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HAEFLIGER STRUCTURES AND

SYMPLECTIC/CONTACT STRUCTURES

by François Laudenbach & Gaël Meigniez

Abstract. — For some geometries including symplectic and contact structures on an
n-dimensional manifold, we introduce a two-step approach to Gromov’s h-principle. From
formal geometric data, the first step builds a transversely geometric Haefliger structure of
codimension n. This step works on all manifolds, even closed. The second step, which works
only on open manifolds and for all geometries, regularizes the intermediate Haefliger structure
and produces a genuine geometric structure. Both steps admit relative parametric versions.
The proofs borrow ideas from W.Thurston, like jiggling and inflation. Actually, we are using
a more primitive jiggling due to R.Thom.

Résumé (Structures de Haefliger et structures de contact/symplectiques)
Sur une variété de dimension n, nous introduisons une approche en deux temps du h-principe

de Gromov pour certaines structures géométriques incluant les structures symplectiques et les
structures de contact. A partir de données formelles d’une telle géométrie, la première étape
construit une structure de Haefliger de codimension n munie transversalement de cette géo-
métrie. Cette construction vaut pour toutes les variétés, même celles qui sont compactes à
bord vide. La seconde étape, qui ne vaut que pour les variétés ouvertes mais pour n’importe
quelle géométrie, consiste à régulariser une structure de Haefliger transversalement géomé-
trique et ainsi produire une vraie structure géométrique sur la variété considérée. Les deux
étapes admettent des versions paramétriques relatives. Les preuves empruntent des idées de
W.Thurston dans ses travaux sur les feuilletages. L’une d’elles, sous une forme élémentaire,
remonte à R.Thom sous le nom de « dents-de-scie ».
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2 F. Laudenbach & G. Meigniez

1. Introduction

We consider geometric structures on manifolds, such as the following: symplectic
structure, contact structure, foliation of prescribed codimension, immersion or sub-
mersion to another manifold. We recall that, in order to provide a given manifold M
with such a structure, Gromov’s h-principle consists of starting from a formal ver-
sion of the structure on M (this means a non-holonomic – that is, non-integrable –
section of some jet space) and deforming it until it becomes genuine (holonomic) [7].
In the present paper, we introduce a two-step approach to the h-principle for such
structures.

From the formal data, the first step builds a Haefliger structure of codimension
zero on M , transversely geometric; this concept will be explained below. For each
of the geometries above-mentioned, the first step works for every manifold M , even
closed.

The second step, which is works for open manifolds only, regularizes the interme-
diate Haefliger structure, providing a genuine geometric structure. Both steps admit
relative parametric versions.

An essential tool in both steps consists of jiggling. We recall that Thurston’s
work on foliations used his famous Jiggling Lemma [19]. As A.Haefliger told us [10],
Thurston himself was aware that this lemma applies for getting some h-principles
in the sense of Gromov. In a not very popular paper by R.Thom [18], we discov-
ered a more primitive jiggling lemma that is remarkably suitable for the needs of our
approach.

1.1. Groupoids and geometries. — According to O.Veblen and J.H.C.Whitehead
[20], a geometry in dimension n is defined by an n-dimensional model manifold X

(often Rn) and by an open subgroupoid Γ in the groupoid Γ(X) of the germs of local
C∞-diffeomorphisms of X; here the topology on Γ(X) is meant to be the sheaf topol-
ogy. In what follows, we use the classical notation Γn := Γ(Rn). Here are examples of
such open subgroupoids.

(1) When n is even, Γsymp
n ⊂ Γn denotes the subgroupoid of germs preserving the

standard symplectic form of Rn.
(2) When n is odd, Γcont

n ⊂ Γn denotes the subgroupoid of germs preserving the
standard (positive) contact structure of Rn.

(3) For n = p + q, one has the subgroupoid Γfol
n,q ⊂ Γn preserving the standard

foliation of codimension q (whose leaves are the p-planes parallel to Rp).
(4) When Y is any q-dimensional manifold and X = Rp × Y , one has the sub-

groupoid ΓYn ⊂ Γ(X) of the germs of the form (x, y) 7→ (f(x, y), y).

1.2. Γ-foliations. — The next concept goes back to A.Haefliger [9]. For an open
subgroupoid Γ of Γ(X), a Γ-foliation on a manifold E is meant to be a codimension-n
foliation on E equipped with a transverse geometry associated with Γ and invariant by
holonomy. More precisely, this foliation is defined by a maximal atlas of submersions

J.É.P. — M., 2016, tome 3



Haefliger structures and symplectic/contact structures 3

(fi : Ui → X) from open subsets of E into X such that, for every i, j and every
x ∈ Ui ∩ Uj , there is a germ γij ∈ Γ at point fj(x) verifying

[fi]x = γij [fj ]x,

where [-]x stands for the germ at x. When n = dimE, one also speaks of a Γ-geometry
on E.

Here are examples related to the previous list of groupoids. The first two have been
already considered by D.McDuff in [13].

(1) A Γsymp
n -foliation on E amounts to a closed differential 2-form Ω on E, whose

kernel is of codimension n at every point. The closedness of Ω is equivalent to the
conjunction of the next facts:

– the codimension-n plane field (x ∈ E 7→ ker Ωx) is integrable,
– Ω is basic(1) with respect to that foliation,
– Ω is closed on a total transversal.

(2) A Γcont
n -foliation on E amounts to a codimension-one plane field P on E defined

by an equation A = 0, where A is a differential form of degree 1, unique up to
multiplying by a positive(2) function, which satisfies the next conditions:

– the n-form A∧ (dA)(n−1)/2 is closed and has a codimension-n kernel Kx at
every point x ∈ E; in particular, the field (x 7→ Kx) is integrable, tangent to a
codimension-n foliation denoted by K ;

– Kx is a vector sub-space of Px for every x;
– P is invariant by the holonomy of K .

(3) A Γfol
n,q-foliation on E consists of a flag F ⊂ G of two nested foliations of

respective codimensions n and q in E with n > q.
(4) A ΓYn -foliation on E consists of a codimension-n foliation and a submersion

w : E → Y which is constant on every leaf ([9, p. 145]).

1.3. Haefliger’s Γ-structures. — A.Haefliger defined a Γ-structure as some class of
cocycles valued in Γ (see [9, p. 137]). This definition, that makes sense on every topo-
logical space and for every topological groupoid Γ, allowed him to build a classifying
space BΓ for these structures ([9, p. 140]). A second description ([8, p. 188]) is more
suitable for our purpose when the topological space is a manifold M and when the
groupoid is an open subgroupoid Γ in the groupoid of germs Γ(X) of a n-manifold X.
Here it is.

A Γ-structure on M consists of a pair ξ = (ν,F ), where
– ν is a real vector bundle over M of rank n, called the normal bundle; its total

space is denoted by E(ν); and Z : M → E(ν) denotes the zero section;
– F is a germ along Z(M) of Γ-foliation in E(ν) transverse to every fibre of ν.

(1)We recall that a form α is said to be basic with respect to a foliation F if the Lie derivative
LXα vanishes for every vector field X tangent to F ; this is the infinitesimal version of the invariance
by holonomy.

(2)Here, we limit ourselves to co-orientable contact structures.
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4 F. Laudenbach & G. Meigniez

An important feature of Γ-structures is that pulling back by smooth maps (in our
restricted setting) is allowed without assuming any transversality: if f : N →M is a
smooth map and ξ is a Γ-structure on M , one defines f∗ξ as the Γ-structure on N

whose normal bundle is f∗ν equipped with the Γ-foliation F−1(F ), where F is a
bundle morphism over f which is a fibre-to-fibre linear isomorphism.

Let H1(M ; Γ) (resp. H1
ν (M ; Γ)) denote the space of the Γ-structures on M

(resp. those whose normal bundle is ν). It is a topological space since Γ is a topo-
logical groupoid; their elements are denoted by ξ = (ν,F ). In what follows, we are
mainly interested in the case where dimM = n and ν is isomorphic to the tangent
space τM ; in that case, the elements are just denoted F .

In what follows, a Γ-structure onM whose normal bundle is the tangent bundle τM
will be called a tangential Γ-structure. For short, when it is not ambiguous, we write F

for (τM,F ). We introduced the general definition of Γ-structure – at least in the
smooth case – since we are going to refer to in several places.

1.4. Underlying formal geometries. — In the cases of the geometries (1), (2)
and (4) given above, that is, for Γ = Γsymp

n , Γcont
n or ΓYn , every Γ-structure has

an underlying formal Γ-geometry in the sense of Gromov. But, we do not intend
to enter Gromov’s generality. We just describe what they are. In the case of the
geometry (3), every Γfol

n,q-structure has an underlying object, somewhat formal, but
more complicated than in the cases (1), (2), (4).

(1) Assume n is even. Given F ∈ H1
τM (M ; Γsymp

n ), one has an associated basic
closed 2-form Ω on a neighborhood of Z(M) in the total space TM . Its kernel is
everywhere transverse to the fibres. Therefore, Ω defines a non-singular 2-form ω

on M by the formula ωx := ΩZ(x)|TxM for every x ∈ M . This is the underlying
formal symplectic structure.

(2) Assume n is odd. Given F ∈ H1
τM (M ; Γcont

n ), one has a (n − 1)-plane field Q
defined near Z(M) with the following properties:

– at each point z near Z(M), the plane Qz is vertical, meaning that it is
contained in the fibre of TM passing through z;

– Qz carries a symplectic bilinear form, well defined up to a positive factor;
– as a (conformally) symplectic bundle over a neighborhood of Z(M), the

plane field Q is invariant by the holonomy of F .
Then, there is a symplectic sub-bundle whose fibre at x ∈ M is Sx := QZ(x) (the
indeterminacy by a positive factor is irrelevant here). This is the underlying formal
contact structure. Another way to say the same thing consists of the following: S is
the kernel of a 1-form α and there is a 2-form β on M such that β makes S be a
symplectic bundle; equivalently, it may be said that α ∧ β(n−1)/2 is a volume form.

