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L2-TYPE CONTRACTION FOR SYSTEMS OF

CONSERVATION LAWS

by Denis Serre & Alexis F. Vasseur

Abstract. — The semi-group associated with the Cauchy problem for a scalar conservation
law is known to be a contraction in L1. However it is not a contraction in Lp for any p > 1.
Leger showed in [20] that for a convex flux, it is however a contraction in L2 up to a suitable
shift. We investigate in this paper whether such a contraction may happen for systems. The
method is based on the relative entropy method. Our general analysis leads us to the new
geometrical notion of Genuinely non-Temple systems. We treat in details two examples: – the
Keyfitz–Kranzer system with rotationally invariant flux, for which the L2 contraction holds
true, – the Euler system of gas dynamics, for which it does not.

Résumé (Contraction de type L2 pour des systèmes de lois de conservation)
On sait que le semi-groupe associé au Problème de Cauchy pour une loi de conservation

scalaire est contractant dans L1, mais qu’il ne l’est pas dans Lp si p > 1. Leger a montré dans
[20], pour un flux convexe, une propriété de contraction dans L2 moyennant une translation.
Nous examinons ici la possibilité d’une telle propriété pour les systèmes. Notre analyse nous
conduit à la notion géométrique de système Vraiment pas Temple. Nous traitons en détail deux
exemples : – le système de Keyfitz et Kranzer avec flux isotrope, pour lequel la contraction a
lieu, – le système de la dynamique des gaz, où ce n’est pas le cas.

1. Introduction

Let us consider a strictly hyperbolic system of conservation laws

(1) ∂tu+ ∂xf(u) = 0, u(t, x) ∈ Rn.

We denote λj(u), rj(u), `j(u) the jth eigen-(value, vector, form) of the differential
df(u). In particular, we have `j · rk ≡ 0 for k 6= j.

When n = 1 (the scalar case), it is known that the semi-group associated with
the Cauchy problem is L1-contracting: if v0 − u0 ∈ L1(R), then the corresponding
solutions u and v have the property that the difference v(t) − u(t) remains space-
integrable for every time t > 0, and t 7→ ‖v(t)−u(t)‖1 is non-increasing. The Kruzhkov
semi-group is not a contraction in Lp for p > 1, unless the equation is linear. However
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2 D. Serre & A. F. Vasseur

Leger proved recently [20] that if f is convex and if v is a pure shock wave, then
the L2-contraction is valid up to a suitable shift. Specifically, there exists a Lipschitz
curve t 7→ h(t) such that t 7→ ‖u(t)− τh(t)v(t)‖2 is non-increasing.

The contraction part in Kruzkhov’s analysis follows from the property that the
function (u, v) 7→ |u− v| is a convex entropy with respect to either of the variables u
or v. This is not true any more for (u, v) 7→ |u−v|p if p > 1 and this is the reason why
the semi-group is not Lp-contracting. When dealing with systems that are not linear,
we don’t have such bi-entropies (except for the useless affine functions), and therefore
we don’t expect a contraction property. Instead, several research papers make use of
the so-called relative entropies to prove uniqueness and/or stability results.

It has been first used by Dafermos [13, 12] and DiPerna [15] to show the weak-strong
uniqueness and stability of Lipschitz regular solution to conservation laws. (see also
Dafermos’ book [14]). The relative entropy method is also an important tool in the
study of asymptotic limits to conservation laws. Applications of the relative entropy
method in this context began with the work of Yau [33] and have been studied by Chen
& Frid [7, 8, 9, 10] and many others. For incompressible limits, see Bardos, Golse,
Levermore [1, 2], Lions and Masmoudi [22], Saint Raymond et al. [16, 26, 23, 25]. For
the compressible limit, see Tzavaras [30] in the context of relaxation and [5, 4, 24] in
the context of hydrodynamical limits. In all those papers, the method works as long
as the limit solution is Lipschitz.

Relative entropies η(u|v) are convex entropies of u, and dominate somehow the
quantity |u − v|2. However they loose the symmetry u ←→ v, and previous results
need special assumptions about v (typically Lipschitz regularity).

This paper is part of a general program initiated in [31] to apply this kind of method
where v is a given shock. It is based on the uniqueness result of DiPerna [15] (see also
Chen & Frid [9, 10] and Chen & Li [11] for asymptotic stability). Following the work
of Leger for the scalar case [20], an application to the stability of extremal shocks
for systems has been performed in [21] (see Texier and Zumbrun [29] and Barker,
Freistühler and Zumbrun [3] for interesting comments on this result). Finally, a first
application of the method to the study of asymptotic limit to a shock can be found in
[18]. In this paper we are investigating systems for which shocks are not only stable,
but also induce a contraction up to a shift.

In the present work, we shall assume that v is a pure shock, taking constant values
u`, ur on each side of the line x = σ(u`, ur)t.

We therefore assume that (1) admits a strongly convex entropy η, of class C2 with
entropy flux q, the adverb strongly meaning that D2η > 0n. We always assume that
admissible solutions of (1) satisfy the entropy inequality

(2) ∂tη(u) + ∂xq(u) 6 0.

In particular, shocks (u`, ur) of velocity σ satisfy both the Rankine–Hugoniot relation
and an inequality

f(ur)− f(u`) = σ(ur − u`), q(ur)− q(u`) 6 σ(η(ur)− η(u`)).

J.É.P. — M., 2014, tome 1



L2-type contraction for systems of conservation laws 3

As usual, the relative entropy is the expression

η(a|b) := η(a)− η(b)− dη(b) · (a− b),

and the relative entropy-flux is(1)

q(a|b) := q(a)− q(b)− dη(b) · (f(a)− f(b)).

While η(a|b) is strictly positive for a 6= b, we have η(a|b), q(a|b) = O(|a − b|2) when
a→ b.

Notice that admissible solutions satisfy

(3) ∂tη(u|a) + ∂xq(u|a) 6 0

for every constant a.
We are interested in the stability of a shock wave (u`, ur) with respect to η. Because

we feel free to shift a solution at each time, we speak of relative stability. Let us give
first a heuristic of our method. If u is a solution with the same values u`,r at infinity,
we compute at each time the minimum of

h 7→ E(u(t);h) :=

∫ h

−∞
η(u|u`)dx+

∫ ∞
h

η(u|ur)dx

and consider the evolution of this minimum as time increases.
Because η(ur|u`) > 0 and η(u`|ur) > 0, we have

lim
h→±∞

E(u(t);h) = +∞.

Since h 7→ E(u(t);h) is continuous, the minimum is achieved at some finite h = h(t),
where we have

d

dh

∣∣∣∣
h(t)−0

E 6 0 6
d

dh

∣∣∣∣
h(t)+0

E.

These inequalities translate into

η(u−|u`) 6 η(u−|ur), η(u+|ur) 6 η(u+|u`),

where u± = u(t, h(t) ± 0). The function h(t) where the minimum is reached may be
discontinuous and even non unique. For this reason, we shall construct the function h
in a slightly different manner. We will show that it still verifies a slightly relaxed
condition for almost every time t > 0:

(4) η(u−|u`)− η(u−|ur) and η(u+|ur)− η(u+|u`) have the same sign.

In the sequel, we shall make use of the following notation: if F is a function of u,
then

Fr = F (ur), F` = F (u`), [F ] = Fr − F`, F± = F (u±).

There are two regimes:

(1)We point out that the definition of q(a|b) does not mimic that of η(a|b).

J.É.P. — M., 2014, tome 1



4 D. Serre & A. F. Vasseur

Smooth case. — The solution u(t) is continuous at h(t), that is u− = u+, which we
denote u below. Then (4) amounts to writing η(u|u`) = η(u|ur). This is equivalent to
the linear constraint

(5) [dη] · u = [dη · u− η].

Because of the strict convexity of η, we have

(6) [dη] · [u] > 0

and therefore (5) defines a hyperplane Π in the phase space, which separates strictly
the points u` and ur; for instance

[dη] · ur − [dη · u− η] = ηr − η` − dη`(ur − u`) > 0.

