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SYZYGIES AND LOGARITHMIC VECTOR FIELDS ALONG

PLANE CURVES

by Alexandru Dimca & Edoardo Sernesi

Abstract. — We investigate the relations between the syzygies of the Jacobian ideal of the
defining equation for a plane curve C and the stability of the sheaf of logarithmic vector
fields along C, the freeness of the divisor C and the Torelli properties of C (in the sense of
Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and
cusps are Torelli in this sense.

Résumé (Syzygies et champs de vecteurs logarithmiques le long de courbes planes)
Nous étudions les relations entre les syzygies de l’idéal jacobien associé à l’équation défi-

nissant une courbe plane C et la stabilité du faisceau des champs de vecteurs logarithmiques
le long de C, la liberté du diviseur C et les propriétés de Torelli de C (au sens de Dolgachev-
Kapranov). Nous montrons en particulier que les courbes ayant un petit nombre de points
doubles et de cusps ont la propriété de Torelli.
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1. Introduction

Let C : f = 0 be a complex projective plane curve, having only weighted homoge-
neous singularities, see the next section for the definition of this class of singularities
and Remark 4.7 for their link to ideals of linear type. In this paper we continue the
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248 A. Dimca & E. Sernesi

investigation of the relations between the syzygies of the Jacobian ideal Jf of f and
the stability of the sheaf of logarithmic vector fields T 〈C〉 = Der(− logC) along C,
the freeness of the divisor C and the reconstructability of C from T 〈C〉 (called Torelli
property in the sense of Dolgachev-Kapranov after [13], see Definition 5.1 below)
started by the second author in [24]. This is an intricate subject where many ques-
tions are derived from the areas of hyperplane arrangements, singularity theory and
Hodge theory. Some of these questions have been studied only recently, and our inves-
tigation is still preliminary, even though it brings together classical and basic objects
like syzygies, vector bundles and singularities. Such an interplay is enhanced by the
restriction to the plane curves case, but generalizations to arbitrary dimension should
be possible: in this direction we mention the recent preprints [8], [12] where some of
these generalizations are explored.

In the second section we state for reader’s convenience as Theorem 2.1 a result
from [7], giving a sharp lower bound for the degree of (homogeneous) syzygies among
the partial derivatives fx, fy, fz of the polynomial f in terms of the Arnold expo-
nent αC of the curve C, which is the minimum of the Arnold exponents of the singular
points p of C. Some consequences on the position of singularities of C, expressed in
terms of defects of linear systems, are also given.

In the third section we recall the definition and basic properties of the sheaf of
logarithmic vector fields T 〈C〉 along C, which is in fact a rank two vector bundle
on P2 in this case. For a nodal curve having irreducible components C1, . . . , Cr whose
normalizations are C̃1, . . . , C̃r, we prove the formula

h1(T 〈C〉(−3)) = h1(T 〈C〉(d− 3)) =
∑
i

g(C̃i),

where g(C̃i) denotes the genus of C̃i, see Proposition 3.1.
In the next section, we obtain the following sufficient condition, easy to check, for

the stability of the vector bundle T 〈C〉 involving the Arnold exponent αC introduced
above.

Theorem 1.1. — Let C : f = 0 be a reduced curve in P2 of degree d having only simple
singularities of type An, Dn, E6, E7 and E8. Then T 〈C〉 is stable if
• either d is odd and d > 3/(2αC − 1),
• or d is even and d > 2/(2αC − 1).

As a consequence of this result, we infer that a curve with a given list of simple
singularities is not free, i.e., T 〈C〉 is not the direct sum of two line bundles, if the
degree d of C is large enough. More precisely, we have the following result.

Corollary 1.2. — Let C : f = 0 be a reduced curve in P2 of degree d having only
simple singularities of type An, Dn, E6, E7 and E8. Then C is not free if
• either d is odd and d > 3/(2αC − 1),
• or d is even and d > 2/(2αC − 1).
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Syzygies and logarithmic vector fields along plane curves 249

Both results above are sharp, as shown in the examples given in Section 4.
For reader’s convenience we include in Remark 4.7 a discussion on the algebraic vs.

geometric approaches to the freeness of a plane curve. To end this section, we discuss
two examples, the first one in common with [25] and [4], of families of curves (with
degrees as large as we like) which are neither free nor stable.

The last section is devoted to Torelli-type questions. After the definition of a Torelli-
type curve (in the sense of Dolgachev-Kapranov), we show that the natural map from
the Severi variety of plane reduced curves with a fixed number of nodes n and of
cusps κ to the corresponding moduli space of stable rank 2 vector bundles on P2 is a
morphism, see Proposition 5.4. This allows us to reprove the known fact that certain
reduced curves with many nodes are not Torelli.

On the other side, we conjecture that a general irreducible nodal curve is Torelli. If
the curve is smooth (and not of Sebastiani-Thom type, i.e., the “general” assumption
is necessary in this case), this result was established by Ueda and Yoshinaga in [27]
(where the smooth hypersurface case of arbitrary dimension is treated). The main
result of this paper says that the above conjecture holds for curves with a small
number of nodes.

Theorem 1.3. — Let C : f = 0 be a degree d > 4 irreducible (resp. reducible) nodal
curve in P2, having n > 0 nodes. If n < (d − 1)/2 (resp. n < (d − 2)/2), then C is
Torelli.

A more precise statement is given in Theorem 5.7. A version covering curves with
few nodes and cusps is given in Theorem 5.10. We note that irreducible cuspidal
curves are not Torelli in general. The explicit example of a sextic with nine cusps is
discussed in Example 5.6(ii).

2. A vanishing result for syzygies among fx, fy and fz

Let f be a homogeneous polynomial of degree d in the polynomial ring S = C[x, y, z]

and denote by fx, fy, fz the corresponding partial derivatives. One can consider the
graded S-submodule AR(f) ⊂ S3 of all relations involving these derivatives, namely

ρ = (a, b, c) ∈ AR(f)m

if and only if afx + bfy + cfz = 0 and a, b, c are in Sm. Let C be the plane curve
in P2 defined by f = 0 and assume that C is reduced. Let αC be the minimum of the
Arnold exponents αp (alias singularity indices or log canonical thresholds, see Th. 9.5
in [17]) of the singular points p of C. The germ (C, p) is weighted homogeneous of type
(w1, w2; 1) with 0 < wj 6 1/2, if there are local analytic coordinates y1, y2 centered
at p and a polynomial g(y1, y2) =

∑
u,v cu,vy

u
1 y

v
2 , with cu,v ∈ C and where the sum is

over all pairs (u, v) ∈ N2 with uw1 + vw2 = 1. In this case one has

(2.1) αp = w1 + w2,

see for instance [9]. Moreover, since for any isolated plane curve singularity (C, 0)

the spectrum of (C, p) is contained in the interval (0, 2) and it is symmetric with
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250 A. Dimca & E. Sernesi

respect to 1, it follows that αp 6 1 with equality exactly when (C, p) is a node, i.e.,
an A1-singularity. With this notation, Corollary 5.5 in [7] can be restated as follows.

