
for Harish-Chandra modules in the late 70’s, but that these were never published.
Pavle Pandžić and Peter Trapa informed us that they were also led to the identity
(1.11) in a work in progress with Dan Barbasch, and we thank them for useful con-
versations. We also thank the referee for some useful comments.

2. Dirac cohomology and Dirac index of (g,K)-modules

2.1. Notation and structural facts. — Let G be a connected real reductive Lie
group with Cartan involution θ such that K = Gθ is a maximal compact subgroup
of G. We assume that G and K have same rank, i.e., G has discrete series represen-
tations. Let us denote by g0 the Lie algebra of G, g its complexification, with Cartan
involutions also denoted by θ. We fix an invariant nondegenerate symmetric bilinear
form B on g0, extending the Killing form on the semisimple part of g0. Let

g0 = k0
θ
⊕ p0, g = k

θ
⊕ p

be the Cartan decompositions of g0 and g respectively. We assume furthermore that in
extending the Killing form, we made sure that B|p0

remains definite positive and B|k0
definite negative. Remark that since G and K have equal rank, the dimension of p0
is even.

Let Cl(p) = Cl(p;B) be the Clifford algebra of p with respect to B. We follow
here the sign convention of [15]. We refer to [15], [19] or [22] for material on Clifford
algebras and spinor modules. Let

Cl(p) = Cl0(p)⊕ Cl1(p)

be the decomposition of Cl(p) into even and odd parts. Recall also that the Clifford
algebra Cl(p) is isomorphic as a Z/2Z-graded vector space to the exterior algebra ∧p
by the Chevalley isomorphism. It is convenient to identify Cl(p) to ∧p, and to see the
latter as a Z/2Z-graded vector space endowed with two different algebra products,
the graded commutative wedge product (denoted x ∧ y) and the Clifford product
(denoted xy). Let us denote by SO(p0) (resp. SO(p)) the special orthogonal group
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of (p0, B) (resp. (p, B)). The subspace ∧2p is stable under the Clifford Lie bracket
[x, y]Cl = xy−yx on ∧p = Cl(p) and is isomorphic as a Lie algebra to the Lie algebra
so(p) of SO(p).

We denote by K̃ the spin double cover of K, i.e., the pull-back of the covering map
Spin(p0) → SO(p0) by the adjoint action map Ad|p0

: K → SO(p0). The compact
groups Spin(p0) and SO(p0) embed in their complexification Spin(p) and SO(p), so
we get the following diagram:

K̃ //

��

Spin(p0) �
�

//

��

Spin(p) �
�

//

��

Cl0(p)×

K
Ad|p0

// SO(p0) �
�

// SO(p)

The complexification of the differential at the identity of the Lie group morphism
Ad|p0

: K → SO(p0) is the Lie algebra morphism

ad|p : k −→ so(p), X 7−→ ad(X)|p.

Let us denote by α the composition of this map with the identification between so(p)

and ∧2p and the inclusion of ∧2p in ∧p = Cl(p): α : k −→ Cl(p).
A key role is played in the theory of Dirac cohomology of Harish-Chandra modules

by the associative Z/2Z-graded superalgebra A = U(g) ⊗ Cl(p). The Z/2Z-grading
comes from the Z/2Z-grading on Cl(p), i.e., elements in U(g)⊗ 1 are even. The super
Lie algebra structure on A is given by the (super)commutator bracket [. , .]A. The
group K acts on U(g) through K ⊂ G by the adjoint action, and on Cl(p) through
the map K̃ → Cl0(p)× in the first row of the diagram above and conjugation in Cl(p)

(this action of K̃ on Cl(p) factors through K). Thus we get a linear action of K on A.
Differentiating this action at the identity, and taking the complexification, we get a
Lie algebra representation of k in A. This representation can be described as follows.
The map α above is used to define a map

∆ : k −→ A = U(g)⊗ Cl(p), ∆(X) = X ⊗ 1 + 1⊗ α(X),

which is a morphism of Lie algebra (it takes values in the even part of the super Lie
algebra A). Thus it extends to an algebra morphism

(2.1) ∆ : U(k) −→ A = U(g)⊗ Cl(p).

The action of an element X ∈ k on A is then given by the adjoint action of ∆(X), i.e.,
a ∈ A 7→ [∆(X), a]A. We denote by AK (resp. Ak) the subalgebra of K-invariants
(resp. k-invariants) in A. Since K is assumed to be connected, AK = Ak.

Recall that n = dim(p) is even. Thus there are:
– two isomorphism classes of irreducible Z/2Z-graded Cl(p)-modules,
– one isomorphism class of irreducible ungraded Cl(p)-modules,
– two isomorphism classes of irreducible Cl0(p)-modules.

An irreducible ungraded Cl(p)-module S can be realized as follows: choose a decom-
position p = U ⊕ U∗ into dual isotropic subspaces. As the notation indicates, U∗ is
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identified to the dual of U by the bilinear form B. Set S = ∧U . Let U act on S

by wedging and U∗ by contracting. The decomposition ∧U = ∧0U ⊕ ∧1U give a
decomposition S = S+ ⊕ S− into the two non-isomorphic simple Cl0(p)-modules S+

and S−. The dual of S is identified with ∧U∗. The modules S, S+ and S− are finite-
dimensional representations of K̃ and so are their duals and also Cl(p) = ∧p, Cl(p)0

and Cl(p)1.