Sharp case. — On some time interval, the solution is discontinuous at x = h(t). Then
(4) is completed by the Rankine–Hugoniot condition

f(u+)− f(u−) = σ(u−, u+)(u+ − u−)

and the entropy inequality. The condition (4) rewrites

(7) min ([dη] · u−, [dη] · u+) 6 [dη · u− η] 6 max ([dη] · u−, [dη] · u+) .

This expresses that u− and u+ are separated by the hyperplane Π.

The dissipation rate. — Following [21], we consider the rate of dissipation of E for
a given function h verifying (4):

d

dt
E(u(t);h(t)) =

d

dt

(∫ h(t)

−∞
η(u|u`) dx+

∫ +∞

h(t)

η(u|ur) dx
)

=

∫ h(t)

−∞
∂tη(u|u`) dx+

∫ +∞

h(t)

∂tη(u|ur) dx+ ḣ
(
η(u−|u`)− η(u+|ur)

)
6 −

∫ h(t)

−∞
∂xq(u|u`) dx−

∫ +∞

h(t)

∂xq(u|ur) dx+ ḣ
(
η(u−|u`)− η(u+|ur)

)
6 q(u+|ur)− q(u−|u`)− ḣ

(
η(u+|ur)− η(u−|u`)

)
=: D(u`,r;u±),

where we have used (3). Notice that the difference between d
dtE(u(t);h(t)) and

D(u`,r;u±) is only due to the entropy dissipation through shock waves in u(t), away
from x = h(t). Because they may just not be present, we feel free to call D(u`,r;u±)

the dissipation rate of E.
In what we have called the smooth case, we have u− = u+ (denoted as u); because

of (5), the rate D reduces to

Dsm(u`,r;u) = q(u|ur)− q(u|u`) = [dη · f − q]− [dη] · f(u).

On the contrary, if u−(t) 6= u+(t) on some time interval, then necessarily ḣ(t) =

σ(u−, u+). Then the dissipation rate becomes

DRH(u`,r;u±) = q(u+|ur)− q(u−|u`)− σ(u−, u+)(η(u+|ur)− η(u−|u`)).

J.É.P. — M., 2014, tome 1



L2-type contraction for systems of conservation laws 5

An alternative formula, which exploits Rankine–Hugoniot, is

DRH = [dη · f − q]− σ[dη · u− η] + q+ − q− − σ(η+ − η−)− [dη] · (f − σu)±.

A definition. — We say that a given admissible discontinuity (u`, ur) (a shock or a
contact discontinuity) is relative-entropy stable if the dissipation rate D is always non-
positive. This means on the one hand that Dsm(u`,r;u) 6 0 for every u ∈ Π (i.e., sat-
isfying (5); and on the other hand, that DRH(u`,r;u±) 6 0 for every admissible
discontinuity (u−, u+) satisfying the constraint (7).

We show in the next section that if (u`, ur) is relative-entropy stable, then the quan-
tity infhE(u(t);h) remains smaller than E(u(0); 0). Indeed, we show the existence of
a function t→ h(t) such that E(u(t);h) is non-increasing in time.

Compatibility with the entropy condition. — We show here that the relative-
entropy stability (in short, RES) contains a formulation of the entropy condition
when the shock (u`, ur) is weak. To do so, we employ the so-called entropy variable
z := dη(u). Denoting η∗ the convex conjugate function, we have u = dη∗(z) and
(D2η)−1 = D2η∗. Finally, we know that the scalar function M(z) := z · f(u) − q(u)

satisfies f(u) = dM(z). Then Dsm = [M ] − dM · [z], where the constraint is
dη∗ · [z] = [η∗]. This suggests to evaluate Dsm at the special point u ∈ Π given by
the formula

u =

∫ 1

0

dη∗(θzr + (1− θ)z`) dθ.

Then the RES implies that dM(z) · [z] > [M ], where z = dη(u).
When the shock strength is small, z is close to zr,`. Developing dη∗(θzr+(1−θ)z`)

to the second order at z, we find that

z =
1

2
(zr + z`) +

1

24
(D2η∗)−1D3η∗ · [z]⊗2 +O([z]3).

Likewise, a Taylor expansion of M at z gives

Dsm(z`,r; z) =
1

2
D2Mz

(
(zr − z)⊗2 − (z` − z)⊗2

)
+

1

6
D3Mz

(
(zr − z)⊗3 − (z` − z)⊗3

)
+O([z]4).

We now have
(zr − z)⊗3 − (z` − z)⊗3 ∼ 1

4
[z]⊗3

and

(zr − z)⊗2 − (z` − z)⊗2 = [z]⊗ (zr + z` − 2z)

∼ − 1

12
[z]⊗ (D2η∗)−1D3η∗ · [z]⊗2.

This yields

24Dsm(z`,r; z) ∼ D3Mz[z]
⊗3 −D2Mz([z], (D

2η∗)−1D3η∗ · [z]⊗2).

J.É.P. — M., 2014, tome 1



6 D. Serre & A. F. Vasseur

We come back to the original variable u. In the course of the computation, we use the
fact that df is D2η-symmetric, and we obtain

24Dsm(z`,r; z) ∼ D2ηu([u],D2fu[u]⊗2).

According to Lax [19], we know that [u] ∼ εrk(u) for some index k and a small ε.
Then we derive

24Dsm(z`,r; z) ∼ ε3 D2η(rk,D
2fr⊗2

k )
∣∣
u

= ε3dλk · rk,

with the normalization D2η(rk, rk) = 1 = `k · rk. Thus the RES tells us that
εdλk · rk 6 0, which is clearly compatible with the entropy condition. For instance, if
the kth field is GNL at u, the entropy condition is equivalent for the small shock to
εdλk · rk < 0.

The rest of the article is organized as follows. In Section 2, we show that RES
ensures that the infimum of E(u(t);h) over h is a non-increasing function of time (see
Theorem 2.1). In Section 3, we recall Leger’s result that scalar shocks are RES if the
flux is either convex or concave (see Proposition 3.1); the relative stability fails other-
wise. Section 4 is devoted to the Keyfitz-Kranzer system with rotationally symmetric
flux φ(|u|)u; we show that shocks are RES if and only if ρφ is convex (or concave)
and φ is decreasing (resp. increasing) (see Theorem 4.1). However, the RES of con-
tact discontinuities needs only strict hyperbolicity (Theorem 4.2). Section 5 concerns
general strictly hyperbolic systems. We focus on whether the rate Dsm achieves a
non-positive maximum over the hyperplane of constraints; we did not analyze that
deeply the rateDRH , which behaves in a more non-linear way because of the Rankine–
Hugoniot constraint over the pair (u−, u+). Whether a characteristic field belongs to
the Temple class or not turns out to be crucial. We are led to the apparently new
notion of Genuinely Non Temple field (Proposition 5.4). In the case where the char-
acteristic field associated with the shock admits a Riemann invariant w (the field
is rich), we show that GNT amounts to saying that a level set of w has a non-
degenerate curvature (Proposition 5.5). In the case of an extreme shock, we even find
that the maximality Dsm is equivalent to a convexity property of this level set (Propo-
sition 5.9). Section 6 begins with the observation that RES is intrinsic, in the sense
that it is invariant under an Euler–Lagrange-type transformation. When dealing with
examples taken from continuum mechanics, this allows us to perform calculations in
Lagrangian coordinates, where the system looks simpler. Sadly, we find that shocks
are not RES in the cases of p-system or full gas dynamics. Finally, the appendix
provides a detailed proof of Lemma 1.1.

We point out that the drift chosen here is not the only possible one. For instance,
Leger [20] used a different one. Also, we need a different choice to conclude in Section 2
below. But the one that minimizes E(u(t) : h) is optimal in the sense that if some
drift ĥ(t) makes t 7→ E(u(t); ĥ(t)) decay, then t 7→ infhE(u(t);h) decays too. Thus
the non-positivity of D is also a necessary condition for the relative stability, whence
the terminology RES.