Theorem 2.1. — Let C : f = 0 be a degree d reduced curve in P2 having only weighted
homogeneous singularities. Then AR(f)m = 0 for all m < αCd− 2.

Proof. — It is enough to check that one has the obvious identification Nd+k =

AR(f)k−2, for any k < d + 1, where the graded S-module N is defined in [7] us-
ing a shifted version of the Koszul complex for fx, fy, fz. �

Example 2.2
(i) If C : f = 0 is a degree d nodal curve in P2, then αC = 1. It follows that

AR(f)m = 0 for all m 6 d− 3 which is exactly the bound obtained in Th. 4.1 in [10].
This bound is known to be optimal, since dim AR(f)d−2 = r − 1, where r is the
number of irreducible components of C, see Th. 4.1 in [10].

(ii) If C : f = 0 is a degree d curve in P2 having only nodes A1 and cusps A2 as
singularities, then αC = 5/6. It follows that AR(f)m = 0 for all m < 5d/6 − 2. For
the Zariski sextic curve with 6 cusps on a conic, e.g. f = (x2 + y2)3 + (y3 + z3)2, this
bound is sharp since AR(f)3 6= 0. As in (i) above, such non vanishing results have a
geometrical meaning (at least in many cases). For instance AR(f)3 6= 0 in the case of
the Zariski sextic is related to the fact that the action of the monodromy on H1(F,C)

is not the identity, where F : f(x, y, z) = 1 denotes the Milnor fiber of the defining
equation f , see [7] for the general theory. Similar remarks apply to the non-vanishing
claimed in the following point (iii).

(iii) If C : f = 0 is a degree d curve in P2 having only nodes A1, cusps A2 and
ordinary triple points D4 as singularities, then αC = 2/3. It follows that AR(f)m = 0

for allm < 2d/3−2. For the line arrangement defined by f = (x2−y2)(y2−z2)(z2−x2)

and for the curve f = (x3+y3+z3)3+(x3+2y3+3z3)3 with 3 irreducible components
(each smooth of genus 1) and nine D4 singularities, this bound is sharp.

The following result is also useful in the sequel.

Proposition 2.3. — Let C : f = 0 be a reduced curve in P2 having only weighted ho-
mogeneous singularities. Then αC > 1/2 if and only if C has only simple singularities,
i.e., singularities of type Ak for k > 1, Dk for k > 4, E6, E7 and E8.

Proof. — Using formula (2.1), this is a classical result in singularity theory, see [21].
One can also look at Corollary 7.45 and its proof in [5]. �

Remark 2.4. — For a non weighted homogeneous plane curve singularity (C, p), the
computation of the corresponding exponent αp is much more complicated. For in-
stance recall that we have αp = 1/2 for any singularity (C, p) in the series of unimodal
singularities T2,q,r : xq + x2y2 + yr = 0, where q > 2, r > 2, see [3], Table 2 p. 189.
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We discuss now some consequences of the above results on the position of the
singularities of C, which is described to some extent by the sequence of defects

(2.2) defk Σf = τ(C)− dimSk/Ĵk.

Here τ(C) = h0(T 1
C) is the global Tjurina number of C, Σf is the subscheme of P2

defined by the Jacobian ideal J = Jf and Ĵ = Ĵf denotes the saturation of J . Set
R(f) = S/J , the corresponding graded Jacobian (or Milnor) algebra of f , see [6] and
note that

Sk/Ĵk = H1
m(R(f))k.

This follows from the exact sequence (11), p. 7, of [24], because

S/Ĵ = R(f)/H0
m(R(f)).

Other related invariants of the curve C have been introduced in [10], and we recall
them below.

Definition 2.5. — Let C : f = 0 a degree d curve with isolated singularities in P2.
(i) the coincidence threshold ct(C) is defined as

ct(C) = max{q | dimR(f)k = dimR(fs)k for all k 6 q},

with fs a homogeneous polynomial in S of degree d such that Cs : fs = 0 is a smooth
curve in P2.

(ii) the minimal degree of a nontrivial relation mdr(D) is defined as

mdr(C) = min{q | ER(f)q 6= 0},

where ER(f) is the quotient of the graded S-module AR(f) by the submodule spanned
by the Koszul (trivial) relations among fx, fy, fz.

It is known that one has

(2.3) ct(C) = mdr(C) + d− 2,

see [10], formula (1.3).

Example 2.6. — If C : f = 0 is a degree d nodal curve in P2, then

d− 2 6 mdr(C) 6 2(d− 2) and 2(d− 2) 6 ct(C) 6 3(d− 2).

Moreover the equalities d − 2 = mdr(C), 2(d − 2) = ct(C) hold exactly when C is
not irreducible, and the equalities mdr(C) = 2d − 4, ct(C) = 3(d − 2) hold exactly
when C has just one node, see [10]. In particular, ct(C) > 2d− 3 if C is irreducible,
see also Example 2.2 (i).

More generally, the following result holds.

Proposition 2.7. — Let C : f = 0 be a reduced curve in P2 having only weighted
homogeneous singularities. Then the following holds.

(i) ct(C) > (αC + 1)d − 4; in particular, if C has only simple singularities, then
ct(C) > 3d/2− 3 = T/2, with T = 3(d− 2) = max{q | R(fs)q 6= 0}.
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252 A. Dimca & E. Sernesi

(ii) defk Σf = 0 for k > (2 − αC)d − 2; in particular, if C has only simple singu-
larities, then defk Σf = 0 for k > 3d/2− 2 = T/2 + 1.

Proof. — The first claim is a direct consequence of formula (2.3) and Theorem 2.1.
The second claim follows from Th. 1 in [6], which implies that defk Σf = 0 for
T − k 6 ct(C). �

Example 2.8
(i) If C : f = 0 is a degree d nodal curve in P2, then ct(C) > 2d−4 and defk Σf = 0

for k > d − 2 were already obtained in [10] and are sharp. Actually the nodes of
an irreducible plane curve C impose independent conditions to the curves of degree
k > d − 3 and therefore defk Σf = 0 for k > d − 3 in this case. This follows from
the inequality ct(C) > 2d− 3 given in Example 2.6, using again Th. 1 in [6] as in the
proof above.

An example for which defd−4 Σf 6= 0 is a sextic curve C of genus 4 which is the
projection of a canonical sextic in P3. This curve C has 6 nodes situated on a conic
(see [2], Ex. 24 p. 57).

(ii) If C : f = 0 is a degree d curve in P2 having only nodes A1 and cusps A2 as
singularities, then ct(C) > 11d/6− 4 and defk Σf = 0 for k > 7d/6− 2.

(iii) If C : f = 0 is a degree d curve in P2 having only nodes A1, cusps A2 and
ordinary triple points D4 as singularities, then ct(C) > 7d/4− 4 and defk Σf = 0 for
k > 5d/4− 2.