Proposition 2.1. — As virtual K̃ representations,

(2.2) ∧•p := ∧1p−∧0p ' (S+ − S−)∗ ⊗ (S+ − S−).

Proof. — As K̃-modules: ∧p ' Cl(p) ' End(S) ' S∗⊗S = (S+⊕S−)∗⊗ (S+⊕S−).
This can be obtained also using: ∧p = ∧(U∗⊕U) ' (∧U∗)⊗(∧U) ' S∗⊗S. Writing

(S+⊕S−)∗⊗(S+⊕S−) = ((S+)∗⊗S+)⊕((S−)∗⊗S+)⊕((S+)∗⊗S−)⊕((S−)∗⊗S−)

and identifying the even and odd parts of these Z/2Z-graded modules, we get

∧0p ' ((S+)∗ ⊗ S+)⊕ ((S−)∗ ⊗ S−), ∧1p ' ((S+)∗ ⊗ S−)⊕ ((S−)∗ ⊗ S+).

So, as virtual K̃ representations, ∧•p = (S+ − S−)∗ ⊗ (S+ − S−). �

2.2. Dirac cohomology of Harish-Chandra modules. — Let us now introduce the
Dirac operator D:

Definition 2.2. — If (Yi)i is a basis of p and (Zi)i is the dual basis with respect to B,
then

D = D(g,K) =
∑
i

Yi ⊗ Zi ∈ U(g)⊗ Cl(p)

is independent of the choice of basis (Yi)i and K-invariant for the adjoint action on
both factors. The Dirac operator D (for the pair (g,K)) is an element of AK (see [15]).

The most important property of D is the formula

(2.3) D2 = −Casg ⊗ 1 + ∆(Cask) + (‖ρk‖2 − ‖ρg‖2)1⊗ 1

due to Parthasarathy [23] (see also [15]). Here Casg (respectively Cask) denotes the
Casimir element of U(g). The constant (‖ρk‖2 − ‖ρg‖2) is explained below. This for-
mula has several important consequences for Harish-Chandra modules. To state them,
we need more notation. Let us fix a maximal torus T inK, with Lie algebra t0. Since G
and K are connected and have same rank, T is also a Cartan subgroup of G.

Let R = R(g, t) denotes the root system of t in g, W = W (g, t) its Weyl group. Let
us also choose a positive root system R+ in R. As usual, ρ denotes the half-sum of
positive roots, an element in t∗. Similarly, we introduce the root system Rk = R(k, t),
its Weyl group Wk, a positive root system R+

k , compatible with R+, and the half-sum
of positive roots ρk. The bilinear form B on g restricts to a non degenerate symmetric
bilinear form on t, which is definite positive on the real form it0 ⊕ a0. We denote
by 〈. , .〉 the induced form on it∗0 and in the same way its extension to t∗. The norm
appearing in (2.3) is defined for any λ ∈ t∗ by ‖λ‖2 = 〈λ, λ〉.
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Recall the Harish-Chandra algebra isomorphism

(2.4) γg : Z(g) ' S(t)W

between the center Z(g) of the enveloping algebra U(g) and the W -invariants in the
symmetric algebra S(t) on t. Accordingly, a character χ of Z(g) is given by an element
of t∗ (or rather its Weyl group orbit). If λ ∈ t∗, we denote by χλ the corresponding
character of Z(g). LetX be a Harish-Chandra module. We say thatX has infinitesimal
character λ if any z ∈ Z(g) acts on X by the scalar operator χλ(z)IdX .

Let M = M (g,K) be the category of Harish-Chandra modules for the pair (g,K)

(see [18] for details). If X ∈M , then A = U(g)⊗Cl(p) acts on X⊗S. Then X decom-
poses as the direct sum of its K-isotypic components, these being finite-dimensional
if X is admissible. Accordingly, X ⊗ S decomposes as the direct sum of its (finite-
dimensional if X is admissible) K̃-isotypic components. Let us denote by Fτ the
irreducible representation of K̃ with highest weight τ ∈ it∗0. We denote the corre-
sponding K̃-isotypic component of X ⊗ S by (X ⊗ S)(τ). Assume X is admissible
and has infinitesimal character Λ ∈ t∗. Then D2 acts on (X ⊗ S)(τ) by the scalar
−‖Λ‖2 + ‖τ + ρk‖2. In particular, we see that in that case D2 acts semi-simply on
X ⊗ S, and that the kernel of D2 on X ⊗ S is a (finite) direct sum of full K̃-isotypic
components of X ⊗ S: these are exactly those (X ⊗ S)(τ) for which

(2.5) ‖τ + ρk‖2 = ‖Λ‖2.

Another important fact is that the action of D preserves K̃-isotypic components
of X ⊗ S. If X is unitary (resp. finite-dimensional), one can put a positive definite
hermitian form on X ⊗ S and one sees that D is hermitian (resp. skew-hermitian).
Let us now review Vogan’s definition of Dirac cohomology.

