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SOME SURFACES WITH MAXIMAL PICARD NUMBER

by Arnaud Beauville

Abstract. — For a smooth complex projective variety, the rank ρ of the Néron-Severi group
is bounded by the Hodge number h1,1. Varieties with ρ = h1,1 have interesting properties, but
are rather sparse, particularly in dimension 2. We discuss in this note a number of examples,
in particular those constructed from curves with special Jacobians.

Résumé (Quelques surfaces dont le nombre de Picard est maximal). — Le rang ρ du groupe
de Néron-Severi d’une variété projective lisse complexe est borné par le nombre de Hodge h1,1.
Les variétés satisfaisant à ρ = h1,1 ont des propriétés intéressantes, mais sont assez rares,
particulièrement en dimension 2. Dans cette note nous analysons un certain nombre d’exemples,
notamment ceux construits à partir de courbes à jacobienne spéciale.
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1. Introduction

The Picard number of a smooth projective variety X is the rank ρ of the Néron-
Severi group – that is, the group of classes of divisors in H2(X,Z). It is bounded by
the Hodge number h1,1 := dimH1(X,Ω1

X). We are interested here in varieties with
maximal Picard number ρ = h1,1. As we will see in §2, there are many examples of
such varieties in dimension > 3, so we will focus on the case of surfaces.
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102 A. Beauville

Apart from the well understood case of K3 and abelian surfaces, the quantity of
known examples is remarkably small. In [Per82] Persson showed that some families
of double coverings of rational surfaces contain surfaces with maximal Picard number
(see Section 6.4 below); some scattered examples have appeared since then. We will
review them in this note and examine in particular when the product of two curves
has maximal Picard number – this provides some examples, unfortunately also quite
sparse.

2. Generalities

Let X be a smooth projective variety over C. The Néron-Severi group NS(X) is the
subgroup of algebraic classes in H2(X,Z); its rank ρ is the Picard number of X. The
natural map NS(X)⊗ C→ H2(X,C) is injective and its image is contained in H1,1,
hence ρ 6 h1,1.

Proposition 1. — The following conditions are equivalent:
(i) ρ = h1,1;
(ii) The map NS(X)⊗ C→ H1,1 is bijective;
(iii) The subspace H1,1 of H2(X,C) is defined over Q.
(iv) The subspace H2,0 ⊕H0,2 of H2(X,C) is defined over Q.

Proof. — The equivalence of (iii) and (iv) follows from the fact that H2,0 ⊕H0,2 is
the orthogonal of H1,1 for the scalar product on H2(X,C) associated to an ample
class. The rest is clear. �

When X satisfies these equivalent properties we will say for short that X is
ρ-maximal (one finds the terms singular, exceptional or extremal in the literature).

Remarks
(1) A variety with H2,0 = 0 is ρ-maximal. We will implicitly exclude this trivial

case in the discussion below.
(2) Let X, Y be two ρ-maximal varieties, with H1(Y,C) = 0. Then X × Y is

ρ-maximal. For instance X × Pn is ρ-maximal, and Y × C is ρ-maximal for any
curve C.

(3) Let Y be a submanifold of X; if X is ρ-maximal and the restriction map
H2(X,C)→ H2(Y,C) is bijective, Y is ρ-maximal. By the Lefschetz theorem, the lat-
ter condition is realized if Y is a complete intersection of smooth ample divisors in X,
of dimension > 3. Together with Remark 2, this gives many examples of ρ-maximal
varieties of dimension > 3; thus we will focus on finding ρ-maximal surfaces.

Proposition 2. — Let π : X 99K Y be a rational map of smooth projective varieties.
(a) If π∗ : H2,0(Y )→ H2,0(X) is injective (in particular if π is dominant), and X

is ρ-maximal, so is Y .
(b) If π∗ : H2,0(Y )→ H2,0(X) is surjective and Y is ρ-maximal, so is X.

J.É.P. — M., 2014, tome 1



Some surfaces with maximal Picard number 103

Note that since π is defined on an open subset U ⊂ X with codim(X r U) > 2,
the pull back map π∗ : H2(Y,C)→ H2(U,C) ∼= H2(X,C) is well defined.

Proof. — Hironaka’s theorem provides a diagram

X̂
b

��~~
~~

~~
~

π̂

��
??

??
??

?

X
π //_______ Y

where π̂ is a morphism, and b is a composition of blowing-ups with smooth centers.
Then b∗ : H2,0(X) → H2,0(X̂) is bijective, and X̂ is ρ-maximal if and only if X is
ρ-maximal; so replacing π by π̂ we may assume that π is a morphism.

(a) Let V := (π∗)−1(NS(X)⊗Q). We have

V ⊗Q C = (π∗)−1(NS(X)⊗ C) = (π∗)−1(H1,1(X)) = H1,1(Y )

(the last equality holds because π∗ is injective on H2,0(Y ) and H0,2(Y )), hence Y is
ρ-maximal.