3. Syzygies and logarithmic vector fields

For a reduced projective plane curve C : f = 0 of degree d, let T 〈C〉 = Der(− logC)

denote the sheaf of logarithmic vector fields along C. This sheaf, which can be defined
more generally for any hypersurface D in Pn, is always reflexive, see [22]. Moreover,
any reflexive sheaf on a smooth surface is free, see [19], Lem. 1.1.10 p. 149. Hence in
our setting T 〈C〉 is a rank 2 vector bundle.

One has the exact sequence:

0 −→ T 〈C〉 −→ OP2(1)3 −→Jf (d) −→ 0

where Jf ⊂ OP2 is the gradient ideal sheaf of f . This gives an identification:

(3.1) AR(f)m = H0(P2, T 〈C〉(m− 1))

for all m.
The Chern classes of T 〈C〉(k) are:

(3.2) c1(T 〈C〉(k)) = 3− d+ 2k, c2(T 〈C〉(k)) = d2 − (3 + k)d+ 3 + 3k+ k2 − τ(C)

where τ(C) = h0(T 1
C) is the global Tjurina number of C. Moreover one easily com-

putes that:

χ(T 〈C〉(k)) = 3

(
k + 3

2

)
−
(
d+ k + 2

2

)
+ τ(C).
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Syzygies and logarithmic vector fields along plane curves 253

In the case k = d− 3 we obtain:

χ(T 〈C〉(d− 3)) = −
[(
d− 1

2

)
− τ(C)

]
.

Moreover, using Serre duality and the identity

(3.3) Ω1(logC) = Hom(T 〈C〉,OP2) = T 〈C〉(d− 3),

(see also Lemma 4.1 in [24]) we obtain:

h2(T 〈C〉(d− 3)) = h0(Ω1(logC))(−d) = h0(T 〈C〉(−3)) = 0.

In conclusion we have:

dim AR(f)d−2 = h0(T 〈C〉(d− 3))(3.4)
= h1(T 〈C〉(d− 3)) + χ(T 〈C〉(d− 3))

= h1(T 〈C〉(d− 3))−
[(
d− 1

2

)
− τ(C)

]
.

A similar computation gives:

dim AR(f)d−3 = h0(T 〈C〉(d− 4))(3.5)

= h1(T 〈C〉(d− 4))−
[(
d

2

)
− τ(C)

]
.

The following proposition generalizes to all nodal curves the dimension estimate of
Cor. 5.2 of [24].

Proposition 3.1. — If C has only nodes then

h1(T 〈C〉(−3)) = h1(T 〈C〉(d− 3)) =
∑
i

g(C̃i),

where C1, . . . , Cr are the irreducible components of C and C̃i is the normalization
of Ci, i = 1, . . . , r.

Proof. — The first equality is a consequence of the self-duality of H1
∗ (T 〈C〉). There-

fore it suffices to prove the second equality. We have that τ(C) = δ, the number of
nodes of C. The geometric genus of C is

g(C) =

(
d− 1

2

)
− δ =

∑
g(C̃i)− r + 1.

Here the first equality says that g(C) is the arithmetic genus minus the number of
nodes; the second equality says that g(C) is the sum of the genera of the components
minus the number of components plus one, see also Formula (1.6) in [10]. Therefore
we need to prove that

h1(T 〈C〉(d− 3)) =

(
d− 1

2

)
− δ + r − 1.

Recalling Example 2.2(i), we see that this follows from (3.4). �
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254 A. Dimca & E. Sernesi

Remark 3.2. — An alternative proof of Proposition 3.1 can be obtained by using the
formula 3.3 to pass to logarithmic 1-forms and Proposition 4.1 in [11] alongside with
basic facts on mixed Hodge theory.

4. Stability of the bundle T 〈C〉 and freeness of the divisor C

Recall that for a rank 2 torsion free coherent sheaf E on the projective space Pn the
notions of Mumford-Takemoto stability, Gieseker-Maruyama stability and simplicity
(i.e., End(E) = C) coincide, see [19], and play a key role in the understanding of
such sheaves. Since T 〈C〉 is in a natural way a sub bundle of the tangent bundle TP2

see [24], which is stable, see [19], Th. 1.3.2, p. 182, it is natural to ask about its stability
properties. One computes easily that the discriminant of T 〈C〉 is:

∆(T 〈C〉) = 3(−d2 + 2d− 1) + 4τ(C) = 4τ(C)− 3(d− 1)2

and ∆(T 〈C〉) < 0 is a necessary condition for the stability of T 〈C〉 ([19], p. 168).
This condition already puts some restrictions on τ(C). The second author has shown
in [24], Prop. 2.4 that for a reduced plane curve C : f = 0 of degree d, the torsion free
coherent sheaf T 〈C〉 is stable if and only if

(4.1) AR(f)m = 0 for m 6 (d− 1)/2.

This result combined with Theorem 2.1 and Proposition 2.3 yields Theorem 1.1 stated
in the Introduction.

Example 4.1
(i) If C : f = 0 is a degree d nodal curve in P2, then αC = 1 and the above

Theorem tells us that T 〈C〉 is stable if either d is odd and d > 5 or d is even and
d > 4, i.e., T 〈C〉 is stable for all d > 4.

Note that for C : f = xyz = 0, the sheaf T 〈C〉 splits and therefore it is not stable.
Hence our result is sharp in this case. On the other hand, Example 2.2 (i) and the
formula (4.1) show that T 〈C〉 is stable for a nodal cubic C.

(ii) If C : f = 0 is a degree d curve in P2 having only nodes (A1) and cusps (A2)

as singularities, then αC = 5/6 and the above Theorem tells us that T 〈C〉 is stable if
either d is odd and d > 5 or d is even and d > 4. The only case not covered is d = 3,
C a cuspidal cubic. The cuspidal cubic xy2 − z3 has h0(T 〈C〉) = AR1 6= 0 so T 〈C〉
is not stable by Lemma 1.2.5 p. 165 in [19]. Hence our result is sharp in this case as
well.

Definition 4.2. — The reduced plane curve C : f = 0 is free (as a divisor) if the
vector bundle T 〈C〉 splits as a direct sum of line bundles.

Remark 4.3. — Consider the graded S-module Der(f) of derivations δ ∈ Der(S) sat-
isfying δ(f) ⊂ (f). Then the reduced plane curve C : f = 0 is free exactly when this
graded S-module Der(f) is free, see [22] or [20]. The degrees d1, d2, d3 of a homo-
geneous S-basis of Der(f) are independent of the choice of the basis and are called
the exponents of f . Here a derivation aδx + bδy + cδz is said to be homogeneous of
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Syzygies and logarithmic vector fields along plane curves 255

degree m if one has a, b, c ∈ Sm. The Euler derivation E = xδx + yδy + zδz gives rise
to a splitting

Der(f) = S · E ⊕Der0(f)

with Der0(f) the submodule of derivations δ satisfying δf = 0. It follows that we can
always choose d1 = 1 and then Der0(f) = S(−d2) ⊕ S(−d3). On the other hand, it
is clear that the coherent sheaf associated to the graded S-module Der0(f) is exactly
T 〈C〉(−1). In conclusion, we have the following formula

T 〈C〉(−1) = O(−d2)⊕ O(−d3),

relating T 〈C〉(−1) and the exponents of f .