J.É.P. — M., 2014, tome 1



L2-type contraction for systems of conservation laws 7

2. Construction of the drift h

This section is devoted to the following theorem.

Theorem 2.1. — We consider (u`, ur) a relative-entropy stable discontinuity. Then
for any u ∈ BVloc(R+ × R) ∩ L∞(R+ × R) solution of (1), (2) with

E(u(t = 0), 0) <∞,

there exists a Lipschitz function t → h(t) such that E(u(t),h(t)) is a non-increasing
function.

Note that the result does not depend on the L∞ norm of u, nor on the BVloc norm
of u. The boundedness of u only ensures that h is Lipschitz, and the BVloc norm
ensures that u− and u+ are well-defined. This condition can be relaxed by imposing
some strong traces on the solution u (see [21]).

Proof. — Recall that Π = {η(u|ur)− η(u|u`) = 0}. If u 6∈ Π, we define

Vε(u) =
[q(u|ur)− q(u|u`)− ε]+

η(u|ur)− η(u|u`)
,

where [·]+ = max(0, ·). If instead u ∈ Π, then we set Vε(u) = 0. Using that (u`, ur) is
relative-entropy stable, we have that for any ε > 0, Vε ∈ C∞(R). Indeed, the function
is smooth outside of Π. And on Π, q(u|ur)− q(u|u`)− ε 6 −ε. Hence, Vε(u) = 0 on a
neighborhood of Π.(2)

Consider now u ∈ BVloc(R+ × R) ∩ L∞(R+ × R) solution to (1), (2), such that

E(u(t = 0), 0) <∞.

We construct (in the Filippov sense) a solution to

ḣε = Vε(u(t, hε)),

h(0) = 0.

We have the following lemma (see [21]):

Lemma 2.2. — There exists a Lipschitz function hε such that:

hε(0) = 0,

‖ḣε‖L∞ 6 ‖Vε‖L∞ ,

ḣε ∈ I(Vε(u(t, hε(t)−)), Vε(u(t, hε(t)+))), for almost any t > 0,

where I(a, b) is the interval with endpoints a and b. Moreover, for almost every t > 0,

f(u+)− f(u−) = ḣε(u+ − u−),

q(u+)− q(u−) 6 ḣε(η+ − η−),

(2)If (u`, ur) is strictly relative-entropy stable, that is inequalities are strict in the definition, then
we can directly take ε = 0.

J.É.P. — M., 2014, tome 1



8 D. Serre & A. F. Vasseur

which means that for almost every t > 0, either (u−, u+, ḣε) is an admissible entropic
discontinuity or u− = u+.

The proof of this lemma can be found in [21]. It is based on the Filippov flows and
was already used by Dafermos. We give a version of it in the appendix for the reader’s
convenience.

For almost every time t > 0 such that u− = u+, we have

ḣε = Vε(u±).

For those times t, thanks to the definition of Vε, we have

D(u`,r, u±) 6 ε.

Now, for almost every time t > 0 such that u− 6= u+, we have two possibilities.
Either u− and u+ are separated by Π. In this case D(u`,r, u±) 6 0, thanks to the
lemma and the definition of relative stability. Or, u− and u+ are not separated by Π.
In this case, Vε(u−), Vε(u+), η(u−|u`)− η(u−|ur), and η(u+|u`)− η(u+|ur) have the
same sign. And so, ḣε ∈ I(Vε(u−), Vε(u+)) has also the same sign. Then, using that
(u−, u+, ḣε) is an entropic discontinuity, we have for both v = u− and v = u+

D(u`,r, u±) 6 q(v|ur)− q(v, u`)− ḣε(η(v|ur)− η(v|u`)),

= q(v|ur)− q(v, u`)− |ḣε| |η(v|ur)− η(v|u`)|.

Consider this inequality for the value of v such that |Vε(v)| = inf(|Vε(u−)|, |Vε(u+)|).
For this value v we have

|ḣε| > |Vε(v)|,

and so

D(u`,r, u±) 6 q(v|ur)− q(v, u`)− |Vε(v)| |η(v|ur)− η(v|u`)|,
= q(v|ur)− q(v, u`)− Vε(v)(η(v|ur)− η(v|u`)),
= ε− [q(v|ur)− q(v, u`)− ε]− 6 ε.

Therefore, for every t > s > 0

E(u(t), hε(t)) 6 tε+ E(u(s), hε(s)).

Note that ‖Vε‖L∞ is uniformly bounded with respect to ε. Hence, up to a subsequence,
hε converges, uniformly on bounded sets, to a Lipschitz function h, and E(u(t), hε(t))

converges to E(u(t), h(t)). At the limit, we have

E(u(t), h(t)) 6 E(u(s), h(s)),

whenever t > s > 0. �

J.É.P. — M., 2014, tome 1



L2-type contraction for systems of conservation laws 9

3. The scalar case

The case of a scalar equation has been treated by Leger [20]. Even if we don’t
pretend to originality, we provide (for the sake of completeness) a proof that the
dissipation rate is non-positive under natural assumptions.

Without loss of generality, we may assume that ur < u`. We limit ourselves to the
solutions given by Kruzkhov’s theory, and therefore we have the Olěınik inequality
that the graph of f lies below its chord between ur and u`.

The smooth case. — We ask ourselves whether

Dsm := [η′f − q]− [η′]f(u).

is non-positive whenever u ∈ Π, that is when

(8) u =
[uη′ − η]

[η′]
.

In other words, we ask whether

f

(
[uη′ − η]

[η′]

)
6

[fη′ − q]
[η′]

?

Since every convex function η is an entropy (in the scalar case), it is natural to ask
for a relative stability for every such η. Because η′′(u)du may be any non-negative
measure, the above inequality amounts to saying that

f

(∫
u dν

)
6
∫
f(u) dν

for every probability measure ν over [ur, u`]. This Jensen-type inequality is equivalent
to saying that f is convex over [ur, u`].

The discontinuous case. — We therefore assume for the rest of this section that f is
convex, not only over (ur, u`), but globally. If u+ 6= u−, we thus have u+ < u− and
[η′] < 0. So, the constraint (7) is that

u+ 6
[uη′ − η]

[η′]
6 u−.

The velocity of the shock (u−, u+) is given by

σ =
f+ − f−
u+ − u−

,

and we have

DRH = q+ − q− − σ(η+ − η−) + [η′f − q]− σ[uη′ − η]− [η′](f − σu)±.

Up to the use of a moving frame, we may assume σ = 0, that is f+ = f−, which we
denote f . This amounts to replacing f − σu by f and q − ση by q. We then have

DRH = q+ − q− + [η′f − q]− [η′]f =

(∫ u−

u+

−
∫ u`

ur

)
fη′′du+ (η′` − η′r − η′− + η′+)f.

J.É.P. — M., 2014, tome 1



10 D. Serre & A. F. Vasseur

This rewrites as DRH = ε(I)A(I) + ε(J)A(J) where I, J are disjoint intervals such
that

I ∪ J =
(
(u+, u−) ∪ (ur, u`)

)
r
(
(u+, u−) ∩ (ur, u`)

)
.

The sign ε(I) is +1 if I ⊂ (u+, u−) and −1 otherwise. Finally,

A(I) =

∫
I

fη′′du− f
∫
I

η′′(u)du.

Because f is convex, A(I) is negative if I ⊂ (u+, u−) and positive otherwise. In all
cases, ε(I)A(I) 6 0 and we receive D 6 0.

In conclusion, we have the

Proposition 3.1 (Leger [20]). — Let us assume that f is a convex flux, and η

is a convex entropy. Let (u`, ur) be an admissible shock of the conservation law
ut + (f(u))x = 0. Then the dissipation rate D is non-positive:
• when u is given by (8), then Dsm 6 0,
• when (u−, u+) is another admissible shock, then DRH 6 0.

Of course, the proposition remains true if f is concave instead. This amounts to
changing x into −x.