(b) Let W be the Q-vector subspace of H2(Y,Q) such that

W ⊗Q C = H2,0(Y )⊕H0,2(Y ).

Then π∗W is a Q-vector subspace of H2(X,Q), and

(π∗W )⊗ C = π∗(W ⊗ C) = π∗H2,0(Y )⊕ π∗H0,2(Y ) = H2,0(X)⊕H0,2(X),

so X is ρ-maximal. �

3. Abelian varieties

There is a nice characterization of ρ-maximal abelian varieties ([Kat75], [Lan75]):

Proposition 3. — Let A be an abelian variety of dimension g. We have

rkZ End(A) 6 2g2.

The following conditions are equivalent:
(i) A is ρ-maximal;
(ii) rkZ End(A) = 2g2;
(iii) A is isogenous to Eg, where E is an elliptic curve with complex multiplication.
(iv) A is isomorphic to a product of mutually isogenous elliptic curves with complex

multiplication.

(The equivalence of (i), (ii) and (iii) follows easily from Lemma 1 below; the only
delicate point is (iii)⇒ (iv), which we will not use.)

Coming back to the surface case, suppose that our abelian variety A contains a
surface S such that the restriction map H2,0(A) → H2,0(S) is surjective. Then S is
ρ-maximal if A is ρ-maximal (Proposition 2(b)). Unfortunately this situation seems
to be rather rare. We will discuss below (Proposition 6) the case of Sym2C for a
curve C. Another interesting example is the Fano surface FX parametrizing the lines

J.É.P. — M., 2014, tome 1



104 A. Beauville

contained in a smooth cubic threefold X, embedded in the intermediate Jacobian JX
[CG72]. There are some cases in which JX is known to be ρ-maximal:

Proposition 4
(a) For λ ∈ C, λ3 6= 1, let Xλ (resp. Eλ) be the cubic in P4 (resp. P2) defined by

Xλ : X3 + Y 3 + Z3 − 3λXY Z + T 3 + U3 = 0, Eλ : X3 + Y 3 + Z3 − 3λXY Z = 0.

If Eλ is isogenous to E0, JXλ and FXλ are ρ-maximal. The set of λ ∈ C for which
this happens is countably infinite.

(b) Let X ⊂ P4 be the Klein cubic threefold
∑
i∈Z/5X

2
iXi+1 = 0. Then JX and FX

are ρ-maximal.

Proof. — Part (a) is due to Roulleau [Rou11], who proves that JXλ (for any λ) is
isogenous to E3

0 ×E2
λ. Since the family (Eλ)λ∈C is not constant, there is a countably

infinite set of λ ∈ C for which Eλ is isogenous to E0, hence JXλ and therefore FXλ
are ρ-maximal.

Part (b) follows from a result of Adler [Adl81], who proves that JX is isogenous
(actually isomorphic) to E5, where E is the elliptic curve whose endomorphism ring
is the ring of integers of Q(

√
−11) (see also [Rou09] for a precise description of the

group NS(X)). �

4. Products of curves

Proposition 5. — Let C,C ′ be two smooth projective curves, of genus g and g′ re-
spectively. The following conditions are equivalent:

(i) The surface C × C ′ is ρ-maximal;
(ii) There exists an elliptic curve E with complex multiplication such that JC is

isogenous to Eg and JC ′ to Eg′ .

Proof. — Let p, p′ be the projections from C × C ′ to C and C ′. We have

H1,1(C × C ′) = p∗H2(C,C)⊕ p′∗H2(C ′,C)⊕
(
p∗H1,0(C)⊗ p′∗H0,1(C ′)

)
⊕
(
p∗H0,1(C)⊗ p′∗H1,0(C ′)

)
,

hence h1,1(C × C ′) = 2gg′ + 2. On the other hand we have

NS(C × C ′) = p∗NS(C)⊕ p′∗NS(C ′)⊕Hom(JC, JC ′)

([LB92], Th. 11.5.1), hence C×C ′ is ρ-maximal if and only if rk Hom(JC, JC ′) = 2gg′.
Thus the Proposition follows from the following (well-known) lemma:

Lemma 1. — Let A and B be two abelian varieties, of dimension a and b respectively.
The Z-module Hom(A,B) has rank 6 2ab; equality holds if and only if there exists
an elliptic curve E with complex multiplication such that A is isogenous to Ea and B
to Eb.

J.É.P. — M., 2014, tome 1



Some surfaces with maximal Picard number 105

Proof. — There exist simple abelian varieties A1, . . . , As, with distinct isogeny
classes, and nonnegative integers p1, . . . , ps, q1, . . . , qs such that A is isogenous to
Ap1

1 × · · · ×Apss and B to Aq11 × · · · ×Aqss . Then

Hom(A,B)⊗Z Q ∼= Mp1,q1(K1)× · · · ×Mps,qs(Ks),

where Ki is the (possibly skew) field End(Ai)⊗Z Q. Put ai := dimAi. Since Ki acts
on H1(Ai,Q) we have dimQKi 6 b1(Ai) = 2ai, hence

rk Hom(A,B) 6
∑
i

2piqiai 6 2
(∑

piai

)(∑
qiai

)
= 2ab.