The formula (3.2) for the Chern classes of T 〈C〉(−1) implies the following result.

Lemma 4.4. — Suppose the curve C is free, and

T 〈C〉(−1) = O(−a)⊕ O(−b).

Then the integers a and b above are positive and satisfy the system of equations

a+ b = d− 1, ab = (d− 1)2 − τ(C).

In particular, the discriminant ∆(T 〈C〉) = 4τ(C)− 3(d− 1)2 of the bundle T 〈C〉 is a
perfect square. Moreover, one has a > 0 and b > 0 except when C is a union of lines
passing through one point.

Proof. — The only claim that needs some explanation is about the (strict) positivity
of a and b. Note that τ(C) 6 µ(C), where µ(C) denotes the sum of the Milnor
numbers of the singularities of C. It is well known that µ(C) 6 (d− 1)2 with equality
exactly when C is a cone defined by a polynomial in two variables. Hence ab =

(d− 1)2− τ(C) > 0, with strict inequality when C is not a line pencil. An alternative
proof follows from Remark 4.3 and is left to the reader. �

By definition, it is clear that if a reduced curve C is free, then T 〈C〉 is not stable.
Therefore Theorem 1.1 implies directly Corollary 1.2 stated in the Introduction.

Example 4.5
(i) If C : f = 0 is a degree d nodal curve in P2, then αC = 1 and the above Theorem

tells us that C is not free if d > 3. The cases not covered are the following. If d = 2,
then either C is union of two lines (a = 0, b = 1) which is free as a subarrangement
of type AW (i.e., the lines in A containing a given intersection point W ) of the
arrangement A : xyz = 0 (a triangle), see Theorem 4.37 in [20], or C is smooth,
and then T 〈C〉 is stable [24]. If d = 3, then either C is a nodal cubic (not free, since
a + b = 2, ab = 3 has no integer solution), or C is a triangle, which is free, see
Example 4.1, (i), or C is smooth and we conclude as in the case of smooth conics.
Hence the only free nodal curves are two lines xy = 0 and the triangle xyz = 0.
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(ii) If C : f = 0 is a degree d curve in P2 having only nodes (A1) and cusps (A2)

as singularities, then αC = 5/6 and the above Theorem tells us that C is not free if
d > 4. The case d = 3 leads to a non free curve since the system a+ b = 2, ab = 2 has
no integer solution. The case d = 4 leads again to non free curves. Indeed the system
becomes a+b = 3 and ab = 9−τ(C). The only possible integer solution may be a = 1

and b = 2, hence τ(C) = 7. When C is irreducible, the genus of the normalization C̃
is given by 3−n−k, where n is the number of nodes and κ the number of cusps of C.
Since τ(C) = n+2κ, we see that τ(C) = 7 cannot be realized. The case of a reducible
curve C (cuspidal cubic plus a secant) is even simpler to handle. Hence our result is
not sharp in this case.

As a special case of Corollary 1.2 we have the following.

Corollary 4.6. — Assume that C is the union of lines of a line arrangement A in P2

having only double and triple points. If either d > 9 is odd, or d > 6 is even, then the
curve C (or, equivalently, the line arrangement A ) is not free.

This result is sharp, since it is known that the following two arrangements

(x2 − y2)(y2 − z2)(x2 − z2) = 0 and (x3 − y3)(y3 − z3)(x3 − z3) = 0

are free.

Remark 4.7. — From a purely algebraic view-point, the reduced plane curve C : f = 0

is free if and only if the corresponding Jacobian (or gradient) ideal Jf spanned by
the partial derivatives fx, fy, fz of f in S is a perfect ideal, i.e., the Jacobian ring
R(f) = S/Jf is Cohen-Macaulay. Equivalently, R(f) has a Hilbert-Burch minimal
free resolution of the form

0 −→ S2 −→ S3 −→ S −→ R(f) −→ 0.

This is the case exactly when Ĵf = Jf , where Ĵf denotes the saturation of the ideal Jf ,
see [25], the line after Prop. 1.9. In other words, C is free if and only if Ĵf/Jf =

H0
m(R(f)) = 0, see [24] or [7]. Geometrically, this follows from Horrocks’ Theorem,

see [19], p. 39, saying that the bundle T 〈C〉 splits if and only if H1(P2, T 〈C〉(k)) = 0

for any integer k. Then one uses the isomorphism H1(P2, T 〈C〉(k)) = H0
m(R(f))d+k,

see Prop. 2.1 in [24].
There is also a notion of free divisor in local analytic geometry. The two notions are

related as follows: the projective curve C : f = 0 is free if and only if the divisor germ
(D, 0) in C3 is free (i.e., the coherent analytic sheaf T 〈D〉 defined on a neighborhood U0

of 0 ∈ C3 is free), where D denotes the cone over the curve C, i.e., the surface
singularity defined by f = 0 in C3. For more on this equivalence we refer to [30] and
the references there.

Moreover, note that a reduced plane curve C has only weighted homogeneous singu-
larities if and only if the ideal Jf is of linear type, see Prop. 1.6 in [25]. Jacobian ideals
of linear type are also considered in the local analytic theory, see for instance [18].
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In the local analytic version of the theory there is also a notion of linear free divisor,
apparently not related to the ideals of linear type. For more on linear free divisors
see [14] and the references there.

Remark 4.8. — In this remark we review briefly the examples of free divisors con-
structed by Simis and Tohăneanu in [25]. In Prop. 2.2. they construct a sequence of
irreducible free divisors

Cd : fd = yd−1z + xd + x2yd−2 + a3xy
d−1 + a4y

d = 0,

where a3, a4 ∈ C and d > 5. The curve Cd has a unique singularity located at the
point p = (0 : 0 : 1) and given in the local coordinates (x, y) by the equation

yd−1 + xd + x2yd−2 + a3xy
d−1 + a4y

d = 0.

This singularity is weighted homogeneous only for d = 5 and even then it is not
simple. For d > 5 this singularity is semi-weighted homogeneous and belongs to
the same µ-constant family as the associated weighted homogeneous singularity
yd−1z + xd = 0. Since the exponent αp is constant in µ-constant families, we infer
that αp = 1/(d− 1) + 1/d. It follows that dαp → 2 when d→∞.

Other examples of free divisors in [25] are described in Cor. 2.7 and are obtained by
the homogenization with respect to z of a weighted homogeneous polynomial g in x, y.
These divisors are not irreducible and also have non simple singularities, coming either
from the singularity of g at the origin or from other singularities. For instance, if we
start with g = x2y + yd, a simple singularity of type D, then f = x2yzd−3 + yd

and the singularity at p = (1 : 0 : 0) is not simple as soon as d > 5. Corollary 2.10
in [25] describe a slightly different construction, called the coning, leading to free
divisor having essentially the same properties as those in Cor. 2.7 in [25] from our
point of view.