4. The Keyfitz–Kranzer system with a symmetric flux

Let φ : U → R be a smooth function over a planar domain. The Keyfitz–Kranzer
system writes

(9) ∂tu+ ∂x(φ(u)u) = 0.

We concentrate here on the case where the flux f(u)=φ(u)u is rotationally symmetric:

φ = φ(ρ), u = ρeiθ,

and we choose a half-space domain U , for instance that defined by u1 > 0. We denote
g(ρ) := ρf(ρ).

The following facts are well-known (see Keyfitz & Kranzer [17])
• The wave velocities are µ = φ and λ = ρφ′ + φ. They are associated with Rie-

mann invariants θ and ρ, respectively. The µ-field is linearly degenerate, with contact
discontinuities satisfying [ρ] = 0. The λ-field is genuinely nonlinear whenever g′′ does
not vanish; the λ-shocks satisfy [θ] = 0, together with ρr < ρ` in the convex case.

We point out that the system is strictly hyperbolic if φ′ does not vanish, an as-
sumption that we make from now on.
• Each sub-domain of the form

{u | θ ∈ [θ1, θ2] and ρ ∈ [ρ1, ρ2]}

is invariant under the Riemann solver(3). It is therefore invariant for the semi-group
(St)t>0 constructed through the Glimm scheme.

(3)The lack of convexity of such domains is compensated by the linear degeneracy of the µ-field.
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L2-type contraction for systems of conservation laws 11

• The Riemann solver does not increase the total variation of θ and ρ. Therefore
(St)t>0 is TVD in terms of these coordinates. This has two important consequences:
– on the one hand the semi-group is globally defined for data of arbitrary large total
variation, – on the other hand, we may apply Bressan & coll.’s theory, which tells us
that (St)t>0 is unique among the TVD semi-groups; see [6].
• The system decouples formally into a scalar equation

(10) ∂tρ+ ∂x(g(ρ)) = 0,

and a transport equation

(11) ∂tθ + φ(ρ)∂xθ = 0.

Actually, it is known that when u is an admissible solution of (9), then its modulus ρ
is an admissible solution of (10).
• The entropies of the system are the functions of the form u 7→ e(ρ)+ρj(θ). Keep-

ing track of the rotational invariance, it makes sense to choose an entropy depending
upon ρ only. Then it is convex if and only if e′ > 0 and e′′ > 0.

In this section, we study the relative stability of an admissible discontinuity for
(10), which may be a shock or a contact. In both cases, we shall prove that the
dissipation rate D is always non-positive. For both situations, this requires studying
three positions: the “smooth” one and the “discontinuous” one when (u−, u+) is either
a shock or a contact.

For the sake of simplicity, we choose the entropy η(u) = 1
2 |u|

2 = 1
2ρ

2, for which

dη · u− η =
1

2
ρ2, dη · f(u)− q = ρg(ρ)− q(ρ), q′ = ρg′(ρ).

We leave the reader verifying that the conclusions hold the same when η = η(ρ) is
another convex entropy.

4.1. Relative stability of a shock wave. — If shocks are going to be relatively stable
in the sense that D 6 0 in all situations, then in particular they must be relatively
stable when the initial perturbation is purely longitudinal, meaning that θ ≡ cst

at initial time. But then θ remains constant for all time and our system reduces to
the equation (10). We have seen in the previous section that this relative stability is
equivalent to the global convexity (or global concavity) of g.

We therefore assume that g is a convex function. For a shock wave we have θr = θ`
and 0 < ρr < ρ`.

A necessary condition. — In the smooth case, we have

Dsm = [ρg − q]− φ(ρ)[u] · u,

where u obeys to the constraint

(12) [u] · u =
[1

2
ρ2
]
.

This gives us
Dsm = [ρg − q]− φ(ρ)

[1

2
ρ2
]
,
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12 D. Serre & A. F. Vasseur

where ρ is any value larger than or equal to 〈ρ〉 := 1
2 (ρ`+ρr) (apply Cauchy–Schwarz

to (12)).
In order to find a necessary condition upon the flux, we assume that every shock

is relatively stable. Since [ρ2/2] < 0, this tells us that

φ(ρ) 6
[ρg − q]
[ρ2/2]

.

Let us fix a number ρ > 0 and write that Dsm 6 0 for every (ρ`, ρr) satisfying 〈ρ〉 = ρ,
and for every ρ > 〈ρ〉. Passing to the limit when the shock strength vanishes, and
using (ρg − q)′ = g as well as [ρ2/2] = 〈ρ〉[ρ], we obtain that

φ(ρ) 6 φ(ρ),

whenever ρ > ρ. In other words, it is necessary that φ be decreasing (φ′ < 0, to ensure
strict hyperbolicity) in order that all shocks be relatively stable.

We therefore make the assumption in the remaining part of this stability analysis(4),
that φ′ < 0. Then the smooth case is easy: the constraint ensures that φ(ρ) 6 φ(〈ρ〉).
Because of [ρ2] 6 0, there follows

Dsm 6 [ρg − q]− g(〈ρ〉)[ρ],

where the right-hand side is non-positive thanks to the Jensen inequality:

g(〈ρ〉) = g

(
1

ρ` − ρr

∫ ρ`

ρr

ρdρ

)
6

1

ρ` − ρr

∫ ρ`

ρr

g(ρ)dρ =
[ρg − q]

[ρ]
.

Finally, when φ′ < 0 and g is convex, Dsm is non-positive.

When (u−, u+) is a shock. — We turn now to the first discontinuous case, when the
auxiliary discontinuity is also a shock. The dissipation rate

DRH = D0 + cD1

is linear in c := cos(θ± − θr,`), with D1 = −[ρ](g − σρ)±. We point out that, because
all states belong to the same half-space U , we have c ∈ (0, 1].

To determine the sign of D1, we observe that because of the Lax shock inequality
σ < g′−, we have

(g − σρ)± = g− − σρ− > g− − ρ−g′− = −ρ2
−φ
′
− > 0.

Therefore D1 > 0 and DRH 6 D0 +D1.
Because the latter valueD0+D1 is that obtained for θ± = θr,`, it corresponds to the

scalar case, which we know is relatively stable (see Section 3). Therefore D0 +D1 6 0

and there follows DRH 6 0. This rules out the shock-shock case.

(4)If we had assumed g concave, then the condition would be φ′ > 0.
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When (u−, u+) is a contact. — There remains the case where the auxiliary disconti-
nuity is a contact. Then ρ+ = ρ− (denoted ρ). Let us denote now c± = cos(θ±− θr,`),
which belong to (0, 1]. The constraint

min([u] · u−, [u] · u+) 6
[1

2
ρ2
]
6 max([u] · u−, [u] · u+)

recasts as

min(c−, c+) 6
〈ρ〉
ρ
6 max(c−, c+) .

In particular, we have ρ > 〈ρ〉.
Thanks to ρ+ = ρ−, we have

DRH = [ρg − q]− σ
[1

2
ρ2
]

= [ρg − q]− φ(ρ)
[1

2
ρ2
]
.

Because of ρ > 〈ρ〉, φ′ < 0, and [ρ2] < 0, there follows

DRH 6 [ρg − q]− φ(〈ρ〉)
[1

2
ρ2
]

= [ρg − q]− [ρ]g(〈ρ〉),

where we have seen that the right-hand side is non-positive. We deduce again that
DRH 6 0.

In conclusion, we may state the

Theorem 4.1. — Let us assume that g is convex and φ′ < 0 (or as well g is concave
and φ′ > 0). Then the shocks (u`, ur) are relative-entropy stable, in the sense that the
dissipation rates Dsm /DRH are non-positive.

4.2. Relative stability of a contact discontinuity. — We now assume that (u`, ur)

is a contact discontinuity, that is [ρ] = 0. It turns out that the strict hyperbolicity
suffices to carry out the calculations; in particular, we don’t need genuine nonlinearity.

In the smooth case, the constraint is

[u] · u =
[1

2
ρ2
]

= 0,

which means that θ = 〈θ〉. Then

Dsm = [dη · f − q]− [dη] · f(u) = [ρg − q]− [u] · φ(ρ)u = 0− 0 = 0.