The last inequality is strict unless s = a1 = 1, in which case the first one is strict
unless dimQK1 = 2. The lemma, and therefore the Proposition, follow. �

The most interesting case occurs when C = C ′. Then:

Proposition 6. — Let C be a smooth projective curve. The following conditions are
equivalent:

(i) The Jacobian JC is ρ-maximal;
(ii) The surface C × C is ρ-maximal;
(iii) The symmetric square Sym2C is ρ-maximal.

Proof. — The equivalence of (i) and (ii) follows from Proposition 5. The Abel-Jacobi
map Sym2C → JC induces an isomorphism

H2,0(JC) ∼= ∧2H0(C,KC) ∼−→ H2,0(Sym2C),

thus (i) and (iii) are equivalent by Proposition 2. �

When the equivalent conditions of Proposition 6 hold, we will say that C has
maximal correspondences (the group End(JC) is often called the group of divisorial
correspondences of C).

By Proposition 3 the Jacobian JC is then isomorphic to a product of isogenous
elliptic curves with complex multiplication. Though we know very few examples of
such curves, we will give below some examples with g = 4 or 10.

For g = 2 or 3, there is a countably infinite set of curves with maximal correspon-
dences ([HN65], [Hof91]). The point is that any indecomposable principally polarized
abelian variety of dimension 2 or 3 is a Jacobian; thus it suffices to construct an inde-
composable principal polarization on Eg, where E is an elliptic curve with complex
multiplication, and this is easily translated into a problem about hermitian forms of
rank g on certain rings of quadratic integers.

This approach works only for g = 2 or 3; moreover it does not give an explicit
description of the curves. Another method is by using automorphism groups, with
the help of the following easy lemma:

J.É.P. — M., 2014, tome 1



106 A. Beauville

Lemma 2. — Let G be a finite group of automorphisms of C, and let H0(C,KC) =

⊕i∈IVi be a decomposition of the G-module H0(C,KC) into irreducible representa-
tions. Assume that there exists an elliptic curve E and for each i ∈ I, a nontrivial
map πi : C → E such that π∗iH0(E,KE) ⊂ Vi. Then JC is isogenous to Eg.

In particular if H0(C,KC) is an irreducible G-module and C admits a map onto
an elliptic curve E, then JC is isogenous to Eg.

Proof. — Let η be a generator of H0(E,KE). Let i ∈ I; the forms g∗π∗i η for g ∈ G
generate Vi, hence there exists a subset Ai of G such that the forms g∗π∗i η for g ∈ Ai
form a basis of Vi.

Put Πi = (g ◦πi)g∈Ai : C → EAi , and Π = (Πi)i∈I : C → Eg. By construction
Π∗ : H0(Eg,Ω1

Eg ) → H0(C,KC) is an isomorphism. Therefore the map JC → Eg

deduced from Π is an isogeny. �

In the examples which follow, and in the rest of the paper, we put ω := e2πi/3.

Example 1. — We consider the family (Ct) of genus 2 curves given by y2 = x6+tx3+1,
for t ∈ Cr {±2}. It admits the automorphisms

τ : (x, y) 7−→
( 1

x
,
y

x3

)
and ψ : (x, y) 7−→ (ωx, y).

The forms dx/y and xdx/y are eigenvectors for ψ and are exchanged (up to sign)
by τ ; it follows that the action of the group generated by ψ and τ on H0(Ct,KCt) is
irreducible.

Let Et be the elliptic curve defined by v2 = (u+2)(u3−3u+ t); the curve Ct maps
onto Et by

(x, y) 7−→
(
x+

1

x
,
y(x+ 1)

x2

)
.

By Lemma 2 JCt is isogenous to E2
t . Since the j-invariant of Et is a non-constant

function of t, there is a countably infinite set of t ∈ C for which Et has complex
multiplication, hence Ct has maximal correspondences.

Example 2. — Let C be the genus 2 curve y2 = x(x4− 1); its automorphism group is
a central extension of S4 by the hyperelliptic involution σ ([LB92], 11.7); its action
on H0(C,KC) is irreducible.

Let E be the elliptic curve E : v2 = u(u+1)(u−2α), with α = 1−
√

2. The curve C
maps to E by

(x, y) 7−→
(x2 + 1

x− 1
,
y(x− α)

(x− 1)2

)
.

The j-invariant of E is 8000, so E is the elliptic curve C/Z[
√
−2] ([Sil94], Prop. 2.3.1).