Similar constructions based on weighted homogeneity with respect to two dis-
tinct sets of weights are given by Buchweitz and Conca in [4], see especially Th. 3.5
and Th. 6.1.

In all these examples it seems that αC → 0 when deg(C)→∞.

To end this section, we discuss two examples of families of such curves C which
are neither free nor stable, the first one is in common with [25] and [4].

Example 4.9 (A Thom-Sebastiani type example, with mdr(C) = 1)
Consider the family of curves C = Ca,b : f = xayb + zd for a + b = d, a > 0,

b > 0. It follows from Proposition 2.11 (i) in [25] or Th. 6.1 in [4] that C is not a
free divisor. From the obvious relation bxfx − ayfy = 0 it follows that mdr(f) = 1

and hence by (4.1) that T 〈C〉 is not stable for d > 3. When a > 2, b > 2, then the
curve C has two singular points located at p = (1 : 0 : 0) and q = (0 : 1 : 0) with local
equation yb + zd = 0 and respectively xa + zd = 0. It follows that

τ(C) = τ(C, p) + τ(C, q) = (b− 1)(d− 1) + (a− 1)(d− 1) = (a+ b− 2)(d− 1)
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and
αC = 1/d+ min(1/a, 1/b) 6 3/d.

We get lim sup(αC · d) 6 3 when d→∞, with equality when a and b are chosen both
close to d/2.

We consider next a non Thom-Sebastiani type family of irreducible curves C, with
mdr(C) → ∞ when d → ∞. These curves are not obtained by homogenization of a
weighted polynomial in two variables as some examples in [25].

Proposition 4.10. — Consider the family of irreducible curves

C = Ca,b,c : f = xaybzc + yd + zd = 0,

for a+ b+ c = d, a > 1, b > 1, c > 1. Then the following hold.
(i) mdr(C) = min(d− b, d− c).
(ii) If d 6 2b− 1, then the bundle T 〈C〉 is not stable.
(iii) If b = c = [d/2], then the bundle T 〈C〉 is stable and C has a unique singularity

p = (1 : 0 : 0) with very large Milnor number, namely

µ(C, p) = 2d(b− 1) + 1 > (d− 1)2 − d.

(iv) All the curves C = Ca,b,c are not free.

Proof. — The fact that C is irreducible is equivalent to the irreducibility of the affine
curve F : xayb + yd + 1 = 0. Since the polynomial g(x, y) = xayb + yd is weighted
homogeneous, it follows that all fibers g−1(s) are isomorphic for s 6= 0. In particular,
F can be regarded as the generic fiber of g, and hence it is irreducible as g is clearly
a primitive polynomial, i.e., not of the form h(g1(x, y)), with h ∈ C[t] polynomial of
degree > 1.

One has the following obvious syzygy of degree (d− b)

dyd−bfx + xa−1zc(bxfx − ayfy) = 0,

and a similar one of degree d− c replacing y by z. In order to prove the first claim it
is enough to show that there are no relations of strictly lower degree. We assume that
b > c, and show there are no relations of degree < d − b. The derivative fy contains
the monomial dyd−1. In a relation ufx+vfy+wfz = 0, this monomial can cancel with
terms coming from ufx or with terms coming from wfz. In the first case, the factor v
must contain a monomial divisible by v1 = xa−1zc, in the second case a monomial
divisible by v2 = xazc−1 or zd−1. The last case is excluded because we consider only
relation with deg u = deg v = degw < d− b. Since (a−1)+ c = a+(c−1) = d− b−1,
it is enough to show that deg v = deg v1 = deg v2 yields a contradiction. Indeed, these
equalities implies that vfy contains terms whose degree with respect to y is b−1, and
such terms cannot cancel with terms coming from ufx and wfz. This proves the first
claim (i).

To have T 〈C〉 not stable, it is enough by the relation (4.1) and (i) to have b > c and
d− b 6 (d− 1)/2 which is equivalent to d 6 2b− 1. This proves the second claim (ii).
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To prove (iii), one has to use again (4.1) and (i) to show that T 〈C〉 is stable.
The formula for the Milnor number follows from the fact that (C, p) is a Newton
non-degenerate singularity, and hence

µ(C, p) = 2A− 2d+ 1,

where A denotes the area between the coordinate axes and the Newton boundary of
the defining equation ybzb + yd + zd = 0 for the singularity (C, p).

Finally, to prove (iv), it is enough to show that Ĵf/Jf = H0
m(R(f)) 6= 0, as

explained in 4.7. Note that xa−1ybzc ∈ Jf (since fx ∈ Jf ), which implies yd ∈ Jf
(since fy ∈ Jf ) and zd ∈ Jf (since fz ∈ Jf ). It follows that ybzc ∈ Ĵf . On the other
hand it is clear that ybzc /∈ Jf , since deg ybzc < d− 1. �

Remark 4.11. — In both cases (ii) and (iii) above, one can compute the exponent of
the Newton non-degenerate singularity (C, p) using the distance between the point
(1, 1) and the Newton boundary of the singularity (C, p), see Th. 6.4 p. 150 in [3]. This
implies αC · d→ 3 when d→∞.

In view of this and the final comment in Remark 4.8, it would be interesting to find
examples of families of curves Cd, with degCd = d, such that Cd is free (resp. T 〈C〉
is not stable) and αCd

> ε for all d and some fixed ε > 0.
For the curves in Proposition 4.10 it seems difficult to compute τ(C) in general,

since there are no formulas in terms of Newton polygons for the Tjurina numbers as
far as we know.

Remark 4.12. — For a recent interesting result involving the invariant ct(C) of C
introduced in Section 2 and the freeness of the divisor C, see [26].

5. Torelli-type questions

We will adopt the following

Definition 5.1. — A reduced hypersurface X ⊂ Pr is called LC-Torelli (where LC
stands for local cohomology) if it can be reconstructed from the C[X0, . . . , Xr]-module
H1
∗ (T 〈X〉) = ⊕kH1(Pr, T 〈X〉(k)). We say that X is DK-Torelli (where DK stands

for Dolgachev-Kapranov) if X can be reconstructed from T 〈X〉.

We have the following:

Proposition 5.2. — Let C ⊂ P2 be a reduced plane curve. Then C is LC-Torelli if
and only if it is DK-Torelli. Therefore we just call it Torelli. If C is nonsingular then
it is Torelli if and only if it is not of Sebastiani-Thom type.

Proof. — The first part is proved in [24], Theorem 6.3. The last assertion is a special
case of the main theorem of [27]. �

Remark 5.3. — If two reduced plane curves C : f = 0 and C ′ : g = 0 are projectively
equivalent, it is easy to see that the corresponding Jacobian rings R(f) = S/Jf and
R(g) = S/Jg are isomorphic as graded C-algebras. Under such an isomorphism, the
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ideals Ĵf/Jf = H0
m(R(f)) and Ĵg/Jg = H0

m(R(g)) correspond to each other. However,
these isomorphisms cannot be extended to isomorphisms of graded S-modules in
general, as shown by the last claim in Proposition 5.2.