When (u−, u+) is another contact, we have

DRH = q+ − q− − σ(η+ − η−) + [dη · f − q]− σ[dη · u− η]− [dη] · (f − σu)±

= 0 + [ρg − q]− σ
[1

2
ρ2
]
− [u]((φ− σ)u)±

= 0 + 0− 0− 0 = 0,

because of σ = φ±.
When (u−, u+) is a shock wave, the constraint is

min([u] · u−, [u] · u+) 6
[1

2
ρ2
]

= 0 6 max([u] · u−, [u] · u+).
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14 D. Serre & A. F. Vasseur

Because u+ and u− are colinear with the same orientation, we deduce again that
[u] · u± = 0. There follows

DRH = q+ − q− − σ(η+ − η−) + [dη · f − q]− σ[dη · u− η]− [dη] · (f − σu)±

= q+ − q− − σ(η+ − η−) + [ρg − q]− σ
[1

2
ρ2
]
− [u]((φ− σ)u)±

= q+ − q− − σ(η+ − η−) + 0− 0 + 0 6 0,

where we have used the Lax entropy condition. In conclusion, we have

Theorem 4.2. — Let us assume that φ′ does not vanish (strict hyperbolicity). Then the
contact discontinuities (u`, ur) are relatively stable, in the sense that the dissipation
rates Dsm /DRH are non-positive.

5. General systems; a study of Dsm

We go back to a strictly hyperbolic system of the general form (1). The analysis
of Dsm leads us to maximise

u 7→ [dη · f − q]− [dη] · f(u)

over the hyperplane Π defined by [dη] ·u = [dη ·u− η]. We distinguish two situations,
whether this function attains its supremum or not. In the latter case, the supremum
is obtained as u ∈ Π tends to the boundary of U ; because ∂U plays the role of infinity,
it is unlikely that Dsm remain bounded, in particular be non-positive.

We therefore focus onto the first situation: let u ∈ Π be a maximum of Dsm

over Π. Then [dη]df(u) is parallel to [dη], meaning that [dη] is an eigenform of df(u).
When (u`, ur) is a k-shock of small amplitude, we expect that u be close to ur,`
(see Proposition 5.4 below); then [u] ∼ εrk(u) with |ε| � 1, and [dη] ∼ εD2ηurk(u) =

ε`k(u), where we have normalized D2η(rk, rk) = `krk. The separation between the
eigen-directions thus implies that `k(u) is the eigenform parallel to [dη].

The case of a Temple field. — We anticipate that the search of a (local) maximum
of Dsm over Π is better done under the assumption that the kth characteristic field
is genuinely not Temple. To make this evident, let us consider the opposite case,
where this field is of Temple class. This terminology means that `k is parallel to the
differential dwk of some function wk whose level sets are hyperplanes. Then wk is a
called Riemann invariant, and it satisfies formally ∂twk + λk∂xwk = 0.

When the restriction of Dsm to Π admits a critical point u, the hyperplanes Π and
{u |wk(u) = wk(u)} both contain u and have the same normal `k(u) at this point.
Thus they coincide. Now, at every other point u ∈ Π, the normal remains the same,
namely [dη]. But because Π is a level set of wk, the normal has to be colinear to
dwk(u), or to `k(u), and therefore [dη] is an eigenform of df(u) for every u ∈ Π. This
implies that Dsm remains constant over Π !
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Proposition 5.1. — Suppose that the kth characteristic field is of Temple class, and
that (u`, ur) is an admissible discontinuity of the kth family. Then
• either Dsm is constant over Π (non-generic),
• or it does not have any critical point over Π (generic).

5.1. The non-generic case in a Temple system. — Suppose that n = 2 and both
characteristic fields are Temple (we say that the system is of Temple class). The
characteristic curves are lines. Assuming that they are not parallel to fixed directions,
each line La has an equation u1 + au2 = h(a). Conversely, when u ∈ U , the equation
h(a)− u1 − au2 = 0 has two roots w(u) < z(u) which are the Riemann invariants.

Following Chapter 13 of [28], the convex entropies of the system have the form

η(u) =

∫ z(u)

w(u)

(u1 + au2 − h(a)) dµ(a),

where µ is any non-negative measure. Denoting R,S and T functions of a such that
dR = dµ, dS = adµ and dT = h(a)dµ, η is given in closed form by the formula

η(u) = (R(z)−R(w))u1 + (S(z)− S(w))u2 − T (z) + T (w)

and its differential is

dη = (R(z)−R(w))du1 + (S(z)− S(w))du2.

We have dη · u− η = T (z)− T (w). For a k-shock, the opposite Riemann invariant is
constant and therefore (up to a constant sign)

[dη] = [R(wk)]du1 + [S(wk)]du2, [dη · u− η] = [T (wk)].

The equation of the line of constraint Π is therefore

[R(wk)]u1 + [S(wk)]u2 = [T (wk)].

In the non-generic case of Proposition 5.1, this line is characteristic, which means

(13) [T (wk)]

[R(wk)]
= h

(
[S(wk)]

[R(wk)]

)
.

The equation (13) amounts to writing (say that wk = z)
1∫ zd

zg
dµ(a)

∫ zd

zg

h(a)dµ(a) = h

(
1∫ zd

zg
dµ(a)

∫ zd

zg

adµ(a)

)
.

If this is going to be true for every convex entropy, that is for every positive measure µ,
then h has to be affine. This amounts to saying that all the lines La intersect at some
point; this point may lie at infinity, in which case the lines are parallel.

In conclusion, the non-generic case of a Temple system, the one for which Dsm

is constant over the line of constraint Π, happens precisely when the characteristic
lines La of one family are converging or are parallel. This rules out the so-called
Leroux system

∂tu1 + ∂x(u1u2) = 0, ∂tu2 + ∂x(u1 + u2
2) = 0,
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16 D. Serre & A. F. Vasseur

but it is consistent with the system of electrophoresis (where actually n > 2)

∂tui + ∂x
aiui
m

= 0, m =
∑
i

ui, ui(x, t) > 0.

When an n × n Temple system is non-generic in the above sense, then
Dsm ≡ Dsm(u) over Π, where u is the intersection point of Π with the seg-
ment [u`, ur]. Because this segment is contained in a characteristic line L, and this
line is an invariant subset, the calculation of Dsm(u) actually occurs in the relative
stability analysis of the shock, when considering disturbances that take values only
along L. This is nothing but the relative stability of the shock, as a solution of
a scalar equation (the system restricted to L), which we know is true when the
corresponding field is genuinely nonlinear. Under this GNL assumption, we deduce
that Dsm(u) 6 0, and therefore Dsm 6 0 over Π. We summarize this analysis into

Proposition 5.2. — Suppose that the system is of Temple class. Suppose that the kth
characteristic field is genuinely nonlinear and non-generic as described in Proposi-
tion 5.1. Then given a k-shock (u`, ur), we have Dsm 6 0 for every u ∈ Π.

Let us instead consider the rate DRH when the shocks (u`, ur) and (u−, u+) corre-
spond to distinct families. Then wk(u−) = wk(u+); but because Π is a level set of wk
that separates u− from u+, we are actually in the limit situation, where both u±
belong to Π: [dη] · u± = [dη · u− η]. We then have

DRH = q+ − q− − σ(η+ − η−) + [dη · f − q]− σ[dη · u− η]− [dη] · (f − σu)±

= q+ − q− − σ(η+ − η−) + [dη · f − q]− [dη] · f(u±)

6 Dsm(u±) 6 0,

where we have used the Lax entropy inequality and then Proposition 5.2. In conclu-
sion, we state

Proposition 5.3. — Suppose that the system is of Temple class. Suppose that the kth
characteristic field is genuinely nonlinear and non-generic as described in Proposi-
tion 5.1. Then given a k-shock (u`, ur) and a j-shock (u−, u+) with j 6= k, we have
DRH(u`, ur;u−, u+) 6 0.