(3) Assume n = p+q. Given F ∈ H1
τM (M ; Γfol

n,q), one has an associated foliation G

of codimension q on a neighborhood of Z(M) in the total space TM . The foliation G

induces on M a Γq-structure γ := Z∗(G ), whose normal bundle is νγ := Z∗(νG ); and
a monomorphism of vector bundles ε : νγ ↪→ τM . Indeed, for every point x ∈ M ,
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Haefliger structures and symplectic/contact structures 5

the foliation G being transverse to TxM at Z(x), the normal to G at Z(x) embeds
into TxM . The pair (γ, ε), an augmented Γq-structure (according to the vocabulary
from [4]), plays the role of a formal geometry associated to F .

(4) Assume n > dimY . Given F ∈ H1
τM (M,ΓYn ), one has an associated submer-

sion w from a neighborhood of Z(M) in the total space TM to Y . This submersion w
induces a formal submersion (f, F ) from M to Y , that is, a bundle epimorphism
from TM to TY whose value at every x ∈M is: f(x) = w(Z(x)), Fx := DwZ(x)|TxM .
Observe that all these spaces of formal geometries have natural topologies. Our first
theorem yields a converse: for the above geometries, formal Γ-geometries lead to
Γ-structures.

Theorem 1.5. — Let M be an n-dimensional manifold, possibly closed. Let Γ be a
groupoid in the set of n-dimensional geometries {Γsymp

n ,Γcont
n ,Γfol

n,q,Γ
Y
n }. Then, the

forgetful map from H1
τM (M ; Γ) to the corresponding space of formal Γ-geometries is

a homotopy equivalence.

Remarks 1.6
(1) Actually, according to R.Palais [16, Th. 15], the considered spaces have the

property that a weak homotopy equivalence is a genuine homotopy equivalence. Thus,
it is sufficient to prove that the mentioned forgetful map is a weak homotopy equiva-
lence, meaning that it induces an isomorphism of homotopy groups in each degree.

(2) In the case of symplectic/contact geometry, D.McDuff proved theorems of the
same flavor using the convex integration technique of Gromov ([13], see also [5, p. 104,
138]).

(3) Let F ∈ H1
τM (M ; Γ). By taking a section s of τM valued in the domain foliated

by F and generic with respect to F , there is an induced Γ-geometry with singularities
on M ∼= s(M). This seems to be a very natural notion of singular symplectic/contact
structure. It follows from Theorem 1.9 that the singular locus may be localized in a
ball of M .

1.7. Homotopy and regularization. — Our second theorem will allow us to regular-
ize every parametric family of Γ-structures on every manifold M which is open, that
is, which has no closed connected component; this terminology will be permanently
used in what follows.

A homotopy (also called a concordance(3)) between two Γ-structures (νi,Fi)

(i = 0, 1) onM is a Γ-structure onM× [0, 1] whose restriction toM×0 (resp. M×1)
equals (ν0,F0) (resp. (ν1,F1)). Of course, ν0 and ν1 must be isomorphic.

A Γ-structure (ν,F ) is said to be regular if the foliation F is transverse not only
to the fibres of ν but also to Z(M) in E(ν). This bi-transversality of F induces an
isomorphism ν ∼= τ

(
Z(M)

)
. In that case, the pull-back Z∗(F ) is a Γ-geometry onM ,

namely the foliation by points equipped with a transverse Γ-geometry.

(3)This second word emphasizes the difference with a one-parameter family of Γ-structures.

J.É.P. — M., 2016, tome 3



6 F. Laudenbach & G. Meigniez

1.8. The exponential Γn-structure. — Given a complete Riemannian metric on the
n-manifold M , there is a well defined map

exp : TM −→M.

When restricting exp to a small neighborhood U of Z(M) in TM , we get a sub-
mersion to M . The foliation defined by the level sets of exp |U represents a regular
Γn-structure on M , denoted by Fexp ∈ H1

τM (M ; Γn). Up to isomorphism (vertical
isotopy in TM), Fexp does not depend on the Riemannian metric as it is shown by
the next construction.

Consider the product M ×M and its diagonal ∆ ∼= M . We have two projections
pv, ph : M ×M → ∆, respectively the vertical and the horizontal projection. A small
tube U about ∆ equipped with pv is isomorphic to τM as micro-bundle. Then, the
same tube equipped with ph defines the Γn-structure Fexp.

We recall the fundamental property of the differential of exp (independent of any
Riemannian metric):

d(exp |TxM)Z(x) = Id : TxM −→ TxM.

As a consequence, if f : M → Y is a smooth map and v ∈ TxM , one has

(1.1) f ◦ expx(v)− f(x) = dfx(v) + o(‖v‖).

Theorem 1.9. — Let X be an n-manifold, let Γ ⊂ Γ(X) be an open subgroupoid and
let M be a (connected) n-manifold. Assume that M is open (that is, no connected
component is closed). Let

s 7−→ ξs = (τM,Fs) : Dk −→ H1
τM (M ; Γ)

be a continuous family of tangential Γ-structures, parametrized by the compact k-disk
(k > 0), such that for every s ∈ ∂Dk, the Γ-structure ξs is regular and Fs is tangent
to Fexp along Z(M).

Then, there exists a continuous family of concordances

s 7−→ ξs = (τM × [0, 1],F s) : Dk → H1
τM (M × [0, 1]; Γ)

such that
– F s = pr∗1(Fs) for every s ∈ ∂Dk, where pr1 : M × [0, 1]→M is the projection;
– F s|(M × 0) = Fs for every s ∈ Dk;
– for every s ∈ Dk, the Γ-structure ξs|(M × 1) is regular and F s is tangent to

Fexp along Z(M × 1).

Remark 1.10. — The Smale-Hirsch classification of immersions S → Y (see [17, 12]),
where S is a closed manifold of dimension less than dimY , is covered by Theorem 1.9;
in particular, the famous sphere eversion amounts to the case where S is the 2-sphere,
Y = R3 and k = 1. Let us show it.

Let (f, F ) : TS → TY be a formal immersion. Then thanks to F we have a
monomorphism F∗ : τS → f∗τY over IdS . Let ν be a complementary sub-bundle to
the image of F∗; when f is an immersion, ν is its normal bundle. Let Ŝ be a disk bundle

J.É.P. — M., 2016, tome 3



Haefliger structures and symplectic/contact structures 7

in ν; it is a compact manifold with non-empty boundary and dim Ŝ = dimY . Thus,
instead of immersing S to Y one tries to immerse Ŝ to Y ; if it is done, the restriction
to the 0-section yields an immersion of S to Y with normal bundle ν. The formal
immersion (f, F ) : TS → TY easily extends to a formal immersion (f̂ , F̂ ) : Ŝ → Y

in codimension 0. Since F̂ : TxŜ → Tf̂(x)Y is a linear isomorphism for every x ∈ Ŝ,
the level sets of expY ◦F is a ΓYn -foliation F near Z(Ŝ), that is, a ΓYn -structure on Ŝ.
Moreover, thanks to Equation (1.1), if f̂ is an immersion F is tangent to Fexp; here
exp stands for expŜ . Then, Theorem 1.9 applies and yields the desired immersion (or
family of immersions).

Corollary 1.11. — Let Γ be a groupoid as in Theorem 1.9 and ξ = (τM,F ) be a
tangential Γ-structure on a closed manifold M . Then, after a suitable concordance,
all singularities (that is, the points where F is not transverse to Z(M) ∼= M) are
confined in a ball.

Proof. — Let B ⊂ M be a closed n-ball. Apply Theorem 1.9 to ξ|(M r intB). We
are given a regularization concordance C of this restricted Γ-structure. Since this
concordance is given on a manifold with boundary, it extends to the whole manifold.
Indeed, B × [0, 1] collapses to

(
B × {0}

)
∪
(
∂B × [0, 1]

)
. �

Remark 1.12. — Y.Eliashberg & E.Murphy ([6, Cor. 1.6]) gave a similar result for
symplectic structures on closed almost symplectic manifolds of dimension greater
than 4. Moreover, in the confining ball B their singular symplectic structure is the
negative cone of an overtwisted contact structure on ∂B. Their proof is based on the
new techniques in contact geometry initiated by E.Murphy [15] and developed in [1].

1.13. The classical h-principle for Γ-geometries. — For a groupoid Γ as listed in
1.1 the h-principle states the following:

If M is an open n-manifold, the space of Γ-geometries on M has the same (weak)
homotopy type as the space of formal Γ-geometries on M .

This statement follows from Theorems 1.5 and 1.9.

Proof. — We start with a k-parameter family of formal Γ-geometries on M , k > 0,
which are genuine Γ-geometries when the parameter s lies in ∂Dk. Then, for every
s ∈ Dk, the foliation Fexp is a Γ-foliation near Z(M). Thus, Theorem 1.5 applies and
yields a k-parameter family of Γ-structures on M which remains unchanged when
s ∈ ∂Dk. Now, since M is open, Theorem 1.9 applies and all the relative homotopy
groups of the pair (formal Γ-geometries,Γ-geometries) vanish. �

The article is organized as follows. In Section 2, we detail the tool that goes back
to R.Thom [18] and we prove Theorem 1.5 for submersion structures and for foliation
structures. The next sections are devoted to the proof of Theorem 1.5 in the case
of transversely symplectic structures. The existence part is treated in Section 3. The
family of such structures are considered in Section 4; the proof of Theorem 1.5 is
completed there when the groupoid is Γsymp

n . In Section 5, we adapt the proof to
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8 F. Laudenbach & G. Meigniez

the groupoid Γcont
n . Finally, in Section 6, we solve the problem of regularizing the

Γ-structures on every open manifold.

Acknowledgments. — We thank Howard Jacobowitz and Peter Landweber who have
expressed their interest towards our article and sent to us some valuable remarks. We
are deeply grateful to the anonymous referee for his exceptionally careful reading and
for having suggested to us many improvements of writing.