Let d > 4 and let Vd,n,κ ⊂ |OP2(d)| be the Severi variety of plane reduced curves
of degree d having n nodes and κ ordinary cusps. Then for each [C] ∈ Vd,n,κ the sheaf
T 〈C〉 is stable (Example 4.1(ii)) and its Chern classes c1, c2 only depend on d, n, κ

(see 3.2). Therefore we have a (set-theoretic, for the time being) map:

υ : Vd,n,κ −→M(2, c1, c2),

whereM(2, c1, c2) is the moduli space of stable vector bundles of rank two and Chern
classes c1, c2 on P2.

Proposition 5.4. — The map υ is a morphism.

Proof. — The proof is a straightforward consequence of the flatness of the relative
first cotangent sheaf with respect to families. For completeness we recall it. Let

C

φ
##FFFFFFFFF

� � // P2 × S

��

S

be a family of curves of degree d having n nodes and κ cusps, parametrized by a
scheme S. To this diagram one can associate the relative first cotangent sheaf T 1(φ)

which sits in an exact sequence of coherent OC -modules:

OC (1)3
∂−−→ OC (d) −→ T 1(φ) −→ 0.

The sheaf T 1(φ) is locally presented by the partial derivatives with respect to x, y, z
of a local equation of C . It is flat over S ([29], Lemma 3.3.8), and commutes with base
change ([29], Lemma 3.3.6). Let T 〈C 〉 = ker(∂)(−d). Twisting the above sequence
by OP2×S(−d) we then obtain:

0 −→ T 〈C 〉 −→ OC (−d+ 1)3
∂−−→ OC −→ T 1(φ)(−d) −→ 0.

This exact sequence consists of coherent sheaves, flat over S. This last property is
a consequence of elementary properties of flatness ([15], Prop. 9.1.A). Therefore its
restrictions to the fibres of φ remain exact and therefore

T 〈C 〉 ⊗ OC (s) = T 〈C (s)〉

for all s ∈ S. Therefore T 〈C 〉 defines a family of vector bundles over S belonging to
M(2, c1, c2). This proves that υ is a morphism. �

A curve C belonging to Vd,n,κ is Torelli if and only if [C] = υ−1(υ([C])). This
property is clearly open in Vd,n,κ.
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Example 5.5. — From Proposition 5.2 it follows that for n = κ = 0 the open set of
Torelli curves coincides with the locus of nonsingular curves of degree d which are
not of Sebastiani-Thom type. Note that, since nonsingular curves of Sebastiani-Thom
type exist, the morphism υ has some positive dimensional fibres because a nonsingular
curve of Sebastiani-Thom type is linearly equivalent to infinitely many nonsingular
curves having the same sheaf of logarithmic vector fields.

We have
dim(Vd,n,κ) >

d(d+ 3)

2
− n− 2κ,

and equality holds if κ < 3d ([23], p. 261).
On the other hand, if d = 2s+ 1 is odd then one computes easily that the second

Chern class of T 〈C〉 ((d− 3)/2) = T 〈C〉(s − 1) is c2,norm = 3s2 − τ(C) and its first
Chern class is zero. Therefore ([19], p. 300)

dim(M(2, 0, 3s2 − τ(C))) = 4(3s2 − τ(C))− 3 = 12s2 − 3− 4n− 8κ.

If d = 2s is even then c2,norm = c2 (T 〈C〉(s− 2)) = 3s2 − 3s + 1 − τ(C) and ([19],
p. 317)

dim(M(2,−1, 3s2−3s+1−τ(C))) = 4(3s2−3s+1−τ(C))−4 = 12s2−12s−4n−8κ.

Example 5.6
(i) Consider the case d = 5, i.e., s = 2. Then the previous computations give

c2,norm = 12− τ(C) and

dim(M(2, 0, 12− τ(C))) = 45− 4n− 8κ,

while
dim(V5,n,κ) = 20− n− 2κ.

It follows that

dim(M(2, 0, 12− τ(C)))− dim(V5,n,κ) = 25− 3n− 6κ.

This implies for example that dim(V5,10,0) > dim(M(2, 0, 2)) and therefore that all
nodal arrangements of 5 lines are not Torelli. This is well known (see [13, 28]). It also
implies that C is not Torelli if (n, κ) = (9, 0) (union of an irreducible conic and three
general lines). Related examples are computed in [1], where it is shown that the nodal
union of a conic with two lines is not Torelli.

(ii) Take C to be the dual of a nonsingular cubic. Then (d, n, κ) = (6, 0, 9) and we
obtain: dim(M(2,−1, 1)) = 0, while dim(V6,0,9) = 9. Therefore υ is constant and C is
an example of an irreducible singular curve which is not Torelli. More precisely, since
T 〈C〉(1) has the same Chern classes of TP2(−2) and M(2,−1, 1) is irreducible [16], it
follows that T 〈C〉(1) = TP2(−2) or, equivalently, that TP2〈C〉 = TP2(−3) = Ω1

P2 .

Using the bound on the number of nodes for irreducible curves with only nodes
(κ = 0), i.e., 2n 6 (d − 1)(d − 2), we have dim(M(2, c1, c2)) > dim(Vd,n,0) for any
d > 4. This induces us to conjecture that the general irreducible nodal curve is Torelli
for any d > 4 . We can prove this conjecture for irreducible curves with a small number
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of nodes, recall Theorem 1.3 from Introduction. More precisely, we have the following
result.

Theorem 5.7. — Let C be a nodal curve in P2 of degree d > 4. Let N = Σf be the
set of nodes of C and consider the linear system Im(C) of curves of degree m passing
through the nodes in N . Assume that there is an integer m such that the following
holds.

(i) 2m < d− 1 for C irreducible, or 2m < d− 2 for C reducible;
(ii) the base locus of the linear system Im(C) is 0-dimensional.
Then the curve C is Torelli.

For the proof of this result we follow essentially the same approach as in [27], which
consists of two distinct steps: in the first step one describes in Lemma 2 the (d− 1)st
homogeneous component Jf,d−1 of the Jacobian ideal Jf in terms of the sheaf T 〈C〉,
and then, in Lemma 3, one shows that the equality Jf,d−1 = Jg,d−1 implies f = g,
modulo a nonzero multiplicative factor, unless f is of Sebastiani-Thom.

We consider now the first step. Let C : f = 0 be a reduced curve in P2 of degree d,
and E : g = 0 be a (possibly nonreduced) curve in P2 of degree d− 1. For any k ∈ Z,
consider the exact sequence

0 −→ OP2(k − d+ 1) −→ OP2(k) −→ OE(k) −→ 0,

where the first morphism is induced by the multiplication by g. Tensor this sequence
by the locally free sheaf T 〈C〉 and get a new short exact sequence

0 −→ T 〈C〉(k − d+ 1) −→ T 〈C〉(k) −→ T 〈C〉(k)⊗ OE −→ 0.