Definition 2.3. — Let X ∈ M . The Dirac operator D acts on X ⊗ S with kernel
kerD and image ImD. Vogan’s Dirac cohomology of X is the quotient

HDir(X) = kerD/(kerD ∩ ImD).

Since D ∈ AK , K̃ acts on kerD, ImD and HDir(X). Also, assume that X is
admissible and has infinitesimal character Λ ∈ t∗. Then, since kerD ⊂ kerD2 and
since we have seen that the latter is the sum the full K̃-isotypic components of X⊗S
satisfying (2.5) (these are obviously in finite number), we see that HDir(X) is a finite-
dimensional representation of K̃. This is particularly helpful ifX is unitary, admissible
and has infinitesimal character Λ ∈ t∗. Then it follows thatD acts semisimply onX⊗S
and so

(2.6) kerD2 = kerD = HDir(X).

In this case, the Dirac cohomology of X is a sum the full isotypic components
(X⊗S)(τ) such that (2.5) holds. For general X, (2.6) does not hold, but note that D
is always a differential on kerD2, and HDir(X) is the usual cohomology of this differ-
ential.

J.É.P. — M., 2016, tome 3



218 D. Renard

Let us state the main result of [14], which gives a strong condition on the infin-
itesimal character of an admissible Harish-Chandra module X with nonzero Dirac
cohomology.

Proposition 2.4. — Let X ∈M be an admissible Harish-Chandra module with infin-
itesimal character Λ ∈ h∗. Assume that Fτ is an irreducible representation of K̃ with
highest weight τ ∈ it∗0 such that (X ⊗ S)(τ) contributes to HDir(X). Then

(2.7) Λ = τ + ρk up to conjugacy by the Weyl group W.

Thus for unitary X, (2.5) is equivalent to the stronger condition (2.7), provided
that Fτ appears in X ⊗ S.

2.3. Dirac index. — The Dirac index of Harish-Chandra modules is a refinement of
Dirac cohomology. It uses the decomposition S = S+ ⊕ S− of the spinor module as
a Cl(p)0-module (and thus also as a representation of K̃). Since D is an odd element
in U(g) ⊗ Cl(p) its action on X ⊗ S, for any Harish-Chandra module X exchanges
X ⊗ S+ and X ⊗ S− : D : X ⊗ S+ ←→ X ⊗ S−. Accordingly, the Dirac cohomology
of X decomposes as

HDir(X) = HDir(X)+ ⊕ HDir(X)−.

The index of the Dirac operator acting on X ⊗ S is the virtual representation

IDir(X) = HDir(X)+ − HDir(X)−

of K̃. The following proposition is interpreted as an Euler-Poincaré principle.

Proposition 2.5. — Let X be an admissible Harish-Chandra module with infinitesimal
character. Then

IDir(X) = X ⊗ S+ −X ⊗ S−

as virtual K̃-representations.

Proof. — A virtual K̃-representation is by definition an element of the Grothendieck
group R(K̃) of the category of finite-dimensional representations of K̃. This is the
free Z-module generated by equivalence classes of irreducible representations, i.e., one
can write

R(K̃) =
⊕

γ∈(K̃ )̂

Z.

The right-hand side of the equation in the proposition cannot a priori be interpreted
as an element of R(K̃), but only of the larger group

∏
γ∈(K̃ )̂ Z.

Let us now prove the equality. We have seen that D2 acts semisimply on X ⊗ S.
Furthermore, each eigenspace of D2 in X ⊗ S is a sum of full K̃-isotypic components
and that these are preserved by the action of D. Each of these K̃-isotypic components
(X ⊗ S)(τ) decomposes also as (X ⊗ S)(τ) = (X ⊗ S)(τ)+ ⊕ (X ⊗ S)(τ)− where

(X ⊗ S)(τ)± := (X ⊗ S)(τ) ∩ (X ⊗ S±).

J.É.P. — M., 2016, tome 3



Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules 219

For K̃-isotypic components corresponding to a non-zero eigenvalue of D2, we thus
get that D is a bijective intertwining operator (for the K̃-action) between (X⊗S)(τ)+

and (X ⊗ S)(τ)−. Thus the contribution of these K̃-isotypic components to

X ⊗ S+ −X ⊗ S−

is zero. So only kerD2 will contribute, i.e.,

X ⊗ S+ −X ⊗ S− = (kerD2 ∩ (X ⊗ S+))− (kerD2 ∩ (X ⊗ S−)).

Let us write
kerD2 ∩ (X ⊗ S±) = kerD ∩ (X ⊗ S±)⊕W±

for some K̃-invariant complementary subspaces W±. Then, as above, D is bijective
intertwining operator for the K̃-action betweenW± and D(W±)⊂kerD2∩(X ⊗ S∓).
So these contributions also cancel, and what remains is exactly the virtual K̃-repre-
sentation HDir(X)+ − HDir(X)−. �

2.4. Dirac index pairing. — If γ, σ are virtual finite-dimensional representations
of K̃, and χγ , χσ are their characters, we denote by

[γ, σ]K̃ =

∫
K̃

χγ(k)χσ(k) dk

the usual (hermitian) pairing between these virtual representations (dk is the nor-
malized Haar measure on K̃). Since virtual finite-dimensional representations of K
are also virtual representations of K̃, we use also the notation for their pairing.
Notice that when γ, σ are actual finite-dimensional representations, then [γ, σ]K̃ =

dim HomK̃(γ, σ).