Example 3 (The S4-invariant quartic curves). — Consider the standard representa-
tion of S4 on C3. It is convenient to view S4 as the semi-direct product (Z/2)2 oS3,

J.É.P. — M., 2014, tome 1



Some surfaces with maximal Picard number 107

with S3 (resp. (Z/2)2) acting on C3 by permutation (resp. change of sign) of the basis
vectors. The quartic forms invariant under this representation form the pencil

(Ct)t∈P1 : x4 + y4 + z4 + t(x2y2 + y2z2 + z2x2) = 0.

According to [DK93], this pencil was known to Ciani. It contains the Fermat quartic
(t = 0) and the Klein quartic (t = 3

2 (1± i
√

7)).
Let us take t /∈ {2,−1,−2,∞}; then Ct is smooth. The action of S4 on H0(Ct,K),

given by the standard representation, is irreducible. Moreover the involution x 7→ −x
has 4 fixed points, hence the quotient curve Et has genus 1. It is given by the degree 4

equation
u2 + tu(y2 + z2) + y4 + z4 + ty2z2 = 0

in the weighted projective space P(2, 1, 1). Thus Et is a double covering of P1 branched
along the zeroes of the polynomial (t+ 2)(y4 + z4) + 2ty2z2. The cross-ratio of these
zeroes is −(t + 1), so Et is the elliptic curve y2 = x(x − 1)(x + t + 1). By Lemma 2
JCt is isogenous to E3

t . For a countably infinite set of t the curve Et has complex
multiplication, thus Ct has maximal correspondences. For t = 0 we recover the well
known fact that the Jacobian of the Fermat quartic curve is isogenous to (C/Z[i])3.

Example 4. — Consider the genus 3 hyperelliptic curve H : y2 = x(x6 + 1). The
space H0(H,KH) is spanned by dx/y, xdx/y, x2dx/y. This is a basis of eigenvectors
for the automorphism τ : (x, y) 7→ (ωx, ω2y). On the other hand the involution
σ : (x, y) 7→ (1/x,−y/x4) exchanges dx/y and x2dx/y, hence the summands of the
decomposition

H0(H,KH) =
〈dx
y
, x2 dx

y

〉
⊕
〈
x
dx

y

〉
are irreducible under the group S3 generated by σ and τ .

Let Ei be the elliptic curve v2 = u3 + u, with endomorphism ring Z[i]. Consider
the maps f and g from H to Ei given by

f(x, y) = (x2, xy) g(x, y) =
(
λ2
(
x+

1

x

)
,
λ3y

x2

)
with λ−4 = −3.

We have

f∗
du

v
=

2xdx

y
and g∗

du

v
= λ−1(x2 − 1)

dx

y
.

Thus we can apply Lemma 2, and we find that JH is isogenous to E3
i .

Thus JH is isogenous to the Jacobian of the Fermat quartic F4 (Example 3). In
particular we see that the surface H × F4 is ρ-maximal.

We now arrive to our main example in higher genus. Recall that we put ω = e2πi/3.

Proposition 7. — The Fermat sextic curve C6 : X6 + Y 6 + Z6 = 0 has maximal
correspondences. Its Jacobian JC6 is isogenous to E10

ω , where Eω is the elliptic curve
C/Z[ω].

J.É.P. — M., 2014, tome 1



108 A. Beauville

The first part can be deduced from the general recipe given by Shioda to compute
the Picard number of Cd×Cd for any d [Shi81]. Let us give an elementary proof. Let
G := T oS3, where S3 acts on C3 by permutation of the coordinates and T is the
group of diagonal matrices t with t6 = 1.

Let Ω =
XdY − Y dX

Z5
=
Y dZ − ZdY

X5
=
ZdX −XdZ

Y 5
∈ H0(C,KC(−3)).

A basis of eigenvectors for the action of T on H0(C6,K) is given by the forms
XaY bZc Ω, with a + b + c = 3; using the action of S3 we get a decomposition into
irreducible components:

H0(C6,K) = V3,0,0 ⊕ V2,1,0 ⊕ V1,1,1,

where Vα,β,γ is spanned by the forms XaY bZc Ω with {a, b, c} = {α, β, γ}.
Let us use affine coordinates x = X/Z, y = Y/Z on C6. We consider the following

maps from C6 onto Eω : v2 = u3 − 1:

f(x, y) = (−x2, y3), g(x, y) =
(

2−2/3x−2y4,
1

2
(x3 − x−3)

)
;

and, using for Eω the equation ξ3 + η3 + 1 = 0, h(x, y) = (x2, y2).
We have

f∗
du

v
= −2xdx

y3
= −2XY 2 Ω ∈ V2,1,0,

g∗
du

v
= −24/3Y 3 Ω ∈ V3,0,0,

h∗
dξ

η2
= 2XY Z Ω ∈ V1,1,1,

so the Proposition follows from Lemma 2. �

By Proposition 2 every quotient of C6 has again maximal correspondences. There
are four such quotient which have genus 4:
• The quotient by an involution α ∈ T , which we may take to be α : (X,Y, Z) 7→