2. Thom’s subdivision and jiggling

Reference [18] is the report of a lecture where R.Thom announced a sort of ho-
mological h-principle (ten years before Gromov’s thesis). A statement and a sketch
of proof are given there; the details never appeared. From this text, we extracted
an unusual subdivision process of the standard simplex and we derived two jiggling
formulas.(4) Our jiggling will be vertical while Thom’s jiggling is transverse to the fi-
bres in some jet bundle. Nevertheless, we shall speak of Thom’s jiggling for it mainly
relies on Thom’s subdivision. Actually, neither statement nor proof nor formula were
written in [18], only words describing the object, a beautiful object indeed.

Here is a good occasion for mentioning that the famous Holonomic Approximation
Theorem by Y.Eliashberg and N.Mishachev ([5, Chap. 3]) is also based on a jiggling
process, even if that word is not used there. The difference between their jiggling and
ours is that the first one takes place in the manifold itself while the second one is
somehow vertical in the total space of a fibre bundle.

Proposition 2.1. — Let ∆n denote the standard n-simplex. For every positive
integer n, there exist a non-trivial subdivision Kn of ∆n and a simplicial map
σn : Kn → ∆n such that:

(1) (non-degeneracy) the restriction of σn to any n-simplex of Kn is surjective;
(2) (heredity) for any (n−1)-face F of ∆n, the intersection Kn∩F is simplicially

isomorphic to Kn−1 and σn|F ∼= σn−1.

Proof. — Condition (2) implies σn(v) = v for any vertex of ∆n. For K1, we may take
∆1 = [0, 1] subdivided by two interior vertices: 0 < v1 < v0 < 1 and we define σ1 by
σ1(v1) = 1 and σ1(v0) = 0.

For n = 2, let A,B,C denote the vertices of ∆2. The polyhedron K2 will be built
in the following way: subdivide each edge of ∆2 as K1 subdivides ∆1; add an interior
triangle with vertices a, b, c so that the line supporting [b, c] is parallel to [B,C] and
separates A from a, etc.; join a to the four vertices of [B,C], etc. The simplicial
map σ2 is defined by a 7→ A, b 7→ B, c 7→ C and by imposing to coincide with σ1 on
each edge of ∆2. Condition (1) is easily checked.

This construction extends to any dimension. If Kn−1 and σn−1 are known, each
facet of ∆n will be subdivided as Kn−1. Then, one puts a small n-simplex δn in the

(4)Thom speaks of “dents de scie” (saw teeth); we keep the word jiggling that W.Thurston
introduced in [19].
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Haefliger structures and symplectic/contact structures 9

interior of ∆n applying the same rules of parallelism and separation as for n = 2.
Each vertex v of δn will be joined to the vertices of the facet F (v) of ∆n in front of v,
this facet being subdivided by Kn−1. The map σn maps v to the vertex V which is
opposite to F (v) in ∆n. �

Remarks 2.2
(1) This subdivision may be iterated r times producing a subdivision Kr

n which is
arbitrarily fine and a simplicial map σrn : Kr

n → ∆n fulfilling the two conditions of
Proposition 2.1. More precisely, thinking of σn as a map from ∆n to itself, σrn will
denote its r-th iterate and Kr

n is defined by the next formula:

(2.1) Kr
n = (σr−1

n )−1(Kn).

We will call σrn an r-folding map.
(2) Thanks to heredity (condition that the barycentric subdivision does not ful-

fill), this subdivision of the standard simplex and the r-folding map apply to any
polyhedron.

(3) It is worth noticing that Thom’s subdivision is not crystalline in the sense
of H.Whitney [21, App. II]. Thus, it does not fit Thurston’s techniques of jiggling
(compare [19]).

Actually, the above construction has an unfolding property which is stated in the
next proposition.

Proposition 2.3. — With the above notations, for every n-simplex τ of Kr−1
n , the

restriction σrn|τ is homotopic to σr−1
n |τ among piecewise linear maps τ → ∆n which

are compatible with the face operators.

Proof. — According to formula (2.1) it is sufficient to prove the proposition for
σn ≡ σ1

n. In that case, σr−1
n = Id. The homotopy is obvious for n = 1; it consists of

shrinking the middle interval δ1 to the barycenter of ∆1 and shrinking its image at
the same time. Recursively, the homotopy of σn is known on the faces of ∆n. Then,
it is sufficient to define the homotopy on the interior small n-simplex δn. As when
n = 1, the homotopy consists of shrinking δn and its image simultaneously to the
barycenter of ∆n. �

2.4. First jiggling formula. — Let M be an n-manifold and τM = (TM
p−→ M)

be its tangent bundle. Choose an auxiliary Riemannian metric on τM and an arbi-
trarily small open disk sub-bundle U so that, for every x ∈ M , the exponential map
expx : Ux →M is an embedding. Take a combinatorial triangulation T of M so fine
that every n-simplex τ of T is covered by expx(Ux) for every x ∈ τ . Let T r be the
r-th Thom subdivision of T and σr : T r → T be the corresponding simplicial folding
map. The r-th jiggling map jr : M → TM is defined in the following way. For each
x ∈M , the point jr(x) is the unique point in Ux such that

(2.2) expx(jr(x)) = σr(x).
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10 F. Laudenbach & G. Meigniez

This formula defines jr as a piecewise smooth section M → TM . We have the follow-
ing properties.

Proposition 2.5
(1) Let τ be an n-simplex of T , let x be a point in τ and let δ be an n-simplex

of T r passing through x. Then, jr(δ) goes to exp−1
x (τ) as r →∞. The convergence is

uniform for x ∈ τ .
(2) The map jr is homotopic to the 0-section Z among PL maps which are trans-

verse to the exponential foliation Fexp on each n-simplex of their domain.

Proof

(1) The diameter of the simplices of T r goes to 0 as r goes to ∞. Then, for y ∈ δ,
the point jr(y) := exp−1

y (σr(y)) is close to exp−1
x (σr(y)). Since σr is a surjective

simplicial map onto τ , we have the C0 closeness of jr(δ) and exp−1
x (τ). A similar

argument holds for the derivatives.
(2) On the one hand, the leaves of Fexp in U are n-disks. We define expu : U → U ,

u ∈ [0, 1], to be the map which is the homothety by u in each fibre of exp. It is
a homotopy from IdU to exp |U which restricts to a homotopy from jr to σr. On
the other hand, according to Proposition 2.3, σr is homotopic to IdM through PL

maps which are non-degenerate on each n-simplex of their domain, hence transverse
to Fexp. �

Remarks 2.6
(1) Any piecewise smooth map defined on an n-manifold M and smooth on each

n-simplex of a triangulation T may be approximated by a smooth map with the
same polyhedral image. It is sufficient to precompose with a smooth homeomorphism
such that, for every simplex τ in the (n − 1)-skeleton of T and every x ∈ τ , all
partial derivatives in directions transverse τ vanish at x. Then, even if the concept
of Γ-structure is restricted to the smooth category, there is no trouble to pull-back a
Γ-structure by jr; it will be well defined up to homotopy.

(2) In general a jiggling, for instance based on the iterated barycentric triangu-
lation, does not share the properties stated in Proposition 2.5 (non-degeneracy and
PL-homotopy).

2.7. Second jiggling formula. — Here, we consider a trivial bundle εn of rank n

whose base is an n-manifoldM equipped with a colored triangulation.(5) Let ∆n ⊂ Rn

be a non-degenerate n-simplex whose vertices are colored. The coloring defines a
simplicial map c : T → ∆n. We have a first jiggling j1 : M →M ×Rn, x 7→

(
x, c(x)

)
.

Then, the Thom process defines a r-th jiggling

(2.3) jr(x) =
(
x, c ◦ σr(x)

)
.

(5)A triangulation T of dimension n is colored when each vertex has a color in {0, 1, . . . , n} such
that two vertices of the same simplex have different colors. The first barycentric subdivision of any
triangulation is colored.
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The first item of Proposition 2.5 holds true for this formula: jr(δ) tends to {x}×∆n

when n goes to ∞.

2.8. Proof of Theorem 1.5 in the easy cases. — For two of the four geometries
considered, namely the submersion geometry ΓYn and the foliation geometry Γfol

n,q, the
jiggling method yields directly a simple proof of Theorem 1.5.

For the submersion geometry, we begin by proving that the forgetful map is
π0-surjective. One is given an n-manifold M , a q-manifold Y and a formal submer-
sion (in the sense of Subsection 1.4(4)), that is, a pair (f, F ), where f : M → Y is
a smooth map and where F : TM → TY is a bundle epimorphism above f . One
seeks for a one-parameter family (fu, Fu) of formal submersions, u ∈ [0, 1], such that
(f0, F0) = (f, F ), and such that (f1, F1) underlies some ΓYn -structure ξ = (τM,F ).
According the definitions given in Subsections 1.2 and 1.4, we have to find a pair
(w,F ) formed with a submersion valued in Y and a codimension-n foliation, both
defined near Z(M) in TM , such that:

– w is constant on each leaf of F ;
– f1(x) = w(Z(x)) and F1 = DwZ(x)|TxM .

This will work by taking w = exp ◦F which is clearly a submersion on some neigh-
borhood U of Z(M) in TM ; here, Y is endowed with some auxiliary Riemannian
metric and exp : TY → Y is the associated exponential map. The only somehow del-
icate point is to find F as a subfoliation of the foliation W whose leaves are w−1(y),
y ∈ Y . Let P be an n-dimensional plane field on U transverse to every fibre TxM and
contained in the kernel of the differential of w.

Let T be a triangulation of M . Consider the iterated Thom subdivisions T r. By
Proposition 2.5 (1), for r large enough, the r-th Thom jiggling jr maps every n-
simplex of T r into U and transversely to P . Fix such an r. Then, on some small open
neighborhood V of jr(T r) in TM , there is a C0-small perturbation of P , among the
n-plane fields tangent to W , yielding an integrable plane field on V . In the present
situation where the dimension of the simplicial complex jr(T r) is not larger than the
codimension of P , the wanted integrating perturbation can be easily constructed by
induction on the dimension of the simplices (see the very beginning of Section 6 in
[19]).