5.2. Critical points of Dsm over Π; genuinely non-Temple fields. — We are there-
fore interested in critical points u of Dsm over Π. As explained above, this means that

(14) [dη] · u = [dη · u− η], [dη] is an eigenform of df(u).

We perform a local analysis, which covers the case where the shock strength is small
and u is close to u`,r. Recall that in this situation, the strict hyperbolicity implies
that the second part of (14) is that [dη] is parallel to `k(u). We thus rewrites (14) as

(15) [dη] · u = [dη · u− η] and [dη] · rj(u) = 0, ∀j 6= k.
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Let us recall the local description of the kth Hugoniot curve Hk(u). The Rankine–
Hugoniot equation f(v)− f(u) = σ(v − u) can be recast as an eigenvalue problem:

(A(v, u)− σ)(v − u) = 0, A(v, u) :=

∫ 1

0

df(sv + (1− s)u) ds.

The matrix A(v, u) is a smooth function of its arguments. At v = u, it coincides with
df(u). Because the latter has real, simple eigenvalues, this is also true for A(v, u)

as long as v remains in some neighbourhood V(u) then the eigenvalues/-vectors
λj(v, u) / rj(v, u) are smooth functions(5). Then the Rankine–Hugoniot relation
amounts to saying that σ is an eigenvalue λj(v, u) and v − u is colinear to rj(v, u).
The curve Hk(u) is thus defined implicitly as a parametrized curve ε 7→ v(ε) by

v = u+ εrk(v, u).

Thank to the implicit function theorem, v(ε) is well-defined for ε small enough, with

v(0) = u,
dv

dε

∣∣∣∣
ε=0

= rk(u).

Let us now rewrite (15), using the same trick as for Rankine–Hugoniot, where
u` = u and ur = v(ε). For instance,

(16) [dη] = [u]TΣ(u`, ur), Σ(u`, ur) :=

∫ 1

0

D2ηsu`+(1−s)ur
ds,

and

[dη · u− η] = m(ur, u`) · [u], m(ur, u`) :=

∫ 1

0

(su` + (1− s)ur)TD2ηsu`+(1−s)ur
ds.

Then (15) can be recast as

(17) (rTk Σ)u`,ur
u = (m · rk)u`,ur

and (rTk Σ)u`,ur
rj(u) = 0, ∀j 6= k.

After these preliminaries, we may define a non-linear map

(ε, u) 7→ N (ε, u) :=

(
rTk Σu−m · rk

rTk Σrj(u), ∀j 6= k

)∣∣∣∣
u`=v(ε),ur=u

,

where the arguments of Σ, rk and m, the quantities that do not depend explicitly
on u, are (v(ε), u). Then (15) is equivalent to

(18) N (ε, u) = 0.

When ε = 0, we know that Σ = D2ηu and rk = rk(u); because the eigenbasis of df

is orthogonal relatively to D2η, we deduce that rTk Σ reduces to a kth eigenform of
df(u), say `k(u). Likewise, m reduces to uTD2ηu. Therefore

N (0, u) =

(
`k(u) · (u− u)

`k(u) · rj(u), ∀j 6= k

)
.

(5)Here we need a choice of the eigenfield. It can be specified by a normalization, say that rTj Σrj =

1 where Σ(v, u) is given as in (16) below.
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18 D. Serre & A. F. Vasseur

By construction, we have N (0, u) = 0. Differentiating at this point, there comes

(DuN0,u)h =

(
`k(u) · h

`k(u) · (durj · h), ∀j 6= k

)
.

In order to apply the Implicit Function Theorem, we make the assumption

(GNT) DuN0,u is non-singular.

When (GNT) is fulfilled, the IFT tells us that the equation (18) is locally uniquely
solvable as a smooth function ε 7→ u(ε). This u(ε) is therefore the unique critical point
of Dsm over Π, close to u, when the shock is given by u` = u and ur = v(ε).

Proposition 5.4. — Suppose that the system (1) is strictly hyperbolic. Denote Hk(u`)

the local Hugoniot curve, tangent at u` to rk(u`).
If (GNT) is satisfied at u`, then for every ur ∈ Hk(u`)∩V (V a suitable neighbour-

hood of u`), there exists a unique point u ∈ W (W a suitable neighbourhood of u`)
such that
• u ∈ Π, where Π is the constrained hyperplane defined by (5),
• the restriction of Dsm to Π is critical at u.

This point u is a smooth function of ur along H(u`).

Geometrical interpretation of (GNT). — A vector h is in the kernel of DuN0,u if h ∈ `⊥k
and `k · (drj · h) = 0 for every j 6= k. Because `k · rj ≡ 0, we have

`k · (drj · h) = −(D`k · h) · rj .

Therefore, the second part of the kernel condition is that D`k · h is parallel to `k.
The situation is especially clear when the kth characteristic field is rich. This

means (see Chapter 12 of [28]) that `k derives from a Riemann Invariant wk, say that
`k = α dwk where α is a positive function. For instance, every 2 × 2 system is rich.
Then h belongs to the kernel if and only if dwk · h = 0 and D2wk(h, r) = 0 for every
linear combination r of the rj ’s, that is for every r such that dwk · r = 0. In other
words, h belongs to the kernel of the quadratic form

D2wk
∣∣
ker dwk

.

The condition (GNT) thus expresses that this kernel is trivial. This amounts to saying
that the second fundamental form of the level set {wk = wk(u)} at u is non-degenerate.
Because the Temple property would be that this second fundamental form vanish
identically, we say that the system is Genuinely Non Temple at u.

Proposition 5.5. — Suppose that the system (1) is strictly hyperbolic, and that the kth
characteristic fields admits a Riemann invariant wk in the strong sense (that is dwk
is an eigenform of df associated with λk). Then (GNT) is equivalent to the property
that the second fundamental form of the level set {wk = wk(u)} is non-degenerate
at u.
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Comments. — It is remarkable that this condition, which originally was associated
with a prescribed convex entropy (because Π and Dsm do depend upon the choice
of η), actually depends only on the geometry of the characteristic fields. – When the
kth field is not rich, the form `k defines a non-integrable field of hyperplanes. When
n = 3, this is just a contact structure. If there is an ambient Riemannian metric, this
is a so-called a CR manifold (though it is not a manifold!), to which a curvature can
be attributed. Then (GNT) amounts to saying that this curvature is non-degenerate.
Although we do have a Riemannian structure, that inherited from D2η, the one under
consideration here is the flat metric of Rn. Mind that this flat metric is defined up
to a linear change of coordinates, so that the curvature is not well-defined; but its
(non)-degeneracy is intrinsic in that it does not depend upon the reference frame.

5.3. Local maximality at the critical point. — Recall that among the critical points
of Dsm over Π, we are really interested in maxima. We have seen in Proposition 5.4
that under (GNT), and if the shock strength is weak enough, thenDsm has a privileged
critical point, which we denote U . A natural question is thus whether U is a local
maximum. For this we calculate the Hessian of Dsm at U in the direction of Π. The
global Hessian of Dsm is −[dη]D2fU .

Let us assume genuine nonlinearity, so that [u] ∼ −εrk where ε > 0 and dλk ·rk > 0.
Then −[dη] ∼ εD2ηrk = ε`k. Because U is the critical point, we know that [dη] is
colinear to `k(U). Therefore we do have

−[dη] = (ε+O(ε2))`k(U).

This shows that the Hessian of Dsm at U is positively proportional to

QU := `kD2fU .

Now, we are interested in the restriction of QU to the subspace `k(U)⊥, the direction
of Π.

Lemma 5.6. — Under (GNT), the restriction of the quadratic form QU to `k(U)⊥ is
non-degenerate.

Proof. — Starting from the identity `k(df − λk) = 0, we have

`kD2f + D`k(df − λk) = `k ⊗ dλk.

If h, k ∈ `⊥k , this gives

`kD2f(h, k) + (D`k · h)(df − λk)k = 0.