(X,Y,−Z). The canonical model of C6/α is the image of C6 by the map

(X,Y, Z) 7−→ (X2, XY, Y 2, Z2) ;

its equations in P3 are xz−y2 = x3 +z3 +t3 = 0. Projecting onto the conic xz−y2 = 0

realizes C6/α as the cyclic triple covering v3 = u6 + 1 of P1.
• The quotient by an involution β ∈ S3, say β : (X,Y, Z) 7→ (Y,X,Z). The

canonical model of C6/β is the image of C6 by the map

(X,Y, Z) 7−→ ((X + Y )2, Z(X + Y ), Z2, XY ) ;

its equations are xz − y2 = x(x− 3t)2 + z3 − 2t3 = 0.
Since the quadric containing their canonical model is singular, the two genus 4

curves C6/α and C6/β have a unique g1
3 . The associated triple covering C6/α→ P1 is

cyclic, while the corresponding covering C6/β → P1 is not. Therefore the two curves
are not isomorphic.

J.É.P. — M., 2014, tome 1



Some surfaces with maximal Picard number 109

• The quotient by an element of order 3 of T acting freely, say γ : (X,Y, Z) 7→
(X,ωY, ω2Z). The canonical model of C6/γ is the image of C6 by the map

(X,Y, Z) 7→ (X3, Y 3, Z3, XY Z) ;

its equations are x2 +y2 +z2 = t3−xyz = 0. Projecting onto the conic x2 +y2 +z2 = 0

realizes C6/γ as the cyclic triple covering v3 = u(u4 − 1) of P1; thus C6/γ is not
isomorphic to C6/α or C6/β.
• The quotient by an element of order 3 of S3 acting freely, say δ : (X,Y, Z) 7→

(Y,Z,X). The canonical model of C6/δ is the image of C6 by the map

(X,Y, Z) 7→ (X3 + Y 3 + Z3, XY Z,X2Y + Y 2Z + Z2X,XY 2 + Y Z2 + ZX2).

It is contained in the smooth quadric (x+y)2+5y2−2zt = 0, so C6/δ is not isomorphic
to any of the 3 previous curves.

Thus we have found four non-isomorphic curves of genus 4 with Jacobian isogenous
to E4

ω. The product of any two of these curves is a ρ-maximal surface.

Corollary 1. — The Fermat sextic surface S6 : X6 +Y 6 +Z6 +T 6 = 0 is ρ-maximal.

Proof. — This follows from Propositions 7, 2 and Shioda’s trick: there exists a rational
dominant map π : C6 × C6 99K S6, given by

π
(
(X,Y, Z), (X ′, Y ′, Z ′)

)
= (XZ ′, Y Z ′, iX ′Z, iY ′Z). �

Remark 4. — Since the Fermat plane quartic has maximal correspondences (Exam-
ple 2), the same argument gives the classical fact that the Fermat quartic surface is
ρ-maximal. It follows from the explicit formula for ρ(Sd) given in [Aok83] that Sd is
ρ-maximal (for d > 4) only for d = 4 and 6.

Again every quotient of the Fermat sextic is ρ-maximal. For instance, the quotient
of S6 by the automorphism (X,Y, Z, T ) 7→ (X,Y, Z, ωT ) is the double covering of P2

branched along C6: it is a ρ-maximal K3 surface. The quotient of S6 by the involution
(X,Y, Z, T ) 7→ (X,Y,−Z,−T ) is given in P5 by the equations

y2 − xz = v2 − uw = x3 + z3 + u3 + w3 = 0 ;

it is a complete intersection of degrees (2, 2, 3), with 12 ordinary nodes. Other quo-
tients have pg equal to 2, 3, 4 or 6.

5. Quotients of self-products of curves

The method of the previous section may sometimes allow to prove that certain
quotients of a product C × C have maximal Picard number. Since we have very few
examples we will refrain from giving a general statement and contend ourselves with
one significant example.

Let C be the curve in P4 defined by

u2 = xy, v2 = x2 − y2, w2 = x2 + y2.
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It is isomorphic to the modular curve X(8) [FSM13]. Let Γ ⊂ PGL(5,C) be the sub-
group of diagonal elements changing an even number of signs of u, v, w; Γ is isomorphic
to (Z/2)2 and acts freely on C.

Proposition 8
(a) JC is isogenous to E3

i × E2√
−2

, where Eα = C/Z[α] for α = i or
√
−2.

(b) The surface (C × C)/Γ is ρ-maximal.

Proof

(a) The form Ω := (xdy−ydx)/uvw generates H0(C,KC(−1)), and is Γ-invariant;
thus multiplication by Ω induces a Γ-equivariant isomorphism

H0(P4,OP4(1)) ∼−→ H0(C,KC).

Let V and L be the subspaces of H0(C,KC) corresponding to 〈u, v, w〉 and
〈x, y〉. The projection (u, v, w, x, y) 7→ (u, v, w) maps C onto the quartic curve
F : 4u4 + v4 − w4 = 0; the induced map f : C → F identifies F with the quotient of C
by the involution (u, v, w, x, y) 7→ (u, v, w,−x,−y), and we have f∗H0(F,KF ) = V .