Definition 2.6. — Assume that X and Y are admissible Harish-Chandra modules
with infinitesimal character(1). Set 〈X,Y 〉Dir = [IDir(X), IDir(Y )]K̃ , the Dirac index
pairing of X and Y .

2.5. Dirac index of limits of discrete series. — Harish-Chandra modules of lim-
its of discrete series of G are obtained as cohomologically induced Ab(Cλ)-modules
(see [18]), where b = t⊕ u is a Borel subalgebra containing t with nilpotent radical u,
and Cλ is the one-dimensional representation of T with weight λ ∈ it∗0. Some pos-
itivity conditions on λ are required, that we now describe. The Borel subalgebra b

determines a set of positive roots R+
b of R = R(g, t) (the roots of t in u). Let us denote

by ρ(b), (resp. ρc(b), resp. ρn(b)) the half-sum of (resp. compact, resp. non-compact)
roots in R+

b . The positivity condition on λ is that

(2.8) 〈λ+ ρ(b), α〉 > 0, (∀α ∈ R+
b ).

(1)A technical remark is in order here: recall that a Harish-Chandra module with infinitesimal
character is of finite length if and only if it is admissible.
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Then, Ab(Cλ) is a discrete series modules if the inequalities in (2.8) are strict,
and otherwise a limit of discrete series (χ = λ + ρ(b) is the infinitesimal charac-
ter of Ab(Cλ)), or 0. Assume furthermore that χ is not singular for K, i.e., 〈χ, α〉 6= 0

for all α ∈ R(k, t). Set

(2.9) Λ = λ+ 2ρn(b) = χ+ ρn(b)− ρc(b) = χ+ ρ(b)− 2ρc(b).

Then, for all simple root α ∈ R+(k, t), we have 〈χ, α〉 > 1, 〈ρ(b), α〉 > 1, 〈ρc(b), α〉 = 1

and thus Λ is dominant for k. The lowest K-type of Ab(Cλ) has multiplicity one
and highest weight Λ, and all other K-types have highest weights of the form
Λ +

∑
β∈R(u∩p,t) nβ β, with nβ nonnegative integers.

Let us compute the Dirac cohomology of Ab(Cλ), following [13, §5]. There it is
assumed that Ab(Cλ) is a discrete series, and for these it goes back more or less
explicitly to [3]. Let µ be the highest weight of a K̃-type in Ab(Cλ) ⊗ S. Weights
of S are of the form −ρn(b) + Φ where Φ is a sum of positive non-compact roots and
thus γ must be of the form

(2.10) µ = Λ + Ψ− ρn(b) + Φ = χ− ρc(b) + Ψ + Φ,

where Ψ is an integral linear combination of positive non-compact roots with non-
negative coefficients. By Proposition 2.4, γ contributes to the Dirac cohomology of
Ab(Cλ) if and only if there exists w ∈W such that w ·χ = µ+ρc(b) and in that case,
(2.10) gives

χ− w · χ+ Ψ + Φ = 0.

Since χ is dominant, χ−w ·χ is a an integral linar combination of positive roots with
nonnegative coefficients ([13, Lem. 2.3]). Hence Ψ = Φ = 0, w · χ = χ and

(2.11) µ = Λ− ρn(b) = χ− ρc(b) = λ+ ρn(b).

The K̃-type Fµ occurs with multiplicity one in Ab(Cλ), thus the Dirac index of Ab(Cλ)

is ±Fµ. To determine the sign, recall that the spinor module S, as a K̃-representation,
doesn’t depend on any choice, nor does the set {S+, S−}, in particular not on the
way we realized this module, but the distinction between S+ and S− does (resulting
on a sign change in the Dirac index). So suppose we have fixed once for all a Borel
subalgebra b1 = t ⊕ u1 and choose u1 ∩ p as the isotropic subspace U of p used
to construct the spinor modules in Section 2.1. Then S+ is the K̃-representation
containing the weight −ρn(b1) and S− is the one containing the weight ρn(b1). With
this choice, it is easy to see that IDir(Ab(Cλ)) = sgn(w)Fµ, where w ∈W is the Weyl
group element sending b1 to b and sgn is the sign character.