Let S : M → TM be a smooth section so close to jr, that S(M) ⊂ V . For every
u ∈ [0, 1], one has the section Su := uS valued in U . Set fu := w ◦ Su, and Fu(vx) :=

DwuS(x)vx. The structure S∗(w,F ) is really a ΓYn -structure whose underlying formal
structure is (f1, F1). The π0-surjectivity is proved.

More generally, one is given a parametric family of formal submersions (fs, Fs),
s ∈ Dk, which are underlying some ΓYn -structures Fs ∈ H1

τM (M ; ΓYn ) for every s ∈
∂Dk. First, one constructs, on some open neighborhood U of the zero section in TM
and for every s ∈ Dk, an n-plane field Ps as above: Ps is contained in kerD(exp ◦Fs),
and transverse to every fibre TxM . One arranges that Ps depends smoothly on s, and
coincides with the tangent space to Fs for every s ∈ ∂Dk. The construction of such
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12 F. Laudenbach & G. Meigniez

a family is easy, by convexity(6) of the space of the n-plane fields on U contained in
ker(D(exp ◦Fs)) and transverse to the fibres.

Let T be a triangulation of M , and let T r be a Thom subdivision whose order r
is large enough so that the same jiggling jr(T r) is transverse to Ps for every s ∈ Dk;
since the considered family is compact, such an r certainly exists. Then, the integrating
perturbation can be chosen smoothly with respect to s and coinciding with the identity
for every s ∈ ∂Dk. A single neighborhood V and a single section S fit all parameters
s ∈ Dk. We get on V a parametric family (Ps) of ΓYn -foliations transverse to every
fibre TxM ; and Ps = Fs|V for every s ∈ ∂Dk.

Define S and Su as above. Set Fs := S∗(Ps) ∈ H1
τM (M,ΓYn ). Set fs,u :=

exp ◦Fs ◦ Su and Fs,u(vx) := D(exp ◦Fs)uS(x)vx. This is a one-parameter family of
Dk-parametrized families of formal submersions, between (fs,0, Fs,0) = (fs, Fs) and
(fs,1, Fs,1), which is the formal submersion underlying Fs.

Finally, the families (Fs) and (Fs)|∂Dk are homotopic as mappings ∂Dk →
H1
τM (M,ΓYn ). The homotopy consists of pulling Fs back through Su. The proof of

Theorem 1.5 is complete for the groupoid ΓYn . �

In the case of the foliation geometry on a manifoldM of dimension n = p+q, we are
given a parametric family of augmented Γq-structures (ξs, εs), s ∈ Dk. Moreover, for
every s ∈ ∂Dk, the augmented Γq-structure (ξs, εs) is underlying some Γfol

n,q-structure
Fs ∈ H1

τM (M ; Γfol
n,q).

Denote ξs := (ν,Xs) this family of Γq-structures. Of course, the normal vector
bundle ν over M does not depend on s ∈ Dk. Recall that εs : ν ↪→ TM is a monomor-
phism of vector bundles.

For every s ∈ ∂Dk, denote by Gs the foliation of codimension q tangent to Fs

on a neighborhood U of Z(M) in TM ; that is, if Fs is viewed as a codimension-n
foliation, we have Fs ⊂ Gs. For every x ∈ M , define τs(x) := (TGs)Z(x) ∩ TxM to
be the p-plane tangent to the foliation Gs ∩ TxM at Z(x). Thus, τM = τs ⊕ εs(ν).
The family (τs) extends to a Dk-parametrized family (τs) of p-plane fields on M

complementary to εs(ν).
For every s ∈ ∂Dk, after pushing Gs by a vertical isotopy in TM , whose 1-jet at

every point of the zero section is the identity, and after restricting to some smaller
neighborhood, one can moreover assume that the trace Gs∩(TxM∩U) is the restriction
to TxM∩U of the linear p-dimensional foliation parallel to τs(x). Then, the family (Gs)

extends to a Dk-parametrized family (Gs) of foliations of codimension q, transverse to
the fibres of TM → M and defined on some neighborhood U of Z(M) independent
of s. Indeed, for every s ∈ Dk r ∂Dk, we define Gs as the pullback of Xs through the
linear projection of TM = τs ⊕ εs(ν) onto εs(ν) parallel to τs.

Just as in the case of the submersion geometry, one constructs a Dk-parametrized
smooth family (Ps) of n-plane fields on U , transverse to the fibres TxM , and con-
tained in TGs. For s ∈ ∂Dk, one has Ps = TFs. For a large enough integer r, a

(6)Compare Footnote 14.
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C0-small perturbation of Ps yields a foliation Ps of codimension n, contained in Gs,
on some open neighborhood V of the jiggled zero section jr(T r). For s ∈ ∂Dk, one
has Ps = Fs.

Define sections S, Su as above. For every s ∈ Dk, set

F ′s := S∗(Ps) ∈ H1
τM (M,Γfol

n,q).

The underlying augmented Γq-structure is homotopic to the given one (ξs, εs). The ho-
motopy consists of the 1-parameter family of Dk-parametrized families of augmented
Γq-structures (ν, S∗u(Gs), εs) (note that Gs is defined on the whole of the open set U).
Finally, the ∂Dk-parametrized families Fs and F ′s of Γfol

n,q-structures are homotopic:
the homotopy consists of Fs,u := S∗u(Fs). The proof of Theorem 1.5 is complete for
the groupoid Γfol

n,q. �

3. Existence of transversely symplectic Γn-structures

In this section we prove a slightly more general statement than the existence part
of Theorem 1.5 for the groupoid Γsymp

n : we consider any symplectic bundle of rank n.
We are going to use a more informative notation: a Γsymp

n -structure on M will be
denoted by ξ = (ν,F ,Ω), where Ω is a closed 2-form whose kernel is F .

Theorem 3.1. — Let ν = (E → M) be a symplectic bundle of even rank n over a
manifold M of dimension 6 n+ 1. Then there exists a Γsymp

n -structure ξ on M whose
normal bundle ν(ξ) is isomorphic to ν as a symplectic bundle.

Moreover, if a real cohomology class a ∈ H2(M,R) is given, ξ can be chosen so
that the cohomology class [Z∗Ω] equals a, where Ω is the closed 2-form underlying ξ.

We think of this problem as a lifting problem that we attack by obstruction theory.
Let us explain how it works. As for any groupoid of germs, there are a classifying
space(7) BΓsymp

n and a canonical isomorphism

Γsymp
n (M) ∼= [M,BΓsymp

n ],

where [−,−] stands for the set of homotopy classes of maps.
This classifying space is the source of two maps. The first one is β : BΓsymp

n →
BSp(n;R): if f : M → BΓsymp

n classifies a Γsymp
n -structure ξ = (ν,F ,Ω) up to concor-

dance, β ◦ f classifies its normal bundle ν. The second one is κ : BΓsymp
n → K(R, 2),

where the target is the Eilenberg-MacLane space classifying the functor H2(−,R):
the composed map κ ◦ f classifies the cohomology class of the closed 2-form Z∗Ω.
Finally, the pair (β, κ) defines a map

πsymp : BΓsymp
n −→ BSp(n;R)×K(R, 2),

(7)The contravariant homotopy functor Γsymp
n (−) satisfies the axiom of gluing (Mayer-Vietoris)

and wedge sum; then, the classifying space exists according to E.Brown’s Theorem [2].
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14 F. Laudenbach & G. Meigniez

that we see as a homotopy fibration. For Theorem 3.1, we are given a map M →
BSp(n;R) × K(R, 2) and we have to lift this map to BΓsymp

n . Since M is (n + 1)-
dimensional, Theorem 3.1 is a direct corollary of the next statement (the (n − 1)-
connectedness would be sufficient for Theorem 1.5). Indeed, thanks to the long exact
sequence associated with πsymp, this map induces a monomorphism up to the n-th
homotopy group (see, for instance Hatcher’s book [11, §4.3]).

Theorem 3.2 (Haefliger, McDuff). — The homotopy fibre of πsymp, denoted by
Fπsymp, is n-connected.

A.Haefliger [9, §6] showed that the (n− 1)-connectedness of this homotopy fibre is
a consequence of the h-principle. D.McDuff [13, Th. 6.1] proved the n-connectedness
thanks to the convex integration technique.

3.3. What do we have to prove for Theorem 3.2? — We have to prove that the
k-th homotopy group πk(Fπsymp) vanishes when k 6 n. An element of this group is
represented by a Γsymp

n -structure ξ = (εn,F ,Ω) on the k-sphere with the following
properties:

– The normal bundle is trivial as a symplectic bundle; this means that its under-
lying symplectic bilinear form is the standard form ω0 of Rn on each fibre.

– The closed 2-form Ω, which is defined in a neighborhood of the 0-section Z(Sk)

in Sk × Rn, is assumed to be exact.

Let (p1, p2) denote the two projections of Sk × Rn onto its factors. Recall that
the kernel of Ω is the tangent space to the codimension-n foliation F and that F is
transverse to the fibres of p1.

We have to extend this structure ξ over the (k + 1)-ball Dk+1 or, equivalently, to
show that it is homotopic to the trivial structure ξ0 := (εn,F0,Ω0), where Ω0 = p∗2 ω0.

According to Moser’s Lemma with k parameters [14], there exists a vertical isotopy
of Sk × Rn, keeping Z fixed, which reduces us to the case where the germ at Z(x) of
the form induced by Ω on p−1

1 (x) equals ω0 for every x ∈ Sk. After this vertical Moser
isotopy, take a trivial tube U = Sk × Bn in the domain of Ω, where Bn is an n-ball
of small radius. Now, Theorem 3.2 directly follows from the next lemma, as we will
see just after its statement.

Lemma 3.4. — Given the above-mentioned data, there exist a section s : Sk → U , a
neighborhood W of s(Sk) in U and an ambient diffeomorphism ψ such that:

(1) ψ is the time-1 map of a vertical isotopy (ψt); set W0 := ψ(W );
(2) ψ sends the pair (W,Ω) to (W0,Ω0);
(3) the isotopy ψt is Hamiltonian with respect to ω0 in each fibre.