The quotient curve H := C/Γ is the genus 2 curve z2 = t(t4 − 1) [Bea13]. The
pull-back of H0(H,KH) is the subspace invariant under Γ, that is L. Thus JC is
isogenous to JF ×JH. From examples 1 and 2 of §4 we conclude that JC is isogenous
to E3

i × E2√
−2

.
(b) We have Γ-equivariant isomorphisms

H1,1(C × C) = H2(C,C)⊕H2(C,C)⊕ (H1,0 �H0,1)⊕ (H0,1 �H1,0)

= C2 ⊕ End(H0(C,KC))⊕2

(where Γ acts trivially on C2), hence

H1,1((C × C)/Γ) = C2 ⊕ EndΓ(H0(C,KC))⊕2.

As a Γ-module we have H0(C,KC) = L⊕ V , where Γ acts trivially on L and V is
the sum of the 3 nontrivial one-dimensional representations of Γ. Thus

EndΓ(H0(C,KC)) = M2(C)× C3.

Similarly we have NS((C × C)/Γ)⊗Q = Q2 ⊕ (EndΓ(JC)⊗Q) and

EndΓ(JC)⊗Q = (End(JH)⊗Q) × (EndΓ(JF )⊗Q)3 = M2(Q(
√
−2))×Q(i)3,

hence the result. �

Corollary 2 ([ST10]). — Let Σ ⊂ P6 be the surface of cuboids, defined by

t2 = x2 + y2 + z2, u2 = y2 + z2, v2 = x2 + z2, w2 = x2 + y2.

Σ has 48 ordinary nodes; its minimal desingularization S is ρ-maximal.

Indeed Σ is a quotient of (C × C)/Γ [Bea13]. �

(The result has been obtained first in [ST10] with a very different method.)
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6. Other examples

6.1. Elliptic modular surfaces. — Let Γ be a finite index subgroup of SL2(Z) such
that −I /∈ Γ. The group SL2(Z) acts on the Poincaré upper half-plane H; let ∆Γ be
the compactification of the Riemann surface H/Γ. The universal elliptic curve over H
descends to H/Γ, and extends to a smooth projective surface BΓ over ∆Γ, the elliptic
modular surface attached to Γ. In [Shi69] Shioda proves that BΓ is ρ-maximal.(1)

Now take Γ = Γ(5), the kernel of the reduction map SL2(Z)→ SL2(Z/5). In [Liv81]
Livne constructed a Z/5-covering X → BΓ(5), branched along the sum of the 25 5-
torsion sections of BΓ(5). The surface X satisfies c21 = 3c2 (= 225), hence it is a ball
quotient and therefore rigid. By analyzing the action of Z/5 on H1,1(X) Livne shows
that H1,1(X) is not defined over Q, hence X is not ρ-maximal. This seems to be the
only known example of a surface which cannot be deformed to a ρ-maximal surface.

6.2. Surfaces with pg = K2 = 1. — The minimal surfaces with pg = K2 = 1 have
been studied by Catanese [Cat79] and Todorov [Tod80]. Their canonical model is a
complete intersection of type (6, 6) in the weighted projective space P(1, 2, 2, 3, 3).
The moduli spaceM is smooth of dimension 18.

Proposition 9. — The ρ-maximal surfaces are dense inM.

Proof. — We can replaceM by the Zariski open subsetMa parametrizing surfaces
with ample canonical bundle. Let S ∈ Ma, and let f : S → (B, o) be a local versal
deformation of S, so that S ∼= So. Let L be the lattice H2(S,Z), and k ∈ L the class
ofKS . We may assume that B is simply connected and fix an isomorphism of local sys-
tems R2f∗(Z) ∼−→ LB , compatible with the cup-product and mapping the canonical
class [KS/B ] onto k. This induces for each b ∈ B an isometry ϕb : H2(Sb,C) ∼−→ LC,
which maps H2,0(Sb) onto a line in LC; the corresponding point ℘(b) of P(LC) is the
period of Sb. It belongs to the complex manifold

Ω :=
{

[x] ∈ P(LC) | x2 = 0, x · k = 0, x · x > 0
}
.

Associating to x ∈ Ω the real 2-plane Px := 〈Re(x), Im(x)〉 ⊂ LR defines an isomor-
phism of Ω onto the Grassmannian of positive oriented 2-planes in LR.

The key point is that the image of the period map ℘ : B → Ω is open [Cat79]. Thus
we can find b arbitrarily close to o such that the 2-plane Pb is defined over Q, hence
H2,0(Sb)⊕H0,2(Sb) = Pb ⊗R C is defined over Q. �

Remark 5. — The proof applies to all surfaces with pg = 1 for which the image of
the period map is open (for instance to K3 surfaces); unfortunately this seems to be
a rather exceptional situation.