Suppose now that h ∈ kerQU , that is `kD2f(h, k) = 0 (with u = U) for every k ∈ `⊥k .
Then we find (D`k ·h)(df−λk)k = 0 for every such k. By strict hyperbolicity, df−λk
is an automorphism of `⊥k and therefore this tells us that D`k · h is parallel to `k. By
(GNT), this implies h = 0. �
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Thanks to Lemma 5.6, Dsm achieves a local maximum if and only if the restriction
of QU is negative definite, which amounts to saying that the restriction to `⊥k of the
quadratic form

RU (h) := (D`k · h)(df − λk)h

is positive definite.

About normalizations. — When carrying calculations about some specific system, it
may be boring to follow all the normalizations of the eigenfields. This is not needed
actually, if we express the final result in terms that are invariant under the flips
rk ←→ −rk or `k ←→ −`k. When the kth field is GNL and GNT, the necessary
condition for Dsm to achieve a local maximum at U is that the quadratic form

X 7→ (`k · rk)(dλk · rk)`kD2fUX ⊗X

be negative definite over ker `k.

5.3.1. The rich case. — When the kth characteristic field admits a Riemann invariant
(in the strong sense) wk, we may replace `k by dwk. We point out that because
[wk] ∼ −εdwk · rk, and dwk has the same orientation as `k, we have

(19) [wk] < 0.

Lemma 5.7. — Let the indices (i, j, k) be pairwise distinct. Then

D2wk(ri, rj) = 0.

In particular, the signs of the the principal curvatures of the level set of wk are equal
to the signs of the numbers D2wk(rj , rj) for j 6= k.

Proof. — Because of D2wk((df − λk)h, k) = −dwk ·D2f(h, k), the form

(h, k) 7→ D2wk((df − λk)h, k)

is symmetric over `⊥k :

(`k · h = `k · k = 0) =⇒ D2wk((df − λk)h, k) = D2wk((df − λk)k, h).

Taking h = ri and k = rj , we deduce

(λi − λj)D2wk(ri, rj) = 0. �

Instead of RU , we may now consider the form

R′U (h) := D2wk((df − λk)h, h), h, k ∈ `⊥k ,

which has to be positive definite for local maximality. Because of Lemma 5.7, R′U is
diagonalized in the basis (rj)j 6=k, and we have

R′U (rj) = (λj − λk)D2wk(rj , rj).

Its signature is therefore related to the principal curvatures of the level set
{u |wk(u) = wk(U)}:
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Proposition 5.8. — If the critical point U is a local maximum of Dsm over Π, then the
principal curvatures of the level set of wk at U have the same signs as the differences
λj − λk when j runs over 1, . . . , k − 1, k + 1, . . . , n.

The situation is even better when (u`, ur) is an extreme shock, that is when either
k = 1 or k = n. For instance, if k = 1 then all the λj − λ1 are positive, and the
local maximality implies that the restriction of D2w1 to ker dw1 is positive definite.
This is exactly saying that the level set of w1 is convex at U , with convexity turned
toward ur. When instead k = n, we find that the convexity turns toward u`. We
point out that in this situation, the necessary condition is also sufficient, because
the positive (or negative) definiteness of the tangential Hessian of wk does imply
R′U (rj) > 0, which means positive definiteness of R′U . Let us summarize these results.

Proposition 5.9 (Extreme shocks; rich case). — Let k equal either 1 or n. We as-
sume that the kth characteristic field is Genuinely non linear, Genuinely non Temple
and is associated with a strong Riemann invariant wk. The latter is oriented so that
(dλk · rk) × (dwk · rk) is positive. Let (u`, ur) be a shock of small strength and U be
the critical point of Dsm over Π mentioned in Proposition 5.4. Then the following
statements are equivalent to each other:
• the restriction of Dsm to Π achieves a local maximum at U ,
• the level set {u |wk(u) = wk(U)} is convex at U , and its convexity is turned

towards ur (if k = 1) or u` (if k = n).
• the numbers D2wk(rj , rj) for j 6= k are positive if k = 1 (respectively negative

for k = n).

6. Examples and counter-examples

6.1. The effect of an Euler–Lagrange type transformation. — The phase space U
in which u(t, x) takes its values is usually a convex, strict subset of Rn. It is therefore
contained in a half-space. Because we are free to choose linear coordinates (u1, . . . , un),
we may assume that U is contained in {u |u1 > 0}.

When it is so, the first conservation law ∂tu1 + ∂xf1 = 0 is the compatibility
condition for the existence of a function y such that

∂xy = u1, ∂ty = −f1,

which may be use to design a change of variables (x, t) 7→ (y, t), because of
dy∧ dt = u1dx∧ dt 6= 0. Remark that in gas dynamics, with u1 = ρ, the density, then
(x, t) 7→ (y, t) is the transformation from Eulerian coordinates into Lagrangian mass
coordinates. It is shown in [27] (see also Wagner [32] for the system of gas dynamics)
that there is a one-to-one correspondence between weak entropy solutions u of (1)
and weak entropy solutions v of

(20) ∂tv + ∂yg(v) = 0,
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where v1 = 1/u1, g1 = −f1/u1 and

vj =
uj
u1
, gj = fj −

uj
u1
f1

otherwise. We point out that the image V of U under u 7→ v is again convex, for if
a · u > α over U , then

a1 + a2v2 + · · ·+ anvn > αv1,

and conversely.
If (1) admits an entropy-flux pair (η, q) in which u 7→ η is strongly convex, then

(20) admits the entropy-flux pair (Φ := η/u1, Q := q − f1η/u1), in which v 7→ Φ is
strongly convex. Our main observation is the following.

Proposition 6.1. — Let u, u ∈ U be given, and v, v be their images under the Euler–
Lagrange type transformation. Then we have

η(u|u) = u1Φ(v|v).

Corollary 6.2. — Under an Euler–Lagrange type transformation, we have∫
J

η(u(x, t)|u) dx =

∫
J′

Φ(v(y, t)|v) dy,

where J and J ′ are in correspondence through x 7→ y(x, t).

Proof. — Every function h(u) = H(v) satisfies the following identities:
∂h

∂u1
= −v1dH · v, ∂h

∂uj
= v1

∂H

∂vj
(j > 2).

From the above, we obtain dη · u− η = −∂Φ/∂v1, and conversely
∂H

∂v1
= −u1dh · u, dΦ · v − Φ = − ∂η

∂u1
.

This yields the following calculations

η(u|u) = η(u)− dη(u) · u+ dη(u) · u− η(u)

= u1Φ(v)− u1(Φ(v)− dΦ(v) · v)−
n∑
2

ujv1
∂(Φ/v1)

∂vj

∣∣∣∣
v

− ∂Φ

∂v1
(v)

= u1 (Φ(v)− Φ(v)− dΦ(v) · (v − v))

= u1Φ(v|v). �

These properties show that if some meaningful statement about the dissipation rate
is true in the original formulation (system (1), variables t, x, u), then it is also true in
the modified formulation (system (20), variables t, y, v). And conversely. This applies
to various questions, like those about its sign or its critical points. We illustrate this
principle with the constrained hyperplane defined by (5):

[dη] · u = [dη · u− η].
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With the formulae above, the right-hand side is nothing but −[∂Φ/∂v1], while the
left-hand side rewrites as

u1 [Φ− dΦ · v] +

n∑
2

uj

[
v1
∂(u1Φ)

∂vj

]
.

Gathering these expression in (5) and dividing by u1, we end up with

[dΦ] · v = [dΦ · v − Φ].

Finally, we obtain that the Euler-Lagrange type transformation sends the u-hyper-
plane of constraints onto the v-hyperplane of constraints.

6.2. The p-system. — Let us consider the well-known 2× 2 system

(21) ∂tu1 + ∂xu2 = 0, ∂tu2 + ∂xp(u1) = 0.

It is strictly hyperbolic if p′ > 0. We assume genuine nonlinearity, namely that p′′
does not vanish. This is a situation where (GNL) implies (GNT).