Let us now determine the Dirac index of the virtual modules X which are the
linear combinations of limits of discrete series with the same infinitesimal character,
whose characters are the supertempered distributions constructed by Harish-Chandra
(see [11] and [5, §7]). Namely take an integral but non necessarily regular weight χ
in it∗0, but assume that χ is regular for k, and consider the limits of discrete series
Ab(Cλ) as above with χ = λ+ ρ(b) satisfying (2.8). Notice that χ being fixed, b de-
termines Ab(Cλ) and that Borel subalgebras b which occurs are the one such that the
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corresponding Weyl chamber Cb has χ in its closure. So we can forget the λ in the no-
tation, and the set of limits of discrete series we are considering is L = {Ab | χ ∈ Cb}.
Choose one of them as a base point, say Ab2 . Then the linear combination introduced
by Harish-Chandra is

(2.12) Xχ,b2 =
1

|Wχ|
∑
Ab∈L

ε(b)Ab

where ε(b) = sgn(w), and w ∈ W is the Weyl group element sending b2 to b and
Wχ = {w ∈ W |w · χ = χ}. This construction is made because all the the ε(b)Ab

have the same character formula on T and this is also the formula for the character
of Xχ,b2

. Notice that a different choice of b2 as base point would result in at most a
sign change.

The fact that χ is regular for k implies that the corresponding Weyl chambers Cb

are all included in a single Weyl chamber for R(k, t). In particular, the various ρc(b)

are all equal (let say to ρc). This shows that the Dirac cohomology of all the Ab ∈ L
is the same, namely the multiplicity-one K̃-type Fµ with highest weight µ = χ− ρc.
Taking signs into account, we see that all the ε(b)Ab have same Dirac index sgn(w)Fµ
where w is the Weyl group element sending b1 to b2. This is thus also the Dirac index
of Xχ,b2

.
For discrete series, χ is regular, so L contains only one element Ab(λ) with λ =

χ− ρ(b).

Remark 2.7. — If χ is singular for k, the virtual representation (2.12) is still defined,
but it is 0.

Proposition 2.8. — Let the notation be as above, with χ regular for k. If IDir(Xχ,b) =

±IDir(Xχ′,b′), then χ and χ′ are conjugate by a element of W (k, t), and thus by an
element in K. Therefore Xχ,b = Xχ′,b′ .

Proof. — Say that IDir(Xχ,b) = ±Fµ = ±I(Xχ′,b′). For any g ∈ G normalizing T ,
Xg·χ,g·b = Xχ,b, so we can assume that Cb and Cb′ are in the same Weyl chamber
for R(k, t). We have then µ = χ − ρc(b) = χ′ − ρc(b

′) and ρc(b) = ρc(b
′) so that

χ = χ′. �

3. Labesse index functions and Euler-Poincaré functions

Let us compute the Dirac index pairing for two admissible Harish-Chandra mod-
ules X and Y with infinitesimal character. We have

〈X,Y 〉Dir = [IDir(X), IDir(Y )]K̃ =
∑
γ∈(K̃ )̂

[γ, IDir(X)]K̃ × [γ, IDir(Y )]K̃ .

Let us now introduce some material from [21]. If γ is a genuine virtual finite-
dimensional representation of K̃, let us denote by IK(γ) the virtual finite-dimensional
representation

γ ⊗ (S+ − S−)∗
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of K and by χ̃γ of the character of IK(γ) (a conjugation invariant function on K).
If (π,X) is an admissible Harish-Chandra module, with π denoting the action of K
on X, the operator

π(χ̃γ) =

∫
K

π(k) χ̃γ(k) dk

is of finite rank, and so is a trace operator. Let us denote its trace by I(X, γ). If
furthermore X has infinitesimal character, we have

I(X, γ) =
[
γ ⊗ (S+ − S−)∗, X

]
K̃

=
[
γ,X ⊗ (S+ − S−)

]
K̃

= [γ, IDir(X)]K̃ .

Labesse main result is the existence for all γ ∈ (K̃ )̂ of a smooth, compactly sup-
ported and bi-K-finite function fγ which satisfies, for all finite length Harish-Chandra
module X, with ΘX denoting the distribution-character of X,

ΘX(fγ) = I(X, γ).

The main ingredient in Labesse’s construction is the Paley-Wiener theorem of
Arthur [2]. From this, we get

〈X,Y 〉Dir =
∑
γ∈(K̃ )̂

I(X, γ)× I(Y, γ) =
∑
γ∈(K̃ )̂

ΘX(fγ)ΘY (fγ).

Let us call
fY =

∑
γ∈(K̃ )̂

ΘY (fγ) fγ

an index function for Y . Note that the sum above has finite support, so that fY
is smooth, compactly supported and bi-K-finite. Furthermore, Labesse shows ([21,
Prop. 7]) that the functions fγ are “very cuspidal”, i.e., that their constant terms for
all proper parabolic subgroups of G vanish. Thus the same property holds for fY .
This implies the vanishing of the orbital integrals Φ(fY , x) on regular non-elliptic
element x in G. We have obtained:

Theorem 3.1. — For any admissible Harish-Chandra module Y with infinitesimal
character, there exists a smooth, compactly supported, bi-K-finite and very cuspidal
function fY on G such that for any admissible Harish-Chandra module X with infin-
itesimal character,

〈X,Y 〉Dir = ΘX(fY ).