(1)I am indebted to I. Dolgachev and B.Totaro for pointing out this reference.
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6.3. Todorov surfaces. — In [Tod81] Todorov constructed a series of regular surfaces
with pg = 1, 2 6 K2 6 8, which provide counter-examples to the Torelli theorem.
The construction is as follows: let K ⊂ P3 be a Kummer surface. We choose k double
points of K in general position (this can be done with 0 6 k 6 6), and a general
quadric Q ⊂ P3 passing through these k points. The Todorov surface S is the double
covering of K branched along K ∩ Q and the remaining 16 − k double points. It
is a minimal surface of general type with pg = 1, K2 = 8 − k, q = 0. If moreover
we choose K ρ-maximal (that is, K = E2/{±1}, where E is an elliptic curve with
complex multiplication), then S is ρ-maximal by Proposition 2(b).

Note that by varying the quadric Q we get a continuous, non-constant family of
ρ-maximal surfaces.

6.4. Double covers. — In [Per82] Persson constructs ρ-maximal double covers of
certain rational surfaces by allowing the branch curve to acquire some simple singu-
larities (see also [BE87]). He applies this method to find ρ-maximal surfaces in the
following families:
• Horikawa surfaces, that is, surfaces on the “Noether line” K2 = 2pg − 4, for

pg 6≡ −1 (mod. 6);
• Regular elliptic surfaces;
• Double coverings of P2.
In the latter case the double plane admits (many) rational singularities; it is un-

known whether there exists a ρ-maximal surface S which is a double covering of P2

branched along a smooth curve of even degree > 8.

6.5. Hypersurfaces and complete intersections. — Probably the most natural fam-
ilies to look at are smooth surfaces in P3, or more generally complete intersections.
Here we may ask for a smooth surface S, or for the minimal resolution of a surface
with rational double points (or even any surface deformation equivalent to a complete
intersection of given type). Here are the examples that we know of:
• The quintic surface x3yz + y3zt + z3tx + t3xy = 0 has four A9 singularities; its

minimal resolution is ρ-maximal [Sch11]. It is not yet known whether there exists a
smooth ρ-maximal quintic surface.
• The Fermat sextic is ρ-maximal (§4, Corollary 1).
• The complete intersection y2 − xz = v2 − uw = x3 + z3 + u3 + w3 = 0 of type

(2, 2, 3) in P5 has 12 nodes; its minimal desingularization is ρ-maximal (end of §4).
• The surface of cuboids is a complete intersection of type (2, 2, 2, 2) in P6 with 48

nodes; its minimal desingularization is ρ-maximal (§5, Corollary 2).

7. The complex torus associated to a ρ-maximal variety

For a ρ-maximal variety X, let TX be the Z-module H2(X,Z)/NS(X). We have a
decomposition

TX ⊗ C = H2,0 ⊕H0,2
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defining a weight 1 Hodge structure on TX , hence a complex torus T := H0,2/p2(TX),
where p2 : TX ⊗ C → H2,0 is the second projection. Via the isomorphism
H0,2 = H2(X,OX), TX is identified with the cokernel of the natural map
H2(X,Z)→ H2(X,OX).

The exponential exact sequence gives rise to an exact sequence

0 −→ NS(X) −→ H2(X,Z) −→ H2(X,OX) −→ H2(X,O∗X)
∂−−→ H3(X,Z),

hence to a short exact sequence

0 −→ TX −→ H2(X,O∗X)
∂−−→ H3(X,Z),

so that TX appears as the “continuous part” of the group H2(X,O∗X).

Example 5. — Consider the elliptic modular surface BΓ of Section 6.1. The space
H0(BΓ,KBΓ) can be identified with the space of cusp forms of weight 3 for Γ; then
the torus TBΓ

is the complex torus associated to this space by Shimura (see [Shi69]).

Example 6. — Let X = C × C ′, with JC isogenous to Eg and JC ′ to Eg′ (Proposi-
tion 5). The torus TX is the cokernel of the map

i⊗ i′ : H1(C,Z)⊗H1(C ′,Z) −→ H1(C,OC)⊗H1(C ′,OC′),

where i and i′ are the embeddings

H1(C,Z) ↪−→ H1(C,OC) and H1(C ′,Z) ↪−→ H1(C ′,OC′).

We want to compute TX up to isogeny, so we may replace the left hand side by a
finite index sublattice. Thus, writing E = C/Γ, we may identify i with the diagonal
embedding Γg ↪→ Cg, and similarly for i′; therefore i⊗ i′ is the diagonal embedding of
(Γ⊗Γ)gg

′ in Cgg′ . Put Γ = Z+Zτ ; the image Γ′ of Γ⊗Γ in C is spanned by 1, τ, τ2;
since E has complex multiplication, τ is a quadratic number, hence Γ has finite index
in Γ′. Finally we obtain that TX is isogenous to Egg′ .