Here, “vertical” means that the isotopy preserves each fibre of p1.
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Remarks 3.5
(1) The statement holds true for every symplectic vector bundle of rank n, equipped

(near the 0-section) with two forms exact forms Ω and Ω0 which define Γsymp
n -foliations

and induce the same symplectic form on each fibre.
(2) Moreover, the two first items are valid for a pair of Γn-foliations without any

transverse geometry.

Proof of Theorem 3.2. — Since ψ is vertical, s0 := ψ ◦ s is a section of the trivial bun-
dle εn over Sn. Also, recall the 0-section Z. Then, we have a sequence of homotopies
of Γsymp

n -structures on Sk:
– a first homotopy from Z∗Ω to s∗Ω;
– then, a homotopy from s∗Ω to s∗0Ω0 defined by the isotopy (ψt);
– a last homotopy from s∗0Ω0 to Z∗Ω0.

The last structure obviously extends to the (k + 1)-ball. �

Shortly said, the proof of Lemma 3.4 will consist of taking a jiggled section in the
sense of formula (2.3) whose simplices are very vertical, then covering it by boxes
which trivialize the kernel of Ω and pushing these boxes by some vertical Hamiltonian
isotopy until ker Ω becomes horizontal. This isotopy is done recursively on the boxes.
There are two main problems:

(1) rectifying the (j + 1)-th box should not destroy what was gained for the j-th
box;

(2) manage the vertical isotopies to be Hamiltonian and not just symplectic; if not,
they could not extend.

Proof of Lemma 3.4. — We limit ourselves to k = n; for k < n, it is the same argument
by replacing the base Sk with an n-dimensional base Sk×Dn−k. Let Bn := p2(U) and
let ∆n be a non-degenerate and colored n-simplex in the interior of Bn.

Take a decreasing sequence

ε0 > · · · > εj > · · · > εn−1.

When α is a strict closed j-face of ∆n, let N(α) denote the closed εj-neighborhood
of α in Rn. Set

N(∆n) := ∆n ∪
α
N(α),

where the union is taken over all faces of ∆n. For a suitable choice of the sequence (εj)

we may arrange that :
(1) N(α) ∩N(β) = ∅ if α and β are two disjoint faces;
(2) if α ∩ β 6= ∅ and if α and β are not nested, then N(α) ∩ N(β) is interior to

N(α ∩ β);
(3) N(∆n) ⊂ Bn.

Now, take a colored triangulation T of the base Sn, its Thom subdivision T r and the
associated jiggling jr given by formula (2.3). We are going to construct bi-foliated
boxes associated with each simplex of T r whose plaques are respectively contained in
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16 F. Laudenbach & G. Meigniez

the leaves of F and in the fibres of p1; the boundary of a box has a part tangent
to F and another part tangent to the fibres. Let τ be a k-simplex of T r; with τ ,
the coloring of T associates some face τ⊥ of ∆n ⊂ Bn. The box B(τ) is defined in
the following way. Its base p1(B(τ)) equals star(τ), the star of τ in T r. In the fibre
over the barycenter b(τ), we take the domain N(τ⊥). Finally, B(τ) is the union of all
plaques of F passing through N(τ⊥) and contained in p−1

1 (star(τ)). If the diameter of
the base is small enough, that is, if the order r of the subdivision is large enough, the
holonomy of F over the base is C0 close to Identity. Therefore, each plaque in B(τ)

cannot get out of U ; thus, it covers star(τ).
Look at two faces τ and τ ′ of the same simplex σ of T r. Assume first that τ and τ ′

are disjoint. Apply the above condition (1) to τ⊥ and τ ′⊥; by the holonomy argument,
if r is large enough, the boxes B(τ) and B(τ ′) are disjoint. Assume now that τ and τ ′
are not disjoint but not nested. Then, by (2), we have

B(τ) ∩B(τ ′) ⊂ B(τ ∩ τ ′).

Nevertheless, if τ and τ ′ do not belong to the same n-simplex and if

∂ star(τ) ∩ ∂ star(τ ′) 6= ∅,

then B(τ) and B(τ ′) could intersect badly. This is corrected in the following way.
Again, for r large enough, the leaves of F meeting jr(τ) intersect the fibre over b(τ)

in N(τ⊥). This guarantees that jr(T r) is covered by the interior of the boxes. From
now on, r is fixed. For 1 > η > 0, the η-reduced box associated with τ is defined by

Bη(τ) := B(τ) ∩ p−1
1

(
(1− η) star(τ)

)
,

where the homothety is applied from the barycenter b(τ). Fix η > 0 small enough so
that the η-reduced open boxes still cover the jiggling. Now, we are sure that Bη(τ)

and Bη(τ ′) are disjoint once τ and τ ′ are disjoint.
The desired open set W is the union V0 ∪ · · · ∪ Vk ∪ · · · ∪ Vn−1, where Vk denotes

the interior of the η-reduced boxes associated with each k-simplex; the section s is
any smooth approximation of jr valued in W . We are ready to perform the isotopy.
It is done step by step, in the boxes associated with the vertices of T r first, then with
the edges etc. For x ∈ star(τ), lifting the segment [x, b(τ)] to F yields a holonomy
diffeomorphism between fibres of box

(3.1) (hol F )b(τ)
x : B(τ)x −→ B(τ)b(τ),

which is an ω0-symplectomorphism since Ω is closed. Similarly, we have the holonomy
of F0 which also give an ω0-symplectomorphism. The steps are numbered from 0 to n.

If v is a vertex in T r, we define ψ0 in Bη(v) by the next formula. For z ∈ Bη(v)

and x = p1(z),

(3.2) ψ0(z) = (hol F0)xv ◦ (hol F )vx(z).

Since the reduced boxes are disjoint, this formula simultaneously applies to the
reduced boxes associated with all vertices. By shrinking the segment [x, v] to
[x, x+ t(v − x)] and by replacing v with x + t(v − x) in formula (3.2), we define
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an interpolation between ψ0(z) and z. As a consequence ψ0 is the time-1 map of a
vertical isotopy of embeddings (ψ0

t ) which is easily checked to be symplectic. Since
the components of the domain of (ψ0

t ) are contractible, this is actually a Hamiltonian
isotopy(8) which therefore extends to a global Hamiltonian isotopy supported in U ,
still denoted by (ψ0

t ). Let F1 (resp. Ω1) be the direct image of F (resp. Ω) by ψ0
1 ; all

reduced boxes are transported in this way, becoming B1
η(τ) for each τ ∈ T r. Observe

that F1 is horizontal in the reduced new boxes associated with vertices.
The next step (numbered 1) deals with the edges. Let e be an edge in T r with end

points v0, v1. For z ∈ B1
η(e) and x = p1(z), define ψ1(z) by:

(3.3) ψ1(z) = (hol F0)xb(e) ◦ (hol F1)b(e)x (z).

Observe that ψ1(z) = z when z ∈ B1
η(vi), i = 0, 1; indeed, this box covers the

barycenter b(e) and F1 is horizontal there. Moreover, ψ1 is the time-1 map of a
symplectic isotopy (ψ1

t ) relative to the reduced boxes of the vertices; this isotopy,
called the step-1 isotopy, follows from an interpolation formula analogous to the one
defining (ψ0

t ).
If e and e′ are two edges, after Condition (2), the domain where their η-reduced

boxes could intersect is contained in a domain where F1 is horizontal and, hence,
ψ1
t = Id on this domain. Therefore, ψ1

t is well defined on the union V1 of closed
η-reduced boxes associated with the vertices and edges. Unfortunately, it is not a
Hamiltonian isotopy of embeddings; some vertical loops in V1 may sweep out some
non-zero ω0-area. Thus, it could not extend to an ambient vertical symplectic iso-
topy. The needed correction is offered by the next claim, following well-known ideas
(compare V.Colin [3, Lem. 4.4]).

Claim
(1) There is a real combinatorial cocycle µ = µΩ1 of the triangulation T r such that,

for each triangle τ , the real number 〈µ, τ〉 measures the ω0-area swept out by the loop
{x}× (∂τ⊥) through the isotopy (ψ1

t ) for every x ∈ (1− η) star(τ); in particular, this
area does not depend on x.

(2) When Ω1 is exact, µ is a coboundary.
(3) There is an ambient vertical ω0-symplectic isotopy (gt)t∈[0,1], supported in U ,

which is stationary on V0 and such that µg∗1Ω1
= 0.

The third item, together with the first item, means that the step-1 isotopy (ψ1
t )

becomes Hamiltonian when F1 stands for the foliation tangent to ker g∗1Ω1 instead of
ker Ω1.

The proof of the claim is postponed to the end of the section. We first finish the
proof of Lemma 3.4 by applying the claim in the next way.

After the step-0 isotopy, the cocycle µΩ1 is calculated and the Hamiltonian
isotopy (gt) is derived. Let F̃1 denote the foliation tangent to ker g∗1Ω1; let

(8)The infinitesimal generator Xt of an ω0-symplectic isotopy satisfies that ι(Xt)ω0 is a closed
1-form; it is said to be Hamiltonian if this form is the differential of a function.
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B̃1
η(τ) := (gt)

−1
(
B1
η(τ)

)
. Now, the straightening formula 3.3 of the box B̃1

η(e) is
applied F̃1 instead of F1. The associated isotopy (ψ1

t ) becomes ω0-Hamiltonian.
Hence, it extends to a vertical isotopy supported in U , denoted likewise, which is
ω0-Hamiltonian on each fibre Ux. This finishes step 1 of the isotopy.

The next steps of the induction are similar, except that the question of being a
Hamiltonian isotopy is not raised again since, up to homotopy, every loop in W is
already contained in V0 ∪ V1. In the end of this induction, we have a proof of Lemma
3.4 by taking ψ = ψn1 . �

Proof of the claim

(1) Let e be an edge of T r; its end points are denoted v0 and v1. Let x be a point
in the base of Bη(e). Set γ := {x} × e⊥. We first compute the ω0-area swept out by
the vertical arc (ψ1

1)−1(γ) through the step-1 isotopy. Denote this area by A (x, e);
any other arc with the same end points would give the same area.