4. Orbital integral of fY as the character of Y on elliptic elements

The goal of this section is to show that the value of the orbital integral Φ(fY , x)

of fY at an elliptic regular element x coincides with the value of the character θY
of Y at x−1. The character ΘY of Y is a distribution on G, but recall that according
to Harish-Chandra regularity theorem, there is an analytic, conjugation invariant
function that we will denote by θY on the set Greg such that for all f ∈ C∞c (G),

ΘY (f) =

∫
G

θY (x) f(x) dx.
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Using Weyl integration formula, this could be written as

ΘY (f) =
∑
[H]

1

|W (G,H)|

∫
H

|DG(h)| θY (h) Φ(f, h) dh,

where the first sum is on a system of representative of conjugacy classes of Cartan
subgroups H of G, W (G,H) = NG(H)/H is the real Weyl group of H and |DG| is
the usual Jacobian. The assertion is thus that:

(4.1) θY (x−1) = Φ(fY , x), (x ∈ Gell).

The characterization of orbital integrals due to A.Bouaziz [5] shows that there indeed
exists a function ψY in C∞c (G) such that

Φ(ψY , x) =

{
θY (x−1) if x ∈ Gell,

0 if x ∈ Greg rGell.

Let F be a family of elements X in RC such that the space generated by the ΘX

is dense in the space of invariant distributions D′(G)G on G. For instance, F could
be the set of characters of all irreducible tempered representations, but we will rather
take F to be the family of virtual representations with characters Θh∗ defined in
[5, §7]. The density of this family of invariant distributions is a consequence of the
inversion formula of orbital integrals [6]. Elements in F are generically irreducible
tempered representations, but in general, they are linear combinations of some of
these with same infinitesimal character. The distributions Θh∗ are supertempered in
the sense of Harish-Chandra [11]. In any case to prove (4.1), it is enough by density
to show that for all X ∈ F , we have:

(4.2) ΘX(fY ) = ΘX(ψY ).

If X is a linear combination of parabolically induced representations, then both side
are 0 since ΘX vanishes on elliptic elements. Thus, it is sufficient to prove (4.2) for X
corresponding to the Θh∗ of [5] attached to the compact Cartan subgroup T . Then X
is either a discrete series or a linear combination of limits of discrete series (with same
infinitesimal character) described in Section 2.5.

Assume that (4.1) is established for all such X. The left-hand side of (4.2) then
also equals

ΘY (fX) =
1

|W (G,T )|

∫
T

|DG(t)| θY (t) Φ(fX , t) dt

=
1

|W (G,T )|

∫
T

|DG(t)| θY (t) θX(t−1) dt

and equals the right-hand side, by using the definition of ψY and the Weyl integration
formula again. By definition of the measure dc on the set Cell of regular semisimple
elliptic conjugacy classes in G and of the elliptic pairing recalled in the introduction,
we have also

ΘY (fX) =

∫
Cell

θY (c) θX(c−1) dc = 〈X,Y 〉ell.
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Thus we have reduced the proof of (4.1) for all Y to the case when Y is either a
discrete series or a linear combination of limits of discrete series as described above.
In turns, it is enough to show (4.2) when both X and Y are of this kind. In case Y
corresponds to a parameter h∗ of [6], ψY is exactly the function denoted ψh∗ there,
and in particular:

ΘX(ψY ) =

{
1 if X = Y,

0 if X 6= ±Y.
With the notation of Section 2.5, we can take X = Xχ,b and Y = Xχ′,b′ . Then

fX =
∑
γ∈(K̃ )̂ ΘX(fγ)fγ =

∑
γ∈(K̃ )̂ [γ, I(X, γ)]K̃ fγ and by the results in Section 2.5,

we get fX = ε(b)fχ−ρc(b). Similarly we get fY = ε(b′)fχ′−ρc(b′) and

ΘX(fY ) = [IDir(X), IDir(Y )]K =
[
ε(b)Fχ−ρ(b), ε(b

′)Fχ′−ρ(b′)
]
K
.

By Proposition 2.8, we see that this is 0 if X 6= ±Y and 1 if X = Y . This finishes the
proof of (4.2) in the case under consideration. We have proved:

Theorem 4.1. — Let X and Y be finite length Harish-Chandra modules with infini-
tesimal character in M and let fX , fY be the Euler-Poincaré functions for X and Y
respectively, constructed in Section 3. Then, the orbital integral Φ(fX , x) at a regular
element x of G is 0 if x is not elliptic, and equals θX(x−1) if x is elliptic. Furthermore:

〈X,Y 〉Dir = ΘX(fY ) = ΘY (fX) =

∫
Cell

θY (c) θX(c−1) dc = 〈X,Y 〉ell.

5. Euler-Poincaré pairing and Dirac pairing

For two finite length Harish-Chandra modules X and Y , one can define their Euler-
Poincaré pairing as the alternating sum of dimensions of Ext functors as in (1.1).
Recall that M has finite cohomological dimension, so this sum has finite support.
More precisely, an explicit projective resolution ofX inM(g,K) is given by ([18, II.7])

· · · −→ Pi+1 −→ Pi −→ · · · −→ P0 −→ X −→ 0

with Pi = (U(g)⊗U(k)∧ip)⊗X. Set Ci = HomM (Pi, Y ) ' HomK(∧ip⊗X,Y ). Thus
Exti(X,Y ) is given by the i-th cohomology group of the complex C = (Ci)i, with
differential di given explicitly in loc. cit.