The wave velocities are λ± = ±
√
p′(u1). The eigenvectors, eigenforms and Rie-

mann invariants are

r± = p′′
(
±1√
p′

)
, `± = p′′

(
±
√
p′ 1

)
, w± = (sgnp′′)

(
u2 ±

∫ u1 √
p′(s) ds

)
,

where the factor p′′ or its sign have been chosen in order that dλk · rk, `k · rk and
dwk · rk are all positive.

With D2w± = ± |p
′′|√
p′

(du1)2, we have

D2w±(r∓, r∓) = ±|p
′′|3√
p′
.

With the notations of the previous paragraph, this gives

D2w1(r2, r2) < 0, D2w2(r1, r1) > 0,

which are the exact opposite of the third statement in Proposition 5.9. We deduce
that in the p-system, the critical point of Dsm furnished by Proposition 5.4 is actually
a local minimum instead of a maximum.

This analysis tells us that the supremum of Dsm is obtained when letting the
point u tend to one of the extremities of the line of constraints Π. As a matter of fact,
Π has an equation of the form

σu1 + u2 = cst,

where σ is the shock velocity. This implies that along Π,

Dsm = cst + [u2](σ2u1 − p(u1)).

It is well-known that when the system is GNL, that is when p′′ keeps a constant
sign, then [u2]p′′ is negative. We infer that Dsm is a strongly convex function of u1

along Π. If (m,M) denotes the domain of definition of p, we have supΠDsm = +∞,
unless τ 7→ p(τ) − σ2τ is uniformly bounded. The latter instance is unlikely; for
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instance, if (m,M) is unbounded, this and the convexity/concavity of p would imply
that p is affine, contradicting the genuine non linearity.

Comments. — System (21) models either one-D elasticity or isentropic gas dynamics
in Lagrangian coordinates, when u1 is the specific length and u2 the material velocity.
Thanks to the previous paragraph, we know that this counter-example translates
into another one about the Eulerian form of isentropic gas dynamics. – It is a bit
astonishing that for every genuinely nonlinear equation of state, the L2-stability of
shock waves in the p-system is not handable by Leger’s technique. The reason for
this is subtle: the same differential quantity p′′ determines simultaneously whether
the fields are linear or not, and whether they are Temple or not. This is no longer
true for general systems, as the Temple property and the Genuine nonlinearity are
distinct properties. Thus we should not take this example as an argument to reject
Leger’s technique.

6.3. Non-isentropic gas dynamics. — One-D full gas dynamics obeys to a 3× 3 sys-
tem, whose extreme (acoustic) fields are not integrable (i.e., they are not rich). Thanks
to Paragraph 6.1, we are free to choose between the Eulerian and the Lagrangian for-
mulations to carry out the calculations. The latter looks easier to deal with. We thus
consider the system

∂tτ − ∂xv = 0,

∂tv + ∂xq(τ, e) = 0,

∂t

(1

2
v2 + e

)
+ ∂x(qv) = 0,

where τ is the specific length and q the pressure. We have

u =

 τ

v
1
2v

2 + e

 , f(u) =

−vq
qv

 .

The wave velocities are 0,±c with c =
√
qqe − qτ . The corresponding eigenfields are

r0 =

 qe
0

−qτ

 , r± =

 −1

±c
q ± vc


and

`0 =
(
q −v 1

)
, `± =

(
qτ ±c− qev qe

)
.

In other words, we have `± = dq ± cdv, and

dτ ·r0 = qe, dv ·r0 = 0, de ·r0 = −qτ , dτ ·r± = −1, dv ·r± = ±c, de ·r± = q.

Remark also
dq · r0 = 0, dq · r± = c2.

Now, we have

`±D2f = (±c− qev)D2q + qeD
2(qv) = ±cD2q + 2qedv dq.
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We deduce the following formulae

`±D2fr0 ⊗ r0 = ±c(q2
eqττ − 2qeqτqeτ + q2

τqee)

`±D2fr0 ⊗ r∓ = ±c(−qeqττ + (qτ + qqe)qeτ − qqτqee)

`±D2fr∓ ⊗ r∓ = ±c(qττ − 2qqeτ + q2qee − 2c2qe).

We point out that for an ideal gas, meaning that q = (γ − 1)e/τ with γ > 1 the
adiabatic constant, one has `±D2fr0 ⊗ r0 ≡ 0. If the restriction of `±D2f over ker `±
is going to be semi-definite, then we need also that

`±D2fr0 ⊗ r∓ = ∓γ(γ − 1)2 ce

τ4

vanish, which is impossible. This shows that the ideal gas cannot be treated by our
method of relative entropy.

Appendix. Proof of Lemma 2.2

Since u ∈ BVloc, for every Lipschitz function t → h(t), we define for almost every
t > 0:

Umax(t) = max{Vε(u(t, h(t)−), Vε(u(t, h(t)+))},
Umin(t) = min{Vε(u(t, h(t)−), Vε(u(t, h(t)+))}.

Consider the classic mollifier function defined on R for any positive integer m

δm(x) = mδ1(mx),

where δ1 is a smooth non-negative function, compactly supported in (0, 1), with in-
tegral equal to 1. We define on R+ × R

Um(t, x) =

∫
R
δm(y)Vε(u(t, x− y)) dy.

The function Um is Lipschitz in x. We consider hm the (unique) solution to the ODE:

˙hm = Um(t, hm),

hm(0) = 0.

The function hm is uniformly Lipschitz in time with respect to m. Hence there exists
a Lipschitz function t → hε(t) such that (up to a subsequence) hm converges to hε
whenm goes to infinity, in C0(0, T ), for every T > 0. Note that ˙hm converges weakly-*
in L∞ to ḣε. We consider Umax and Umin as above for this particular fixed function hε.
We show that for almost every t > 0

lim
m→∞

[ ˙hm(t)− Umax(t)]+ = 0,

lim
m→∞

[Umin(t)− ˙hm(t)]+ = 0.
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Both limits are proved the same way. Let us focus on the first one. We have

[ ˙hm(t)− Umax(t)]+ =

[∫
R
Vε(u(t, hm(t)− y))δm(y) dy − Umax(t)

]
+

=

[∫
R

(Vε(u(t, hm(t)− y))− Umax(t))δm(y) dy

]
+

6
∫
R

[Vε(u(t, hm(t)− y))− Umax(t)]+ δm(y) dy

6 ess sup
y∈(0,1/m)

[(Vε(u(t, hm(t)− y))− Umax(t))]+ ,

6 ess sup
z∈(−εm,εm)

[Vε(u(t, hε(t)− z))− Umax(t)]+ ,

where, for a given t > 0, εm →∞ is chosen such that hm(t)−hε(t) ∈ (−εm, εm−1/m).
Since u ∈ BVloc, for almost every t > 0, the last term above converges to 0 when
m→∞. This proves that for almost every t > 0, ḣε ∈ I(Vε(u−), Vε(u+)).

To show that (u−, u+, ḣ) is an admissible entropic discontinuity (or else u− = u+),
we consider

ψm(x) =

∫ ∞
x

(δm(y)− δm(−y)) dy.

Note that ψm is a nonnegative compactly supported function which converges to 0 in
L1(R) when m tends to infinity. Since u ∈ L∞∩BVloc and δm is compactly supported
in (0, 1), for every continuous function g, and for almost every t∫

R
ψ′m(x− hε(t))g(u(t, x)) dx

converges, when m goes to infinity to g(u−)− g(u+). For any nonnegative compactly
supported smooth function φ we use

(t, x) −→ φ(t)ψm(x− hε(t))

as a test function for the equation (1). We get

−
∫
φ′(t)ψm(x−hε(t))u(t, x) dx dt+

∫
φ(t)ψ′m(x−hε(t))(ḣε(t)u(t, x)−f(u)) dx dt = 0.

The first integral converges to 0 when m goes to infinity. the second one converges to∫ T

0

[f(u+)− f(u−)− ḣ(u+ − u−)]φdt = 0.

A similar treatment of equation (2) gives∫ T

0

[q(u+)− q(u−)− ḣ(η(u+)− η(u−))]φdt 6 0.
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