There are two natural “squares”, C and C0, appearing for this computation. The
square C (resp. C0) is generated by the holonomy of F1 (resp. F0) over [b(e), x]

with initial vertical arc e⊥ in the fibre Ub(e). They have common horizontal edges:
βi := e×v⊥i for i = 0, 1. Orient e⊥ from v⊥0 to v⊥1 ; thus, γ and (ψ1

1)−1(γ) are oriented
by carrying the orientation of e⊥ by the respective holonomies; and also C0 and C

are oriented by requiring {b(e)} × e⊥ to define the boundary orientation. Then, we
have

(3.4) A (x, e) =

∫
C

Ω0 −
∫
C0

Ω0.

The second summand is 0 by construction. Similarly, we have
∫
C

Ω1 = 0. Then, if Λ

is any primitive of Ω1 − Ω0, we derive

(3.5) A (x, e) = −
∫
C

dΛ .

We now use a specific choice of primitive. Recall the zero-section Z : Sn → U . For
t ∈ [0, 1], let ct denote the contraction (x, v) 7→ (x, tv) and let c : U × [0, 1] → U be
the corresponding homotopy from Z ◦ p1 to IdU . This yields the next formula:

(3.6) Ω1 − Ω0 = d

[
p∗1θ +

∫ 1

0

ι(∂t)c
∗(Ω1 − Ω0)

]
,

where θ is a primitive of the exact form Z∗Ω1 (observe that Z∗Ω0 = 0); the integral
is just the mean value of a one-parameter family of 1-forms. This primitive of Ω1−Ω0

also reads

(3.7) Λ0 := p∗1θ +

∫ 1

0

c∗t ι(v∂v)(Ω1 − Ω0),

which vanishes on every vertical vector since Ω1 and Ω0 coincide on the fibres.
Orient β0 as the horizontal lift of [b(e), x] and β1 as the opposite of the oriented
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horizontal lift. We have

(3.8)
∫
C

dΛ0 =

∫
β1

Λ0 +

∫
β0

Λ0.

Now, we consider a triangle τ in T r and we look at the ω0-area A (x, ∂τ) swept out
by {x} × (∂τ)⊥ when x belongs to (1 − δ) star(τ). The vertices of τ are denoted by
vi, i = 0, 1, 2, cyclically ordered; the oriented edges are ej := [vj−1, vj ], where j− 1 is
taken modulo 3. There are two particular horizontal lifts of [b(ej), x], denoted by βj,k
with k = j or j − 1 depending on whether its origin is (b(ej), v

⊥
j ) or (b(ej), v

⊥
j−1).

If k = j − 1, it is oriented as [b(ej), x]; if k = j, it has the opposite orientation. By
summing up the area swept out by each edge of {x} × (∂τ)⊥, we have

(3.9) A (x, ∂τ) = 〈Λ0, β1,1 + β2,1 + β2,2 + β0,2 + β0,0 + β1,0〉,

where the bracketing stands for the integration over chain.
Since Ω1 − Ω0 vanishes on (1− η) star(τ)× {v⊥i }, we have

〈Λ0, βi,i + βi+1,i〉 = 〈Λ0, [b(ei), b(ei+1)]× v⊥i 〉.

By summation, we have

(3.10) A (x, ∂τ) =
∑
i

〈Λ0, [b(ei), b(ei+1)]× v⊥i 〉,

which implies that A (x, ∂τ) does not depend on x. The combinatorial cochain µ is
now defined by the next formula:

(3.11) 〈µ, τ〉 =
∑
i

〈Λ0, [b(ei), b(ei+1)]× v⊥i 〉.

If an arbitrary primitive Λ of Ω− Ω0 is used, the above formula becomes

(3.12) 〈µ, τ〉 =
∑
i

〈Λ, {b(ei)} × [v⊥i−1, v
⊥
i ]〉+ 〈Λ, [b(ei), b(ei+1)]× v⊥i 〉.

Indeed, a change of primitive consists of adding a closed 1-form; and the integral of
this on the polygon P considered in formula (3.12) is zero since P bounds a 2-cell.(9)

(2) Since T r is a finite simplicial set, we only have to prove that 〈µ,Σ〉 = 0 for every
2-cycle Σ of T r. Here, the exactness of Ω1 is used. Summing formula (3.12) over all
triangles of Σ yields a sum of integrals of Λ over horizontal polygons in regions where
dΛ = 0 (one polygon for each vertex of Σ). Then, these integrals are null. Therefore,
there exists a combinatorial 1-cochain α of T r such that µ = ∂∗α, where ∂∗ stands
for the combinatorial co-differential.

(3) We are going to use this 1-cochain α in order to correct Ω1 by a certain ver-
tical isotopy. Let e be an oriented edge in T r with origin v− and extremity v+.
The value α(e) is used in the following way. In the fibre over b(e), we find an
ω0-Hamiltonian isotopy (get )t∈[0,1], compactly supported in Ub(e) and fixing (V0)b(e),

(9)The cochain µ is a cocycle. Regarding the second item, this fact is not important and left to
the reader. Note that the previous calculation uses a local primitive of Ω only.
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such that the area swept out by the arc γe := b(e) × [v⊥− , v
⊥
+ ] is −α(e).(10) Observe

that the Hamiltonian function is not required to vanish in the fixed domain, but only
to be constant on each connected component of the fiber (V0)b(e) over b(e).

Then, the infinitesimal generator Xt of the desired isotopy (gt) is chosen in finitely
many fibres. By a suitable partition of unity there is an extension which is Hamiltonian
in each fibre, compactly supported and vanishing in V0. Note that the Hamiltonian
has to be constant in each connected component of the fibre (V0)x, but these constants
may vary with x.

The 2-form g∗1Ω1 − Ω1 has a primitive associated with the isotopy, named the
Poincaré primitive,

(3.13) A =

∫ 1

0

g∗t (ι(Xt)Ω1) dt.

Since Xt vanishes on V0, the 1-form A vanishes over here and we have:

(3.14) 〈A, γe〉 = −α(e).

Now, Λ+A is a primitive of g∗1Ω1−Ω0. According to formula (3.12), the combinatorial
cochain µg∗1Ω1 associated with the 2-form g∗1Ω1 vanishes and the claim is proved. �

4. Parametric family of transversely symplectic Γn-structures

In this section, we prove the parametric version of Theorem 1.5 for the groupoid
Γ = Γsymp

n . We emphasize that the required k-connectedness of the homotopy fibre
Fπsymp depends only on the dimension ofM and not on the number of parameters in
the family. Indeed, there is no integrability condition with respect to the parameter.
Moreover, we insist that a common jiggling will be used in the proof; its order is
bounded by compactness of the parameter space.

We consider the same setting as in Theorem 3.1: ν = (E →M) is a bundle of even
rank n over a manifold M of dimension 6 n+ 1 equipped with a k-parameter family
(ωu)u∈Dk of symplectic bilinear forms ωu on E. It is understood that k is positive.

Theorem 4.1. — Assume there is a family (ξu)u∈∂Dk of Γsymp-structures, namely
a family (Ωu)u∈∂Dk of closed 2-forms defined near the zero section Z of E, such
that Ωu induces ωu on the fibres of ν for every u ∈ ∂Dk.(11)

Then, this family extends over the whole Dk such that Ωu induces ωu on the fibres
of ν for every u ∈ Dk. Moreover, the family of cohomology classes [Z∗Ωu]u∈Dk may
be arbitrarily chosen among those which extend the boundary data.

Proof. — We start with a cell decomposition C of M fine enough so that, for every
u ∈ ∂Dk and every cell C ∈ C , there is a fibered isotopy of E|C (depending smoothly
on u) whose time-1 map ψu satisfies: (ψu)∗Ωu = θ∗uΩ0, where θu is a linear symplectic

(10)In dimension n = 2, this is possible only if |λ(e)| is less than the ω0-area of Ub(e). This last
condition is satisfied when r is large enough.

(11)In other words, the symplectic normal bundles equal (ν, ωu)u∈∂Dk .
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trivialization of (ν|C , ωu), depending smoothly on u ∈ Dk, and where Ω0 stands for
the pull-back of ω0 by the projection C × Rn → Rn.

The theorem will be proved by induction on an order of the simplices of C for which
their dimension is a non-decreasing function. Skipping the intermediate dimensions we
jump to the (n+1)-cells. Thus, we are reduced to consider the n-trivial bundle over Sn
and a family (Ωu) of exact 2-forms on a small disk bundle U about the zero section Z,
which induce the standard form ω0 on each fibre Ux, x ∈ Sn, (here a parametric version
of Moser’s lemma is applied again). This family fulfills the condition that Ωu = Ω0

for every u ∈ ∂Dk. Let T be a triangulation of Sn and let T r be a Thom subdivision
whose order r is large enough so that the same jiggling jr(T r) fits the proof of Lemma
3.4 for every u ∈ Dk; since the considered family is compact, such an r certainly exists.

Each step of that proof may be performed with parameters using this fixed jiggling.
Here it is worth noticing that the vertical isotopy given by Lemma 3.4 is stationary
when Ωu = Ω0, in particular when u ∈ ∂Dk.

The proof of Theorem 1.5 is now completed for the groupoid Γsymp
n . �

5. Transversely contact Γn-structures

Here, we prove a theorem which implies Theorem 1.5 for Γcont
n -structures. Our

setting is not the one of tangential Γ-structures. It is the following. Given an odd
natural integer n, a manifold M and a vector bundle ν = (E → M) of rank n, we
recall that a Γcont

n -structure on M with normal bundle ν = (E → M) is given by
ξ = (A,K ), where A is a 1-form and K is a codimension-n foliation, both defined
near the 0-section Z in E, such that:

– A ∧ dA(n−1)/2 induces a germ of volume form on Ex for every x ∈M ;
– ker(A ∧ dA(n−1)/2) = TK ;
– kerA contains TK and is invariant by the holonomy of K .
As in the symplectic case, the next Theorem was known to A.Haefliger [9] when

dimM < n+ 1 and to D.McDuff [13] when dimM = n+ 1.