Theorem 5.1. — Let X and Y be two admissible Harish-Chandra modules with infin-
itesimal character. Then

EP(X,Y ) = [IDir(X), IDir(Y )]K̃ = 〈X,Y 〉Dir.

Proof. — We have seen in the previous section that 〈X,Y 〉Dir = 〈X,Y 〉ell. Huang and
Sun [16] have proved that 〈X,Y 〉ell = EP(X,Y ). �

The main content of this statement is that the EP pairing of two finite length
Harish-Chandra modules with infinitesimal character factors through their Dirac in-
dices, and thus through their Dirac cohomology. In particular, the results on Dirac
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cohomology and Dirac index recalled in Section 2.2 put severe conditions on mod-
ules X and Y for their Dirac pairing to be non-zero. For many interesting modules,
the Dirac index is explicitly known, and then so is the Dirac pairing between these
modules.

Remark 5.2. — In the case where X = F is a finite-dimensional irreducible Harish-
Chandra module, Exti(F, Y ) is also the i-th (g,K)-cohomology group of Y ⊗ F ∗.
Thus, in that case,∑

i

(−1)i dimHi(g,K;Y ⊗ F ∗) = [IDir(F ), IDir(Y )]K̃ .

In the case where Y is unitary, we have much stronger results: the differential d on
HomK(∧p⊗ F, Y ) is 0, so⊕

i

Hi(g,K;Y ⊗ F ∗) =
⊕
i

HomK(∧ip⊗ F, Y )

= HomK(∧p⊗ F, Y ) ' HomK̃(F ⊗ S, Y ⊗ S)

and the only common K̃-types between F⊗S and Y⊗S have their isotypic components
in ker(D|F⊗S) = ker(D2

|F⊗S) = HDir(F ) and ker(D|X⊗S) = ker(D2
|X⊗S) = HDir(X)

respectively. See [28, §9.4] and [15, §8.3.4].

We would like a direct proof of the equality in the theorem. Consider the following
computation:

EP(X,Y ) =
∑
i

(−1)i dim Exti(X,Y ) =
∑
i

(−1)i dim HomK

(∧ip⊗X,Y )
=
∑
i

(−1)i
[∧ip⊗X,Y ]

K̃
=

[∑
i

(−1)i ∧ip⊗X,Y
]
K̃

=
[∧•p⊗X,Y ]

K̃

=
[
(S+ − S−)∗ ⊗ (S+ − S−)⊗X,Y

]
K̃

=
[
(S+ − S−)⊗X, (S+ − S−)⊗ Y

]
K̃

=
[
HDir(X)+ − HDir(X)−,HDir(Y )+ − HDir(Y )−

]
K̃

= [IDir(X), IDir(Y )]K̃ .

The second equality is the Euler-Poincaré principle. We have also used (2.2) and
Proposition 2.5. The attentive reader probably noticed a small problem with the
application of the Euler-Poincaré principle since the terms Ci = HomK

(∧ip⊗X,Y )
could be infinite dimensional. We were not able to find a direct proof of the equality
of the two extreme terms so far, but let us try to give some ideas of how this could be
done. More details on this can be found in [24]. We may assume that the infinitesimal
characters of X and Y are the same, since otherwise, both side of the identity we aim
to prove are 0.

Let C = HomK̃(X ⊗ S, Y ⊗ S). Then C = C 0 ⊕ C 1, with

C 0 = HomK̃(X ⊗ S+, Y ⊗ S+)⊕HomK̃(X ⊗ S−, Y ⊗ S−),

C 1 = HomK̃(X ⊗ S+, Y ⊗ S−)⊕HomK̃(X ⊗ S−, Y ⊗ S+).
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Let us consider the following various actions of the Dirac operator:

D+−
X : X ⊗ S+ −→ X ⊗ S−, D−+X : X ⊗ S− −→ X ⊗ S+,

D+−
Y : Y ⊗ S+ −→ Y ⊗ S−, D−+Y : Y ⊗ S− −→ Y ⊗ S+,

For φ++ ∈ HomK̃(X ⊗ S+, Y ⊗ S+), and φ−− ∈ HomK̃(X ⊗ S−, Y ⊗ S−) set

Sφ++ = −φ++ ◦D−+X +D+−
Y ◦ φ++.

Sφ−− = −φ−− ◦D+−
X −D−+Y ◦ φ−−.

This defines a linear map S : C 0 → C 1.
For ψ+− ∈ HomK̃(X ⊗ S+, Y ⊗ S−), and ψ−+ ∈ HomK̃(X ⊗ S−, Y ⊗ S+), set

Tψ+− = −ψ+− ◦D−+X +D−+Y ◦ ψ+−.

Tψ−+ = −ψ−+ ◦D+−
X −D+−

Y ◦ ψ−+.

This defines a linear map T : C 1 → C 0.
Let us take φ++ + φ−− in kerS. We see easily that φ++ induces

φ
++

: HDir(X)+ =
ker(D+−

X )

ker(D+−
X ) ∩ Im(D−+X )

−→ HDir(Y )+ =
ker(D+−

Y )

ker(D+−
Y ) ∩ Im(D−+Y )

,

and φ−− induces

φ
−−

: HDir(X)− =
ker(D−+X )

ker(D−+X ) ∩ Im(D+−
X )

−→ HDir(Y )− =
ker(D−+Y )

ker(D−+Y ) ∩ Im(D+−
Y )

.