The associated long exact sequence of cohomology groups looks like

0 −→ H0(T 〈C〉(k − d+ 1)) −→ H0(T 〈C〉(k)) −→ H0(T 〈C〉(k)⊗ OE)

−→ H1(T 〈C〉(k − d+ 1)) −→ H1(T 〈C〉(k)) −→ · · ·

Then, using the formula (3.1), we see that

δk = dimH0(T 〈C〉(k))−dimH0(T 〈C〉(k−d+1)) = dim AR(f)k+1−dim AR(f)k−d+2

depends only on f but not on g. Next note that the morphism

H1(T 〈C〉(k − d+ 1)) −→ H1(T 〈C〉(k))

in the above exact sequence can be identified, using the formulas (5) and (9) in [24]
with the morphism

g∗k+1 : (Ĵf/Jf )k+1 −→ (Ĵf/Jf )k+d

induced by the multiplication by g. The above proves the following.

Lemma 5.8. — dimH0(T 〈C〉(k)⊗ OE) = δk + dim ker g∗k+1.
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Assume we are now in the situation of Theorem 5.7. Since C is nodal, it follows
that the saturation Ĵf of the Jacobian ideal Jf coincides with the radical of Jf . In
other words, one has Ĵf,m = Im(C). Since clearly m < d − 1, it follows that g∗m is
defined on Im(C) (considered as a vector space, not as a projective one). If g ∈ Jf ,
then clearly g∗m = 0, and hence its kernel has maximal possible dimension.

Suppose now conversely that g∗m = 0. By the condition (ii), it follows that
there are two elements h1, h2 ∈ Im(C) having no irreducible factor in common.
Since g∗m(h1) = 0, it follows that gh1 = a1fx + b1fy + c1fz for some polynomials
a1, b1, c1 ∈ Sm. Similarly, we get gh2 = a2fx + b2fy + c2fz for some polynomials
a2, b2, c2 ∈ Sm. It follows that

(a1h2 − a2h1)fx + (b1h2 − b2h1)fy + (c1h2 − c2h1)fz = 0.

The condition (i) combined with Example 2.2 (i) implies that the only syzygy of
degree 2m is the trivial one, i.e. a1h2 = a2h1, b1h2 = b2h1 and c1h2 = c2h1. These
relations imply that a1, b1, c1 are divisible by h1, and hence g is a linear combination
of fx, fy, fz.

It follows that g ∈ Jf,d−1 if and only if

dimH0(T 〈C〉(m− 1)⊗ OE) = δm−1 + dim Im(C),

i.e., the sheaf T 〈C〉 determines the homogeneous component Jf,d−1 of the Jacobian
ideal Jf , and this completes the first step in our proof of Theorem 5.7.

Our next result, needed to complete the second step, extends Lemma 3 in [27] to a
class of singular curves. Note that in fact the hypothesis Jf = Jg in Lemma 3 in [27]
can be replaced by Jf,d−1 = Jg,d−1, as all arguments in loc. cit. involve just linear
combinations of first order partial derivatives of some homogeneous polynomials of
degree d.

Lemma 5.9. — If two irreducible distinct divisors C and D in P2 of degree d > 3 and
having only isolated singularities with either Milnor numbers < (d− 2)(d− 1) or with
multiplicities < d − 1 satisfy Jf,d−1 = Jg,d−1, then their defining equations are of
Sebastiani-Thom type.

Proof. — Let C : f = 0 andD : g = 0 be the equations of the two divisors, and assume
that f is irreducible and f and g are not proportional, as C 6= D. Let ∇h denote the
column vector formed by the partial derivatives hx, hy, hz for any polynomial h. The
equality Jf,d−1 = Jg,d−1 implies the existence of a 3× 3 constant matrix A such that

∇g = A∇f.

Let λ be an eigenvalue of A and consider the polynomial F = g − λf . Then ∇F =

(A− λI)∇f and hence k = dim〈Fx, Fy, Fz〉 < 3. Since f and g are not proportional,
we have k > 0.
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Case 1. — k = 2. Then by a linear coordinate change we may suppose Fx = 0 (i.e.,
F is a polynomial in y, z) and Fy and Fz linearly independent. The inclusion JF ⊂ Jf
implies the existence of a 3× 3 constant matrix B such that

∇F = B∇f.

Since C is irreducible, it follows that C is not a cone, and hence the first row in B is
zero. Let (a, b, c) and (a′, b′, c′) be the two other rows in B.

Case 1.1: bc′ − b′c 6= 0. — Then exactly as in the proof of Lemma 3 in [27] one shows
that f is of Sebastiani-Thom type.

Case 1.2: bc′ − b′c = 0. — The matrix B has rank k = 2, and hence we can write fx
as a linear combination of Fy and Fz, in particular fx is independent of x. It follows
that f = f0(y, z) + f1(y, z)x, for some homogeneous polynomials f0 and f1 in y, z.
The relation Fy = afx + bfy + cfz = af1 + b(f0,y + f1,yx) + c(f0,z + f1,zx) implies
that bf1,y + cf1,z = 0.

If (b, c) 6= (0, 0), it follows that we can make a new coordinate change involving
only y and z such that f1 becomes independent of (the new) y, i.e., we can take
f1 = szd−1 for some s ∈ C. It follows that the local equation of C at the point (1, 0, 0)

is szd−1 + f0(y, z) = 0, with Milnor number at least µ(zd−1 + yd) = (d− 2)(d− 1).
If (b, c) = (0, 0), then k = 2 implies (b′, c′) 6= (0, 0) and we can repeat the same

argument.

Case 2. — k = 1. Then by a linear coordinate change we may suppose Fx = 0, Fy = 0

(i.e., F is a polynomial in z) and Fz 6= 0. As above we obtain a relation

Fz = afx + bfy + cfz.

Case 2.1: c 6= 0. — Then exactly as in the proof of Lemma 3 in [27] one shows that f
is of Sebastiani-Thom type.

Case 2.2: c = 0. — Then the relation becomes essentially zd−1 = afx + bfy.
Suppose first that b = 0. Then k = 1 implies a 6= 0 and hence by integration with

respect to x we get af = xzd−1 + f0(y, z). We conclude as above looking at the local
equation of C at the point (1, 0, 0). Suppose now that b 6= 0. If a = 0 then we conclude
as before, since the situation is now symmetric in x, y. Consider now the case when
both a and b are nonzero. Then a linear coordinate change involving only x, y brings
us back to the case a = 1 and b = 0. �

To complete the proof of Theorem 5.7, note that a Sebastiani-Thom curve in P2 is
given essentially by an equation f0(x, y) + zd = 0, with f0 homogeneous of degree d.
The singular points of such a curve are given by the multiple factors of the binary
form f0. A factor of multiplicity e > 1 will produce a singularity with a local equation
ue + vd = 0, hence with Milnor number at least (e− 1)(d− 1) > d− 1. It follows that
a Sebastiani-Thom curve in P2 is never nodal. Hence by Lemma 5.9, a nodal curve
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is determined by the Jacobian ideal of the defining equation. This ends the proof of
Theorem 5.7.