Theorem 5.1. — Assume M is a manifold of dimension not greater than the rank of
the vector bundle ν. Let (α, β) be formal contact data, that is, a section α of ν∗ and
a section β of ∧2ν∗ such that α∧ β(n−1)/2 is a non-vanishing section of ∧nν∗. Then,
there exists a Γcont

n -structure ξ = (A,K ) on M with normal bundle ν such that, for
all x ∈M , the next two conditions are fulfilled:

(5.1)
{

kerAZ(x) ∩ νx = kerα(x)

(dA)Z(x) = β(x).

Moreover, this statement holds true in a relative parametric version.

Proof. — For simplicity, we do not formulate any homotopy statement at the level
of classifying spaces. Nevertheless, the strategy of proof is similar to the one we used
for Γsymp

n -structures. It is even simpler since every contact isotopy is Hamiltonian.
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Let us first consider the non-parametric version. The construction of ξ is performed
step by step over each cell of a cell decomposition of M . We are looking on the last
n-cell en only. Let C := ∂en × [0, 1] ∼= Sn−1 × [0, 1] be a collar neighborhood of the
boundary, on which we are given a Γcont

n -structure ξ = (A,K ) which fulfills (5.1).
Since the formal data (α, β) extends over en, there is a trivialization of ν over en,

(p1, p2) : E|en → en × Rn, in which (α(x), β(x)) is independent of x ∈ en. On Rn

equipped with (α, β), we may think of β as a closed differential form with constant
coefficients; by taking a primitive, we have a unique contact form α0 such that :

(5.2)
{
α0(0) = α

dα0 = β.

We derive a trivial Γcont
n -structure ξ0 = (A0,K0) on en such that

(5.3)
{
A0 = p∗2(α0)

dA0 = p∗2(dα0).

Hence, K0 is the horizontal foliation. Now, there is a Moser type lemma(12) which
we are going to present below. This allows us to perform some vertical isotopy which
reduces to the case where, in a small tube U about the zero section and for every
point x ∈ C, we have

(5.4) A|Ux = A0|Ux .

Lemma 5.2. — Let (αt)t∈[0,1] be a path of contact forms in a manifold V n. Let L be a
hypersurface in V . It is assumed that the Reeb vector field Rt of αt is never tangent
to L. Then, we have the following:

(1) The next equation whose unknown is Xt can be solved near L:

(5.5) LXtαt + α̇t = 0.

(2) Let (αt)t∈[0,1] be a path of germs in (R2p+1, 0) of contact forms. If kerαt(0) is
independent of t, then these germs are isotopic.

(3) The previous statements hold true with parameters and in a relative version.

Proof

(1) The vectorXt decomposes asXt = Yt+Zt with Yt ∈ kerαt and Zt = αt(Xt)Rt.
Let us recall that Rt generates in each point the kernel of dαt. Then, Equation (5.5)
becomes the following system:

(5.6)
{
Rt · (αt(Xt)) + α̇t(Rt) = 0

ι(Yt)
(
dαt| kerαt

)
+ d (αt(Xt))| kerαt

+ α̇t| kerαt = 0.

Fix t ∈ [0, 1]. The first equation of this system is a differential equation along the
orbits of Rt whose unknown function is αt(Xt). It has a unique solution if αt(Xt)

(12)The statement comes from Eliashberg-Mishachev’s book [5] where the proof is left to the
reader. We only add the relative and parametric version.
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is required to equal 0 along L (here the transversality assumption is used). Then,
the component Zt of Xt is determined. Once αt(Xt) is known, the second equation
of (5.6) has a unique solution since the form induced by dαt on kerαt is symplectic.

(2) Here L is the hyperplane which is the common kernel of the contact forms in
the considered path. Replace the germs with genuine representatives. Following the
solution of (1), we have Xt(0) = 0 for every t ∈ [0, 1]. Therefore, the flow ϕt of Xt

keeps the origin fixed. It is well defined on some neighborhood of the origin up to
t = 1 and it is the identity on L. We deduce from Equation (5.5) that the following
is satisfied near the origin for every t ∈ [0, 1]:

(5.7) ϕ∗t (LXtαt + α̇t) = 0,

and the latter is obtained by taking the time derivative of the next equation

(5.8) ϕ∗tαt = α0.

So, the desired isotopy is obtained by integrating Xt.
(3) Considering the equations which are solved, this claim is clear. �

We continue the proof of Theorem 5.1. In order to derive (5.4) from Lemma 5.2, we
use x ∈ C as a parameter and, in each fibre Ex, we consider αt = tA|Ex +(1−t)A0|Ex .
Due to the formal data, αt is a contact form near the origin of Ex for every t ∈ [0, 1].

After this Moser type reduction, we have to state and prove a lemma similar to
Lemma 3.4. Actually, it is not useful to write it down explicitly since it is the same:
the holonomy maps are contactomorphisms; thus, in each fibre of a box the vertical
isotopy preserves the contact distribution kerA0 ∩ Ex. Then, it is Hamiltonian with
respect to A0|Ex.(13) Therefore, it extends globally since extending such an isotopy
amounts to extend its Hamiltonian function; thus, no obstruction is encountered. This
finishes the proof of the non-parametric version.

For the relative parametric version of Theorem 5.1, we have to consider a family
(αu, βu)u∈Dk which underlies a family of Γcont

n -structures when u ∈ ∂Dk. Thanks to
the relative parametric version of Lemma 5.2, we may follow word for word the proof
we gave for Γsymp

n . �

6. Open manifolds

This section is devoted to the proof of Theorem 1.9. Let us recall the setting: Γ is
an open subgroupoid of the structural groupoid Γ(X) of a model n-manifold X (see
Section 1);M is an open manifold of dimension n and ξ ∈ H1

τM (M ; Γ) is a Γ-structure
on M whose normal bundle is τM , the tangent space to M . Let TM denote its total
space and Z : M → TM denote the 0-section. The associated Γ-foliation defined
near Z(M) in TM is denoted by F = Fξ. We recall a topological fact about open
manifolds whose proof is available in [5, §4.3].

(13)The Hamiltonian function of a vertical isotopy of contactomorphisms whose infinitesimal
generator is Xt is (in our setting) the time dependent function z ∈ U 7→ A0(Xt)(z).
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Proposition 6.1. — Given an open n-manifold M , there exists an (n− 1)-polyhedron
K ⊂ M , called a spine of M , so that the inclusion is a homotopy equivalence. More
precisely, for any regular neighborhood V of K, there exists a compressing isotopy of
embeddings ft : M →M, t ∈ [0, 1], from IdM to an embedding f1 : M → V , which is
stationary on a neighborhood of K and such that t′ > t implies ft′(M) ⊂ ft(M).

We are going to prove the next statement from which Theorem 1.9 will be easily
derived.

Theorem 6.2. — Let K ⊂ M be an (n − 1)-dimensional polyhedron in an n-mani-
foldM (open or closed). Let ξs, s ∈ Dk, be a k-parameter family of Γ-structures onM
with normal bundle τM . When s ∈ ∂Dk, it is assumed that the associated foliation Fs

is tangent to Fexp along Z(M). Then, there exist an open neighborhood V of K in M
and a k-parameter family ξs of Γ-structures on M× [0, 1] – that is, concordances of ξs
– such that:

– ξs|V × {0} = ξs|V ;
– ξs|V × {1} is regular and its associated foliation is tangent to Fexp;
– ξs = p∗1 (ξs|V ) for every s ∈ ∂Dk, where p1 denotes the projectionM×[0, 1]→M .

In other words, (ξs)s∈Dk is a family of regularization concordances on a neighbor-
hood of a K, relative to the boundary of the parameter space.

6.3. Proof of Theorem 1.9 from Theorem 6.2. — Here, M is an open manifold.
A spine K of M may be chosen (Proposition 6.1) and Theorem 6.2 applies to these
data: K ⊂ M, (ξs)s∈Dk . So, we have a family ξs of regularization concordances on
some neighborhood V of K in M , relative to ∂Dk. We have to extend this family to a
family of regularization concordances over the whole of M , still relative to ∂Dk. We
may assume there exists ρ close to 1 so that ξs is regular on M when ‖s‖ ∈ [ρ, 1].

We first insert the family of concordances described as follows, where t ∈ [0, 1] is
the parameter of the concordance:

– for ‖s‖ 6 ρ, we put the concordance t 7→ f∗t ξs, where (ft)t∈[0,1] is the isotopy of
embeddings given by Proposition 6.1;

– for ρ 6 ‖s‖ 6 1, we put the concordance t 7→ f∗
( 1−‖s‖

1−ρ t)
ξs.

When t = 1 (that is the end of these concordances depending on s ∈ Dk) and when
‖s‖ > ρ, the structures are regular on M . Then, denoting by S : [1, 2] → [0, 1] the
shift t 7→ t − 1, we continue, for t ∈ [1, 2] with the concordances (f1 × S)∗ξs when
‖s‖ 6 ρ; these ones are stationary when ‖s‖ = ρ. Thus, we are allowed to extend them
by the stationary concordances when ρ 6 ‖s‖ 6 1. Of course, the previous piecewise
description can be made smooth if desired. �

6.4. Proof of Theorem 6.2 without parameters (k = 0). — We start with a
Γ-structure ξ on M . Let F be its associated Γ-foliation defined in some small
neighborhood U of Z(M). Let ξu (resp. Fu) be the underlying Γn-structure
(resp. Γn-foliation) of ξ (resp. F ) where the transverse geometry is forgotten.
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The proof will consist of two steps: in the first step, we will make a specific reg-
ularization of ξu by some Γn-concordance over M × [0, 3]; in the second step, the
geometric Γ-structure of the concordance will be defined only over a small neighbor-
hood of K × [0, 3]. Finally, we get the Γ-regularization of ξ near K.