For the surface X = (C×C)/Γ studied in §5 an analogous argument shows that TX
is isogenous to A = E4

i × E3√
−2

. This is still an abelian variety of type CM, in the
sense that End(A) ⊗ Q contains an étale Q-algebra of maximal dimension 2 dim(A).
There seems to be no reason why this should hold in general. However it is true in
the special case h2,0 = 1 (e.g. for holomorphic symplectic manifolds):

Proposition 10. — If h2,0(X) = 1, the torus TX is an elliptic curve with complex
multiplication.

Proof. — Let T ′X be the pull back of H2,0 + H0,2 in H2(X,Z); then p2(T ′X) is a
sublattice of finite index in p2(TX). Choosing an ample class h ∈ H2(X,Z) defines
a quadratic form on H2(X,Z) which is positive definite on T ′X . Replacing again T ′X
by a finite index sublattice we may assume that it admits an orthogonal basis (e, f)

with e2 = a, f2 = b. Then H2,0 and H0,2 are the two isotropic lines of T ′X ⊗ C;
they are spanned by the vectors ω = e + τf and ω = e − τf , with τ2 = −a/b. We
have e = 1

2 (ω + ω) and f = 1
2τ (ω − ω); therefore multiplication by 1

2τ ω induces an
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isomorphism of C/(Z + Zτ) onto H0,2/p2(T ′X), hence TX is isogenous to C/(Z + Zτ)

and
End(TX)⊗Q = Q(τ) = Q

(√
−disc(T ′X)

)
. �

8. Higher codimension cycles

A natural generalization of the question considered here is to look for varietiesX for
which the groupH2p(X,Z)alg of algebraic classes inH2p(X,Z) has maximal rank hp,p.
Very few nontrivial cases seem to be known. The following is essentially due to Shioda:

Proposition 11. — Let Fnd be the Fermat hypersurface of degree d and even dimension
n = 2ν. For d = 3, 4, the group Hn(Fnd ,Z)alg has maximal rank hν,ν .

Proof. — According to [Shi79] we have

rkHn(Fn3 ,Z)alg = 1 +
n!

(ν)!2
and rkHn(Fn4 ,Z)alg =

k=ν+1∑
k=0

(n+ 2)!

(k!)2(n+ 2− 2k)!
·

On the other hand, let Rnd := C[X0, . . . , Xn+1]/(Xd−1
0 , . . . , Xd−1

n+1) be the Jacobian ring
of Fnd ; Griffiths theory [Gri69] provides an isomorphism of the primitive cohomology
Hν,ν(Fnd )o with the component of degree (ν + 1)(d− 2) of Rnd . Since this ring is the
tensor product of (n+ 2) copies of C[T ]/(T d−1), its Poincaré series

∑
k dim(Rnd )kT

k

is (1 + T + · · ·+ T d−2)n+2. Then an elementary computation gives the result. �

In the particular case of cubic fourfolds we have more examples:

Proposition 12. — Let F be a cubic form in 3 variables, such that the curve
F (x, y, z) = 0 in P2 is an elliptic curve with complex multiplication; let X be the
cubic fourfold defined by F (x, y, z) +F (u, v, w) = 0 in P5. The group H4(X,Z)alg has
maximal rank h2,2(X).

Proof. — Let u be the automorphism of X defined by

u(x, y, z;u, v, w) = (x, y, z;ωu, ωv, ωw).

We observe that u acts trivially on the (one-dimensional) space H3,1(X). Indeed
Griffiths theory [Gri69] provides a canonical isomorphism

Res : H0(P5,KP5(2X)) ∼−→ H3,1(X) ;

the space H0(P5,KP5(2X)) is generated by the meromorphic form Ω/G2, with

Ω = xdy ∧ dz ∧ du ∧ dv ∧ dw − ydx ∧ dz ∧ du ∧ dv ∧ dw + · · · ,
G = F (x, y, z) + F (u, v, w).

The automorphism u acts trivially on this form, and therefore on H3,1(X).
Let F be the variety of lines contained in X. We recall from [BD85] that F is a

holomorphic symplectic fourfold, and that there is a natural isomorphism of Hodge
structures α : H4(X,Z) ∼−→ H2(F,Z). Therefore the automorphism uF of F induced
by u is symplectic. Let us describe its fixed locus.
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The fixed locus of u in X is the union of the plane cubics E given by x = y = z = 0

and E′ given by u = v = w = 0. A line in X preserved by u must have (at least)
two fixed points, hence must meet both E and E′; conversely, any line joining a point
of E to a point of E′ is contained in X, and preserved by u. This identifies the fixed
locus A of uF to the abelian surface E ×E′. Since uF is symplectic A is a symplectic
submanifold, that is, the restriction map H2,0(F )→ H2,0(A) is an isomorphism. By
our hypothesis A is ρ-maximal, so F is ρ-maximal by Proposition 2. Since α maps
H4(X,Z)alg onto NS(F ) this implies the Proposition. �
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