Furthermore, if φ++ + φ−− ∈ kerS ∩ ImT , then (φ
++
, φ
−−

) = (0, 0). Therefore,
there are well-defined morphisms φ++ + φ−− 7→ φ

++
+ φ
−− from kerS/ kerS ∩ ImT

to
HomK̃

(
HDir(X)+,HDir(Y )+

)
⊕HomK̃

(
HDir(X)−,HDir(Y )−

)
.

and ψ+− + ψ−+ 7→ ψ
+−

+ ψ
−+ from kerT/ kerT ∩ ImS to

HomK̃

(
HDir(X)+,HDir(Y )−

)
⊕HomK̃

(
HDir(X)−,HDir(Y )+

)
.

Lemma 5.3. — The two morphisms defined above are isomorphisms:

kerS/ kerS ∩ ImT ' HomK̃

(
HDir(X)+,HDir(Y )+

)
⊕HomK̃

(
HDir(X)−,HDir(Y )−

)
,

kerT/ kerT ∩ ImS ' HomK̃

(
HDir(X)+,HDir(Y )−

)
⊕HomK̃

(
HDir(X)−,HDir(Y )+

)
.

Proof. — See [24]. �

Let us introduce now the index ind(S, T ) of the Fredholm pair (S, T ). The material
about Fredholm pairs and their indices is exposed in the appendix, and by definition

ind(S, T ) = dim
( kerS

kerS ∩ ImT

)
− dim

( kerT

kerT ∩ ImS

)
.

Corollary 5.4. — With the notation as above, ind(S, T ) = [IDir(X), IDir(Y )]K̃ .
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Proof. — We have

ind(S, T ) = dim
( kerS

kerS ∩ ImT

)
− dim

( kerT

kerT ∩ ImS

)
= dim

(
HomK̃

(
HDir(X)+,HDir(Y )+

))
+ dim

(
HomK̃

(
HDir(X)−,HDir(Y )−

))
− dim

(
HomK̃

(
HDir(X)+,HDir(Y )−

))
− dim

(
HomK̃

(
HDir(X)−,HDir(Y )+

))
=
[
IDir(X), IDir(Y )

]
K̃
. �

Theorem 5.1 is then equivalent to the fact that ind(S, T ) is equal to the Euler-
Poincaré characteristic of the complex computing the Ext groups of X and Y , namely
C =

∑
i∈N C

i, where Ci = HomK(∧ip⊗X,Y ). By example 6.3, this Euler-Poincaré
characteristic is also the index of the Fredholm pair given by the differentials between
the even and odd part of the complex. More precisely, with

d+ : C0 =
⊕
i∈N

C2i −→ C1 =
⊕
i∈N

C2i+1,

and d− : C1 → C0, we have EP(X,Y ) = ind(d+, d−). So we would like to show that
ind(S, T ) = ind(d+, d−). To facilitate the comparison, first notice that

C =
⊕
i∈N

Ci =
⊕
i∈N

HomK(∧ip⊗X,Y ) ' HomK(∧p⊗X,Y ) ' HomK̃(X⊗S, Y⊗S) = C

Then transport (S, T ) to (D+,D−) via this isomorphism. Thus

D+ : C0 −→ C1, D− : C1 −→ C0,

and set D = D+ ⊕D−, an operator on C. So we would like to establish that

(5.1) ind(d+, d−) = ind(D+,D−).

The point here is that we want to prove the equality of the indices of two Fredholm
pairs living on the same spaces.

6. Appendix: Fredholm pairs

In this section, we adapt from [1] the definition of the index of a Fredholm pair.
We do this in a purely algebraic setting, while the theory is developed for Banach
spaces in [1].

Definition 6.1. — Let X, Y be complex vector spaces and let S ∈ L(X;Y ), T ∈
L(Y ;X). Then (S, T ) is called a Fredholm pair if the following dimensions are finite:

a := dim ker(S)/ ker(S) ∩ Im(T ); b := dim ker(T )/ ker(T ) ∩ Im(S).

In this case, the number ind(S, T ) := a− b is called the index of (S, T ).

Example 6.2. — Take T = 0. Then (S, 0) is a Fredholm pair if and only if S is a
Fredholm operator and

ind(S, 0) = ind(S) = dim ker(S)− dim coker(S).
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Example 6.3. — Consider a differential complex

· · · −→ Ci−1
di−1−−−−→ Ci

di−−−→ Ci+1 −→ · · ·

Suppose the cohomology groups Hi := ker di/ Im di−1 of this complex are finite di-
mensional, and non zero only for a finite number of them. Put X =

⊕
i∈Z C

2i,
Y =

⊕
i∈Z C

2i+1, S = ⊕i∈2Zd2i, T = ⊕i∈2Zd2i+1. Then (S, T ) is a Fredholm pair
and its index is equal to the Euler-Poincaré characteristic of the complex:

ind(S, T ) =
∑
i∈Z

(−1)i dimHi.
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