First step. — Fix a small ε > 0. As in Thurston [19], we consider a one-parameter
family Pt, t ∈ [0, 3], of n-plane fields on U with the following properties:

– Pt is transverse to the fibres for every t.
– Pt is tangent to F when t ∈ [0, 1 + ε].
– Pt is tangent to Fexp when t ∈ [2, 3].
Such a plane field exists by barycentric combination in the convex set(14) of the

plane fields transverse to the fibres of τM .
Let T be a triangulation of M containing a subdivision of K (also called K) as a

sub-complex and fine enough with respect to the open covering {expx(Ux) | x ∈ M}
in order that formula (2.2) makes sense. Here, we recall that formula which holds
for x in any simplex of T :

expx(jr(x)) = σr(x).

We now consider the Thom jiggling given by formula (2.2); its order r is chosen
large enough so that the n-simplices of jr(T r) are transverse to Pt for every t ∈ [0, 3].

The first piece of the concordance, when t ∈ [0, 1 + ε], actually a Γ-concordance,
consists of moving the zero section from Z to jr by traversing any homotopy valued
in U and stationary when t ∈ [1, 1 + ε]. The concordance of Γ-structure is given by
pulling ξ back by this homotopy of maps M → U (look at Remark 2.6(1) about
smoothness).

We now describe the second piece of the concordance, when t ∈ [1, 2]. We consider
the codimension n-plane field P̃ in U × [0, 3] defined by

(6.1) P̃ (x, t) := Pt(x)⊕ R∂t.

It is tangent to F × [0, 1 + ε] and to Fexp× [2, 3]. The trace of P̃ on each (n+ 1)-cell
of jr(M) × [1, 2] is one-dimensional. Then, this trace is integrable. Thus, there is a
C0-small smooth approximation of P̃ , relative to t ∈ [0, 1] ∪ [2, 3] and still denoted
by P̃ , which is integrable near jr(M)× [1, 2]. Now, the pair (jr(M)× [1, 2], P̃ ) defines
a concordance of Γn-structures. This finishes the second piece.

The third piece of the concordance when t ∈ [2, 3] consists of keeping the foliation
Fexp and applying the homotopy from jr to the 0-section Z as provided by Proposition
2.5(2). On the whole, we built a specific regularization concordance of the underlying
Γn-structure ξu, which is nearly sufficient for our purpose.

(14)Take an n-plane field Q transverse to the fibres. The above-mentioned convex set is affinely
isomorphic to hom(Q, τvTM), where τv stands for the sub-bundle of τ(TM) tangent to the fibres
of TM →M .
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We need more of good position. Let Kr denote the (n − 1)-dimensional complex
which is the r-th Thom subdivision of K. Let K̃r be the image of Z(Kr)× [0, 3] along
the concordance built above. This is an n-complex whose n-cells are not transverse
to P̃ . When t ∈ [1, 2], the only reason for non-transversality is that K̃r and P̃ share
the ∂t-direction. Let K̃r

[t,t′] (resp. K̃r
t ) denote the restriction of K̃r over M × [t, t′]

(resp. M × {t}).
When the n-cells of K̃r

[t,t′] are prismatic (that is, simplex× interval) which is always
the case when [t, t′] ⊂ [1, 2], they will receive the standard subdivision defined by
H.Whitney [21, App. II];(15) this latter only depends on an order chosen on the set of
vertices of K̃r

t .

Claim. — There exist a subdivision t1 = 1, t′1, . . . , ti, t
′
i, . . . , tN = 3 and a small piece-

wise smooth vertical isotopy, its time-one map being denoted by ψ, such that:

(i) ψ|K̃r
ti = Id for every i = 1, . . . , N ;

(ii) for every n-simplex τ of the standard subdivision of K̃r
[ti,t′i]

(resp. K̃r
[t′i,ti+1]),

the image ψ(τ) is smoothly embedded in U × [0, 1] and quasi-transverse to P̃ . Here,
quasi-transverse means transverse when dim τ > n and no tangency when dim τ < n.

Proof of the claim. — We search for a jiggling in time. We are going to do it for K̃r
[1,2];

the jiggling in time of K̃r
[2,3] is similar, but a bit more complicated due to the fact that

the cell decomposition is not purely prismatic. A numbering of the vertices of K̃r
1 is

fixed: v1, v2, . . . ; this numbering propagates to the corresponding vertices of K̃r
t for

every t ∈ [1, 2].
The time subdivision is chosen so that, for every (n−1)-simplex c ⊂ K̃r

t and every
x ∈ c, the hyperplaneHt(x, c) := Tx(c)+Pt(x) varies very little in TU when t traverses
[ti, ti+1], uniformly when x runs in any star. Let t′i be the middle of this interval.
Each K̃r

[ti,t′i]
(resp. K̃r

[t′i,ti+1]) receives the standard subdivision of the prismatic cells.
On K̃r

[ti,t′i]
, the desired embedding ψ and its isotopy from Id are constructed recursively

on the numbered stars of vertices star(v1), star(v2), . . . . Precisely, there is a locally
finite family of isotopies χ1, χ2, . . . (that is, only finitely many supports intersect) and
ψ will be the composition of their time-one map: · · · ◦ χ1

2 ◦ χ1
1. The reversed isotopies

are used over the interval [t′i, ti+1].
Let v1 be the first vertex of K̃r

ti . Let X1 be a small vertical vector in Tv1U which is
chosen linearly independent form all above-mentioned hyperplanes Hti(x, c), where c
is any n-simplex of K̃r

ti passing through v1. Let v′1 be the corresponding vertex
in K̃r

t′i
. By definition of the standard subdivision of K̃r

[ti,t′i]
, the vertex v′1 is joined

(15)This subdivision that W.Thurston names crystalline is clearly explained inside the proof of
his famous Jiggling Lemma.
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to star(v1, K̃
r
ti), the star of v1 in K̃r

ti . In affine notation χ1
1 is obtained by replac-

ing in K̃r
[ti,t′i]

(6.2) star(v′1, K̃
r
[ti,t′i]

) with
(
v′1 +X1

)
∗ lk(v′1, K̃

r
[ti,t′i]

),

where lk(a,−) stands for the link of a, that is, the union of simplices in star(a,−)

which do not contain a. After this step, we get the property that every n-simplex in
B1 := χ1

1

(
K̃r

[ti,t′i]

)
passing through v′1 +X1 is transversal to P̃ .

The second step consists of a similar construction related to the star of v′2 in B1

by using a small vertical vector X2 which is linearly independent of the hyperplanes
made with the n-simplices of B1 passing through v′2. This yields χ1

2, the time-one map
of the second isotopy which allows us to gain the transversality of new n-simplices
to P̃ . When star(v′2, B1) meets star(v′1 + X1, B1), the vector X2 is chosen so small
that the property gained in the first step is preserved. And so on. �

In what follows, we still denote by K̃r the outcome of the previous jiggling. As a
result, every n-cell of K̃r

[1,3] is transverse to P̃ . This simplicial complex K̃r collapses(16)

successively to K̃r
[0,2] and then to K̃r

[0,1].

Second step. — We now focus on K̃r
[0,1] on which K̃r collapses. Since the cells of K̃r

[1,3]

of positive dimension are quasi-transverse to the foliation P̃ , the collapse K̃r ↘ K̃r
[0,1]

extends to a collapse of pair

(6.3) (K̃r, P̃ )↘ (K̃r
[0,1], P̃ ).

Let N(K̃r) denote a small neighborhood of K̃r in U × [0, 3]. From the sequence of
elementary collapses, one derives step by step an embedding of pair

(6.4) Φ :
(
N(K̃r), P̃

)
−→

(
U × [0, 1 + ε), F × [0, 1 + ε)

)
,

which induces the inclusion N(K̃r
[0,1]) ↪→ U × [0, 1 + ε). Since F × [0, 1 + ε] is a

Γ-foliation, P̃|N(K̃r) is so by pulling back through Φ. Therefore, Φ∗
(
F × [0, 1 + ε)

)
is

a regularization concordance of the Γ-structure which is induced near K. �

This last process associated with collapses is named inflation in W.Thurston’s
article [19].

6.5. Relative parametric version of Theorem 6.2. — Here, the data consist of a
family (ξs)s∈Dk of Γ-structures whose normal bundle is the tangent bundle τM . It is
assumed that, for every s ∈ ∂Dk, the associated foliation Fs is tangent to Fexp along
the 0-section Z(M), hence ξs is regular. Without loss of generality, we may assume ξs
is regular when 1 > ‖s‖ > ρ for some ρ close to 1. The proof just consists of two
remarks.

(16)A simplicial complex L collapses toK if there is a sequence of elementary collapses Lq ↘ Lq+1

starting with L and ending with K. An elementary collapse means that Lq is the union of Lq+1 and
a simplex σ so that σ ∩ Lq+1 is made of the boundary of σ with an open facet removed.
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(1) The previous proof (see Subsection 6.4) works directly for our k-parameter
family of data if we do not take care of the boundary condition. Indeed, observe that
a common order r of Thom jiggling jr can be chosen for all s ∈ Dk since the family
of n-plane fields Ps,t we have to look at is compact. Thus, if the jiggling is vertical
enough, that is, for r large enough, its n-simplices are transverse to Ps,t for every
(s, t) ∈ Dk × [0, 3]. The 0-parameter process applies for every s ∈ Dk and yields a
regularization in a fixed neighborhood V of K inM . Precisely, we have formulas (6.3)
and (6.4) depending on the parameter s ∈ Dk, yielding regularization concordances
Φ∗s
(
Fs × [0, 1 + ε)

)
.

(2) We may assume that Ps,t is tangent to Fs for every s ∈ {1 > ‖s‖ > ρ} and
t ∈ [0, 3]. For ‖s‖ ∈ [ρ, 1], set µ(s) := 1−‖s‖

1−ρ . Recall that Φs is the time-one map of an
isotopy of embeddings Φws : N(K̃r)→ U × [0, 3], w ∈ [0, 1], relative to N(K̃r

[0,1]) and
such that Φ0

s = Id and Φ1
s

(
N(K̃r)

)
⊂ N(K̃r

[0,1+ε]).

We finish, for s ∈ {1 > ‖s‖ > ρ}, with the regularization concordance
(Φ

µ(s)
s )∗

(
Fs × [0, 3]

)
. When ‖s‖ = 1, this is the trivial concordance Fs × [0, 3].

Then, the relative version is proved. �
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