To derive Theorem 1.3 from Theorem 5.7, consider the case when C is irreducible
(the other case is similar) and let m be the largest integer such that m < (d− 1)/2.
If the base locus of the linear system Im(C) has positive dimension, it follows that
dim Im(C) 6 dimSm−1 and hence

n > dimSm/Im(C) >

(
m+ 2

2

)
−
(
m+ 1

2

)
= m+ 1.

Hence m 6 n− 1 < (d− 1)/2− 1, a contradiction with the choice for m.
For curves with nodes and cusps we have the following result, by analogy to The-

orem 5.7.

Theorem 5.10. — Let C be a curve in P2 of degree d > 4 having only nodes and
cusps. Let N be the set of nodes of C, C the set of cusps and consider the linear
system Im(C) of curves of degree m passing through the nodes in N , the cusps in C

and having the line TpC of C at p as a tangent line at p for any cusp p ∈ C . Assume
that there is an integer m such that the following holds.

(i) 2m < 5d/6− 2.
(ii) The base locus of the linear system Im(C) is 0-dimensional.

Then the curve C is Torelli. In particular, if C is a curve in P2 of degree d > 4

having n nodes and κ cusps such that τ(C) = n+ 2κ 6 5d/12− 1, then C is Torelli.

Proof. — The proof is similar to the proof of Theorem 5.7, one has just to notice that
the definition of the linear system Im(C) is changed in order to have again the key
equality Ĵf,m = Im(C). The inequality in (i) comes from the fact that in this case
αC = 5/6 as explained in Example 1.2 (ii). �

Example 5.11
(a) Let C be an irreducible curve having a unique node, say at p = (0 : 0 : 1).

Then I1(C) = (x, y) satisfies the assumptions, hence C is Torelli if its degree is at
least 4. This result is sharp, since a nodal cubic is not Torelli. This follows exactly as
above in Example 5.6, using the inequality

dim(M(2, 0, 2)) = 5 < dim(V3,1,0) = 8.

(b) Let C be an irreducible curve having two nodes, say at p = (0 : 0 : 1) and
q = (0 : 1 : 0). Then I2(C) = (x2, xy, xz, yz) satisfies the assumptions, hence C is
Torelli if its degree is at least 6.

(c) Let C be an irreducible curve having three nodes. Then there are two cases.
Suppose first that the nodes are not collinear, say they are located at p = (0 : 0 : 1),
q = (0 : 1 : 0) and r = (1 : 0 : 0). Then I2(C) = (xy, xz, yz) satisfies the assumptions,
hence C is Torelli if its degree is at least 6.
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When the nodes are collinear, say located at p = (0 : 0 : 1), q = (0 : 1 : 0) and
r = (0 : 1 : 1), then I3(C) contains x3 and yz(y − z), hence C is Torelli if its degree
is at least 8.

(d) Let C be an irreducible curve having a unique cusp, say at p = (0 : 0 : 1) with
tangent x = 0. Then I2(C) = (x2, xy, y2, xz) satisfies the assumptions, hence C is
Torelli if its degree is at least 8.

References
[1] E. Angelini – “Logarithmic bundles of hypersurface arrangements in Pn”, arXiv:1304.5709,

2013.
[2] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris – Geometry of algebraic curves. Vol. I,

Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985.
[3] V. I. Arnold, S. M. Guseı̆n-Zade & A. N. Varchenko – Singularities of differentiable maps. Vol. II,

Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988.
[4] R.-O. Buchweitz & A. Conca – “New free divisors from old”, J. Commut. Algebra 5 (2013), no. 1,

p. 17–47, arXiv:1211.4327.
[5] A. Dimca – Topics on real and complex singularities, Advanced Lectures in Mathematics, Friedr.

Vieweg & Sohn, Braunschweig, 1987.
[6] , “Syzygies of Jacobian ideals and defects of linear systems”, Bull. Math. Soc. Sci. Math.

Roumanie (N.S.) 56(104) (2013), no. 2, p. 191–203.
[7] A. Dimca & M. Saito – “Graded Koszul cohomology and spectrum of certain homogeneous poly-

nomials”, arXiv:1212.1081, 2012.
[8] , “Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary

double points”, arXiv:1403.4563, 2014.
[9] , “Some remarks on limit mixed Hodge structures and spectrum”, An. Ştiinţ. Univ.

Ovidius Constanţa Ser. Mat. 22 (2014), no. 2, p. 69–78.
[10] A. Dimca & G. Sticlaru – “Koszul complexes and pole order filtrations”, Proc. Edinburgh Math.

Soc. (2), to appear, arXiv:1108.3976.
[11] , “Chebyshev curves, free resolutions and rational curve arrangements”, Math. Proc.

Cambridge Philos. Soc. 153 (2012), no. 3, p. 385–397.
[12] , “Syzygies of Jacobian ideals and weighted homogeneous singularities”,

arXiv:1407.0168, 2014.
[13] I. Dolgachev & M. Kapranov – “Arrangements of hyperplanes and vector bundles on Pn”, Duke

Math. J. 71 (1993), no. 3, p. 633–664.
[14] M. Granger, D. Mond, A. Nieto-Reyes & M. Schulze – “Linear free divisors and the global loga-

rithmic comparison theorem”, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, p. 811–850.
[15] R. Hartshorne – Algebraic Geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, 1977.
[16] K. Hulek – “Stable rank-2 vector bundles on P2 with c1 odd”, Math. Ann. 242 (1979), no. 3,

p. 241–266.
[17] J. Kollár – “Singularities of pairs”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos.

Pure Math., vol. 62, American Mathematical Society, Providence, RI, 1997, p. 221–287.
[18] L. Narváez Macarro – “Linearity conditions on the Jacobian ideal and logarithmic-meromorphic

comparison for free divisors”, in Singularities I, Contemp. Math., vol. 474, Amer. Math. Soc.,
Providence, RI, 2008, p. 245–269.

[19] C. Okonek, M. Schneider & H. Spindler – Vector bundles on complex projective spaces, Progress
in Math., vol. 3, Birkhäuser, Boston, Mass., 1980.

[20] P. Orlik & H. Terao – Arrangements of hyperplanes, Grundlehren der Mathematischen Wis-
senschaften, vol. 300, Springer-Verlag, Berlin, 1992.

[21] K. Saito – “Einfach-elliptische Singularitäten”, Invent. Math. 23 (1974), p. 289–325.
[22] , “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, p. 265–291.
[23] E. Sernesi – Deformations of algebraic schemes, Grundlehren der Mathematischen Wis-

senschaften, vol. 334, Springer-Verlag, Berlin, 2006.

J.É.P. — M., 2014, tome 1

http://arxiv.org/abs/1304.5709
http://arxiv.org/abs/1211.4327
http://arxiv.org/abs/1212.1081
http://arxiv.org/abs/1403.4563
http://arxiv.org/abs/1108.3976
http://arxiv.org/abs/1407.0168


Syzygies and logarithmic vector fields along plane curves 267

[24] , “The local cohomology of the Jacobian ring”, Doc. Math. 19 (2014), p. 541–565.
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